Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
13 *
14 * ... and the days got worse and worse and now you see
15 * I've gone completely out of my mind.
16 *
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
20 *
21 * (Condolences to Napoleon XIV)
22 */
23
24#include <linux/bug.h>
25#include <linux/export.h>
26#include <linux/kernel.h>
27#include <linux/types.h>
28#include <linux/smp.h>
29#include <linux/string.h>
30#include <linux/cache.h>
31
32#include <asm/cacheflush.h>
33#include <asm/cpu-type.h>
34#include <asm/mmu_context.h>
35#include <asm/pgtable.h>
36#include <asm/war.h>
37#include <asm/uasm.h>
38#include <asm/setup.h>
39#include <asm/tlbex.h>
40
41static int mips_xpa_disabled;
42
43static int __init xpa_disable(char *s)
44{
45 mips_xpa_disabled = 1;
46
47 return 1;
48}
49
50__setup("noxpa", xpa_disable);
51
52/*
53 * TLB load/store/modify handlers.
54 *
55 * Only the fastpath gets synthesized at runtime, the slowpath for
56 * do_page_fault remains normal asm.
57 */
58extern void tlb_do_page_fault_0(void);
59extern void tlb_do_page_fault_1(void);
60
61struct work_registers {
62 int r1;
63 int r2;
64 int r3;
65};
66
67struct tlb_reg_save {
68 unsigned long a;
69 unsigned long b;
70} ____cacheline_aligned_in_smp;
71
72static struct tlb_reg_save handler_reg_save[NR_CPUS];
73
74static inline int r45k_bvahwbug(void)
75{
76 /* XXX: We should probe for the presence of this bug, but we don't. */
77 return 0;
78}
79
80static inline int r4k_250MHZhwbug(void)
81{
82 /* XXX: We should probe for the presence of this bug, but we don't. */
83 return 0;
84}
85
86static inline int __maybe_unused bcm1250_m3_war(void)
87{
88 return BCM1250_M3_WAR;
89}
90
91static inline int __maybe_unused r10000_llsc_war(void)
92{
93 return R10000_LLSC_WAR;
94}
95
96static int use_bbit_insns(void)
97{
98 switch (current_cpu_type()) {
99 case CPU_CAVIUM_OCTEON:
100 case CPU_CAVIUM_OCTEON_PLUS:
101 case CPU_CAVIUM_OCTEON2:
102 case CPU_CAVIUM_OCTEON3:
103 return 1;
104 default:
105 return 0;
106 }
107}
108
109static int use_lwx_insns(void)
110{
111 switch (current_cpu_type()) {
112 case CPU_CAVIUM_OCTEON2:
113 case CPU_CAVIUM_OCTEON3:
114 return 1;
115 default:
116 return 0;
117 }
118}
119#if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
120 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
121static bool scratchpad_available(void)
122{
123 return true;
124}
125static int scratchpad_offset(int i)
126{
127 /*
128 * CVMSEG starts at address -32768 and extends for
129 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
130 */
131 i += 1; /* Kernel use starts at the top and works down. */
132 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
133}
134#else
135static bool scratchpad_available(void)
136{
137 return false;
138}
139static int scratchpad_offset(int i)
140{
141 BUG();
142 /* Really unreachable, but evidently some GCC want this. */
143 return 0;
144}
145#endif
146/*
147 * Found by experiment: At least some revisions of the 4kc throw under
148 * some circumstances a machine check exception, triggered by invalid
149 * values in the index register. Delaying the tlbp instruction until
150 * after the next branch, plus adding an additional nop in front of
151 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
152 * why; it's not an issue caused by the core RTL.
153 *
154 */
155static int m4kc_tlbp_war(void)
156{
157 return current_cpu_type() == CPU_4KC;
158}
159
160/* Handle labels (which must be positive integers). */
161enum label_id {
162 label_second_part = 1,
163 label_leave,
164 label_vmalloc,
165 label_vmalloc_done,
166 label_tlbw_hazard_0,
167 label_split = label_tlbw_hazard_0 + 8,
168 label_tlbl_goaround1,
169 label_tlbl_goaround2,
170 label_nopage_tlbl,
171 label_nopage_tlbs,
172 label_nopage_tlbm,
173 label_smp_pgtable_change,
174 label_r3000_write_probe_fail,
175 label_large_segbits_fault,
176#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
177 label_tlb_huge_update,
178#endif
179};
180
181UASM_L_LA(_second_part)
182UASM_L_LA(_leave)
183UASM_L_LA(_vmalloc)
184UASM_L_LA(_vmalloc_done)
185/* _tlbw_hazard_x is handled differently. */
186UASM_L_LA(_split)
187UASM_L_LA(_tlbl_goaround1)
188UASM_L_LA(_tlbl_goaround2)
189UASM_L_LA(_nopage_tlbl)
190UASM_L_LA(_nopage_tlbs)
191UASM_L_LA(_nopage_tlbm)
192UASM_L_LA(_smp_pgtable_change)
193UASM_L_LA(_r3000_write_probe_fail)
194UASM_L_LA(_large_segbits_fault)
195#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
196UASM_L_LA(_tlb_huge_update)
197#endif
198
199static int hazard_instance;
200
201static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
202{
203 switch (instance) {
204 case 0 ... 7:
205 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
206 return;
207 default:
208 BUG();
209 }
210}
211
212static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
213{
214 switch (instance) {
215 case 0 ... 7:
216 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
217 break;
218 default:
219 BUG();
220 }
221}
222
223/*
224 * pgtable bits are assigned dynamically depending on processor feature
225 * and statically based on kernel configuration. This spits out the actual
226 * values the kernel is using. Required to make sense from disassembled
227 * TLB exception handlers.
228 */
229static void output_pgtable_bits_defines(void)
230{
231#define pr_define(fmt, ...) \
232 pr_debug("#define " fmt, ##__VA_ARGS__)
233
234 pr_debug("#include <asm/asm.h>\n");
235 pr_debug("#include <asm/regdef.h>\n");
236 pr_debug("\n");
237
238 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
239 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
240 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
241 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
242 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
243#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
244 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
245#endif
246#ifdef _PAGE_NO_EXEC_SHIFT
247 if (cpu_has_rixi)
248 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
249#endif
250 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
251 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
252 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
253 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
254 pr_debug("\n");
255}
256
257static inline void dump_handler(const char *symbol, const void *start, const void *end)
258{
259 unsigned int count = (end - start) / sizeof(u32);
260 const u32 *handler = start;
261 int i;
262
263 pr_debug("LEAF(%s)\n", symbol);
264
265 pr_debug("\t.set push\n");
266 pr_debug("\t.set noreorder\n");
267
268 for (i = 0; i < count; i++)
269 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
270
271 pr_debug("\t.set\tpop\n");
272
273 pr_debug("\tEND(%s)\n", symbol);
274}
275
276/* The only general purpose registers allowed in TLB handlers. */
277#define K0 26
278#define K1 27
279
280/* Some CP0 registers */
281#define C0_INDEX 0, 0
282#define C0_ENTRYLO0 2, 0
283#define C0_TCBIND 2, 2
284#define C0_ENTRYLO1 3, 0
285#define C0_CONTEXT 4, 0
286#define C0_PAGEMASK 5, 0
287#define C0_PWBASE 5, 5
288#define C0_PWFIELD 5, 6
289#define C0_PWSIZE 5, 7
290#define C0_PWCTL 6, 6
291#define C0_BADVADDR 8, 0
292#define C0_PGD 9, 7
293#define C0_ENTRYHI 10, 0
294#define C0_EPC 14, 0
295#define C0_XCONTEXT 20, 0
296
297#ifdef CONFIG_64BIT
298# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
299#else
300# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
301#endif
302
303/* The worst case length of the handler is around 18 instructions for
304 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
305 * Maximum space available is 32 instructions for R3000 and 64
306 * instructions for R4000.
307 *
308 * We deliberately chose a buffer size of 128, so we won't scribble
309 * over anything important on overflow before we panic.
310 */
311static u32 tlb_handler[128];
312
313/* simply assume worst case size for labels and relocs */
314static struct uasm_label labels[128];
315static struct uasm_reloc relocs[128];
316
317static int check_for_high_segbits;
318static bool fill_includes_sw_bits;
319
320static unsigned int kscratch_used_mask;
321
322static inline int __maybe_unused c0_kscratch(void)
323{
324 switch (current_cpu_type()) {
325 case CPU_XLP:
326 case CPU_XLR:
327 return 22;
328 default:
329 return 31;
330 }
331}
332
333static int allocate_kscratch(void)
334{
335 int r;
336 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
337
338 r = ffs(a);
339
340 if (r == 0)
341 return -1;
342
343 r--; /* make it zero based */
344
345 kscratch_used_mask |= (1 << r);
346
347 return r;
348}
349
350static int scratch_reg;
351int pgd_reg;
352EXPORT_SYMBOL_GPL(pgd_reg);
353enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
354
355static struct work_registers build_get_work_registers(u32 **p)
356{
357 struct work_registers r;
358
359 if (scratch_reg >= 0) {
360 /* Save in CPU local C0_KScratch? */
361 UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
362 r.r1 = K0;
363 r.r2 = K1;
364 r.r3 = 1;
365 return r;
366 }
367
368 if (num_possible_cpus() > 1) {
369 /* Get smp_processor_id */
370 UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
371 UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
372
373 /* handler_reg_save index in K0 */
374 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
375
376 UASM_i_LA(p, K1, (long)&handler_reg_save);
377 UASM_i_ADDU(p, K0, K0, K1);
378 } else {
379 UASM_i_LA(p, K0, (long)&handler_reg_save);
380 }
381 /* K0 now points to save area, save $1 and $2 */
382 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
383 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
384
385 r.r1 = K1;
386 r.r2 = 1;
387 r.r3 = 2;
388 return r;
389}
390
391static void build_restore_work_registers(u32 **p)
392{
393 if (scratch_reg >= 0) {
394 uasm_i_ehb(p);
395 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
396 return;
397 }
398 /* K0 already points to save area, restore $1 and $2 */
399 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
400 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
401}
402
403#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
404
405/*
406 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
407 * we cannot do r3000 under these circumstances.
408 *
409 * The R3000 TLB handler is simple.
410 */
411static void build_r3000_tlb_refill_handler(void)
412{
413 long pgdc = (long)pgd_current;
414 u32 *p;
415
416 memset(tlb_handler, 0, sizeof(tlb_handler));
417 p = tlb_handler;
418
419 uasm_i_mfc0(&p, K0, C0_BADVADDR);
420 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
421 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
422 uasm_i_srl(&p, K0, K0, 22); /* load delay */
423 uasm_i_sll(&p, K0, K0, 2);
424 uasm_i_addu(&p, K1, K1, K0);
425 uasm_i_mfc0(&p, K0, C0_CONTEXT);
426 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
427 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
428 uasm_i_addu(&p, K1, K1, K0);
429 uasm_i_lw(&p, K0, 0, K1);
430 uasm_i_nop(&p); /* load delay */
431 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
432 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
433 uasm_i_tlbwr(&p); /* cp0 delay */
434 uasm_i_jr(&p, K1);
435 uasm_i_rfe(&p); /* branch delay */
436
437 if (p > tlb_handler + 32)
438 panic("TLB refill handler space exceeded");
439
440 pr_debug("Wrote TLB refill handler (%u instructions).\n",
441 (unsigned int)(p - tlb_handler));
442
443 memcpy((void *)ebase, tlb_handler, 0x80);
444 local_flush_icache_range(ebase, ebase + 0x80);
445 dump_handler("r3000_tlb_refill", (u32 *)ebase, (u32 *)(ebase + 0x80));
446}
447#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
448
449/*
450 * The R4000 TLB handler is much more complicated. We have two
451 * consecutive handler areas with 32 instructions space each.
452 * Since they aren't used at the same time, we can overflow in the
453 * other one.To keep things simple, we first assume linear space,
454 * then we relocate it to the final handler layout as needed.
455 */
456static u32 final_handler[64];
457
458/*
459 * Hazards
460 *
461 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
462 * 2. A timing hazard exists for the TLBP instruction.
463 *
464 * stalling_instruction
465 * TLBP
466 *
467 * The JTLB is being read for the TLBP throughout the stall generated by the
468 * previous instruction. This is not really correct as the stalling instruction
469 * can modify the address used to access the JTLB. The failure symptom is that
470 * the TLBP instruction will use an address created for the stalling instruction
471 * and not the address held in C0_ENHI and thus report the wrong results.
472 *
473 * The software work-around is to not allow the instruction preceding the TLBP
474 * to stall - make it an NOP or some other instruction guaranteed not to stall.
475 *
476 * Errata 2 will not be fixed. This errata is also on the R5000.
477 *
478 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
479 */
480static void __maybe_unused build_tlb_probe_entry(u32 **p)
481{
482 switch (current_cpu_type()) {
483 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
484 case CPU_R4600:
485 case CPU_R4700:
486 case CPU_R5000:
487 case CPU_NEVADA:
488 uasm_i_nop(p);
489 uasm_i_tlbp(p);
490 break;
491
492 default:
493 uasm_i_tlbp(p);
494 break;
495 }
496}
497
498void build_tlb_write_entry(u32 **p, struct uasm_label **l,
499 struct uasm_reloc **r,
500 enum tlb_write_entry wmode)
501{
502 void(*tlbw)(u32 **) = NULL;
503
504 switch (wmode) {
505 case tlb_random: tlbw = uasm_i_tlbwr; break;
506 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
507 }
508
509 if (cpu_has_mips_r2_r6) {
510 if (cpu_has_mips_r2_exec_hazard)
511 uasm_i_ehb(p);
512 tlbw(p);
513 return;
514 }
515
516 switch (current_cpu_type()) {
517 case CPU_R4000PC:
518 case CPU_R4000SC:
519 case CPU_R4000MC:
520 case CPU_R4400PC:
521 case CPU_R4400SC:
522 case CPU_R4400MC:
523 /*
524 * This branch uses up a mtc0 hazard nop slot and saves
525 * two nops after the tlbw instruction.
526 */
527 uasm_bgezl_hazard(p, r, hazard_instance);
528 tlbw(p);
529 uasm_bgezl_label(l, p, hazard_instance);
530 hazard_instance++;
531 uasm_i_nop(p);
532 break;
533
534 case CPU_R4600:
535 case CPU_R4700:
536 uasm_i_nop(p);
537 tlbw(p);
538 uasm_i_nop(p);
539 break;
540
541 case CPU_R5000:
542 case CPU_NEVADA:
543 uasm_i_nop(p); /* QED specifies 2 nops hazard */
544 uasm_i_nop(p); /* QED specifies 2 nops hazard */
545 tlbw(p);
546 break;
547
548 case CPU_5KC:
549 case CPU_TX49XX:
550 case CPU_PR4450:
551 case CPU_XLR:
552 uasm_i_nop(p);
553 tlbw(p);
554 break;
555
556 case CPU_R10000:
557 case CPU_R12000:
558 case CPU_R14000:
559 case CPU_R16000:
560 case CPU_4KC:
561 case CPU_4KEC:
562 case CPU_M14KC:
563 case CPU_M14KEC:
564 case CPU_SB1:
565 case CPU_SB1A:
566 case CPU_4KSC:
567 case CPU_20KC:
568 case CPU_25KF:
569 case CPU_BMIPS32:
570 case CPU_BMIPS3300:
571 case CPU_BMIPS4350:
572 case CPU_BMIPS4380:
573 case CPU_BMIPS5000:
574 case CPU_LOONGSON2:
575 case CPU_LOONGSON3:
576 case CPU_R5500:
577 if (m4kc_tlbp_war())
578 uasm_i_nop(p);
579 /* fall through */
580 case CPU_ALCHEMY:
581 tlbw(p);
582 break;
583
584 case CPU_RM7000:
585 uasm_i_nop(p);
586 uasm_i_nop(p);
587 uasm_i_nop(p);
588 uasm_i_nop(p);
589 tlbw(p);
590 break;
591
592 case CPU_VR4111:
593 case CPU_VR4121:
594 case CPU_VR4122:
595 case CPU_VR4181:
596 case CPU_VR4181A:
597 uasm_i_nop(p);
598 uasm_i_nop(p);
599 tlbw(p);
600 uasm_i_nop(p);
601 uasm_i_nop(p);
602 break;
603
604 case CPU_VR4131:
605 case CPU_VR4133:
606 uasm_i_nop(p);
607 uasm_i_nop(p);
608 tlbw(p);
609 break;
610
611 case CPU_XBURST:
612 tlbw(p);
613 uasm_i_nop(p);
614 break;
615
616 default:
617 panic("No TLB refill handler yet (CPU type: %d)",
618 current_cpu_type());
619 break;
620 }
621}
622EXPORT_SYMBOL_GPL(build_tlb_write_entry);
623
624static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
625 unsigned int reg)
626{
627 if (_PAGE_GLOBAL_SHIFT == 0) {
628 /* pte_t is already in EntryLo format */
629 return;
630 }
631
632 if (cpu_has_rixi && !!_PAGE_NO_EXEC) {
633 if (fill_includes_sw_bits) {
634 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
635 } else {
636 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
637 UASM_i_ROTR(p, reg, reg,
638 ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
639 }
640 } else {
641#ifdef CONFIG_PHYS_ADDR_T_64BIT
642 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
643#else
644 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
645#endif
646 }
647}
648
649#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
650
651static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
652 unsigned int tmp, enum label_id lid,
653 int restore_scratch)
654{
655 if (restore_scratch) {
656 /*
657 * Ensure the MFC0 below observes the value written to the
658 * KScratch register by the prior MTC0.
659 */
660 if (scratch_reg >= 0)
661 uasm_i_ehb(p);
662
663 /* Reset default page size */
664 if (PM_DEFAULT_MASK >> 16) {
665 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
666 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
667 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
668 uasm_il_b(p, r, lid);
669 } else if (PM_DEFAULT_MASK) {
670 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
671 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
672 uasm_il_b(p, r, lid);
673 } else {
674 uasm_i_mtc0(p, 0, C0_PAGEMASK);
675 uasm_il_b(p, r, lid);
676 }
677 if (scratch_reg >= 0)
678 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
679 else
680 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
681 } else {
682 /* Reset default page size */
683 if (PM_DEFAULT_MASK >> 16) {
684 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
685 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
686 uasm_il_b(p, r, lid);
687 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
688 } else if (PM_DEFAULT_MASK) {
689 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
690 uasm_il_b(p, r, lid);
691 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
692 } else {
693 uasm_il_b(p, r, lid);
694 uasm_i_mtc0(p, 0, C0_PAGEMASK);
695 }
696 }
697}
698
699static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
700 struct uasm_reloc **r,
701 unsigned int tmp,
702 enum tlb_write_entry wmode,
703 int restore_scratch)
704{
705 /* Set huge page tlb entry size */
706 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
707 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
708 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
709
710 build_tlb_write_entry(p, l, r, wmode);
711
712 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
713}
714
715/*
716 * Check if Huge PTE is present, if so then jump to LABEL.
717 */
718static void
719build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
720 unsigned int pmd, int lid)
721{
722 UASM_i_LW(p, tmp, 0, pmd);
723 if (use_bbit_insns()) {
724 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
725 } else {
726 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
727 uasm_il_bnez(p, r, tmp, lid);
728 }
729}
730
731static void build_huge_update_entries(u32 **p, unsigned int pte,
732 unsigned int tmp)
733{
734 int small_sequence;
735
736 /*
737 * A huge PTE describes an area the size of the
738 * configured huge page size. This is twice the
739 * of the large TLB entry size we intend to use.
740 * A TLB entry half the size of the configured
741 * huge page size is configured into entrylo0
742 * and entrylo1 to cover the contiguous huge PTE
743 * address space.
744 */
745 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
746
747 /* We can clobber tmp. It isn't used after this.*/
748 if (!small_sequence)
749 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
750
751 build_convert_pte_to_entrylo(p, pte);
752 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
753 /* convert to entrylo1 */
754 if (small_sequence)
755 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
756 else
757 UASM_i_ADDU(p, pte, pte, tmp);
758
759 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
760}
761
762static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
763 struct uasm_label **l,
764 unsigned int pte,
765 unsigned int ptr,
766 unsigned int flush)
767{
768#ifdef CONFIG_SMP
769 UASM_i_SC(p, pte, 0, ptr);
770 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
771 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
772#else
773 UASM_i_SW(p, pte, 0, ptr);
774#endif
775 if (cpu_has_ftlb && flush) {
776 BUG_ON(!cpu_has_tlbinv);
777
778 UASM_i_MFC0(p, ptr, C0_ENTRYHI);
779 uasm_i_ori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
780 UASM_i_MTC0(p, ptr, C0_ENTRYHI);
781 build_tlb_write_entry(p, l, r, tlb_indexed);
782
783 uasm_i_xori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
784 UASM_i_MTC0(p, ptr, C0_ENTRYHI);
785 build_huge_update_entries(p, pte, ptr);
786 build_huge_tlb_write_entry(p, l, r, pte, tlb_random, 0);
787
788 return;
789 }
790
791 build_huge_update_entries(p, pte, ptr);
792 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
793}
794#endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
795
796#ifdef CONFIG_64BIT
797/*
798 * TMP and PTR are scratch.
799 * TMP will be clobbered, PTR will hold the pmd entry.
800 */
801void build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
802 unsigned int tmp, unsigned int ptr)
803{
804#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
805 long pgdc = (long)pgd_current;
806#endif
807 /*
808 * The vmalloc handling is not in the hotpath.
809 */
810 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
811
812 if (check_for_high_segbits) {
813 /*
814 * The kernel currently implicitely assumes that the
815 * MIPS SEGBITS parameter for the processor is
816 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
817 * allocate virtual addresses outside the maximum
818 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
819 * that doesn't prevent user code from accessing the
820 * higher xuseg addresses. Here, we make sure that
821 * everything but the lower xuseg addresses goes down
822 * the module_alloc/vmalloc path.
823 */
824 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
825 uasm_il_bnez(p, r, ptr, label_vmalloc);
826 } else {
827 uasm_il_bltz(p, r, tmp, label_vmalloc);
828 }
829 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
830
831 if (pgd_reg != -1) {
832 /* pgd is in pgd_reg */
833 if (cpu_has_ldpte)
834 UASM_i_MFC0(p, ptr, C0_PWBASE);
835 else
836 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
837 } else {
838#if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
839 /*
840 * &pgd << 11 stored in CONTEXT [23..63].
841 */
842 UASM_i_MFC0(p, ptr, C0_CONTEXT);
843
844 /* Clear lower 23 bits of context. */
845 uasm_i_dins(p, ptr, 0, 0, 23);
846
847 /* 1 0 1 0 1 << 6 xkphys cached */
848 uasm_i_ori(p, ptr, ptr, 0x540);
849 uasm_i_drotr(p, ptr, ptr, 11);
850#elif defined(CONFIG_SMP)
851 UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
852 uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
853 UASM_i_LA_mostly(p, tmp, pgdc);
854 uasm_i_daddu(p, ptr, ptr, tmp);
855 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
856 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
857#else
858 UASM_i_LA_mostly(p, ptr, pgdc);
859 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
860#endif
861 }
862
863 uasm_l_vmalloc_done(l, *p);
864
865 /* get pgd offset in bytes */
866 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
867
868 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
869 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
870#ifndef __PAGETABLE_PUD_FOLDED
871 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
872 uasm_i_ld(p, ptr, 0, ptr); /* get pud pointer */
873 uasm_i_dsrl_safe(p, tmp, tmp, PUD_SHIFT - 3); /* get pud offset in bytes */
874 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PUD - 1) << 3);
875 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pud offset */
876#endif
877#ifndef __PAGETABLE_PMD_FOLDED
878 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
879 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
880 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
881 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
882 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
883#endif
884}
885EXPORT_SYMBOL_GPL(build_get_pmde64);
886
887/*
888 * BVADDR is the faulting address, PTR is scratch.
889 * PTR will hold the pgd for vmalloc.
890 */
891static void
892build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
893 unsigned int bvaddr, unsigned int ptr,
894 enum vmalloc64_mode mode)
895{
896 long swpd = (long)swapper_pg_dir;
897 int single_insn_swpd;
898 int did_vmalloc_branch = 0;
899
900 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
901
902 uasm_l_vmalloc(l, *p);
903
904 if (mode != not_refill && check_for_high_segbits) {
905 if (single_insn_swpd) {
906 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
907 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
908 did_vmalloc_branch = 1;
909 /* fall through */
910 } else {
911 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
912 }
913 }
914 if (!did_vmalloc_branch) {
915 if (single_insn_swpd) {
916 uasm_il_b(p, r, label_vmalloc_done);
917 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
918 } else {
919 UASM_i_LA_mostly(p, ptr, swpd);
920 uasm_il_b(p, r, label_vmalloc_done);
921 if (uasm_in_compat_space_p(swpd))
922 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
923 else
924 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
925 }
926 }
927 if (mode != not_refill && check_for_high_segbits) {
928 uasm_l_large_segbits_fault(l, *p);
929
930 if (mode == refill_scratch && scratch_reg >= 0)
931 uasm_i_ehb(p);
932
933 /*
934 * We get here if we are an xsseg address, or if we are
935 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
936 *
937 * Ignoring xsseg (assume disabled so would generate
938 * (address errors?), the only remaining possibility
939 * is the upper xuseg addresses. On processors with
940 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
941 * addresses would have taken an address error. We try
942 * to mimic that here by taking a load/istream page
943 * fault.
944 */
945 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
946 uasm_i_sync(p, 0);
947 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
948 uasm_i_jr(p, ptr);
949
950 if (mode == refill_scratch) {
951 if (scratch_reg >= 0)
952 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
953 else
954 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
955 } else {
956 uasm_i_nop(p);
957 }
958 }
959}
960
961#else /* !CONFIG_64BIT */
962
963/*
964 * TMP and PTR are scratch.
965 * TMP will be clobbered, PTR will hold the pgd entry.
966 */
967void build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
968{
969 if (pgd_reg != -1) {
970 /* pgd is in pgd_reg */
971 uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
972 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
973 } else {
974 long pgdc = (long)pgd_current;
975
976 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
977#ifdef CONFIG_SMP
978 uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
979 UASM_i_LA_mostly(p, tmp, pgdc);
980 uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
981 uasm_i_addu(p, ptr, tmp, ptr);
982#else
983 UASM_i_LA_mostly(p, ptr, pgdc);
984#endif
985 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
986 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
987 }
988 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
989 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
990 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
991}
992EXPORT_SYMBOL_GPL(build_get_pgde32);
993
994#endif /* !CONFIG_64BIT */
995
996static void build_adjust_context(u32 **p, unsigned int ctx)
997{
998 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
999 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
1000
1001 switch (current_cpu_type()) {
1002 case CPU_VR41XX:
1003 case CPU_VR4111:
1004 case CPU_VR4121:
1005 case CPU_VR4122:
1006 case CPU_VR4131:
1007 case CPU_VR4181:
1008 case CPU_VR4181A:
1009 case CPU_VR4133:
1010 shift += 2;
1011 break;
1012
1013 default:
1014 break;
1015 }
1016
1017 if (shift)
1018 UASM_i_SRL(p, ctx, ctx, shift);
1019 uasm_i_andi(p, ctx, ctx, mask);
1020}
1021
1022void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1023{
1024 /*
1025 * Bug workaround for the Nevada. It seems as if under certain
1026 * circumstances the move from cp0_context might produce a
1027 * bogus result when the mfc0 instruction and its consumer are
1028 * in a different cacheline or a load instruction, probably any
1029 * memory reference, is between them.
1030 */
1031 switch (current_cpu_type()) {
1032 case CPU_NEVADA:
1033 UASM_i_LW(p, ptr, 0, ptr);
1034 GET_CONTEXT(p, tmp); /* get context reg */
1035 break;
1036
1037 default:
1038 GET_CONTEXT(p, tmp); /* get context reg */
1039 UASM_i_LW(p, ptr, 0, ptr);
1040 break;
1041 }
1042
1043 build_adjust_context(p, tmp);
1044 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1045}
1046EXPORT_SYMBOL_GPL(build_get_ptep);
1047
1048void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1049{
1050 int pte_off_even = 0;
1051 int pte_off_odd = sizeof(pte_t);
1052
1053#if defined(CONFIG_CPU_MIPS32) && defined(CONFIG_PHYS_ADDR_T_64BIT)
1054 /* The low 32 bits of EntryLo is stored in pte_high */
1055 pte_off_even += offsetof(pte_t, pte_high);
1056 pte_off_odd += offsetof(pte_t, pte_high);
1057#endif
1058
1059 if (IS_ENABLED(CONFIG_XPA)) {
1060 uasm_i_lw(p, tmp, pte_off_even, ptep); /* even pte */
1061 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1062 UASM_i_MTC0(p, tmp, C0_ENTRYLO0);
1063
1064 if (cpu_has_xpa && !mips_xpa_disabled) {
1065 uasm_i_lw(p, tmp, 0, ptep);
1066 uasm_i_ext(p, tmp, tmp, 0, 24);
1067 uasm_i_mthc0(p, tmp, C0_ENTRYLO0);
1068 }
1069
1070 uasm_i_lw(p, tmp, pte_off_odd, ptep); /* odd pte */
1071 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1072 UASM_i_MTC0(p, tmp, C0_ENTRYLO1);
1073
1074 if (cpu_has_xpa && !mips_xpa_disabled) {
1075 uasm_i_lw(p, tmp, sizeof(pte_t), ptep);
1076 uasm_i_ext(p, tmp, tmp, 0, 24);
1077 uasm_i_mthc0(p, tmp, C0_ENTRYLO1);
1078 }
1079 return;
1080 }
1081
1082 UASM_i_LW(p, tmp, pte_off_even, ptep); /* get even pte */
1083 UASM_i_LW(p, ptep, pte_off_odd, ptep); /* get odd pte */
1084 if (r45k_bvahwbug())
1085 build_tlb_probe_entry(p);
1086 build_convert_pte_to_entrylo(p, tmp);
1087 if (r4k_250MHZhwbug())
1088 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1089 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1090 build_convert_pte_to_entrylo(p, ptep);
1091 if (r45k_bvahwbug())
1092 uasm_i_mfc0(p, tmp, C0_INDEX);
1093 if (r4k_250MHZhwbug())
1094 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1095 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1096}
1097EXPORT_SYMBOL_GPL(build_update_entries);
1098
1099struct mips_huge_tlb_info {
1100 int huge_pte;
1101 int restore_scratch;
1102 bool need_reload_pte;
1103};
1104
1105static struct mips_huge_tlb_info
1106build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1107 struct uasm_reloc **r, unsigned int tmp,
1108 unsigned int ptr, int c0_scratch_reg)
1109{
1110 struct mips_huge_tlb_info rv;
1111 unsigned int even, odd;
1112 int vmalloc_branch_delay_filled = 0;
1113 const int scratch = 1; /* Our extra working register */
1114
1115 rv.huge_pte = scratch;
1116 rv.restore_scratch = 0;
1117 rv.need_reload_pte = false;
1118
1119 if (check_for_high_segbits) {
1120 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1121
1122 if (pgd_reg != -1)
1123 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1124 else
1125 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1126
1127 if (c0_scratch_reg >= 0)
1128 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1129 else
1130 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1131
1132 uasm_i_dsrl_safe(p, scratch, tmp,
1133 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1134 uasm_il_bnez(p, r, scratch, label_vmalloc);
1135
1136 if (pgd_reg == -1) {
1137 vmalloc_branch_delay_filled = 1;
1138 /* Clear lower 23 bits of context. */
1139 uasm_i_dins(p, ptr, 0, 0, 23);
1140 }
1141 } else {
1142 if (pgd_reg != -1)
1143 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1144 else
1145 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1146
1147 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1148
1149 if (c0_scratch_reg >= 0)
1150 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1151 else
1152 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1153
1154 if (pgd_reg == -1)
1155 /* Clear lower 23 bits of context. */
1156 uasm_i_dins(p, ptr, 0, 0, 23);
1157
1158 uasm_il_bltz(p, r, tmp, label_vmalloc);
1159 }
1160
1161 if (pgd_reg == -1) {
1162 vmalloc_branch_delay_filled = 1;
1163 /* 1 0 1 0 1 << 6 xkphys cached */
1164 uasm_i_ori(p, ptr, ptr, 0x540);
1165 uasm_i_drotr(p, ptr, ptr, 11);
1166 }
1167
1168#ifdef __PAGETABLE_PMD_FOLDED
1169#define LOC_PTEP scratch
1170#else
1171#define LOC_PTEP ptr
1172#endif
1173
1174 if (!vmalloc_branch_delay_filled)
1175 /* get pgd offset in bytes */
1176 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1177
1178 uasm_l_vmalloc_done(l, *p);
1179
1180 /*
1181 * tmp ptr
1182 * fall-through case = badvaddr *pgd_current
1183 * vmalloc case = badvaddr swapper_pg_dir
1184 */
1185
1186 if (vmalloc_branch_delay_filled)
1187 /* get pgd offset in bytes */
1188 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1189
1190#ifdef __PAGETABLE_PMD_FOLDED
1191 GET_CONTEXT(p, tmp); /* get context reg */
1192#endif
1193 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1194
1195 if (use_lwx_insns()) {
1196 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1197 } else {
1198 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1199 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1200 }
1201
1202#ifndef __PAGETABLE_PUD_FOLDED
1203 /* get pud offset in bytes */
1204 uasm_i_dsrl_safe(p, scratch, tmp, PUD_SHIFT - 3);
1205 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PUD - 1) << 3);
1206
1207 if (use_lwx_insns()) {
1208 UASM_i_LWX(p, ptr, scratch, ptr);
1209 } else {
1210 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1211 UASM_i_LW(p, ptr, 0, ptr);
1212 }
1213 /* ptr contains a pointer to PMD entry */
1214 /* tmp contains the address */
1215#endif
1216
1217#ifndef __PAGETABLE_PMD_FOLDED
1218 /* get pmd offset in bytes */
1219 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1220 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1221 GET_CONTEXT(p, tmp); /* get context reg */
1222
1223 if (use_lwx_insns()) {
1224 UASM_i_LWX(p, scratch, scratch, ptr);
1225 } else {
1226 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1227 UASM_i_LW(p, scratch, 0, ptr);
1228 }
1229#endif
1230 /* Adjust the context during the load latency. */
1231 build_adjust_context(p, tmp);
1232
1233#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1234 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1235 /*
1236 * The in the LWX case we don't want to do the load in the
1237 * delay slot. It cannot issue in the same cycle and may be
1238 * speculative and unneeded.
1239 */
1240 if (use_lwx_insns())
1241 uasm_i_nop(p);
1242#endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1243
1244
1245 /* build_update_entries */
1246 if (use_lwx_insns()) {
1247 even = ptr;
1248 odd = tmp;
1249 UASM_i_LWX(p, even, scratch, tmp);
1250 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1251 UASM_i_LWX(p, odd, scratch, tmp);
1252 } else {
1253 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1254 even = tmp;
1255 odd = ptr;
1256 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1257 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1258 }
1259 if (cpu_has_rixi) {
1260 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1261 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1262 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1263 } else {
1264 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1265 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1266 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1267 }
1268 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1269
1270 if (c0_scratch_reg >= 0) {
1271 uasm_i_ehb(p);
1272 UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1273 build_tlb_write_entry(p, l, r, tlb_random);
1274 uasm_l_leave(l, *p);
1275 rv.restore_scratch = 1;
1276 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1277 build_tlb_write_entry(p, l, r, tlb_random);
1278 uasm_l_leave(l, *p);
1279 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1280 } else {
1281 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1282 build_tlb_write_entry(p, l, r, tlb_random);
1283 uasm_l_leave(l, *p);
1284 rv.restore_scratch = 1;
1285 }
1286
1287 uasm_i_eret(p); /* return from trap */
1288
1289 return rv;
1290}
1291
1292/*
1293 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1294 * because EXL == 0. If we wrap, we can also use the 32 instruction
1295 * slots before the XTLB refill exception handler which belong to the
1296 * unused TLB refill exception.
1297 */
1298#define MIPS64_REFILL_INSNS 32
1299
1300static void build_r4000_tlb_refill_handler(void)
1301{
1302 u32 *p = tlb_handler;
1303 struct uasm_label *l = labels;
1304 struct uasm_reloc *r = relocs;
1305 u32 *f;
1306 unsigned int final_len;
1307 struct mips_huge_tlb_info htlb_info __maybe_unused;
1308 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1309
1310 memset(tlb_handler, 0, sizeof(tlb_handler));
1311 memset(labels, 0, sizeof(labels));
1312 memset(relocs, 0, sizeof(relocs));
1313 memset(final_handler, 0, sizeof(final_handler));
1314
1315 if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1316 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1317 scratch_reg);
1318 vmalloc_mode = refill_scratch;
1319 } else {
1320 htlb_info.huge_pte = K0;
1321 htlb_info.restore_scratch = 0;
1322 htlb_info.need_reload_pte = true;
1323 vmalloc_mode = refill_noscratch;
1324 /*
1325 * create the plain linear handler
1326 */
1327 if (bcm1250_m3_war()) {
1328 unsigned int segbits = 44;
1329
1330 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1331 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1332 uasm_i_xor(&p, K0, K0, K1);
1333 uasm_i_dsrl_safe(&p, K1, K0, 62);
1334 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1335 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1336 uasm_i_or(&p, K0, K0, K1);
1337 uasm_il_bnez(&p, &r, K0, label_leave);
1338 /* No need for uasm_i_nop */
1339 }
1340
1341#ifdef CONFIG_64BIT
1342 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1343#else
1344 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1345#endif
1346
1347#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1348 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1349#endif
1350
1351 build_get_ptep(&p, K0, K1);
1352 build_update_entries(&p, K0, K1);
1353 build_tlb_write_entry(&p, &l, &r, tlb_random);
1354 uasm_l_leave(&l, p);
1355 uasm_i_eret(&p); /* return from trap */
1356 }
1357#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1358 uasm_l_tlb_huge_update(&l, p);
1359 if (htlb_info.need_reload_pte)
1360 UASM_i_LW(&p, htlb_info.huge_pte, 0, K1);
1361 build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1362 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1363 htlb_info.restore_scratch);
1364#endif
1365
1366#ifdef CONFIG_64BIT
1367 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1368#endif
1369
1370 /*
1371 * Overflow check: For the 64bit handler, we need at least one
1372 * free instruction slot for the wrap-around branch. In worst
1373 * case, if the intended insertion point is a delay slot, we
1374 * need three, with the second nop'ed and the third being
1375 * unused.
1376 */
1377 switch (boot_cpu_type()) {
1378 default:
1379 if (sizeof(long) == 4) {
1380 case CPU_LOONGSON2:
1381 /* Loongson2 ebase is different than r4k, we have more space */
1382 if ((p - tlb_handler) > 64)
1383 panic("TLB refill handler space exceeded");
1384 /*
1385 * Now fold the handler in the TLB refill handler space.
1386 */
1387 f = final_handler;
1388 /* Simplest case, just copy the handler. */
1389 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1390 final_len = p - tlb_handler;
1391 break;
1392 } else {
1393 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1394 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1395 && uasm_insn_has_bdelay(relocs,
1396 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1397 panic("TLB refill handler space exceeded");
1398 /*
1399 * Now fold the handler in the TLB refill handler space.
1400 */
1401 f = final_handler + MIPS64_REFILL_INSNS;
1402 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1403 /* Just copy the handler. */
1404 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1405 final_len = p - tlb_handler;
1406 } else {
1407#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1408 const enum label_id ls = label_tlb_huge_update;
1409#else
1410 const enum label_id ls = label_vmalloc;
1411#endif
1412 u32 *split;
1413 int ov = 0;
1414 int i;
1415
1416 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1417 ;
1418 BUG_ON(i == ARRAY_SIZE(labels));
1419 split = labels[i].addr;
1420
1421 /*
1422 * See if we have overflown one way or the other.
1423 */
1424 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1425 split < p - MIPS64_REFILL_INSNS)
1426 ov = 1;
1427
1428 if (ov) {
1429 /*
1430 * Split two instructions before the end. One
1431 * for the branch and one for the instruction
1432 * in the delay slot.
1433 */
1434 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1435
1436 /*
1437 * If the branch would fall in a delay slot,
1438 * we must back up an additional instruction
1439 * so that it is no longer in a delay slot.
1440 */
1441 if (uasm_insn_has_bdelay(relocs, split - 1))
1442 split--;
1443 }
1444 /* Copy first part of the handler. */
1445 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1446 f += split - tlb_handler;
1447
1448 if (ov) {
1449 /* Insert branch. */
1450 uasm_l_split(&l, final_handler);
1451 uasm_il_b(&f, &r, label_split);
1452 if (uasm_insn_has_bdelay(relocs, split))
1453 uasm_i_nop(&f);
1454 else {
1455 uasm_copy_handler(relocs, labels,
1456 split, split + 1, f);
1457 uasm_move_labels(labels, f, f + 1, -1);
1458 f++;
1459 split++;
1460 }
1461 }
1462
1463 /* Copy the rest of the handler. */
1464 uasm_copy_handler(relocs, labels, split, p, final_handler);
1465 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1466 (p - split);
1467 }
1468 }
1469 break;
1470 }
1471
1472 uasm_resolve_relocs(relocs, labels);
1473 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1474 final_len);
1475
1476 memcpy((void *)ebase, final_handler, 0x100);
1477 local_flush_icache_range(ebase, ebase + 0x100);
1478 dump_handler("r4000_tlb_refill", (u32 *)ebase, (u32 *)(ebase + 0x100));
1479}
1480
1481static void setup_pw(void)
1482{
1483 unsigned long pgd_i, pgd_w;
1484#ifndef __PAGETABLE_PMD_FOLDED
1485 unsigned long pmd_i, pmd_w;
1486#endif
1487 unsigned long pt_i, pt_w;
1488 unsigned long pte_i, pte_w;
1489#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1490 unsigned long psn;
1491
1492 psn = ilog2(_PAGE_HUGE); /* bit used to indicate huge page */
1493#endif
1494 pgd_i = PGDIR_SHIFT; /* 1st level PGD */
1495#ifndef __PAGETABLE_PMD_FOLDED
1496 pgd_w = PGDIR_SHIFT - PMD_SHIFT + PGD_ORDER;
1497
1498 pmd_i = PMD_SHIFT; /* 2nd level PMD */
1499 pmd_w = PMD_SHIFT - PAGE_SHIFT;
1500#else
1501 pgd_w = PGDIR_SHIFT - PAGE_SHIFT + PGD_ORDER;
1502#endif
1503
1504 pt_i = PAGE_SHIFT; /* 3rd level PTE */
1505 pt_w = PAGE_SHIFT - 3;
1506
1507 pte_i = ilog2(_PAGE_GLOBAL);
1508 pte_w = 0;
1509
1510#ifndef __PAGETABLE_PMD_FOLDED
1511 write_c0_pwfield(pgd_i << 24 | pmd_i << 12 | pt_i << 6 | pte_i);
1512 write_c0_pwsize(1 << 30 | pgd_w << 24 | pmd_w << 12 | pt_w << 6 | pte_w);
1513#else
1514 write_c0_pwfield(pgd_i << 24 | pt_i << 6 | pte_i);
1515 write_c0_pwsize(1 << 30 | pgd_w << 24 | pt_w << 6 | pte_w);
1516#endif
1517
1518#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1519 write_c0_pwctl(1 << 6 | psn);
1520#endif
1521 write_c0_kpgd((long)swapper_pg_dir);
1522 kscratch_used_mask |= (1 << 7); /* KScratch6 is used for KPGD */
1523}
1524
1525static void build_loongson3_tlb_refill_handler(void)
1526{
1527 u32 *p = tlb_handler;
1528 struct uasm_label *l = labels;
1529 struct uasm_reloc *r = relocs;
1530
1531 memset(labels, 0, sizeof(labels));
1532 memset(relocs, 0, sizeof(relocs));
1533 memset(tlb_handler, 0, sizeof(tlb_handler));
1534
1535 if (check_for_high_segbits) {
1536 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1537 uasm_i_dsrl_safe(&p, K1, K0, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1538 uasm_il_beqz(&p, &r, K1, label_vmalloc);
1539 uasm_i_nop(&p);
1540
1541 uasm_il_bgez(&p, &r, K0, label_large_segbits_fault);
1542 uasm_i_nop(&p);
1543 uasm_l_vmalloc(&l, p);
1544 }
1545
1546 uasm_i_dmfc0(&p, K1, C0_PGD);
1547
1548 uasm_i_lddir(&p, K0, K1, 3); /* global page dir */
1549#ifndef __PAGETABLE_PMD_FOLDED
1550 uasm_i_lddir(&p, K1, K0, 1); /* middle page dir */
1551#endif
1552 uasm_i_ldpte(&p, K1, 0); /* even */
1553 uasm_i_ldpte(&p, K1, 1); /* odd */
1554 uasm_i_tlbwr(&p);
1555
1556 /* restore page mask */
1557 if (PM_DEFAULT_MASK >> 16) {
1558 uasm_i_lui(&p, K0, PM_DEFAULT_MASK >> 16);
1559 uasm_i_ori(&p, K0, K0, PM_DEFAULT_MASK & 0xffff);
1560 uasm_i_mtc0(&p, K0, C0_PAGEMASK);
1561 } else if (PM_DEFAULT_MASK) {
1562 uasm_i_ori(&p, K0, 0, PM_DEFAULT_MASK);
1563 uasm_i_mtc0(&p, K0, C0_PAGEMASK);
1564 } else {
1565 uasm_i_mtc0(&p, 0, C0_PAGEMASK);
1566 }
1567
1568 uasm_i_eret(&p);
1569
1570 if (check_for_high_segbits) {
1571 uasm_l_large_segbits_fault(&l, p);
1572 UASM_i_LA(&p, K1, (unsigned long)tlb_do_page_fault_0);
1573 uasm_i_jr(&p, K1);
1574 uasm_i_nop(&p);
1575 }
1576
1577 uasm_resolve_relocs(relocs, labels);
1578 memcpy((void *)(ebase + 0x80), tlb_handler, 0x80);
1579 local_flush_icache_range(ebase + 0x80, ebase + 0x100);
1580 dump_handler("loongson3_tlb_refill",
1581 (u32 *)(ebase + 0x80), (u32 *)(ebase + 0x100));
1582}
1583
1584static void build_setup_pgd(void)
1585{
1586 const int a0 = 4;
1587 const int __maybe_unused a1 = 5;
1588 const int __maybe_unused a2 = 6;
1589 u32 *p = (u32 *)msk_isa16_mode((ulong)tlbmiss_handler_setup_pgd);
1590#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1591 long pgdc = (long)pgd_current;
1592#endif
1593
1594 memset(p, 0, tlbmiss_handler_setup_pgd_end - (char *)p);
1595 memset(labels, 0, sizeof(labels));
1596 memset(relocs, 0, sizeof(relocs));
1597 pgd_reg = allocate_kscratch();
1598#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1599 if (pgd_reg == -1) {
1600 struct uasm_label *l = labels;
1601 struct uasm_reloc *r = relocs;
1602
1603 /* PGD << 11 in c0_Context */
1604 /*
1605 * If it is a ckseg0 address, convert to a physical
1606 * address. Shifting right by 29 and adding 4 will
1607 * result in zero for these addresses.
1608 *
1609 */
1610 UASM_i_SRA(&p, a1, a0, 29);
1611 UASM_i_ADDIU(&p, a1, a1, 4);
1612 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1613 uasm_i_nop(&p);
1614 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1615 uasm_l_tlbl_goaround1(&l, p);
1616 UASM_i_SLL(&p, a0, a0, 11);
1617 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1618 uasm_i_jr(&p, 31);
1619 uasm_i_ehb(&p);
1620 } else {
1621 /* PGD in c0_KScratch */
1622 if (cpu_has_ldpte)
1623 UASM_i_MTC0(&p, a0, C0_PWBASE);
1624 else
1625 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1626 uasm_i_jr(&p, 31);
1627 uasm_i_ehb(&p);
1628 }
1629#else
1630#ifdef CONFIG_SMP
1631 /* Save PGD to pgd_current[smp_processor_id()] */
1632 UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1633 UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1634 UASM_i_LA_mostly(&p, a2, pgdc);
1635 UASM_i_ADDU(&p, a2, a2, a1);
1636 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1637#else
1638 UASM_i_LA_mostly(&p, a2, pgdc);
1639 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1640#endif /* SMP */
1641
1642 /* if pgd_reg is allocated, save PGD also to scratch register */
1643 if (pgd_reg != -1) {
1644 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1645 uasm_i_jr(&p, 31);
1646 uasm_i_ehb(&p);
1647 } else {
1648 uasm_i_jr(&p, 31);
1649 uasm_i_nop(&p);
1650 }
1651#endif
1652 if (p >= (u32 *)tlbmiss_handler_setup_pgd_end)
1653 panic("tlbmiss_handler_setup_pgd space exceeded");
1654
1655 uasm_resolve_relocs(relocs, labels);
1656 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1657 (unsigned int)(p - (u32 *)tlbmiss_handler_setup_pgd));
1658
1659 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1660 tlbmiss_handler_setup_pgd_end);
1661}
1662
1663static void
1664iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1665{
1666#ifdef CONFIG_SMP
1667 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
1668 uasm_i_sync(p, 0);
1669# ifdef CONFIG_PHYS_ADDR_T_64BIT
1670 if (cpu_has_64bits)
1671 uasm_i_lld(p, pte, 0, ptr);
1672 else
1673# endif
1674 UASM_i_LL(p, pte, 0, ptr);
1675#else
1676# ifdef CONFIG_PHYS_ADDR_T_64BIT
1677 if (cpu_has_64bits)
1678 uasm_i_ld(p, pte, 0, ptr);
1679 else
1680# endif
1681 UASM_i_LW(p, pte, 0, ptr);
1682#endif
1683}
1684
1685static void
1686iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1687 unsigned int mode, unsigned int scratch)
1688{
1689 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1690 unsigned int swmode = mode & ~hwmode;
1691
1692 if (IS_ENABLED(CONFIG_XPA) && !cpu_has_64bits) {
1693 uasm_i_lui(p, scratch, swmode >> 16);
1694 uasm_i_or(p, pte, pte, scratch);
1695 BUG_ON(swmode & 0xffff);
1696 } else {
1697 uasm_i_ori(p, pte, pte, mode);
1698 }
1699
1700#ifdef CONFIG_SMP
1701# ifdef CONFIG_PHYS_ADDR_T_64BIT
1702 if (cpu_has_64bits)
1703 uasm_i_scd(p, pte, 0, ptr);
1704 else
1705# endif
1706 UASM_i_SC(p, pte, 0, ptr);
1707
1708 if (r10000_llsc_war())
1709 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1710 else
1711 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1712
1713# ifdef CONFIG_PHYS_ADDR_T_64BIT
1714 if (!cpu_has_64bits) {
1715 /* no uasm_i_nop needed */
1716 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1717 uasm_i_ori(p, pte, pte, hwmode);
1718 BUG_ON(hwmode & ~0xffff);
1719 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1720 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1721 /* no uasm_i_nop needed */
1722 uasm_i_lw(p, pte, 0, ptr);
1723 } else
1724 uasm_i_nop(p);
1725# else
1726 uasm_i_nop(p);
1727# endif
1728#else
1729# ifdef CONFIG_PHYS_ADDR_T_64BIT
1730 if (cpu_has_64bits)
1731 uasm_i_sd(p, pte, 0, ptr);
1732 else
1733# endif
1734 UASM_i_SW(p, pte, 0, ptr);
1735
1736# ifdef CONFIG_PHYS_ADDR_T_64BIT
1737 if (!cpu_has_64bits) {
1738 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1739 uasm_i_ori(p, pte, pte, hwmode);
1740 BUG_ON(hwmode & ~0xffff);
1741 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1742 uasm_i_lw(p, pte, 0, ptr);
1743 }
1744# endif
1745#endif
1746}
1747
1748/*
1749 * Check if PTE is present, if not then jump to LABEL. PTR points to
1750 * the page table where this PTE is located, PTE will be re-loaded
1751 * with it's original value.
1752 */
1753static void
1754build_pte_present(u32 **p, struct uasm_reloc **r,
1755 int pte, int ptr, int scratch, enum label_id lid)
1756{
1757 int t = scratch >= 0 ? scratch : pte;
1758 int cur = pte;
1759
1760 if (cpu_has_rixi) {
1761 if (use_bbit_insns()) {
1762 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1763 uasm_i_nop(p);
1764 } else {
1765 if (_PAGE_PRESENT_SHIFT) {
1766 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1767 cur = t;
1768 }
1769 uasm_i_andi(p, t, cur, 1);
1770 uasm_il_beqz(p, r, t, lid);
1771 if (pte == t)
1772 /* You lose the SMP race :-(*/
1773 iPTE_LW(p, pte, ptr);
1774 }
1775 } else {
1776 if (_PAGE_PRESENT_SHIFT) {
1777 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1778 cur = t;
1779 }
1780 uasm_i_andi(p, t, cur,
1781 (_PAGE_PRESENT | _PAGE_NO_READ) >> _PAGE_PRESENT_SHIFT);
1782 uasm_i_xori(p, t, t, _PAGE_PRESENT >> _PAGE_PRESENT_SHIFT);
1783 uasm_il_bnez(p, r, t, lid);
1784 if (pte == t)
1785 /* You lose the SMP race :-(*/
1786 iPTE_LW(p, pte, ptr);
1787 }
1788}
1789
1790/* Make PTE valid, store result in PTR. */
1791static void
1792build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1793 unsigned int ptr, unsigned int scratch)
1794{
1795 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1796
1797 iPTE_SW(p, r, pte, ptr, mode, scratch);
1798}
1799
1800/*
1801 * Check if PTE can be written to, if not branch to LABEL. Regardless
1802 * restore PTE with value from PTR when done.
1803 */
1804static void
1805build_pte_writable(u32 **p, struct uasm_reloc **r,
1806 unsigned int pte, unsigned int ptr, int scratch,
1807 enum label_id lid)
1808{
1809 int t = scratch >= 0 ? scratch : pte;
1810 int cur = pte;
1811
1812 if (_PAGE_PRESENT_SHIFT) {
1813 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1814 cur = t;
1815 }
1816 uasm_i_andi(p, t, cur,
1817 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1818 uasm_i_xori(p, t, t,
1819 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1820 uasm_il_bnez(p, r, t, lid);
1821 if (pte == t)
1822 /* You lose the SMP race :-(*/
1823 iPTE_LW(p, pte, ptr);
1824 else
1825 uasm_i_nop(p);
1826}
1827
1828/* Make PTE writable, update software status bits as well, then store
1829 * at PTR.
1830 */
1831static void
1832build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1833 unsigned int ptr, unsigned int scratch)
1834{
1835 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1836 | _PAGE_DIRTY);
1837
1838 iPTE_SW(p, r, pte, ptr, mode, scratch);
1839}
1840
1841/*
1842 * Check if PTE can be modified, if not branch to LABEL. Regardless
1843 * restore PTE with value from PTR when done.
1844 */
1845static void
1846build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1847 unsigned int pte, unsigned int ptr, int scratch,
1848 enum label_id lid)
1849{
1850 if (use_bbit_insns()) {
1851 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1852 uasm_i_nop(p);
1853 } else {
1854 int t = scratch >= 0 ? scratch : pte;
1855 uasm_i_srl(p, t, pte, _PAGE_WRITE_SHIFT);
1856 uasm_i_andi(p, t, t, 1);
1857 uasm_il_beqz(p, r, t, lid);
1858 if (pte == t)
1859 /* You lose the SMP race :-(*/
1860 iPTE_LW(p, pte, ptr);
1861 }
1862}
1863
1864#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1865
1866
1867/*
1868 * R3000 style TLB load/store/modify handlers.
1869 */
1870
1871/*
1872 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1873 * Then it returns.
1874 */
1875static void
1876build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1877{
1878 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1879 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1880 uasm_i_tlbwi(p);
1881 uasm_i_jr(p, tmp);
1882 uasm_i_rfe(p); /* branch delay */
1883}
1884
1885/*
1886 * This places the pte into ENTRYLO0 and writes it with tlbwi
1887 * or tlbwr as appropriate. This is because the index register
1888 * may have the probe fail bit set as a result of a trap on a
1889 * kseg2 access, i.e. without refill. Then it returns.
1890 */
1891static void
1892build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1893 struct uasm_reloc **r, unsigned int pte,
1894 unsigned int tmp)
1895{
1896 uasm_i_mfc0(p, tmp, C0_INDEX);
1897 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1898 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1899 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1900 uasm_i_tlbwi(p); /* cp0 delay */
1901 uasm_i_jr(p, tmp);
1902 uasm_i_rfe(p); /* branch delay */
1903 uasm_l_r3000_write_probe_fail(l, *p);
1904 uasm_i_tlbwr(p); /* cp0 delay */
1905 uasm_i_jr(p, tmp);
1906 uasm_i_rfe(p); /* branch delay */
1907}
1908
1909static void
1910build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1911 unsigned int ptr)
1912{
1913 long pgdc = (long)pgd_current;
1914
1915 uasm_i_mfc0(p, pte, C0_BADVADDR);
1916 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1917 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1918 uasm_i_srl(p, pte, pte, 22); /* load delay */
1919 uasm_i_sll(p, pte, pte, 2);
1920 uasm_i_addu(p, ptr, ptr, pte);
1921 uasm_i_mfc0(p, pte, C0_CONTEXT);
1922 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1923 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1924 uasm_i_addu(p, ptr, ptr, pte);
1925 uasm_i_lw(p, pte, 0, ptr);
1926 uasm_i_tlbp(p); /* load delay */
1927}
1928
1929static void build_r3000_tlb_load_handler(void)
1930{
1931 u32 *p = (u32 *)handle_tlbl;
1932 struct uasm_label *l = labels;
1933 struct uasm_reloc *r = relocs;
1934
1935 memset(p, 0, handle_tlbl_end - (char *)p);
1936 memset(labels, 0, sizeof(labels));
1937 memset(relocs, 0, sizeof(relocs));
1938
1939 build_r3000_tlbchange_handler_head(&p, K0, K1);
1940 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1941 uasm_i_nop(&p); /* load delay */
1942 build_make_valid(&p, &r, K0, K1, -1);
1943 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1944
1945 uasm_l_nopage_tlbl(&l, p);
1946 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1947 uasm_i_nop(&p);
1948
1949 if (p >= (u32 *)handle_tlbl_end)
1950 panic("TLB load handler fastpath space exceeded");
1951
1952 uasm_resolve_relocs(relocs, labels);
1953 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1954 (unsigned int)(p - (u32 *)handle_tlbl));
1955
1956 dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_end);
1957}
1958
1959static void build_r3000_tlb_store_handler(void)
1960{
1961 u32 *p = (u32 *)handle_tlbs;
1962 struct uasm_label *l = labels;
1963 struct uasm_reloc *r = relocs;
1964
1965 memset(p, 0, handle_tlbs_end - (char *)p);
1966 memset(labels, 0, sizeof(labels));
1967 memset(relocs, 0, sizeof(relocs));
1968
1969 build_r3000_tlbchange_handler_head(&p, K0, K1);
1970 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1971 uasm_i_nop(&p); /* load delay */
1972 build_make_write(&p, &r, K0, K1, -1);
1973 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1974
1975 uasm_l_nopage_tlbs(&l, p);
1976 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1977 uasm_i_nop(&p);
1978
1979 if (p >= (u32 *)handle_tlbs_end)
1980 panic("TLB store handler fastpath space exceeded");
1981
1982 uasm_resolve_relocs(relocs, labels);
1983 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1984 (unsigned int)(p - (u32 *)handle_tlbs));
1985
1986 dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_end);
1987}
1988
1989static void build_r3000_tlb_modify_handler(void)
1990{
1991 u32 *p = (u32 *)handle_tlbm;
1992 struct uasm_label *l = labels;
1993 struct uasm_reloc *r = relocs;
1994
1995 memset(p, 0, handle_tlbm_end - (char *)p);
1996 memset(labels, 0, sizeof(labels));
1997 memset(relocs, 0, sizeof(relocs));
1998
1999 build_r3000_tlbchange_handler_head(&p, K0, K1);
2000 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
2001 uasm_i_nop(&p); /* load delay */
2002 build_make_write(&p, &r, K0, K1, -1);
2003 build_r3000_pte_reload_tlbwi(&p, K0, K1);
2004
2005 uasm_l_nopage_tlbm(&l, p);
2006 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2007 uasm_i_nop(&p);
2008
2009 if (p >= (u32 *)handle_tlbm_end)
2010 panic("TLB modify handler fastpath space exceeded");
2011
2012 uasm_resolve_relocs(relocs, labels);
2013 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2014 (unsigned int)(p - (u32 *)handle_tlbm));
2015
2016 dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_end);
2017}
2018#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
2019
2020static bool cpu_has_tlbex_tlbp_race(void)
2021{
2022 /*
2023 * When a Hardware Table Walker is running it can replace TLB entries
2024 * at any time, leading to a race between it & the CPU.
2025 */
2026 if (cpu_has_htw)
2027 return true;
2028
2029 /*
2030 * If the CPU shares FTLB RAM with its siblings then our entry may be
2031 * replaced at any time by a sibling performing a write to the FTLB.
2032 */
2033 if (cpu_has_shared_ftlb_ram)
2034 return true;
2035
2036 /* In all other cases there ought to be no race condition to handle */
2037 return false;
2038}
2039
2040/*
2041 * R4000 style TLB load/store/modify handlers.
2042 */
2043static struct work_registers
2044build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
2045 struct uasm_reloc **r)
2046{
2047 struct work_registers wr = build_get_work_registers(p);
2048
2049#ifdef CONFIG_64BIT
2050 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
2051#else
2052 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
2053#endif
2054
2055#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2056 /*
2057 * For huge tlb entries, pmd doesn't contain an address but
2058 * instead contains the tlb pte. Check the PAGE_HUGE bit and
2059 * see if we need to jump to huge tlb processing.
2060 */
2061 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
2062#endif
2063
2064 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
2065 UASM_i_LW(p, wr.r2, 0, wr.r2);
2066 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
2067 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
2068 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
2069
2070#ifdef CONFIG_SMP
2071 uasm_l_smp_pgtable_change(l, *p);
2072#endif
2073 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
2074 if (!m4kc_tlbp_war()) {
2075 build_tlb_probe_entry(p);
2076 if (cpu_has_tlbex_tlbp_race()) {
2077 /* race condition happens, leaving */
2078 uasm_i_ehb(p);
2079 uasm_i_mfc0(p, wr.r3, C0_INDEX);
2080 uasm_il_bltz(p, r, wr.r3, label_leave);
2081 uasm_i_nop(p);
2082 }
2083 }
2084 return wr;
2085}
2086
2087static void
2088build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
2089 struct uasm_reloc **r, unsigned int tmp,
2090 unsigned int ptr)
2091{
2092 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
2093 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
2094 build_update_entries(p, tmp, ptr);
2095 build_tlb_write_entry(p, l, r, tlb_indexed);
2096 uasm_l_leave(l, *p);
2097 build_restore_work_registers(p);
2098 uasm_i_eret(p); /* return from trap */
2099
2100#ifdef CONFIG_64BIT
2101 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
2102#endif
2103}
2104
2105static void build_r4000_tlb_load_handler(void)
2106{
2107 u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbl);
2108 struct uasm_label *l = labels;
2109 struct uasm_reloc *r = relocs;
2110 struct work_registers wr;
2111
2112 memset(p, 0, handle_tlbl_end - (char *)p);
2113 memset(labels, 0, sizeof(labels));
2114 memset(relocs, 0, sizeof(relocs));
2115
2116 if (bcm1250_m3_war()) {
2117 unsigned int segbits = 44;
2118
2119 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
2120 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
2121 uasm_i_xor(&p, K0, K0, K1);
2122 uasm_i_dsrl_safe(&p, K1, K0, 62);
2123 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
2124 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
2125 uasm_i_or(&p, K0, K0, K1);
2126 uasm_il_bnez(&p, &r, K0, label_leave);
2127 /* No need for uasm_i_nop */
2128 }
2129
2130 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2131 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2132 if (m4kc_tlbp_war())
2133 build_tlb_probe_entry(&p);
2134
2135 if (cpu_has_rixi && !cpu_has_rixiex) {
2136 /*
2137 * If the page is not _PAGE_VALID, RI or XI could not
2138 * have triggered it. Skip the expensive test..
2139 */
2140 if (use_bbit_insns()) {
2141 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2142 label_tlbl_goaround1);
2143 } else {
2144 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2145 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
2146 }
2147 uasm_i_nop(&p);
2148
2149 /*
2150 * Warn if something may race with us & replace the TLB entry
2151 * before we read it here. Everything with such races should
2152 * also have dedicated RiXi exception handlers, so this
2153 * shouldn't be hit.
2154 */
2155 WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path");
2156
2157 uasm_i_tlbr(&p);
2158
2159 switch (current_cpu_type()) {
2160 default:
2161 if (cpu_has_mips_r2_exec_hazard) {
2162 uasm_i_ehb(&p);
2163
2164 case CPU_CAVIUM_OCTEON:
2165 case CPU_CAVIUM_OCTEON_PLUS:
2166 case CPU_CAVIUM_OCTEON2:
2167 break;
2168 }
2169 }
2170
2171 /* Examine entrylo 0 or 1 based on ptr. */
2172 if (use_bbit_insns()) {
2173 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2174 } else {
2175 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2176 uasm_i_beqz(&p, wr.r3, 8);
2177 }
2178 /* load it in the delay slot*/
2179 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2180 /* load it if ptr is odd */
2181 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2182 /*
2183 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2184 * XI must have triggered it.
2185 */
2186 if (use_bbit_insns()) {
2187 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
2188 uasm_i_nop(&p);
2189 uasm_l_tlbl_goaround1(&l, p);
2190 } else {
2191 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2192 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
2193 uasm_i_nop(&p);
2194 }
2195 uasm_l_tlbl_goaround1(&l, p);
2196 }
2197 build_make_valid(&p, &r, wr.r1, wr.r2, wr.r3);
2198 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2199
2200#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2201 /*
2202 * This is the entry point when build_r4000_tlbchange_handler_head
2203 * spots a huge page.
2204 */
2205 uasm_l_tlb_huge_update(&l, p);
2206 iPTE_LW(&p, wr.r1, wr.r2);
2207 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2208 build_tlb_probe_entry(&p);
2209
2210 if (cpu_has_rixi && !cpu_has_rixiex) {
2211 /*
2212 * If the page is not _PAGE_VALID, RI or XI could not
2213 * have triggered it. Skip the expensive test..
2214 */
2215 if (use_bbit_insns()) {
2216 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2217 label_tlbl_goaround2);
2218 } else {
2219 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2220 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2221 }
2222 uasm_i_nop(&p);
2223
2224 /*
2225 * Warn if something may race with us & replace the TLB entry
2226 * before we read it here. Everything with such races should
2227 * also have dedicated RiXi exception handlers, so this
2228 * shouldn't be hit.
2229 */
2230 WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path");
2231
2232 uasm_i_tlbr(&p);
2233
2234 switch (current_cpu_type()) {
2235 default:
2236 if (cpu_has_mips_r2_exec_hazard) {
2237 uasm_i_ehb(&p);
2238
2239 case CPU_CAVIUM_OCTEON:
2240 case CPU_CAVIUM_OCTEON_PLUS:
2241 case CPU_CAVIUM_OCTEON2:
2242 break;
2243 }
2244 }
2245
2246 /* Examine entrylo 0 or 1 based on ptr. */
2247 if (use_bbit_insns()) {
2248 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2249 } else {
2250 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2251 uasm_i_beqz(&p, wr.r3, 8);
2252 }
2253 /* load it in the delay slot*/
2254 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2255 /* load it if ptr is odd */
2256 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2257 /*
2258 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2259 * XI must have triggered it.
2260 */
2261 if (use_bbit_insns()) {
2262 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2263 } else {
2264 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2265 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2266 }
2267 if (PM_DEFAULT_MASK == 0)
2268 uasm_i_nop(&p);
2269 /*
2270 * We clobbered C0_PAGEMASK, restore it. On the other branch
2271 * it is restored in build_huge_tlb_write_entry.
2272 */
2273 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2274
2275 uasm_l_tlbl_goaround2(&l, p);
2276 }
2277 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2278 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2279#endif
2280
2281 uasm_l_nopage_tlbl(&l, p);
2282 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2283 uasm_i_sync(&p, 0);
2284 build_restore_work_registers(&p);
2285#ifdef CONFIG_CPU_MICROMIPS
2286 if ((unsigned long)tlb_do_page_fault_0 & 1) {
2287 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2288 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2289 uasm_i_jr(&p, K0);
2290 } else
2291#endif
2292 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2293 uasm_i_nop(&p);
2294
2295 if (p >= (u32 *)handle_tlbl_end)
2296 panic("TLB load handler fastpath space exceeded");
2297
2298 uasm_resolve_relocs(relocs, labels);
2299 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2300 (unsigned int)(p - (u32 *)handle_tlbl));
2301
2302 dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_end);
2303}
2304
2305static void build_r4000_tlb_store_handler(void)
2306{
2307 u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbs);
2308 struct uasm_label *l = labels;
2309 struct uasm_reloc *r = relocs;
2310 struct work_registers wr;
2311
2312 memset(p, 0, handle_tlbs_end - (char *)p);
2313 memset(labels, 0, sizeof(labels));
2314 memset(relocs, 0, sizeof(relocs));
2315
2316 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2317 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2318 if (m4kc_tlbp_war())
2319 build_tlb_probe_entry(&p);
2320 build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2321 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2322
2323#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2324 /*
2325 * This is the entry point when
2326 * build_r4000_tlbchange_handler_head spots a huge page.
2327 */
2328 uasm_l_tlb_huge_update(&l, p);
2329 iPTE_LW(&p, wr.r1, wr.r2);
2330 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2331 build_tlb_probe_entry(&p);
2332 uasm_i_ori(&p, wr.r1, wr.r1,
2333 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2334 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2335#endif
2336
2337 uasm_l_nopage_tlbs(&l, p);
2338 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2339 uasm_i_sync(&p, 0);
2340 build_restore_work_registers(&p);
2341#ifdef CONFIG_CPU_MICROMIPS
2342 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2343 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2344 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2345 uasm_i_jr(&p, K0);
2346 } else
2347#endif
2348 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2349 uasm_i_nop(&p);
2350
2351 if (p >= (u32 *)handle_tlbs_end)
2352 panic("TLB store handler fastpath space exceeded");
2353
2354 uasm_resolve_relocs(relocs, labels);
2355 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2356 (unsigned int)(p - (u32 *)handle_tlbs));
2357
2358 dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_end);
2359}
2360
2361static void build_r4000_tlb_modify_handler(void)
2362{
2363 u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbm);
2364 struct uasm_label *l = labels;
2365 struct uasm_reloc *r = relocs;
2366 struct work_registers wr;
2367
2368 memset(p, 0, handle_tlbm_end - (char *)p);
2369 memset(labels, 0, sizeof(labels));
2370 memset(relocs, 0, sizeof(relocs));
2371
2372 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2373 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2374 if (m4kc_tlbp_war())
2375 build_tlb_probe_entry(&p);
2376 /* Present and writable bits set, set accessed and dirty bits. */
2377 build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2378 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2379
2380#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2381 /*
2382 * This is the entry point when
2383 * build_r4000_tlbchange_handler_head spots a huge page.
2384 */
2385 uasm_l_tlb_huge_update(&l, p);
2386 iPTE_LW(&p, wr.r1, wr.r2);
2387 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2388 build_tlb_probe_entry(&p);
2389 uasm_i_ori(&p, wr.r1, wr.r1,
2390 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2391 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 0);
2392#endif
2393
2394 uasm_l_nopage_tlbm(&l, p);
2395 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2396 uasm_i_sync(&p, 0);
2397 build_restore_work_registers(&p);
2398#ifdef CONFIG_CPU_MICROMIPS
2399 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2400 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2401 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2402 uasm_i_jr(&p, K0);
2403 } else
2404#endif
2405 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2406 uasm_i_nop(&p);
2407
2408 if (p >= (u32 *)handle_tlbm_end)
2409 panic("TLB modify handler fastpath space exceeded");
2410
2411 uasm_resolve_relocs(relocs, labels);
2412 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2413 (unsigned int)(p - (u32 *)handle_tlbm));
2414
2415 dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_end);
2416}
2417
2418static void flush_tlb_handlers(void)
2419{
2420 local_flush_icache_range((unsigned long)handle_tlbl,
2421 (unsigned long)handle_tlbl_end);
2422 local_flush_icache_range((unsigned long)handle_tlbs,
2423 (unsigned long)handle_tlbs_end);
2424 local_flush_icache_range((unsigned long)handle_tlbm,
2425 (unsigned long)handle_tlbm_end);
2426 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2427 (unsigned long)tlbmiss_handler_setup_pgd_end);
2428}
2429
2430static void print_htw_config(void)
2431{
2432 unsigned long config;
2433 unsigned int pwctl;
2434 const int field = 2 * sizeof(unsigned long);
2435
2436 config = read_c0_pwfield();
2437 pr_debug("PWField (0x%0*lx): GDI: 0x%02lx UDI: 0x%02lx MDI: 0x%02lx PTI: 0x%02lx PTEI: 0x%02lx\n",
2438 field, config,
2439 (config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
2440 (config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
2441 (config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
2442 (config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
2443 (config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
2444
2445 config = read_c0_pwsize();
2446 pr_debug("PWSize (0x%0*lx): PS: 0x%lx GDW: 0x%02lx UDW: 0x%02lx MDW: 0x%02lx PTW: 0x%02lx PTEW: 0x%02lx\n",
2447 field, config,
2448 (config & MIPS_PWSIZE_PS_MASK) >> MIPS_PWSIZE_PS_SHIFT,
2449 (config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
2450 (config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
2451 (config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
2452 (config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
2453 (config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
2454
2455 pwctl = read_c0_pwctl();
2456 pr_debug("PWCtl (0x%x): PWEn: 0x%x XK: 0x%x XS: 0x%x XU: 0x%x DPH: 0x%x HugePg: 0x%x Psn: 0x%x\n",
2457 pwctl,
2458 (pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
2459 (pwctl & MIPS_PWCTL_XK_MASK) >> MIPS_PWCTL_XK_SHIFT,
2460 (pwctl & MIPS_PWCTL_XS_MASK) >> MIPS_PWCTL_XS_SHIFT,
2461 (pwctl & MIPS_PWCTL_XU_MASK) >> MIPS_PWCTL_XU_SHIFT,
2462 (pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
2463 (pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
2464 (pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
2465}
2466
2467static void config_htw_params(void)
2468{
2469 unsigned long pwfield, pwsize, ptei;
2470 unsigned int config;
2471
2472 /*
2473 * We are using 2-level page tables, so we only need to
2474 * setup GDW and PTW appropriately. UDW and MDW will remain 0.
2475 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
2476 * write values less than 0xc in these fields because the entire
2477 * write will be dropped. As a result of which, we must preserve
2478 * the original reset values and overwrite only what we really want.
2479 */
2480
2481 pwfield = read_c0_pwfield();
2482 /* re-initialize the GDI field */
2483 pwfield &= ~MIPS_PWFIELD_GDI_MASK;
2484 pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
2485 /* re-initialize the PTI field including the even/odd bit */
2486 pwfield &= ~MIPS_PWFIELD_PTI_MASK;
2487 pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
2488 if (CONFIG_PGTABLE_LEVELS >= 3) {
2489 pwfield &= ~MIPS_PWFIELD_MDI_MASK;
2490 pwfield |= PMD_SHIFT << MIPS_PWFIELD_MDI_SHIFT;
2491 }
2492 /* Set the PTEI right shift */
2493 ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
2494 pwfield |= ptei;
2495 write_c0_pwfield(pwfield);
2496 /* Check whether the PTEI value is supported */
2497 back_to_back_c0_hazard();
2498 pwfield = read_c0_pwfield();
2499 if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
2500 != ptei) {
2501 pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
2502 ptei);
2503 /*
2504 * Drop option to avoid HTW being enabled via another path
2505 * (eg htw_reset())
2506 */
2507 current_cpu_data.options &= ~MIPS_CPU_HTW;
2508 return;
2509 }
2510
2511 pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
2512 pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
2513 if (CONFIG_PGTABLE_LEVELS >= 3)
2514 pwsize |= ilog2(PTRS_PER_PMD) << MIPS_PWSIZE_MDW_SHIFT;
2515
2516 /* Set pointer size to size of directory pointers */
2517 if (IS_ENABLED(CONFIG_64BIT))
2518 pwsize |= MIPS_PWSIZE_PS_MASK;
2519 /* PTEs may be multiple pointers long (e.g. with XPA) */
2520 pwsize |= ((PTE_T_LOG2 - PGD_T_LOG2) << MIPS_PWSIZE_PTEW_SHIFT)
2521 & MIPS_PWSIZE_PTEW_MASK;
2522
2523 write_c0_pwsize(pwsize);
2524
2525 /* Make sure everything is set before we enable the HTW */
2526 back_to_back_c0_hazard();
2527
2528 /*
2529 * Enable HTW (and only for XUSeg on 64-bit), and disable the rest of
2530 * the pwctl fields.
2531 */
2532 config = 1 << MIPS_PWCTL_PWEN_SHIFT;
2533 if (IS_ENABLED(CONFIG_64BIT))
2534 config |= MIPS_PWCTL_XU_MASK;
2535 write_c0_pwctl(config);
2536 pr_info("Hardware Page Table Walker enabled\n");
2537
2538 print_htw_config();
2539}
2540
2541static void config_xpa_params(void)
2542{
2543#ifdef CONFIG_XPA
2544 unsigned int pagegrain;
2545
2546 if (mips_xpa_disabled) {
2547 pr_info("Extended Physical Addressing (XPA) disabled\n");
2548 return;
2549 }
2550
2551 pagegrain = read_c0_pagegrain();
2552 write_c0_pagegrain(pagegrain | PG_ELPA);
2553 back_to_back_c0_hazard();
2554 pagegrain = read_c0_pagegrain();
2555
2556 if (pagegrain & PG_ELPA)
2557 pr_info("Extended Physical Addressing (XPA) enabled\n");
2558 else
2559 panic("Extended Physical Addressing (XPA) disabled");
2560#endif
2561}
2562
2563static void check_pabits(void)
2564{
2565 unsigned long entry;
2566 unsigned pabits, fillbits;
2567
2568 if (!cpu_has_rixi || !_PAGE_NO_EXEC) {
2569 /*
2570 * We'll only be making use of the fact that we can rotate bits
2571 * into the fill if the CPU supports RIXI, so don't bother
2572 * probing this for CPUs which don't.
2573 */
2574 return;
2575 }
2576
2577 write_c0_entrylo0(~0ul);
2578 back_to_back_c0_hazard();
2579 entry = read_c0_entrylo0();
2580
2581 /* clear all non-PFN bits */
2582 entry &= ~((1 << MIPS_ENTRYLO_PFN_SHIFT) - 1);
2583 entry &= ~(MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI);
2584
2585 /* find a lower bound on PABITS, and upper bound on fill bits */
2586 pabits = fls_long(entry) + 6;
2587 fillbits = max_t(int, (int)BITS_PER_LONG - pabits, 0);
2588
2589 /* minus the RI & XI bits */
2590 fillbits -= min_t(unsigned, fillbits, 2);
2591
2592 if (fillbits >= ilog2(_PAGE_NO_EXEC))
2593 fill_includes_sw_bits = true;
2594
2595 pr_debug("Entry* registers contain %u fill bits\n", fillbits);
2596}
2597
2598void build_tlb_refill_handler(void)
2599{
2600 /*
2601 * The refill handler is generated per-CPU, multi-node systems
2602 * may have local storage for it. The other handlers are only
2603 * needed once.
2604 */
2605 static int run_once = 0;
2606
2607 if (IS_ENABLED(CONFIG_XPA) && !cpu_has_rixi)
2608 panic("Kernels supporting XPA currently require CPUs with RIXI");
2609
2610 output_pgtable_bits_defines();
2611 check_pabits();
2612
2613#ifdef CONFIG_64BIT
2614 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2615#endif
2616
2617 if (cpu_has_3kex) {
2618#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2619 if (!run_once) {
2620 build_setup_pgd();
2621 build_r3000_tlb_refill_handler();
2622 build_r3000_tlb_load_handler();
2623 build_r3000_tlb_store_handler();
2624 build_r3000_tlb_modify_handler();
2625 flush_tlb_handlers();
2626 run_once++;
2627 }
2628#else
2629 panic("No R3000 TLB refill handler");
2630#endif
2631 return;
2632 }
2633
2634 if (cpu_has_ldpte)
2635 setup_pw();
2636
2637 if (!run_once) {
2638 scratch_reg = allocate_kscratch();
2639 build_setup_pgd();
2640 build_r4000_tlb_load_handler();
2641 build_r4000_tlb_store_handler();
2642 build_r4000_tlb_modify_handler();
2643 if (cpu_has_ldpte)
2644 build_loongson3_tlb_refill_handler();
2645 else
2646 build_r4000_tlb_refill_handler();
2647 flush_tlb_handlers();
2648 run_once++;
2649 }
2650 if (cpu_has_xpa)
2651 config_xpa_params();
2652 if (cpu_has_htw)
2653 config_htw_params();
2654}
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
13 *
14 * ... and the days got worse and worse and now you see
15 * I've gone completly out of my mind.
16 *
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
20 *
21 * (Condolences to Napoleon XIV)
22 */
23
24#include <linux/bug.h>
25#include <linux/kernel.h>
26#include <linux/types.h>
27#include <linux/smp.h>
28#include <linux/string.h>
29#include <linux/init.h>
30#include <linux/cache.h>
31
32#include <asm/cacheflush.h>
33#include <asm/pgtable.h>
34#include <asm/war.h>
35#include <asm/uasm.h>
36#include <asm/setup.h>
37
38/*
39 * TLB load/store/modify handlers.
40 *
41 * Only the fastpath gets synthesized at runtime, the slowpath for
42 * do_page_fault remains normal asm.
43 */
44extern void tlb_do_page_fault_0(void);
45extern void tlb_do_page_fault_1(void);
46
47struct work_registers {
48 int r1;
49 int r2;
50 int r3;
51};
52
53struct tlb_reg_save {
54 unsigned long a;
55 unsigned long b;
56} ____cacheline_aligned_in_smp;
57
58static struct tlb_reg_save handler_reg_save[NR_CPUS];
59
60static inline int r45k_bvahwbug(void)
61{
62 /* XXX: We should probe for the presence of this bug, but we don't. */
63 return 0;
64}
65
66static inline int r4k_250MHZhwbug(void)
67{
68 /* XXX: We should probe for the presence of this bug, but we don't. */
69 return 0;
70}
71
72static inline int __maybe_unused bcm1250_m3_war(void)
73{
74 return BCM1250_M3_WAR;
75}
76
77static inline int __maybe_unused r10000_llsc_war(void)
78{
79 return R10000_LLSC_WAR;
80}
81
82static int use_bbit_insns(void)
83{
84 switch (current_cpu_type()) {
85 case CPU_CAVIUM_OCTEON:
86 case CPU_CAVIUM_OCTEON_PLUS:
87 case CPU_CAVIUM_OCTEON2:
88 return 1;
89 default:
90 return 0;
91 }
92}
93
94static int use_lwx_insns(void)
95{
96 switch (current_cpu_type()) {
97 case CPU_CAVIUM_OCTEON2:
98 return 1;
99 default:
100 return 0;
101 }
102}
103#if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
104 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
105static bool scratchpad_available(void)
106{
107 return true;
108}
109static int scratchpad_offset(int i)
110{
111 /*
112 * CVMSEG starts at address -32768 and extends for
113 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
114 */
115 i += 1; /* Kernel use starts at the top and works down. */
116 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
117}
118#else
119static bool scratchpad_available(void)
120{
121 return false;
122}
123static int scratchpad_offset(int i)
124{
125 BUG();
126 /* Really unreachable, but evidently some GCC want this. */
127 return 0;
128}
129#endif
130/*
131 * Found by experiment: At least some revisions of the 4kc throw under
132 * some circumstances a machine check exception, triggered by invalid
133 * values in the index register. Delaying the tlbp instruction until
134 * after the next branch, plus adding an additional nop in front of
135 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
136 * why; it's not an issue caused by the core RTL.
137 *
138 */
139static int __cpuinit m4kc_tlbp_war(void)
140{
141 return (current_cpu_data.processor_id & 0xffff00) ==
142 (PRID_COMP_MIPS | PRID_IMP_4KC);
143}
144
145/* Handle labels (which must be positive integers). */
146enum label_id {
147 label_second_part = 1,
148 label_leave,
149 label_vmalloc,
150 label_vmalloc_done,
151 label_tlbw_hazard,
152 label_split,
153 label_tlbl_goaround1,
154 label_tlbl_goaround2,
155 label_nopage_tlbl,
156 label_nopage_tlbs,
157 label_nopage_tlbm,
158 label_smp_pgtable_change,
159 label_r3000_write_probe_fail,
160 label_large_segbits_fault,
161#ifdef CONFIG_HUGETLB_PAGE
162 label_tlb_huge_update,
163#endif
164};
165
166UASM_L_LA(_second_part)
167UASM_L_LA(_leave)
168UASM_L_LA(_vmalloc)
169UASM_L_LA(_vmalloc_done)
170UASM_L_LA(_tlbw_hazard)
171UASM_L_LA(_split)
172UASM_L_LA(_tlbl_goaround1)
173UASM_L_LA(_tlbl_goaround2)
174UASM_L_LA(_nopage_tlbl)
175UASM_L_LA(_nopage_tlbs)
176UASM_L_LA(_nopage_tlbm)
177UASM_L_LA(_smp_pgtable_change)
178UASM_L_LA(_r3000_write_probe_fail)
179UASM_L_LA(_large_segbits_fault)
180#ifdef CONFIG_HUGETLB_PAGE
181UASM_L_LA(_tlb_huge_update)
182#endif
183
184/*
185 * For debug purposes.
186 */
187static inline void dump_handler(const u32 *handler, int count)
188{
189 int i;
190
191 pr_debug("\t.set push\n");
192 pr_debug("\t.set noreorder\n");
193
194 for (i = 0; i < count; i++)
195 pr_debug("\t%p\t.word 0x%08x\n", &handler[i], handler[i]);
196
197 pr_debug("\t.set pop\n");
198}
199
200/* The only general purpose registers allowed in TLB handlers. */
201#define K0 26
202#define K1 27
203
204/* Some CP0 registers */
205#define C0_INDEX 0, 0
206#define C0_ENTRYLO0 2, 0
207#define C0_TCBIND 2, 2
208#define C0_ENTRYLO1 3, 0
209#define C0_CONTEXT 4, 0
210#define C0_PAGEMASK 5, 0
211#define C0_BADVADDR 8, 0
212#define C0_ENTRYHI 10, 0
213#define C0_EPC 14, 0
214#define C0_XCONTEXT 20, 0
215
216#ifdef CONFIG_64BIT
217# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
218#else
219# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
220#endif
221
222/* The worst case length of the handler is around 18 instructions for
223 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
224 * Maximum space available is 32 instructions for R3000 and 64
225 * instructions for R4000.
226 *
227 * We deliberately chose a buffer size of 128, so we won't scribble
228 * over anything important on overflow before we panic.
229 */
230static u32 tlb_handler[128] __cpuinitdata;
231
232/* simply assume worst case size for labels and relocs */
233static struct uasm_label labels[128] __cpuinitdata;
234static struct uasm_reloc relocs[128] __cpuinitdata;
235
236#ifdef CONFIG_64BIT
237static int check_for_high_segbits __cpuinitdata;
238#endif
239
240static int check_for_high_segbits __cpuinitdata;
241
242static unsigned int kscratch_used_mask __cpuinitdata;
243
244static int __cpuinit allocate_kscratch(void)
245{
246 int r;
247 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
248
249 r = ffs(a);
250
251 if (r == 0)
252 return -1;
253
254 r--; /* make it zero based */
255
256 kscratch_used_mask |= (1 << r);
257
258 return r;
259}
260
261static int scratch_reg __cpuinitdata;
262static int pgd_reg __cpuinitdata;
263enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
264
265static struct work_registers __cpuinit build_get_work_registers(u32 **p)
266{
267 struct work_registers r;
268
269 int smp_processor_id_reg;
270 int smp_processor_id_sel;
271 int smp_processor_id_shift;
272
273 if (scratch_reg > 0) {
274 /* Save in CPU local C0_KScratch? */
275 UASM_i_MTC0(p, 1, 31, scratch_reg);
276 r.r1 = K0;
277 r.r2 = K1;
278 r.r3 = 1;
279 return r;
280 }
281
282 if (num_possible_cpus() > 1) {
283#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
284 smp_processor_id_shift = 51;
285 smp_processor_id_reg = 20; /* XContext */
286 smp_processor_id_sel = 0;
287#else
288# ifdef CONFIG_32BIT
289 smp_processor_id_shift = 25;
290 smp_processor_id_reg = 4; /* Context */
291 smp_processor_id_sel = 0;
292# endif
293# ifdef CONFIG_64BIT
294 smp_processor_id_shift = 26;
295 smp_processor_id_reg = 4; /* Context */
296 smp_processor_id_sel = 0;
297# endif
298#endif
299 /* Get smp_processor_id */
300 UASM_i_MFC0(p, K0, smp_processor_id_reg, smp_processor_id_sel);
301 UASM_i_SRL_SAFE(p, K0, K0, smp_processor_id_shift);
302
303 /* handler_reg_save index in K0 */
304 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
305
306 UASM_i_LA(p, K1, (long)&handler_reg_save);
307 UASM_i_ADDU(p, K0, K0, K1);
308 } else {
309 UASM_i_LA(p, K0, (long)&handler_reg_save);
310 }
311 /* K0 now points to save area, save $1 and $2 */
312 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
313 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
314
315 r.r1 = K1;
316 r.r2 = 1;
317 r.r3 = 2;
318 return r;
319}
320
321static void __cpuinit build_restore_work_registers(u32 **p)
322{
323 if (scratch_reg > 0) {
324 UASM_i_MFC0(p, 1, 31, scratch_reg);
325 return;
326 }
327 /* K0 already points to save area, restore $1 and $2 */
328 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
329 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
330}
331
332#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
333
334/*
335 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
336 * we cannot do r3000 under these circumstances.
337 *
338 * Declare pgd_current here instead of including mmu_context.h to avoid type
339 * conflicts for tlbmiss_handler_setup_pgd
340 */
341extern unsigned long pgd_current[];
342
343/*
344 * The R3000 TLB handler is simple.
345 */
346static void __cpuinit build_r3000_tlb_refill_handler(void)
347{
348 long pgdc = (long)pgd_current;
349 u32 *p;
350
351 memset(tlb_handler, 0, sizeof(tlb_handler));
352 p = tlb_handler;
353
354 uasm_i_mfc0(&p, K0, C0_BADVADDR);
355 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
356 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
357 uasm_i_srl(&p, K0, K0, 22); /* load delay */
358 uasm_i_sll(&p, K0, K0, 2);
359 uasm_i_addu(&p, K1, K1, K0);
360 uasm_i_mfc0(&p, K0, C0_CONTEXT);
361 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
362 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
363 uasm_i_addu(&p, K1, K1, K0);
364 uasm_i_lw(&p, K0, 0, K1);
365 uasm_i_nop(&p); /* load delay */
366 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
367 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
368 uasm_i_tlbwr(&p); /* cp0 delay */
369 uasm_i_jr(&p, K1);
370 uasm_i_rfe(&p); /* branch delay */
371
372 if (p > tlb_handler + 32)
373 panic("TLB refill handler space exceeded");
374
375 pr_debug("Wrote TLB refill handler (%u instructions).\n",
376 (unsigned int)(p - tlb_handler));
377
378 memcpy((void *)ebase, tlb_handler, 0x80);
379
380 dump_handler((u32 *)ebase, 32);
381}
382#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
383
384/*
385 * The R4000 TLB handler is much more complicated. We have two
386 * consecutive handler areas with 32 instructions space each.
387 * Since they aren't used at the same time, we can overflow in the
388 * other one.To keep things simple, we first assume linear space,
389 * then we relocate it to the final handler layout as needed.
390 */
391static u32 final_handler[64] __cpuinitdata;
392
393/*
394 * Hazards
395 *
396 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
397 * 2. A timing hazard exists for the TLBP instruction.
398 *
399 * stalling_instruction
400 * TLBP
401 *
402 * The JTLB is being read for the TLBP throughout the stall generated by the
403 * previous instruction. This is not really correct as the stalling instruction
404 * can modify the address used to access the JTLB. The failure symptom is that
405 * the TLBP instruction will use an address created for the stalling instruction
406 * and not the address held in C0_ENHI and thus report the wrong results.
407 *
408 * The software work-around is to not allow the instruction preceding the TLBP
409 * to stall - make it an NOP or some other instruction guaranteed not to stall.
410 *
411 * Errata 2 will not be fixed. This errata is also on the R5000.
412 *
413 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
414 */
415static void __cpuinit __maybe_unused build_tlb_probe_entry(u32 **p)
416{
417 switch (current_cpu_type()) {
418 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
419 case CPU_R4600:
420 case CPU_R4700:
421 case CPU_R5000:
422 case CPU_R5000A:
423 case CPU_NEVADA:
424 uasm_i_nop(p);
425 uasm_i_tlbp(p);
426 break;
427
428 default:
429 uasm_i_tlbp(p);
430 break;
431 }
432}
433
434/*
435 * Write random or indexed TLB entry, and care about the hazards from
436 * the preceding mtc0 and for the following eret.
437 */
438enum tlb_write_entry { tlb_random, tlb_indexed };
439
440static void __cpuinit build_tlb_write_entry(u32 **p, struct uasm_label **l,
441 struct uasm_reloc **r,
442 enum tlb_write_entry wmode)
443{
444 void(*tlbw)(u32 **) = NULL;
445
446 switch (wmode) {
447 case tlb_random: tlbw = uasm_i_tlbwr; break;
448 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
449 }
450
451 if (cpu_has_mips_r2) {
452 if (cpu_has_mips_r2_exec_hazard)
453 uasm_i_ehb(p);
454 tlbw(p);
455 return;
456 }
457
458 switch (current_cpu_type()) {
459 case CPU_R4000PC:
460 case CPU_R4000SC:
461 case CPU_R4000MC:
462 case CPU_R4400PC:
463 case CPU_R4400SC:
464 case CPU_R4400MC:
465 /*
466 * This branch uses up a mtc0 hazard nop slot and saves
467 * two nops after the tlbw instruction.
468 */
469 uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
470 tlbw(p);
471 uasm_l_tlbw_hazard(l, *p);
472 uasm_i_nop(p);
473 break;
474
475 case CPU_R4600:
476 case CPU_R4700:
477 case CPU_R5000:
478 case CPU_R5000A:
479 uasm_i_nop(p);
480 tlbw(p);
481 uasm_i_nop(p);
482 break;
483
484 case CPU_R4300:
485 case CPU_5KC:
486 case CPU_TX49XX:
487 case CPU_PR4450:
488 case CPU_XLR:
489 uasm_i_nop(p);
490 tlbw(p);
491 break;
492
493 case CPU_R10000:
494 case CPU_R12000:
495 case CPU_R14000:
496 case CPU_4KC:
497 case CPU_4KEC:
498 case CPU_M14KC:
499 case CPU_SB1:
500 case CPU_SB1A:
501 case CPU_4KSC:
502 case CPU_20KC:
503 case CPU_25KF:
504 case CPU_BMIPS32:
505 case CPU_BMIPS3300:
506 case CPU_BMIPS4350:
507 case CPU_BMIPS4380:
508 case CPU_BMIPS5000:
509 case CPU_LOONGSON2:
510 case CPU_R5500:
511 if (m4kc_tlbp_war())
512 uasm_i_nop(p);
513 case CPU_ALCHEMY:
514 tlbw(p);
515 break;
516
517 case CPU_NEVADA:
518 uasm_i_nop(p); /* QED specifies 2 nops hazard */
519 /*
520 * This branch uses up a mtc0 hazard nop slot and saves
521 * a nop after the tlbw instruction.
522 */
523 uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
524 tlbw(p);
525 uasm_l_tlbw_hazard(l, *p);
526 break;
527
528 case CPU_RM7000:
529 uasm_i_nop(p);
530 uasm_i_nop(p);
531 uasm_i_nop(p);
532 uasm_i_nop(p);
533 tlbw(p);
534 break;
535
536 case CPU_RM9000:
537 /*
538 * When the JTLB is updated by tlbwi or tlbwr, a subsequent
539 * use of the JTLB for instructions should not occur for 4
540 * cpu cycles and use for data translations should not occur
541 * for 3 cpu cycles.
542 */
543 uasm_i_ssnop(p);
544 uasm_i_ssnop(p);
545 uasm_i_ssnop(p);
546 uasm_i_ssnop(p);
547 tlbw(p);
548 uasm_i_ssnop(p);
549 uasm_i_ssnop(p);
550 uasm_i_ssnop(p);
551 uasm_i_ssnop(p);
552 break;
553
554 case CPU_VR4111:
555 case CPU_VR4121:
556 case CPU_VR4122:
557 case CPU_VR4181:
558 case CPU_VR4181A:
559 uasm_i_nop(p);
560 uasm_i_nop(p);
561 tlbw(p);
562 uasm_i_nop(p);
563 uasm_i_nop(p);
564 break;
565
566 case CPU_VR4131:
567 case CPU_VR4133:
568 case CPU_R5432:
569 uasm_i_nop(p);
570 uasm_i_nop(p);
571 tlbw(p);
572 break;
573
574 case CPU_JZRISC:
575 tlbw(p);
576 uasm_i_nop(p);
577 break;
578
579 default:
580 panic("No TLB refill handler yet (CPU type: %d)",
581 current_cpu_data.cputype);
582 break;
583 }
584}
585
586static __cpuinit __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
587 unsigned int reg)
588{
589 if (kernel_uses_smartmips_rixi) {
590 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
591 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
592 } else {
593#ifdef CONFIG_64BIT_PHYS_ADDR
594 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
595#else
596 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
597#endif
598 }
599}
600
601#ifdef CONFIG_HUGETLB_PAGE
602
603static __cpuinit void build_restore_pagemask(u32 **p,
604 struct uasm_reloc **r,
605 unsigned int tmp,
606 enum label_id lid,
607 int restore_scratch)
608{
609 if (restore_scratch) {
610 /* Reset default page size */
611 if (PM_DEFAULT_MASK >> 16) {
612 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
613 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
614 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
615 uasm_il_b(p, r, lid);
616 } else if (PM_DEFAULT_MASK) {
617 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
618 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
619 uasm_il_b(p, r, lid);
620 } else {
621 uasm_i_mtc0(p, 0, C0_PAGEMASK);
622 uasm_il_b(p, r, lid);
623 }
624 if (scratch_reg > 0)
625 UASM_i_MFC0(p, 1, 31, scratch_reg);
626 else
627 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
628 } else {
629 /* Reset default page size */
630 if (PM_DEFAULT_MASK >> 16) {
631 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
632 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
633 uasm_il_b(p, r, lid);
634 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
635 } else if (PM_DEFAULT_MASK) {
636 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
637 uasm_il_b(p, r, lid);
638 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
639 } else {
640 uasm_il_b(p, r, lid);
641 uasm_i_mtc0(p, 0, C0_PAGEMASK);
642 }
643 }
644}
645
646static __cpuinit void build_huge_tlb_write_entry(u32 **p,
647 struct uasm_label **l,
648 struct uasm_reloc **r,
649 unsigned int tmp,
650 enum tlb_write_entry wmode,
651 int restore_scratch)
652{
653 /* Set huge page tlb entry size */
654 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
655 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
656 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
657
658 build_tlb_write_entry(p, l, r, wmode);
659
660 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
661}
662
663/*
664 * Check if Huge PTE is present, if so then jump to LABEL.
665 */
666static void __cpuinit
667build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
668 unsigned int pmd, int lid)
669{
670 UASM_i_LW(p, tmp, 0, pmd);
671 if (use_bbit_insns()) {
672 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
673 } else {
674 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
675 uasm_il_bnez(p, r, tmp, lid);
676 }
677}
678
679static __cpuinit void build_huge_update_entries(u32 **p,
680 unsigned int pte,
681 unsigned int tmp)
682{
683 int small_sequence;
684
685 /*
686 * A huge PTE describes an area the size of the
687 * configured huge page size. This is twice the
688 * of the large TLB entry size we intend to use.
689 * A TLB entry half the size of the configured
690 * huge page size is configured into entrylo0
691 * and entrylo1 to cover the contiguous huge PTE
692 * address space.
693 */
694 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
695
696 /* We can clobber tmp. It isn't used after this.*/
697 if (!small_sequence)
698 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
699
700 build_convert_pte_to_entrylo(p, pte);
701 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
702 /* convert to entrylo1 */
703 if (small_sequence)
704 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
705 else
706 UASM_i_ADDU(p, pte, pte, tmp);
707
708 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
709}
710
711static __cpuinit void build_huge_handler_tail(u32 **p,
712 struct uasm_reloc **r,
713 struct uasm_label **l,
714 unsigned int pte,
715 unsigned int ptr)
716{
717#ifdef CONFIG_SMP
718 UASM_i_SC(p, pte, 0, ptr);
719 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
720 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
721#else
722 UASM_i_SW(p, pte, 0, ptr);
723#endif
724 build_huge_update_entries(p, pte, ptr);
725 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
726}
727#endif /* CONFIG_HUGETLB_PAGE */
728
729#ifdef CONFIG_64BIT
730/*
731 * TMP and PTR are scratch.
732 * TMP will be clobbered, PTR will hold the pmd entry.
733 */
734static void __cpuinit
735build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
736 unsigned int tmp, unsigned int ptr)
737{
738#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
739 long pgdc = (long)pgd_current;
740#endif
741 /*
742 * The vmalloc handling is not in the hotpath.
743 */
744 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
745
746 if (check_for_high_segbits) {
747 /*
748 * The kernel currently implicitely assumes that the
749 * MIPS SEGBITS parameter for the processor is
750 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
751 * allocate virtual addresses outside the maximum
752 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
753 * that doesn't prevent user code from accessing the
754 * higher xuseg addresses. Here, we make sure that
755 * everything but the lower xuseg addresses goes down
756 * the module_alloc/vmalloc path.
757 */
758 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
759 uasm_il_bnez(p, r, ptr, label_vmalloc);
760 } else {
761 uasm_il_bltz(p, r, tmp, label_vmalloc);
762 }
763 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
764
765#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
766 if (pgd_reg != -1) {
767 /* pgd is in pgd_reg */
768 UASM_i_MFC0(p, ptr, 31, pgd_reg);
769 } else {
770 /*
771 * &pgd << 11 stored in CONTEXT [23..63].
772 */
773 UASM_i_MFC0(p, ptr, C0_CONTEXT);
774
775 /* Clear lower 23 bits of context. */
776 uasm_i_dins(p, ptr, 0, 0, 23);
777
778 /* 1 0 1 0 1 << 6 xkphys cached */
779 uasm_i_ori(p, ptr, ptr, 0x540);
780 uasm_i_drotr(p, ptr, ptr, 11);
781 }
782#elif defined(CONFIG_SMP)
783# ifdef CONFIG_MIPS_MT_SMTC
784 /*
785 * SMTC uses TCBind value as "CPU" index
786 */
787 uasm_i_mfc0(p, ptr, C0_TCBIND);
788 uasm_i_dsrl_safe(p, ptr, ptr, 19);
789# else
790 /*
791 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
792 * stored in CONTEXT.
793 */
794 uasm_i_dmfc0(p, ptr, C0_CONTEXT);
795 uasm_i_dsrl_safe(p, ptr, ptr, 23);
796# endif
797 UASM_i_LA_mostly(p, tmp, pgdc);
798 uasm_i_daddu(p, ptr, ptr, tmp);
799 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
800 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
801#else
802 UASM_i_LA_mostly(p, ptr, pgdc);
803 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
804#endif
805
806 uasm_l_vmalloc_done(l, *p);
807
808 /* get pgd offset in bytes */
809 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
810
811 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
812 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
813#ifndef __PAGETABLE_PMD_FOLDED
814 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
815 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
816 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
817 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
818 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
819#endif
820}
821
822/*
823 * BVADDR is the faulting address, PTR is scratch.
824 * PTR will hold the pgd for vmalloc.
825 */
826static void __cpuinit
827build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
828 unsigned int bvaddr, unsigned int ptr,
829 enum vmalloc64_mode mode)
830{
831 long swpd = (long)swapper_pg_dir;
832 int single_insn_swpd;
833 int did_vmalloc_branch = 0;
834
835 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
836
837 uasm_l_vmalloc(l, *p);
838
839 if (mode != not_refill && check_for_high_segbits) {
840 if (single_insn_swpd) {
841 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
842 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
843 did_vmalloc_branch = 1;
844 /* fall through */
845 } else {
846 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
847 }
848 }
849 if (!did_vmalloc_branch) {
850 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
851 uasm_il_b(p, r, label_vmalloc_done);
852 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
853 } else {
854 UASM_i_LA_mostly(p, ptr, swpd);
855 uasm_il_b(p, r, label_vmalloc_done);
856 if (uasm_in_compat_space_p(swpd))
857 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
858 else
859 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
860 }
861 }
862 if (mode != not_refill && check_for_high_segbits) {
863 uasm_l_large_segbits_fault(l, *p);
864 /*
865 * We get here if we are an xsseg address, or if we are
866 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
867 *
868 * Ignoring xsseg (assume disabled so would generate
869 * (address errors?), the only remaining possibility
870 * is the upper xuseg addresses. On processors with
871 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
872 * addresses would have taken an address error. We try
873 * to mimic that here by taking a load/istream page
874 * fault.
875 */
876 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
877 uasm_i_jr(p, ptr);
878
879 if (mode == refill_scratch) {
880 if (scratch_reg > 0)
881 UASM_i_MFC0(p, 1, 31, scratch_reg);
882 else
883 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
884 } else {
885 uasm_i_nop(p);
886 }
887 }
888}
889
890#else /* !CONFIG_64BIT */
891
892/*
893 * TMP and PTR are scratch.
894 * TMP will be clobbered, PTR will hold the pgd entry.
895 */
896static void __cpuinit __maybe_unused
897build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
898{
899 long pgdc = (long)pgd_current;
900
901 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
902#ifdef CONFIG_SMP
903#ifdef CONFIG_MIPS_MT_SMTC
904 /*
905 * SMTC uses TCBind value as "CPU" index
906 */
907 uasm_i_mfc0(p, ptr, C0_TCBIND);
908 UASM_i_LA_mostly(p, tmp, pgdc);
909 uasm_i_srl(p, ptr, ptr, 19);
910#else
911 /*
912 * smp_processor_id() << 3 is stored in CONTEXT.
913 */
914 uasm_i_mfc0(p, ptr, C0_CONTEXT);
915 UASM_i_LA_mostly(p, tmp, pgdc);
916 uasm_i_srl(p, ptr, ptr, 23);
917#endif
918 uasm_i_addu(p, ptr, tmp, ptr);
919#else
920 UASM_i_LA_mostly(p, ptr, pgdc);
921#endif
922 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
923 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
924 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
925 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
926 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
927}
928
929#endif /* !CONFIG_64BIT */
930
931static void __cpuinit build_adjust_context(u32 **p, unsigned int ctx)
932{
933 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
934 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
935
936 switch (current_cpu_type()) {
937 case CPU_VR41XX:
938 case CPU_VR4111:
939 case CPU_VR4121:
940 case CPU_VR4122:
941 case CPU_VR4131:
942 case CPU_VR4181:
943 case CPU_VR4181A:
944 case CPU_VR4133:
945 shift += 2;
946 break;
947
948 default:
949 break;
950 }
951
952 if (shift)
953 UASM_i_SRL(p, ctx, ctx, shift);
954 uasm_i_andi(p, ctx, ctx, mask);
955}
956
957static void __cpuinit build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
958{
959 /*
960 * Bug workaround for the Nevada. It seems as if under certain
961 * circumstances the move from cp0_context might produce a
962 * bogus result when the mfc0 instruction and its consumer are
963 * in a different cacheline or a load instruction, probably any
964 * memory reference, is between them.
965 */
966 switch (current_cpu_type()) {
967 case CPU_NEVADA:
968 UASM_i_LW(p, ptr, 0, ptr);
969 GET_CONTEXT(p, tmp); /* get context reg */
970 break;
971
972 default:
973 GET_CONTEXT(p, tmp); /* get context reg */
974 UASM_i_LW(p, ptr, 0, ptr);
975 break;
976 }
977
978 build_adjust_context(p, tmp);
979 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
980}
981
982static void __cpuinit build_update_entries(u32 **p, unsigned int tmp,
983 unsigned int ptep)
984{
985 /*
986 * 64bit address support (36bit on a 32bit CPU) in a 32bit
987 * Kernel is a special case. Only a few CPUs use it.
988 */
989#ifdef CONFIG_64BIT_PHYS_ADDR
990 if (cpu_has_64bits) {
991 uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
992 uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
993 if (kernel_uses_smartmips_rixi) {
994 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_NO_EXEC));
995 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_NO_EXEC));
996 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
997 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
998 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
999 } else {
1000 uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1001 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1002 uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1003 }
1004 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1005 } else {
1006 int pte_off_even = sizeof(pte_t) / 2;
1007 int pte_off_odd = pte_off_even + sizeof(pte_t);
1008
1009 /* The pte entries are pre-shifted */
1010 uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1011 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1012 uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1013 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1014 }
1015#else
1016 UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1017 UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1018 if (r45k_bvahwbug())
1019 build_tlb_probe_entry(p);
1020 if (kernel_uses_smartmips_rixi) {
1021 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_NO_EXEC));
1022 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_NO_EXEC));
1023 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1024 if (r4k_250MHZhwbug())
1025 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1026 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1027 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1028 } else {
1029 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1030 if (r4k_250MHZhwbug())
1031 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1032 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1033 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1034 if (r45k_bvahwbug())
1035 uasm_i_mfc0(p, tmp, C0_INDEX);
1036 }
1037 if (r4k_250MHZhwbug())
1038 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1039 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1040#endif
1041}
1042
1043struct mips_huge_tlb_info {
1044 int huge_pte;
1045 int restore_scratch;
1046};
1047
1048static struct mips_huge_tlb_info __cpuinit
1049build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1050 struct uasm_reloc **r, unsigned int tmp,
1051 unsigned int ptr, int c0_scratch)
1052{
1053 struct mips_huge_tlb_info rv;
1054 unsigned int even, odd;
1055 int vmalloc_branch_delay_filled = 0;
1056 const int scratch = 1; /* Our extra working register */
1057
1058 rv.huge_pte = scratch;
1059 rv.restore_scratch = 0;
1060
1061 if (check_for_high_segbits) {
1062 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1063
1064 if (pgd_reg != -1)
1065 UASM_i_MFC0(p, ptr, 31, pgd_reg);
1066 else
1067 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1068
1069 if (c0_scratch >= 0)
1070 UASM_i_MTC0(p, scratch, 31, c0_scratch);
1071 else
1072 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1073
1074 uasm_i_dsrl_safe(p, scratch, tmp,
1075 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1076 uasm_il_bnez(p, r, scratch, label_vmalloc);
1077
1078 if (pgd_reg == -1) {
1079 vmalloc_branch_delay_filled = 1;
1080 /* Clear lower 23 bits of context. */
1081 uasm_i_dins(p, ptr, 0, 0, 23);
1082 }
1083 } else {
1084 if (pgd_reg != -1)
1085 UASM_i_MFC0(p, ptr, 31, pgd_reg);
1086 else
1087 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1088
1089 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1090
1091 if (c0_scratch >= 0)
1092 UASM_i_MTC0(p, scratch, 31, c0_scratch);
1093 else
1094 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1095
1096 if (pgd_reg == -1)
1097 /* Clear lower 23 bits of context. */
1098 uasm_i_dins(p, ptr, 0, 0, 23);
1099
1100 uasm_il_bltz(p, r, tmp, label_vmalloc);
1101 }
1102
1103 if (pgd_reg == -1) {
1104 vmalloc_branch_delay_filled = 1;
1105 /* 1 0 1 0 1 << 6 xkphys cached */
1106 uasm_i_ori(p, ptr, ptr, 0x540);
1107 uasm_i_drotr(p, ptr, ptr, 11);
1108 }
1109
1110#ifdef __PAGETABLE_PMD_FOLDED
1111#define LOC_PTEP scratch
1112#else
1113#define LOC_PTEP ptr
1114#endif
1115
1116 if (!vmalloc_branch_delay_filled)
1117 /* get pgd offset in bytes */
1118 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1119
1120 uasm_l_vmalloc_done(l, *p);
1121
1122 /*
1123 * tmp ptr
1124 * fall-through case = badvaddr *pgd_current
1125 * vmalloc case = badvaddr swapper_pg_dir
1126 */
1127
1128 if (vmalloc_branch_delay_filled)
1129 /* get pgd offset in bytes */
1130 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1131
1132#ifdef __PAGETABLE_PMD_FOLDED
1133 GET_CONTEXT(p, tmp); /* get context reg */
1134#endif
1135 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1136
1137 if (use_lwx_insns()) {
1138 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1139 } else {
1140 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1141 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1142 }
1143
1144#ifndef __PAGETABLE_PMD_FOLDED
1145 /* get pmd offset in bytes */
1146 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1147 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1148 GET_CONTEXT(p, tmp); /* get context reg */
1149
1150 if (use_lwx_insns()) {
1151 UASM_i_LWX(p, scratch, scratch, ptr);
1152 } else {
1153 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1154 UASM_i_LW(p, scratch, 0, ptr);
1155 }
1156#endif
1157 /* Adjust the context during the load latency. */
1158 build_adjust_context(p, tmp);
1159
1160#ifdef CONFIG_HUGETLB_PAGE
1161 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1162 /*
1163 * The in the LWX case we don't want to do the load in the
1164 * delay slot. It cannot issue in the same cycle and may be
1165 * speculative and unneeded.
1166 */
1167 if (use_lwx_insns())
1168 uasm_i_nop(p);
1169#endif /* CONFIG_HUGETLB_PAGE */
1170
1171
1172 /* build_update_entries */
1173 if (use_lwx_insns()) {
1174 even = ptr;
1175 odd = tmp;
1176 UASM_i_LWX(p, even, scratch, tmp);
1177 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1178 UASM_i_LWX(p, odd, scratch, tmp);
1179 } else {
1180 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1181 even = tmp;
1182 odd = ptr;
1183 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1184 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1185 }
1186 if (kernel_uses_smartmips_rixi) {
1187 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_NO_EXEC));
1188 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_NO_EXEC));
1189 uasm_i_drotr(p, even, even,
1190 ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1191 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1192 uasm_i_drotr(p, odd, odd,
1193 ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1194 } else {
1195 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1196 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1197 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1198 }
1199 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1200
1201 if (c0_scratch >= 0) {
1202 UASM_i_MFC0(p, scratch, 31, c0_scratch);
1203 build_tlb_write_entry(p, l, r, tlb_random);
1204 uasm_l_leave(l, *p);
1205 rv.restore_scratch = 1;
1206 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1207 build_tlb_write_entry(p, l, r, tlb_random);
1208 uasm_l_leave(l, *p);
1209 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1210 } else {
1211 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1212 build_tlb_write_entry(p, l, r, tlb_random);
1213 uasm_l_leave(l, *p);
1214 rv.restore_scratch = 1;
1215 }
1216
1217 uasm_i_eret(p); /* return from trap */
1218
1219 return rv;
1220}
1221
1222/*
1223 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1224 * because EXL == 0. If we wrap, we can also use the 32 instruction
1225 * slots before the XTLB refill exception handler which belong to the
1226 * unused TLB refill exception.
1227 */
1228#define MIPS64_REFILL_INSNS 32
1229
1230static void __cpuinit build_r4000_tlb_refill_handler(void)
1231{
1232 u32 *p = tlb_handler;
1233 struct uasm_label *l = labels;
1234 struct uasm_reloc *r = relocs;
1235 u32 *f;
1236 unsigned int final_len;
1237 struct mips_huge_tlb_info htlb_info __maybe_unused;
1238 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1239
1240 memset(tlb_handler, 0, sizeof(tlb_handler));
1241 memset(labels, 0, sizeof(labels));
1242 memset(relocs, 0, sizeof(relocs));
1243 memset(final_handler, 0, sizeof(final_handler));
1244
1245 if ((scratch_reg > 0 || scratchpad_available()) && use_bbit_insns()) {
1246 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1247 scratch_reg);
1248 vmalloc_mode = refill_scratch;
1249 } else {
1250 htlb_info.huge_pte = K0;
1251 htlb_info.restore_scratch = 0;
1252 vmalloc_mode = refill_noscratch;
1253 /*
1254 * create the plain linear handler
1255 */
1256 if (bcm1250_m3_war()) {
1257 unsigned int segbits = 44;
1258
1259 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1260 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1261 uasm_i_xor(&p, K0, K0, K1);
1262 uasm_i_dsrl_safe(&p, K1, K0, 62);
1263 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1264 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1265 uasm_i_or(&p, K0, K0, K1);
1266 uasm_il_bnez(&p, &r, K0, label_leave);
1267 /* No need for uasm_i_nop */
1268 }
1269
1270#ifdef CONFIG_64BIT
1271 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1272#else
1273 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1274#endif
1275
1276#ifdef CONFIG_HUGETLB_PAGE
1277 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1278#endif
1279
1280 build_get_ptep(&p, K0, K1);
1281 build_update_entries(&p, K0, K1);
1282 build_tlb_write_entry(&p, &l, &r, tlb_random);
1283 uasm_l_leave(&l, p);
1284 uasm_i_eret(&p); /* return from trap */
1285 }
1286#ifdef CONFIG_HUGETLB_PAGE
1287 uasm_l_tlb_huge_update(&l, p);
1288 build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1289 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1290 htlb_info.restore_scratch);
1291#endif
1292
1293#ifdef CONFIG_64BIT
1294 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1295#endif
1296
1297 /*
1298 * Overflow check: For the 64bit handler, we need at least one
1299 * free instruction slot for the wrap-around branch. In worst
1300 * case, if the intended insertion point is a delay slot, we
1301 * need three, with the second nop'ed and the third being
1302 * unused.
1303 */
1304 /* Loongson2 ebase is different than r4k, we have more space */
1305#if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1306 if ((p - tlb_handler) > 64)
1307 panic("TLB refill handler space exceeded");
1308#else
1309 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1310 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1311 && uasm_insn_has_bdelay(relocs,
1312 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1313 panic("TLB refill handler space exceeded");
1314#endif
1315
1316 /*
1317 * Now fold the handler in the TLB refill handler space.
1318 */
1319#if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1320 f = final_handler;
1321 /* Simplest case, just copy the handler. */
1322 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1323 final_len = p - tlb_handler;
1324#else /* CONFIG_64BIT */
1325 f = final_handler + MIPS64_REFILL_INSNS;
1326 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1327 /* Just copy the handler. */
1328 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1329 final_len = p - tlb_handler;
1330 } else {
1331#if defined(CONFIG_HUGETLB_PAGE)
1332 const enum label_id ls = label_tlb_huge_update;
1333#else
1334 const enum label_id ls = label_vmalloc;
1335#endif
1336 u32 *split;
1337 int ov = 0;
1338 int i;
1339
1340 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1341 ;
1342 BUG_ON(i == ARRAY_SIZE(labels));
1343 split = labels[i].addr;
1344
1345 /*
1346 * See if we have overflown one way or the other.
1347 */
1348 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1349 split < p - MIPS64_REFILL_INSNS)
1350 ov = 1;
1351
1352 if (ov) {
1353 /*
1354 * Split two instructions before the end. One
1355 * for the branch and one for the instruction
1356 * in the delay slot.
1357 */
1358 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1359
1360 /*
1361 * If the branch would fall in a delay slot,
1362 * we must back up an additional instruction
1363 * so that it is no longer in a delay slot.
1364 */
1365 if (uasm_insn_has_bdelay(relocs, split - 1))
1366 split--;
1367 }
1368 /* Copy first part of the handler. */
1369 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1370 f += split - tlb_handler;
1371
1372 if (ov) {
1373 /* Insert branch. */
1374 uasm_l_split(&l, final_handler);
1375 uasm_il_b(&f, &r, label_split);
1376 if (uasm_insn_has_bdelay(relocs, split))
1377 uasm_i_nop(&f);
1378 else {
1379 uasm_copy_handler(relocs, labels,
1380 split, split + 1, f);
1381 uasm_move_labels(labels, f, f + 1, -1);
1382 f++;
1383 split++;
1384 }
1385 }
1386
1387 /* Copy the rest of the handler. */
1388 uasm_copy_handler(relocs, labels, split, p, final_handler);
1389 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1390 (p - split);
1391 }
1392#endif /* CONFIG_64BIT */
1393
1394 uasm_resolve_relocs(relocs, labels);
1395 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1396 final_len);
1397
1398 memcpy((void *)ebase, final_handler, 0x100);
1399
1400 dump_handler((u32 *)ebase, 64);
1401}
1402
1403/*
1404 * 128 instructions for the fastpath handler is generous and should
1405 * never be exceeded.
1406 */
1407#define FASTPATH_SIZE 128
1408
1409u32 handle_tlbl[FASTPATH_SIZE] __cacheline_aligned;
1410u32 handle_tlbs[FASTPATH_SIZE] __cacheline_aligned;
1411u32 handle_tlbm[FASTPATH_SIZE] __cacheline_aligned;
1412#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1413u32 tlbmiss_handler_setup_pgd[16] __cacheline_aligned;
1414
1415static void __cpuinit build_r4000_setup_pgd(void)
1416{
1417 const int a0 = 4;
1418 const int a1 = 5;
1419 u32 *p = tlbmiss_handler_setup_pgd;
1420 struct uasm_label *l = labels;
1421 struct uasm_reloc *r = relocs;
1422
1423 memset(tlbmiss_handler_setup_pgd, 0, sizeof(tlbmiss_handler_setup_pgd));
1424 memset(labels, 0, sizeof(labels));
1425 memset(relocs, 0, sizeof(relocs));
1426
1427 pgd_reg = allocate_kscratch();
1428
1429 if (pgd_reg == -1) {
1430 /* PGD << 11 in c0_Context */
1431 /*
1432 * If it is a ckseg0 address, convert to a physical
1433 * address. Shifting right by 29 and adding 4 will
1434 * result in zero for these addresses.
1435 *
1436 */
1437 UASM_i_SRA(&p, a1, a0, 29);
1438 UASM_i_ADDIU(&p, a1, a1, 4);
1439 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1440 uasm_i_nop(&p);
1441 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1442 uasm_l_tlbl_goaround1(&l, p);
1443 UASM_i_SLL(&p, a0, a0, 11);
1444 uasm_i_jr(&p, 31);
1445 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1446 } else {
1447 /* PGD in c0_KScratch */
1448 uasm_i_jr(&p, 31);
1449 UASM_i_MTC0(&p, a0, 31, pgd_reg);
1450 }
1451 if (p - tlbmiss_handler_setup_pgd > ARRAY_SIZE(tlbmiss_handler_setup_pgd))
1452 panic("tlbmiss_handler_setup_pgd space exceeded");
1453 uasm_resolve_relocs(relocs, labels);
1454 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1455 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1456
1457 dump_handler(tlbmiss_handler_setup_pgd,
1458 ARRAY_SIZE(tlbmiss_handler_setup_pgd));
1459}
1460#endif
1461
1462static void __cpuinit
1463iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1464{
1465#ifdef CONFIG_SMP
1466# ifdef CONFIG_64BIT_PHYS_ADDR
1467 if (cpu_has_64bits)
1468 uasm_i_lld(p, pte, 0, ptr);
1469 else
1470# endif
1471 UASM_i_LL(p, pte, 0, ptr);
1472#else
1473# ifdef CONFIG_64BIT_PHYS_ADDR
1474 if (cpu_has_64bits)
1475 uasm_i_ld(p, pte, 0, ptr);
1476 else
1477# endif
1478 UASM_i_LW(p, pte, 0, ptr);
1479#endif
1480}
1481
1482static void __cpuinit
1483iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1484 unsigned int mode)
1485{
1486#ifdef CONFIG_64BIT_PHYS_ADDR
1487 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1488#endif
1489
1490 uasm_i_ori(p, pte, pte, mode);
1491#ifdef CONFIG_SMP
1492# ifdef CONFIG_64BIT_PHYS_ADDR
1493 if (cpu_has_64bits)
1494 uasm_i_scd(p, pte, 0, ptr);
1495 else
1496# endif
1497 UASM_i_SC(p, pte, 0, ptr);
1498
1499 if (r10000_llsc_war())
1500 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1501 else
1502 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1503
1504# ifdef CONFIG_64BIT_PHYS_ADDR
1505 if (!cpu_has_64bits) {
1506 /* no uasm_i_nop needed */
1507 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1508 uasm_i_ori(p, pte, pte, hwmode);
1509 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1510 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1511 /* no uasm_i_nop needed */
1512 uasm_i_lw(p, pte, 0, ptr);
1513 } else
1514 uasm_i_nop(p);
1515# else
1516 uasm_i_nop(p);
1517# endif
1518#else
1519# ifdef CONFIG_64BIT_PHYS_ADDR
1520 if (cpu_has_64bits)
1521 uasm_i_sd(p, pte, 0, ptr);
1522 else
1523# endif
1524 UASM_i_SW(p, pte, 0, ptr);
1525
1526# ifdef CONFIG_64BIT_PHYS_ADDR
1527 if (!cpu_has_64bits) {
1528 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1529 uasm_i_ori(p, pte, pte, hwmode);
1530 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1531 uasm_i_lw(p, pte, 0, ptr);
1532 }
1533# endif
1534#endif
1535}
1536
1537/*
1538 * Check if PTE is present, if not then jump to LABEL. PTR points to
1539 * the page table where this PTE is located, PTE will be re-loaded
1540 * with it's original value.
1541 */
1542static void __cpuinit
1543build_pte_present(u32 **p, struct uasm_reloc **r,
1544 int pte, int ptr, int scratch, enum label_id lid)
1545{
1546 int t = scratch >= 0 ? scratch : pte;
1547
1548 if (kernel_uses_smartmips_rixi) {
1549 if (use_bbit_insns()) {
1550 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1551 uasm_i_nop(p);
1552 } else {
1553 uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1554 uasm_il_beqz(p, r, t, lid);
1555 if (pte == t)
1556 /* You lose the SMP race :-(*/
1557 iPTE_LW(p, pte, ptr);
1558 }
1559 } else {
1560 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1561 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1562 uasm_il_bnez(p, r, t, lid);
1563 if (pte == t)
1564 /* You lose the SMP race :-(*/
1565 iPTE_LW(p, pte, ptr);
1566 }
1567}
1568
1569/* Make PTE valid, store result in PTR. */
1570static void __cpuinit
1571build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1572 unsigned int ptr)
1573{
1574 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1575
1576 iPTE_SW(p, r, pte, ptr, mode);
1577}
1578
1579/*
1580 * Check if PTE can be written to, if not branch to LABEL. Regardless
1581 * restore PTE with value from PTR when done.
1582 */
1583static void __cpuinit
1584build_pte_writable(u32 **p, struct uasm_reloc **r,
1585 unsigned int pte, unsigned int ptr, int scratch,
1586 enum label_id lid)
1587{
1588 int t = scratch >= 0 ? scratch : pte;
1589
1590 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1591 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1592 uasm_il_bnez(p, r, t, lid);
1593 if (pte == t)
1594 /* You lose the SMP race :-(*/
1595 iPTE_LW(p, pte, ptr);
1596 else
1597 uasm_i_nop(p);
1598}
1599
1600/* Make PTE writable, update software status bits as well, then store
1601 * at PTR.
1602 */
1603static void __cpuinit
1604build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1605 unsigned int ptr)
1606{
1607 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1608 | _PAGE_DIRTY);
1609
1610 iPTE_SW(p, r, pte, ptr, mode);
1611}
1612
1613/*
1614 * Check if PTE can be modified, if not branch to LABEL. Regardless
1615 * restore PTE with value from PTR when done.
1616 */
1617static void __cpuinit
1618build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1619 unsigned int pte, unsigned int ptr, int scratch,
1620 enum label_id lid)
1621{
1622 if (use_bbit_insns()) {
1623 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1624 uasm_i_nop(p);
1625 } else {
1626 int t = scratch >= 0 ? scratch : pte;
1627 uasm_i_andi(p, t, pte, _PAGE_WRITE);
1628 uasm_il_beqz(p, r, t, lid);
1629 if (pte == t)
1630 /* You lose the SMP race :-(*/
1631 iPTE_LW(p, pte, ptr);
1632 }
1633}
1634
1635#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1636
1637
1638/*
1639 * R3000 style TLB load/store/modify handlers.
1640 */
1641
1642/*
1643 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1644 * Then it returns.
1645 */
1646static void __cpuinit
1647build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1648{
1649 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1650 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1651 uasm_i_tlbwi(p);
1652 uasm_i_jr(p, tmp);
1653 uasm_i_rfe(p); /* branch delay */
1654}
1655
1656/*
1657 * This places the pte into ENTRYLO0 and writes it with tlbwi
1658 * or tlbwr as appropriate. This is because the index register
1659 * may have the probe fail bit set as a result of a trap on a
1660 * kseg2 access, i.e. without refill. Then it returns.
1661 */
1662static void __cpuinit
1663build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1664 struct uasm_reloc **r, unsigned int pte,
1665 unsigned int tmp)
1666{
1667 uasm_i_mfc0(p, tmp, C0_INDEX);
1668 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1669 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1670 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1671 uasm_i_tlbwi(p); /* cp0 delay */
1672 uasm_i_jr(p, tmp);
1673 uasm_i_rfe(p); /* branch delay */
1674 uasm_l_r3000_write_probe_fail(l, *p);
1675 uasm_i_tlbwr(p); /* cp0 delay */
1676 uasm_i_jr(p, tmp);
1677 uasm_i_rfe(p); /* branch delay */
1678}
1679
1680static void __cpuinit
1681build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1682 unsigned int ptr)
1683{
1684 long pgdc = (long)pgd_current;
1685
1686 uasm_i_mfc0(p, pte, C0_BADVADDR);
1687 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1688 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1689 uasm_i_srl(p, pte, pte, 22); /* load delay */
1690 uasm_i_sll(p, pte, pte, 2);
1691 uasm_i_addu(p, ptr, ptr, pte);
1692 uasm_i_mfc0(p, pte, C0_CONTEXT);
1693 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1694 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1695 uasm_i_addu(p, ptr, ptr, pte);
1696 uasm_i_lw(p, pte, 0, ptr);
1697 uasm_i_tlbp(p); /* load delay */
1698}
1699
1700static void __cpuinit build_r3000_tlb_load_handler(void)
1701{
1702 u32 *p = handle_tlbl;
1703 struct uasm_label *l = labels;
1704 struct uasm_reloc *r = relocs;
1705
1706 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1707 memset(labels, 0, sizeof(labels));
1708 memset(relocs, 0, sizeof(relocs));
1709
1710 build_r3000_tlbchange_handler_head(&p, K0, K1);
1711 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1712 uasm_i_nop(&p); /* load delay */
1713 build_make_valid(&p, &r, K0, K1);
1714 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1715
1716 uasm_l_nopage_tlbl(&l, p);
1717 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1718 uasm_i_nop(&p);
1719
1720 if ((p - handle_tlbl) > FASTPATH_SIZE)
1721 panic("TLB load handler fastpath space exceeded");
1722
1723 uasm_resolve_relocs(relocs, labels);
1724 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1725 (unsigned int)(p - handle_tlbl));
1726
1727 dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
1728}
1729
1730static void __cpuinit build_r3000_tlb_store_handler(void)
1731{
1732 u32 *p = handle_tlbs;
1733 struct uasm_label *l = labels;
1734 struct uasm_reloc *r = relocs;
1735
1736 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1737 memset(labels, 0, sizeof(labels));
1738 memset(relocs, 0, sizeof(relocs));
1739
1740 build_r3000_tlbchange_handler_head(&p, K0, K1);
1741 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1742 uasm_i_nop(&p); /* load delay */
1743 build_make_write(&p, &r, K0, K1);
1744 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1745
1746 uasm_l_nopage_tlbs(&l, p);
1747 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1748 uasm_i_nop(&p);
1749
1750 if ((p - handle_tlbs) > FASTPATH_SIZE)
1751 panic("TLB store handler fastpath space exceeded");
1752
1753 uasm_resolve_relocs(relocs, labels);
1754 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1755 (unsigned int)(p - handle_tlbs));
1756
1757 dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
1758}
1759
1760static void __cpuinit build_r3000_tlb_modify_handler(void)
1761{
1762 u32 *p = handle_tlbm;
1763 struct uasm_label *l = labels;
1764 struct uasm_reloc *r = relocs;
1765
1766 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1767 memset(labels, 0, sizeof(labels));
1768 memset(relocs, 0, sizeof(relocs));
1769
1770 build_r3000_tlbchange_handler_head(&p, K0, K1);
1771 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
1772 uasm_i_nop(&p); /* load delay */
1773 build_make_write(&p, &r, K0, K1);
1774 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1775
1776 uasm_l_nopage_tlbm(&l, p);
1777 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1778 uasm_i_nop(&p);
1779
1780 if ((p - handle_tlbm) > FASTPATH_SIZE)
1781 panic("TLB modify handler fastpath space exceeded");
1782
1783 uasm_resolve_relocs(relocs, labels);
1784 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1785 (unsigned int)(p - handle_tlbm));
1786
1787 dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
1788}
1789#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1790
1791/*
1792 * R4000 style TLB load/store/modify handlers.
1793 */
1794static struct work_registers __cpuinit
1795build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1796 struct uasm_reloc **r)
1797{
1798 struct work_registers wr = build_get_work_registers(p);
1799
1800#ifdef CONFIG_64BIT
1801 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1802#else
1803 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1804#endif
1805
1806#ifdef CONFIG_HUGETLB_PAGE
1807 /*
1808 * For huge tlb entries, pmd doesn't contain an address but
1809 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1810 * see if we need to jump to huge tlb processing.
1811 */
1812 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1813#endif
1814
1815 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1816 UASM_i_LW(p, wr.r2, 0, wr.r2);
1817 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1818 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1819 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1820
1821#ifdef CONFIG_SMP
1822 uasm_l_smp_pgtable_change(l, *p);
1823#endif
1824 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1825 if (!m4kc_tlbp_war())
1826 build_tlb_probe_entry(p);
1827 return wr;
1828}
1829
1830static void __cpuinit
1831build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1832 struct uasm_reloc **r, unsigned int tmp,
1833 unsigned int ptr)
1834{
1835 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1836 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1837 build_update_entries(p, tmp, ptr);
1838 build_tlb_write_entry(p, l, r, tlb_indexed);
1839 uasm_l_leave(l, *p);
1840 build_restore_work_registers(p);
1841 uasm_i_eret(p); /* return from trap */
1842
1843#ifdef CONFIG_64BIT
1844 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1845#endif
1846}
1847
1848static void __cpuinit build_r4000_tlb_load_handler(void)
1849{
1850 u32 *p = handle_tlbl;
1851 struct uasm_label *l = labels;
1852 struct uasm_reloc *r = relocs;
1853 struct work_registers wr;
1854
1855 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1856 memset(labels, 0, sizeof(labels));
1857 memset(relocs, 0, sizeof(relocs));
1858
1859 if (bcm1250_m3_war()) {
1860 unsigned int segbits = 44;
1861
1862 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1863 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1864 uasm_i_xor(&p, K0, K0, K1);
1865 uasm_i_dsrl_safe(&p, K1, K0, 62);
1866 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1867 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1868 uasm_i_or(&p, K0, K0, K1);
1869 uasm_il_bnez(&p, &r, K0, label_leave);
1870 /* No need for uasm_i_nop */
1871 }
1872
1873 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1874 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1875 if (m4kc_tlbp_war())
1876 build_tlb_probe_entry(&p);
1877
1878 if (kernel_uses_smartmips_rixi) {
1879 /*
1880 * If the page is not _PAGE_VALID, RI or XI could not
1881 * have triggered it. Skip the expensive test..
1882 */
1883 if (use_bbit_insns()) {
1884 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1885 label_tlbl_goaround1);
1886 } else {
1887 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1888 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1889 }
1890 uasm_i_nop(&p);
1891
1892 uasm_i_tlbr(&p);
1893 /* Examine entrylo 0 or 1 based on ptr. */
1894 if (use_bbit_insns()) {
1895 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1896 } else {
1897 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1898 uasm_i_beqz(&p, wr.r3, 8);
1899 }
1900 /* load it in the delay slot*/
1901 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1902 /* load it if ptr is odd */
1903 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1904 /*
1905 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1906 * XI must have triggered it.
1907 */
1908 if (use_bbit_insns()) {
1909 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
1910 uasm_i_nop(&p);
1911 uasm_l_tlbl_goaround1(&l, p);
1912 } else {
1913 uasm_i_andi(&p, wr.r3, wr.r3, 2);
1914 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
1915 uasm_i_nop(&p);
1916 }
1917 uasm_l_tlbl_goaround1(&l, p);
1918 }
1919 build_make_valid(&p, &r, wr.r1, wr.r2);
1920 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
1921
1922#ifdef CONFIG_HUGETLB_PAGE
1923 /*
1924 * This is the entry point when build_r4000_tlbchange_handler_head
1925 * spots a huge page.
1926 */
1927 uasm_l_tlb_huge_update(&l, p);
1928 iPTE_LW(&p, wr.r1, wr.r2);
1929 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1930 build_tlb_probe_entry(&p);
1931
1932 if (kernel_uses_smartmips_rixi) {
1933 /*
1934 * If the page is not _PAGE_VALID, RI or XI could not
1935 * have triggered it. Skip the expensive test..
1936 */
1937 if (use_bbit_insns()) {
1938 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1939 label_tlbl_goaround2);
1940 } else {
1941 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1942 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
1943 }
1944 uasm_i_nop(&p);
1945
1946 uasm_i_tlbr(&p);
1947 /* Examine entrylo 0 or 1 based on ptr. */
1948 if (use_bbit_insns()) {
1949 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1950 } else {
1951 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1952 uasm_i_beqz(&p, wr.r3, 8);
1953 }
1954 /* load it in the delay slot*/
1955 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1956 /* load it if ptr is odd */
1957 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1958 /*
1959 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1960 * XI must have triggered it.
1961 */
1962 if (use_bbit_insns()) {
1963 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
1964 } else {
1965 uasm_i_andi(&p, wr.r3, wr.r3, 2);
1966 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
1967 }
1968 if (PM_DEFAULT_MASK == 0)
1969 uasm_i_nop(&p);
1970 /*
1971 * We clobbered C0_PAGEMASK, restore it. On the other branch
1972 * it is restored in build_huge_tlb_write_entry.
1973 */
1974 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
1975
1976 uasm_l_tlbl_goaround2(&l, p);
1977 }
1978 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
1979 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
1980#endif
1981
1982 uasm_l_nopage_tlbl(&l, p);
1983 build_restore_work_registers(&p);
1984 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1985 uasm_i_nop(&p);
1986
1987 if ((p - handle_tlbl) > FASTPATH_SIZE)
1988 panic("TLB load handler fastpath space exceeded");
1989
1990 uasm_resolve_relocs(relocs, labels);
1991 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1992 (unsigned int)(p - handle_tlbl));
1993
1994 dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
1995}
1996
1997static void __cpuinit build_r4000_tlb_store_handler(void)
1998{
1999 u32 *p = handle_tlbs;
2000 struct uasm_label *l = labels;
2001 struct uasm_reloc *r = relocs;
2002 struct work_registers wr;
2003
2004 memset(handle_tlbs, 0, sizeof(handle_tlbs));
2005 memset(labels, 0, sizeof(labels));
2006 memset(relocs, 0, sizeof(relocs));
2007
2008 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2009 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2010 if (m4kc_tlbp_war())
2011 build_tlb_probe_entry(&p);
2012 build_make_write(&p, &r, wr.r1, wr.r2);
2013 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2014
2015#ifdef CONFIG_HUGETLB_PAGE
2016 /*
2017 * This is the entry point when
2018 * build_r4000_tlbchange_handler_head spots a huge page.
2019 */
2020 uasm_l_tlb_huge_update(&l, p);
2021 iPTE_LW(&p, wr.r1, wr.r2);
2022 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2023 build_tlb_probe_entry(&p);
2024 uasm_i_ori(&p, wr.r1, wr.r1,
2025 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2026 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2027#endif
2028
2029 uasm_l_nopage_tlbs(&l, p);
2030 build_restore_work_registers(&p);
2031 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2032 uasm_i_nop(&p);
2033
2034 if ((p - handle_tlbs) > FASTPATH_SIZE)
2035 panic("TLB store handler fastpath space exceeded");
2036
2037 uasm_resolve_relocs(relocs, labels);
2038 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2039 (unsigned int)(p - handle_tlbs));
2040
2041 dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
2042}
2043
2044static void __cpuinit build_r4000_tlb_modify_handler(void)
2045{
2046 u32 *p = handle_tlbm;
2047 struct uasm_label *l = labels;
2048 struct uasm_reloc *r = relocs;
2049 struct work_registers wr;
2050
2051 memset(handle_tlbm, 0, sizeof(handle_tlbm));
2052 memset(labels, 0, sizeof(labels));
2053 memset(relocs, 0, sizeof(relocs));
2054
2055 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2056 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2057 if (m4kc_tlbp_war())
2058 build_tlb_probe_entry(&p);
2059 /* Present and writable bits set, set accessed and dirty bits. */
2060 build_make_write(&p, &r, wr.r1, wr.r2);
2061 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2062
2063#ifdef CONFIG_HUGETLB_PAGE
2064 /*
2065 * This is the entry point when
2066 * build_r4000_tlbchange_handler_head spots a huge page.
2067 */
2068 uasm_l_tlb_huge_update(&l, p);
2069 iPTE_LW(&p, wr.r1, wr.r2);
2070 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2071 build_tlb_probe_entry(&p);
2072 uasm_i_ori(&p, wr.r1, wr.r1,
2073 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2074 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2075#endif
2076
2077 uasm_l_nopage_tlbm(&l, p);
2078 build_restore_work_registers(&p);
2079 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2080 uasm_i_nop(&p);
2081
2082 if ((p - handle_tlbm) > FASTPATH_SIZE)
2083 panic("TLB modify handler fastpath space exceeded");
2084
2085 uasm_resolve_relocs(relocs, labels);
2086 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2087 (unsigned int)(p - handle_tlbm));
2088
2089 dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
2090}
2091
2092void __cpuinit build_tlb_refill_handler(void)
2093{
2094 /*
2095 * The refill handler is generated per-CPU, multi-node systems
2096 * may have local storage for it. The other handlers are only
2097 * needed once.
2098 */
2099 static int run_once = 0;
2100
2101#ifdef CONFIG_64BIT
2102 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2103#endif
2104
2105 switch (current_cpu_type()) {
2106 case CPU_R2000:
2107 case CPU_R3000:
2108 case CPU_R3000A:
2109 case CPU_R3081E:
2110 case CPU_TX3912:
2111 case CPU_TX3922:
2112 case CPU_TX3927:
2113#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2114 build_r3000_tlb_refill_handler();
2115 if (!run_once) {
2116 build_r3000_tlb_load_handler();
2117 build_r3000_tlb_store_handler();
2118 build_r3000_tlb_modify_handler();
2119 run_once++;
2120 }
2121#else
2122 panic("No R3000 TLB refill handler");
2123#endif
2124 break;
2125
2126 case CPU_R6000:
2127 case CPU_R6000A:
2128 panic("No R6000 TLB refill handler yet");
2129 break;
2130
2131 case CPU_R8000:
2132 panic("No R8000 TLB refill handler yet");
2133 break;
2134
2135 default:
2136 if (!run_once) {
2137 scratch_reg = allocate_kscratch();
2138#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2139 build_r4000_setup_pgd();
2140#endif
2141 build_r4000_tlb_load_handler();
2142 build_r4000_tlb_store_handler();
2143 build_r4000_tlb_modify_handler();
2144 run_once++;
2145 }
2146 build_r4000_tlb_refill_handler();
2147 }
2148}
2149
2150void __cpuinit flush_tlb_handlers(void)
2151{
2152 local_flush_icache_range((unsigned long)handle_tlbl,
2153 (unsigned long)handle_tlbl + sizeof(handle_tlbl));
2154 local_flush_icache_range((unsigned long)handle_tlbs,
2155 (unsigned long)handle_tlbs + sizeof(handle_tlbs));
2156 local_flush_icache_range((unsigned long)handle_tlbm,
2157 (unsigned long)handle_tlbm + sizeof(handle_tlbm));
2158#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2159 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2160 (unsigned long)tlbmiss_handler_setup_pgd + sizeof(handle_tlbm));
2161#endif
2162}