Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for Digigram VX222 V2/Mic soundcards
   4 *
   5 * VX222-specific low-level routines
   6 *
   7 * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   8 */
   9
  10#include <linux/delay.h>
  11#include <linux/device.h>
  12#include <linux/firmware.h>
  13#include <linux/mutex.h>
  14#include <linux/io.h>
  15
  16#include <sound/core.h>
  17#include <sound/control.h>
  18#include <sound/tlv.h>
 
  19#include "vx222.h"
  20
  21
  22static int vx2_reg_offset[VX_REG_MAX] = {
  23	[VX_ICR]    = 0x00,
  24	[VX_CVR]    = 0x04,
  25	[VX_ISR]    = 0x08,
  26	[VX_IVR]    = 0x0c,
  27	[VX_RXH]    = 0x14,
  28	[VX_RXM]    = 0x18,
  29	[VX_RXL]    = 0x1c,
  30	[VX_DMA]    = 0x10,
  31	[VX_CDSP]   = 0x20,
  32	[VX_CFG]    = 0x24,
  33	[VX_RUER]   = 0x28,
  34	[VX_DATA]   = 0x2c,
  35	[VX_STATUS] = 0x30,
  36	[VX_LOFREQ] = 0x34,
  37	[VX_HIFREQ] = 0x38,
  38	[VX_CSUER]  = 0x3c,
  39	[VX_SELMIC] = 0x40,
  40	[VX_COMPOT] = 0x44, // Write: POTENTIOMETER ; Read: COMPRESSION LEVEL activate
  41	[VX_SCOMPR] = 0x48, // Read: COMPRESSION THRESHOLD activate
  42	[VX_GLIMIT] = 0x4c, // Read: LEVEL LIMITATION activate
  43	[VX_INTCSR] = 0x4c, // VX_INTCSR_REGISTER_OFFSET
  44	[VX_CNTRL]  = 0x50,		// VX_CNTRL_REGISTER_OFFSET
  45	[VX_GPIOC]  = 0x54,		// VX_GPIOC (new with PLX9030)
  46};
  47
  48static int vx2_reg_index[VX_REG_MAX] = {
  49	[VX_ICR]	= 1,
  50	[VX_CVR]	= 1,
  51	[VX_ISR]	= 1,
  52	[VX_IVR]	= 1,
  53	[VX_RXH]	= 1,
  54	[VX_RXM]	= 1,
  55	[VX_RXL]	= 1,
  56	[VX_DMA]	= 1,
  57	[VX_CDSP]	= 1,
  58	[VX_CFG]	= 1,
  59	[VX_RUER]	= 1,
  60	[VX_DATA]	= 1,
  61	[VX_STATUS]	= 1,
  62	[VX_LOFREQ]	= 1,
  63	[VX_HIFREQ]	= 1,
  64	[VX_CSUER]	= 1,
  65	[VX_SELMIC]	= 1,
  66	[VX_COMPOT]	= 1,
  67	[VX_SCOMPR]	= 1,
  68	[VX_GLIMIT]	= 1,
  69	[VX_INTCSR]	= 0,	/* on the PLX */
  70	[VX_CNTRL]	= 0,	/* on the PLX */
  71	[VX_GPIOC]	= 0,	/* on the PLX */
  72};
  73
  74static inline unsigned long vx2_reg_addr(struct vx_core *_chip, int reg)
  75{
  76	struct snd_vx222 *chip = to_vx222(_chip);
  77	return chip->port[vx2_reg_index[reg]] + vx2_reg_offset[reg];
  78}
  79
  80/**
  81 * snd_vx_inb - read a byte from the register
  82 * @chip: VX core instance
  83 * @offset: register enum
  84 */
  85static unsigned char vx2_inb(struct vx_core *chip, int offset)
  86{
  87	return inb(vx2_reg_addr(chip, offset));
  88}
  89
  90/**
  91 * snd_vx_outb - write a byte on the register
  92 * @chip: VX core instance
  93 * @offset: the register offset
  94 * @val: the value to write
  95 */
  96static void vx2_outb(struct vx_core *chip, int offset, unsigned char val)
  97{
  98	outb(val, vx2_reg_addr(chip, offset));
  99	/*
 100	dev_dbg(chip->card->dev, "outb: %x -> %x\n", val, vx2_reg_addr(chip, offset));
 101	*/
 102}
 103
 104/**
 105 * snd_vx_inl - read a 32bit word from the register
 106 * @chip: VX core instance
 107 * @offset: register enum
 108 */
 109static unsigned int vx2_inl(struct vx_core *chip, int offset)
 110{
 111	return inl(vx2_reg_addr(chip, offset));
 112}
 113
 114/**
 115 * snd_vx_outl - write a 32bit word on the register
 116 * @chip: VX core instance
 117 * @offset: the register enum
 118 * @val: the value to write
 119 */
 120static void vx2_outl(struct vx_core *chip, int offset, unsigned int val)
 121{
 122	/*
 123	dev_dbg(chip->card->dev, "outl: %x -> %x\n", val, vx2_reg_addr(chip, offset));
 124	*/
 125	outl(val, vx2_reg_addr(chip, offset));
 126}
 127
 128/*
 129 * redefine macros to call directly
 130 */
 131#undef vx_inb
 132#define vx_inb(chip,reg)	vx2_inb((struct vx_core*)(chip), VX_##reg)
 133#undef vx_outb
 134#define vx_outb(chip,reg,val)	vx2_outb((struct vx_core*)(chip), VX_##reg, val)
 135#undef vx_inl
 136#define vx_inl(chip,reg)	vx2_inl((struct vx_core*)(chip), VX_##reg)
 137#undef vx_outl
 138#define vx_outl(chip,reg,val)	vx2_outl((struct vx_core*)(chip), VX_##reg, val)
 139
 140
 141/*
 142 * vx_reset_dsp - reset the DSP
 143 */
 144
 145#define XX_DSP_RESET_WAIT_TIME		2	/* ms */
 146
 147static void vx2_reset_dsp(struct vx_core *_chip)
 148{
 149	struct snd_vx222 *chip = to_vx222(_chip);
 150
 151	/* set the reset dsp bit to 0 */
 152	vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_DSP_RESET_MASK);
 153
 154	mdelay(XX_DSP_RESET_WAIT_TIME);
 155
 156	chip->regCDSP |= VX_CDSP_DSP_RESET_MASK;
 157	/* set the reset dsp bit to 1 */
 158	vx_outl(chip, CDSP, chip->regCDSP);
 159}
 160
 161
 162static int vx2_test_xilinx(struct vx_core *_chip)
 163{
 164	struct snd_vx222 *chip = to_vx222(_chip);
 165	unsigned int data;
 166
 167	dev_dbg(_chip->card->dev, "testing xilinx...\n");
 168	/* This test uses several write/read sequences on TEST0 and TEST1 bits
 169	 * to figure out whever or not the xilinx was correctly loaded
 170	 */
 171
 172	/* We write 1 on CDSP.TEST0. We should get 0 on STATUS.TEST0. */
 173	vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST0_MASK);
 174	vx_inl(chip, ISR);
 175	data = vx_inl(chip, STATUS);
 176	if ((data & VX_STATUS_VAL_TEST0_MASK) == VX_STATUS_VAL_TEST0_MASK) {
 177		dev_dbg(_chip->card->dev, "bad!\n");
 178		return -ENODEV;
 179	}
 180
 181	/* We write 0 on CDSP.TEST0. We should get 1 on STATUS.TEST0. */
 182	vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST0_MASK);
 183	vx_inl(chip, ISR);
 184	data = vx_inl(chip, STATUS);
 185	if (! (data & VX_STATUS_VAL_TEST0_MASK)) {
 186		dev_dbg(_chip->card->dev, "bad! #2\n");
 187		return -ENODEV;
 188	}
 189
 190	if (_chip->type == VX_TYPE_BOARD) {
 191		/* not implemented on VX_2_BOARDS */
 192		/* We write 1 on CDSP.TEST1. We should get 0 on STATUS.TEST1. */
 193		vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST1_MASK);
 194		vx_inl(chip, ISR);
 195		data = vx_inl(chip, STATUS);
 196		if ((data & VX_STATUS_VAL_TEST1_MASK) == VX_STATUS_VAL_TEST1_MASK) {
 197			dev_dbg(_chip->card->dev, "bad! #3\n");
 198			return -ENODEV;
 199		}
 200
 201		/* We write 0 on CDSP.TEST1. We should get 1 on STATUS.TEST1. */
 202		vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST1_MASK);
 203		vx_inl(chip, ISR);
 204		data = vx_inl(chip, STATUS);
 205		if (! (data & VX_STATUS_VAL_TEST1_MASK)) {
 206			dev_dbg(_chip->card->dev, "bad! #4\n");
 207			return -ENODEV;
 208		}
 209	}
 210	dev_dbg(_chip->card->dev, "ok, xilinx fine.\n");
 211	return 0;
 212}
 213
 214
 215/**
 216 * vx_setup_pseudo_dma - set up the pseudo dma read/write mode.
 217 * @chip: VX core instance
 218 * @do_write: 0 = read, 1 = set up for DMA write
 219 */
 220static void vx2_setup_pseudo_dma(struct vx_core *chip, int do_write)
 221{
 222	/* Interrupt mode and HREQ pin enabled for host transmit data transfers
 223	 * (in case of the use of the pseudo-dma facility).
 224	 */
 225	vx_outl(chip, ICR, do_write ? ICR_TREQ : ICR_RREQ);
 226
 227	/* Reset the pseudo-dma register (in case of the use of the
 228	 * pseudo-dma facility).
 229	 */
 230	vx_outl(chip, RESET_DMA, 0);
 231}
 232
 233/*
 234 * vx_release_pseudo_dma - disable the pseudo-DMA mode
 235 */
 236static inline void vx2_release_pseudo_dma(struct vx_core *chip)
 237{
 238	/* HREQ pin disabled. */
 239	vx_outl(chip, ICR, 0);
 240}
 241
 242
 243
 244/* pseudo-dma write */
 245static void vx2_dma_write(struct vx_core *chip, struct snd_pcm_runtime *runtime,
 246			  struct vx_pipe *pipe, int count)
 247{
 248	unsigned long port = vx2_reg_addr(chip, VX_DMA);
 249	int offset = pipe->hw_ptr;
 250	u32 *addr = (u32 *)(runtime->dma_area + offset);
 251
 252	if (snd_BUG_ON(count % 4))
 253		return;
 254
 255	vx2_setup_pseudo_dma(chip, 1);
 256
 257	/* Transfer using pseudo-dma.
 258	 */
 259	if (offset + count >= pipe->buffer_bytes) {
 260		int length = pipe->buffer_bytes - offset;
 261		count -= length;
 262		length >>= 2; /* in 32bit words */
 263		/* Transfer using pseudo-dma. */
 264		for (; length > 0; length--) {
 265			outl(*addr, port);
 266			addr++;
 267		}
 268		addr = (u32 *)runtime->dma_area;
 269		pipe->hw_ptr = 0;
 270	}
 271	pipe->hw_ptr += count;
 272	count >>= 2; /* in 32bit words */
 273	/* Transfer using pseudo-dma. */
 274	for (; count > 0; count--) {
 275		outl(*addr, port);
 276		addr++;
 277	}
 278
 279	vx2_release_pseudo_dma(chip);
 280}
 281
 282
 283/* pseudo dma read */
 284static void vx2_dma_read(struct vx_core *chip, struct snd_pcm_runtime *runtime,
 285			 struct vx_pipe *pipe, int count)
 286{
 287	int offset = pipe->hw_ptr;
 288	u32 *addr = (u32 *)(runtime->dma_area + offset);
 289	unsigned long port = vx2_reg_addr(chip, VX_DMA);
 290
 291	if (snd_BUG_ON(count % 4))
 292		return;
 293
 294	vx2_setup_pseudo_dma(chip, 0);
 295	/* Transfer using pseudo-dma.
 296	 */
 297	if (offset + count >= pipe->buffer_bytes) {
 298		int length = pipe->buffer_bytes - offset;
 299		count -= length;
 300		length >>= 2; /* in 32bit words */
 301		/* Transfer using pseudo-dma. */
 302		for (; length > 0; length--)
 303			*addr++ = inl(port);
 304		addr = (u32 *)runtime->dma_area;
 305		pipe->hw_ptr = 0;
 306	}
 307	pipe->hw_ptr += count;
 308	count >>= 2; /* in 32bit words */
 309	/* Transfer using pseudo-dma. */
 310	for (; count > 0; count--)
 311		*addr++ = inl(port);
 312
 313	vx2_release_pseudo_dma(chip);
 314}
 315
 316#define VX_XILINX_RESET_MASK        0x40000000
 317#define VX_USERBIT0_MASK            0x00000004
 318#define VX_USERBIT1_MASK            0x00000020
 319#define VX_CNTRL_REGISTER_VALUE     0x00172012
 320
 321/*
 322 * transfer counts bits to PLX
 323 */
 324static int put_xilinx_data(struct vx_core *chip, unsigned int port, unsigned int counts, unsigned char data)
 325{
 326	unsigned int i;
 327
 328	for (i = 0; i < counts; i++) {
 329		unsigned int val;
 330
 331		/* set the clock bit to 0. */
 332		val = VX_CNTRL_REGISTER_VALUE & ~VX_USERBIT0_MASK;
 333		vx2_outl(chip, port, val);
 334		vx2_inl(chip, port);
 335		udelay(1);
 336
 337		if (data & (1 << i))
 338			val |= VX_USERBIT1_MASK;
 339		else
 340			val &= ~VX_USERBIT1_MASK;
 341		vx2_outl(chip, port, val);
 342		vx2_inl(chip, port);
 343
 344		/* set the clock bit to 1. */
 345		val |= VX_USERBIT0_MASK;
 346		vx2_outl(chip, port, val);
 347		vx2_inl(chip, port);
 348		udelay(1);
 349	}
 350	return 0;
 351}
 352
 353/*
 354 * load the xilinx image
 355 */
 356static int vx2_load_xilinx_binary(struct vx_core *chip, const struct firmware *xilinx)
 357{
 358	unsigned int i;
 359	unsigned int port;
 360	const unsigned char *image;
 361
 362	/* XILINX reset (wait at least 1 millisecond between reset on and off). */
 363	vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE | VX_XILINX_RESET_MASK);
 364	vx_inl(chip, CNTRL);
 365	msleep(10);
 366	vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE);
 367	vx_inl(chip, CNTRL);
 368	msleep(10);
 369
 370	if (chip->type == VX_TYPE_BOARD)
 371		port = VX_CNTRL;
 372	else
 373		port = VX_GPIOC; /* VX222 V2 and VX222_MIC_BOARD with new PLX9030 use this register */
 374
 375	image = xilinx->data;
 376	for (i = 0; i < xilinx->size; i++, image++) {
 377		if (put_xilinx_data(chip, port, 8, *image) < 0)
 378			return -EINVAL;
 379		/* don't take too much time in this loop... */
 380		cond_resched();
 381	}
 382	put_xilinx_data(chip, port, 4, 0xff); /* end signature */
 383
 384	msleep(200);
 385
 386	/* test after loading (is buggy with VX222) */
 387	if (chip->type != VX_TYPE_BOARD) {
 388		/* Test if load successful: test bit 8 of register GPIOC (VX222: use CNTRL) ! */
 389		i = vx_inl(chip, GPIOC);
 390		if (i & 0x0100)
 391			return 0;
 392		dev_err(chip->card->dev,
 393			"xilinx test failed after load, GPIOC=0x%x\n", i);
 394		return -EINVAL;
 395	}
 396
 397	return 0;
 398}
 399
 400	
 401/*
 402 * load the boot/dsp images
 403 */
 404static int vx2_load_dsp(struct vx_core *vx, int index, const struct firmware *dsp)
 405{
 406	int err;
 407
 408	switch (index) {
 409	case 1:
 410		/* xilinx image */
 411		if ((err = vx2_load_xilinx_binary(vx, dsp)) < 0)
 412			return err;
 413		if ((err = vx2_test_xilinx(vx)) < 0)
 414			return err;
 415		return 0;
 416	case 2:
 417		/* DSP boot */
 418		return snd_vx_dsp_boot(vx, dsp);
 419	case 3:
 420		/* DSP image */
 421		return snd_vx_dsp_load(vx, dsp);
 422	default:
 423		snd_BUG();
 424		return -EINVAL;
 425	}
 426}
 427
 428
 429/*
 430 * vx_test_and_ack - test and acknowledge interrupt
 431 *
 432 * called from irq hander, too
 433 *
 434 * spinlock held!
 435 */
 436static int vx2_test_and_ack(struct vx_core *chip)
 437{
 438	/* not booted yet? */
 439	if (! (chip->chip_status & VX_STAT_XILINX_LOADED))
 440		return -ENXIO;
 441
 442	if (! (vx_inl(chip, STATUS) & VX_STATUS_MEMIRQ_MASK))
 443		return -EIO;
 444	
 445	/* ok, interrupts generated, now ack it */
 446	/* set ACQUIT bit up and down */
 447	vx_outl(chip, STATUS, 0);
 448	/* useless read just to spend some time and maintain
 449	 * the ACQUIT signal up for a while ( a bus cycle )
 450	 */
 451	vx_inl(chip, STATUS);
 452	/* ack */
 453	vx_outl(chip, STATUS, VX_STATUS_MEMIRQ_MASK);
 454	/* useless read just to spend some time and maintain
 455	 * the ACQUIT signal up for a while ( a bus cycle ) */
 456	vx_inl(chip, STATUS);
 457	/* clear */
 458	vx_outl(chip, STATUS, 0);
 459
 460	return 0;
 461}
 462
 463
 464/*
 465 * vx_validate_irq - enable/disable IRQ
 466 */
 467static void vx2_validate_irq(struct vx_core *_chip, int enable)
 468{
 469	struct snd_vx222 *chip = to_vx222(_chip);
 470
 471	/* Set the interrupt enable bit to 1 in CDSP register */
 472	if (enable) {
 473		/* Set the PCI interrupt enable bit to 1.*/
 474		vx_outl(chip, INTCSR, VX_INTCSR_VALUE|VX_PCI_INTERRUPT_MASK);
 475		chip->regCDSP |= VX_CDSP_VALID_IRQ_MASK;
 476	} else {
 477		/* Set the PCI interrupt enable bit to 0. */
 478		vx_outl(chip, INTCSR, VX_INTCSR_VALUE&~VX_PCI_INTERRUPT_MASK);
 479		chip->regCDSP &= ~VX_CDSP_VALID_IRQ_MASK;
 480	}
 481	vx_outl(chip, CDSP, chip->regCDSP);
 482}
 483
 484
 485/*
 486 * write an AKM codec data (24bit)
 487 */
 488static void vx2_write_codec_reg(struct vx_core *chip, unsigned int data)
 489{
 490	unsigned int i;
 491
 492	vx_inl(chip, HIFREQ);
 493
 494	/* We have to send 24 bits (3 x 8 bits). Start with most signif. Bit */
 495	for (i = 0; i < 24; i++, data <<= 1)
 496		vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
 497	/* Terminate access to codec registers */
 498	vx_inl(chip, RUER);
 499}
 500
 501
 502#define AKM_CODEC_POWER_CONTROL_CMD 0xA007
 503#define AKM_CODEC_RESET_ON_CMD      0xA100
 504#define AKM_CODEC_RESET_OFF_CMD     0xA103
 505#define AKM_CODEC_CLOCK_FORMAT_CMD  0xA240
 506#define AKM_CODEC_MUTE_CMD          0xA38D
 507#define AKM_CODEC_UNMUTE_CMD        0xA30D
 508#define AKM_CODEC_LEFT_LEVEL_CMD    0xA400
 509#define AKM_CODEC_RIGHT_LEVEL_CMD   0xA500
 510
 511static const u8 vx2_akm_gains_lut[VX2_AKM_LEVEL_MAX+1] = {
 512    0x7f,       // [000] =  +0.000 dB  ->  AKM(0x7f) =  +0.000 dB  error(+0.000 dB)
 513    0x7d,       // [001] =  -0.500 dB  ->  AKM(0x7d) =  -0.572 dB  error(-0.072 dB)
 514    0x7c,       // [002] =  -1.000 dB  ->  AKM(0x7c) =  -0.873 dB  error(+0.127 dB)
 515    0x7a,       // [003] =  -1.500 dB  ->  AKM(0x7a) =  -1.508 dB  error(-0.008 dB)
 516    0x79,       // [004] =  -2.000 dB  ->  AKM(0x79) =  -1.844 dB  error(+0.156 dB)
 517    0x77,       // [005] =  -2.500 dB  ->  AKM(0x77) =  -2.557 dB  error(-0.057 dB)
 518    0x76,       // [006] =  -3.000 dB  ->  AKM(0x76) =  -2.937 dB  error(+0.063 dB)
 519    0x75,       // [007] =  -3.500 dB  ->  AKM(0x75) =  -3.334 dB  error(+0.166 dB)
 520    0x73,       // [008] =  -4.000 dB  ->  AKM(0x73) =  -4.188 dB  error(-0.188 dB)
 521    0x72,       // [009] =  -4.500 dB  ->  AKM(0x72) =  -4.648 dB  error(-0.148 dB)
 522    0x71,       // [010] =  -5.000 dB  ->  AKM(0x71) =  -5.134 dB  error(-0.134 dB)
 523    0x70,       // [011] =  -5.500 dB  ->  AKM(0x70) =  -5.649 dB  error(-0.149 dB)
 524    0x6f,       // [012] =  -6.000 dB  ->  AKM(0x6f) =  -6.056 dB  error(-0.056 dB)
 525    0x6d,       // [013] =  -6.500 dB  ->  AKM(0x6d) =  -6.631 dB  error(-0.131 dB)
 526    0x6c,       // [014] =  -7.000 dB  ->  AKM(0x6c) =  -6.933 dB  error(+0.067 dB)
 527    0x6a,       // [015] =  -7.500 dB  ->  AKM(0x6a) =  -7.571 dB  error(-0.071 dB)
 528    0x69,       // [016] =  -8.000 dB  ->  AKM(0x69) =  -7.909 dB  error(+0.091 dB)
 529    0x67,       // [017] =  -8.500 dB  ->  AKM(0x67) =  -8.626 dB  error(-0.126 dB)
 530    0x66,       // [018] =  -9.000 dB  ->  AKM(0x66) =  -9.008 dB  error(-0.008 dB)
 531    0x65,       // [019] =  -9.500 dB  ->  AKM(0x65) =  -9.407 dB  error(+0.093 dB)
 532    0x64,       // [020] = -10.000 dB  ->  AKM(0x64) =  -9.826 dB  error(+0.174 dB)
 533    0x62,       // [021] = -10.500 dB  ->  AKM(0x62) = -10.730 dB  error(-0.230 dB)
 534    0x61,       // [022] = -11.000 dB  ->  AKM(0x61) = -11.219 dB  error(-0.219 dB)
 535    0x60,       // [023] = -11.500 dB  ->  AKM(0x60) = -11.738 dB  error(-0.238 dB)
 536    0x5f,       // [024] = -12.000 dB  ->  AKM(0x5f) = -12.149 dB  error(-0.149 dB)
 537    0x5e,       // [025] = -12.500 dB  ->  AKM(0x5e) = -12.434 dB  error(+0.066 dB)
 538    0x5c,       // [026] = -13.000 dB  ->  AKM(0x5c) = -13.033 dB  error(-0.033 dB)
 539    0x5b,       // [027] = -13.500 dB  ->  AKM(0x5b) = -13.350 dB  error(+0.150 dB)
 540    0x59,       // [028] = -14.000 dB  ->  AKM(0x59) = -14.018 dB  error(-0.018 dB)
 541    0x58,       // [029] = -14.500 dB  ->  AKM(0x58) = -14.373 dB  error(+0.127 dB)
 542    0x56,       // [030] = -15.000 dB  ->  AKM(0x56) = -15.130 dB  error(-0.130 dB)
 543    0x55,       // [031] = -15.500 dB  ->  AKM(0x55) = -15.534 dB  error(-0.034 dB)
 544    0x54,       // [032] = -16.000 dB  ->  AKM(0x54) = -15.958 dB  error(+0.042 dB)
 545    0x53,       // [033] = -16.500 dB  ->  AKM(0x53) = -16.404 dB  error(+0.096 dB)
 546    0x52,       // [034] = -17.000 dB  ->  AKM(0x52) = -16.874 dB  error(+0.126 dB)
 547    0x51,       // [035] = -17.500 dB  ->  AKM(0x51) = -17.371 dB  error(+0.129 dB)
 548    0x50,       // [036] = -18.000 dB  ->  AKM(0x50) = -17.898 dB  error(+0.102 dB)
 549    0x4e,       // [037] = -18.500 dB  ->  AKM(0x4e) = -18.605 dB  error(-0.105 dB)
 550    0x4d,       // [038] = -19.000 dB  ->  AKM(0x4d) = -18.905 dB  error(+0.095 dB)
 551    0x4b,       // [039] = -19.500 dB  ->  AKM(0x4b) = -19.538 dB  error(-0.038 dB)
 552    0x4a,       // [040] = -20.000 dB  ->  AKM(0x4a) = -19.872 dB  error(+0.128 dB)
 553    0x48,       // [041] = -20.500 dB  ->  AKM(0x48) = -20.583 dB  error(-0.083 dB)
 554    0x47,       // [042] = -21.000 dB  ->  AKM(0x47) = -20.961 dB  error(+0.039 dB)
 555    0x46,       // [043] = -21.500 dB  ->  AKM(0x46) = -21.356 dB  error(+0.144 dB)
 556    0x44,       // [044] = -22.000 dB  ->  AKM(0x44) = -22.206 dB  error(-0.206 dB)
 557    0x43,       // [045] = -22.500 dB  ->  AKM(0x43) = -22.664 dB  error(-0.164 dB)
 558    0x42,       // [046] = -23.000 dB  ->  AKM(0x42) = -23.147 dB  error(-0.147 dB)
 559    0x41,       // [047] = -23.500 dB  ->  AKM(0x41) = -23.659 dB  error(-0.159 dB)
 560    0x40,       // [048] = -24.000 dB  ->  AKM(0x40) = -24.203 dB  error(-0.203 dB)
 561    0x3f,       // [049] = -24.500 dB  ->  AKM(0x3f) = -24.635 dB  error(-0.135 dB)
 562    0x3e,       // [050] = -25.000 dB  ->  AKM(0x3e) = -24.935 dB  error(+0.065 dB)
 563    0x3c,       // [051] = -25.500 dB  ->  AKM(0x3c) = -25.569 dB  error(-0.069 dB)
 564    0x3b,       // [052] = -26.000 dB  ->  AKM(0x3b) = -25.904 dB  error(+0.096 dB)
 565    0x39,       // [053] = -26.500 dB  ->  AKM(0x39) = -26.615 dB  error(-0.115 dB)
 566    0x38,       // [054] = -27.000 dB  ->  AKM(0x38) = -26.994 dB  error(+0.006 dB)
 567    0x37,       // [055] = -27.500 dB  ->  AKM(0x37) = -27.390 dB  error(+0.110 dB)
 568    0x36,       // [056] = -28.000 dB  ->  AKM(0x36) = -27.804 dB  error(+0.196 dB)
 569    0x34,       // [057] = -28.500 dB  ->  AKM(0x34) = -28.699 dB  error(-0.199 dB)
 570    0x33,       // [058] = -29.000 dB  ->  AKM(0x33) = -29.183 dB  error(-0.183 dB)
 571    0x32,       // [059] = -29.500 dB  ->  AKM(0x32) = -29.696 dB  error(-0.196 dB)
 572    0x31,       // [060] = -30.000 dB  ->  AKM(0x31) = -30.241 dB  error(-0.241 dB)
 573    0x31,       // [061] = -30.500 dB  ->  AKM(0x31) = -30.241 dB  error(+0.259 dB)
 574    0x30,       // [062] = -31.000 dB  ->  AKM(0x30) = -30.823 dB  error(+0.177 dB)
 575    0x2e,       // [063] = -31.500 dB  ->  AKM(0x2e) = -31.610 dB  error(-0.110 dB)
 576    0x2d,       // [064] = -32.000 dB  ->  AKM(0x2d) = -31.945 dB  error(+0.055 dB)
 577    0x2b,       // [065] = -32.500 dB  ->  AKM(0x2b) = -32.659 dB  error(-0.159 dB)
 578    0x2a,       // [066] = -33.000 dB  ->  AKM(0x2a) = -33.038 dB  error(-0.038 dB)
 579    0x29,       // [067] = -33.500 dB  ->  AKM(0x29) = -33.435 dB  error(+0.065 dB)
 580    0x28,       // [068] = -34.000 dB  ->  AKM(0x28) = -33.852 dB  error(+0.148 dB)
 581    0x27,       // [069] = -34.500 dB  ->  AKM(0x27) = -34.289 dB  error(+0.211 dB)
 582    0x25,       // [070] = -35.000 dB  ->  AKM(0x25) = -35.235 dB  error(-0.235 dB)
 583    0x24,       // [071] = -35.500 dB  ->  AKM(0x24) = -35.750 dB  error(-0.250 dB)
 584    0x24,       // [072] = -36.000 dB  ->  AKM(0x24) = -35.750 dB  error(+0.250 dB)
 585    0x23,       // [073] = -36.500 dB  ->  AKM(0x23) = -36.297 dB  error(+0.203 dB)
 586    0x22,       // [074] = -37.000 dB  ->  AKM(0x22) = -36.881 dB  error(+0.119 dB)
 587    0x21,       // [075] = -37.500 dB  ->  AKM(0x21) = -37.508 dB  error(-0.008 dB)
 588    0x20,       // [076] = -38.000 dB  ->  AKM(0x20) = -38.183 dB  error(-0.183 dB)
 589    0x1f,       // [077] = -38.500 dB  ->  AKM(0x1f) = -38.726 dB  error(-0.226 dB)
 590    0x1e,       // [078] = -39.000 dB  ->  AKM(0x1e) = -39.108 dB  error(-0.108 dB)
 591    0x1d,       // [079] = -39.500 dB  ->  AKM(0x1d) = -39.507 dB  error(-0.007 dB)
 592    0x1c,       // [080] = -40.000 dB  ->  AKM(0x1c) = -39.926 dB  error(+0.074 dB)
 593    0x1b,       // [081] = -40.500 dB  ->  AKM(0x1b) = -40.366 dB  error(+0.134 dB)
 594    0x1a,       // [082] = -41.000 dB  ->  AKM(0x1a) = -40.829 dB  error(+0.171 dB)
 595    0x19,       // [083] = -41.500 dB  ->  AKM(0x19) = -41.318 dB  error(+0.182 dB)
 596    0x18,       // [084] = -42.000 dB  ->  AKM(0x18) = -41.837 dB  error(+0.163 dB)
 597    0x17,       // [085] = -42.500 dB  ->  AKM(0x17) = -42.389 dB  error(+0.111 dB)
 598    0x16,       // [086] = -43.000 dB  ->  AKM(0x16) = -42.978 dB  error(+0.022 dB)
 599    0x15,       // [087] = -43.500 dB  ->  AKM(0x15) = -43.610 dB  error(-0.110 dB)
 600    0x14,       // [088] = -44.000 dB  ->  AKM(0x14) = -44.291 dB  error(-0.291 dB)
 601    0x14,       // [089] = -44.500 dB  ->  AKM(0x14) = -44.291 dB  error(+0.209 dB)
 602    0x13,       // [090] = -45.000 dB  ->  AKM(0x13) = -45.031 dB  error(-0.031 dB)
 603    0x12,       // [091] = -45.500 dB  ->  AKM(0x12) = -45.840 dB  error(-0.340 dB)
 604    0x12,       // [092] = -46.000 dB  ->  AKM(0x12) = -45.840 dB  error(+0.160 dB)
 605    0x11,       // [093] = -46.500 dB  ->  AKM(0x11) = -46.731 dB  error(-0.231 dB)
 606    0x11,       // [094] = -47.000 dB  ->  AKM(0x11) = -46.731 dB  error(+0.269 dB)
 607    0x10,       // [095] = -47.500 dB  ->  AKM(0x10) = -47.725 dB  error(-0.225 dB)
 608    0x10,       // [096] = -48.000 dB  ->  AKM(0x10) = -47.725 dB  error(+0.275 dB)
 609    0x0f,       // [097] = -48.500 dB  ->  AKM(0x0f) = -48.553 dB  error(-0.053 dB)
 610    0x0e,       // [098] = -49.000 dB  ->  AKM(0x0e) = -49.152 dB  error(-0.152 dB)
 611    0x0d,       // [099] = -49.500 dB  ->  AKM(0x0d) = -49.796 dB  error(-0.296 dB)
 612    0x0d,       // [100] = -50.000 dB  ->  AKM(0x0d) = -49.796 dB  error(+0.204 dB)
 613    0x0c,       // [101] = -50.500 dB  ->  AKM(0x0c) = -50.491 dB  error(+0.009 dB)
 614    0x0b,       // [102] = -51.000 dB  ->  AKM(0x0b) = -51.247 dB  error(-0.247 dB)
 615    0x0b,       // [103] = -51.500 dB  ->  AKM(0x0b) = -51.247 dB  error(+0.253 dB)
 616    0x0a,       // [104] = -52.000 dB  ->  AKM(0x0a) = -52.075 dB  error(-0.075 dB)
 617    0x0a,       // [105] = -52.500 dB  ->  AKM(0x0a) = -52.075 dB  error(+0.425 dB)
 618    0x09,       // [106] = -53.000 dB  ->  AKM(0x09) = -52.990 dB  error(+0.010 dB)
 619    0x09,       // [107] = -53.500 dB  ->  AKM(0x09) = -52.990 dB  error(+0.510 dB)
 620    0x08,       // [108] = -54.000 dB  ->  AKM(0x08) = -54.013 dB  error(-0.013 dB)
 621    0x08,       // [109] = -54.500 dB  ->  AKM(0x08) = -54.013 dB  error(+0.487 dB)
 622    0x07,       // [110] = -55.000 dB  ->  AKM(0x07) = -55.173 dB  error(-0.173 dB)
 623    0x07,       // [111] = -55.500 dB  ->  AKM(0x07) = -55.173 dB  error(+0.327 dB)
 624    0x06,       // [112] = -56.000 dB  ->  AKM(0x06) = -56.512 dB  error(-0.512 dB)
 625    0x06,       // [113] = -56.500 dB  ->  AKM(0x06) = -56.512 dB  error(-0.012 dB)
 626    0x06,       // [114] = -57.000 dB  ->  AKM(0x06) = -56.512 dB  error(+0.488 dB)
 627    0x05,       // [115] = -57.500 dB  ->  AKM(0x05) = -58.095 dB  error(-0.595 dB)
 628    0x05,       // [116] = -58.000 dB  ->  AKM(0x05) = -58.095 dB  error(-0.095 dB)
 629    0x05,       // [117] = -58.500 dB  ->  AKM(0x05) = -58.095 dB  error(+0.405 dB)
 630    0x05,       // [118] = -59.000 dB  ->  AKM(0x05) = -58.095 dB  error(+0.905 dB)
 631    0x04,       // [119] = -59.500 dB  ->  AKM(0x04) = -60.034 dB  error(-0.534 dB)
 632    0x04,       // [120] = -60.000 dB  ->  AKM(0x04) = -60.034 dB  error(-0.034 dB)
 633    0x04,       // [121] = -60.500 dB  ->  AKM(0x04) = -60.034 dB  error(+0.466 dB)
 634    0x04,       // [122] = -61.000 dB  ->  AKM(0x04) = -60.034 dB  error(+0.966 dB)
 635    0x03,       // [123] = -61.500 dB  ->  AKM(0x03) = -62.532 dB  error(-1.032 dB)
 636    0x03,       // [124] = -62.000 dB  ->  AKM(0x03) = -62.532 dB  error(-0.532 dB)
 637    0x03,       // [125] = -62.500 dB  ->  AKM(0x03) = -62.532 dB  error(-0.032 dB)
 638    0x03,       // [126] = -63.000 dB  ->  AKM(0x03) = -62.532 dB  error(+0.468 dB)
 639    0x03,       // [127] = -63.500 dB  ->  AKM(0x03) = -62.532 dB  error(+0.968 dB)
 640    0x03,       // [128] = -64.000 dB  ->  AKM(0x03) = -62.532 dB  error(+1.468 dB)
 641    0x02,       // [129] = -64.500 dB  ->  AKM(0x02) = -66.054 dB  error(-1.554 dB)
 642    0x02,       // [130] = -65.000 dB  ->  AKM(0x02) = -66.054 dB  error(-1.054 dB)
 643    0x02,       // [131] = -65.500 dB  ->  AKM(0x02) = -66.054 dB  error(-0.554 dB)
 644    0x02,       // [132] = -66.000 dB  ->  AKM(0x02) = -66.054 dB  error(-0.054 dB)
 645    0x02,       // [133] = -66.500 dB  ->  AKM(0x02) = -66.054 dB  error(+0.446 dB)
 646    0x02,       // [134] = -67.000 dB  ->  AKM(0x02) = -66.054 dB  error(+0.946 dB)
 647    0x02,       // [135] = -67.500 dB  ->  AKM(0x02) = -66.054 dB  error(+1.446 dB)
 648    0x02,       // [136] = -68.000 dB  ->  AKM(0x02) = -66.054 dB  error(+1.946 dB)
 649    0x02,       // [137] = -68.500 dB  ->  AKM(0x02) = -66.054 dB  error(+2.446 dB)
 650    0x02,       // [138] = -69.000 dB  ->  AKM(0x02) = -66.054 dB  error(+2.946 dB)
 651    0x01,       // [139] = -69.500 dB  ->  AKM(0x01) = -72.075 dB  error(-2.575 dB)
 652    0x01,       // [140] = -70.000 dB  ->  AKM(0x01) = -72.075 dB  error(-2.075 dB)
 653    0x01,       // [141] = -70.500 dB  ->  AKM(0x01) = -72.075 dB  error(-1.575 dB)
 654    0x01,       // [142] = -71.000 dB  ->  AKM(0x01) = -72.075 dB  error(-1.075 dB)
 655    0x01,       // [143] = -71.500 dB  ->  AKM(0x01) = -72.075 dB  error(-0.575 dB)
 656    0x01,       // [144] = -72.000 dB  ->  AKM(0x01) = -72.075 dB  error(-0.075 dB)
 657    0x01,       // [145] = -72.500 dB  ->  AKM(0x01) = -72.075 dB  error(+0.425 dB)
 658    0x01,       // [146] = -73.000 dB  ->  AKM(0x01) = -72.075 dB  error(+0.925 dB)
 659    0x00};      // [147] = -73.500 dB  ->  AKM(0x00) =  mute       error(+infini)
 660
 661/*
 662 * pseudo-codec write entry
 663 */
 664static void vx2_write_akm(struct vx_core *chip, int reg, unsigned int data)
 665{
 666	unsigned int val;
 667
 668	if (reg == XX_CODEC_DAC_CONTROL_REGISTER) {
 669		vx2_write_codec_reg(chip, data ? AKM_CODEC_MUTE_CMD : AKM_CODEC_UNMUTE_CMD);
 670		return;
 671	}
 672
 673	/* `data' is a value between 0x0 and VX2_AKM_LEVEL_MAX = 0x093, in the case of the AKM codecs, we need
 674	   a look up table, as there is no linear matching between the driver codec values
 675	   and the real dBu value
 676	*/
 677	if (snd_BUG_ON(data >= sizeof(vx2_akm_gains_lut)))
 678		return;
 679
 680	switch (reg) {
 681	case XX_CODEC_LEVEL_LEFT_REGISTER:
 682		val = AKM_CODEC_LEFT_LEVEL_CMD;
 683		break;
 684	case XX_CODEC_LEVEL_RIGHT_REGISTER:
 685		val = AKM_CODEC_RIGHT_LEVEL_CMD;
 686		break;
 687	default:
 688		snd_BUG();
 689		return;
 690	}
 691	val |= vx2_akm_gains_lut[data];
 692
 693	vx2_write_codec_reg(chip, val);
 694}
 695
 696
 697/*
 698 * write codec bit for old VX222 board
 699 */
 700static void vx2_old_write_codec_bit(struct vx_core *chip, int codec, unsigned int data)
 701{
 702	int i;
 703
 704	/* activate access to codec registers */
 705	vx_inl(chip, HIFREQ);
 706
 707	for (i = 0; i < 24; i++, data <<= 1)
 708		vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
 709
 710	/* Terminate access to codec registers */
 711	vx_inl(chip, RUER);
 712}
 713
 714
 715/*
 716 * reset codec bit
 717 */
 718static void vx2_reset_codec(struct vx_core *_chip)
 719{
 720	struct snd_vx222 *chip = to_vx222(_chip);
 721
 722	/* Set the reset CODEC bit to 0. */
 723	vx_outl(chip, CDSP, chip->regCDSP &~ VX_CDSP_CODEC_RESET_MASK);
 724	vx_inl(chip, CDSP);
 725	msleep(10);
 726	/* Set the reset CODEC bit to 1. */
 727	chip->regCDSP |= VX_CDSP_CODEC_RESET_MASK;
 728	vx_outl(chip, CDSP, chip->regCDSP);
 729	vx_inl(chip, CDSP);
 730	if (_chip->type == VX_TYPE_BOARD) {
 731		msleep(1);
 732		return;
 733	}
 734
 735	msleep(5);  /* additionnel wait time for AKM's */
 736
 737	vx2_write_codec_reg(_chip, AKM_CODEC_POWER_CONTROL_CMD); /* DAC power up, ADC power up, Vref power down */
 738	
 739	vx2_write_codec_reg(_chip, AKM_CODEC_CLOCK_FORMAT_CMD); /* default */
 740	vx2_write_codec_reg(_chip, AKM_CODEC_MUTE_CMD); /* Mute = ON ,Deemphasis = OFF */
 741	vx2_write_codec_reg(_chip, AKM_CODEC_RESET_OFF_CMD); /* DAC and ADC normal operation */
 742
 743	if (_chip->type == VX_TYPE_MIC) {
 744		/* set up the micro input selector */
 745		chip->regSELMIC =  MICRO_SELECT_INPUT_NORM |
 746			MICRO_SELECT_PREAMPLI_G_0 |
 747			MICRO_SELECT_NOISE_T_52DB;
 748
 749		/* reset phantom power supply */
 750		chip->regSELMIC &= ~MICRO_SELECT_PHANTOM_ALIM;
 751
 752		vx_outl(_chip, SELMIC, chip->regSELMIC);
 753	}
 754}
 755
 756
 757/*
 758 * change the audio source
 759 */
 760static void vx2_change_audio_source(struct vx_core *_chip, int src)
 761{
 762	struct snd_vx222 *chip = to_vx222(_chip);
 763
 764	switch (src) {
 765	case VX_AUDIO_SRC_DIGITAL:
 766		chip->regCFG |= VX_CFG_DATAIN_SEL_MASK;
 767		break;
 768	default:
 769		chip->regCFG &= ~VX_CFG_DATAIN_SEL_MASK;
 770		break;
 771	}
 772	vx_outl(chip, CFG, chip->regCFG);
 773}
 774
 775
 776/*
 777 * set the clock source
 778 */
 779static void vx2_set_clock_source(struct vx_core *_chip, int source)
 780{
 781	struct snd_vx222 *chip = to_vx222(_chip);
 782
 783	if (source == INTERNAL_QUARTZ)
 784		chip->regCFG &= ~VX_CFG_CLOCKIN_SEL_MASK;
 785	else
 786		chip->regCFG |= VX_CFG_CLOCKIN_SEL_MASK;
 787	vx_outl(chip, CFG, chip->regCFG);
 788}
 789
 790/*
 791 * reset the board
 792 */
 793static void vx2_reset_board(struct vx_core *_chip, int cold_reset)
 794{
 795	struct snd_vx222 *chip = to_vx222(_chip);
 796
 797	/* initialize the register values */
 798	chip->regCDSP = VX_CDSP_CODEC_RESET_MASK | VX_CDSP_DSP_RESET_MASK ;
 799	chip->regCFG = 0;
 800}
 801
 802
 803
 804/*
 805 * input level controls for VX222 Mic
 806 */
 807
 808/* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318),
 809 * 318 = 210 + 36 + 36 + 36   (210 = +9dB variable) (3 * 36 = 3 steps of 18dB pre ampli)
 810 * as we will mute if less than -110dB, so let's simply use line input coded levels and add constant offset !
 811 */
 812#define V2_MICRO_LEVEL_RANGE        (318 - 255)
 813
 814static void vx2_set_input_level(struct snd_vx222 *chip)
 815{
 816	int i, miclevel, preamp;
 817	unsigned int data;
 818
 819	miclevel = chip->mic_level;
 820	miclevel += V2_MICRO_LEVEL_RANGE; /* add 318 - 0xff */
 821	preamp = 0;
 822        while (miclevel > 210) { /* limitation to +9dB of 3310 real gain */
 823		preamp++;	/* raise pre ampli + 18dB */
 824		miclevel -= (18 * 2);   /* lower level 18 dB (*2 because of 0.5 dB steps !) */
 825        }
 826	if (snd_BUG_ON(preamp >= 4))
 827		return;
 828
 829	/* set pre-amp level */
 830	chip->regSELMIC &= ~MICRO_SELECT_PREAMPLI_MASK;
 831	chip->regSELMIC |= (preamp << MICRO_SELECT_PREAMPLI_OFFSET) & MICRO_SELECT_PREAMPLI_MASK;
 832	vx_outl(chip, SELMIC, chip->regSELMIC);
 833
 834	data = (unsigned int)miclevel << 16 |
 835		(unsigned int)chip->input_level[1] << 8 |
 836		(unsigned int)chip->input_level[0];
 837	vx_inl(chip, DATA); /* Activate input level programming */
 838
 839	/* We have to send 32 bits (4 x 8 bits) */
 840	for (i = 0; i < 32; i++, data <<= 1)
 841		vx_outl(chip, DATA, ((data & 0x80000000) ? VX_DATA_CODEC_MASK : 0));
 842
 843	vx_inl(chip, RUER); /* Terminate input level programming */
 844}
 845
 846
 847#define MIC_LEVEL_MAX	0xff
 848
 849static const DECLARE_TLV_DB_SCALE(db_scale_mic, -6450, 50, 0);
 850
 851/*
 852 * controls API for input levels
 853 */
 854
 855/* input levels */
 856static int vx_input_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
 857{
 858	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 859	uinfo->count = 2;
 860	uinfo->value.integer.min = 0;
 861	uinfo->value.integer.max = MIC_LEVEL_MAX;
 862	return 0;
 863}
 864
 865static int vx_input_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
 866{
 867	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
 868	struct snd_vx222 *chip = to_vx222(_chip);
 869	mutex_lock(&_chip->mixer_mutex);
 870	ucontrol->value.integer.value[0] = chip->input_level[0];
 871	ucontrol->value.integer.value[1] = chip->input_level[1];
 872	mutex_unlock(&_chip->mixer_mutex);
 873	return 0;
 874}
 875
 876static int vx_input_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
 877{
 878	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
 879	struct snd_vx222 *chip = to_vx222(_chip);
 880	if (ucontrol->value.integer.value[0] < 0 ||
 881	    ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
 882		return -EINVAL;
 883	if (ucontrol->value.integer.value[1] < 0 ||
 884	    ucontrol->value.integer.value[1] > MIC_LEVEL_MAX)
 885		return -EINVAL;
 886	mutex_lock(&_chip->mixer_mutex);
 887	if (chip->input_level[0] != ucontrol->value.integer.value[0] ||
 888	    chip->input_level[1] != ucontrol->value.integer.value[1]) {
 889		chip->input_level[0] = ucontrol->value.integer.value[0];
 890		chip->input_level[1] = ucontrol->value.integer.value[1];
 891		vx2_set_input_level(chip);
 892		mutex_unlock(&_chip->mixer_mutex);
 893		return 1;
 894	}
 895	mutex_unlock(&_chip->mixer_mutex);
 896	return 0;
 897}
 898
 899/* mic level */
 900static int vx_mic_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
 901{
 902	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 903	uinfo->count = 1;
 904	uinfo->value.integer.min = 0;
 905	uinfo->value.integer.max = MIC_LEVEL_MAX;
 906	return 0;
 907}
 908
 909static int vx_mic_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
 910{
 911	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
 912	struct snd_vx222 *chip = to_vx222(_chip);
 913	ucontrol->value.integer.value[0] = chip->mic_level;
 914	return 0;
 915}
 916
 917static int vx_mic_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
 918{
 919	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
 920	struct snd_vx222 *chip = to_vx222(_chip);
 921	if (ucontrol->value.integer.value[0] < 0 ||
 922	    ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
 923		return -EINVAL;
 924	mutex_lock(&_chip->mixer_mutex);
 925	if (chip->mic_level != ucontrol->value.integer.value[0]) {
 926		chip->mic_level = ucontrol->value.integer.value[0];
 927		vx2_set_input_level(chip);
 928		mutex_unlock(&_chip->mixer_mutex);
 929		return 1;
 930	}
 931	mutex_unlock(&_chip->mixer_mutex);
 932	return 0;
 933}
 934
 935static const struct snd_kcontrol_new vx_control_input_level = {
 936	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
 937	.access =	(SNDRV_CTL_ELEM_ACCESS_READWRITE |
 938			 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
 939	.name =		"Capture Volume",
 940	.info =		vx_input_level_info,
 941	.get =		vx_input_level_get,
 942	.put =		vx_input_level_put,
 943	.tlv = { .p = db_scale_mic },
 944};
 945
 946static const struct snd_kcontrol_new vx_control_mic_level = {
 947	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
 948	.access =	(SNDRV_CTL_ELEM_ACCESS_READWRITE |
 949			 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
 950	.name =		"Mic Capture Volume",
 951	.info =		vx_mic_level_info,
 952	.get =		vx_mic_level_get,
 953	.put =		vx_mic_level_put,
 954	.tlv = { .p = db_scale_mic },
 955};
 956
 957/*
 958 * FIXME: compressor/limiter implementation is missing yet...
 959 */
 960
 961static int vx2_add_mic_controls(struct vx_core *_chip)
 962{
 963	struct snd_vx222 *chip = to_vx222(_chip);
 964	int err;
 965
 966	if (_chip->type != VX_TYPE_MIC)
 967		return 0;
 968
 969	/* mute input levels */
 970	chip->input_level[0] = chip->input_level[1] = 0;
 971	chip->mic_level = 0;
 972	vx2_set_input_level(chip);
 973
 974	/* controls */
 975	if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_input_level, chip))) < 0)
 976		return err;
 977	if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_mic_level, chip))) < 0)
 978		return err;
 979
 980	return 0;
 981}
 982
 983
 984/*
 985 * callbacks
 986 */
 987struct snd_vx_ops vx222_ops = {
 988	.in8 = vx2_inb,
 989	.in32 = vx2_inl,
 990	.out8 = vx2_outb,
 991	.out32 = vx2_outl,
 992	.test_and_ack = vx2_test_and_ack,
 993	.validate_irq = vx2_validate_irq,
 994	.akm_write = vx2_write_akm,
 995	.reset_codec = vx2_reset_codec,
 996	.change_audio_source = vx2_change_audio_source,
 997	.set_clock_source = vx2_set_clock_source,
 998	.load_dsp = vx2_load_dsp,
 999	.reset_dsp = vx2_reset_dsp,
1000	.reset_board = vx2_reset_board,
1001	.dma_write = vx2_dma_write,
1002	.dma_read = vx2_dma_read,
1003	.add_controls = vx2_add_mic_controls,
1004};
1005
1006/* for old VX222 board */
1007struct snd_vx_ops vx222_old_ops = {
1008	.in8 = vx2_inb,
1009	.in32 = vx2_inl,
1010	.out8 = vx2_outb,
1011	.out32 = vx2_outl,
1012	.test_and_ack = vx2_test_and_ack,
1013	.validate_irq = vx2_validate_irq,
1014	.write_codec = vx2_old_write_codec_bit,
1015	.reset_codec = vx2_reset_codec,
1016	.change_audio_source = vx2_change_audio_source,
1017	.set_clock_source = vx2_set_clock_source,
1018	.load_dsp = vx2_load_dsp,
1019	.reset_dsp = vx2_reset_dsp,
1020	.reset_board = vx2_reset_board,
1021	.dma_write = vx2_dma_write,
1022	.dma_read = vx2_dma_read,
1023};
1024
v3.15
 
   1/*
   2 * Driver for Digigram VX222 V2/Mic soundcards
   3 *
   4 * VX222-specific low-level routines
   5 *
   6 * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
   7 *
   8 *   This program is free software; you can redistribute it and/or modify
   9 *   it under the terms of the GNU General Public License as published by
  10 *   the Free Software Foundation; either version 2 of the License, or
  11 *   (at your option) any later version.
  12 *
  13 *   This program is distributed in the hope that it will be useful,
  14 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 *   GNU General Public License for more details.
  17 *
  18 *   You should have received a copy of the GNU General Public License
  19 *   along with this program; if not, write to the Free Software
  20 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  21 */
  22
  23#include <linux/delay.h>
  24#include <linux/device.h>
  25#include <linux/firmware.h>
  26#include <linux/mutex.h>
 
  27
  28#include <sound/core.h>
  29#include <sound/control.h>
  30#include <sound/tlv.h>
  31#include <asm/io.h>
  32#include "vx222.h"
  33
  34
  35static int vx2_reg_offset[VX_REG_MAX] = {
  36	[VX_ICR]    = 0x00,
  37	[VX_CVR]    = 0x04,
  38	[VX_ISR]    = 0x08,
  39	[VX_IVR]    = 0x0c,
  40	[VX_RXH]    = 0x14,
  41	[VX_RXM]    = 0x18,
  42	[VX_RXL]    = 0x1c,
  43	[VX_DMA]    = 0x10,
  44	[VX_CDSP]   = 0x20,
  45	[VX_CFG]    = 0x24,
  46	[VX_RUER]   = 0x28,
  47	[VX_DATA]   = 0x2c,
  48	[VX_STATUS] = 0x30,
  49	[VX_LOFREQ] = 0x34,
  50	[VX_HIFREQ] = 0x38,
  51	[VX_CSUER]  = 0x3c,
  52	[VX_SELMIC] = 0x40,
  53	[VX_COMPOT] = 0x44, // Write: POTENTIOMETER ; Read: COMPRESSION LEVEL activate
  54	[VX_SCOMPR] = 0x48, // Read: COMPRESSION THRESHOLD activate
  55	[VX_GLIMIT] = 0x4c, // Read: LEVEL LIMITATION activate
  56	[VX_INTCSR] = 0x4c, // VX_INTCSR_REGISTER_OFFSET
  57	[VX_CNTRL]  = 0x50,		// VX_CNTRL_REGISTER_OFFSET
  58	[VX_GPIOC]  = 0x54,		// VX_GPIOC (new with PLX9030)
  59};
  60
  61static int vx2_reg_index[VX_REG_MAX] = {
  62	[VX_ICR]	= 1,
  63	[VX_CVR]	= 1,
  64	[VX_ISR]	= 1,
  65	[VX_IVR]	= 1,
  66	[VX_RXH]	= 1,
  67	[VX_RXM]	= 1,
  68	[VX_RXL]	= 1,
  69	[VX_DMA]	= 1,
  70	[VX_CDSP]	= 1,
  71	[VX_CFG]	= 1,
  72	[VX_RUER]	= 1,
  73	[VX_DATA]	= 1,
  74	[VX_STATUS]	= 1,
  75	[VX_LOFREQ]	= 1,
  76	[VX_HIFREQ]	= 1,
  77	[VX_CSUER]	= 1,
  78	[VX_SELMIC]	= 1,
  79	[VX_COMPOT]	= 1,
  80	[VX_SCOMPR]	= 1,
  81	[VX_GLIMIT]	= 1,
  82	[VX_INTCSR]	= 0,	/* on the PLX */
  83	[VX_CNTRL]	= 0,	/* on the PLX */
  84	[VX_GPIOC]	= 0,	/* on the PLX */
  85};
  86
  87static inline unsigned long vx2_reg_addr(struct vx_core *_chip, int reg)
  88{
  89	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
  90	return chip->port[vx2_reg_index[reg]] + vx2_reg_offset[reg];
  91}
  92
  93/**
  94 * snd_vx_inb - read a byte from the register
 
  95 * @offset: register enum
  96 */
  97static unsigned char vx2_inb(struct vx_core *chip, int offset)
  98{
  99	return inb(vx2_reg_addr(chip, offset));
 100}
 101
 102/**
 103 * snd_vx_outb - write a byte on the register
 
 104 * @offset: the register offset
 105 * @val: the value to write
 106 */
 107static void vx2_outb(struct vx_core *chip, int offset, unsigned char val)
 108{
 109	outb(val, vx2_reg_addr(chip, offset));
 110	/*
 111	dev_dbg(chip->card->dev, "outb: %x -> %x\n", val, vx2_reg_addr(chip, offset));
 112	*/
 113}
 114
 115/**
 116 * snd_vx_inl - read a 32bit word from the register
 
 117 * @offset: register enum
 118 */
 119static unsigned int vx2_inl(struct vx_core *chip, int offset)
 120{
 121	return inl(vx2_reg_addr(chip, offset));
 122}
 123
 124/**
 125 * snd_vx_outl - write a 32bit word on the register
 
 126 * @offset: the register enum
 127 * @val: the value to write
 128 */
 129static void vx2_outl(struct vx_core *chip, int offset, unsigned int val)
 130{
 131	/*
 132	dev_dbg(chip->card->dev, "outl: %x -> %x\n", val, vx2_reg_addr(chip, offset));
 133	*/
 134	outl(val, vx2_reg_addr(chip, offset));
 135}
 136
 137/*
 138 * redefine macros to call directly
 139 */
 140#undef vx_inb
 141#define vx_inb(chip,reg)	vx2_inb((struct vx_core*)(chip), VX_##reg)
 142#undef vx_outb
 143#define vx_outb(chip,reg,val)	vx2_outb((struct vx_core*)(chip), VX_##reg, val)
 144#undef vx_inl
 145#define vx_inl(chip,reg)	vx2_inl((struct vx_core*)(chip), VX_##reg)
 146#undef vx_outl
 147#define vx_outl(chip,reg,val)	vx2_outl((struct vx_core*)(chip), VX_##reg, val)
 148
 149
 150/*
 151 * vx_reset_dsp - reset the DSP
 152 */
 153
 154#define XX_DSP_RESET_WAIT_TIME		2	/* ms */
 155
 156static void vx2_reset_dsp(struct vx_core *_chip)
 157{
 158	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
 159
 160	/* set the reset dsp bit to 0 */
 161	vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_DSP_RESET_MASK);
 162
 163	mdelay(XX_DSP_RESET_WAIT_TIME);
 164
 165	chip->regCDSP |= VX_CDSP_DSP_RESET_MASK;
 166	/* set the reset dsp bit to 1 */
 167	vx_outl(chip, CDSP, chip->regCDSP);
 168}
 169
 170
 171static int vx2_test_xilinx(struct vx_core *_chip)
 172{
 173	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
 174	unsigned int data;
 175
 176	dev_dbg(_chip->card->dev, "testing xilinx...\n");
 177	/* This test uses several write/read sequences on TEST0 and TEST1 bits
 178	 * to figure out whever or not the xilinx was correctly loaded
 179	 */
 180
 181	/* We write 1 on CDSP.TEST0. We should get 0 on STATUS.TEST0. */
 182	vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST0_MASK);
 183	vx_inl(chip, ISR);
 184	data = vx_inl(chip, STATUS);
 185	if ((data & VX_STATUS_VAL_TEST0_MASK) == VX_STATUS_VAL_TEST0_MASK) {
 186		dev_dbg(_chip->card->dev, "bad!\n");
 187		return -ENODEV;
 188	}
 189
 190	/* We write 0 on CDSP.TEST0. We should get 1 on STATUS.TEST0. */
 191	vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST0_MASK);
 192	vx_inl(chip, ISR);
 193	data = vx_inl(chip, STATUS);
 194	if (! (data & VX_STATUS_VAL_TEST0_MASK)) {
 195		dev_dbg(_chip->card->dev, "bad! #2\n");
 196		return -ENODEV;
 197	}
 198
 199	if (_chip->type == VX_TYPE_BOARD) {
 200		/* not implemented on VX_2_BOARDS */
 201		/* We write 1 on CDSP.TEST1. We should get 0 on STATUS.TEST1. */
 202		vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST1_MASK);
 203		vx_inl(chip, ISR);
 204		data = vx_inl(chip, STATUS);
 205		if ((data & VX_STATUS_VAL_TEST1_MASK) == VX_STATUS_VAL_TEST1_MASK) {
 206			dev_dbg(_chip->card->dev, "bad! #3\n");
 207			return -ENODEV;
 208		}
 209
 210		/* We write 0 on CDSP.TEST1. We should get 1 on STATUS.TEST1. */
 211		vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST1_MASK);
 212		vx_inl(chip, ISR);
 213		data = vx_inl(chip, STATUS);
 214		if (! (data & VX_STATUS_VAL_TEST1_MASK)) {
 215			dev_dbg(_chip->card->dev, "bad! #4\n");
 216			return -ENODEV;
 217		}
 218	}
 219	dev_dbg(_chip->card->dev, "ok, xilinx fine.\n");
 220	return 0;
 221}
 222
 223
 224/**
 225 * vx_setup_pseudo_dma - set up the pseudo dma read/write mode.
 
 226 * @do_write: 0 = read, 1 = set up for DMA write
 227 */
 228static void vx2_setup_pseudo_dma(struct vx_core *chip, int do_write)
 229{
 230	/* Interrupt mode and HREQ pin enabled for host transmit data transfers
 231	 * (in case of the use of the pseudo-dma facility).
 232	 */
 233	vx_outl(chip, ICR, do_write ? ICR_TREQ : ICR_RREQ);
 234
 235	/* Reset the pseudo-dma register (in case of the use of the
 236	 * pseudo-dma facility).
 237	 */
 238	vx_outl(chip, RESET_DMA, 0);
 239}
 240
 241/*
 242 * vx_release_pseudo_dma - disable the pseudo-DMA mode
 243 */
 244static inline void vx2_release_pseudo_dma(struct vx_core *chip)
 245{
 246	/* HREQ pin disabled. */
 247	vx_outl(chip, ICR, 0);
 248}
 249
 250
 251
 252/* pseudo-dma write */
 253static void vx2_dma_write(struct vx_core *chip, struct snd_pcm_runtime *runtime,
 254			  struct vx_pipe *pipe, int count)
 255{
 256	unsigned long port = vx2_reg_addr(chip, VX_DMA);
 257	int offset = pipe->hw_ptr;
 258	u32 *addr = (u32 *)(runtime->dma_area + offset);
 259
 260	if (snd_BUG_ON(count % 4))
 261		return;
 262
 263	vx2_setup_pseudo_dma(chip, 1);
 264
 265	/* Transfer using pseudo-dma.
 266	 */
 267	if (offset + count > pipe->buffer_bytes) {
 268		int length = pipe->buffer_bytes - offset;
 269		count -= length;
 270		length >>= 2; /* in 32bit words */
 271		/* Transfer using pseudo-dma. */
 272		while (length-- > 0) {
 273			outl(cpu_to_le32(*addr), port);
 274			addr++;
 275		}
 276		addr = (u32 *)runtime->dma_area;
 277		pipe->hw_ptr = 0;
 278	}
 279	pipe->hw_ptr += count;
 280	count >>= 2; /* in 32bit words */
 281	/* Transfer using pseudo-dma. */
 282	while (count-- > 0) {
 283		outl(cpu_to_le32(*addr), port);
 284		addr++;
 285	}
 286
 287	vx2_release_pseudo_dma(chip);
 288}
 289
 290
 291/* pseudo dma read */
 292static void vx2_dma_read(struct vx_core *chip, struct snd_pcm_runtime *runtime,
 293			 struct vx_pipe *pipe, int count)
 294{
 295	int offset = pipe->hw_ptr;
 296	u32 *addr = (u32 *)(runtime->dma_area + offset);
 297	unsigned long port = vx2_reg_addr(chip, VX_DMA);
 298
 299	if (snd_BUG_ON(count % 4))
 300		return;
 301
 302	vx2_setup_pseudo_dma(chip, 0);
 303	/* Transfer using pseudo-dma.
 304	 */
 305	if (offset + count > pipe->buffer_bytes) {
 306		int length = pipe->buffer_bytes - offset;
 307		count -= length;
 308		length >>= 2; /* in 32bit words */
 309		/* Transfer using pseudo-dma. */
 310		while (length-- > 0)
 311			*addr++ = le32_to_cpu(inl(port));
 312		addr = (u32 *)runtime->dma_area;
 313		pipe->hw_ptr = 0;
 314	}
 315	pipe->hw_ptr += count;
 316	count >>= 2; /* in 32bit words */
 317	/* Transfer using pseudo-dma. */
 318	while (count-- > 0)
 319		*addr++ = le32_to_cpu(inl(port));
 320
 321	vx2_release_pseudo_dma(chip);
 322}
 323
 324#define VX_XILINX_RESET_MASK        0x40000000
 325#define VX_USERBIT0_MASK            0x00000004
 326#define VX_USERBIT1_MASK            0x00000020
 327#define VX_CNTRL_REGISTER_VALUE     0x00172012
 328
 329/*
 330 * transfer counts bits to PLX
 331 */
 332static int put_xilinx_data(struct vx_core *chip, unsigned int port, unsigned int counts, unsigned char data)
 333{
 334	unsigned int i;
 335
 336	for (i = 0; i < counts; i++) {
 337		unsigned int val;
 338
 339		/* set the clock bit to 0. */
 340		val = VX_CNTRL_REGISTER_VALUE & ~VX_USERBIT0_MASK;
 341		vx2_outl(chip, port, val);
 342		vx2_inl(chip, port);
 343		udelay(1);
 344
 345		if (data & (1 << i))
 346			val |= VX_USERBIT1_MASK;
 347		else
 348			val &= ~VX_USERBIT1_MASK;
 349		vx2_outl(chip, port, val);
 350		vx2_inl(chip, port);
 351
 352		/* set the clock bit to 1. */
 353		val |= VX_USERBIT0_MASK;
 354		vx2_outl(chip, port, val);
 355		vx2_inl(chip, port);
 356		udelay(1);
 357	}
 358	return 0;
 359}
 360
 361/*
 362 * load the xilinx image
 363 */
 364static int vx2_load_xilinx_binary(struct vx_core *chip, const struct firmware *xilinx)
 365{
 366	unsigned int i;
 367	unsigned int port;
 368	const unsigned char *image;
 369
 370	/* XILINX reset (wait at least 1 millisecond between reset on and off). */
 371	vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE | VX_XILINX_RESET_MASK);
 372	vx_inl(chip, CNTRL);
 373	msleep(10);
 374	vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE);
 375	vx_inl(chip, CNTRL);
 376	msleep(10);
 377
 378	if (chip->type == VX_TYPE_BOARD)
 379		port = VX_CNTRL;
 380	else
 381		port = VX_GPIOC; /* VX222 V2 and VX222_MIC_BOARD with new PLX9030 use this register */
 382
 383	image = xilinx->data;
 384	for (i = 0; i < xilinx->size; i++, image++) {
 385		if (put_xilinx_data(chip, port, 8, *image) < 0)
 386			return -EINVAL;
 387		/* don't take too much time in this loop... */
 388		cond_resched();
 389	}
 390	put_xilinx_data(chip, port, 4, 0xff); /* end signature */
 391
 392	msleep(200);
 393
 394	/* test after loading (is buggy with VX222) */
 395	if (chip->type != VX_TYPE_BOARD) {
 396		/* Test if load successful: test bit 8 of register GPIOC (VX222: use CNTRL) ! */
 397		i = vx_inl(chip, GPIOC);
 398		if (i & 0x0100)
 399			return 0;
 400		dev_err(chip->card->dev,
 401			"xilinx test failed after load, GPIOC=0x%x\n", i);
 402		return -EINVAL;
 403	}
 404
 405	return 0;
 406}
 407
 408	
 409/*
 410 * load the boot/dsp images
 411 */
 412static int vx2_load_dsp(struct vx_core *vx, int index, const struct firmware *dsp)
 413{
 414	int err;
 415
 416	switch (index) {
 417	case 1:
 418		/* xilinx image */
 419		if ((err = vx2_load_xilinx_binary(vx, dsp)) < 0)
 420			return err;
 421		if ((err = vx2_test_xilinx(vx)) < 0)
 422			return err;
 423		return 0;
 424	case 2:
 425		/* DSP boot */
 426		return snd_vx_dsp_boot(vx, dsp);
 427	case 3:
 428		/* DSP image */
 429		return snd_vx_dsp_load(vx, dsp);
 430	default:
 431		snd_BUG();
 432		return -EINVAL;
 433	}
 434}
 435
 436
 437/*
 438 * vx_test_and_ack - test and acknowledge interrupt
 439 *
 440 * called from irq hander, too
 441 *
 442 * spinlock held!
 443 */
 444static int vx2_test_and_ack(struct vx_core *chip)
 445{
 446	/* not booted yet? */
 447	if (! (chip->chip_status & VX_STAT_XILINX_LOADED))
 448		return -ENXIO;
 449
 450	if (! (vx_inl(chip, STATUS) & VX_STATUS_MEMIRQ_MASK))
 451		return -EIO;
 452	
 453	/* ok, interrupts generated, now ack it */
 454	/* set ACQUIT bit up and down */
 455	vx_outl(chip, STATUS, 0);
 456	/* useless read just to spend some time and maintain
 457	 * the ACQUIT signal up for a while ( a bus cycle )
 458	 */
 459	vx_inl(chip, STATUS);
 460	/* ack */
 461	vx_outl(chip, STATUS, VX_STATUS_MEMIRQ_MASK);
 462	/* useless read just to spend some time and maintain
 463	 * the ACQUIT signal up for a while ( a bus cycle ) */
 464	vx_inl(chip, STATUS);
 465	/* clear */
 466	vx_outl(chip, STATUS, 0);
 467
 468	return 0;
 469}
 470
 471
 472/*
 473 * vx_validate_irq - enable/disable IRQ
 474 */
 475static void vx2_validate_irq(struct vx_core *_chip, int enable)
 476{
 477	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
 478
 479	/* Set the interrupt enable bit to 1 in CDSP register */
 480	if (enable) {
 481		/* Set the PCI interrupt enable bit to 1.*/
 482		vx_outl(chip, INTCSR, VX_INTCSR_VALUE|VX_PCI_INTERRUPT_MASK);
 483		chip->regCDSP |= VX_CDSP_VALID_IRQ_MASK;
 484	} else {
 485		/* Set the PCI interrupt enable bit to 0. */
 486		vx_outl(chip, INTCSR, VX_INTCSR_VALUE&~VX_PCI_INTERRUPT_MASK);
 487		chip->regCDSP &= ~VX_CDSP_VALID_IRQ_MASK;
 488	}
 489	vx_outl(chip, CDSP, chip->regCDSP);
 490}
 491
 492
 493/*
 494 * write an AKM codec data (24bit)
 495 */
 496static void vx2_write_codec_reg(struct vx_core *chip, unsigned int data)
 497{
 498	unsigned int i;
 499
 500	vx_inl(chip, HIFREQ);
 501
 502	/* We have to send 24 bits (3 x 8 bits). Start with most signif. Bit */
 503	for (i = 0; i < 24; i++, data <<= 1)
 504		vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
 505	/* Terminate access to codec registers */
 506	vx_inl(chip, RUER);
 507}
 508
 509
 510#define AKM_CODEC_POWER_CONTROL_CMD 0xA007
 511#define AKM_CODEC_RESET_ON_CMD      0xA100
 512#define AKM_CODEC_RESET_OFF_CMD     0xA103
 513#define AKM_CODEC_CLOCK_FORMAT_CMD  0xA240
 514#define AKM_CODEC_MUTE_CMD          0xA38D
 515#define AKM_CODEC_UNMUTE_CMD        0xA30D
 516#define AKM_CODEC_LEFT_LEVEL_CMD    0xA400
 517#define AKM_CODEC_RIGHT_LEVEL_CMD   0xA500
 518
 519static const u8 vx2_akm_gains_lut[VX2_AKM_LEVEL_MAX+1] = {
 520    0x7f,       // [000] =  +0.000 dB  ->  AKM(0x7f) =  +0.000 dB  error(+0.000 dB)
 521    0x7d,       // [001] =  -0.500 dB  ->  AKM(0x7d) =  -0.572 dB  error(-0.072 dB)
 522    0x7c,       // [002] =  -1.000 dB  ->  AKM(0x7c) =  -0.873 dB  error(+0.127 dB)
 523    0x7a,       // [003] =  -1.500 dB  ->  AKM(0x7a) =  -1.508 dB  error(-0.008 dB)
 524    0x79,       // [004] =  -2.000 dB  ->  AKM(0x79) =  -1.844 dB  error(+0.156 dB)
 525    0x77,       // [005] =  -2.500 dB  ->  AKM(0x77) =  -2.557 dB  error(-0.057 dB)
 526    0x76,       // [006] =  -3.000 dB  ->  AKM(0x76) =  -2.937 dB  error(+0.063 dB)
 527    0x75,       // [007] =  -3.500 dB  ->  AKM(0x75) =  -3.334 dB  error(+0.166 dB)
 528    0x73,       // [008] =  -4.000 dB  ->  AKM(0x73) =  -4.188 dB  error(-0.188 dB)
 529    0x72,       // [009] =  -4.500 dB  ->  AKM(0x72) =  -4.648 dB  error(-0.148 dB)
 530    0x71,       // [010] =  -5.000 dB  ->  AKM(0x71) =  -5.134 dB  error(-0.134 dB)
 531    0x70,       // [011] =  -5.500 dB  ->  AKM(0x70) =  -5.649 dB  error(-0.149 dB)
 532    0x6f,       // [012] =  -6.000 dB  ->  AKM(0x6f) =  -6.056 dB  error(-0.056 dB)
 533    0x6d,       // [013] =  -6.500 dB  ->  AKM(0x6d) =  -6.631 dB  error(-0.131 dB)
 534    0x6c,       // [014] =  -7.000 dB  ->  AKM(0x6c) =  -6.933 dB  error(+0.067 dB)
 535    0x6a,       // [015] =  -7.500 dB  ->  AKM(0x6a) =  -7.571 dB  error(-0.071 dB)
 536    0x69,       // [016] =  -8.000 dB  ->  AKM(0x69) =  -7.909 dB  error(+0.091 dB)
 537    0x67,       // [017] =  -8.500 dB  ->  AKM(0x67) =  -8.626 dB  error(-0.126 dB)
 538    0x66,       // [018] =  -9.000 dB  ->  AKM(0x66) =  -9.008 dB  error(-0.008 dB)
 539    0x65,       // [019] =  -9.500 dB  ->  AKM(0x65) =  -9.407 dB  error(+0.093 dB)
 540    0x64,       // [020] = -10.000 dB  ->  AKM(0x64) =  -9.826 dB  error(+0.174 dB)
 541    0x62,       // [021] = -10.500 dB  ->  AKM(0x62) = -10.730 dB  error(-0.230 dB)
 542    0x61,       // [022] = -11.000 dB  ->  AKM(0x61) = -11.219 dB  error(-0.219 dB)
 543    0x60,       // [023] = -11.500 dB  ->  AKM(0x60) = -11.738 dB  error(-0.238 dB)
 544    0x5f,       // [024] = -12.000 dB  ->  AKM(0x5f) = -12.149 dB  error(-0.149 dB)
 545    0x5e,       // [025] = -12.500 dB  ->  AKM(0x5e) = -12.434 dB  error(+0.066 dB)
 546    0x5c,       // [026] = -13.000 dB  ->  AKM(0x5c) = -13.033 dB  error(-0.033 dB)
 547    0x5b,       // [027] = -13.500 dB  ->  AKM(0x5b) = -13.350 dB  error(+0.150 dB)
 548    0x59,       // [028] = -14.000 dB  ->  AKM(0x59) = -14.018 dB  error(-0.018 dB)
 549    0x58,       // [029] = -14.500 dB  ->  AKM(0x58) = -14.373 dB  error(+0.127 dB)
 550    0x56,       // [030] = -15.000 dB  ->  AKM(0x56) = -15.130 dB  error(-0.130 dB)
 551    0x55,       // [031] = -15.500 dB  ->  AKM(0x55) = -15.534 dB  error(-0.034 dB)
 552    0x54,       // [032] = -16.000 dB  ->  AKM(0x54) = -15.958 dB  error(+0.042 dB)
 553    0x53,       // [033] = -16.500 dB  ->  AKM(0x53) = -16.404 dB  error(+0.096 dB)
 554    0x52,       // [034] = -17.000 dB  ->  AKM(0x52) = -16.874 dB  error(+0.126 dB)
 555    0x51,       // [035] = -17.500 dB  ->  AKM(0x51) = -17.371 dB  error(+0.129 dB)
 556    0x50,       // [036] = -18.000 dB  ->  AKM(0x50) = -17.898 dB  error(+0.102 dB)
 557    0x4e,       // [037] = -18.500 dB  ->  AKM(0x4e) = -18.605 dB  error(-0.105 dB)
 558    0x4d,       // [038] = -19.000 dB  ->  AKM(0x4d) = -18.905 dB  error(+0.095 dB)
 559    0x4b,       // [039] = -19.500 dB  ->  AKM(0x4b) = -19.538 dB  error(-0.038 dB)
 560    0x4a,       // [040] = -20.000 dB  ->  AKM(0x4a) = -19.872 dB  error(+0.128 dB)
 561    0x48,       // [041] = -20.500 dB  ->  AKM(0x48) = -20.583 dB  error(-0.083 dB)
 562    0x47,       // [042] = -21.000 dB  ->  AKM(0x47) = -20.961 dB  error(+0.039 dB)
 563    0x46,       // [043] = -21.500 dB  ->  AKM(0x46) = -21.356 dB  error(+0.144 dB)
 564    0x44,       // [044] = -22.000 dB  ->  AKM(0x44) = -22.206 dB  error(-0.206 dB)
 565    0x43,       // [045] = -22.500 dB  ->  AKM(0x43) = -22.664 dB  error(-0.164 dB)
 566    0x42,       // [046] = -23.000 dB  ->  AKM(0x42) = -23.147 dB  error(-0.147 dB)
 567    0x41,       // [047] = -23.500 dB  ->  AKM(0x41) = -23.659 dB  error(-0.159 dB)
 568    0x40,       // [048] = -24.000 dB  ->  AKM(0x40) = -24.203 dB  error(-0.203 dB)
 569    0x3f,       // [049] = -24.500 dB  ->  AKM(0x3f) = -24.635 dB  error(-0.135 dB)
 570    0x3e,       // [050] = -25.000 dB  ->  AKM(0x3e) = -24.935 dB  error(+0.065 dB)
 571    0x3c,       // [051] = -25.500 dB  ->  AKM(0x3c) = -25.569 dB  error(-0.069 dB)
 572    0x3b,       // [052] = -26.000 dB  ->  AKM(0x3b) = -25.904 dB  error(+0.096 dB)
 573    0x39,       // [053] = -26.500 dB  ->  AKM(0x39) = -26.615 dB  error(-0.115 dB)
 574    0x38,       // [054] = -27.000 dB  ->  AKM(0x38) = -26.994 dB  error(+0.006 dB)
 575    0x37,       // [055] = -27.500 dB  ->  AKM(0x37) = -27.390 dB  error(+0.110 dB)
 576    0x36,       // [056] = -28.000 dB  ->  AKM(0x36) = -27.804 dB  error(+0.196 dB)
 577    0x34,       // [057] = -28.500 dB  ->  AKM(0x34) = -28.699 dB  error(-0.199 dB)
 578    0x33,       // [058] = -29.000 dB  ->  AKM(0x33) = -29.183 dB  error(-0.183 dB)
 579    0x32,       // [059] = -29.500 dB  ->  AKM(0x32) = -29.696 dB  error(-0.196 dB)
 580    0x31,       // [060] = -30.000 dB  ->  AKM(0x31) = -30.241 dB  error(-0.241 dB)
 581    0x31,       // [061] = -30.500 dB  ->  AKM(0x31) = -30.241 dB  error(+0.259 dB)
 582    0x30,       // [062] = -31.000 dB  ->  AKM(0x30) = -30.823 dB  error(+0.177 dB)
 583    0x2e,       // [063] = -31.500 dB  ->  AKM(0x2e) = -31.610 dB  error(-0.110 dB)
 584    0x2d,       // [064] = -32.000 dB  ->  AKM(0x2d) = -31.945 dB  error(+0.055 dB)
 585    0x2b,       // [065] = -32.500 dB  ->  AKM(0x2b) = -32.659 dB  error(-0.159 dB)
 586    0x2a,       // [066] = -33.000 dB  ->  AKM(0x2a) = -33.038 dB  error(-0.038 dB)
 587    0x29,       // [067] = -33.500 dB  ->  AKM(0x29) = -33.435 dB  error(+0.065 dB)
 588    0x28,       // [068] = -34.000 dB  ->  AKM(0x28) = -33.852 dB  error(+0.148 dB)
 589    0x27,       // [069] = -34.500 dB  ->  AKM(0x27) = -34.289 dB  error(+0.211 dB)
 590    0x25,       // [070] = -35.000 dB  ->  AKM(0x25) = -35.235 dB  error(-0.235 dB)
 591    0x24,       // [071] = -35.500 dB  ->  AKM(0x24) = -35.750 dB  error(-0.250 dB)
 592    0x24,       // [072] = -36.000 dB  ->  AKM(0x24) = -35.750 dB  error(+0.250 dB)
 593    0x23,       // [073] = -36.500 dB  ->  AKM(0x23) = -36.297 dB  error(+0.203 dB)
 594    0x22,       // [074] = -37.000 dB  ->  AKM(0x22) = -36.881 dB  error(+0.119 dB)
 595    0x21,       // [075] = -37.500 dB  ->  AKM(0x21) = -37.508 dB  error(-0.008 dB)
 596    0x20,       // [076] = -38.000 dB  ->  AKM(0x20) = -38.183 dB  error(-0.183 dB)
 597    0x1f,       // [077] = -38.500 dB  ->  AKM(0x1f) = -38.726 dB  error(-0.226 dB)
 598    0x1e,       // [078] = -39.000 dB  ->  AKM(0x1e) = -39.108 dB  error(-0.108 dB)
 599    0x1d,       // [079] = -39.500 dB  ->  AKM(0x1d) = -39.507 dB  error(-0.007 dB)
 600    0x1c,       // [080] = -40.000 dB  ->  AKM(0x1c) = -39.926 dB  error(+0.074 dB)
 601    0x1b,       // [081] = -40.500 dB  ->  AKM(0x1b) = -40.366 dB  error(+0.134 dB)
 602    0x1a,       // [082] = -41.000 dB  ->  AKM(0x1a) = -40.829 dB  error(+0.171 dB)
 603    0x19,       // [083] = -41.500 dB  ->  AKM(0x19) = -41.318 dB  error(+0.182 dB)
 604    0x18,       // [084] = -42.000 dB  ->  AKM(0x18) = -41.837 dB  error(+0.163 dB)
 605    0x17,       // [085] = -42.500 dB  ->  AKM(0x17) = -42.389 dB  error(+0.111 dB)
 606    0x16,       // [086] = -43.000 dB  ->  AKM(0x16) = -42.978 dB  error(+0.022 dB)
 607    0x15,       // [087] = -43.500 dB  ->  AKM(0x15) = -43.610 dB  error(-0.110 dB)
 608    0x14,       // [088] = -44.000 dB  ->  AKM(0x14) = -44.291 dB  error(-0.291 dB)
 609    0x14,       // [089] = -44.500 dB  ->  AKM(0x14) = -44.291 dB  error(+0.209 dB)
 610    0x13,       // [090] = -45.000 dB  ->  AKM(0x13) = -45.031 dB  error(-0.031 dB)
 611    0x12,       // [091] = -45.500 dB  ->  AKM(0x12) = -45.840 dB  error(-0.340 dB)
 612    0x12,       // [092] = -46.000 dB  ->  AKM(0x12) = -45.840 dB  error(+0.160 dB)
 613    0x11,       // [093] = -46.500 dB  ->  AKM(0x11) = -46.731 dB  error(-0.231 dB)
 614    0x11,       // [094] = -47.000 dB  ->  AKM(0x11) = -46.731 dB  error(+0.269 dB)
 615    0x10,       // [095] = -47.500 dB  ->  AKM(0x10) = -47.725 dB  error(-0.225 dB)
 616    0x10,       // [096] = -48.000 dB  ->  AKM(0x10) = -47.725 dB  error(+0.275 dB)
 617    0x0f,       // [097] = -48.500 dB  ->  AKM(0x0f) = -48.553 dB  error(-0.053 dB)
 618    0x0e,       // [098] = -49.000 dB  ->  AKM(0x0e) = -49.152 dB  error(-0.152 dB)
 619    0x0d,       // [099] = -49.500 dB  ->  AKM(0x0d) = -49.796 dB  error(-0.296 dB)
 620    0x0d,       // [100] = -50.000 dB  ->  AKM(0x0d) = -49.796 dB  error(+0.204 dB)
 621    0x0c,       // [101] = -50.500 dB  ->  AKM(0x0c) = -50.491 dB  error(+0.009 dB)
 622    0x0b,       // [102] = -51.000 dB  ->  AKM(0x0b) = -51.247 dB  error(-0.247 dB)
 623    0x0b,       // [103] = -51.500 dB  ->  AKM(0x0b) = -51.247 dB  error(+0.253 dB)
 624    0x0a,       // [104] = -52.000 dB  ->  AKM(0x0a) = -52.075 dB  error(-0.075 dB)
 625    0x0a,       // [105] = -52.500 dB  ->  AKM(0x0a) = -52.075 dB  error(+0.425 dB)
 626    0x09,       // [106] = -53.000 dB  ->  AKM(0x09) = -52.990 dB  error(+0.010 dB)
 627    0x09,       // [107] = -53.500 dB  ->  AKM(0x09) = -52.990 dB  error(+0.510 dB)
 628    0x08,       // [108] = -54.000 dB  ->  AKM(0x08) = -54.013 dB  error(-0.013 dB)
 629    0x08,       // [109] = -54.500 dB  ->  AKM(0x08) = -54.013 dB  error(+0.487 dB)
 630    0x07,       // [110] = -55.000 dB  ->  AKM(0x07) = -55.173 dB  error(-0.173 dB)
 631    0x07,       // [111] = -55.500 dB  ->  AKM(0x07) = -55.173 dB  error(+0.327 dB)
 632    0x06,       // [112] = -56.000 dB  ->  AKM(0x06) = -56.512 dB  error(-0.512 dB)
 633    0x06,       // [113] = -56.500 dB  ->  AKM(0x06) = -56.512 dB  error(-0.012 dB)
 634    0x06,       // [114] = -57.000 dB  ->  AKM(0x06) = -56.512 dB  error(+0.488 dB)
 635    0x05,       // [115] = -57.500 dB  ->  AKM(0x05) = -58.095 dB  error(-0.595 dB)
 636    0x05,       // [116] = -58.000 dB  ->  AKM(0x05) = -58.095 dB  error(-0.095 dB)
 637    0x05,       // [117] = -58.500 dB  ->  AKM(0x05) = -58.095 dB  error(+0.405 dB)
 638    0x05,       // [118] = -59.000 dB  ->  AKM(0x05) = -58.095 dB  error(+0.905 dB)
 639    0x04,       // [119] = -59.500 dB  ->  AKM(0x04) = -60.034 dB  error(-0.534 dB)
 640    0x04,       // [120] = -60.000 dB  ->  AKM(0x04) = -60.034 dB  error(-0.034 dB)
 641    0x04,       // [121] = -60.500 dB  ->  AKM(0x04) = -60.034 dB  error(+0.466 dB)
 642    0x04,       // [122] = -61.000 dB  ->  AKM(0x04) = -60.034 dB  error(+0.966 dB)
 643    0x03,       // [123] = -61.500 dB  ->  AKM(0x03) = -62.532 dB  error(-1.032 dB)
 644    0x03,       // [124] = -62.000 dB  ->  AKM(0x03) = -62.532 dB  error(-0.532 dB)
 645    0x03,       // [125] = -62.500 dB  ->  AKM(0x03) = -62.532 dB  error(-0.032 dB)
 646    0x03,       // [126] = -63.000 dB  ->  AKM(0x03) = -62.532 dB  error(+0.468 dB)
 647    0x03,       // [127] = -63.500 dB  ->  AKM(0x03) = -62.532 dB  error(+0.968 dB)
 648    0x03,       // [128] = -64.000 dB  ->  AKM(0x03) = -62.532 dB  error(+1.468 dB)
 649    0x02,       // [129] = -64.500 dB  ->  AKM(0x02) = -66.054 dB  error(-1.554 dB)
 650    0x02,       // [130] = -65.000 dB  ->  AKM(0x02) = -66.054 dB  error(-1.054 dB)
 651    0x02,       // [131] = -65.500 dB  ->  AKM(0x02) = -66.054 dB  error(-0.554 dB)
 652    0x02,       // [132] = -66.000 dB  ->  AKM(0x02) = -66.054 dB  error(-0.054 dB)
 653    0x02,       // [133] = -66.500 dB  ->  AKM(0x02) = -66.054 dB  error(+0.446 dB)
 654    0x02,       // [134] = -67.000 dB  ->  AKM(0x02) = -66.054 dB  error(+0.946 dB)
 655    0x02,       // [135] = -67.500 dB  ->  AKM(0x02) = -66.054 dB  error(+1.446 dB)
 656    0x02,       // [136] = -68.000 dB  ->  AKM(0x02) = -66.054 dB  error(+1.946 dB)
 657    0x02,       // [137] = -68.500 dB  ->  AKM(0x02) = -66.054 dB  error(+2.446 dB)
 658    0x02,       // [138] = -69.000 dB  ->  AKM(0x02) = -66.054 dB  error(+2.946 dB)
 659    0x01,       // [139] = -69.500 dB  ->  AKM(0x01) = -72.075 dB  error(-2.575 dB)
 660    0x01,       // [140] = -70.000 dB  ->  AKM(0x01) = -72.075 dB  error(-2.075 dB)
 661    0x01,       // [141] = -70.500 dB  ->  AKM(0x01) = -72.075 dB  error(-1.575 dB)
 662    0x01,       // [142] = -71.000 dB  ->  AKM(0x01) = -72.075 dB  error(-1.075 dB)
 663    0x01,       // [143] = -71.500 dB  ->  AKM(0x01) = -72.075 dB  error(-0.575 dB)
 664    0x01,       // [144] = -72.000 dB  ->  AKM(0x01) = -72.075 dB  error(-0.075 dB)
 665    0x01,       // [145] = -72.500 dB  ->  AKM(0x01) = -72.075 dB  error(+0.425 dB)
 666    0x01,       // [146] = -73.000 dB  ->  AKM(0x01) = -72.075 dB  error(+0.925 dB)
 667    0x00};      // [147] = -73.500 dB  ->  AKM(0x00) =  mute       error(+infini)
 668
 669/*
 670 * pseudo-codec write entry
 671 */
 672static void vx2_write_akm(struct vx_core *chip, int reg, unsigned int data)
 673{
 674	unsigned int val;
 675
 676	if (reg == XX_CODEC_DAC_CONTROL_REGISTER) {
 677		vx2_write_codec_reg(chip, data ? AKM_CODEC_MUTE_CMD : AKM_CODEC_UNMUTE_CMD);
 678		return;
 679	}
 680
 681	/* `data' is a value between 0x0 and VX2_AKM_LEVEL_MAX = 0x093, in the case of the AKM codecs, we need
 682	   a look up table, as there is no linear matching between the driver codec values
 683	   and the real dBu value
 684	*/
 685	if (snd_BUG_ON(data >= sizeof(vx2_akm_gains_lut)))
 686		return;
 687
 688	switch (reg) {
 689	case XX_CODEC_LEVEL_LEFT_REGISTER:
 690		val = AKM_CODEC_LEFT_LEVEL_CMD;
 691		break;
 692	case XX_CODEC_LEVEL_RIGHT_REGISTER:
 693		val = AKM_CODEC_RIGHT_LEVEL_CMD;
 694		break;
 695	default:
 696		snd_BUG();
 697		return;
 698	}
 699	val |= vx2_akm_gains_lut[data];
 700
 701	vx2_write_codec_reg(chip, val);
 702}
 703
 704
 705/*
 706 * write codec bit for old VX222 board
 707 */
 708static void vx2_old_write_codec_bit(struct vx_core *chip, int codec, unsigned int data)
 709{
 710	int i;
 711
 712	/* activate access to codec registers */
 713	vx_inl(chip, HIFREQ);
 714
 715	for (i = 0; i < 24; i++, data <<= 1)
 716		vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
 717
 718	/* Terminate access to codec registers */
 719	vx_inl(chip, RUER);
 720}
 721
 722
 723/*
 724 * reset codec bit
 725 */
 726static void vx2_reset_codec(struct vx_core *_chip)
 727{
 728	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
 729
 730	/* Set the reset CODEC bit to 0. */
 731	vx_outl(chip, CDSP, chip->regCDSP &~ VX_CDSP_CODEC_RESET_MASK);
 732	vx_inl(chip, CDSP);
 733	msleep(10);
 734	/* Set the reset CODEC bit to 1. */
 735	chip->regCDSP |= VX_CDSP_CODEC_RESET_MASK;
 736	vx_outl(chip, CDSP, chip->regCDSP);
 737	vx_inl(chip, CDSP);
 738	if (_chip->type == VX_TYPE_BOARD) {
 739		msleep(1);
 740		return;
 741	}
 742
 743	msleep(5);  /* additionnel wait time for AKM's */
 744
 745	vx2_write_codec_reg(_chip, AKM_CODEC_POWER_CONTROL_CMD); /* DAC power up, ADC power up, Vref power down */
 746	
 747	vx2_write_codec_reg(_chip, AKM_CODEC_CLOCK_FORMAT_CMD); /* default */
 748	vx2_write_codec_reg(_chip, AKM_CODEC_MUTE_CMD); /* Mute = ON ,Deemphasis = OFF */
 749	vx2_write_codec_reg(_chip, AKM_CODEC_RESET_OFF_CMD); /* DAC and ADC normal operation */
 750
 751	if (_chip->type == VX_TYPE_MIC) {
 752		/* set up the micro input selector */
 753		chip->regSELMIC =  MICRO_SELECT_INPUT_NORM |
 754			MICRO_SELECT_PREAMPLI_G_0 |
 755			MICRO_SELECT_NOISE_T_52DB;
 756
 757		/* reset phantom power supply */
 758		chip->regSELMIC &= ~MICRO_SELECT_PHANTOM_ALIM;
 759
 760		vx_outl(_chip, SELMIC, chip->regSELMIC);
 761	}
 762}
 763
 764
 765/*
 766 * change the audio source
 767 */
 768static void vx2_change_audio_source(struct vx_core *_chip, int src)
 769{
 770	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
 771
 772	switch (src) {
 773	case VX_AUDIO_SRC_DIGITAL:
 774		chip->regCFG |= VX_CFG_DATAIN_SEL_MASK;
 775		break;
 776	default:
 777		chip->regCFG &= ~VX_CFG_DATAIN_SEL_MASK;
 778		break;
 779	}
 780	vx_outl(chip, CFG, chip->regCFG);
 781}
 782
 783
 784/*
 785 * set the clock source
 786 */
 787static void vx2_set_clock_source(struct vx_core *_chip, int source)
 788{
 789	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
 790
 791	if (source == INTERNAL_QUARTZ)
 792		chip->regCFG &= ~VX_CFG_CLOCKIN_SEL_MASK;
 793	else
 794		chip->regCFG |= VX_CFG_CLOCKIN_SEL_MASK;
 795	vx_outl(chip, CFG, chip->regCFG);
 796}
 797
 798/*
 799 * reset the board
 800 */
 801static void vx2_reset_board(struct vx_core *_chip, int cold_reset)
 802{
 803	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
 804
 805	/* initialize the register values */
 806	chip->regCDSP = VX_CDSP_CODEC_RESET_MASK | VX_CDSP_DSP_RESET_MASK ;
 807	chip->regCFG = 0;
 808}
 809
 810
 811
 812/*
 813 * input level controls for VX222 Mic
 814 */
 815
 816/* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318),
 817 * 318 = 210 + 36 + 36 + 36   (210 = +9dB variable) (3 * 36 = 3 steps of 18dB pre ampli)
 818 * as we will mute if less than -110dB, so let's simply use line input coded levels and add constant offset !
 819 */
 820#define V2_MICRO_LEVEL_RANGE        (318 - 255)
 821
 822static void vx2_set_input_level(struct snd_vx222 *chip)
 823{
 824	int i, miclevel, preamp;
 825	unsigned int data;
 826
 827	miclevel = chip->mic_level;
 828	miclevel += V2_MICRO_LEVEL_RANGE; /* add 318 - 0xff */
 829	preamp = 0;
 830        while (miclevel > 210) { /* limitation to +9dB of 3310 real gain */
 831		preamp++;	/* raise pre ampli + 18dB */
 832		miclevel -= (18 * 2);   /* lower level 18 dB (*2 because of 0.5 dB steps !) */
 833        }
 834	if (snd_BUG_ON(preamp >= 4))
 835		return;
 836
 837	/* set pre-amp level */
 838	chip->regSELMIC &= ~MICRO_SELECT_PREAMPLI_MASK;
 839	chip->regSELMIC |= (preamp << MICRO_SELECT_PREAMPLI_OFFSET) & MICRO_SELECT_PREAMPLI_MASK;
 840	vx_outl(chip, SELMIC, chip->regSELMIC);
 841
 842	data = (unsigned int)miclevel << 16 |
 843		(unsigned int)chip->input_level[1] << 8 |
 844		(unsigned int)chip->input_level[0];
 845	vx_inl(chip, DATA); /* Activate input level programming */
 846
 847	/* We have to send 32 bits (4 x 8 bits) */
 848	for (i = 0; i < 32; i++, data <<= 1)
 849		vx_outl(chip, DATA, ((data & 0x80000000) ? VX_DATA_CODEC_MASK : 0));
 850
 851	vx_inl(chip, RUER); /* Terminate input level programming */
 852}
 853
 854
 855#define MIC_LEVEL_MAX	0xff
 856
 857static const DECLARE_TLV_DB_SCALE(db_scale_mic, -6450, 50, 0);
 858
 859/*
 860 * controls API for input levels
 861 */
 862
 863/* input levels */
 864static int vx_input_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
 865{
 866	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 867	uinfo->count = 2;
 868	uinfo->value.integer.min = 0;
 869	uinfo->value.integer.max = MIC_LEVEL_MAX;
 870	return 0;
 871}
 872
 873static int vx_input_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
 874{
 875	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
 876	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
 877	mutex_lock(&_chip->mixer_mutex);
 878	ucontrol->value.integer.value[0] = chip->input_level[0];
 879	ucontrol->value.integer.value[1] = chip->input_level[1];
 880	mutex_unlock(&_chip->mixer_mutex);
 881	return 0;
 882}
 883
 884static int vx_input_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
 885{
 886	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
 887	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
 888	if (ucontrol->value.integer.value[0] < 0 ||
 889	    ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
 890		return -EINVAL;
 891	if (ucontrol->value.integer.value[1] < 0 ||
 892	    ucontrol->value.integer.value[1] > MIC_LEVEL_MAX)
 893		return -EINVAL;
 894	mutex_lock(&_chip->mixer_mutex);
 895	if (chip->input_level[0] != ucontrol->value.integer.value[0] ||
 896	    chip->input_level[1] != ucontrol->value.integer.value[1]) {
 897		chip->input_level[0] = ucontrol->value.integer.value[0];
 898		chip->input_level[1] = ucontrol->value.integer.value[1];
 899		vx2_set_input_level(chip);
 900		mutex_unlock(&_chip->mixer_mutex);
 901		return 1;
 902	}
 903	mutex_unlock(&_chip->mixer_mutex);
 904	return 0;
 905}
 906
 907/* mic level */
 908static int vx_mic_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
 909{
 910	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 911	uinfo->count = 1;
 912	uinfo->value.integer.min = 0;
 913	uinfo->value.integer.max = MIC_LEVEL_MAX;
 914	return 0;
 915}
 916
 917static int vx_mic_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
 918{
 919	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
 920	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
 921	ucontrol->value.integer.value[0] = chip->mic_level;
 922	return 0;
 923}
 924
 925static int vx_mic_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
 926{
 927	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
 928	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
 929	if (ucontrol->value.integer.value[0] < 0 ||
 930	    ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
 931		return -EINVAL;
 932	mutex_lock(&_chip->mixer_mutex);
 933	if (chip->mic_level != ucontrol->value.integer.value[0]) {
 934		chip->mic_level = ucontrol->value.integer.value[0];
 935		vx2_set_input_level(chip);
 936		mutex_unlock(&_chip->mixer_mutex);
 937		return 1;
 938	}
 939	mutex_unlock(&_chip->mixer_mutex);
 940	return 0;
 941}
 942
 943static struct snd_kcontrol_new vx_control_input_level = {
 944	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
 945	.access =	(SNDRV_CTL_ELEM_ACCESS_READWRITE |
 946			 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
 947	.name =		"Capture Volume",
 948	.info =		vx_input_level_info,
 949	.get =		vx_input_level_get,
 950	.put =		vx_input_level_put,
 951	.tlv = { .p = db_scale_mic },
 952};
 953
 954static struct snd_kcontrol_new vx_control_mic_level = {
 955	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
 956	.access =	(SNDRV_CTL_ELEM_ACCESS_READWRITE |
 957			 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
 958	.name =		"Mic Capture Volume",
 959	.info =		vx_mic_level_info,
 960	.get =		vx_mic_level_get,
 961	.put =		vx_mic_level_put,
 962	.tlv = { .p = db_scale_mic },
 963};
 964
 965/*
 966 * FIXME: compressor/limiter implementation is missing yet...
 967 */
 968
 969static int vx2_add_mic_controls(struct vx_core *_chip)
 970{
 971	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
 972	int err;
 973
 974	if (_chip->type != VX_TYPE_MIC)
 975		return 0;
 976
 977	/* mute input levels */
 978	chip->input_level[0] = chip->input_level[1] = 0;
 979	chip->mic_level = 0;
 980	vx2_set_input_level(chip);
 981
 982	/* controls */
 983	if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_input_level, chip))) < 0)
 984		return err;
 985	if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_mic_level, chip))) < 0)
 986		return err;
 987
 988	return 0;
 989}
 990
 991
 992/*
 993 * callbacks
 994 */
 995struct snd_vx_ops vx222_ops = {
 996	.in8 = vx2_inb,
 997	.in32 = vx2_inl,
 998	.out8 = vx2_outb,
 999	.out32 = vx2_outl,
1000	.test_and_ack = vx2_test_and_ack,
1001	.validate_irq = vx2_validate_irq,
1002	.akm_write = vx2_write_akm,
1003	.reset_codec = vx2_reset_codec,
1004	.change_audio_source = vx2_change_audio_source,
1005	.set_clock_source = vx2_set_clock_source,
1006	.load_dsp = vx2_load_dsp,
1007	.reset_dsp = vx2_reset_dsp,
1008	.reset_board = vx2_reset_board,
1009	.dma_write = vx2_dma_write,
1010	.dma_read = vx2_dma_read,
1011	.add_controls = vx2_add_mic_controls,
1012};
1013
1014/* for old VX222 board */
1015struct snd_vx_ops vx222_old_ops = {
1016	.in8 = vx2_inb,
1017	.in32 = vx2_inl,
1018	.out8 = vx2_outb,
1019	.out32 = vx2_outl,
1020	.test_and_ack = vx2_test_and_ack,
1021	.validate_irq = vx2_validate_irq,
1022	.write_codec = vx2_old_write_codec_bit,
1023	.reset_codec = vx2_reset_codec,
1024	.change_audio_source = vx2_change_audio_source,
1025	.set_clock_source = vx2_set_clock_source,
1026	.load_dsp = vx2_load_dsp,
1027	.reset_dsp = vx2_reset_dsp,
1028	.reset_board = vx2_reset_board,
1029	.dma_write = vx2_dma_write,
1030	.dma_read = vx2_dma_read,
1031};
1032