Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
4 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
5 */
6
7/* Does not work. Warning may block system in capture mode */
8/* #define USE_VAR48KRATE */
9
10#include <linux/io.h>
11#include <linux/delay.h>
12#include <linux/interrupt.h>
13#include <linux/init.h>
14#include <linux/pci.h>
15#include <linux/slab.h>
16#include <linux/gameport.h>
17#include <linux/module.h>
18#include <linux/mutex.h>
19#include <sound/core.h>
20#include <sound/info.h>
21#include <sound/control.h>
22#include <sound/pcm.h>
23#include <sound/rawmidi.h>
24#include <sound/mpu401.h>
25#include <sound/opl3.h>
26#include <sound/sb.h>
27#include <sound/asoundef.h>
28#include <sound/initval.h>
29
30MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
31MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
32MODULE_LICENSE("GPL");
33MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
34 "{C-Media,CMI8738B},"
35 "{C-Media,CMI8338A},"
36 "{C-Media,CMI8338B}}");
37
38#if IS_REACHABLE(CONFIG_GAMEPORT)
39#define SUPPORT_JOYSTICK 1
40#endif
41
42static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
43static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
44static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */
45static long mpu_port[SNDRV_CARDS];
46static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
47static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
48#ifdef SUPPORT_JOYSTICK
49static int joystick_port[SNDRV_CARDS];
50#endif
51
52module_param_array(index, int, NULL, 0444);
53MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
54module_param_array(id, charp, NULL, 0444);
55MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
56module_param_array(enable, bool, NULL, 0444);
57MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
58module_param_hw_array(mpu_port, long, ioport, NULL, 0444);
59MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
60module_param_hw_array(fm_port, long, ioport, NULL, 0444);
61MODULE_PARM_DESC(fm_port, "FM port.");
62module_param_array(soft_ac3, bool, NULL, 0444);
63MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
64#ifdef SUPPORT_JOYSTICK
65module_param_hw_array(joystick_port, int, ioport, NULL, 0444);
66MODULE_PARM_DESC(joystick_port, "Joystick port address.");
67#endif
68
69/*
70 * CM8x38 registers definition
71 */
72
73#define CM_REG_FUNCTRL0 0x00
74#define CM_RST_CH1 0x00080000
75#define CM_RST_CH0 0x00040000
76#define CM_CHEN1 0x00020000 /* ch1: enable */
77#define CM_CHEN0 0x00010000 /* ch0: enable */
78#define CM_PAUSE1 0x00000008 /* ch1: pause */
79#define CM_PAUSE0 0x00000004 /* ch0: pause */
80#define CM_CHADC1 0x00000002 /* ch1, 0:playback, 1:record */
81#define CM_CHADC0 0x00000001 /* ch0, 0:playback, 1:record */
82
83#define CM_REG_FUNCTRL1 0x04
84#define CM_DSFC_MASK 0x0000E000 /* channel 1 (DAC?) sampling frequency */
85#define CM_DSFC_SHIFT 13
86#define CM_ASFC_MASK 0x00001C00 /* channel 0 (ADC?) sampling frequency */
87#define CM_ASFC_SHIFT 10
88#define CM_SPDF_1 0x00000200 /* SPDIF IN/OUT at channel B */
89#define CM_SPDF_0 0x00000100 /* SPDIF OUT only channel A */
90#define CM_SPDFLOOP 0x00000080 /* ext. SPDIIF/IN -> OUT loopback */
91#define CM_SPDO2DAC 0x00000040 /* SPDIF/OUT can be heard from internal DAC */
92#define CM_INTRM 0x00000020 /* master control block (MCB) interrupt enabled */
93#define CM_BREQ 0x00000010 /* bus master enabled */
94#define CM_VOICE_EN 0x00000008 /* legacy voice (SB16,FM) */
95#define CM_UART_EN 0x00000004 /* legacy UART */
96#define CM_JYSTK_EN 0x00000002 /* legacy joystick */
97#define CM_ZVPORT 0x00000001 /* ZVPORT */
98
99#define CM_REG_CHFORMAT 0x08
100
101#define CM_CHB3D5C 0x80000000 /* 5,6 channels */
102#define CM_FMOFFSET2 0x40000000 /* initial FM PCM offset 2 when Fmute=1 */
103#define CM_CHB3D 0x20000000 /* 4 channels */
104
105#define CM_CHIP_MASK1 0x1f000000
106#define CM_CHIP_037 0x01000000
107#define CM_SETLAT48 0x00800000 /* set latency timer 48h */
108#define CM_EDGEIRQ 0x00400000 /* emulated edge trigger legacy IRQ */
109#define CM_SPD24SEL39 0x00200000 /* 24-bit spdif: model 039 */
110#define CM_AC3EN1 0x00100000 /* enable AC3: model 037 */
111#define CM_SPDIF_SELECT1 0x00080000 /* for model <= 037 ? */
112#define CM_SPD24SEL 0x00020000 /* 24bit spdif: model 037 */
113/* #define CM_SPDIF_INVERSE 0x00010000 */ /* ??? */
114
115#define CM_ADCBITLEN_MASK 0x0000C000
116#define CM_ADCBITLEN_16 0x00000000
117#define CM_ADCBITLEN_15 0x00004000
118#define CM_ADCBITLEN_14 0x00008000
119#define CM_ADCBITLEN_13 0x0000C000
120
121#define CM_ADCDACLEN_MASK 0x00003000 /* model 037 */
122#define CM_ADCDACLEN_060 0x00000000
123#define CM_ADCDACLEN_066 0x00001000
124#define CM_ADCDACLEN_130 0x00002000
125#define CM_ADCDACLEN_280 0x00003000
126
127#define CM_ADCDLEN_MASK 0x00003000 /* model 039 */
128#define CM_ADCDLEN_ORIGINAL 0x00000000
129#define CM_ADCDLEN_EXTRA 0x00001000
130#define CM_ADCDLEN_24K 0x00002000
131#define CM_ADCDLEN_WEIGHT 0x00003000
132
133#define CM_CH1_SRATE_176K 0x00000800
134#define CM_CH1_SRATE_96K 0x00000800 /* model 055? */
135#define CM_CH1_SRATE_88K 0x00000400
136#define CM_CH0_SRATE_176K 0x00000200
137#define CM_CH0_SRATE_96K 0x00000200 /* model 055? */
138#define CM_CH0_SRATE_88K 0x00000100
139#define CM_CH0_SRATE_128K 0x00000300
140#define CM_CH0_SRATE_MASK 0x00000300
141
142#define CM_SPDIF_INVERSE2 0x00000080 /* model 055? */
143#define CM_DBLSPDS 0x00000040 /* double SPDIF sample rate 88.2/96 */
144#define CM_POLVALID 0x00000020 /* inverse SPDIF/IN valid bit */
145#define CM_SPDLOCKED 0x00000010
146
147#define CM_CH1FMT_MASK 0x0000000C /* bit 3: 16 bits, bit 2: stereo */
148#define CM_CH1FMT_SHIFT 2
149#define CM_CH0FMT_MASK 0x00000003 /* bit 1: 16 bits, bit 0: stereo */
150#define CM_CH0FMT_SHIFT 0
151
152#define CM_REG_INT_HLDCLR 0x0C
153#define CM_CHIP_MASK2 0xff000000
154#define CM_CHIP_8768 0x20000000
155#define CM_CHIP_055 0x08000000
156#define CM_CHIP_039 0x04000000
157#define CM_CHIP_039_6CH 0x01000000
158#define CM_UNKNOWN_INT_EN 0x00080000 /* ? */
159#define CM_TDMA_INT_EN 0x00040000
160#define CM_CH1_INT_EN 0x00020000
161#define CM_CH0_INT_EN 0x00010000
162
163#define CM_REG_INT_STATUS 0x10
164#define CM_INTR 0x80000000
165#define CM_VCO 0x08000000 /* Voice Control? CMI8738 */
166#define CM_MCBINT 0x04000000 /* Master Control Block abort cond.? */
167#define CM_UARTINT 0x00010000
168#define CM_LTDMAINT 0x00008000
169#define CM_HTDMAINT 0x00004000
170#define CM_XDO46 0x00000080 /* Modell 033? Direct programming EEPROM (read data register) */
171#define CM_LHBTOG 0x00000040 /* High/Low status from DMA ctrl register */
172#define CM_LEG_HDMA 0x00000020 /* Legacy is in High DMA channel */
173#define CM_LEG_STEREO 0x00000010 /* Legacy is in Stereo mode */
174#define CM_CH1BUSY 0x00000008
175#define CM_CH0BUSY 0x00000004
176#define CM_CHINT1 0x00000002
177#define CM_CHINT0 0x00000001
178
179#define CM_REG_LEGACY_CTRL 0x14
180#define CM_NXCHG 0x80000000 /* don't map base reg dword->sample */
181#define CM_VMPU_MASK 0x60000000 /* MPU401 i/o port address */
182#define CM_VMPU_330 0x00000000
183#define CM_VMPU_320 0x20000000
184#define CM_VMPU_310 0x40000000
185#define CM_VMPU_300 0x60000000
186#define CM_ENWR8237 0x10000000 /* enable bus master to write 8237 base reg */
187#define CM_VSBSEL_MASK 0x0C000000 /* SB16 base address */
188#define CM_VSBSEL_220 0x00000000
189#define CM_VSBSEL_240 0x04000000
190#define CM_VSBSEL_260 0x08000000
191#define CM_VSBSEL_280 0x0C000000
192#define CM_FMSEL_MASK 0x03000000 /* FM OPL3 base address */
193#define CM_FMSEL_388 0x00000000
194#define CM_FMSEL_3C8 0x01000000
195#define CM_FMSEL_3E0 0x02000000
196#define CM_FMSEL_3E8 0x03000000
197#define CM_ENSPDOUT 0x00800000 /* enable XSPDIF/OUT to I/O interface */
198#define CM_SPDCOPYRHT 0x00400000 /* spdif in/out copyright bit */
199#define CM_DAC2SPDO 0x00200000 /* enable wave+fm_midi -> SPDIF/OUT */
200#define CM_INVIDWEN 0x00100000 /* internal vendor ID write enable, model 039? */
201#define CM_SETRETRY 0x00100000 /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
202#define CM_C_EEACCESS 0x00080000 /* direct programming eeprom regs */
203#define CM_C_EECS 0x00040000
204#define CM_C_EEDI46 0x00020000
205#define CM_C_EECK46 0x00010000
206#define CM_CHB3D6C 0x00008000 /* 5.1 channels support */
207#define CM_CENTR2LIN 0x00004000 /* line-in as center out */
208#define CM_BASE2LIN 0x00002000 /* line-in as bass out */
209#define CM_EXBASEN 0x00001000 /* external bass input enable */
210
211#define CM_REG_MISC_CTRL 0x18
212#define CM_PWD 0x80000000 /* power down */
213#define CM_RESET 0x40000000
214#define CM_SFIL_MASK 0x30000000 /* filter control at front end DAC, model 037? */
215#define CM_VMGAIN 0x10000000 /* analog master amp +6dB, model 039? */
216#define CM_TXVX 0x08000000 /* model 037? */
217#define CM_N4SPK3D 0x04000000 /* copy front to rear */
218#define CM_SPDO5V 0x02000000 /* 5V spdif output (1 = 0.5v (coax)) */
219#define CM_SPDIF48K 0x01000000 /* write */
220#define CM_SPATUS48K 0x01000000 /* read */
221#define CM_ENDBDAC 0x00800000 /* enable double dac */
222#define CM_XCHGDAC 0x00400000 /* 0: front=ch0, 1: front=ch1 */
223#define CM_SPD32SEL 0x00200000 /* 0: 16bit SPDIF, 1: 32bit */
224#define CM_SPDFLOOPI 0x00100000 /* int. SPDIF-OUT -> int. IN */
225#define CM_FM_EN 0x00080000 /* enable legacy FM */
226#define CM_AC3EN2 0x00040000 /* enable AC3: model 039 */
227#define CM_ENWRASID 0x00010000 /* choose writable internal SUBID (audio) */
228#define CM_VIDWPDSB 0x00010000 /* model 037? */
229#define CM_SPDF_AC97 0x00008000 /* 0: SPDIF/OUT 44.1K, 1: 48K */
230#define CM_MASK_EN 0x00004000 /* activate channel mask on legacy DMA */
231#define CM_ENWRMSID 0x00002000 /* choose writable internal SUBID (modem) */
232#define CM_VIDWPPRT 0x00002000 /* model 037? */
233#define CM_SFILENB 0x00001000 /* filter stepping at front end DAC, model 037? */
234#define CM_MMODE_MASK 0x00000E00 /* model DAA interface mode */
235#define CM_SPDIF_SELECT2 0x00000100 /* for model > 039 ? */
236#define CM_ENCENTER 0x00000080
237#define CM_FLINKON 0x00000040 /* force modem link detection on, model 037 */
238#define CM_MUTECH1 0x00000040 /* mute PCI ch1 to DAC */
239#define CM_FLINKOFF 0x00000020 /* force modem link detection off, model 037 */
240#define CM_MIDSMP 0x00000010 /* 1/2 interpolation at front end DAC */
241#define CM_UPDDMA_MASK 0x0000000C /* TDMA position update notification */
242#define CM_UPDDMA_2048 0x00000000
243#define CM_UPDDMA_1024 0x00000004
244#define CM_UPDDMA_512 0x00000008
245#define CM_UPDDMA_256 0x0000000C
246#define CM_TWAIT_MASK 0x00000003 /* model 037 */
247#define CM_TWAIT1 0x00000002 /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
248#define CM_TWAIT0 0x00000001 /* i/o cycle, 0: 4, 1: 6 PCICLKs */
249
250#define CM_REG_TDMA_POSITION 0x1C
251#define CM_TDMA_CNT_MASK 0xFFFF0000 /* current byte/word count */
252#define CM_TDMA_ADR_MASK 0x0000FFFF /* current address */
253
254 /* byte */
255#define CM_REG_MIXER0 0x20
256#define CM_REG_SBVR 0x20 /* write: sb16 version */
257#define CM_REG_DEV 0x20 /* read: hardware device version */
258
259#define CM_REG_MIXER21 0x21
260#define CM_UNKNOWN_21_MASK 0x78 /* ? */
261#define CM_X_ADPCM 0x04 /* SB16 ADPCM enable */
262#define CM_PROINV 0x02 /* SBPro left/right channel switching */
263#define CM_X_SB16 0x01 /* SB16 compatible */
264
265#define CM_REG_SB16_DATA 0x22
266#define CM_REG_SB16_ADDR 0x23
267
268#define CM_REFFREQ_XIN (315*1000*1000)/22 /* 14.31818 Mhz reference clock frequency pin XIN */
269#define CM_ADCMULT_XIN 512 /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
270#define CM_TOLERANCE_RATE 0.001 /* Tolerance sample rate pitch (1000ppm) */
271#define CM_MAXIMUM_RATE 80000000 /* Note more than 80MHz */
272
273#define CM_REG_MIXER1 0x24
274#define CM_FMMUTE 0x80 /* mute FM */
275#define CM_FMMUTE_SHIFT 7
276#define CM_WSMUTE 0x40 /* mute PCM */
277#define CM_WSMUTE_SHIFT 6
278#define CM_REAR2LIN 0x20 /* lin-in -> rear line out */
279#define CM_REAR2LIN_SHIFT 5
280#define CM_REAR2FRONT 0x10 /* exchange rear/front */
281#define CM_REAR2FRONT_SHIFT 4
282#define CM_WAVEINL 0x08 /* digital wave rec. left chan */
283#define CM_WAVEINL_SHIFT 3
284#define CM_WAVEINR 0x04 /* digical wave rec. right */
285#define CM_WAVEINR_SHIFT 2
286#define CM_X3DEN 0x02 /* 3D surround enable */
287#define CM_X3DEN_SHIFT 1
288#define CM_CDPLAY 0x01 /* enable SPDIF/IN PCM -> DAC */
289#define CM_CDPLAY_SHIFT 0
290
291#define CM_REG_MIXER2 0x25
292#define CM_RAUXREN 0x80 /* AUX right capture */
293#define CM_RAUXREN_SHIFT 7
294#define CM_RAUXLEN 0x40 /* AUX left capture */
295#define CM_RAUXLEN_SHIFT 6
296#define CM_VAUXRM 0x20 /* AUX right mute */
297#define CM_VAUXRM_SHIFT 5
298#define CM_VAUXLM 0x10 /* AUX left mute */
299#define CM_VAUXLM_SHIFT 4
300#define CM_VADMIC_MASK 0x0e /* mic gain level (0-3) << 1 */
301#define CM_VADMIC_SHIFT 1
302#define CM_MICGAINZ 0x01 /* mic boost */
303#define CM_MICGAINZ_SHIFT 0
304
305#define CM_REG_MIXER3 0x24
306#define CM_REG_AUX_VOL 0x26
307#define CM_VAUXL_MASK 0xf0
308#define CM_VAUXR_MASK 0x0f
309
310#define CM_REG_MISC 0x27
311#define CM_UNKNOWN_27_MASK 0xd8 /* ? */
312#define CM_XGPO1 0x20
313// #define CM_XGPBIO 0x04
314#define CM_MIC_CENTER_LFE 0x04 /* mic as center/lfe out? (model 039 or later?) */
315#define CM_SPDIF_INVERSE 0x04 /* spdif input phase inverse (model 037) */
316#define CM_SPDVALID 0x02 /* spdif input valid check */
317#define CM_DMAUTO 0x01 /* SB16 DMA auto detect */
318
319#define CM_REG_AC97 0x28 /* hmmm.. do we have ac97 link? */
320/*
321 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
322 * or identical with AC97 codec?
323 */
324#define CM_REG_EXTERN_CODEC CM_REG_AC97
325
326/*
327 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
328 */
329#define CM_REG_MPU_PCI 0x40
330
331/*
332 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
333 */
334#define CM_REG_FM_PCI 0x50
335
336/*
337 * access from SB-mixer port
338 */
339#define CM_REG_EXTENT_IND 0xf0
340#define CM_VPHONE_MASK 0xe0 /* Phone volume control (0-3) << 5 */
341#define CM_VPHONE_SHIFT 5
342#define CM_VPHOM 0x10 /* Phone mute control */
343#define CM_VSPKM 0x08 /* Speaker mute control, default high */
344#define CM_RLOOPREN 0x04 /* Rec. R-channel enable */
345#define CM_RLOOPLEN 0x02 /* Rec. L-channel enable */
346#define CM_VADMIC3 0x01 /* Mic record boost */
347
348/*
349 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
350 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
351 * unit (readonly?).
352 */
353#define CM_REG_PLL 0xf8
354
355/*
356 * extended registers
357 */
358#define CM_REG_CH0_FRAME1 0x80 /* write: base address */
359#define CM_REG_CH0_FRAME2 0x84 /* read: current address */
360#define CM_REG_CH1_FRAME1 0x88 /* 0-15: count of samples at bus master; buffer size */
361#define CM_REG_CH1_FRAME2 0x8C /* 16-31: count of samples at codec; fragment size */
362
363#define CM_REG_EXT_MISC 0x90
364#define CM_ADC48K44K 0x10000000 /* ADC parameters group, 0: 44k, 1: 48k */
365#define CM_CHB3D8C 0x00200000 /* 7.1 channels support */
366#define CM_SPD32FMT 0x00100000 /* SPDIF/IN 32k sample rate */
367#define CM_ADC2SPDIF 0x00080000 /* ADC output to SPDIF/OUT */
368#define CM_SHAREADC 0x00040000 /* DAC in ADC as Center/LFE */
369#define CM_REALTCMP 0x00020000 /* monitor the CMPL/CMPR of ADC */
370#define CM_INVLRCK 0x00010000 /* invert ZVPORT's LRCK */
371#define CM_UNKNOWN_90_MASK 0x0000FFFF /* ? */
372
373/*
374 * size of i/o region
375 */
376#define CM_EXTENT_CODEC 0x100
377#define CM_EXTENT_MIDI 0x2
378#define CM_EXTENT_SYNTH 0x4
379
380
381/*
382 * channels for playback / capture
383 */
384#define CM_CH_PLAY 0
385#define CM_CH_CAPT 1
386
387/*
388 * flags to check device open/close
389 */
390#define CM_OPEN_NONE 0
391#define CM_OPEN_CH_MASK 0x01
392#define CM_OPEN_DAC 0x10
393#define CM_OPEN_ADC 0x20
394#define CM_OPEN_SPDIF 0x40
395#define CM_OPEN_MCHAN 0x80
396#define CM_OPEN_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC)
397#define CM_OPEN_PLAYBACK2 (CM_CH_CAPT | CM_OPEN_DAC)
398#define CM_OPEN_PLAYBACK_MULTI (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
399#define CM_OPEN_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC)
400#define CM_OPEN_SPDIF_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
401#define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
402
403
404#if CM_CH_PLAY == 1
405#define CM_PLAYBACK_SRATE_176K CM_CH1_SRATE_176K
406#define CM_PLAYBACK_SPDF CM_SPDF_1
407#define CM_CAPTURE_SPDF CM_SPDF_0
408#else
409#define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
410#define CM_PLAYBACK_SPDF CM_SPDF_0
411#define CM_CAPTURE_SPDF CM_SPDF_1
412#endif
413
414
415/*
416 * driver data
417 */
418
419struct cmipci_pcm {
420 struct snd_pcm_substream *substream;
421 u8 running; /* dac/adc running? */
422 u8 fmt; /* format bits */
423 u8 is_dac;
424 u8 needs_silencing;
425 unsigned int dma_size; /* in frames */
426 unsigned int shift;
427 unsigned int ch; /* channel (0/1) */
428 unsigned int offset; /* physical address of the buffer */
429};
430
431/* mixer elements toggled/resumed during ac3 playback */
432struct cmipci_mixer_auto_switches {
433 const char *name; /* switch to toggle */
434 int toggle_on; /* value to change when ac3 mode */
435};
436static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
437 {"PCM Playback Switch", 0},
438 {"IEC958 Output Switch", 1},
439 {"IEC958 Mix Analog", 0},
440 // {"IEC958 Out To DAC", 1}, // no longer used
441 {"IEC958 Loop", 0},
442};
443#define CM_SAVED_MIXERS ARRAY_SIZE(cm_saved_mixer)
444
445struct cmipci {
446 struct snd_card *card;
447
448 struct pci_dev *pci;
449 unsigned int device; /* device ID */
450 int irq;
451
452 unsigned long iobase;
453 unsigned int ctrl; /* FUNCTRL0 current value */
454
455 struct snd_pcm *pcm; /* DAC/ADC PCM */
456 struct snd_pcm *pcm2; /* 2nd DAC */
457 struct snd_pcm *pcm_spdif; /* SPDIF */
458
459 int chip_version;
460 int max_channels;
461 unsigned int can_ac3_sw: 1;
462 unsigned int can_ac3_hw: 1;
463 unsigned int can_multi_ch: 1;
464 unsigned int can_96k: 1; /* samplerate above 48k */
465 unsigned int do_soft_ac3: 1;
466
467 unsigned int spdif_playback_avail: 1; /* spdif ready? */
468 unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */
469 int spdif_counter; /* for software AC3 */
470
471 unsigned int dig_status;
472 unsigned int dig_pcm_status;
473
474 struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
475
476 int opened[2]; /* open mode */
477 struct mutex open_mutex;
478
479 unsigned int mixer_insensitive: 1;
480 struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
481 int mixer_res_status[CM_SAVED_MIXERS];
482
483 struct cmipci_pcm channel[2]; /* ch0 - DAC, ch1 - ADC or 2nd DAC */
484
485 /* external MIDI */
486 struct snd_rawmidi *rmidi;
487
488#ifdef SUPPORT_JOYSTICK
489 struct gameport *gameport;
490#endif
491
492 spinlock_t reg_lock;
493
494#ifdef CONFIG_PM_SLEEP
495 unsigned int saved_regs[0x20];
496 unsigned char saved_mixers[0x20];
497#endif
498};
499
500
501/* read/write operations for dword register */
502static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
503{
504 outl(data, cm->iobase + cmd);
505}
506
507static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
508{
509 return inl(cm->iobase + cmd);
510}
511
512/* read/write operations for word register */
513static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
514{
515 outw(data, cm->iobase + cmd);
516}
517
518static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
519{
520 return inw(cm->iobase + cmd);
521}
522
523/* read/write operations for byte register */
524static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
525{
526 outb(data, cm->iobase + cmd);
527}
528
529static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
530{
531 return inb(cm->iobase + cmd);
532}
533
534/* bit operations for dword register */
535static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
536{
537 unsigned int val, oval;
538 val = oval = inl(cm->iobase + cmd);
539 val |= flag;
540 if (val == oval)
541 return 0;
542 outl(val, cm->iobase + cmd);
543 return 1;
544}
545
546static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
547{
548 unsigned int val, oval;
549 val = oval = inl(cm->iobase + cmd);
550 val &= ~flag;
551 if (val == oval)
552 return 0;
553 outl(val, cm->iobase + cmd);
554 return 1;
555}
556
557/* bit operations for byte register */
558static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
559{
560 unsigned char val, oval;
561 val = oval = inb(cm->iobase + cmd);
562 val |= flag;
563 if (val == oval)
564 return 0;
565 outb(val, cm->iobase + cmd);
566 return 1;
567}
568
569static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
570{
571 unsigned char val, oval;
572 val = oval = inb(cm->iobase + cmd);
573 val &= ~flag;
574 if (val == oval)
575 return 0;
576 outb(val, cm->iobase + cmd);
577 return 1;
578}
579
580
581/*
582 * PCM interface
583 */
584
585/*
586 * calculate frequency
587 */
588
589static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
590
591static unsigned int snd_cmipci_rate_freq(unsigned int rate)
592{
593 unsigned int i;
594
595 for (i = 0; i < ARRAY_SIZE(rates); i++) {
596 if (rates[i] == rate)
597 return i;
598 }
599 snd_BUG();
600 return 0;
601}
602
603#ifdef USE_VAR48KRATE
604/*
605 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
606 * does it this way .. maybe not. Never get any information from C-Media about
607 * that <werner@suse.de>.
608 */
609static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
610{
611 unsigned int delta, tolerance;
612 int xm, xn, xr;
613
614 for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
615 rate <<= 1;
616 *n = -1;
617 if (*r > 0xff)
618 goto out;
619 tolerance = rate*CM_TOLERANCE_RATE;
620
621 for (xn = (1+2); xn < (0x1f+2); xn++) {
622 for (xm = (1+2); xm < (0xff+2); xm++) {
623 xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
624
625 if (xr < rate)
626 delta = rate - xr;
627 else
628 delta = xr - rate;
629
630 /*
631 * If we found one, remember this,
632 * and try to find a closer one
633 */
634 if (delta < tolerance) {
635 tolerance = delta;
636 *m = xm - 2;
637 *n = xn - 2;
638 }
639 }
640 }
641out:
642 return (*n > -1);
643}
644
645/*
646 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
647 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
648 * at the register CM_REG_FUNCTRL1 (0x04).
649 * Problem: other ways are also possible (any information about that?)
650 */
651static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
652{
653 unsigned int reg = CM_REG_PLL + slot;
654 /*
655 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
656 * for DSFC/ASFC (000 up to 111).
657 */
658
659 /* FIXME: Init (Do we've to set an other register first before programming?) */
660
661 /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
662 snd_cmipci_write_b(cm, reg, rate>>8);
663 snd_cmipci_write_b(cm, reg, rate&0xff);
664
665 /* FIXME: Setup (Do we've to set an other register first to enable this?) */
666}
667#endif /* USE_VAR48KRATE */
668
669static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
670 struct snd_pcm_hw_params *hw_params)
671{
672 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
673}
674
675static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
676 struct snd_pcm_hw_params *hw_params)
677{
678 struct cmipci *cm = snd_pcm_substream_chip(substream);
679 if (params_channels(hw_params) > 2) {
680 mutex_lock(&cm->open_mutex);
681 if (cm->opened[CM_CH_PLAY]) {
682 mutex_unlock(&cm->open_mutex);
683 return -EBUSY;
684 }
685 /* reserve the channel A */
686 cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
687 mutex_unlock(&cm->open_mutex);
688 }
689 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
690}
691
692static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
693{
694 int reset = CM_RST_CH0 << (cm->channel[ch].ch);
695 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
696 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
697 udelay(10);
698}
699
700static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
701{
702 return snd_pcm_lib_free_pages(substream);
703}
704
705
706/*
707 */
708
709static const unsigned int hw_channels[] = {1, 2, 4, 6, 8};
710static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
711 .count = 3,
712 .list = hw_channels,
713 .mask = 0,
714};
715static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
716 .count = 4,
717 .list = hw_channels,
718 .mask = 0,
719};
720static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
721 .count = 5,
722 .list = hw_channels,
723 .mask = 0,
724};
725
726static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
727{
728 if (channels > 2) {
729 if (!cm->can_multi_ch || !rec->ch)
730 return -EINVAL;
731 if (rec->fmt != 0x03) /* stereo 16bit only */
732 return -EINVAL;
733 }
734
735 if (cm->can_multi_ch) {
736 spin_lock_irq(&cm->reg_lock);
737 if (channels > 2) {
738 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
739 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
740 } else {
741 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
742 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
743 }
744 if (channels == 8)
745 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
746 else
747 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
748 if (channels == 6) {
749 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
750 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
751 } else {
752 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
753 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
754 }
755 if (channels == 4)
756 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
757 else
758 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
759 spin_unlock_irq(&cm->reg_lock);
760 }
761 return 0;
762}
763
764
765/*
766 * prepare playback/capture channel
767 * channel to be used must have been set in rec->ch.
768 */
769static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
770 struct snd_pcm_substream *substream)
771{
772 unsigned int reg, freq, freq_ext, val;
773 unsigned int period_size;
774 struct snd_pcm_runtime *runtime = substream->runtime;
775
776 rec->fmt = 0;
777 rec->shift = 0;
778 if (snd_pcm_format_width(runtime->format) >= 16) {
779 rec->fmt |= 0x02;
780 if (snd_pcm_format_width(runtime->format) > 16)
781 rec->shift++; /* 24/32bit */
782 }
783 if (runtime->channels > 1)
784 rec->fmt |= 0x01;
785 if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
786 dev_dbg(cm->card->dev, "cannot set dac channels\n");
787 return -EINVAL;
788 }
789
790 rec->offset = runtime->dma_addr;
791 /* buffer and period sizes in frame */
792 rec->dma_size = runtime->buffer_size << rec->shift;
793 period_size = runtime->period_size << rec->shift;
794 if (runtime->channels > 2) {
795 /* multi-channels */
796 rec->dma_size = (rec->dma_size * runtime->channels) / 2;
797 period_size = (period_size * runtime->channels) / 2;
798 }
799
800 spin_lock_irq(&cm->reg_lock);
801
802 /* set buffer address */
803 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
804 snd_cmipci_write(cm, reg, rec->offset);
805 /* program sample counts */
806 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
807 snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
808 snd_cmipci_write_w(cm, reg + 2, period_size - 1);
809
810 /* set adc/dac flag */
811 val = rec->ch ? CM_CHADC1 : CM_CHADC0;
812 if (rec->is_dac)
813 cm->ctrl &= ~val;
814 else
815 cm->ctrl |= val;
816 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
817 /* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
818
819 /* set sample rate */
820 freq = 0;
821 freq_ext = 0;
822 if (runtime->rate > 48000)
823 switch (runtime->rate) {
824 case 88200: freq_ext = CM_CH0_SRATE_88K; break;
825 case 96000: freq_ext = CM_CH0_SRATE_96K; break;
826 case 128000: freq_ext = CM_CH0_SRATE_128K; break;
827 default: snd_BUG(); break;
828 }
829 else
830 freq = snd_cmipci_rate_freq(runtime->rate);
831 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
832 if (rec->ch) {
833 val &= ~CM_DSFC_MASK;
834 val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
835 } else {
836 val &= ~CM_ASFC_MASK;
837 val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
838 }
839 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
840 dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
841
842 /* set format */
843 val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
844 if (rec->ch) {
845 val &= ~CM_CH1FMT_MASK;
846 val |= rec->fmt << CM_CH1FMT_SHIFT;
847 } else {
848 val &= ~CM_CH0FMT_MASK;
849 val |= rec->fmt << CM_CH0FMT_SHIFT;
850 }
851 if (cm->can_96k) {
852 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
853 val |= freq_ext << (rec->ch * 2);
854 }
855 snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
856 dev_dbg(cm->card->dev, "chformat = %08x\n", val);
857
858 if (!rec->is_dac && cm->chip_version) {
859 if (runtime->rate > 44100)
860 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
861 else
862 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
863 }
864
865 rec->running = 0;
866 spin_unlock_irq(&cm->reg_lock);
867
868 return 0;
869}
870
871/*
872 * PCM trigger/stop
873 */
874static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
875 int cmd)
876{
877 unsigned int inthld, chen, reset, pause;
878 int result = 0;
879
880 inthld = CM_CH0_INT_EN << rec->ch;
881 chen = CM_CHEN0 << rec->ch;
882 reset = CM_RST_CH0 << rec->ch;
883 pause = CM_PAUSE0 << rec->ch;
884
885 spin_lock(&cm->reg_lock);
886 switch (cmd) {
887 case SNDRV_PCM_TRIGGER_START:
888 rec->running = 1;
889 /* set interrupt */
890 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
891 cm->ctrl |= chen;
892 /* enable channel */
893 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
894 dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
895 break;
896 case SNDRV_PCM_TRIGGER_STOP:
897 rec->running = 0;
898 /* disable interrupt */
899 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
900 /* reset */
901 cm->ctrl &= ~chen;
902 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
903 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
904 rec->needs_silencing = rec->is_dac;
905 break;
906 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
907 case SNDRV_PCM_TRIGGER_SUSPEND:
908 cm->ctrl |= pause;
909 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
910 break;
911 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
912 case SNDRV_PCM_TRIGGER_RESUME:
913 cm->ctrl &= ~pause;
914 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
915 break;
916 default:
917 result = -EINVAL;
918 break;
919 }
920 spin_unlock(&cm->reg_lock);
921 return result;
922}
923
924/*
925 * return the current pointer
926 */
927static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
928 struct snd_pcm_substream *substream)
929{
930 size_t ptr;
931 unsigned int reg, rem, tries;
932
933 if (!rec->running)
934 return 0;
935#if 1 // this seems better..
936 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
937 for (tries = 0; tries < 3; tries++) {
938 rem = snd_cmipci_read_w(cm, reg);
939 if (rem < rec->dma_size)
940 goto ok;
941 }
942 dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
943 return SNDRV_PCM_POS_XRUN;
944ok:
945 ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
946#else
947 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
948 ptr = snd_cmipci_read(cm, reg) - rec->offset;
949 ptr = bytes_to_frames(substream->runtime, ptr);
950#endif
951 if (substream->runtime->channels > 2)
952 ptr = (ptr * 2) / substream->runtime->channels;
953 return ptr;
954}
955
956/*
957 * playback
958 */
959
960static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
961 int cmd)
962{
963 struct cmipci *cm = snd_pcm_substream_chip(substream);
964 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
965}
966
967static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
968{
969 struct cmipci *cm = snd_pcm_substream_chip(substream);
970 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
971}
972
973
974
975/*
976 * capture
977 */
978
979static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
980 int cmd)
981{
982 struct cmipci *cm = snd_pcm_substream_chip(substream);
983 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
984}
985
986static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
987{
988 struct cmipci *cm = snd_pcm_substream_chip(substream);
989 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
990}
991
992
993/*
994 * hw preparation for spdif
995 */
996
997static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
998 struct snd_ctl_elem_info *uinfo)
999{
1000 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1001 uinfo->count = 1;
1002 return 0;
1003}
1004
1005static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
1006 struct snd_ctl_elem_value *ucontrol)
1007{
1008 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1009 int i;
1010
1011 spin_lock_irq(&chip->reg_lock);
1012 for (i = 0; i < 4; i++)
1013 ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1014 spin_unlock_irq(&chip->reg_lock);
1015 return 0;
1016}
1017
1018static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1019 struct snd_ctl_elem_value *ucontrol)
1020{
1021 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1022 int i, change;
1023 unsigned int val;
1024
1025 val = 0;
1026 spin_lock_irq(&chip->reg_lock);
1027 for (i = 0; i < 4; i++)
1028 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1029 change = val != chip->dig_status;
1030 chip->dig_status = val;
1031 spin_unlock_irq(&chip->reg_lock);
1032 return change;
1033}
1034
1035static const struct snd_kcontrol_new snd_cmipci_spdif_default =
1036{
1037 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1038 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1039 .info = snd_cmipci_spdif_default_info,
1040 .get = snd_cmipci_spdif_default_get,
1041 .put = snd_cmipci_spdif_default_put
1042};
1043
1044static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1045 struct snd_ctl_elem_info *uinfo)
1046{
1047 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1048 uinfo->count = 1;
1049 return 0;
1050}
1051
1052static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1053 struct snd_ctl_elem_value *ucontrol)
1054{
1055 ucontrol->value.iec958.status[0] = 0xff;
1056 ucontrol->value.iec958.status[1] = 0xff;
1057 ucontrol->value.iec958.status[2] = 0xff;
1058 ucontrol->value.iec958.status[3] = 0xff;
1059 return 0;
1060}
1061
1062static const struct snd_kcontrol_new snd_cmipci_spdif_mask =
1063{
1064 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1065 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1066 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1067 .info = snd_cmipci_spdif_mask_info,
1068 .get = snd_cmipci_spdif_mask_get,
1069};
1070
1071static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1072 struct snd_ctl_elem_info *uinfo)
1073{
1074 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1075 uinfo->count = 1;
1076 return 0;
1077}
1078
1079static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1080 struct snd_ctl_elem_value *ucontrol)
1081{
1082 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1083 int i;
1084
1085 spin_lock_irq(&chip->reg_lock);
1086 for (i = 0; i < 4; i++)
1087 ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1088 spin_unlock_irq(&chip->reg_lock);
1089 return 0;
1090}
1091
1092static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1093 struct snd_ctl_elem_value *ucontrol)
1094{
1095 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1096 int i, change;
1097 unsigned int val;
1098
1099 val = 0;
1100 spin_lock_irq(&chip->reg_lock);
1101 for (i = 0; i < 4; i++)
1102 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1103 change = val != chip->dig_pcm_status;
1104 chip->dig_pcm_status = val;
1105 spin_unlock_irq(&chip->reg_lock);
1106 return change;
1107}
1108
1109static const struct snd_kcontrol_new snd_cmipci_spdif_stream =
1110{
1111 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1112 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1113 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1114 .info = snd_cmipci_spdif_stream_info,
1115 .get = snd_cmipci_spdif_stream_get,
1116 .put = snd_cmipci_spdif_stream_put
1117};
1118
1119/*
1120 */
1121
1122/* save mixer setting and mute for AC3 playback */
1123static int save_mixer_state(struct cmipci *cm)
1124{
1125 if (! cm->mixer_insensitive) {
1126 struct snd_ctl_elem_value *val;
1127 unsigned int i;
1128
1129 val = kmalloc(sizeof(*val), GFP_KERNEL);
1130 if (!val)
1131 return -ENOMEM;
1132 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1133 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1134 if (ctl) {
1135 int event;
1136 memset(val, 0, sizeof(*val));
1137 ctl->get(ctl, val);
1138 cm->mixer_res_status[i] = val->value.integer.value[0];
1139 val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1140 event = SNDRV_CTL_EVENT_MASK_INFO;
1141 if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1142 ctl->put(ctl, val); /* toggle */
1143 event |= SNDRV_CTL_EVENT_MASK_VALUE;
1144 }
1145 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1146 snd_ctl_notify(cm->card, event, &ctl->id);
1147 }
1148 }
1149 kfree(val);
1150 cm->mixer_insensitive = 1;
1151 }
1152 return 0;
1153}
1154
1155
1156/* restore the previously saved mixer status */
1157static void restore_mixer_state(struct cmipci *cm)
1158{
1159 if (cm->mixer_insensitive) {
1160 struct snd_ctl_elem_value *val;
1161 unsigned int i;
1162
1163 val = kmalloc(sizeof(*val), GFP_KERNEL);
1164 if (!val)
1165 return;
1166 cm->mixer_insensitive = 0; /* at first clear this;
1167 otherwise the changes will be ignored */
1168 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1169 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1170 if (ctl) {
1171 int event;
1172
1173 memset(val, 0, sizeof(*val));
1174 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1175 ctl->get(ctl, val);
1176 event = SNDRV_CTL_EVENT_MASK_INFO;
1177 if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1178 val->value.integer.value[0] = cm->mixer_res_status[i];
1179 ctl->put(ctl, val);
1180 event |= SNDRV_CTL_EVENT_MASK_VALUE;
1181 }
1182 snd_ctl_notify(cm->card, event, &ctl->id);
1183 }
1184 }
1185 kfree(val);
1186 }
1187}
1188
1189/* spinlock held! */
1190static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1191{
1192 if (do_ac3) {
1193 /* AC3EN for 037 */
1194 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1195 /* AC3EN for 039 */
1196 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1197
1198 if (cm->can_ac3_hw) {
1199 /* SPD24SEL for 037, 0x02 */
1200 /* SPD24SEL for 039, 0x20, but cannot be set */
1201 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1202 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1203 } else { /* can_ac3_sw */
1204 /* SPD32SEL for 037 & 039, 0x20 */
1205 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1206 /* set 176K sample rate to fix 033 HW bug */
1207 if (cm->chip_version == 33) {
1208 if (rate >= 48000) {
1209 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1210 } else {
1211 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1212 }
1213 }
1214 }
1215
1216 } else {
1217 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1218 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1219
1220 if (cm->can_ac3_hw) {
1221 /* chip model >= 37 */
1222 if (snd_pcm_format_width(subs->runtime->format) > 16) {
1223 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1224 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1225 } else {
1226 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1227 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1228 }
1229 } else {
1230 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1231 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1232 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1233 }
1234 }
1235}
1236
1237static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1238{
1239 int rate, err;
1240
1241 rate = subs->runtime->rate;
1242
1243 if (up && do_ac3)
1244 if ((err = save_mixer_state(cm)) < 0)
1245 return err;
1246
1247 spin_lock_irq(&cm->reg_lock);
1248 cm->spdif_playback_avail = up;
1249 if (up) {
1250 /* they are controlled via "IEC958 Output Switch" */
1251 /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1252 /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1253 if (cm->spdif_playback_enabled)
1254 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1255 setup_ac3(cm, subs, do_ac3, rate);
1256
1257 if (rate == 48000 || rate == 96000)
1258 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1259 else
1260 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1261 if (rate > 48000)
1262 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1263 else
1264 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1265 } else {
1266 /* they are controlled via "IEC958 Output Switch" */
1267 /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1268 /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1269 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1270 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1271 setup_ac3(cm, subs, 0, 0);
1272 }
1273 spin_unlock_irq(&cm->reg_lock);
1274 return 0;
1275}
1276
1277
1278/*
1279 * preparation
1280 */
1281
1282/* playback - enable spdif only on the certain condition */
1283static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1284{
1285 struct cmipci *cm = snd_pcm_substream_chip(substream);
1286 int rate = substream->runtime->rate;
1287 int err, do_spdif, do_ac3 = 0;
1288
1289 do_spdif = (rate >= 44100 && rate <= 96000 &&
1290 substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1291 substream->runtime->channels == 2);
1292 if (do_spdif && cm->can_ac3_hw)
1293 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1294 if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1295 return err;
1296 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1297}
1298
1299/* playback (via device #2) - enable spdif always */
1300static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1301{
1302 struct cmipci *cm = snd_pcm_substream_chip(substream);
1303 int err, do_ac3;
1304
1305 if (cm->can_ac3_hw)
1306 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1307 else
1308 do_ac3 = 1; /* doesn't matter */
1309 if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1310 return err;
1311 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1312}
1313
1314/*
1315 * Apparently, the samples last played on channel A stay in some buffer, even
1316 * after the channel is reset, and get added to the data for the rear DACs when
1317 * playing a multichannel stream on channel B. This is likely to generate
1318 * wraparounds and thus distortions.
1319 * To avoid this, we play at least one zero sample after the actual stream has
1320 * stopped.
1321 */
1322static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1323{
1324 struct snd_pcm_runtime *runtime = rec->substream->runtime;
1325 unsigned int reg, val;
1326
1327 if (rec->needs_silencing && runtime && runtime->dma_area) {
1328 /* set up a small silence buffer */
1329 memset(runtime->dma_area, 0, PAGE_SIZE);
1330 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1331 val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1332 snd_cmipci_write(cm, reg, val);
1333
1334 /* configure for 16 bits, 2 channels, 8 kHz */
1335 if (runtime->channels > 2)
1336 set_dac_channels(cm, rec, 2);
1337 spin_lock_irq(&cm->reg_lock);
1338 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1339 val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1340 val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1341 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1342 val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1343 val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1344 val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1345 if (cm->can_96k)
1346 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1347 snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1348
1349 /* start stream (we don't need interrupts) */
1350 cm->ctrl |= CM_CHEN0 << rec->ch;
1351 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1352 spin_unlock_irq(&cm->reg_lock);
1353
1354 msleep(1);
1355
1356 /* stop and reset stream */
1357 spin_lock_irq(&cm->reg_lock);
1358 cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1359 val = CM_RST_CH0 << rec->ch;
1360 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1361 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1362 spin_unlock_irq(&cm->reg_lock);
1363
1364 rec->needs_silencing = 0;
1365 }
1366}
1367
1368static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1369{
1370 struct cmipci *cm = snd_pcm_substream_chip(substream);
1371 setup_spdif_playback(cm, substream, 0, 0);
1372 restore_mixer_state(cm);
1373 snd_cmipci_silence_hack(cm, &cm->channel[0]);
1374 return snd_cmipci_hw_free(substream);
1375}
1376
1377static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1378{
1379 struct cmipci *cm = snd_pcm_substream_chip(substream);
1380 snd_cmipci_silence_hack(cm, &cm->channel[1]);
1381 return snd_cmipci_hw_free(substream);
1382}
1383
1384/* capture */
1385static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1386{
1387 struct cmipci *cm = snd_pcm_substream_chip(substream);
1388 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1389}
1390
1391/* capture with spdif (via device #2) */
1392static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1393{
1394 struct cmipci *cm = snd_pcm_substream_chip(substream);
1395
1396 spin_lock_irq(&cm->reg_lock);
1397 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1398 if (cm->can_96k) {
1399 if (substream->runtime->rate > 48000)
1400 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1401 else
1402 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1403 }
1404 if (snd_pcm_format_width(substream->runtime->format) > 16)
1405 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1406 else
1407 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1408
1409 spin_unlock_irq(&cm->reg_lock);
1410
1411 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1412}
1413
1414static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1415{
1416 struct cmipci *cm = snd_pcm_substream_chip(subs);
1417
1418 spin_lock_irq(&cm->reg_lock);
1419 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1420 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1421 spin_unlock_irq(&cm->reg_lock);
1422
1423 return snd_cmipci_hw_free(subs);
1424}
1425
1426
1427/*
1428 * interrupt handler
1429 */
1430static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1431{
1432 struct cmipci *cm = dev_id;
1433 unsigned int status, mask = 0;
1434
1435 /* fastpath out, to ease interrupt sharing */
1436 status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1437 if (!(status & CM_INTR))
1438 return IRQ_NONE;
1439
1440 /* acknowledge interrupt */
1441 spin_lock(&cm->reg_lock);
1442 if (status & CM_CHINT0)
1443 mask |= CM_CH0_INT_EN;
1444 if (status & CM_CHINT1)
1445 mask |= CM_CH1_INT_EN;
1446 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1447 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1448 spin_unlock(&cm->reg_lock);
1449
1450 if (cm->rmidi && (status & CM_UARTINT))
1451 snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1452
1453 if (cm->pcm) {
1454 if ((status & CM_CHINT0) && cm->channel[0].running)
1455 snd_pcm_period_elapsed(cm->channel[0].substream);
1456 if ((status & CM_CHINT1) && cm->channel[1].running)
1457 snd_pcm_period_elapsed(cm->channel[1].substream);
1458 }
1459 return IRQ_HANDLED;
1460}
1461
1462/*
1463 * h/w infos
1464 */
1465
1466/* playback on channel A */
1467static const struct snd_pcm_hardware snd_cmipci_playback =
1468{
1469 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1470 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1471 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1472 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1473 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1474 .rate_min = 5512,
1475 .rate_max = 48000,
1476 .channels_min = 1,
1477 .channels_max = 2,
1478 .buffer_bytes_max = (128*1024),
1479 .period_bytes_min = 64,
1480 .period_bytes_max = (128*1024),
1481 .periods_min = 2,
1482 .periods_max = 1024,
1483 .fifo_size = 0,
1484};
1485
1486/* capture on channel B */
1487static const struct snd_pcm_hardware snd_cmipci_capture =
1488{
1489 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1490 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1491 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1492 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1493 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1494 .rate_min = 5512,
1495 .rate_max = 48000,
1496 .channels_min = 1,
1497 .channels_max = 2,
1498 .buffer_bytes_max = (128*1024),
1499 .period_bytes_min = 64,
1500 .period_bytes_max = (128*1024),
1501 .periods_min = 2,
1502 .periods_max = 1024,
1503 .fifo_size = 0,
1504};
1505
1506/* playback on channel B - stereo 16bit only? */
1507static const struct snd_pcm_hardware snd_cmipci_playback2 =
1508{
1509 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1510 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1511 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1512 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1513 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1514 .rate_min = 5512,
1515 .rate_max = 48000,
1516 .channels_min = 2,
1517 .channels_max = 2,
1518 .buffer_bytes_max = (128*1024),
1519 .period_bytes_min = 64,
1520 .period_bytes_max = (128*1024),
1521 .periods_min = 2,
1522 .periods_max = 1024,
1523 .fifo_size = 0,
1524};
1525
1526/* spdif playback on channel A */
1527static const struct snd_pcm_hardware snd_cmipci_playback_spdif =
1528{
1529 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1530 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1531 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1532 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1533 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1534 .rate_min = 44100,
1535 .rate_max = 48000,
1536 .channels_min = 2,
1537 .channels_max = 2,
1538 .buffer_bytes_max = (128*1024),
1539 .period_bytes_min = 64,
1540 .period_bytes_max = (128*1024),
1541 .periods_min = 2,
1542 .periods_max = 1024,
1543 .fifo_size = 0,
1544};
1545
1546/* spdif playback on channel A (32bit, IEC958 subframes) */
1547static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1548{
1549 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1550 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1551 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1552 .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1553 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1554 .rate_min = 44100,
1555 .rate_max = 48000,
1556 .channels_min = 2,
1557 .channels_max = 2,
1558 .buffer_bytes_max = (128*1024),
1559 .period_bytes_min = 64,
1560 .period_bytes_max = (128*1024),
1561 .periods_min = 2,
1562 .periods_max = 1024,
1563 .fifo_size = 0,
1564};
1565
1566/* spdif capture on channel B */
1567static const struct snd_pcm_hardware snd_cmipci_capture_spdif =
1568{
1569 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1570 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1571 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1572 .formats = SNDRV_PCM_FMTBIT_S16_LE |
1573 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1574 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1575 .rate_min = 44100,
1576 .rate_max = 48000,
1577 .channels_min = 2,
1578 .channels_max = 2,
1579 .buffer_bytes_max = (128*1024),
1580 .period_bytes_min = 64,
1581 .period_bytes_max = (128*1024),
1582 .periods_min = 2,
1583 .periods_max = 1024,
1584 .fifo_size = 0,
1585};
1586
1587static const unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1588 32000, 44100, 48000, 88200, 96000, 128000 };
1589static const struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1590 .count = ARRAY_SIZE(rate_constraints),
1591 .list = rate_constraints,
1592 .mask = 0,
1593};
1594
1595/*
1596 * check device open/close
1597 */
1598static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1599{
1600 int ch = mode & CM_OPEN_CH_MASK;
1601
1602 /* FIXME: a file should wait until the device becomes free
1603 * when it's opened on blocking mode. however, since the current
1604 * pcm framework doesn't pass file pointer before actually opened,
1605 * we can't know whether blocking mode or not in open callback..
1606 */
1607 mutex_lock(&cm->open_mutex);
1608 if (cm->opened[ch]) {
1609 mutex_unlock(&cm->open_mutex);
1610 return -EBUSY;
1611 }
1612 cm->opened[ch] = mode;
1613 cm->channel[ch].substream = subs;
1614 if (! (mode & CM_OPEN_DAC)) {
1615 /* disable dual DAC mode */
1616 cm->channel[ch].is_dac = 0;
1617 spin_lock_irq(&cm->reg_lock);
1618 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1619 spin_unlock_irq(&cm->reg_lock);
1620 }
1621 mutex_unlock(&cm->open_mutex);
1622 return 0;
1623}
1624
1625static void close_device_check(struct cmipci *cm, int mode)
1626{
1627 int ch = mode & CM_OPEN_CH_MASK;
1628
1629 mutex_lock(&cm->open_mutex);
1630 if (cm->opened[ch] == mode) {
1631 if (cm->channel[ch].substream) {
1632 snd_cmipci_ch_reset(cm, ch);
1633 cm->channel[ch].running = 0;
1634 cm->channel[ch].substream = NULL;
1635 }
1636 cm->opened[ch] = 0;
1637 if (! cm->channel[ch].is_dac) {
1638 /* enable dual DAC mode again */
1639 cm->channel[ch].is_dac = 1;
1640 spin_lock_irq(&cm->reg_lock);
1641 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1642 spin_unlock_irq(&cm->reg_lock);
1643 }
1644 }
1645 mutex_unlock(&cm->open_mutex);
1646}
1647
1648/*
1649 */
1650
1651static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1652{
1653 struct cmipci *cm = snd_pcm_substream_chip(substream);
1654 struct snd_pcm_runtime *runtime = substream->runtime;
1655 int err;
1656
1657 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1658 return err;
1659 runtime->hw = snd_cmipci_playback;
1660 if (cm->chip_version == 68) {
1661 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1662 SNDRV_PCM_RATE_96000;
1663 runtime->hw.rate_max = 96000;
1664 } else if (cm->chip_version == 55) {
1665 err = snd_pcm_hw_constraint_list(runtime, 0,
1666 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1667 if (err < 0)
1668 return err;
1669 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1670 runtime->hw.rate_max = 128000;
1671 }
1672 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1673 cm->dig_pcm_status = cm->dig_status;
1674 return 0;
1675}
1676
1677static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1678{
1679 struct cmipci *cm = snd_pcm_substream_chip(substream);
1680 struct snd_pcm_runtime *runtime = substream->runtime;
1681 int err;
1682
1683 if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1684 return err;
1685 runtime->hw = snd_cmipci_capture;
1686 if (cm->chip_version == 68) { // 8768 only supports 44k/48k recording
1687 runtime->hw.rate_min = 41000;
1688 runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1689 } else if (cm->chip_version == 55) {
1690 err = snd_pcm_hw_constraint_list(runtime, 0,
1691 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1692 if (err < 0)
1693 return err;
1694 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1695 runtime->hw.rate_max = 128000;
1696 }
1697 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1698 return 0;
1699}
1700
1701static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1702{
1703 struct cmipci *cm = snd_pcm_substream_chip(substream);
1704 struct snd_pcm_runtime *runtime = substream->runtime;
1705 int err;
1706
1707 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1708 return err;
1709 runtime->hw = snd_cmipci_playback2;
1710 mutex_lock(&cm->open_mutex);
1711 if (! cm->opened[CM_CH_PLAY]) {
1712 if (cm->can_multi_ch) {
1713 runtime->hw.channels_max = cm->max_channels;
1714 if (cm->max_channels == 4)
1715 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1716 else if (cm->max_channels == 6)
1717 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1718 else if (cm->max_channels == 8)
1719 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1720 }
1721 }
1722 mutex_unlock(&cm->open_mutex);
1723 if (cm->chip_version == 68) {
1724 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1725 SNDRV_PCM_RATE_96000;
1726 runtime->hw.rate_max = 96000;
1727 } else if (cm->chip_version == 55) {
1728 err = snd_pcm_hw_constraint_list(runtime, 0,
1729 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1730 if (err < 0)
1731 return err;
1732 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1733 runtime->hw.rate_max = 128000;
1734 }
1735 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1736 return 0;
1737}
1738
1739static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1740{
1741 struct cmipci *cm = snd_pcm_substream_chip(substream);
1742 struct snd_pcm_runtime *runtime = substream->runtime;
1743 int err;
1744
1745 if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1746 return err;
1747 if (cm->can_ac3_hw) {
1748 runtime->hw = snd_cmipci_playback_spdif;
1749 if (cm->chip_version >= 37) {
1750 runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1751 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1752 }
1753 if (cm->can_96k) {
1754 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1755 SNDRV_PCM_RATE_96000;
1756 runtime->hw.rate_max = 96000;
1757 }
1758 } else {
1759 runtime->hw = snd_cmipci_playback_iec958_subframe;
1760 }
1761 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1762 cm->dig_pcm_status = cm->dig_status;
1763 return 0;
1764}
1765
1766static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1767{
1768 struct cmipci *cm = snd_pcm_substream_chip(substream);
1769 struct snd_pcm_runtime *runtime = substream->runtime;
1770 int err;
1771
1772 if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1773 return err;
1774 runtime->hw = snd_cmipci_capture_spdif;
1775 if (cm->can_96k && !(cm->chip_version == 68)) {
1776 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1777 SNDRV_PCM_RATE_96000;
1778 runtime->hw.rate_max = 96000;
1779 }
1780 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1781 return 0;
1782}
1783
1784
1785/*
1786 */
1787
1788static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1789{
1790 struct cmipci *cm = snd_pcm_substream_chip(substream);
1791 close_device_check(cm, CM_OPEN_PLAYBACK);
1792 return 0;
1793}
1794
1795static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1796{
1797 struct cmipci *cm = snd_pcm_substream_chip(substream);
1798 close_device_check(cm, CM_OPEN_CAPTURE);
1799 return 0;
1800}
1801
1802static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1803{
1804 struct cmipci *cm = snd_pcm_substream_chip(substream);
1805 close_device_check(cm, CM_OPEN_PLAYBACK2);
1806 close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1807 return 0;
1808}
1809
1810static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1811{
1812 struct cmipci *cm = snd_pcm_substream_chip(substream);
1813 close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1814 return 0;
1815}
1816
1817static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1818{
1819 struct cmipci *cm = snd_pcm_substream_chip(substream);
1820 close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1821 return 0;
1822}
1823
1824
1825/*
1826 */
1827
1828static const struct snd_pcm_ops snd_cmipci_playback_ops = {
1829 .open = snd_cmipci_playback_open,
1830 .close = snd_cmipci_playback_close,
1831 .ioctl = snd_pcm_lib_ioctl,
1832 .hw_params = snd_cmipci_hw_params,
1833 .hw_free = snd_cmipci_playback_hw_free,
1834 .prepare = snd_cmipci_playback_prepare,
1835 .trigger = snd_cmipci_playback_trigger,
1836 .pointer = snd_cmipci_playback_pointer,
1837};
1838
1839static const struct snd_pcm_ops snd_cmipci_capture_ops = {
1840 .open = snd_cmipci_capture_open,
1841 .close = snd_cmipci_capture_close,
1842 .ioctl = snd_pcm_lib_ioctl,
1843 .hw_params = snd_cmipci_hw_params,
1844 .hw_free = snd_cmipci_hw_free,
1845 .prepare = snd_cmipci_capture_prepare,
1846 .trigger = snd_cmipci_capture_trigger,
1847 .pointer = snd_cmipci_capture_pointer,
1848};
1849
1850static const struct snd_pcm_ops snd_cmipci_playback2_ops = {
1851 .open = snd_cmipci_playback2_open,
1852 .close = snd_cmipci_playback2_close,
1853 .ioctl = snd_pcm_lib_ioctl,
1854 .hw_params = snd_cmipci_playback2_hw_params,
1855 .hw_free = snd_cmipci_playback2_hw_free,
1856 .prepare = snd_cmipci_capture_prepare, /* channel B */
1857 .trigger = snd_cmipci_capture_trigger, /* channel B */
1858 .pointer = snd_cmipci_capture_pointer, /* channel B */
1859};
1860
1861static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1862 .open = snd_cmipci_playback_spdif_open,
1863 .close = snd_cmipci_playback_spdif_close,
1864 .ioctl = snd_pcm_lib_ioctl,
1865 .hw_params = snd_cmipci_hw_params,
1866 .hw_free = snd_cmipci_playback_hw_free,
1867 .prepare = snd_cmipci_playback_spdif_prepare, /* set up rate */
1868 .trigger = snd_cmipci_playback_trigger,
1869 .pointer = snd_cmipci_playback_pointer,
1870};
1871
1872static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1873 .open = snd_cmipci_capture_spdif_open,
1874 .close = snd_cmipci_capture_spdif_close,
1875 .ioctl = snd_pcm_lib_ioctl,
1876 .hw_params = snd_cmipci_hw_params,
1877 .hw_free = snd_cmipci_capture_spdif_hw_free,
1878 .prepare = snd_cmipci_capture_spdif_prepare,
1879 .trigger = snd_cmipci_capture_trigger,
1880 .pointer = snd_cmipci_capture_pointer,
1881};
1882
1883
1884/*
1885 */
1886
1887static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1888{
1889 struct snd_pcm *pcm;
1890 int err;
1891
1892 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1893 if (err < 0)
1894 return err;
1895
1896 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1897 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1898
1899 pcm->private_data = cm;
1900 pcm->info_flags = 0;
1901 strcpy(pcm->name, "C-Media PCI DAC/ADC");
1902 cm->pcm = pcm;
1903
1904 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1905 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1906
1907 return 0;
1908}
1909
1910static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1911{
1912 struct snd_pcm *pcm;
1913 int err;
1914
1915 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1916 if (err < 0)
1917 return err;
1918
1919 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1920
1921 pcm->private_data = cm;
1922 pcm->info_flags = 0;
1923 strcpy(pcm->name, "C-Media PCI 2nd DAC");
1924 cm->pcm2 = pcm;
1925
1926 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1927 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1928
1929 return 0;
1930}
1931
1932static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1933{
1934 struct snd_pcm *pcm;
1935 int err;
1936
1937 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1938 if (err < 0)
1939 return err;
1940
1941 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1942 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1943
1944 pcm->private_data = cm;
1945 pcm->info_flags = 0;
1946 strcpy(pcm->name, "C-Media PCI IEC958");
1947 cm->pcm_spdif = pcm;
1948
1949 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1950 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1951
1952 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1953 snd_pcm_alt_chmaps, cm->max_channels, 0,
1954 NULL);
1955 if (err < 0)
1956 return err;
1957
1958 return 0;
1959}
1960
1961/*
1962 * mixer interface:
1963 * - CM8338/8738 has a compatible mixer interface with SB16, but
1964 * lack of some elements like tone control, i/o gain and AGC.
1965 * - Access to native registers:
1966 * - A 3D switch
1967 * - Output mute switches
1968 */
1969
1970static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1971{
1972 outb(idx, s->iobase + CM_REG_SB16_ADDR);
1973 outb(data, s->iobase + CM_REG_SB16_DATA);
1974}
1975
1976static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1977{
1978 unsigned char v;
1979
1980 outb(idx, s->iobase + CM_REG_SB16_ADDR);
1981 v = inb(s->iobase + CM_REG_SB16_DATA);
1982 return v;
1983}
1984
1985/*
1986 * general mixer element
1987 */
1988struct cmipci_sb_reg {
1989 unsigned int left_reg, right_reg;
1990 unsigned int left_shift, right_shift;
1991 unsigned int mask;
1992 unsigned int invert: 1;
1993 unsigned int stereo: 1;
1994};
1995
1996#define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1997 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1998
1999#define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
2000{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2001 .info = snd_cmipci_info_volume, \
2002 .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
2003 .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
2004}
2005
2006#define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
2007#define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
2008#define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
2009#define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
2010
2011static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
2012{
2013 r->left_reg = val & 0xff;
2014 r->right_reg = (val >> 8) & 0xff;
2015 r->left_shift = (val >> 16) & 0x07;
2016 r->right_shift = (val >> 19) & 0x07;
2017 r->invert = (val >> 22) & 1;
2018 r->stereo = (val >> 23) & 1;
2019 r->mask = (val >> 24) & 0xff;
2020}
2021
2022static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2023 struct snd_ctl_elem_info *uinfo)
2024{
2025 struct cmipci_sb_reg reg;
2026
2027 cmipci_sb_reg_decode(®, kcontrol->private_value);
2028 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2029 uinfo->count = reg.stereo + 1;
2030 uinfo->value.integer.min = 0;
2031 uinfo->value.integer.max = reg.mask;
2032 return 0;
2033}
2034
2035static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2036 struct snd_ctl_elem_value *ucontrol)
2037{
2038 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2039 struct cmipci_sb_reg reg;
2040 int val;
2041
2042 cmipci_sb_reg_decode(®, kcontrol->private_value);
2043 spin_lock_irq(&cm->reg_lock);
2044 val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2045 if (reg.invert)
2046 val = reg.mask - val;
2047 ucontrol->value.integer.value[0] = val;
2048 if (reg.stereo) {
2049 val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2050 if (reg.invert)
2051 val = reg.mask - val;
2052 ucontrol->value.integer.value[1] = val;
2053 }
2054 spin_unlock_irq(&cm->reg_lock);
2055 return 0;
2056}
2057
2058static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2059 struct snd_ctl_elem_value *ucontrol)
2060{
2061 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2062 struct cmipci_sb_reg reg;
2063 int change;
2064 int left, right, oleft, oright;
2065
2066 cmipci_sb_reg_decode(®, kcontrol->private_value);
2067 left = ucontrol->value.integer.value[0] & reg.mask;
2068 if (reg.invert)
2069 left = reg.mask - left;
2070 left <<= reg.left_shift;
2071 if (reg.stereo) {
2072 right = ucontrol->value.integer.value[1] & reg.mask;
2073 if (reg.invert)
2074 right = reg.mask - right;
2075 right <<= reg.right_shift;
2076 } else
2077 right = 0;
2078 spin_lock_irq(&cm->reg_lock);
2079 oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2080 left |= oleft & ~(reg.mask << reg.left_shift);
2081 change = left != oleft;
2082 if (reg.stereo) {
2083 if (reg.left_reg != reg.right_reg) {
2084 snd_cmipci_mixer_write(cm, reg.left_reg, left);
2085 oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2086 } else
2087 oright = left;
2088 right |= oright & ~(reg.mask << reg.right_shift);
2089 change |= right != oright;
2090 snd_cmipci_mixer_write(cm, reg.right_reg, right);
2091 } else
2092 snd_cmipci_mixer_write(cm, reg.left_reg, left);
2093 spin_unlock_irq(&cm->reg_lock);
2094 return change;
2095}
2096
2097/*
2098 * input route (left,right) -> (left,right)
2099 */
2100#define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2101{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2102 .info = snd_cmipci_info_input_sw, \
2103 .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2104 .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2105}
2106
2107static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2108 struct snd_ctl_elem_info *uinfo)
2109{
2110 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2111 uinfo->count = 4;
2112 uinfo->value.integer.min = 0;
2113 uinfo->value.integer.max = 1;
2114 return 0;
2115}
2116
2117static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2118 struct snd_ctl_elem_value *ucontrol)
2119{
2120 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2121 struct cmipci_sb_reg reg;
2122 int val1, val2;
2123
2124 cmipci_sb_reg_decode(®, kcontrol->private_value);
2125 spin_lock_irq(&cm->reg_lock);
2126 val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2127 val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2128 spin_unlock_irq(&cm->reg_lock);
2129 ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2130 ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2131 ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2132 ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2133 return 0;
2134}
2135
2136static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2137 struct snd_ctl_elem_value *ucontrol)
2138{
2139 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2140 struct cmipci_sb_reg reg;
2141 int change;
2142 int val1, val2, oval1, oval2;
2143
2144 cmipci_sb_reg_decode(®, kcontrol->private_value);
2145 spin_lock_irq(&cm->reg_lock);
2146 oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2147 oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2148 val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2149 val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2150 val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2151 val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2152 val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2153 val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2154 change = val1 != oval1 || val2 != oval2;
2155 snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2156 snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2157 spin_unlock_irq(&cm->reg_lock);
2158 return change;
2159}
2160
2161/*
2162 * native mixer switches/volumes
2163 */
2164
2165#define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2166{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2167 .info = snd_cmipci_info_native_mixer, \
2168 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2169 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2170}
2171
2172#define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2173{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2174 .info = snd_cmipci_info_native_mixer, \
2175 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2176 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2177}
2178
2179#define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2180{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2181 .info = snd_cmipci_info_native_mixer, \
2182 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2183 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2184}
2185
2186#define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2187{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2188 .info = snd_cmipci_info_native_mixer, \
2189 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2190 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2191}
2192
2193static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2194 struct snd_ctl_elem_info *uinfo)
2195{
2196 struct cmipci_sb_reg reg;
2197
2198 cmipci_sb_reg_decode(®, kcontrol->private_value);
2199 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2200 uinfo->count = reg.stereo + 1;
2201 uinfo->value.integer.min = 0;
2202 uinfo->value.integer.max = reg.mask;
2203 return 0;
2204
2205}
2206
2207static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2208 struct snd_ctl_elem_value *ucontrol)
2209{
2210 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2211 struct cmipci_sb_reg reg;
2212 unsigned char oreg, val;
2213
2214 cmipci_sb_reg_decode(®, kcontrol->private_value);
2215 spin_lock_irq(&cm->reg_lock);
2216 oreg = inb(cm->iobase + reg.left_reg);
2217 val = (oreg >> reg.left_shift) & reg.mask;
2218 if (reg.invert)
2219 val = reg.mask - val;
2220 ucontrol->value.integer.value[0] = val;
2221 if (reg.stereo) {
2222 val = (oreg >> reg.right_shift) & reg.mask;
2223 if (reg.invert)
2224 val = reg.mask - val;
2225 ucontrol->value.integer.value[1] = val;
2226 }
2227 spin_unlock_irq(&cm->reg_lock);
2228 return 0;
2229}
2230
2231static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2232 struct snd_ctl_elem_value *ucontrol)
2233{
2234 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2235 struct cmipci_sb_reg reg;
2236 unsigned char oreg, nreg, val;
2237
2238 cmipci_sb_reg_decode(®, kcontrol->private_value);
2239 spin_lock_irq(&cm->reg_lock);
2240 oreg = inb(cm->iobase + reg.left_reg);
2241 val = ucontrol->value.integer.value[0] & reg.mask;
2242 if (reg.invert)
2243 val = reg.mask - val;
2244 nreg = oreg & ~(reg.mask << reg.left_shift);
2245 nreg |= (val << reg.left_shift);
2246 if (reg.stereo) {
2247 val = ucontrol->value.integer.value[1] & reg.mask;
2248 if (reg.invert)
2249 val = reg.mask - val;
2250 nreg &= ~(reg.mask << reg.right_shift);
2251 nreg |= (val << reg.right_shift);
2252 }
2253 outb(nreg, cm->iobase + reg.left_reg);
2254 spin_unlock_irq(&cm->reg_lock);
2255 return (nreg != oreg);
2256}
2257
2258/*
2259 * special case - check mixer sensitivity
2260 */
2261static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2262 struct snd_ctl_elem_value *ucontrol)
2263{
2264 //struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2265 return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2266}
2267
2268static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2269 struct snd_ctl_elem_value *ucontrol)
2270{
2271 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2272 if (cm->mixer_insensitive) {
2273 /* ignored */
2274 return 0;
2275 }
2276 return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2277}
2278
2279
2280static struct snd_kcontrol_new snd_cmipci_mixers[] = {
2281 CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2282 CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2283 CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2284 //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2285 { /* switch with sensitivity */
2286 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2287 .name = "PCM Playback Switch",
2288 .info = snd_cmipci_info_native_mixer,
2289 .get = snd_cmipci_get_native_mixer_sensitive,
2290 .put = snd_cmipci_put_native_mixer_sensitive,
2291 .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2292 },
2293 CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2294 CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2295 CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2296 CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2297 CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2298 CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2299 CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2300 CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2301 CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2302 CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2303 CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2304 CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2305 CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2306 CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2307 CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2308 CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2309 CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2310 CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2311 CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2312 CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2313 CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2314 CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2315 CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2316};
2317
2318/*
2319 * other switches
2320 */
2321
2322struct cmipci_switch_args {
2323 int reg; /* register index */
2324 unsigned int mask; /* mask bits */
2325 unsigned int mask_on; /* mask bits to turn on */
2326 unsigned int is_byte: 1; /* byte access? */
2327 unsigned int ac3_sensitive: 1; /* access forbidden during
2328 * non-audio operation?
2329 */
2330};
2331
2332#define snd_cmipci_uswitch_info snd_ctl_boolean_mono_info
2333
2334static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2335 struct snd_ctl_elem_value *ucontrol,
2336 struct cmipci_switch_args *args)
2337{
2338 unsigned int val;
2339 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2340
2341 spin_lock_irq(&cm->reg_lock);
2342 if (args->ac3_sensitive && cm->mixer_insensitive) {
2343 ucontrol->value.integer.value[0] = 0;
2344 spin_unlock_irq(&cm->reg_lock);
2345 return 0;
2346 }
2347 if (args->is_byte)
2348 val = inb(cm->iobase + args->reg);
2349 else
2350 val = snd_cmipci_read(cm, args->reg);
2351 ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2352 spin_unlock_irq(&cm->reg_lock);
2353 return 0;
2354}
2355
2356static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2357 struct snd_ctl_elem_value *ucontrol)
2358{
2359 struct cmipci_switch_args *args;
2360 args = (struct cmipci_switch_args *)kcontrol->private_value;
2361 if (snd_BUG_ON(!args))
2362 return -EINVAL;
2363 return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2364}
2365
2366static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2367 struct snd_ctl_elem_value *ucontrol,
2368 struct cmipci_switch_args *args)
2369{
2370 unsigned int val;
2371 int change;
2372 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2373
2374 spin_lock_irq(&cm->reg_lock);
2375 if (args->ac3_sensitive && cm->mixer_insensitive) {
2376 /* ignored */
2377 spin_unlock_irq(&cm->reg_lock);
2378 return 0;
2379 }
2380 if (args->is_byte)
2381 val = inb(cm->iobase + args->reg);
2382 else
2383 val = snd_cmipci_read(cm, args->reg);
2384 change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2385 args->mask_on : (args->mask & ~args->mask_on));
2386 if (change) {
2387 val &= ~args->mask;
2388 if (ucontrol->value.integer.value[0])
2389 val |= args->mask_on;
2390 else
2391 val |= (args->mask & ~args->mask_on);
2392 if (args->is_byte)
2393 outb((unsigned char)val, cm->iobase + args->reg);
2394 else
2395 snd_cmipci_write(cm, args->reg, val);
2396 }
2397 spin_unlock_irq(&cm->reg_lock);
2398 return change;
2399}
2400
2401static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2402 struct snd_ctl_elem_value *ucontrol)
2403{
2404 struct cmipci_switch_args *args;
2405 args = (struct cmipci_switch_args *)kcontrol->private_value;
2406 if (snd_BUG_ON(!args))
2407 return -EINVAL;
2408 return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2409}
2410
2411#define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2412static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2413 .reg = xreg, \
2414 .mask = xmask, \
2415 .mask_on = xmask_on, \
2416 .is_byte = xis_byte, \
2417 .ac3_sensitive = xac3, \
2418}
2419
2420#define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2421 DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2422
2423#if 0 /* these will be controlled in pcm device */
2424DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2425DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2426#endif
2427DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2428DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2429DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2430DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2431DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2432DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2433DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2434DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2435// DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2436DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2437DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2438/* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2439DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2440DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2441#if CM_CH_PLAY == 1
2442DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2443#else
2444DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2445#endif
2446DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2447// DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2448// DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2449// DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2450DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2451
2452#define DEFINE_SWITCH(sname, stype, sarg) \
2453{ .name = sname, \
2454 .iface = stype, \
2455 .info = snd_cmipci_uswitch_info, \
2456 .get = snd_cmipci_uswitch_get, \
2457 .put = snd_cmipci_uswitch_put, \
2458 .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2459}
2460
2461#define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2462#define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2463
2464
2465/*
2466 * callbacks for spdif output switch
2467 * needs toggle two registers..
2468 */
2469static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2470 struct snd_ctl_elem_value *ucontrol)
2471{
2472 int changed;
2473 changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2474 changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2475 return changed;
2476}
2477
2478static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2479 struct snd_ctl_elem_value *ucontrol)
2480{
2481 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2482 int changed;
2483 changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2484 changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2485 if (changed) {
2486 if (ucontrol->value.integer.value[0]) {
2487 if (chip->spdif_playback_avail)
2488 snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2489 } else {
2490 if (chip->spdif_playback_avail)
2491 snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2492 }
2493 }
2494 chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2495 return changed;
2496}
2497
2498
2499static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2500 struct snd_ctl_elem_info *uinfo)
2501{
2502 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2503 static const char *const texts[3] = {
2504 "Line-In", "Rear Output", "Bass Output"
2505 };
2506
2507 return snd_ctl_enum_info(uinfo, 1,
2508 cm->chip_version >= 39 ? 3 : 2, texts);
2509}
2510
2511static inline unsigned int get_line_in_mode(struct cmipci *cm)
2512{
2513 unsigned int val;
2514 if (cm->chip_version >= 39) {
2515 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2516 if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2517 return 2;
2518 }
2519 val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2520 if (val & CM_REAR2LIN)
2521 return 1;
2522 return 0;
2523}
2524
2525static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2526 struct snd_ctl_elem_value *ucontrol)
2527{
2528 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2529
2530 spin_lock_irq(&cm->reg_lock);
2531 ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2532 spin_unlock_irq(&cm->reg_lock);
2533 return 0;
2534}
2535
2536static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2537 struct snd_ctl_elem_value *ucontrol)
2538{
2539 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2540 int change;
2541
2542 spin_lock_irq(&cm->reg_lock);
2543 if (ucontrol->value.enumerated.item[0] == 2)
2544 change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2545 else
2546 change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2547 if (ucontrol->value.enumerated.item[0] == 1)
2548 change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2549 else
2550 change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2551 spin_unlock_irq(&cm->reg_lock);
2552 return change;
2553}
2554
2555static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2556 struct snd_ctl_elem_info *uinfo)
2557{
2558 static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2559
2560 return snd_ctl_enum_info(uinfo, 1, 2, texts);
2561}
2562
2563static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2564 struct snd_ctl_elem_value *ucontrol)
2565{
2566 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2567 /* same bit as spdi_phase */
2568 spin_lock_irq(&cm->reg_lock);
2569 ucontrol->value.enumerated.item[0] =
2570 (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2571 spin_unlock_irq(&cm->reg_lock);
2572 return 0;
2573}
2574
2575static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2576 struct snd_ctl_elem_value *ucontrol)
2577{
2578 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2579 int change;
2580
2581 spin_lock_irq(&cm->reg_lock);
2582 if (ucontrol->value.enumerated.item[0])
2583 change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2584 else
2585 change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2586 spin_unlock_irq(&cm->reg_lock);
2587 return change;
2588}
2589
2590/* both for CM8338/8738 */
2591static struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2592 DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2593 {
2594 .name = "Line-In Mode",
2595 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2596 .info = snd_cmipci_line_in_mode_info,
2597 .get = snd_cmipci_line_in_mode_get,
2598 .put = snd_cmipci_line_in_mode_put,
2599 },
2600};
2601
2602/* for non-multichannel chips */
2603static struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2604DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2605
2606/* only for CM8738 */
2607static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2608#if 0 /* controlled in pcm device */
2609 DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2610 DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2611 DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2612#endif
2613 // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2614 { .name = "IEC958 Output Switch",
2615 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2616 .info = snd_cmipci_uswitch_info,
2617 .get = snd_cmipci_spdout_enable_get,
2618 .put = snd_cmipci_spdout_enable_put,
2619 },
2620 DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2621 DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2622 DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2623// DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2624 DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2625 DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2626};
2627
2628/* only for model 033/037 */
2629static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2630 DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2631 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2632 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2633};
2634
2635/* only for model 039 or later */
2636static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2637 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2638 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2639 {
2640 .name = "Mic-In Mode",
2641 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2642 .info = snd_cmipci_mic_in_mode_info,
2643 .get = snd_cmipci_mic_in_mode_get,
2644 .put = snd_cmipci_mic_in_mode_put,
2645 }
2646};
2647
2648/* card control switches */
2649static struct snd_kcontrol_new snd_cmipci_modem_switch =
2650DEFINE_CARD_SWITCH("Modem", modem);
2651
2652
2653static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2654{
2655 struct snd_card *card;
2656 struct snd_kcontrol_new *sw;
2657 struct snd_kcontrol *kctl;
2658 unsigned int idx;
2659 int err;
2660
2661 if (snd_BUG_ON(!cm || !cm->card))
2662 return -EINVAL;
2663
2664 card = cm->card;
2665
2666 strcpy(card->mixername, "CMedia PCI");
2667
2668 spin_lock_irq(&cm->reg_lock);
2669 snd_cmipci_mixer_write(cm, 0x00, 0x00); /* mixer reset */
2670 spin_unlock_irq(&cm->reg_lock);
2671
2672 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2673 if (cm->chip_version == 68) { // 8768 has no PCM volume
2674 if (!strcmp(snd_cmipci_mixers[idx].name,
2675 "PCM Playback Volume"))
2676 continue;
2677 }
2678 if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2679 return err;
2680 }
2681
2682 /* mixer switches */
2683 sw = snd_cmipci_mixer_switches;
2684 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2685 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2686 if (err < 0)
2687 return err;
2688 }
2689 if (! cm->can_multi_ch) {
2690 err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2691 if (err < 0)
2692 return err;
2693 }
2694 if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2695 cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2696 sw = snd_cmipci_8738_mixer_switches;
2697 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2698 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2699 if (err < 0)
2700 return err;
2701 }
2702 if (cm->can_ac3_hw) {
2703 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2704 return err;
2705 kctl->id.device = pcm_spdif_device;
2706 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2707 return err;
2708 kctl->id.device = pcm_spdif_device;
2709 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2710 return err;
2711 kctl->id.device = pcm_spdif_device;
2712 }
2713 if (cm->chip_version <= 37) {
2714 sw = snd_cmipci_old_mixer_switches;
2715 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2716 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2717 if (err < 0)
2718 return err;
2719 }
2720 }
2721 }
2722 if (cm->chip_version >= 39) {
2723 sw = snd_cmipci_extra_mixer_switches;
2724 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2725 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2726 if (err < 0)
2727 return err;
2728 }
2729 }
2730
2731 /* card switches */
2732 /*
2733 * newer chips don't have the register bits to force modem link
2734 * detection; the bit that was FLINKON now mutes CH1
2735 */
2736 if (cm->chip_version < 39) {
2737 err = snd_ctl_add(cm->card,
2738 snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2739 if (err < 0)
2740 return err;
2741 }
2742
2743 for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2744 struct snd_ctl_elem_id elem_id;
2745 struct snd_kcontrol *ctl;
2746 memset(&elem_id, 0, sizeof(elem_id));
2747 elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2748 strcpy(elem_id.name, cm_saved_mixer[idx].name);
2749 ctl = snd_ctl_find_id(cm->card, &elem_id);
2750 if (ctl)
2751 cm->mixer_res_ctl[idx] = ctl;
2752 }
2753
2754 return 0;
2755}
2756
2757
2758/*
2759 * proc interface
2760 */
2761
2762static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2763 struct snd_info_buffer *buffer)
2764{
2765 struct cmipci *cm = entry->private_data;
2766 int i, v;
2767
2768 snd_iprintf(buffer, "%s\n", cm->card->longname);
2769 for (i = 0; i < 0x94; i++) {
2770 if (i == 0x28)
2771 i = 0x90;
2772 v = inb(cm->iobase + i);
2773 if (i % 4 == 0)
2774 snd_iprintf(buffer, "\n%02x:", i);
2775 snd_iprintf(buffer, " %02x", v);
2776 }
2777 snd_iprintf(buffer, "\n");
2778}
2779
2780static void snd_cmipci_proc_init(struct cmipci *cm)
2781{
2782 snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read);
2783}
2784
2785static const struct pci_device_id snd_cmipci_ids[] = {
2786 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2787 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2788 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2789 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2790 {PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2791 {0,},
2792};
2793
2794
2795/*
2796 * check chip version and capabilities
2797 * driver name is modified according to the chip model
2798 */
2799static void query_chip(struct cmipci *cm)
2800{
2801 unsigned int detect;
2802
2803 /* check reg 0Ch, bit 24-31 */
2804 detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2805 if (! detect) {
2806 /* check reg 08h, bit 24-28 */
2807 detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2808 switch (detect) {
2809 case 0:
2810 cm->chip_version = 33;
2811 if (cm->do_soft_ac3)
2812 cm->can_ac3_sw = 1;
2813 else
2814 cm->can_ac3_hw = 1;
2815 break;
2816 case CM_CHIP_037:
2817 cm->chip_version = 37;
2818 cm->can_ac3_hw = 1;
2819 break;
2820 default:
2821 cm->chip_version = 39;
2822 cm->can_ac3_hw = 1;
2823 break;
2824 }
2825 cm->max_channels = 2;
2826 } else {
2827 if (detect & CM_CHIP_039) {
2828 cm->chip_version = 39;
2829 if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2830 cm->max_channels = 6;
2831 else
2832 cm->max_channels = 4;
2833 } else if (detect & CM_CHIP_8768) {
2834 cm->chip_version = 68;
2835 cm->max_channels = 8;
2836 cm->can_96k = 1;
2837 } else {
2838 cm->chip_version = 55;
2839 cm->max_channels = 6;
2840 cm->can_96k = 1;
2841 }
2842 cm->can_ac3_hw = 1;
2843 cm->can_multi_ch = 1;
2844 }
2845}
2846
2847#ifdef SUPPORT_JOYSTICK
2848static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2849{
2850 static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2851 struct gameport *gp;
2852 struct resource *r = NULL;
2853 int i, io_port = 0;
2854
2855 if (joystick_port[dev] == 0)
2856 return -ENODEV;
2857
2858 if (joystick_port[dev] == 1) { /* auto-detect */
2859 for (i = 0; ports[i]; i++) {
2860 io_port = ports[i];
2861 r = request_region(io_port, 1, "CMIPCI gameport");
2862 if (r)
2863 break;
2864 }
2865 } else {
2866 io_port = joystick_port[dev];
2867 r = request_region(io_port, 1, "CMIPCI gameport");
2868 }
2869
2870 if (!r) {
2871 dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2872 return -EBUSY;
2873 }
2874
2875 cm->gameport = gp = gameport_allocate_port();
2876 if (!gp) {
2877 dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2878 release_and_free_resource(r);
2879 return -ENOMEM;
2880 }
2881 gameport_set_name(gp, "C-Media Gameport");
2882 gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2883 gameport_set_dev_parent(gp, &cm->pci->dev);
2884 gp->io = io_port;
2885 gameport_set_port_data(gp, r);
2886
2887 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2888
2889 gameport_register_port(cm->gameport);
2890
2891 return 0;
2892}
2893
2894static void snd_cmipci_free_gameport(struct cmipci *cm)
2895{
2896 if (cm->gameport) {
2897 struct resource *r = gameport_get_port_data(cm->gameport);
2898
2899 gameport_unregister_port(cm->gameport);
2900 cm->gameport = NULL;
2901
2902 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2903 release_and_free_resource(r);
2904 }
2905}
2906#else
2907static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2908static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2909#endif
2910
2911static int snd_cmipci_free(struct cmipci *cm)
2912{
2913 if (cm->irq >= 0) {
2914 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2915 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2916 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
2917 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2918 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2919 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2920 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2921
2922 /* reset mixer */
2923 snd_cmipci_mixer_write(cm, 0, 0);
2924
2925 free_irq(cm->irq, cm);
2926 }
2927
2928 snd_cmipci_free_gameport(cm);
2929 pci_release_regions(cm->pci);
2930 pci_disable_device(cm->pci);
2931 kfree(cm);
2932 return 0;
2933}
2934
2935static int snd_cmipci_dev_free(struct snd_device *device)
2936{
2937 struct cmipci *cm = device->device_data;
2938 return snd_cmipci_free(cm);
2939}
2940
2941static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2942{
2943 long iosynth;
2944 unsigned int val;
2945 struct snd_opl3 *opl3;
2946 int err;
2947
2948 if (!fm_port)
2949 goto disable_fm;
2950
2951 if (cm->chip_version >= 39) {
2952 /* first try FM regs in PCI port range */
2953 iosynth = cm->iobase + CM_REG_FM_PCI;
2954 err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2955 OPL3_HW_OPL3, 1, &opl3);
2956 } else {
2957 err = -EIO;
2958 }
2959 if (err < 0) {
2960 /* then try legacy ports */
2961 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2962 iosynth = fm_port;
2963 switch (iosynth) {
2964 case 0x3E8: val |= CM_FMSEL_3E8; break;
2965 case 0x3E0: val |= CM_FMSEL_3E0; break;
2966 case 0x3C8: val |= CM_FMSEL_3C8; break;
2967 case 0x388: val |= CM_FMSEL_388; break;
2968 default:
2969 goto disable_fm;
2970 }
2971 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2972 /* enable FM */
2973 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2974
2975 if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2976 OPL3_HW_OPL3, 0, &opl3) < 0) {
2977 dev_err(cm->card->dev,
2978 "no OPL device at %#lx, skipping...\n",
2979 iosynth);
2980 goto disable_fm;
2981 }
2982 }
2983 if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
2984 dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
2985 return err;
2986 }
2987 return 0;
2988
2989 disable_fm:
2990 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2991 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2992 return 0;
2993}
2994
2995static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2996 int dev, struct cmipci **rcmipci)
2997{
2998 struct cmipci *cm;
2999 int err;
3000 static struct snd_device_ops ops = {
3001 .dev_free = snd_cmipci_dev_free,
3002 };
3003 unsigned int val;
3004 long iomidi = 0;
3005 int integrated_midi = 0;
3006 char modelstr[16];
3007 int pcm_index, pcm_spdif_index;
3008 static const struct pci_device_id intel_82437vx[] = {
3009 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
3010 { },
3011 };
3012
3013 *rcmipci = NULL;
3014
3015 if ((err = pci_enable_device(pci)) < 0)
3016 return err;
3017
3018 cm = kzalloc(sizeof(*cm), GFP_KERNEL);
3019 if (cm == NULL) {
3020 pci_disable_device(pci);
3021 return -ENOMEM;
3022 }
3023
3024 spin_lock_init(&cm->reg_lock);
3025 mutex_init(&cm->open_mutex);
3026 cm->device = pci->device;
3027 cm->card = card;
3028 cm->pci = pci;
3029 cm->irq = -1;
3030 cm->channel[0].ch = 0;
3031 cm->channel[1].ch = 1;
3032 cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3033
3034 if ((err = pci_request_regions(pci, card->driver)) < 0) {
3035 kfree(cm);
3036 pci_disable_device(pci);
3037 return err;
3038 }
3039 cm->iobase = pci_resource_start(pci, 0);
3040
3041 if (request_irq(pci->irq, snd_cmipci_interrupt,
3042 IRQF_SHARED, KBUILD_MODNAME, cm)) {
3043 dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
3044 snd_cmipci_free(cm);
3045 return -EBUSY;
3046 }
3047 cm->irq = pci->irq;
3048
3049 pci_set_master(cm->pci);
3050
3051 /*
3052 * check chip version, max channels and capabilities
3053 */
3054
3055 cm->chip_version = 0;
3056 cm->max_channels = 2;
3057 cm->do_soft_ac3 = soft_ac3[dev];
3058
3059 if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3060 pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3061 query_chip(cm);
3062 /* added -MCx suffix for chip supporting multi-channels */
3063 if (cm->can_multi_ch)
3064 sprintf(cm->card->driver + strlen(cm->card->driver),
3065 "-MC%d", cm->max_channels);
3066 else if (cm->can_ac3_sw)
3067 strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3068
3069 cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3070 cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3071
3072#if CM_CH_PLAY == 1
3073 cm->ctrl = CM_CHADC0; /* default FUNCNTRL0 */
3074#else
3075 cm->ctrl = CM_CHADC1; /* default FUNCNTRL0 */
3076#endif
3077
3078 /* initialize codec registers */
3079 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3080 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3081 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
3082 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3083 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3084 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
3085 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3086
3087 snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3088 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3089#if CM_CH_PLAY == 1
3090 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3091#else
3092 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3093#endif
3094 if (cm->chip_version) {
3095 snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3096 snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3097 }
3098 /* Set Bus Master Request */
3099 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3100
3101 /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3102 switch (pci->device) {
3103 case PCI_DEVICE_ID_CMEDIA_CM8738:
3104 case PCI_DEVICE_ID_CMEDIA_CM8738B:
3105 if (!pci_dev_present(intel_82437vx))
3106 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3107 break;
3108 default:
3109 break;
3110 }
3111
3112 if (cm->chip_version < 68) {
3113 val = pci->device < 0x110 ? 8338 : 8738;
3114 } else {
3115 switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3116 case 0:
3117 val = 8769;
3118 break;
3119 case 2:
3120 val = 8762;
3121 break;
3122 default:
3123 switch ((pci->subsystem_vendor << 16) |
3124 pci->subsystem_device) {
3125 case 0x13f69761:
3126 case 0x584d3741:
3127 case 0x584d3751:
3128 case 0x584d3761:
3129 case 0x584d3771:
3130 case 0x72848384:
3131 val = 8770;
3132 break;
3133 default:
3134 val = 8768;
3135 break;
3136 }
3137 }
3138 }
3139 sprintf(card->shortname, "C-Media CMI%d", val);
3140 if (cm->chip_version < 68)
3141 sprintf(modelstr, " (model %d)", cm->chip_version);
3142 else
3143 modelstr[0] = '\0';
3144 sprintf(card->longname, "%s%s at %#lx, irq %i",
3145 card->shortname, modelstr, cm->iobase, cm->irq);
3146
3147 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3148 snd_cmipci_free(cm);
3149 return err;
3150 }
3151
3152 if (cm->chip_version >= 39) {
3153 val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3154 if (val != 0x00 && val != 0xff) {
3155 iomidi = cm->iobase + CM_REG_MPU_PCI;
3156 integrated_midi = 1;
3157 }
3158 }
3159 if (!integrated_midi) {
3160 val = 0;
3161 iomidi = mpu_port[dev];
3162 switch (iomidi) {
3163 case 0x320: val = CM_VMPU_320; break;
3164 case 0x310: val = CM_VMPU_310; break;
3165 case 0x300: val = CM_VMPU_300; break;
3166 case 0x330: val = CM_VMPU_330; break;
3167 default:
3168 iomidi = 0; break;
3169 }
3170 if (iomidi > 0) {
3171 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3172 /* enable UART */
3173 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3174 if (inb(iomidi + 1) == 0xff) {
3175 dev_err(cm->card->dev,
3176 "cannot enable MPU-401 port at %#lx\n",
3177 iomidi);
3178 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3179 CM_UART_EN);
3180 iomidi = 0;
3181 }
3182 }
3183 }
3184
3185 if (cm->chip_version < 68) {
3186 err = snd_cmipci_create_fm(cm, fm_port[dev]);
3187 if (err < 0)
3188 return err;
3189 }
3190
3191 /* reset mixer */
3192 snd_cmipci_mixer_write(cm, 0, 0);
3193
3194 snd_cmipci_proc_init(cm);
3195
3196 /* create pcm devices */
3197 pcm_index = pcm_spdif_index = 0;
3198 if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3199 return err;
3200 pcm_index++;
3201 if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3202 return err;
3203 pcm_index++;
3204 if (cm->can_ac3_hw || cm->can_ac3_sw) {
3205 pcm_spdif_index = pcm_index;
3206 if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3207 return err;
3208 }
3209
3210 /* create mixer interface & switches */
3211 if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3212 return err;
3213
3214 if (iomidi > 0) {
3215 if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3216 iomidi,
3217 (integrated_midi ?
3218 MPU401_INFO_INTEGRATED : 0) |
3219 MPU401_INFO_IRQ_HOOK,
3220 -1, &cm->rmidi)) < 0) {
3221 dev_err(cm->card->dev,
3222 "no UART401 device at 0x%lx\n", iomidi);
3223 }
3224 }
3225
3226#ifdef USE_VAR48KRATE
3227 for (val = 0; val < ARRAY_SIZE(rates); val++)
3228 snd_cmipci_set_pll(cm, rates[val], val);
3229
3230 /*
3231 * (Re-)Enable external switch spdo_48k
3232 */
3233 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3234#endif /* USE_VAR48KRATE */
3235
3236 if (snd_cmipci_create_gameport(cm, dev) < 0)
3237 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3238
3239 *rcmipci = cm;
3240 return 0;
3241}
3242
3243/*
3244 */
3245
3246MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3247
3248static int snd_cmipci_probe(struct pci_dev *pci,
3249 const struct pci_device_id *pci_id)
3250{
3251 static int dev;
3252 struct snd_card *card;
3253 struct cmipci *cm;
3254 int err;
3255
3256 if (dev >= SNDRV_CARDS)
3257 return -ENODEV;
3258 if (! enable[dev]) {
3259 dev++;
3260 return -ENOENT;
3261 }
3262
3263 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3264 0, &card);
3265 if (err < 0)
3266 return err;
3267
3268 switch (pci->device) {
3269 case PCI_DEVICE_ID_CMEDIA_CM8738:
3270 case PCI_DEVICE_ID_CMEDIA_CM8738B:
3271 strcpy(card->driver, "CMI8738");
3272 break;
3273 case PCI_DEVICE_ID_CMEDIA_CM8338A:
3274 case PCI_DEVICE_ID_CMEDIA_CM8338B:
3275 strcpy(card->driver, "CMI8338");
3276 break;
3277 default:
3278 strcpy(card->driver, "CMIPCI");
3279 break;
3280 }
3281
3282 err = snd_cmipci_create(card, pci, dev, &cm);
3283 if (err < 0)
3284 goto free_card;
3285
3286 card->private_data = cm;
3287
3288 err = snd_card_register(card);
3289 if (err < 0)
3290 goto free_card;
3291
3292 pci_set_drvdata(pci, card);
3293 dev++;
3294 return 0;
3295
3296free_card:
3297 snd_card_free(card);
3298 return err;
3299}
3300
3301static void snd_cmipci_remove(struct pci_dev *pci)
3302{
3303 snd_card_free(pci_get_drvdata(pci));
3304}
3305
3306
3307#ifdef CONFIG_PM_SLEEP
3308/*
3309 * power management
3310 */
3311static unsigned char saved_regs[] = {
3312 CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3313 CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3314 CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3315 CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3316 CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3317};
3318
3319static unsigned char saved_mixers[] = {
3320 SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3321 SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3322 SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3323 SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3324 SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3325 SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3326 CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3327 SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3328};
3329
3330static int snd_cmipci_suspend(struct device *dev)
3331{
3332 struct snd_card *card = dev_get_drvdata(dev);
3333 struct cmipci *cm = card->private_data;
3334 int i;
3335
3336 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3337
3338 /* save registers */
3339 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3340 cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3341 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3342 cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3343
3344 /* disable ints */
3345 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3346 return 0;
3347}
3348
3349static int snd_cmipci_resume(struct device *dev)
3350{
3351 struct snd_card *card = dev_get_drvdata(dev);
3352 struct cmipci *cm = card->private_data;
3353 int i;
3354
3355 /* reset / initialize to a sane state */
3356 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3357 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3358 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3359 snd_cmipci_mixer_write(cm, 0, 0);
3360
3361 /* restore registers */
3362 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3363 snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3364 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3365 snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3366
3367 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3368 return 0;
3369}
3370
3371static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3372#define SND_CMIPCI_PM_OPS &snd_cmipci_pm
3373#else
3374#define SND_CMIPCI_PM_OPS NULL
3375#endif /* CONFIG_PM_SLEEP */
3376
3377static struct pci_driver cmipci_driver = {
3378 .name = KBUILD_MODNAME,
3379 .id_table = snd_cmipci_ids,
3380 .probe = snd_cmipci_probe,
3381 .remove = snd_cmipci_remove,
3382 .driver = {
3383 .pm = SND_CMIPCI_PM_OPS,
3384 },
3385};
3386
3387module_pci_driver(cmipci_driver);
1/*
2 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
3 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20/* Does not work. Warning may block system in capture mode */
21/* #define USE_VAR48KRATE */
22
23#include <asm/io.h>
24#include <linux/delay.h>
25#include <linux/interrupt.h>
26#include <linux/init.h>
27#include <linux/pci.h>
28#include <linux/slab.h>
29#include <linux/gameport.h>
30#include <linux/module.h>
31#include <linux/mutex.h>
32#include <sound/core.h>
33#include <sound/info.h>
34#include <sound/control.h>
35#include <sound/pcm.h>
36#include <sound/rawmidi.h>
37#include <sound/mpu401.h>
38#include <sound/opl3.h>
39#include <sound/sb.h>
40#include <sound/asoundef.h>
41#include <sound/initval.h>
42
43MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
44MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
45MODULE_LICENSE("GPL");
46MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
47 "{C-Media,CMI8738B},"
48 "{C-Media,CMI8338A},"
49 "{C-Media,CMI8338B}}");
50
51#if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
52#define SUPPORT_JOYSTICK 1
53#endif
54
55static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
56static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
57static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */
58static long mpu_port[SNDRV_CARDS];
59static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
60static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
61#ifdef SUPPORT_JOYSTICK
62static int joystick_port[SNDRV_CARDS];
63#endif
64
65module_param_array(index, int, NULL, 0444);
66MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
67module_param_array(id, charp, NULL, 0444);
68MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
69module_param_array(enable, bool, NULL, 0444);
70MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
71module_param_array(mpu_port, long, NULL, 0444);
72MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
73module_param_array(fm_port, long, NULL, 0444);
74MODULE_PARM_DESC(fm_port, "FM port.");
75module_param_array(soft_ac3, bool, NULL, 0444);
76MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
77#ifdef SUPPORT_JOYSTICK
78module_param_array(joystick_port, int, NULL, 0444);
79MODULE_PARM_DESC(joystick_port, "Joystick port address.");
80#endif
81
82/*
83 * CM8x38 registers definition
84 */
85
86#define CM_REG_FUNCTRL0 0x00
87#define CM_RST_CH1 0x00080000
88#define CM_RST_CH0 0x00040000
89#define CM_CHEN1 0x00020000 /* ch1: enable */
90#define CM_CHEN0 0x00010000 /* ch0: enable */
91#define CM_PAUSE1 0x00000008 /* ch1: pause */
92#define CM_PAUSE0 0x00000004 /* ch0: pause */
93#define CM_CHADC1 0x00000002 /* ch1, 0:playback, 1:record */
94#define CM_CHADC0 0x00000001 /* ch0, 0:playback, 1:record */
95
96#define CM_REG_FUNCTRL1 0x04
97#define CM_DSFC_MASK 0x0000E000 /* channel 1 (DAC?) sampling frequency */
98#define CM_DSFC_SHIFT 13
99#define CM_ASFC_MASK 0x00001C00 /* channel 0 (ADC?) sampling frequency */
100#define CM_ASFC_SHIFT 10
101#define CM_SPDF_1 0x00000200 /* SPDIF IN/OUT at channel B */
102#define CM_SPDF_0 0x00000100 /* SPDIF OUT only channel A */
103#define CM_SPDFLOOP 0x00000080 /* ext. SPDIIF/IN -> OUT loopback */
104#define CM_SPDO2DAC 0x00000040 /* SPDIF/OUT can be heard from internal DAC */
105#define CM_INTRM 0x00000020 /* master control block (MCB) interrupt enabled */
106#define CM_BREQ 0x00000010 /* bus master enabled */
107#define CM_VOICE_EN 0x00000008 /* legacy voice (SB16,FM) */
108#define CM_UART_EN 0x00000004 /* legacy UART */
109#define CM_JYSTK_EN 0x00000002 /* legacy joystick */
110#define CM_ZVPORT 0x00000001 /* ZVPORT */
111
112#define CM_REG_CHFORMAT 0x08
113
114#define CM_CHB3D5C 0x80000000 /* 5,6 channels */
115#define CM_FMOFFSET2 0x40000000 /* initial FM PCM offset 2 when Fmute=1 */
116#define CM_CHB3D 0x20000000 /* 4 channels */
117
118#define CM_CHIP_MASK1 0x1f000000
119#define CM_CHIP_037 0x01000000
120#define CM_SETLAT48 0x00800000 /* set latency timer 48h */
121#define CM_EDGEIRQ 0x00400000 /* emulated edge trigger legacy IRQ */
122#define CM_SPD24SEL39 0x00200000 /* 24-bit spdif: model 039 */
123#define CM_AC3EN1 0x00100000 /* enable AC3: model 037 */
124#define CM_SPDIF_SELECT1 0x00080000 /* for model <= 037 ? */
125#define CM_SPD24SEL 0x00020000 /* 24bit spdif: model 037 */
126/* #define CM_SPDIF_INVERSE 0x00010000 */ /* ??? */
127
128#define CM_ADCBITLEN_MASK 0x0000C000
129#define CM_ADCBITLEN_16 0x00000000
130#define CM_ADCBITLEN_15 0x00004000
131#define CM_ADCBITLEN_14 0x00008000
132#define CM_ADCBITLEN_13 0x0000C000
133
134#define CM_ADCDACLEN_MASK 0x00003000 /* model 037 */
135#define CM_ADCDACLEN_060 0x00000000
136#define CM_ADCDACLEN_066 0x00001000
137#define CM_ADCDACLEN_130 0x00002000
138#define CM_ADCDACLEN_280 0x00003000
139
140#define CM_ADCDLEN_MASK 0x00003000 /* model 039 */
141#define CM_ADCDLEN_ORIGINAL 0x00000000
142#define CM_ADCDLEN_EXTRA 0x00001000
143#define CM_ADCDLEN_24K 0x00002000
144#define CM_ADCDLEN_WEIGHT 0x00003000
145
146#define CM_CH1_SRATE_176K 0x00000800
147#define CM_CH1_SRATE_96K 0x00000800 /* model 055? */
148#define CM_CH1_SRATE_88K 0x00000400
149#define CM_CH0_SRATE_176K 0x00000200
150#define CM_CH0_SRATE_96K 0x00000200 /* model 055? */
151#define CM_CH0_SRATE_88K 0x00000100
152#define CM_CH0_SRATE_128K 0x00000300
153#define CM_CH0_SRATE_MASK 0x00000300
154
155#define CM_SPDIF_INVERSE2 0x00000080 /* model 055? */
156#define CM_DBLSPDS 0x00000040 /* double SPDIF sample rate 88.2/96 */
157#define CM_POLVALID 0x00000020 /* inverse SPDIF/IN valid bit */
158#define CM_SPDLOCKED 0x00000010
159
160#define CM_CH1FMT_MASK 0x0000000C /* bit 3: 16 bits, bit 2: stereo */
161#define CM_CH1FMT_SHIFT 2
162#define CM_CH0FMT_MASK 0x00000003 /* bit 1: 16 bits, bit 0: stereo */
163#define CM_CH0FMT_SHIFT 0
164
165#define CM_REG_INT_HLDCLR 0x0C
166#define CM_CHIP_MASK2 0xff000000
167#define CM_CHIP_8768 0x20000000
168#define CM_CHIP_055 0x08000000
169#define CM_CHIP_039 0x04000000
170#define CM_CHIP_039_6CH 0x01000000
171#define CM_UNKNOWN_INT_EN 0x00080000 /* ? */
172#define CM_TDMA_INT_EN 0x00040000
173#define CM_CH1_INT_EN 0x00020000
174#define CM_CH0_INT_EN 0x00010000
175
176#define CM_REG_INT_STATUS 0x10
177#define CM_INTR 0x80000000
178#define CM_VCO 0x08000000 /* Voice Control? CMI8738 */
179#define CM_MCBINT 0x04000000 /* Master Control Block abort cond.? */
180#define CM_UARTINT 0x00010000
181#define CM_LTDMAINT 0x00008000
182#define CM_HTDMAINT 0x00004000
183#define CM_XDO46 0x00000080 /* Modell 033? Direct programming EEPROM (read data register) */
184#define CM_LHBTOG 0x00000040 /* High/Low status from DMA ctrl register */
185#define CM_LEG_HDMA 0x00000020 /* Legacy is in High DMA channel */
186#define CM_LEG_STEREO 0x00000010 /* Legacy is in Stereo mode */
187#define CM_CH1BUSY 0x00000008
188#define CM_CH0BUSY 0x00000004
189#define CM_CHINT1 0x00000002
190#define CM_CHINT0 0x00000001
191
192#define CM_REG_LEGACY_CTRL 0x14
193#define CM_NXCHG 0x80000000 /* don't map base reg dword->sample */
194#define CM_VMPU_MASK 0x60000000 /* MPU401 i/o port address */
195#define CM_VMPU_330 0x00000000
196#define CM_VMPU_320 0x20000000
197#define CM_VMPU_310 0x40000000
198#define CM_VMPU_300 0x60000000
199#define CM_ENWR8237 0x10000000 /* enable bus master to write 8237 base reg */
200#define CM_VSBSEL_MASK 0x0C000000 /* SB16 base address */
201#define CM_VSBSEL_220 0x00000000
202#define CM_VSBSEL_240 0x04000000
203#define CM_VSBSEL_260 0x08000000
204#define CM_VSBSEL_280 0x0C000000
205#define CM_FMSEL_MASK 0x03000000 /* FM OPL3 base address */
206#define CM_FMSEL_388 0x00000000
207#define CM_FMSEL_3C8 0x01000000
208#define CM_FMSEL_3E0 0x02000000
209#define CM_FMSEL_3E8 0x03000000
210#define CM_ENSPDOUT 0x00800000 /* enable XSPDIF/OUT to I/O interface */
211#define CM_SPDCOPYRHT 0x00400000 /* spdif in/out copyright bit */
212#define CM_DAC2SPDO 0x00200000 /* enable wave+fm_midi -> SPDIF/OUT */
213#define CM_INVIDWEN 0x00100000 /* internal vendor ID write enable, model 039? */
214#define CM_SETRETRY 0x00100000 /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
215#define CM_C_EEACCESS 0x00080000 /* direct programming eeprom regs */
216#define CM_C_EECS 0x00040000
217#define CM_C_EEDI46 0x00020000
218#define CM_C_EECK46 0x00010000
219#define CM_CHB3D6C 0x00008000 /* 5.1 channels support */
220#define CM_CENTR2LIN 0x00004000 /* line-in as center out */
221#define CM_BASE2LIN 0x00002000 /* line-in as bass out */
222#define CM_EXBASEN 0x00001000 /* external bass input enable */
223
224#define CM_REG_MISC_CTRL 0x18
225#define CM_PWD 0x80000000 /* power down */
226#define CM_RESET 0x40000000
227#define CM_SFIL_MASK 0x30000000 /* filter control at front end DAC, model 037? */
228#define CM_VMGAIN 0x10000000 /* analog master amp +6dB, model 039? */
229#define CM_TXVX 0x08000000 /* model 037? */
230#define CM_N4SPK3D 0x04000000 /* copy front to rear */
231#define CM_SPDO5V 0x02000000 /* 5V spdif output (1 = 0.5v (coax)) */
232#define CM_SPDIF48K 0x01000000 /* write */
233#define CM_SPATUS48K 0x01000000 /* read */
234#define CM_ENDBDAC 0x00800000 /* enable double dac */
235#define CM_XCHGDAC 0x00400000 /* 0: front=ch0, 1: front=ch1 */
236#define CM_SPD32SEL 0x00200000 /* 0: 16bit SPDIF, 1: 32bit */
237#define CM_SPDFLOOPI 0x00100000 /* int. SPDIF-OUT -> int. IN */
238#define CM_FM_EN 0x00080000 /* enable legacy FM */
239#define CM_AC3EN2 0x00040000 /* enable AC3: model 039 */
240#define CM_ENWRASID 0x00010000 /* choose writable internal SUBID (audio) */
241#define CM_VIDWPDSB 0x00010000 /* model 037? */
242#define CM_SPDF_AC97 0x00008000 /* 0: SPDIF/OUT 44.1K, 1: 48K */
243#define CM_MASK_EN 0x00004000 /* activate channel mask on legacy DMA */
244#define CM_ENWRMSID 0x00002000 /* choose writable internal SUBID (modem) */
245#define CM_VIDWPPRT 0x00002000 /* model 037? */
246#define CM_SFILENB 0x00001000 /* filter stepping at front end DAC, model 037? */
247#define CM_MMODE_MASK 0x00000E00 /* model DAA interface mode */
248#define CM_SPDIF_SELECT2 0x00000100 /* for model > 039 ? */
249#define CM_ENCENTER 0x00000080
250#define CM_FLINKON 0x00000040 /* force modem link detection on, model 037 */
251#define CM_MUTECH1 0x00000040 /* mute PCI ch1 to DAC */
252#define CM_FLINKOFF 0x00000020 /* force modem link detection off, model 037 */
253#define CM_MIDSMP 0x00000010 /* 1/2 interpolation at front end DAC */
254#define CM_UPDDMA_MASK 0x0000000C /* TDMA position update notification */
255#define CM_UPDDMA_2048 0x00000000
256#define CM_UPDDMA_1024 0x00000004
257#define CM_UPDDMA_512 0x00000008
258#define CM_UPDDMA_256 0x0000000C
259#define CM_TWAIT_MASK 0x00000003 /* model 037 */
260#define CM_TWAIT1 0x00000002 /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
261#define CM_TWAIT0 0x00000001 /* i/o cycle, 0: 4, 1: 6 PCICLKs */
262
263#define CM_REG_TDMA_POSITION 0x1C
264#define CM_TDMA_CNT_MASK 0xFFFF0000 /* current byte/word count */
265#define CM_TDMA_ADR_MASK 0x0000FFFF /* current address */
266
267 /* byte */
268#define CM_REG_MIXER0 0x20
269#define CM_REG_SBVR 0x20 /* write: sb16 version */
270#define CM_REG_DEV 0x20 /* read: hardware device version */
271
272#define CM_REG_MIXER21 0x21
273#define CM_UNKNOWN_21_MASK 0x78 /* ? */
274#define CM_X_ADPCM 0x04 /* SB16 ADPCM enable */
275#define CM_PROINV 0x02 /* SBPro left/right channel switching */
276#define CM_X_SB16 0x01 /* SB16 compatible */
277
278#define CM_REG_SB16_DATA 0x22
279#define CM_REG_SB16_ADDR 0x23
280
281#define CM_REFFREQ_XIN (315*1000*1000)/22 /* 14.31818 Mhz reference clock frequency pin XIN */
282#define CM_ADCMULT_XIN 512 /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
283#define CM_TOLERANCE_RATE 0.001 /* Tolerance sample rate pitch (1000ppm) */
284#define CM_MAXIMUM_RATE 80000000 /* Note more than 80MHz */
285
286#define CM_REG_MIXER1 0x24
287#define CM_FMMUTE 0x80 /* mute FM */
288#define CM_FMMUTE_SHIFT 7
289#define CM_WSMUTE 0x40 /* mute PCM */
290#define CM_WSMUTE_SHIFT 6
291#define CM_REAR2LIN 0x20 /* lin-in -> rear line out */
292#define CM_REAR2LIN_SHIFT 5
293#define CM_REAR2FRONT 0x10 /* exchange rear/front */
294#define CM_REAR2FRONT_SHIFT 4
295#define CM_WAVEINL 0x08 /* digital wave rec. left chan */
296#define CM_WAVEINL_SHIFT 3
297#define CM_WAVEINR 0x04 /* digical wave rec. right */
298#define CM_WAVEINR_SHIFT 2
299#define CM_X3DEN 0x02 /* 3D surround enable */
300#define CM_X3DEN_SHIFT 1
301#define CM_CDPLAY 0x01 /* enable SPDIF/IN PCM -> DAC */
302#define CM_CDPLAY_SHIFT 0
303
304#define CM_REG_MIXER2 0x25
305#define CM_RAUXREN 0x80 /* AUX right capture */
306#define CM_RAUXREN_SHIFT 7
307#define CM_RAUXLEN 0x40 /* AUX left capture */
308#define CM_RAUXLEN_SHIFT 6
309#define CM_VAUXRM 0x20 /* AUX right mute */
310#define CM_VAUXRM_SHIFT 5
311#define CM_VAUXLM 0x10 /* AUX left mute */
312#define CM_VAUXLM_SHIFT 4
313#define CM_VADMIC_MASK 0x0e /* mic gain level (0-3) << 1 */
314#define CM_VADMIC_SHIFT 1
315#define CM_MICGAINZ 0x01 /* mic boost */
316#define CM_MICGAINZ_SHIFT 0
317
318#define CM_REG_MIXER3 0x24
319#define CM_REG_AUX_VOL 0x26
320#define CM_VAUXL_MASK 0xf0
321#define CM_VAUXR_MASK 0x0f
322
323#define CM_REG_MISC 0x27
324#define CM_UNKNOWN_27_MASK 0xd8 /* ? */
325#define CM_XGPO1 0x20
326// #define CM_XGPBIO 0x04
327#define CM_MIC_CENTER_LFE 0x04 /* mic as center/lfe out? (model 039 or later?) */
328#define CM_SPDIF_INVERSE 0x04 /* spdif input phase inverse (model 037) */
329#define CM_SPDVALID 0x02 /* spdif input valid check */
330#define CM_DMAUTO 0x01 /* SB16 DMA auto detect */
331
332#define CM_REG_AC97 0x28 /* hmmm.. do we have ac97 link? */
333/*
334 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
335 * or identical with AC97 codec?
336 */
337#define CM_REG_EXTERN_CODEC CM_REG_AC97
338
339/*
340 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
341 */
342#define CM_REG_MPU_PCI 0x40
343
344/*
345 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
346 */
347#define CM_REG_FM_PCI 0x50
348
349/*
350 * access from SB-mixer port
351 */
352#define CM_REG_EXTENT_IND 0xf0
353#define CM_VPHONE_MASK 0xe0 /* Phone volume control (0-3) << 5 */
354#define CM_VPHONE_SHIFT 5
355#define CM_VPHOM 0x10 /* Phone mute control */
356#define CM_VSPKM 0x08 /* Speaker mute control, default high */
357#define CM_RLOOPREN 0x04 /* Rec. R-channel enable */
358#define CM_RLOOPLEN 0x02 /* Rec. L-channel enable */
359#define CM_VADMIC3 0x01 /* Mic record boost */
360
361/*
362 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
363 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
364 * unit (readonly?).
365 */
366#define CM_REG_PLL 0xf8
367
368/*
369 * extended registers
370 */
371#define CM_REG_CH0_FRAME1 0x80 /* write: base address */
372#define CM_REG_CH0_FRAME2 0x84 /* read: current address */
373#define CM_REG_CH1_FRAME1 0x88 /* 0-15: count of samples at bus master; buffer size */
374#define CM_REG_CH1_FRAME2 0x8C /* 16-31: count of samples at codec; fragment size */
375
376#define CM_REG_EXT_MISC 0x90
377#define CM_ADC48K44K 0x10000000 /* ADC parameters group, 0: 44k, 1: 48k */
378#define CM_CHB3D8C 0x00200000 /* 7.1 channels support */
379#define CM_SPD32FMT 0x00100000 /* SPDIF/IN 32k sample rate */
380#define CM_ADC2SPDIF 0x00080000 /* ADC output to SPDIF/OUT */
381#define CM_SHAREADC 0x00040000 /* DAC in ADC as Center/LFE */
382#define CM_REALTCMP 0x00020000 /* monitor the CMPL/CMPR of ADC */
383#define CM_INVLRCK 0x00010000 /* invert ZVPORT's LRCK */
384#define CM_UNKNOWN_90_MASK 0x0000FFFF /* ? */
385
386/*
387 * size of i/o region
388 */
389#define CM_EXTENT_CODEC 0x100
390#define CM_EXTENT_MIDI 0x2
391#define CM_EXTENT_SYNTH 0x4
392
393
394/*
395 * channels for playback / capture
396 */
397#define CM_CH_PLAY 0
398#define CM_CH_CAPT 1
399
400/*
401 * flags to check device open/close
402 */
403#define CM_OPEN_NONE 0
404#define CM_OPEN_CH_MASK 0x01
405#define CM_OPEN_DAC 0x10
406#define CM_OPEN_ADC 0x20
407#define CM_OPEN_SPDIF 0x40
408#define CM_OPEN_MCHAN 0x80
409#define CM_OPEN_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC)
410#define CM_OPEN_PLAYBACK2 (CM_CH_CAPT | CM_OPEN_DAC)
411#define CM_OPEN_PLAYBACK_MULTI (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
412#define CM_OPEN_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC)
413#define CM_OPEN_SPDIF_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
414#define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
415
416
417#if CM_CH_PLAY == 1
418#define CM_PLAYBACK_SRATE_176K CM_CH1_SRATE_176K
419#define CM_PLAYBACK_SPDF CM_SPDF_1
420#define CM_CAPTURE_SPDF CM_SPDF_0
421#else
422#define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
423#define CM_PLAYBACK_SPDF CM_SPDF_0
424#define CM_CAPTURE_SPDF CM_SPDF_1
425#endif
426
427
428/*
429 * driver data
430 */
431
432struct cmipci_pcm {
433 struct snd_pcm_substream *substream;
434 u8 running; /* dac/adc running? */
435 u8 fmt; /* format bits */
436 u8 is_dac;
437 u8 needs_silencing;
438 unsigned int dma_size; /* in frames */
439 unsigned int shift;
440 unsigned int ch; /* channel (0/1) */
441 unsigned int offset; /* physical address of the buffer */
442};
443
444/* mixer elements toggled/resumed during ac3 playback */
445struct cmipci_mixer_auto_switches {
446 const char *name; /* switch to toggle */
447 int toggle_on; /* value to change when ac3 mode */
448};
449static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
450 {"PCM Playback Switch", 0},
451 {"IEC958 Output Switch", 1},
452 {"IEC958 Mix Analog", 0},
453 // {"IEC958 Out To DAC", 1}, // no longer used
454 {"IEC958 Loop", 0},
455};
456#define CM_SAVED_MIXERS ARRAY_SIZE(cm_saved_mixer)
457
458struct cmipci {
459 struct snd_card *card;
460
461 struct pci_dev *pci;
462 unsigned int device; /* device ID */
463 int irq;
464
465 unsigned long iobase;
466 unsigned int ctrl; /* FUNCTRL0 current value */
467
468 struct snd_pcm *pcm; /* DAC/ADC PCM */
469 struct snd_pcm *pcm2; /* 2nd DAC */
470 struct snd_pcm *pcm_spdif; /* SPDIF */
471
472 int chip_version;
473 int max_channels;
474 unsigned int can_ac3_sw: 1;
475 unsigned int can_ac3_hw: 1;
476 unsigned int can_multi_ch: 1;
477 unsigned int can_96k: 1; /* samplerate above 48k */
478 unsigned int do_soft_ac3: 1;
479
480 unsigned int spdif_playback_avail: 1; /* spdif ready? */
481 unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */
482 int spdif_counter; /* for software AC3 */
483
484 unsigned int dig_status;
485 unsigned int dig_pcm_status;
486
487 struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
488
489 int opened[2]; /* open mode */
490 struct mutex open_mutex;
491
492 unsigned int mixer_insensitive: 1;
493 struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
494 int mixer_res_status[CM_SAVED_MIXERS];
495
496 struct cmipci_pcm channel[2]; /* ch0 - DAC, ch1 - ADC or 2nd DAC */
497
498 /* external MIDI */
499 struct snd_rawmidi *rmidi;
500
501#ifdef SUPPORT_JOYSTICK
502 struct gameport *gameport;
503#endif
504
505 spinlock_t reg_lock;
506
507#ifdef CONFIG_PM_SLEEP
508 unsigned int saved_regs[0x20];
509 unsigned char saved_mixers[0x20];
510#endif
511};
512
513
514/* read/write operations for dword register */
515static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
516{
517 outl(data, cm->iobase + cmd);
518}
519
520static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
521{
522 return inl(cm->iobase + cmd);
523}
524
525/* read/write operations for word register */
526static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
527{
528 outw(data, cm->iobase + cmd);
529}
530
531static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
532{
533 return inw(cm->iobase + cmd);
534}
535
536/* read/write operations for byte register */
537static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
538{
539 outb(data, cm->iobase + cmd);
540}
541
542static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
543{
544 return inb(cm->iobase + cmd);
545}
546
547/* bit operations for dword register */
548static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
549{
550 unsigned int val, oval;
551 val = oval = inl(cm->iobase + cmd);
552 val |= flag;
553 if (val == oval)
554 return 0;
555 outl(val, cm->iobase + cmd);
556 return 1;
557}
558
559static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
560{
561 unsigned int val, oval;
562 val = oval = inl(cm->iobase + cmd);
563 val &= ~flag;
564 if (val == oval)
565 return 0;
566 outl(val, cm->iobase + cmd);
567 return 1;
568}
569
570/* bit operations for byte register */
571static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
572{
573 unsigned char val, oval;
574 val = oval = inb(cm->iobase + cmd);
575 val |= flag;
576 if (val == oval)
577 return 0;
578 outb(val, cm->iobase + cmd);
579 return 1;
580}
581
582static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
583{
584 unsigned char val, oval;
585 val = oval = inb(cm->iobase + cmd);
586 val &= ~flag;
587 if (val == oval)
588 return 0;
589 outb(val, cm->iobase + cmd);
590 return 1;
591}
592
593
594/*
595 * PCM interface
596 */
597
598/*
599 * calculate frequency
600 */
601
602static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
603
604static unsigned int snd_cmipci_rate_freq(unsigned int rate)
605{
606 unsigned int i;
607
608 for (i = 0; i < ARRAY_SIZE(rates); i++) {
609 if (rates[i] == rate)
610 return i;
611 }
612 snd_BUG();
613 return 0;
614}
615
616#ifdef USE_VAR48KRATE
617/*
618 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
619 * does it this way .. maybe not. Never get any information from C-Media about
620 * that <werner@suse.de>.
621 */
622static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
623{
624 unsigned int delta, tolerance;
625 int xm, xn, xr;
626
627 for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
628 rate <<= 1;
629 *n = -1;
630 if (*r > 0xff)
631 goto out;
632 tolerance = rate*CM_TOLERANCE_RATE;
633
634 for (xn = (1+2); xn < (0x1f+2); xn++) {
635 for (xm = (1+2); xm < (0xff+2); xm++) {
636 xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
637
638 if (xr < rate)
639 delta = rate - xr;
640 else
641 delta = xr - rate;
642
643 /*
644 * If we found one, remember this,
645 * and try to find a closer one
646 */
647 if (delta < tolerance) {
648 tolerance = delta;
649 *m = xm - 2;
650 *n = xn - 2;
651 }
652 }
653 }
654out:
655 return (*n > -1);
656}
657
658/*
659 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
660 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
661 * at the register CM_REG_FUNCTRL1 (0x04).
662 * Problem: other ways are also possible (any information about that?)
663 */
664static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
665{
666 unsigned int reg = CM_REG_PLL + slot;
667 /*
668 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
669 * for DSFC/ASFC (000 up to 111).
670 */
671
672 /* FIXME: Init (Do we've to set an other register first before programming?) */
673
674 /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
675 snd_cmipci_write_b(cm, reg, rate>>8);
676 snd_cmipci_write_b(cm, reg, rate&0xff);
677
678 /* FIXME: Setup (Do we've to set an other register first to enable this?) */
679}
680#endif /* USE_VAR48KRATE */
681
682static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
683 struct snd_pcm_hw_params *hw_params)
684{
685 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
686}
687
688static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
689 struct snd_pcm_hw_params *hw_params)
690{
691 struct cmipci *cm = snd_pcm_substream_chip(substream);
692 if (params_channels(hw_params) > 2) {
693 mutex_lock(&cm->open_mutex);
694 if (cm->opened[CM_CH_PLAY]) {
695 mutex_unlock(&cm->open_mutex);
696 return -EBUSY;
697 }
698 /* reserve the channel A */
699 cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
700 mutex_unlock(&cm->open_mutex);
701 }
702 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
703}
704
705static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
706{
707 int reset = CM_RST_CH0 << (cm->channel[ch].ch);
708 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
709 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
710 udelay(10);
711}
712
713static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
714{
715 return snd_pcm_lib_free_pages(substream);
716}
717
718
719/*
720 */
721
722static unsigned int hw_channels[] = {1, 2, 4, 6, 8};
723static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
724 .count = 3,
725 .list = hw_channels,
726 .mask = 0,
727};
728static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
729 .count = 4,
730 .list = hw_channels,
731 .mask = 0,
732};
733static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
734 .count = 5,
735 .list = hw_channels,
736 .mask = 0,
737};
738
739static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
740{
741 if (channels > 2) {
742 if (!cm->can_multi_ch || !rec->ch)
743 return -EINVAL;
744 if (rec->fmt != 0x03) /* stereo 16bit only */
745 return -EINVAL;
746 }
747
748 if (cm->can_multi_ch) {
749 spin_lock_irq(&cm->reg_lock);
750 if (channels > 2) {
751 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
752 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
753 } else {
754 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
755 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
756 }
757 if (channels == 8)
758 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
759 else
760 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
761 if (channels == 6) {
762 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
763 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
764 } else {
765 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
766 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
767 }
768 if (channels == 4)
769 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
770 else
771 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
772 spin_unlock_irq(&cm->reg_lock);
773 }
774 return 0;
775}
776
777
778/*
779 * prepare playback/capture channel
780 * channel to be used must have been set in rec->ch.
781 */
782static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
783 struct snd_pcm_substream *substream)
784{
785 unsigned int reg, freq, freq_ext, val;
786 unsigned int period_size;
787 struct snd_pcm_runtime *runtime = substream->runtime;
788
789 rec->fmt = 0;
790 rec->shift = 0;
791 if (snd_pcm_format_width(runtime->format) >= 16) {
792 rec->fmt |= 0x02;
793 if (snd_pcm_format_width(runtime->format) > 16)
794 rec->shift++; /* 24/32bit */
795 }
796 if (runtime->channels > 1)
797 rec->fmt |= 0x01;
798 if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
799 dev_dbg(cm->card->dev, "cannot set dac channels\n");
800 return -EINVAL;
801 }
802
803 rec->offset = runtime->dma_addr;
804 /* buffer and period sizes in frame */
805 rec->dma_size = runtime->buffer_size << rec->shift;
806 period_size = runtime->period_size << rec->shift;
807 if (runtime->channels > 2) {
808 /* multi-channels */
809 rec->dma_size = (rec->dma_size * runtime->channels) / 2;
810 period_size = (period_size * runtime->channels) / 2;
811 }
812
813 spin_lock_irq(&cm->reg_lock);
814
815 /* set buffer address */
816 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
817 snd_cmipci_write(cm, reg, rec->offset);
818 /* program sample counts */
819 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
820 snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
821 snd_cmipci_write_w(cm, reg + 2, period_size - 1);
822
823 /* set adc/dac flag */
824 val = rec->ch ? CM_CHADC1 : CM_CHADC0;
825 if (rec->is_dac)
826 cm->ctrl &= ~val;
827 else
828 cm->ctrl |= val;
829 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
830 /* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
831
832 /* set sample rate */
833 freq = 0;
834 freq_ext = 0;
835 if (runtime->rate > 48000)
836 switch (runtime->rate) {
837 case 88200: freq_ext = CM_CH0_SRATE_88K; break;
838 case 96000: freq_ext = CM_CH0_SRATE_96K; break;
839 case 128000: freq_ext = CM_CH0_SRATE_128K; break;
840 default: snd_BUG(); break;
841 }
842 else
843 freq = snd_cmipci_rate_freq(runtime->rate);
844 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
845 if (rec->ch) {
846 val &= ~CM_DSFC_MASK;
847 val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
848 } else {
849 val &= ~CM_ASFC_MASK;
850 val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
851 }
852 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
853 dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
854
855 /* set format */
856 val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
857 if (rec->ch) {
858 val &= ~CM_CH1FMT_MASK;
859 val |= rec->fmt << CM_CH1FMT_SHIFT;
860 } else {
861 val &= ~CM_CH0FMT_MASK;
862 val |= rec->fmt << CM_CH0FMT_SHIFT;
863 }
864 if (cm->can_96k) {
865 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
866 val |= freq_ext << (rec->ch * 2);
867 }
868 snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
869 dev_dbg(cm->card->dev, "chformat = %08x\n", val);
870
871 if (!rec->is_dac && cm->chip_version) {
872 if (runtime->rate > 44100)
873 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
874 else
875 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
876 }
877
878 rec->running = 0;
879 spin_unlock_irq(&cm->reg_lock);
880
881 return 0;
882}
883
884/*
885 * PCM trigger/stop
886 */
887static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
888 int cmd)
889{
890 unsigned int inthld, chen, reset, pause;
891 int result = 0;
892
893 inthld = CM_CH0_INT_EN << rec->ch;
894 chen = CM_CHEN0 << rec->ch;
895 reset = CM_RST_CH0 << rec->ch;
896 pause = CM_PAUSE0 << rec->ch;
897
898 spin_lock(&cm->reg_lock);
899 switch (cmd) {
900 case SNDRV_PCM_TRIGGER_START:
901 rec->running = 1;
902 /* set interrupt */
903 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
904 cm->ctrl |= chen;
905 /* enable channel */
906 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
907 dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
908 break;
909 case SNDRV_PCM_TRIGGER_STOP:
910 rec->running = 0;
911 /* disable interrupt */
912 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
913 /* reset */
914 cm->ctrl &= ~chen;
915 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
916 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
917 rec->needs_silencing = rec->is_dac;
918 break;
919 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
920 case SNDRV_PCM_TRIGGER_SUSPEND:
921 cm->ctrl |= pause;
922 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
923 break;
924 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
925 case SNDRV_PCM_TRIGGER_RESUME:
926 cm->ctrl &= ~pause;
927 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
928 break;
929 default:
930 result = -EINVAL;
931 break;
932 }
933 spin_unlock(&cm->reg_lock);
934 return result;
935}
936
937/*
938 * return the current pointer
939 */
940static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
941 struct snd_pcm_substream *substream)
942{
943 size_t ptr;
944 unsigned int reg, rem, tries;
945
946 if (!rec->running)
947 return 0;
948#if 1 // this seems better..
949 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
950 for (tries = 0; tries < 3; tries++) {
951 rem = snd_cmipci_read_w(cm, reg);
952 if (rem < rec->dma_size)
953 goto ok;
954 }
955 dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
956 return SNDRV_PCM_POS_XRUN;
957ok:
958 ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
959#else
960 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
961 ptr = snd_cmipci_read(cm, reg) - rec->offset;
962 ptr = bytes_to_frames(substream->runtime, ptr);
963#endif
964 if (substream->runtime->channels > 2)
965 ptr = (ptr * 2) / substream->runtime->channels;
966 return ptr;
967}
968
969/*
970 * playback
971 */
972
973static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
974 int cmd)
975{
976 struct cmipci *cm = snd_pcm_substream_chip(substream);
977 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
978}
979
980static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
981{
982 struct cmipci *cm = snd_pcm_substream_chip(substream);
983 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
984}
985
986
987
988/*
989 * capture
990 */
991
992static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
993 int cmd)
994{
995 struct cmipci *cm = snd_pcm_substream_chip(substream);
996 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
997}
998
999static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
1000{
1001 struct cmipci *cm = snd_pcm_substream_chip(substream);
1002 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
1003}
1004
1005
1006/*
1007 * hw preparation for spdif
1008 */
1009
1010static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
1011 struct snd_ctl_elem_info *uinfo)
1012{
1013 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1014 uinfo->count = 1;
1015 return 0;
1016}
1017
1018static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
1019 struct snd_ctl_elem_value *ucontrol)
1020{
1021 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1022 int i;
1023
1024 spin_lock_irq(&chip->reg_lock);
1025 for (i = 0; i < 4; i++)
1026 ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1027 spin_unlock_irq(&chip->reg_lock);
1028 return 0;
1029}
1030
1031static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1032 struct snd_ctl_elem_value *ucontrol)
1033{
1034 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1035 int i, change;
1036 unsigned int val;
1037
1038 val = 0;
1039 spin_lock_irq(&chip->reg_lock);
1040 for (i = 0; i < 4; i++)
1041 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1042 change = val != chip->dig_status;
1043 chip->dig_status = val;
1044 spin_unlock_irq(&chip->reg_lock);
1045 return change;
1046}
1047
1048static struct snd_kcontrol_new snd_cmipci_spdif_default =
1049{
1050 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1051 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1052 .info = snd_cmipci_spdif_default_info,
1053 .get = snd_cmipci_spdif_default_get,
1054 .put = snd_cmipci_spdif_default_put
1055};
1056
1057static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1058 struct snd_ctl_elem_info *uinfo)
1059{
1060 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1061 uinfo->count = 1;
1062 return 0;
1063}
1064
1065static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1066 struct snd_ctl_elem_value *ucontrol)
1067{
1068 ucontrol->value.iec958.status[0] = 0xff;
1069 ucontrol->value.iec958.status[1] = 0xff;
1070 ucontrol->value.iec958.status[2] = 0xff;
1071 ucontrol->value.iec958.status[3] = 0xff;
1072 return 0;
1073}
1074
1075static struct snd_kcontrol_new snd_cmipci_spdif_mask =
1076{
1077 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1078 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1079 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1080 .info = snd_cmipci_spdif_mask_info,
1081 .get = snd_cmipci_spdif_mask_get,
1082};
1083
1084static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1085 struct snd_ctl_elem_info *uinfo)
1086{
1087 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1088 uinfo->count = 1;
1089 return 0;
1090}
1091
1092static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1093 struct snd_ctl_elem_value *ucontrol)
1094{
1095 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1096 int i;
1097
1098 spin_lock_irq(&chip->reg_lock);
1099 for (i = 0; i < 4; i++)
1100 ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1101 spin_unlock_irq(&chip->reg_lock);
1102 return 0;
1103}
1104
1105static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1106 struct snd_ctl_elem_value *ucontrol)
1107{
1108 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1109 int i, change;
1110 unsigned int val;
1111
1112 val = 0;
1113 spin_lock_irq(&chip->reg_lock);
1114 for (i = 0; i < 4; i++)
1115 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1116 change = val != chip->dig_pcm_status;
1117 chip->dig_pcm_status = val;
1118 spin_unlock_irq(&chip->reg_lock);
1119 return change;
1120}
1121
1122static struct snd_kcontrol_new snd_cmipci_spdif_stream =
1123{
1124 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1125 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1126 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1127 .info = snd_cmipci_spdif_stream_info,
1128 .get = snd_cmipci_spdif_stream_get,
1129 .put = snd_cmipci_spdif_stream_put
1130};
1131
1132/*
1133 */
1134
1135/* save mixer setting and mute for AC3 playback */
1136static int save_mixer_state(struct cmipci *cm)
1137{
1138 if (! cm->mixer_insensitive) {
1139 struct snd_ctl_elem_value *val;
1140 unsigned int i;
1141
1142 val = kmalloc(sizeof(*val), GFP_ATOMIC);
1143 if (!val)
1144 return -ENOMEM;
1145 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1146 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1147 if (ctl) {
1148 int event;
1149 memset(val, 0, sizeof(*val));
1150 ctl->get(ctl, val);
1151 cm->mixer_res_status[i] = val->value.integer.value[0];
1152 val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1153 event = SNDRV_CTL_EVENT_MASK_INFO;
1154 if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1155 ctl->put(ctl, val); /* toggle */
1156 event |= SNDRV_CTL_EVENT_MASK_VALUE;
1157 }
1158 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1159 snd_ctl_notify(cm->card, event, &ctl->id);
1160 }
1161 }
1162 kfree(val);
1163 cm->mixer_insensitive = 1;
1164 }
1165 return 0;
1166}
1167
1168
1169/* restore the previously saved mixer status */
1170static void restore_mixer_state(struct cmipci *cm)
1171{
1172 if (cm->mixer_insensitive) {
1173 struct snd_ctl_elem_value *val;
1174 unsigned int i;
1175
1176 val = kmalloc(sizeof(*val), GFP_KERNEL);
1177 if (!val)
1178 return;
1179 cm->mixer_insensitive = 0; /* at first clear this;
1180 otherwise the changes will be ignored */
1181 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1182 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1183 if (ctl) {
1184 int event;
1185
1186 memset(val, 0, sizeof(*val));
1187 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1188 ctl->get(ctl, val);
1189 event = SNDRV_CTL_EVENT_MASK_INFO;
1190 if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1191 val->value.integer.value[0] = cm->mixer_res_status[i];
1192 ctl->put(ctl, val);
1193 event |= SNDRV_CTL_EVENT_MASK_VALUE;
1194 }
1195 snd_ctl_notify(cm->card, event, &ctl->id);
1196 }
1197 }
1198 kfree(val);
1199 }
1200}
1201
1202/* spinlock held! */
1203static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1204{
1205 if (do_ac3) {
1206 /* AC3EN for 037 */
1207 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1208 /* AC3EN for 039 */
1209 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1210
1211 if (cm->can_ac3_hw) {
1212 /* SPD24SEL for 037, 0x02 */
1213 /* SPD24SEL for 039, 0x20, but cannot be set */
1214 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1215 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1216 } else { /* can_ac3_sw */
1217 /* SPD32SEL for 037 & 039, 0x20 */
1218 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1219 /* set 176K sample rate to fix 033 HW bug */
1220 if (cm->chip_version == 33) {
1221 if (rate >= 48000) {
1222 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1223 } else {
1224 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1225 }
1226 }
1227 }
1228
1229 } else {
1230 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1231 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1232
1233 if (cm->can_ac3_hw) {
1234 /* chip model >= 37 */
1235 if (snd_pcm_format_width(subs->runtime->format) > 16) {
1236 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1237 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1238 } else {
1239 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1240 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1241 }
1242 } else {
1243 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1244 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1245 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1246 }
1247 }
1248}
1249
1250static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1251{
1252 int rate, err;
1253
1254 rate = subs->runtime->rate;
1255
1256 if (up && do_ac3)
1257 if ((err = save_mixer_state(cm)) < 0)
1258 return err;
1259
1260 spin_lock_irq(&cm->reg_lock);
1261 cm->spdif_playback_avail = up;
1262 if (up) {
1263 /* they are controlled via "IEC958 Output Switch" */
1264 /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1265 /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1266 if (cm->spdif_playback_enabled)
1267 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1268 setup_ac3(cm, subs, do_ac3, rate);
1269
1270 if (rate == 48000 || rate == 96000)
1271 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1272 else
1273 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1274 if (rate > 48000)
1275 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1276 else
1277 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1278 } else {
1279 /* they are controlled via "IEC958 Output Switch" */
1280 /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1281 /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1282 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1283 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1284 setup_ac3(cm, subs, 0, 0);
1285 }
1286 spin_unlock_irq(&cm->reg_lock);
1287 return 0;
1288}
1289
1290
1291/*
1292 * preparation
1293 */
1294
1295/* playback - enable spdif only on the certain condition */
1296static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1297{
1298 struct cmipci *cm = snd_pcm_substream_chip(substream);
1299 int rate = substream->runtime->rate;
1300 int err, do_spdif, do_ac3 = 0;
1301
1302 do_spdif = (rate >= 44100 && rate <= 96000 &&
1303 substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1304 substream->runtime->channels == 2);
1305 if (do_spdif && cm->can_ac3_hw)
1306 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1307 if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1308 return err;
1309 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1310}
1311
1312/* playback (via device #2) - enable spdif always */
1313static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1314{
1315 struct cmipci *cm = snd_pcm_substream_chip(substream);
1316 int err, do_ac3;
1317
1318 if (cm->can_ac3_hw)
1319 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1320 else
1321 do_ac3 = 1; /* doesn't matter */
1322 if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1323 return err;
1324 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1325}
1326
1327/*
1328 * Apparently, the samples last played on channel A stay in some buffer, even
1329 * after the channel is reset, and get added to the data for the rear DACs when
1330 * playing a multichannel stream on channel B. This is likely to generate
1331 * wraparounds and thus distortions.
1332 * To avoid this, we play at least one zero sample after the actual stream has
1333 * stopped.
1334 */
1335static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1336{
1337 struct snd_pcm_runtime *runtime = rec->substream->runtime;
1338 unsigned int reg, val;
1339
1340 if (rec->needs_silencing && runtime && runtime->dma_area) {
1341 /* set up a small silence buffer */
1342 memset(runtime->dma_area, 0, PAGE_SIZE);
1343 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1344 val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1345 snd_cmipci_write(cm, reg, val);
1346
1347 /* configure for 16 bits, 2 channels, 8 kHz */
1348 if (runtime->channels > 2)
1349 set_dac_channels(cm, rec, 2);
1350 spin_lock_irq(&cm->reg_lock);
1351 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1352 val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1353 val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1354 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1355 val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1356 val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1357 val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1358 if (cm->can_96k)
1359 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1360 snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1361
1362 /* start stream (we don't need interrupts) */
1363 cm->ctrl |= CM_CHEN0 << rec->ch;
1364 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1365 spin_unlock_irq(&cm->reg_lock);
1366
1367 msleep(1);
1368
1369 /* stop and reset stream */
1370 spin_lock_irq(&cm->reg_lock);
1371 cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1372 val = CM_RST_CH0 << rec->ch;
1373 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1374 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1375 spin_unlock_irq(&cm->reg_lock);
1376
1377 rec->needs_silencing = 0;
1378 }
1379}
1380
1381static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1382{
1383 struct cmipci *cm = snd_pcm_substream_chip(substream);
1384 setup_spdif_playback(cm, substream, 0, 0);
1385 restore_mixer_state(cm);
1386 snd_cmipci_silence_hack(cm, &cm->channel[0]);
1387 return snd_cmipci_hw_free(substream);
1388}
1389
1390static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1391{
1392 struct cmipci *cm = snd_pcm_substream_chip(substream);
1393 snd_cmipci_silence_hack(cm, &cm->channel[1]);
1394 return snd_cmipci_hw_free(substream);
1395}
1396
1397/* capture */
1398static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1399{
1400 struct cmipci *cm = snd_pcm_substream_chip(substream);
1401 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1402}
1403
1404/* capture with spdif (via device #2) */
1405static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1406{
1407 struct cmipci *cm = snd_pcm_substream_chip(substream);
1408
1409 spin_lock_irq(&cm->reg_lock);
1410 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1411 if (cm->can_96k) {
1412 if (substream->runtime->rate > 48000)
1413 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1414 else
1415 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1416 }
1417 if (snd_pcm_format_width(substream->runtime->format) > 16)
1418 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1419 else
1420 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1421
1422 spin_unlock_irq(&cm->reg_lock);
1423
1424 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1425}
1426
1427static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1428{
1429 struct cmipci *cm = snd_pcm_substream_chip(subs);
1430
1431 spin_lock_irq(&cm->reg_lock);
1432 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1433 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1434 spin_unlock_irq(&cm->reg_lock);
1435
1436 return snd_cmipci_hw_free(subs);
1437}
1438
1439
1440/*
1441 * interrupt handler
1442 */
1443static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1444{
1445 struct cmipci *cm = dev_id;
1446 unsigned int status, mask = 0;
1447
1448 /* fastpath out, to ease interrupt sharing */
1449 status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1450 if (!(status & CM_INTR))
1451 return IRQ_NONE;
1452
1453 /* acknowledge interrupt */
1454 spin_lock(&cm->reg_lock);
1455 if (status & CM_CHINT0)
1456 mask |= CM_CH0_INT_EN;
1457 if (status & CM_CHINT1)
1458 mask |= CM_CH1_INT_EN;
1459 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1460 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1461 spin_unlock(&cm->reg_lock);
1462
1463 if (cm->rmidi && (status & CM_UARTINT))
1464 snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1465
1466 if (cm->pcm) {
1467 if ((status & CM_CHINT0) && cm->channel[0].running)
1468 snd_pcm_period_elapsed(cm->channel[0].substream);
1469 if ((status & CM_CHINT1) && cm->channel[1].running)
1470 snd_pcm_period_elapsed(cm->channel[1].substream);
1471 }
1472 return IRQ_HANDLED;
1473}
1474
1475/*
1476 * h/w infos
1477 */
1478
1479/* playback on channel A */
1480static struct snd_pcm_hardware snd_cmipci_playback =
1481{
1482 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1483 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1484 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1485 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1486 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1487 .rate_min = 5512,
1488 .rate_max = 48000,
1489 .channels_min = 1,
1490 .channels_max = 2,
1491 .buffer_bytes_max = (128*1024),
1492 .period_bytes_min = 64,
1493 .period_bytes_max = (128*1024),
1494 .periods_min = 2,
1495 .periods_max = 1024,
1496 .fifo_size = 0,
1497};
1498
1499/* capture on channel B */
1500static struct snd_pcm_hardware snd_cmipci_capture =
1501{
1502 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1503 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1504 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1505 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1506 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1507 .rate_min = 5512,
1508 .rate_max = 48000,
1509 .channels_min = 1,
1510 .channels_max = 2,
1511 .buffer_bytes_max = (128*1024),
1512 .period_bytes_min = 64,
1513 .period_bytes_max = (128*1024),
1514 .periods_min = 2,
1515 .periods_max = 1024,
1516 .fifo_size = 0,
1517};
1518
1519/* playback on channel B - stereo 16bit only? */
1520static struct snd_pcm_hardware snd_cmipci_playback2 =
1521{
1522 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1523 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1524 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1525 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1526 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1527 .rate_min = 5512,
1528 .rate_max = 48000,
1529 .channels_min = 2,
1530 .channels_max = 2,
1531 .buffer_bytes_max = (128*1024),
1532 .period_bytes_min = 64,
1533 .period_bytes_max = (128*1024),
1534 .periods_min = 2,
1535 .periods_max = 1024,
1536 .fifo_size = 0,
1537};
1538
1539/* spdif playback on channel A */
1540static struct snd_pcm_hardware snd_cmipci_playback_spdif =
1541{
1542 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1543 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1544 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1545 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1546 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1547 .rate_min = 44100,
1548 .rate_max = 48000,
1549 .channels_min = 2,
1550 .channels_max = 2,
1551 .buffer_bytes_max = (128*1024),
1552 .period_bytes_min = 64,
1553 .period_bytes_max = (128*1024),
1554 .periods_min = 2,
1555 .periods_max = 1024,
1556 .fifo_size = 0,
1557};
1558
1559/* spdif playback on channel A (32bit, IEC958 subframes) */
1560static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1561{
1562 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1563 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1564 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1565 .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1566 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1567 .rate_min = 44100,
1568 .rate_max = 48000,
1569 .channels_min = 2,
1570 .channels_max = 2,
1571 .buffer_bytes_max = (128*1024),
1572 .period_bytes_min = 64,
1573 .period_bytes_max = (128*1024),
1574 .periods_min = 2,
1575 .periods_max = 1024,
1576 .fifo_size = 0,
1577};
1578
1579/* spdif capture on channel B */
1580static struct snd_pcm_hardware snd_cmipci_capture_spdif =
1581{
1582 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1583 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1584 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1585 .formats = SNDRV_PCM_FMTBIT_S16_LE |
1586 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1587 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1588 .rate_min = 44100,
1589 .rate_max = 48000,
1590 .channels_min = 2,
1591 .channels_max = 2,
1592 .buffer_bytes_max = (128*1024),
1593 .period_bytes_min = 64,
1594 .period_bytes_max = (128*1024),
1595 .periods_min = 2,
1596 .periods_max = 1024,
1597 .fifo_size = 0,
1598};
1599
1600static unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1601 32000, 44100, 48000, 88200, 96000, 128000 };
1602static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1603 .count = ARRAY_SIZE(rate_constraints),
1604 .list = rate_constraints,
1605 .mask = 0,
1606};
1607
1608/*
1609 * check device open/close
1610 */
1611static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1612{
1613 int ch = mode & CM_OPEN_CH_MASK;
1614
1615 /* FIXME: a file should wait until the device becomes free
1616 * when it's opened on blocking mode. however, since the current
1617 * pcm framework doesn't pass file pointer before actually opened,
1618 * we can't know whether blocking mode or not in open callback..
1619 */
1620 mutex_lock(&cm->open_mutex);
1621 if (cm->opened[ch]) {
1622 mutex_unlock(&cm->open_mutex);
1623 return -EBUSY;
1624 }
1625 cm->opened[ch] = mode;
1626 cm->channel[ch].substream = subs;
1627 if (! (mode & CM_OPEN_DAC)) {
1628 /* disable dual DAC mode */
1629 cm->channel[ch].is_dac = 0;
1630 spin_lock_irq(&cm->reg_lock);
1631 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1632 spin_unlock_irq(&cm->reg_lock);
1633 }
1634 mutex_unlock(&cm->open_mutex);
1635 return 0;
1636}
1637
1638static void close_device_check(struct cmipci *cm, int mode)
1639{
1640 int ch = mode & CM_OPEN_CH_MASK;
1641
1642 mutex_lock(&cm->open_mutex);
1643 if (cm->opened[ch] == mode) {
1644 if (cm->channel[ch].substream) {
1645 snd_cmipci_ch_reset(cm, ch);
1646 cm->channel[ch].running = 0;
1647 cm->channel[ch].substream = NULL;
1648 }
1649 cm->opened[ch] = 0;
1650 if (! cm->channel[ch].is_dac) {
1651 /* enable dual DAC mode again */
1652 cm->channel[ch].is_dac = 1;
1653 spin_lock_irq(&cm->reg_lock);
1654 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1655 spin_unlock_irq(&cm->reg_lock);
1656 }
1657 }
1658 mutex_unlock(&cm->open_mutex);
1659}
1660
1661/*
1662 */
1663
1664static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1665{
1666 struct cmipci *cm = snd_pcm_substream_chip(substream);
1667 struct snd_pcm_runtime *runtime = substream->runtime;
1668 int err;
1669
1670 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1671 return err;
1672 runtime->hw = snd_cmipci_playback;
1673 if (cm->chip_version == 68) {
1674 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1675 SNDRV_PCM_RATE_96000;
1676 runtime->hw.rate_max = 96000;
1677 } else if (cm->chip_version == 55) {
1678 err = snd_pcm_hw_constraint_list(runtime, 0,
1679 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1680 if (err < 0)
1681 return err;
1682 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1683 runtime->hw.rate_max = 128000;
1684 }
1685 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1686 cm->dig_pcm_status = cm->dig_status;
1687 return 0;
1688}
1689
1690static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1691{
1692 struct cmipci *cm = snd_pcm_substream_chip(substream);
1693 struct snd_pcm_runtime *runtime = substream->runtime;
1694 int err;
1695
1696 if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1697 return err;
1698 runtime->hw = snd_cmipci_capture;
1699 if (cm->chip_version == 68) { // 8768 only supports 44k/48k recording
1700 runtime->hw.rate_min = 41000;
1701 runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1702 } else if (cm->chip_version == 55) {
1703 err = snd_pcm_hw_constraint_list(runtime, 0,
1704 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1705 if (err < 0)
1706 return err;
1707 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1708 runtime->hw.rate_max = 128000;
1709 }
1710 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1711 return 0;
1712}
1713
1714static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1715{
1716 struct cmipci *cm = snd_pcm_substream_chip(substream);
1717 struct snd_pcm_runtime *runtime = substream->runtime;
1718 int err;
1719
1720 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1721 return err;
1722 runtime->hw = snd_cmipci_playback2;
1723 mutex_lock(&cm->open_mutex);
1724 if (! cm->opened[CM_CH_PLAY]) {
1725 if (cm->can_multi_ch) {
1726 runtime->hw.channels_max = cm->max_channels;
1727 if (cm->max_channels == 4)
1728 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1729 else if (cm->max_channels == 6)
1730 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1731 else if (cm->max_channels == 8)
1732 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1733 }
1734 }
1735 mutex_unlock(&cm->open_mutex);
1736 if (cm->chip_version == 68) {
1737 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1738 SNDRV_PCM_RATE_96000;
1739 runtime->hw.rate_max = 96000;
1740 } else if (cm->chip_version == 55) {
1741 err = snd_pcm_hw_constraint_list(runtime, 0,
1742 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1743 if (err < 0)
1744 return err;
1745 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1746 runtime->hw.rate_max = 128000;
1747 }
1748 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1749 return 0;
1750}
1751
1752static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1753{
1754 struct cmipci *cm = snd_pcm_substream_chip(substream);
1755 struct snd_pcm_runtime *runtime = substream->runtime;
1756 int err;
1757
1758 if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1759 return err;
1760 if (cm->can_ac3_hw) {
1761 runtime->hw = snd_cmipci_playback_spdif;
1762 if (cm->chip_version >= 37) {
1763 runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1764 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1765 }
1766 if (cm->can_96k) {
1767 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1768 SNDRV_PCM_RATE_96000;
1769 runtime->hw.rate_max = 96000;
1770 }
1771 } else {
1772 runtime->hw = snd_cmipci_playback_iec958_subframe;
1773 }
1774 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1775 cm->dig_pcm_status = cm->dig_status;
1776 return 0;
1777}
1778
1779static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1780{
1781 struct cmipci *cm = snd_pcm_substream_chip(substream);
1782 struct snd_pcm_runtime *runtime = substream->runtime;
1783 int err;
1784
1785 if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1786 return err;
1787 runtime->hw = snd_cmipci_capture_spdif;
1788 if (cm->can_96k && !(cm->chip_version == 68)) {
1789 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1790 SNDRV_PCM_RATE_96000;
1791 runtime->hw.rate_max = 96000;
1792 }
1793 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1794 return 0;
1795}
1796
1797
1798/*
1799 */
1800
1801static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1802{
1803 struct cmipci *cm = snd_pcm_substream_chip(substream);
1804 close_device_check(cm, CM_OPEN_PLAYBACK);
1805 return 0;
1806}
1807
1808static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1809{
1810 struct cmipci *cm = snd_pcm_substream_chip(substream);
1811 close_device_check(cm, CM_OPEN_CAPTURE);
1812 return 0;
1813}
1814
1815static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1816{
1817 struct cmipci *cm = snd_pcm_substream_chip(substream);
1818 close_device_check(cm, CM_OPEN_PLAYBACK2);
1819 close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1820 return 0;
1821}
1822
1823static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1824{
1825 struct cmipci *cm = snd_pcm_substream_chip(substream);
1826 close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1827 return 0;
1828}
1829
1830static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1831{
1832 struct cmipci *cm = snd_pcm_substream_chip(substream);
1833 close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1834 return 0;
1835}
1836
1837
1838/*
1839 */
1840
1841static struct snd_pcm_ops snd_cmipci_playback_ops = {
1842 .open = snd_cmipci_playback_open,
1843 .close = snd_cmipci_playback_close,
1844 .ioctl = snd_pcm_lib_ioctl,
1845 .hw_params = snd_cmipci_hw_params,
1846 .hw_free = snd_cmipci_playback_hw_free,
1847 .prepare = snd_cmipci_playback_prepare,
1848 .trigger = snd_cmipci_playback_trigger,
1849 .pointer = snd_cmipci_playback_pointer,
1850};
1851
1852static struct snd_pcm_ops snd_cmipci_capture_ops = {
1853 .open = snd_cmipci_capture_open,
1854 .close = snd_cmipci_capture_close,
1855 .ioctl = snd_pcm_lib_ioctl,
1856 .hw_params = snd_cmipci_hw_params,
1857 .hw_free = snd_cmipci_hw_free,
1858 .prepare = snd_cmipci_capture_prepare,
1859 .trigger = snd_cmipci_capture_trigger,
1860 .pointer = snd_cmipci_capture_pointer,
1861};
1862
1863static struct snd_pcm_ops snd_cmipci_playback2_ops = {
1864 .open = snd_cmipci_playback2_open,
1865 .close = snd_cmipci_playback2_close,
1866 .ioctl = snd_pcm_lib_ioctl,
1867 .hw_params = snd_cmipci_playback2_hw_params,
1868 .hw_free = snd_cmipci_playback2_hw_free,
1869 .prepare = snd_cmipci_capture_prepare, /* channel B */
1870 .trigger = snd_cmipci_capture_trigger, /* channel B */
1871 .pointer = snd_cmipci_capture_pointer, /* channel B */
1872};
1873
1874static struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1875 .open = snd_cmipci_playback_spdif_open,
1876 .close = snd_cmipci_playback_spdif_close,
1877 .ioctl = snd_pcm_lib_ioctl,
1878 .hw_params = snd_cmipci_hw_params,
1879 .hw_free = snd_cmipci_playback_hw_free,
1880 .prepare = snd_cmipci_playback_spdif_prepare, /* set up rate */
1881 .trigger = snd_cmipci_playback_trigger,
1882 .pointer = snd_cmipci_playback_pointer,
1883};
1884
1885static struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1886 .open = snd_cmipci_capture_spdif_open,
1887 .close = snd_cmipci_capture_spdif_close,
1888 .ioctl = snd_pcm_lib_ioctl,
1889 .hw_params = snd_cmipci_hw_params,
1890 .hw_free = snd_cmipci_capture_spdif_hw_free,
1891 .prepare = snd_cmipci_capture_spdif_prepare,
1892 .trigger = snd_cmipci_capture_trigger,
1893 .pointer = snd_cmipci_capture_pointer,
1894};
1895
1896
1897/*
1898 */
1899
1900static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1901{
1902 struct snd_pcm *pcm;
1903 int err;
1904
1905 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1906 if (err < 0)
1907 return err;
1908
1909 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1910 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1911
1912 pcm->private_data = cm;
1913 pcm->info_flags = 0;
1914 strcpy(pcm->name, "C-Media PCI DAC/ADC");
1915 cm->pcm = pcm;
1916
1917 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1918 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1919
1920 return 0;
1921}
1922
1923static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1924{
1925 struct snd_pcm *pcm;
1926 int err;
1927
1928 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1929 if (err < 0)
1930 return err;
1931
1932 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1933
1934 pcm->private_data = cm;
1935 pcm->info_flags = 0;
1936 strcpy(pcm->name, "C-Media PCI 2nd DAC");
1937 cm->pcm2 = pcm;
1938
1939 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1940 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1941
1942 return 0;
1943}
1944
1945static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1946{
1947 struct snd_pcm *pcm;
1948 int err;
1949
1950 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1951 if (err < 0)
1952 return err;
1953
1954 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1955 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1956
1957 pcm->private_data = cm;
1958 pcm->info_flags = 0;
1959 strcpy(pcm->name, "C-Media PCI IEC958");
1960 cm->pcm_spdif = pcm;
1961
1962 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1963 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1964
1965 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1966 snd_pcm_alt_chmaps, cm->max_channels, 0,
1967 NULL);
1968 if (err < 0)
1969 return err;
1970
1971 return 0;
1972}
1973
1974/*
1975 * mixer interface:
1976 * - CM8338/8738 has a compatible mixer interface with SB16, but
1977 * lack of some elements like tone control, i/o gain and AGC.
1978 * - Access to native registers:
1979 * - A 3D switch
1980 * - Output mute switches
1981 */
1982
1983static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1984{
1985 outb(idx, s->iobase + CM_REG_SB16_ADDR);
1986 outb(data, s->iobase + CM_REG_SB16_DATA);
1987}
1988
1989static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1990{
1991 unsigned char v;
1992
1993 outb(idx, s->iobase + CM_REG_SB16_ADDR);
1994 v = inb(s->iobase + CM_REG_SB16_DATA);
1995 return v;
1996}
1997
1998/*
1999 * general mixer element
2000 */
2001struct cmipci_sb_reg {
2002 unsigned int left_reg, right_reg;
2003 unsigned int left_shift, right_shift;
2004 unsigned int mask;
2005 unsigned int invert: 1;
2006 unsigned int stereo: 1;
2007};
2008
2009#define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
2010 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
2011
2012#define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
2013{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2014 .info = snd_cmipci_info_volume, \
2015 .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
2016 .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
2017}
2018
2019#define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
2020#define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
2021#define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
2022#define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
2023
2024static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
2025{
2026 r->left_reg = val & 0xff;
2027 r->right_reg = (val >> 8) & 0xff;
2028 r->left_shift = (val >> 16) & 0x07;
2029 r->right_shift = (val >> 19) & 0x07;
2030 r->invert = (val >> 22) & 1;
2031 r->stereo = (val >> 23) & 1;
2032 r->mask = (val >> 24) & 0xff;
2033}
2034
2035static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2036 struct snd_ctl_elem_info *uinfo)
2037{
2038 struct cmipci_sb_reg reg;
2039
2040 cmipci_sb_reg_decode(®, kcontrol->private_value);
2041 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2042 uinfo->count = reg.stereo + 1;
2043 uinfo->value.integer.min = 0;
2044 uinfo->value.integer.max = reg.mask;
2045 return 0;
2046}
2047
2048static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2049 struct snd_ctl_elem_value *ucontrol)
2050{
2051 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2052 struct cmipci_sb_reg reg;
2053 int val;
2054
2055 cmipci_sb_reg_decode(®, kcontrol->private_value);
2056 spin_lock_irq(&cm->reg_lock);
2057 val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2058 if (reg.invert)
2059 val = reg.mask - val;
2060 ucontrol->value.integer.value[0] = val;
2061 if (reg.stereo) {
2062 val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2063 if (reg.invert)
2064 val = reg.mask - val;
2065 ucontrol->value.integer.value[1] = val;
2066 }
2067 spin_unlock_irq(&cm->reg_lock);
2068 return 0;
2069}
2070
2071static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2072 struct snd_ctl_elem_value *ucontrol)
2073{
2074 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2075 struct cmipci_sb_reg reg;
2076 int change;
2077 int left, right, oleft, oright;
2078
2079 cmipci_sb_reg_decode(®, kcontrol->private_value);
2080 left = ucontrol->value.integer.value[0] & reg.mask;
2081 if (reg.invert)
2082 left = reg.mask - left;
2083 left <<= reg.left_shift;
2084 if (reg.stereo) {
2085 right = ucontrol->value.integer.value[1] & reg.mask;
2086 if (reg.invert)
2087 right = reg.mask - right;
2088 right <<= reg.right_shift;
2089 } else
2090 right = 0;
2091 spin_lock_irq(&cm->reg_lock);
2092 oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2093 left |= oleft & ~(reg.mask << reg.left_shift);
2094 change = left != oleft;
2095 if (reg.stereo) {
2096 if (reg.left_reg != reg.right_reg) {
2097 snd_cmipci_mixer_write(cm, reg.left_reg, left);
2098 oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2099 } else
2100 oright = left;
2101 right |= oright & ~(reg.mask << reg.right_shift);
2102 change |= right != oright;
2103 snd_cmipci_mixer_write(cm, reg.right_reg, right);
2104 } else
2105 snd_cmipci_mixer_write(cm, reg.left_reg, left);
2106 spin_unlock_irq(&cm->reg_lock);
2107 return change;
2108}
2109
2110/*
2111 * input route (left,right) -> (left,right)
2112 */
2113#define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2114{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2115 .info = snd_cmipci_info_input_sw, \
2116 .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2117 .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2118}
2119
2120static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2121 struct snd_ctl_elem_info *uinfo)
2122{
2123 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2124 uinfo->count = 4;
2125 uinfo->value.integer.min = 0;
2126 uinfo->value.integer.max = 1;
2127 return 0;
2128}
2129
2130static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2131 struct snd_ctl_elem_value *ucontrol)
2132{
2133 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2134 struct cmipci_sb_reg reg;
2135 int val1, val2;
2136
2137 cmipci_sb_reg_decode(®, kcontrol->private_value);
2138 spin_lock_irq(&cm->reg_lock);
2139 val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2140 val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2141 spin_unlock_irq(&cm->reg_lock);
2142 ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2143 ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2144 ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2145 ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2146 return 0;
2147}
2148
2149static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2150 struct snd_ctl_elem_value *ucontrol)
2151{
2152 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2153 struct cmipci_sb_reg reg;
2154 int change;
2155 int val1, val2, oval1, oval2;
2156
2157 cmipci_sb_reg_decode(®, kcontrol->private_value);
2158 spin_lock_irq(&cm->reg_lock);
2159 oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2160 oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2161 val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2162 val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2163 val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2164 val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2165 val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2166 val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2167 change = val1 != oval1 || val2 != oval2;
2168 snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2169 snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2170 spin_unlock_irq(&cm->reg_lock);
2171 return change;
2172}
2173
2174/*
2175 * native mixer switches/volumes
2176 */
2177
2178#define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2179{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2180 .info = snd_cmipci_info_native_mixer, \
2181 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2182 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2183}
2184
2185#define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2186{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2187 .info = snd_cmipci_info_native_mixer, \
2188 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2189 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2190}
2191
2192#define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2193{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2194 .info = snd_cmipci_info_native_mixer, \
2195 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2196 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2197}
2198
2199#define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2200{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2201 .info = snd_cmipci_info_native_mixer, \
2202 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2203 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2204}
2205
2206static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2207 struct snd_ctl_elem_info *uinfo)
2208{
2209 struct cmipci_sb_reg reg;
2210
2211 cmipci_sb_reg_decode(®, kcontrol->private_value);
2212 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2213 uinfo->count = reg.stereo + 1;
2214 uinfo->value.integer.min = 0;
2215 uinfo->value.integer.max = reg.mask;
2216 return 0;
2217
2218}
2219
2220static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2221 struct snd_ctl_elem_value *ucontrol)
2222{
2223 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2224 struct cmipci_sb_reg reg;
2225 unsigned char oreg, val;
2226
2227 cmipci_sb_reg_decode(®, kcontrol->private_value);
2228 spin_lock_irq(&cm->reg_lock);
2229 oreg = inb(cm->iobase + reg.left_reg);
2230 val = (oreg >> reg.left_shift) & reg.mask;
2231 if (reg.invert)
2232 val = reg.mask - val;
2233 ucontrol->value.integer.value[0] = val;
2234 if (reg.stereo) {
2235 val = (oreg >> reg.right_shift) & reg.mask;
2236 if (reg.invert)
2237 val = reg.mask - val;
2238 ucontrol->value.integer.value[1] = val;
2239 }
2240 spin_unlock_irq(&cm->reg_lock);
2241 return 0;
2242}
2243
2244static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2245 struct snd_ctl_elem_value *ucontrol)
2246{
2247 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2248 struct cmipci_sb_reg reg;
2249 unsigned char oreg, nreg, val;
2250
2251 cmipci_sb_reg_decode(®, kcontrol->private_value);
2252 spin_lock_irq(&cm->reg_lock);
2253 oreg = inb(cm->iobase + reg.left_reg);
2254 val = ucontrol->value.integer.value[0] & reg.mask;
2255 if (reg.invert)
2256 val = reg.mask - val;
2257 nreg = oreg & ~(reg.mask << reg.left_shift);
2258 nreg |= (val << reg.left_shift);
2259 if (reg.stereo) {
2260 val = ucontrol->value.integer.value[1] & reg.mask;
2261 if (reg.invert)
2262 val = reg.mask - val;
2263 nreg &= ~(reg.mask << reg.right_shift);
2264 nreg |= (val << reg.right_shift);
2265 }
2266 outb(nreg, cm->iobase + reg.left_reg);
2267 spin_unlock_irq(&cm->reg_lock);
2268 return (nreg != oreg);
2269}
2270
2271/*
2272 * special case - check mixer sensitivity
2273 */
2274static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2275 struct snd_ctl_elem_value *ucontrol)
2276{
2277 //struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2278 return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2279}
2280
2281static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2282 struct snd_ctl_elem_value *ucontrol)
2283{
2284 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2285 if (cm->mixer_insensitive) {
2286 /* ignored */
2287 return 0;
2288 }
2289 return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2290}
2291
2292
2293static struct snd_kcontrol_new snd_cmipci_mixers[] = {
2294 CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2295 CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2296 CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2297 //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2298 { /* switch with sensitivity */
2299 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2300 .name = "PCM Playback Switch",
2301 .info = snd_cmipci_info_native_mixer,
2302 .get = snd_cmipci_get_native_mixer_sensitive,
2303 .put = snd_cmipci_put_native_mixer_sensitive,
2304 .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2305 },
2306 CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2307 CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2308 CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2309 CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2310 CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2311 CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2312 CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2313 CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2314 CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2315 CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2316 CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2317 CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2318 CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2319 CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2320 CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2321 CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2322 CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2323 CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2324 CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2325 CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2326 CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2327 CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2328 CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2329};
2330
2331/*
2332 * other switches
2333 */
2334
2335struct cmipci_switch_args {
2336 int reg; /* register index */
2337 unsigned int mask; /* mask bits */
2338 unsigned int mask_on; /* mask bits to turn on */
2339 unsigned int is_byte: 1; /* byte access? */
2340 unsigned int ac3_sensitive: 1; /* access forbidden during
2341 * non-audio operation?
2342 */
2343};
2344
2345#define snd_cmipci_uswitch_info snd_ctl_boolean_mono_info
2346
2347static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2348 struct snd_ctl_elem_value *ucontrol,
2349 struct cmipci_switch_args *args)
2350{
2351 unsigned int val;
2352 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2353
2354 spin_lock_irq(&cm->reg_lock);
2355 if (args->ac3_sensitive && cm->mixer_insensitive) {
2356 ucontrol->value.integer.value[0] = 0;
2357 spin_unlock_irq(&cm->reg_lock);
2358 return 0;
2359 }
2360 if (args->is_byte)
2361 val = inb(cm->iobase + args->reg);
2362 else
2363 val = snd_cmipci_read(cm, args->reg);
2364 ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2365 spin_unlock_irq(&cm->reg_lock);
2366 return 0;
2367}
2368
2369static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2370 struct snd_ctl_elem_value *ucontrol)
2371{
2372 struct cmipci_switch_args *args;
2373 args = (struct cmipci_switch_args *)kcontrol->private_value;
2374 if (snd_BUG_ON(!args))
2375 return -EINVAL;
2376 return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2377}
2378
2379static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2380 struct snd_ctl_elem_value *ucontrol,
2381 struct cmipci_switch_args *args)
2382{
2383 unsigned int val;
2384 int change;
2385 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2386
2387 spin_lock_irq(&cm->reg_lock);
2388 if (args->ac3_sensitive && cm->mixer_insensitive) {
2389 /* ignored */
2390 spin_unlock_irq(&cm->reg_lock);
2391 return 0;
2392 }
2393 if (args->is_byte)
2394 val = inb(cm->iobase + args->reg);
2395 else
2396 val = snd_cmipci_read(cm, args->reg);
2397 change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2398 args->mask_on : (args->mask & ~args->mask_on));
2399 if (change) {
2400 val &= ~args->mask;
2401 if (ucontrol->value.integer.value[0])
2402 val |= args->mask_on;
2403 else
2404 val |= (args->mask & ~args->mask_on);
2405 if (args->is_byte)
2406 outb((unsigned char)val, cm->iobase + args->reg);
2407 else
2408 snd_cmipci_write(cm, args->reg, val);
2409 }
2410 spin_unlock_irq(&cm->reg_lock);
2411 return change;
2412}
2413
2414static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2415 struct snd_ctl_elem_value *ucontrol)
2416{
2417 struct cmipci_switch_args *args;
2418 args = (struct cmipci_switch_args *)kcontrol->private_value;
2419 if (snd_BUG_ON(!args))
2420 return -EINVAL;
2421 return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2422}
2423
2424#define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2425static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2426 .reg = xreg, \
2427 .mask = xmask, \
2428 .mask_on = xmask_on, \
2429 .is_byte = xis_byte, \
2430 .ac3_sensitive = xac3, \
2431}
2432
2433#define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2434 DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2435
2436#if 0 /* these will be controlled in pcm device */
2437DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2438DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2439#endif
2440DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2441DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2442DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2443DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2444DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2445DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2446DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2447DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2448// DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2449DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2450DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2451/* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2452DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2453DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2454#if CM_CH_PLAY == 1
2455DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2456#else
2457DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2458#endif
2459DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2460// DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2461// DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2462// DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2463DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2464
2465#define DEFINE_SWITCH(sname, stype, sarg) \
2466{ .name = sname, \
2467 .iface = stype, \
2468 .info = snd_cmipci_uswitch_info, \
2469 .get = snd_cmipci_uswitch_get, \
2470 .put = snd_cmipci_uswitch_put, \
2471 .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2472}
2473
2474#define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2475#define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2476
2477
2478/*
2479 * callbacks for spdif output switch
2480 * needs toggle two registers..
2481 */
2482static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2483 struct snd_ctl_elem_value *ucontrol)
2484{
2485 int changed;
2486 changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2487 changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2488 return changed;
2489}
2490
2491static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2492 struct snd_ctl_elem_value *ucontrol)
2493{
2494 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2495 int changed;
2496 changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2497 changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2498 if (changed) {
2499 if (ucontrol->value.integer.value[0]) {
2500 if (chip->spdif_playback_avail)
2501 snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2502 } else {
2503 if (chip->spdif_playback_avail)
2504 snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2505 }
2506 }
2507 chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2508 return changed;
2509}
2510
2511
2512static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2513 struct snd_ctl_elem_info *uinfo)
2514{
2515 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2516 static const char *const texts[3] = {
2517 "Line-In", "Rear Output", "Bass Output"
2518 };
2519
2520 return snd_ctl_enum_info(uinfo, 1,
2521 cm->chip_version >= 39 ? 3 : 2, texts);
2522}
2523
2524static inline unsigned int get_line_in_mode(struct cmipci *cm)
2525{
2526 unsigned int val;
2527 if (cm->chip_version >= 39) {
2528 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2529 if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2530 return 2;
2531 }
2532 val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2533 if (val & CM_REAR2LIN)
2534 return 1;
2535 return 0;
2536}
2537
2538static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2539 struct snd_ctl_elem_value *ucontrol)
2540{
2541 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2542
2543 spin_lock_irq(&cm->reg_lock);
2544 ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2545 spin_unlock_irq(&cm->reg_lock);
2546 return 0;
2547}
2548
2549static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2550 struct snd_ctl_elem_value *ucontrol)
2551{
2552 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2553 int change;
2554
2555 spin_lock_irq(&cm->reg_lock);
2556 if (ucontrol->value.enumerated.item[0] == 2)
2557 change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2558 else
2559 change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2560 if (ucontrol->value.enumerated.item[0] == 1)
2561 change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2562 else
2563 change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2564 spin_unlock_irq(&cm->reg_lock);
2565 return change;
2566}
2567
2568static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2569 struct snd_ctl_elem_info *uinfo)
2570{
2571 static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2572
2573 return snd_ctl_enum_info(uinfo, 1, 2, texts);
2574}
2575
2576static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2577 struct snd_ctl_elem_value *ucontrol)
2578{
2579 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2580 /* same bit as spdi_phase */
2581 spin_lock_irq(&cm->reg_lock);
2582 ucontrol->value.enumerated.item[0] =
2583 (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2584 spin_unlock_irq(&cm->reg_lock);
2585 return 0;
2586}
2587
2588static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2589 struct snd_ctl_elem_value *ucontrol)
2590{
2591 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2592 int change;
2593
2594 spin_lock_irq(&cm->reg_lock);
2595 if (ucontrol->value.enumerated.item[0])
2596 change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2597 else
2598 change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2599 spin_unlock_irq(&cm->reg_lock);
2600 return change;
2601}
2602
2603/* both for CM8338/8738 */
2604static struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2605 DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2606 {
2607 .name = "Line-In Mode",
2608 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2609 .info = snd_cmipci_line_in_mode_info,
2610 .get = snd_cmipci_line_in_mode_get,
2611 .put = snd_cmipci_line_in_mode_put,
2612 },
2613};
2614
2615/* for non-multichannel chips */
2616static struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2617DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2618
2619/* only for CM8738 */
2620static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2621#if 0 /* controlled in pcm device */
2622 DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2623 DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2624 DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2625#endif
2626 // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2627 { .name = "IEC958 Output Switch",
2628 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2629 .info = snd_cmipci_uswitch_info,
2630 .get = snd_cmipci_spdout_enable_get,
2631 .put = snd_cmipci_spdout_enable_put,
2632 },
2633 DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2634 DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2635 DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2636// DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2637 DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2638 DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2639};
2640
2641/* only for model 033/037 */
2642static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2643 DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2644 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2645 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2646};
2647
2648/* only for model 039 or later */
2649static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2650 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2651 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2652 {
2653 .name = "Mic-In Mode",
2654 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2655 .info = snd_cmipci_mic_in_mode_info,
2656 .get = snd_cmipci_mic_in_mode_get,
2657 .put = snd_cmipci_mic_in_mode_put,
2658 }
2659};
2660
2661/* card control switches */
2662static struct snd_kcontrol_new snd_cmipci_modem_switch =
2663DEFINE_CARD_SWITCH("Modem", modem);
2664
2665
2666static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2667{
2668 struct snd_card *card;
2669 struct snd_kcontrol_new *sw;
2670 struct snd_kcontrol *kctl;
2671 unsigned int idx;
2672 int err;
2673
2674 if (snd_BUG_ON(!cm || !cm->card))
2675 return -EINVAL;
2676
2677 card = cm->card;
2678
2679 strcpy(card->mixername, "CMedia PCI");
2680
2681 spin_lock_irq(&cm->reg_lock);
2682 snd_cmipci_mixer_write(cm, 0x00, 0x00); /* mixer reset */
2683 spin_unlock_irq(&cm->reg_lock);
2684
2685 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2686 if (cm->chip_version == 68) { // 8768 has no PCM volume
2687 if (!strcmp(snd_cmipci_mixers[idx].name,
2688 "PCM Playback Volume"))
2689 continue;
2690 }
2691 if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2692 return err;
2693 }
2694
2695 /* mixer switches */
2696 sw = snd_cmipci_mixer_switches;
2697 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2698 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2699 if (err < 0)
2700 return err;
2701 }
2702 if (! cm->can_multi_ch) {
2703 err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2704 if (err < 0)
2705 return err;
2706 }
2707 if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2708 cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2709 sw = snd_cmipci_8738_mixer_switches;
2710 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2711 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2712 if (err < 0)
2713 return err;
2714 }
2715 if (cm->can_ac3_hw) {
2716 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2717 return err;
2718 kctl->id.device = pcm_spdif_device;
2719 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2720 return err;
2721 kctl->id.device = pcm_spdif_device;
2722 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2723 return err;
2724 kctl->id.device = pcm_spdif_device;
2725 }
2726 if (cm->chip_version <= 37) {
2727 sw = snd_cmipci_old_mixer_switches;
2728 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2729 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2730 if (err < 0)
2731 return err;
2732 }
2733 }
2734 }
2735 if (cm->chip_version >= 39) {
2736 sw = snd_cmipci_extra_mixer_switches;
2737 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2738 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2739 if (err < 0)
2740 return err;
2741 }
2742 }
2743
2744 /* card switches */
2745 /*
2746 * newer chips don't have the register bits to force modem link
2747 * detection; the bit that was FLINKON now mutes CH1
2748 */
2749 if (cm->chip_version < 39) {
2750 err = snd_ctl_add(cm->card,
2751 snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2752 if (err < 0)
2753 return err;
2754 }
2755
2756 for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2757 struct snd_ctl_elem_id elem_id;
2758 struct snd_kcontrol *ctl;
2759 memset(&elem_id, 0, sizeof(elem_id));
2760 elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2761 strcpy(elem_id.name, cm_saved_mixer[idx].name);
2762 ctl = snd_ctl_find_id(cm->card, &elem_id);
2763 if (ctl)
2764 cm->mixer_res_ctl[idx] = ctl;
2765 }
2766
2767 return 0;
2768}
2769
2770
2771/*
2772 * proc interface
2773 */
2774
2775#ifdef CONFIG_PROC_FS
2776static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2777 struct snd_info_buffer *buffer)
2778{
2779 struct cmipci *cm = entry->private_data;
2780 int i, v;
2781
2782 snd_iprintf(buffer, "%s\n", cm->card->longname);
2783 for (i = 0; i < 0x94; i++) {
2784 if (i == 0x28)
2785 i = 0x90;
2786 v = inb(cm->iobase + i);
2787 if (i % 4 == 0)
2788 snd_iprintf(buffer, "\n%02x:", i);
2789 snd_iprintf(buffer, " %02x", v);
2790 }
2791 snd_iprintf(buffer, "\n");
2792}
2793
2794static void snd_cmipci_proc_init(struct cmipci *cm)
2795{
2796 struct snd_info_entry *entry;
2797
2798 if (! snd_card_proc_new(cm->card, "cmipci", &entry))
2799 snd_info_set_text_ops(entry, cm, snd_cmipci_proc_read);
2800}
2801#else /* !CONFIG_PROC_FS */
2802static inline void snd_cmipci_proc_init(struct cmipci *cm) {}
2803#endif
2804
2805
2806static DEFINE_PCI_DEVICE_TABLE(snd_cmipci_ids) = {
2807 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2808 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2809 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2810 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2811 {PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2812 {0,},
2813};
2814
2815
2816/*
2817 * check chip version and capabilities
2818 * driver name is modified according to the chip model
2819 */
2820static void query_chip(struct cmipci *cm)
2821{
2822 unsigned int detect;
2823
2824 /* check reg 0Ch, bit 24-31 */
2825 detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2826 if (! detect) {
2827 /* check reg 08h, bit 24-28 */
2828 detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2829 switch (detect) {
2830 case 0:
2831 cm->chip_version = 33;
2832 if (cm->do_soft_ac3)
2833 cm->can_ac3_sw = 1;
2834 else
2835 cm->can_ac3_hw = 1;
2836 break;
2837 case CM_CHIP_037:
2838 cm->chip_version = 37;
2839 cm->can_ac3_hw = 1;
2840 break;
2841 default:
2842 cm->chip_version = 39;
2843 cm->can_ac3_hw = 1;
2844 break;
2845 }
2846 cm->max_channels = 2;
2847 } else {
2848 if (detect & CM_CHIP_039) {
2849 cm->chip_version = 39;
2850 if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2851 cm->max_channels = 6;
2852 else
2853 cm->max_channels = 4;
2854 } else if (detect & CM_CHIP_8768) {
2855 cm->chip_version = 68;
2856 cm->max_channels = 8;
2857 cm->can_96k = 1;
2858 } else {
2859 cm->chip_version = 55;
2860 cm->max_channels = 6;
2861 cm->can_96k = 1;
2862 }
2863 cm->can_ac3_hw = 1;
2864 cm->can_multi_ch = 1;
2865 }
2866}
2867
2868#ifdef SUPPORT_JOYSTICK
2869static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2870{
2871 static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2872 struct gameport *gp;
2873 struct resource *r = NULL;
2874 int i, io_port = 0;
2875
2876 if (joystick_port[dev] == 0)
2877 return -ENODEV;
2878
2879 if (joystick_port[dev] == 1) { /* auto-detect */
2880 for (i = 0; ports[i]; i++) {
2881 io_port = ports[i];
2882 r = request_region(io_port, 1, "CMIPCI gameport");
2883 if (r)
2884 break;
2885 }
2886 } else {
2887 io_port = joystick_port[dev];
2888 r = request_region(io_port, 1, "CMIPCI gameport");
2889 }
2890
2891 if (!r) {
2892 dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2893 return -EBUSY;
2894 }
2895
2896 cm->gameport = gp = gameport_allocate_port();
2897 if (!gp) {
2898 dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2899 release_and_free_resource(r);
2900 return -ENOMEM;
2901 }
2902 gameport_set_name(gp, "C-Media Gameport");
2903 gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2904 gameport_set_dev_parent(gp, &cm->pci->dev);
2905 gp->io = io_port;
2906 gameport_set_port_data(gp, r);
2907
2908 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2909
2910 gameport_register_port(cm->gameport);
2911
2912 return 0;
2913}
2914
2915static void snd_cmipci_free_gameport(struct cmipci *cm)
2916{
2917 if (cm->gameport) {
2918 struct resource *r = gameport_get_port_data(cm->gameport);
2919
2920 gameport_unregister_port(cm->gameport);
2921 cm->gameport = NULL;
2922
2923 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2924 release_and_free_resource(r);
2925 }
2926}
2927#else
2928static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2929static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2930#endif
2931
2932static int snd_cmipci_free(struct cmipci *cm)
2933{
2934 if (cm->irq >= 0) {
2935 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2936 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2937 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
2938 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2939 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2940 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2941 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2942
2943 /* reset mixer */
2944 snd_cmipci_mixer_write(cm, 0, 0);
2945
2946 free_irq(cm->irq, cm);
2947 }
2948
2949 snd_cmipci_free_gameport(cm);
2950 pci_release_regions(cm->pci);
2951 pci_disable_device(cm->pci);
2952 kfree(cm);
2953 return 0;
2954}
2955
2956static int snd_cmipci_dev_free(struct snd_device *device)
2957{
2958 struct cmipci *cm = device->device_data;
2959 return snd_cmipci_free(cm);
2960}
2961
2962static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2963{
2964 long iosynth;
2965 unsigned int val;
2966 struct snd_opl3 *opl3;
2967 int err;
2968
2969 if (!fm_port)
2970 goto disable_fm;
2971
2972 if (cm->chip_version >= 39) {
2973 /* first try FM regs in PCI port range */
2974 iosynth = cm->iobase + CM_REG_FM_PCI;
2975 err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2976 OPL3_HW_OPL3, 1, &opl3);
2977 } else {
2978 err = -EIO;
2979 }
2980 if (err < 0) {
2981 /* then try legacy ports */
2982 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2983 iosynth = fm_port;
2984 switch (iosynth) {
2985 case 0x3E8: val |= CM_FMSEL_3E8; break;
2986 case 0x3E0: val |= CM_FMSEL_3E0; break;
2987 case 0x3C8: val |= CM_FMSEL_3C8; break;
2988 case 0x388: val |= CM_FMSEL_388; break;
2989 default:
2990 goto disable_fm;
2991 }
2992 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2993 /* enable FM */
2994 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2995
2996 if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2997 OPL3_HW_OPL3, 0, &opl3) < 0) {
2998 dev_err(cm->card->dev,
2999 "no OPL device at %#lx, skipping...\n",
3000 iosynth);
3001 goto disable_fm;
3002 }
3003 }
3004 if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
3005 dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
3006 return err;
3007 }
3008 return 0;
3009
3010 disable_fm:
3011 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
3012 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
3013 return 0;
3014}
3015
3016static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
3017 int dev, struct cmipci **rcmipci)
3018{
3019 struct cmipci *cm;
3020 int err;
3021 static struct snd_device_ops ops = {
3022 .dev_free = snd_cmipci_dev_free,
3023 };
3024 unsigned int val;
3025 long iomidi = 0;
3026 int integrated_midi = 0;
3027 char modelstr[16];
3028 int pcm_index, pcm_spdif_index;
3029 static DEFINE_PCI_DEVICE_TABLE(intel_82437vx) = {
3030 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
3031 { },
3032 };
3033
3034 *rcmipci = NULL;
3035
3036 if ((err = pci_enable_device(pci)) < 0)
3037 return err;
3038
3039 cm = kzalloc(sizeof(*cm), GFP_KERNEL);
3040 if (cm == NULL) {
3041 pci_disable_device(pci);
3042 return -ENOMEM;
3043 }
3044
3045 spin_lock_init(&cm->reg_lock);
3046 mutex_init(&cm->open_mutex);
3047 cm->device = pci->device;
3048 cm->card = card;
3049 cm->pci = pci;
3050 cm->irq = -1;
3051 cm->channel[0].ch = 0;
3052 cm->channel[1].ch = 1;
3053 cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3054
3055 if ((err = pci_request_regions(pci, card->driver)) < 0) {
3056 kfree(cm);
3057 pci_disable_device(pci);
3058 return err;
3059 }
3060 cm->iobase = pci_resource_start(pci, 0);
3061
3062 if (request_irq(pci->irq, snd_cmipci_interrupt,
3063 IRQF_SHARED, KBUILD_MODNAME, cm)) {
3064 dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
3065 snd_cmipci_free(cm);
3066 return -EBUSY;
3067 }
3068 cm->irq = pci->irq;
3069
3070 pci_set_master(cm->pci);
3071
3072 /*
3073 * check chip version, max channels and capabilities
3074 */
3075
3076 cm->chip_version = 0;
3077 cm->max_channels = 2;
3078 cm->do_soft_ac3 = soft_ac3[dev];
3079
3080 if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3081 pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3082 query_chip(cm);
3083 /* added -MCx suffix for chip supporting multi-channels */
3084 if (cm->can_multi_ch)
3085 sprintf(cm->card->driver + strlen(cm->card->driver),
3086 "-MC%d", cm->max_channels);
3087 else if (cm->can_ac3_sw)
3088 strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3089
3090 cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3091 cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3092
3093#if CM_CH_PLAY == 1
3094 cm->ctrl = CM_CHADC0; /* default FUNCNTRL0 */
3095#else
3096 cm->ctrl = CM_CHADC1; /* default FUNCNTRL0 */
3097#endif
3098
3099 /* initialize codec registers */
3100 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3101 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3102 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
3103 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3104 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3105 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
3106 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3107
3108 snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3109 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3110#if CM_CH_PLAY == 1
3111 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3112#else
3113 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3114#endif
3115 if (cm->chip_version) {
3116 snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3117 snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3118 }
3119 /* Set Bus Master Request */
3120 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3121
3122 /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3123 switch (pci->device) {
3124 case PCI_DEVICE_ID_CMEDIA_CM8738:
3125 case PCI_DEVICE_ID_CMEDIA_CM8738B:
3126 if (!pci_dev_present(intel_82437vx))
3127 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3128 break;
3129 default:
3130 break;
3131 }
3132
3133 if (cm->chip_version < 68) {
3134 val = pci->device < 0x110 ? 8338 : 8738;
3135 } else {
3136 switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3137 case 0:
3138 val = 8769;
3139 break;
3140 case 2:
3141 val = 8762;
3142 break;
3143 default:
3144 switch ((pci->subsystem_vendor << 16) |
3145 pci->subsystem_device) {
3146 case 0x13f69761:
3147 case 0x584d3741:
3148 case 0x584d3751:
3149 case 0x584d3761:
3150 case 0x584d3771:
3151 case 0x72848384:
3152 val = 8770;
3153 break;
3154 default:
3155 val = 8768;
3156 break;
3157 }
3158 }
3159 }
3160 sprintf(card->shortname, "C-Media CMI%d", val);
3161 if (cm->chip_version < 68)
3162 sprintf(modelstr, " (model %d)", cm->chip_version);
3163 else
3164 modelstr[0] = '\0';
3165 sprintf(card->longname, "%s%s at %#lx, irq %i",
3166 card->shortname, modelstr, cm->iobase, cm->irq);
3167
3168 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3169 snd_cmipci_free(cm);
3170 return err;
3171 }
3172
3173 if (cm->chip_version >= 39) {
3174 val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3175 if (val != 0x00 && val != 0xff) {
3176 iomidi = cm->iobase + CM_REG_MPU_PCI;
3177 integrated_midi = 1;
3178 }
3179 }
3180 if (!integrated_midi) {
3181 val = 0;
3182 iomidi = mpu_port[dev];
3183 switch (iomidi) {
3184 case 0x320: val = CM_VMPU_320; break;
3185 case 0x310: val = CM_VMPU_310; break;
3186 case 0x300: val = CM_VMPU_300; break;
3187 case 0x330: val = CM_VMPU_330; break;
3188 default:
3189 iomidi = 0; break;
3190 }
3191 if (iomidi > 0) {
3192 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3193 /* enable UART */
3194 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3195 if (inb(iomidi + 1) == 0xff) {
3196 dev_err(cm->card->dev,
3197 "cannot enable MPU-401 port at %#lx\n",
3198 iomidi);
3199 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3200 CM_UART_EN);
3201 iomidi = 0;
3202 }
3203 }
3204 }
3205
3206 if (cm->chip_version < 68) {
3207 err = snd_cmipci_create_fm(cm, fm_port[dev]);
3208 if (err < 0)
3209 return err;
3210 }
3211
3212 /* reset mixer */
3213 snd_cmipci_mixer_write(cm, 0, 0);
3214
3215 snd_cmipci_proc_init(cm);
3216
3217 /* create pcm devices */
3218 pcm_index = pcm_spdif_index = 0;
3219 if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3220 return err;
3221 pcm_index++;
3222 if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3223 return err;
3224 pcm_index++;
3225 if (cm->can_ac3_hw || cm->can_ac3_sw) {
3226 pcm_spdif_index = pcm_index;
3227 if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3228 return err;
3229 }
3230
3231 /* create mixer interface & switches */
3232 if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3233 return err;
3234
3235 if (iomidi > 0) {
3236 if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3237 iomidi,
3238 (integrated_midi ?
3239 MPU401_INFO_INTEGRATED : 0) |
3240 MPU401_INFO_IRQ_HOOK,
3241 -1, &cm->rmidi)) < 0) {
3242 dev_err(cm->card->dev,
3243 "no UART401 device at 0x%lx\n", iomidi);
3244 }
3245 }
3246
3247#ifdef USE_VAR48KRATE
3248 for (val = 0; val < ARRAY_SIZE(rates); val++)
3249 snd_cmipci_set_pll(cm, rates[val], val);
3250
3251 /*
3252 * (Re-)Enable external switch spdo_48k
3253 */
3254 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3255#endif /* USE_VAR48KRATE */
3256
3257 if (snd_cmipci_create_gameport(cm, dev) < 0)
3258 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3259
3260 *rcmipci = cm;
3261 return 0;
3262}
3263
3264/*
3265 */
3266
3267MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3268
3269static int snd_cmipci_probe(struct pci_dev *pci,
3270 const struct pci_device_id *pci_id)
3271{
3272 static int dev;
3273 struct snd_card *card;
3274 struct cmipci *cm;
3275 int err;
3276
3277 if (dev >= SNDRV_CARDS)
3278 return -ENODEV;
3279 if (! enable[dev]) {
3280 dev++;
3281 return -ENOENT;
3282 }
3283
3284 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3285 0, &card);
3286 if (err < 0)
3287 return err;
3288
3289 switch (pci->device) {
3290 case PCI_DEVICE_ID_CMEDIA_CM8738:
3291 case PCI_DEVICE_ID_CMEDIA_CM8738B:
3292 strcpy(card->driver, "CMI8738");
3293 break;
3294 case PCI_DEVICE_ID_CMEDIA_CM8338A:
3295 case PCI_DEVICE_ID_CMEDIA_CM8338B:
3296 strcpy(card->driver, "CMI8338");
3297 break;
3298 default:
3299 strcpy(card->driver, "CMIPCI");
3300 break;
3301 }
3302
3303 if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) {
3304 snd_card_free(card);
3305 return err;
3306 }
3307 card->private_data = cm;
3308
3309 if ((err = snd_card_register(card)) < 0) {
3310 snd_card_free(card);
3311 return err;
3312 }
3313 pci_set_drvdata(pci, card);
3314 dev++;
3315 return 0;
3316
3317}
3318
3319static void snd_cmipci_remove(struct pci_dev *pci)
3320{
3321 snd_card_free(pci_get_drvdata(pci));
3322}
3323
3324
3325#ifdef CONFIG_PM_SLEEP
3326/*
3327 * power management
3328 */
3329static unsigned char saved_regs[] = {
3330 CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3331 CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3332 CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3333 CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3334 CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3335};
3336
3337static unsigned char saved_mixers[] = {
3338 SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3339 SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3340 SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3341 SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3342 SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3343 SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3344 CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3345 SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3346};
3347
3348static int snd_cmipci_suspend(struct device *dev)
3349{
3350 struct pci_dev *pci = to_pci_dev(dev);
3351 struct snd_card *card = dev_get_drvdata(dev);
3352 struct cmipci *cm = card->private_data;
3353 int i;
3354
3355 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3356
3357 snd_pcm_suspend_all(cm->pcm);
3358 snd_pcm_suspend_all(cm->pcm2);
3359 snd_pcm_suspend_all(cm->pcm_spdif);
3360
3361 /* save registers */
3362 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3363 cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3364 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3365 cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3366
3367 /* disable ints */
3368 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3369
3370 pci_disable_device(pci);
3371 pci_save_state(pci);
3372 pci_set_power_state(pci, PCI_D3hot);
3373 return 0;
3374}
3375
3376static int snd_cmipci_resume(struct device *dev)
3377{
3378 struct pci_dev *pci = to_pci_dev(dev);
3379 struct snd_card *card = dev_get_drvdata(dev);
3380 struct cmipci *cm = card->private_data;
3381 int i;
3382
3383 pci_set_power_state(pci, PCI_D0);
3384 pci_restore_state(pci);
3385 if (pci_enable_device(pci) < 0) {
3386 dev_err(dev, "pci_enable_device failed, disabling device\n");
3387 snd_card_disconnect(card);
3388 return -EIO;
3389 }
3390 pci_set_master(pci);
3391
3392 /* reset / initialize to a sane state */
3393 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3394 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3395 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3396 snd_cmipci_mixer_write(cm, 0, 0);
3397
3398 /* restore registers */
3399 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3400 snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3401 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3402 snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3403
3404 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3405 return 0;
3406}
3407
3408static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3409#define SND_CMIPCI_PM_OPS &snd_cmipci_pm
3410#else
3411#define SND_CMIPCI_PM_OPS NULL
3412#endif /* CONFIG_PM_SLEEP */
3413
3414static struct pci_driver cmipci_driver = {
3415 .name = KBUILD_MODNAME,
3416 .id_table = snd_cmipci_ids,
3417 .probe = snd_cmipci_probe,
3418 .remove = snd_cmipci_remove,
3419 .driver = {
3420 .pm = SND_CMIPCI_PM_OPS,
3421 },
3422};
3423
3424module_pci_driver(cmipci_driver);