Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Common SMP CPU bringup/teardown functions
  4 */
  5#include <linux/cpu.h>
  6#include <linux/err.h>
  7#include <linux/smp.h>
  8#include <linux/delay.h>
  9#include <linux/init.h>
 10#include <linux/list.h>
 11#include <linux/slab.h>
 12#include <linux/sched.h>
 13#include <linux/sched/task.h>
 14#include <linux/export.h>
 15#include <linux/percpu.h>
 16#include <linux/kthread.h>
 17#include <linux/smpboot.h>
 18
 19#include "smpboot.h"
 20
 21#ifdef CONFIG_SMP
 22
 23#ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
 24/*
 25 * For the hotplug case we keep the task structs around and reuse
 26 * them.
 27 */
 28static DEFINE_PER_CPU(struct task_struct *, idle_threads);
 29
 30struct task_struct *idle_thread_get(unsigned int cpu)
 31{
 32	struct task_struct *tsk = per_cpu(idle_threads, cpu);
 33
 34	if (!tsk)
 35		return ERR_PTR(-ENOMEM);
 36	init_idle(tsk, cpu);
 37	return tsk;
 38}
 39
 40void __init idle_thread_set_boot_cpu(void)
 41{
 42	per_cpu(idle_threads, smp_processor_id()) = current;
 43}
 44
 45/**
 46 * idle_init - Initialize the idle thread for a cpu
 47 * @cpu:	The cpu for which the idle thread should be initialized
 48 *
 49 * Creates the thread if it does not exist.
 50 */
 51static inline void idle_init(unsigned int cpu)
 52{
 53	struct task_struct *tsk = per_cpu(idle_threads, cpu);
 54
 55	if (!tsk) {
 56		tsk = fork_idle(cpu);
 57		if (IS_ERR(tsk))
 58			pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
 59		else
 60			per_cpu(idle_threads, cpu) = tsk;
 61	}
 62}
 63
 64/**
 65 * idle_threads_init - Initialize idle threads for all cpus
 66 */
 67void __init idle_threads_init(void)
 68{
 69	unsigned int cpu, boot_cpu;
 70
 71	boot_cpu = smp_processor_id();
 72
 73	for_each_possible_cpu(cpu) {
 74		if (cpu != boot_cpu)
 75			idle_init(cpu);
 76	}
 77}
 78#endif
 79
 80#endif /* #ifdef CONFIG_SMP */
 81
 82static LIST_HEAD(hotplug_threads);
 83static DEFINE_MUTEX(smpboot_threads_lock);
 84
 85struct smpboot_thread_data {
 86	unsigned int			cpu;
 87	unsigned int			status;
 88	struct smp_hotplug_thread	*ht;
 89};
 90
 91enum {
 92	HP_THREAD_NONE = 0,
 93	HP_THREAD_ACTIVE,
 94	HP_THREAD_PARKED,
 95};
 96
 97/**
 98 * smpboot_thread_fn - percpu hotplug thread loop function
 99 * @data:	thread data pointer
100 *
101 * Checks for thread stop and park conditions. Calls the necessary
102 * setup, cleanup, park and unpark functions for the registered
103 * thread.
104 *
105 * Returns 1 when the thread should exit, 0 otherwise.
106 */
107static int smpboot_thread_fn(void *data)
108{
109	struct smpboot_thread_data *td = data;
110	struct smp_hotplug_thread *ht = td->ht;
111
112	while (1) {
113		set_current_state(TASK_INTERRUPTIBLE);
114		preempt_disable();
115		if (kthread_should_stop()) {
116			__set_current_state(TASK_RUNNING);
117			preempt_enable();
118			/* cleanup must mirror setup */
119			if (ht->cleanup && td->status != HP_THREAD_NONE)
120				ht->cleanup(td->cpu, cpu_online(td->cpu));
121			kfree(td);
122			return 0;
123		}
124
125		if (kthread_should_park()) {
126			__set_current_state(TASK_RUNNING);
127			preempt_enable();
128			if (ht->park && td->status == HP_THREAD_ACTIVE) {
129				BUG_ON(td->cpu != smp_processor_id());
130				ht->park(td->cpu);
131				td->status = HP_THREAD_PARKED;
132			}
133			kthread_parkme();
134			/* We might have been woken for stop */
135			continue;
136		}
137
138		BUG_ON(td->cpu != smp_processor_id());
139
140		/* Check for state change setup */
141		switch (td->status) {
142		case HP_THREAD_NONE:
143			__set_current_state(TASK_RUNNING);
144			preempt_enable();
145			if (ht->setup)
146				ht->setup(td->cpu);
147			td->status = HP_THREAD_ACTIVE;
148			continue;
149
150		case HP_THREAD_PARKED:
151			__set_current_state(TASK_RUNNING);
152			preempt_enable();
153			if (ht->unpark)
154				ht->unpark(td->cpu);
155			td->status = HP_THREAD_ACTIVE;
156			continue;
 
157		}
158
159		if (!ht->thread_should_run(td->cpu)) {
160			preempt_enable_no_resched();
161			schedule();
162		} else {
163			__set_current_state(TASK_RUNNING);
164			preempt_enable();
165			ht->thread_fn(td->cpu);
166		}
167	}
168}
169
170static int
171__smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
172{
173	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
174	struct smpboot_thread_data *td;
175
176	if (tsk)
177		return 0;
178
179	td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
180	if (!td)
181		return -ENOMEM;
182	td->cpu = cpu;
183	td->ht = ht;
184
185	tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
186				    ht->thread_comm);
187	if (IS_ERR(tsk)) {
188		kfree(td);
189		return PTR_ERR(tsk);
190	}
191	/*
192	 * Park the thread so that it could start right on the CPU
193	 * when it is available.
194	 */
195	kthread_park(tsk);
196	get_task_struct(tsk);
197	*per_cpu_ptr(ht->store, cpu) = tsk;
198	if (ht->create) {
199		/*
200		 * Make sure that the task has actually scheduled out
201		 * into park position, before calling the create
202		 * callback. At least the migration thread callback
203		 * requires that the task is off the runqueue.
204		 */
205		if (!wait_task_inactive(tsk, TASK_PARKED))
206			WARN_ON(1);
207		else
208			ht->create(cpu);
209	}
210	return 0;
211}
212
213int smpboot_create_threads(unsigned int cpu)
214{
215	struct smp_hotplug_thread *cur;
216	int ret = 0;
217
218	mutex_lock(&smpboot_threads_lock);
219	list_for_each_entry(cur, &hotplug_threads, list) {
220		ret = __smpboot_create_thread(cur, cpu);
221		if (ret)
222			break;
223	}
224	mutex_unlock(&smpboot_threads_lock);
225	return ret;
226}
227
228static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
229{
230	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
231
232	if (!ht->selfparking)
233		kthread_unpark(tsk);
 
234}
235
236int smpboot_unpark_threads(unsigned int cpu)
237{
238	struct smp_hotplug_thread *cur;
239
240	mutex_lock(&smpboot_threads_lock);
241	list_for_each_entry(cur, &hotplug_threads, list)
242		smpboot_unpark_thread(cur, cpu);
243	mutex_unlock(&smpboot_threads_lock);
244	return 0;
245}
246
247static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
248{
249	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
250
251	if (tsk && !ht->selfparking)
252		kthread_park(tsk);
253}
254
255int smpboot_park_threads(unsigned int cpu)
256{
257	struct smp_hotplug_thread *cur;
258
259	mutex_lock(&smpboot_threads_lock);
260	list_for_each_entry_reverse(cur, &hotplug_threads, list)
261		smpboot_park_thread(cur, cpu);
262	mutex_unlock(&smpboot_threads_lock);
263	return 0;
264}
265
266static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
267{
268	unsigned int cpu;
269
270	/* We need to destroy also the parked threads of offline cpus */
271	for_each_possible_cpu(cpu) {
272		struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
273
274		if (tsk) {
275			kthread_stop(tsk);
276			put_task_struct(tsk);
277			*per_cpu_ptr(ht->store, cpu) = NULL;
278		}
279	}
280}
281
282/**
283 * smpboot_register_percpu_thread - Register a per_cpu thread related
284 * 					    to hotplug
285 * @plug_thread:	Hotplug thread descriptor
286 *
287 * Creates and starts the threads on all online cpus.
288 */
289int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread)
290{
291	unsigned int cpu;
292	int ret = 0;
293
294	get_online_cpus();
295	mutex_lock(&smpboot_threads_lock);
296	for_each_online_cpu(cpu) {
297		ret = __smpboot_create_thread(plug_thread, cpu);
298		if (ret) {
299			smpboot_destroy_threads(plug_thread);
300			goto out;
301		}
302		smpboot_unpark_thread(plug_thread, cpu);
303	}
304	list_add(&plug_thread->list, &hotplug_threads);
305out:
306	mutex_unlock(&smpboot_threads_lock);
307	put_online_cpus();
308	return ret;
309}
310EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread);
311
312/**
313 * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
314 * @plug_thread:	Hotplug thread descriptor
315 *
316 * Stops all threads on all possible cpus.
317 */
318void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
319{
320	get_online_cpus();
321	mutex_lock(&smpboot_threads_lock);
322	list_del(&plug_thread->list);
323	smpboot_destroy_threads(plug_thread);
324	mutex_unlock(&smpboot_threads_lock);
325	put_online_cpus();
326}
327EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
328
329static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
330
331/*
332 * Called to poll specified CPU's state, for example, when waiting for
333 * a CPU to come online.
334 */
335int cpu_report_state(int cpu)
336{
337	return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
338}
339
340/*
341 * If CPU has died properly, set its state to CPU_UP_PREPARE and
342 * return success.  Otherwise, return -EBUSY if the CPU died after
343 * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
344 * if cpu_wait_death() timed out and the CPU still hasn't gotten around
345 * to dying.  In the latter two cases, the CPU might not be set up
346 * properly, but it is up to the arch-specific code to decide.
347 * Finally, -EIO indicates an unanticipated problem.
348 *
349 * Note that it is permissible to omit this call entirely, as is
350 * done in architectures that do no CPU-hotplug error checking.
351 */
352int cpu_check_up_prepare(int cpu)
353{
354	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
355		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
356		return 0;
357	}
358
359	switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
360
361	case CPU_POST_DEAD:
362
363		/* The CPU died properly, so just start it up again. */
364		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
365		return 0;
366
367	case CPU_DEAD_FROZEN:
368
369		/*
370		 * Timeout during CPU death, so let caller know.
371		 * The outgoing CPU completed its processing, but after
372		 * cpu_wait_death() timed out and reported the error. The
373		 * caller is free to proceed, in which case the state
374		 * will be reset properly by cpu_set_state_online().
375		 * Proceeding despite this -EBUSY return makes sense
376		 * for systems where the outgoing CPUs take themselves
377		 * offline, with no post-death manipulation required from
378		 * a surviving CPU.
379		 */
380		return -EBUSY;
381
382	case CPU_BROKEN:
383
384		/*
385		 * The most likely reason we got here is that there was
386		 * a timeout during CPU death, and the outgoing CPU never
387		 * did complete its processing.  This could happen on
388		 * a virtualized system if the outgoing VCPU gets preempted
389		 * for more than five seconds, and the user attempts to
390		 * immediately online that same CPU.  Trying again later
391		 * might return -EBUSY above, hence -EAGAIN.
392		 */
393		return -EAGAIN;
394
395	default:
396
397		/* Should not happen.  Famous last words. */
398		return -EIO;
399	}
400}
401
402/*
403 * Mark the specified CPU online.
404 *
405 * Note that it is permissible to omit this call entirely, as is
406 * done in architectures that do no CPU-hotplug error checking.
407 */
408void cpu_set_state_online(int cpu)
409{
410	(void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
411}
412
413#ifdef CONFIG_HOTPLUG_CPU
414
415/*
416 * Wait for the specified CPU to exit the idle loop and die.
417 */
418bool cpu_wait_death(unsigned int cpu, int seconds)
419{
420	int jf_left = seconds * HZ;
421	int oldstate;
422	bool ret = true;
423	int sleep_jf = 1;
424
425	might_sleep();
426
427	/* The outgoing CPU will normally get done quite quickly. */
428	if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
429		goto update_state;
430	udelay(5);
431
432	/* But if the outgoing CPU dawdles, wait increasingly long times. */
433	while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
434		schedule_timeout_uninterruptible(sleep_jf);
435		jf_left -= sleep_jf;
436		if (jf_left <= 0)
437			break;
438		sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
439	}
440update_state:
441	oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
442	if (oldstate == CPU_DEAD) {
443		/* Outgoing CPU died normally, update state. */
444		smp_mb(); /* atomic_read() before update. */
445		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
446	} else {
447		/* Outgoing CPU still hasn't died, set state accordingly. */
448		if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
449				   oldstate, CPU_BROKEN) != oldstate)
450			goto update_state;
451		ret = false;
452	}
453	return ret;
454}
455
456/*
457 * Called by the outgoing CPU to report its successful death.  Return
458 * false if this report follows the surviving CPU's timing out.
459 *
460 * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
461 * timed out.  This approach allows architectures to omit calls to
462 * cpu_check_up_prepare() and cpu_set_state_online() without defeating
463 * the next cpu_wait_death()'s polling loop.
464 */
465bool cpu_report_death(void)
466{
467	int oldstate;
468	int newstate;
469	int cpu = smp_processor_id();
470
471	do {
472		oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
473		if (oldstate != CPU_BROKEN)
474			newstate = CPU_DEAD;
475		else
476			newstate = CPU_DEAD_FROZEN;
477	} while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
478				oldstate, newstate) != oldstate);
479	return newstate == CPU_DEAD;
480}
481
482#endif /* #ifdef CONFIG_HOTPLUG_CPU */
v3.15
 
  1/*
  2 * Common SMP CPU bringup/teardown functions
  3 */
  4#include <linux/cpu.h>
  5#include <linux/err.h>
  6#include <linux/smp.h>
 
  7#include <linux/init.h>
  8#include <linux/list.h>
  9#include <linux/slab.h>
 10#include <linux/sched.h>
 
 11#include <linux/export.h>
 12#include <linux/percpu.h>
 13#include <linux/kthread.h>
 14#include <linux/smpboot.h>
 15
 16#include "smpboot.h"
 17
 18#ifdef CONFIG_SMP
 19
 20#ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
 21/*
 22 * For the hotplug case we keep the task structs around and reuse
 23 * them.
 24 */
 25static DEFINE_PER_CPU(struct task_struct *, idle_threads);
 26
 27struct task_struct *idle_thread_get(unsigned int cpu)
 28{
 29	struct task_struct *tsk = per_cpu(idle_threads, cpu);
 30
 31	if (!tsk)
 32		return ERR_PTR(-ENOMEM);
 33	init_idle(tsk, cpu);
 34	return tsk;
 35}
 36
 37void __init idle_thread_set_boot_cpu(void)
 38{
 39	per_cpu(idle_threads, smp_processor_id()) = current;
 40}
 41
 42/**
 43 * idle_init - Initialize the idle thread for a cpu
 44 * @cpu:	The cpu for which the idle thread should be initialized
 45 *
 46 * Creates the thread if it does not exist.
 47 */
 48static inline void idle_init(unsigned int cpu)
 49{
 50	struct task_struct *tsk = per_cpu(idle_threads, cpu);
 51
 52	if (!tsk) {
 53		tsk = fork_idle(cpu);
 54		if (IS_ERR(tsk))
 55			pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
 56		else
 57			per_cpu(idle_threads, cpu) = tsk;
 58	}
 59}
 60
 61/**
 62 * idle_threads_init - Initialize idle threads for all cpus
 63 */
 64void __init idle_threads_init(void)
 65{
 66	unsigned int cpu, boot_cpu;
 67
 68	boot_cpu = smp_processor_id();
 69
 70	for_each_possible_cpu(cpu) {
 71		if (cpu != boot_cpu)
 72			idle_init(cpu);
 73	}
 74}
 75#endif
 76
 77#endif /* #ifdef CONFIG_SMP */
 78
 79static LIST_HEAD(hotplug_threads);
 80static DEFINE_MUTEX(smpboot_threads_lock);
 81
 82struct smpboot_thread_data {
 83	unsigned int			cpu;
 84	unsigned int			status;
 85	struct smp_hotplug_thread	*ht;
 86};
 87
 88enum {
 89	HP_THREAD_NONE = 0,
 90	HP_THREAD_ACTIVE,
 91	HP_THREAD_PARKED,
 92};
 93
 94/**
 95 * smpboot_thread_fn - percpu hotplug thread loop function
 96 * @data:	thread data pointer
 97 *
 98 * Checks for thread stop and park conditions. Calls the necessary
 99 * setup, cleanup, park and unpark functions for the registered
100 * thread.
101 *
102 * Returns 1 when the thread should exit, 0 otherwise.
103 */
104static int smpboot_thread_fn(void *data)
105{
106	struct smpboot_thread_data *td = data;
107	struct smp_hotplug_thread *ht = td->ht;
108
109	while (1) {
110		set_current_state(TASK_INTERRUPTIBLE);
111		preempt_disable();
112		if (kthread_should_stop()) {
113			set_current_state(TASK_RUNNING);
114			preempt_enable();
115			if (ht->cleanup)
 
116				ht->cleanup(td->cpu, cpu_online(td->cpu));
117			kfree(td);
118			return 0;
119		}
120
121		if (kthread_should_park()) {
122			__set_current_state(TASK_RUNNING);
123			preempt_enable();
124			if (ht->park && td->status == HP_THREAD_ACTIVE) {
125				BUG_ON(td->cpu != smp_processor_id());
126				ht->park(td->cpu);
127				td->status = HP_THREAD_PARKED;
128			}
129			kthread_parkme();
130			/* We might have been woken for stop */
131			continue;
132		}
133
134		BUG_ON(td->cpu != smp_processor_id());
135
136		/* Check for state change setup */
137		switch (td->status) {
138		case HP_THREAD_NONE:
 
139			preempt_enable();
140			if (ht->setup)
141				ht->setup(td->cpu);
142			td->status = HP_THREAD_ACTIVE;
143			preempt_disable();
144			break;
145		case HP_THREAD_PARKED:
 
146			preempt_enable();
147			if (ht->unpark)
148				ht->unpark(td->cpu);
149			td->status = HP_THREAD_ACTIVE;
150			preempt_disable();
151			break;
152		}
153
154		if (!ht->thread_should_run(td->cpu)) {
155			preempt_enable();
156			schedule();
157		} else {
158			set_current_state(TASK_RUNNING);
159			preempt_enable();
160			ht->thread_fn(td->cpu);
161		}
162	}
163}
164
165static int
166__smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
167{
168	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
169	struct smpboot_thread_data *td;
170
171	if (tsk)
172		return 0;
173
174	td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
175	if (!td)
176		return -ENOMEM;
177	td->cpu = cpu;
178	td->ht = ht;
179
180	tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
181				    ht->thread_comm);
182	if (IS_ERR(tsk)) {
183		kfree(td);
184		return PTR_ERR(tsk);
185	}
 
 
 
 
 
186	get_task_struct(tsk);
187	*per_cpu_ptr(ht->store, cpu) = tsk;
188	if (ht->create) {
189		/*
190		 * Make sure that the task has actually scheduled out
191		 * into park position, before calling the create
192		 * callback. At least the migration thread callback
193		 * requires that the task is off the runqueue.
194		 */
195		if (!wait_task_inactive(tsk, TASK_PARKED))
196			WARN_ON(1);
197		else
198			ht->create(cpu);
199	}
200	return 0;
201}
202
203int smpboot_create_threads(unsigned int cpu)
204{
205	struct smp_hotplug_thread *cur;
206	int ret = 0;
207
208	mutex_lock(&smpboot_threads_lock);
209	list_for_each_entry(cur, &hotplug_threads, list) {
210		ret = __smpboot_create_thread(cur, cpu);
211		if (ret)
212			break;
213	}
214	mutex_unlock(&smpboot_threads_lock);
215	return ret;
216}
217
218static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
219{
220	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
221
222	if (ht->pre_unpark)
223		ht->pre_unpark(cpu);
224	kthread_unpark(tsk);
225}
226
227void smpboot_unpark_threads(unsigned int cpu)
228{
229	struct smp_hotplug_thread *cur;
230
231	mutex_lock(&smpboot_threads_lock);
232	list_for_each_entry(cur, &hotplug_threads, list)
233		smpboot_unpark_thread(cur, cpu);
234	mutex_unlock(&smpboot_threads_lock);
 
235}
236
237static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
238{
239	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
240
241	if (tsk && !ht->selfparking)
242		kthread_park(tsk);
243}
244
245void smpboot_park_threads(unsigned int cpu)
246{
247	struct smp_hotplug_thread *cur;
248
249	mutex_lock(&smpboot_threads_lock);
250	list_for_each_entry_reverse(cur, &hotplug_threads, list)
251		smpboot_park_thread(cur, cpu);
252	mutex_unlock(&smpboot_threads_lock);
 
253}
254
255static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
256{
257	unsigned int cpu;
258
259	/* We need to destroy also the parked threads of offline cpus */
260	for_each_possible_cpu(cpu) {
261		struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
262
263		if (tsk) {
264			kthread_stop(tsk);
265			put_task_struct(tsk);
266			*per_cpu_ptr(ht->store, cpu) = NULL;
267		}
268	}
269}
270
271/**
272 * smpboot_register_percpu_thread - Register a per_cpu thread related to hotplug
 
273 * @plug_thread:	Hotplug thread descriptor
274 *
275 * Creates and starts the threads on all online cpus.
276 */
277int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread)
278{
279	unsigned int cpu;
280	int ret = 0;
281
 
282	mutex_lock(&smpboot_threads_lock);
283	for_each_online_cpu(cpu) {
284		ret = __smpboot_create_thread(plug_thread, cpu);
285		if (ret) {
286			smpboot_destroy_threads(plug_thread);
287			goto out;
288		}
289		smpboot_unpark_thread(plug_thread, cpu);
290	}
291	list_add(&plug_thread->list, &hotplug_threads);
292out:
293	mutex_unlock(&smpboot_threads_lock);
 
294	return ret;
295}
296EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread);
297
298/**
299 * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
300 * @plug_thread:	Hotplug thread descriptor
301 *
302 * Stops all threads on all possible cpus.
303 */
304void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
305{
306	get_online_cpus();
307	mutex_lock(&smpboot_threads_lock);
308	list_del(&plug_thread->list);
309	smpboot_destroy_threads(plug_thread);
310	mutex_unlock(&smpboot_threads_lock);
311	put_online_cpus();
312}
313EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);