Loading...
1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2/*
3 * hcd.h - DesignWare HS OTG Controller host-mode declarations
4 *
5 * Copyright (C) 2004-2013 Synopsys, Inc.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The names of the above-listed copyright holders may not be used
17 * to endorse or promote products derived from this software without
18 * specific prior written permission.
19 *
20 * ALTERNATIVELY, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") as published by the Free Software
22 * Foundation; either version 2 of the License, or (at your option) any
23 * later version.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37#ifndef __DWC2_HCD_H__
38#define __DWC2_HCD_H__
39
40/*
41 * This file contains the structures, constants, and interfaces for the
42 * Host Contoller Driver (HCD)
43 *
44 * The Host Controller Driver (HCD) is responsible for translating requests
45 * from the USB Driver into the appropriate actions on the DWC_otg controller.
46 * It isolates the USBD from the specifics of the controller by providing an
47 * API to the USBD.
48 */
49
50struct dwc2_qh;
51
52/**
53 * struct dwc2_host_chan - Software host channel descriptor
54 *
55 * @hc_num: Host channel number, used for register address lookup
56 * @dev_addr: Address of the device
57 * @ep_num: Endpoint of the device
58 * @ep_is_in: Endpoint direction
59 * @speed: Device speed. One of the following values:
60 * - USB_SPEED_LOW
61 * - USB_SPEED_FULL
62 * - USB_SPEED_HIGH
63 * @ep_type: Endpoint type. One of the following values:
64 * - USB_ENDPOINT_XFER_CONTROL: 0
65 * - USB_ENDPOINT_XFER_ISOC: 1
66 * - USB_ENDPOINT_XFER_BULK: 2
67 * - USB_ENDPOINT_XFER_INTR: 3
68 * @max_packet: Max packet size in bytes
69 * @data_pid_start: PID for initial transaction.
70 * 0: DATA0
71 * 1: DATA2
72 * 2: DATA1
73 * 3: MDATA (non-Control EP),
74 * SETUP (Control EP)
75 * @multi_count: Number of additional periodic transactions per
76 * (micro)frame
77 * @xfer_buf: Pointer to current transfer buffer position
78 * @xfer_dma: DMA address of xfer_buf
79 * @align_buf: In Buffer DMA mode this will be used if xfer_buf is not
80 * DWORD aligned
81 * @xfer_len: Total number of bytes to transfer
82 * @xfer_count: Number of bytes transferred so far
83 * @start_pkt_count: Packet count at start of transfer
84 * @xfer_started: True if the transfer has been started
85 * @do_ping: True if a PING request should be issued on this channel
86 * @error_state: True if the error count for this transaction is non-zero
87 * @halt_on_queue: True if this channel should be halted the next time a
88 * request is queued for the channel. This is necessary in
89 * slave mode if no request queue space is available when
90 * an attempt is made to halt the channel.
91 * @halt_pending: True if the host channel has been halted, but the core
92 * is not finished flushing queued requests
93 * @do_split: Enable split for the channel
94 * @complete_split: Enable complete split
95 * @hub_addr: Address of high speed hub for the split
96 * @hub_port: Port of the low/full speed device for the split
97 * @xact_pos: Split transaction position. One of the following values:
98 * - DWC2_HCSPLT_XACTPOS_MID
99 * - DWC2_HCSPLT_XACTPOS_BEGIN
100 * - DWC2_HCSPLT_XACTPOS_END
101 * - DWC2_HCSPLT_XACTPOS_ALL
102 * @requests: Number of requests issued for this channel since it was
103 * assigned to the current transfer (not counting PINGs)
104 * @schinfo: Scheduling micro-frame bitmap
105 * @ntd: Number of transfer descriptors for the transfer
106 * @halt_status: Reason for halting the host channel
107 * @hcint: Contents of the HCINT register when the interrupt came
108 * @qh: QH for the transfer being processed by this channel
109 * @hc_list_entry: For linking to list of host channels
110 * @desc_list_addr: Current QH's descriptor list DMA address
111 * @desc_list_sz: Current QH's descriptor list size
112 * @split_order_list_entry: List entry for keeping track of the order of splits
113 *
114 * This structure represents the state of a single host channel when acting in
115 * host mode. It contains the data items needed to transfer packets to an
116 * endpoint via a host channel.
117 */
118struct dwc2_host_chan {
119 u8 hc_num;
120
121 unsigned dev_addr:7;
122 unsigned ep_num:4;
123 unsigned ep_is_in:1;
124 unsigned speed:4;
125 unsigned ep_type:2;
126 unsigned max_packet:11;
127 unsigned data_pid_start:2;
128#define DWC2_HC_PID_DATA0 TSIZ_SC_MC_PID_DATA0
129#define DWC2_HC_PID_DATA2 TSIZ_SC_MC_PID_DATA2
130#define DWC2_HC_PID_DATA1 TSIZ_SC_MC_PID_DATA1
131#define DWC2_HC_PID_MDATA TSIZ_SC_MC_PID_MDATA
132#define DWC2_HC_PID_SETUP TSIZ_SC_MC_PID_SETUP
133
134 unsigned multi_count:2;
135
136 u8 *xfer_buf;
137 dma_addr_t xfer_dma;
138 dma_addr_t align_buf;
139 u32 xfer_len;
140 u32 xfer_count;
141 u16 start_pkt_count;
142 u8 xfer_started;
143 u8 do_ping;
144 u8 error_state;
145 u8 halt_on_queue;
146 u8 halt_pending;
147 u8 do_split;
148 u8 complete_split;
149 u8 hub_addr;
150 u8 hub_port;
151 u8 xact_pos;
152#define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
153#define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
154#define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
155#define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
156
157 u8 requests;
158 u8 schinfo;
159 u16 ntd;
160 enum dwc2_halt_status halt_status;
161 u32 hcint;
162 struct dwc2_qh *qh;
163 struct list_head hc_list_entry;
164 dma_addr_t desc_list_addr;
165 u32 desc_list_sz;
166 struct list_head split_order_list_entry;
167};
168
169struct dwc2_hcd_pipe_info {
170 u8 dev_addr;
171 u8 ep_num;
172 u8 pipe_type;
173 u8 pipe_dir;
174 u16 maxp;
175 u16 maxp_mult;
176};
177
178struct dwc2_hcd_iso_packet_desc {
179 u32 offset;
180 u32 length;
181 u32 actual_length;
182 u32 status;
183};
184
185struct dwc2_qtd;
186
187struct dwc2_hcd_urb {
188 void *priv;
189 struct dwc2_qtd *qtd;
190 void *buf;
191 dma_addr_t dma;
192 void *setup_packet;
193 dma_addr_t setup_dma;
194 u32 length;
195 u32 actual_length;
196 u32 status;
197 u32 error_count;
198 u32 packet_count;
199 u32 flags;
200 u16 interval;
201 struct dwc2_hcd_pipe_info pipe_info;
202 struct dwc2_hcd_iso_packet_desc iso_descs[0];
203};
204
205/* Phases for control transfers */
206enum dwc2_control_phase {
207 DWC2_CONTROL_SETUP,
208 DWC2_CONTROL_DATA,
209 DWC2_CONTROL_STATUS,
210};
211
212/* Transaction types */
213enum dwc2_transaction_type {
214 DWC2_TRANSACTION_NONE,
215 DWC2_TRANSACTION_PERIODIC,
216 DWC2_TRANSACTION_NON_PERIODIC,
217 DWC2_TRANSACTION_ALL,
218};
219
220/* The number of elements per LS bitmap (per port on multi_tt) */
221#define DWC2_ELEMENTS_PER_LS_BITMAP DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
222 BITS_PER_LONG)
223
224/**
225 * struct dwc2_tt - dwc2 data associated with a usb_tt
226 *
227 * @refcount: Number of Queue Heads (QHs) holding a reference.
228 * @usb_tt: Pointer back to the official usb_tt.
229 * @periodic_bitmaps: Bitmap for which parts of the 1ms frame are accounted
230 * for already. Each is DWC2_ELEMENTS_PER_LS_BITMAP
231 * elements (so sizeof(long) times that in bytes).
232 *
233 * This structure is stored in the hcpriv of the official usb_tt.
234 */
235struct dwc2_tt {
236 int refcount;
237 struct usb_tt *usb_tt;
238 unsigned long periodic_bitmaps[];
239};
240
241/**
242 * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
243 *
244 * @start_schedule_us: The start time on the main bus schedule. Note that
245 * the main bus schedule is tightly packed and this
246 * time should be interpreted as tightly packed (so
247 * uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
248 * instead of 125 us).
249 * @duration_us: How long this transfer goes.
250 */
251
252struct dwc2_hs_transfer_time {
253 u32 start_schedule_us;
254 u16 duration_us;
255};
256
257/**
258 * struct dwc2_qh - Software queue head structure
259 *
260 * @hsotg: The HCD state structure for the DWC OTG controller
261 * @ep_type: Endpoint type. One of the following values:
262 * - USB_ENDPOINT_XFER_CONTROL
263 * - USB_ENDPOINT_XFER_BULK
264 * - USB_ENDPOINT_XFER_INT
265 * - USB_ENDPOINT_XFER_ISOC
266 * @ep_is_in: Endpoint direction
267 * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor
268 * @maxp_mult: Multiplier for maxp
269 * @dev_speed: Device speed. One of the following values:
270 * - USB_SPEED_LOW
271 * - USB_SPEED_FULL
272 * - USB_SPEED_HIGH
273 * @data_toggle: Determines the PID of the next data packet for
274 * non-controltransfers. Ignored for control transfers.
275 * One of the following values:
276 * - DWC2_HC_PID_DATA0
277 * - DWC2_HC_PID_DATA1
278 * @ping_state: Ping state
279 * @do_split: Full/low speed endpoint on high-speed hub requires split
280 * @td_first: Index of first activated isochronous transfer descriptor
281 * @td_last: Index of last activated isochronous transfer descriptor
282 * @host_us: Bandwidth in microseconds per transfer as seen by host
283 * @device_us: Bandwidth in microseconds per transfer as seen by device
284 * @host_interval: Interval between transfers as seen by the host. If
285 * the host is high speed and the device is low speed this
286 * will be 8 times device interval.
287 * @device_interval: Interval between transfers as seen by the device.
288 * interval.
289 * @next_active_frame: (Micro)frame _before_ we next need to put something on
290 * the bus. We'll move the qh to active here. If the
291 * host is in high speed mode this will be a uframe. If
292 * the host is in low speed mode this will be a full frame.
293 * @start_active_frame: If we are partway through a split transfer, this will be
294 * what next_active_frame was when we started. Otherwise
295 * it should always be the same as next_active_frame.
296 * @num_hs_transfers: Number of transfers in hs_transfers.
297 * Normally this is 1 but can be more than one for splits.
298 * Always >= 1 unless the host is in low/full speed mode.
299 * @hs_transfers: Transfers that are scheduled as seen by the high speed
300 * bus. Not used if host is in low or full speed mode (but
301 * note that it IS USED if the device is low or full speed
302 * as long as the HOST is in high speed mode).
303 * @ls_start_schedule_slice: Start time (in slices) on the low speed bus
304 * schedule that's being used by this device. This
305 * will be on the periodic_bitmap in a
306 * "struct dwc2_tt". Not used if this device is high
307 * speed. Note that this is in "schedule slice" which
308 * is tightly packed.
309 * @ntd: Actual number of transfer descriptors in a list
310 * @dw_align_buf: Used instead of original buffer if its physical address
311 * is not dword-aligned
312 * @dw_align_buf_dma: DMA address for dw_align_buf
313 * @qtd_list: List of QTDs for this QH
314 * @channel: Host channel currently processing transfers for this QH
315 * @qh_list_entry: Entry for QH in either the periodic or non-periodic
316 * schedule
317 * @desc_list: List of transfer descriptors
318 * @desc_list_dma: Physical address of desc_list
319 * @desc_list_sz: Size of descriptors list
320 * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer
321 * descriptor and indicates original XferSize value for the
322 * descriptor
323 * @unreserve_timer: Timer for releasing periodic reservation.
324 * @wait_timer: Timer used to wait before re-queuing.
325 * @dwc_tt: Pointer to our tt info (or NULL if no tt).
326 * @ttport: Port number within our tt.
327 * @tt_buffer_dirty True if clear_tt_buffer_complete is pending
328 * @unreserve_pending: True if we planned to unreserve but haven't yet.
329 * @schedule_low_speed: True if we have a low/full speed component (either the
330 * host is in low/full speed mode or do_split).
331 * @want_wait: We should wait before re-queuing; only matters for non-
332 * periodic transfers and is ignored for periodic ones.
333 * @wait_timer_cancel: Set to true to cancel the wait_timer.
334 *
335 * @tt_buffer_dirty: True if EP's TT buffer is not clean.
336 * A Queue Head (QH) holds the static characteristics of an endpoint and
337 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
338 * be entered in either the non-periodic or periodic schedule.
339 */
340struct dwc2_qh {
341 struct dwc2_hsotg *hsotg;
342 u8 ep_type;
343 u8 ep_is_in;
344 u16 maxp;
345 u16 maxp_mult;
346 u8 dev_speed;
347 u8 data_toggle;
348 u8 ping_state;
349 u8 do_split;
350 u8 td_first;
351 u8 td_last;
352 u16 host_us;
353 u16 device_us;
354 u16 host_interval;
355 u16 device_interval;
356 u16 next_active_frame;
357 u16 start_active_frame;
358 s16 num_hs_transfers;
359 struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES];
360 u32 ls_start_schedule_slice;
361 u16 ntd;
362 u8 *dw_align_buf;
363 dma_addr_t dw_align_buf_dma;
364 struct list_head qtd_list;
365 struct dwc2_host_chan *channel;
366 struct list_head qh_list_entry;
367 struct dwc2_dma_desc *desc_list;
368 dma_addr_t desc_list_dma;
369 u32 desc_list_sz;
370 u32 *n_bytes;
371 struct timer_list unreserve_timer;
372 struct hrtimer wait_timer;
373 struct dwc2_tt *dwc_tt;
374 int ttport;
375 unsigned tt_buffer_dirty:1;
376 unsigned unreserve_pending:1;
377 unsigned schedule_low_speed:1;
378 unsigned want_wait:1;
379 unsigned wait_timer_cancel:1;
380};
381
382/**
383 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
384 *
385 * @control_phase: Current phase for control transfers (Setup, Data, or
386 * Status)
387 * @in_process: Indicates if this QTD is currently processed by HW
388 * @data_toggle: Determines the PID of the next data packet for the
389 * data phase of control transfers. Ignored for other
390 * transfer types. One of the following values:
391 * - DWC2_HC_PID_DATA0
392 * - DWC2_HC_PID_DATA1
393 * @complete_split: Keeps track of the current split type for FS/LS
394 * endpoints on a HS Hub
395 * @isoc_split_pos: Position of the ISOC split in full/low speed
396 * @isoc_frame_index: Index of the next frame descriptor for an isochronous
397 * transfer. A frame descriptor describes the buffer
398 * position and length of the data to be transferred in the
399 * next scheduled (micro)frame of an isochronous transfer.
400 * It also holds status for that transaction. The frame
401 * index starts at 0.
402 * @isoc_split_offset: Position of the ISOC split in the buffer for the
403 * current frame
404 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
405 * @error_count: Holds the number of bus errors that have occurred for
406 * a transaction within this transfer
407 * @n_desc: Number of DMA descriptors for this QTD
408 * @isoc_frame_index_last: Last activated frame (packet) index, used in
409 * descriptor DMA mode only
410 * @num_naks: Number of NAKs received on this QTD.
411 * @urb: URB for this transfer
412 * @qh: Queue head for this QTD
413 * @qtd_list_entry: For linking to the QH's list of QTDs
414 * @isoc_td_first: Index of first activated isochronous transfer
415 * descriptor in Descriptor DMA mode
416 * @isoc_td_last: Index of last activated isochronous transfer
417 * descriptor in Descriptor DMA mode
418 *
419 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
420 * interrupt, or isochronous transfer. A single QTD is created for each URB
421 * (of one of these types) submitted to the HCD. The transfer associated with
422 * a QTD may require one or multiple transactions.
423 *
424 * A QTD is linked to a Queue Head, which is entered in either the
425 * non-periodic or periodic schedule for execution. When a QTD is chosen for
426 * execution, some or all of its transactions may be executed. After
427 * execution, the state of the QTD is updated. The QTD may be retired if all
428 * its transactions are complete or if an error occurred. Otherwise, it
429 * remains in the schedule so more transactions can be executed later.
430 */
431struct dwc2_qtd {
432 enum dwc2_control_phase control_phase;
433 u8 in_process;
434 u8 data_toggle;
435 u8 complete_split;
436 u8 isoc_split_pos;
437 u16 isoc_frame_index;
438 u16 isoc_split_offset;
439 u16 isoc_td_last;
440 u16 isoc_td_first;
441 u32 ssplit_out_xfer_count;
442 u8 error_count;
443 u8 n_desc;
444 u16 isoc_frame_index_last;
445 u16 num_naks;
446 struct dwc2_hcd_urb *urb;
447 struct dwc2_qh *qh;
448 struct list_head qtd_list_entry;
449};
450
451#ifdef DEBUG
452struct hc_xfer_info {
453 struct dwc2_hsotg *hsotg;
454 struct dwc2_host_chan *chan;
455};
456#endif
457
458u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg);
459
460/* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
461static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
462{
463 return (struct usb_hcd *)hsotg->priv;
464}
465
466/*
467 * Inline used to disable one channel interrupt. Channel interrupts are
468 * disabled when the channel is halted or released by the interrupt handler.
469 * There is no need to handle further interrupts of that type until the
470 * channel is re-assigned. In fact, subsequent handling may cause crashes
471 * because the channel structures are cleaned up when the channel is released.
472 */
473static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
474{
475 u32 mask = dwc2_readl(hsotg, HCINTMSK(chnum));
476
477 mask &= ~intr;
478 dwc2_writel(hsotg, mask, HCINTMSK(chnum));
479}
480
481void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan);
482void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
483 enum dwc2_halt_status halt_status);
484void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
485 struct dwc2_host_chan *chan);
486
487/*
488 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
489 * are read as 1, they won't clear when written back.
490 */
491static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
492{
493 u32 hprt0 = dwc2_readl(hsotg, HPRT0);
494
495 hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
496 return hprt0;
497}
498
499static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
500{
501 return pipe->ep_num;
502}
503
504static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
505{
506 return pipe->pipe_type;
507}
508
509static inline u16 dwc2_hcd_get_maxp(struct dwc2_hcd_pipe_info *pipe)
510{
511 return pipe->maxp;
512}
513
514static inline u16 dwc2_hcd_get_maxp_mult(struct dwc2_hcd_pipe_info *pipe)
515{
516 return pipe->maxp_mult;
517}
518
519static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
520{
521 return pipe->dev_addr;
522}
523
524static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
525{
526 return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
527}
528
529static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
530{
531 return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
532}
533
534static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
535{
536 return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
537}
538
539static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
540{
541 return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
542}
543
544static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
545{
546 return pipe->pipe_dir == USB_DIR_IN;
547}
548
549static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
550{
551 return !dwc2_hcd_is_pipe_in(pipe);
552}
553
554int dwc2_hcd_init(struct dwc2_hsotg *hsotg);
555void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
556
557/* Transaction Execution Functions */
558enum dwc2_transaction_type dwc2_hcd_select_transactions(
559 struct dwc2_hsotg *hsotg);
560void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
561 enum dwc2_transaction_type tr_type);
562
563/* Schedule Queue Functions */
564/* Implemented in hcd_queue.c */
565struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
566 struct dwc2_hcd_urb *urb,
567 gfp_t mem_flags);
568void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
569int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
570void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
571void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
572 int sched_csplit);
573
574void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
575int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
576 struct dwc2_qh *qh);
577
578/* Unlinks and frees a QTD */
579static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
580 struct dwc2_qtd *qtd,
581 struct dwc2_qh *qh)
582{
583 list_del(&qtd->qtd_list_entry);
584 kfree(qtd);
585}
586
587/* Descriptor DMA support functions */
588void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
589 struct dwc2_qh *qh);
590void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
591 struct dwc2_host_chan *chan, int chnum,
592 enum dwc2_halt_status halt_status);
593
594int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
595 gfp_t mem_flags);
596void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
597
598/* Check if QH is non-periodic */
599#define dwc2_qh_is_non_per(_qh_ptr_) \
600 ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
601 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
602
603#ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
604static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
605static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
606static inline bool dbg_urb(struct urb *urb) { return true; }
607static inline bool dbg_perio(void) { return true; }
608#else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
609static inline bool dbg_hc(struct dwc2_host_chan *hc)
610{
611 return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
612 hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
613}
614
615static inline bool dbg_qh(struct dwc2_qh *qh)
616{
617 return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
618 qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
619}
620
621static inline bool dbg_urb(struct urb *urb)
622{
623 return usb_pipetype(urb->pipe) == PIPE_BULK ||
624 usb_pipetype(urb->pipe) == PIPE_CONTROL;
625}
626
627static inline bool dbg_perio(void) { return false; }
628#endif
629
630/*
631 * Returns true if frame1 index is greater than frame2 index. The comparison
632 * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
633 * frame number when the max index frame number is reached.
634 */
635static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
636{
637 u16 diff = fr_idx1 - fr_idx2;
638 u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
639
640 return diff && !sign;
641}
642
643/*
644 * Returns true if frame1 is less than or equal to frame2. The comparison is
645 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
646 * frame number when the max frame number is reached.
647 */
648static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
649{
650 return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
651}
652
653/*
654 * Returns true if frame1 is greater than frame2. The comparison is done
655 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
656 * number when the max frame number is reached.
657 */
658static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
659{
660 return (frame1 != frame2) &&
661 ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
662}
663
664/*
665 * Increments frame by the amount specified by inc. The addition is done
666 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
667 */
668static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
669{
670 return (frame + inc) & HFNUM_MAX_FRNUM;
671}
672
673static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec)
674{
675 return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM;
676}
677
678static inline u16 dwc2_full_frame_num(u16 frame)
679{
680 return (frame & HFNUM_MAX_FRNUM) >> 3;
681}
682
683static inline u16 dwc2_micro_frame_num(u16 frame)
684{
685 return frame & 0x7;
686}
687
688/*
689 * Returns the Core Interrupt Status register contents, ANDed with the Core
690 * Interrupt Mask register contents
691 */
692static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
693{
694 return dwc2_readl(hsotg, GINTSTS) &
695 dwc2_readl(hsotg, GINTMSK);
696}
697
698static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
699{
700 return dwc2_urb->status;
701}
702
703static inline u32 dwc2_hcd_urb_get_actual_length(
704 struct dwc2_hcd_urb *dwc2_urb)
705{
706 return dwc2_urb->actual_length;
707}
708
709static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
710{
711 return dwc2_urb->error_count;
712}
713
714static inline void dwc2_hcd_urb_set_iso_desc_params(
715 struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
716 u32 length)
717{
718 dwc2_urb->iso_descs[desc_num].offset = offset;
719 dwc2_urb->iso_descs[desc_num].length = length;
720}
721
722static inline u32 dwc2_hcd_urb_get_iso_desc_status(
723 struct dwc2_hcd_urb *dwc2_urb, int desc_num)
724{
725 return dwc2_urb->iso_descs[desc_num].status;
726}
727
728static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
729 struct dwc2_hcd_urb *dwc2_urb, int desc_num)
730{
731 return dwc2_urb->iso_descs[desc_num].actual_length;
732}
733
734static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
735 struct usb_host_endpoint *ep)
736{
737 struct dwc2_qh *qh = ep->hcpriv;
738
739 if (qh && !list_empty(&qh->qh_list_entry))
740 return 1;
741
742 return 0;
743}
744
745static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
746 struct usb_host_endpoint *ep)
747{
748 struct dwc2_qh *qh = ep->hcpriv;
749
750 if (!qh) {
751 WARN_ON(1);
752 return 0;
753 }
754
755 return qh->host_us;
756}
757
758void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
759 struct dwc2_host_chan *chan, int chnum,
760 struct dwc2_qtd *qtd);
761
762/* HCD Core API */
763
764/**
765 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
766 *
767 * @hsotg: The DWC2 HCD
768 *
769 * Returns IRQ_HANDLED if interrupt is handled
770 * Return IRQ_NONE if interrupt is not handled
771 */
772irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
773
774/**
775 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
776 *
777 * @hsotg: The DWC2 HCD
778 */
779void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
780
781/**
782 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
783 * and 0 otherwise
784 *
785 * @hsotg: The DWC2 HCD
786 */
787int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
788
789/**
790 * dwc2_hcd_dump_state() - Dumps hsotg state
791 *
792 * @hsotg: The DWC2 HCD
793 *
794 * NOTE: This function will be removed once the peripheral controller code
795 * is integrated and the driver is stable
796 */
797void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
798
799/* URB interface */
800
801/* Transfer flags */
802#define URB_GIVEBACK_ASAP 0x1
803#define URB_SEND_ZERO_PACKET 0x2
804
805/* Host driver callbacks */
806struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg,
807 void *context, gfp_t mem_flags,
808 int *ttport);
809
810void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg,
811 struct dwc2_tt *dwc_tt);
812int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
813void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
814 int status);
815
816#endif /* __DWC2_HCD_H__ */
1/*
2 * hcd.h - DesignWare HS OTG Controller host-mode declarations
3 *
4 * Copyright (C) 2004-2013 Synopsys, Inc.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions, and the following disclaimer,
11 * without modification.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The names of the above-listed copyright holders may not be used
16 * to endorse or promote products derived from this software without
17 * specific prior written permission.
18 *
19 * ALTERNATIVELY, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") as published by the Free Software
21 * Foundation; either version 2 of the License, or (at your option) any
22 * later version.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36#ifndef __DWC2_HCD_H__
37#define __DWC2_HCD_H__
38
39/*
40 * This file contains the structures, constants, and interfaces for the
41 * Host Contoller Driver (HCD)
42 *
43 * The Host Controller Driver (HCD) is responsible for translating requests
44 * from the USB Driver into the appropriate actions on the DWC_otg controller.
45 * It isolates the USBD from the specifics of the controller by providing an
46 * API to the USBD.
47 */
48
49struct dwc2_qh;
50
51/**
52 * struct dwc2_host_chan - Software host channel descriptor
53 *
54 * @hc_num: Host channel number, used for register address lookup
55 * @dev_addr: Address of the device
56 * @ep_num: Endpoint of the device
57 * @ep_is_in: Endpoint direction
58 * @speed: Device speed. One of the following values:
59 * - USB_SPEED_LOW
60 * - USB_SPEED_FULL
61 * - USB_SPEED_HIGH
62 * @ep_type: Endpoint type. One of the following values:
63 * - USB_ENDPOINT_XFER_CONTROL: 0
64 * - USB_ENDPOINT_XFER_ISOC: 1
65 * - USB_ENDPOINT_XFER_BULK: 2
66 * - USB_ENDPOINT_XFER_INTR: 3
67 * @max_packet: Max packet size in bytes
68 * @data_pid_start: PID for initial transaction.
69 * 0: DATA0
70 * 1: DATA2
71 * 2: DATA1
72 * 3: MDATA (non-Control EP),
73 * SETUP (Control EP)
74 * @multi_count: Number of additional periodic transactions per
75 * (micro)frame
76 * @xfer_buf: Pointer to current transfer buffer position
77 * @xfer_dma: DMA address of xfer_buf
78 * @align_buf: In Buffer DMA mode this will be used if xfer_buf is not
79 * DWORD aligned
80 * @xfer_len: Total number of bytes to transfer
81 * @xfer_count: Number of bytes transferred so far
82 * @start_pkt_count: Packet count at start of transfer
83 * @xfer_started: True if the transfer has been started
84 * @ping: True if a PING request should be issued on this channel
85 * @error_state: True if the error count for this transaction is non-zero
86 * @halt_on_queue: True if this channel should be halted the next time a
87 * request is queued for the channel. This is necessary in
88 * slave mode if no request queue space is available when
89 * an attempt is made to halt the channel.
90 * @halt_pending: True if the host channel has been halted, but the core
91 * is not finished flushing queued requests
92 * @do_split: Enable split for the channel
93 * @complete_split: Enable complete split
94 * @hub_addr: Address of high speed hub for the split
95 * @hub_port: Port of the low/full speed device for the split
96 * @xact_pos: Split transaction position. One of the following values:
97 * - DWC2_HCSPLT_XACTPOS_MID
98 * - DWC2_HCSPLT_XACTPOS_BEGIN
99 * - DWC2_HCSPLT_XACTPOS_END
100 * - DWC2_HCSPLT_XACTPOS_ALL
101 * @requests: Number of requests issued for this channel since it was
102 * assigned to the current transfer (not counting PINGs)
103 * @schinfo: Scheduling micro-frame bitmap
104 * @ntd: Number of transfer descriptors for the transfer
105 * @halt_status: Reason for halting the host channel
106 * @hcint Contents of the HCINT register when the interrupt came
107 * @qh: QH for the transfer being processed by this channel
108 * @hc_list_entry: For linking to list of host channels
109 * @desc_list_addr: Current QH's descriptor list DMA address
110 *
111 * This structure represents the state of a single host channel when acting in
112 * host mode. It contains the data items needed to transfer packets to an
113 * endpoint via a host channel.
114 */
115struct dwc2_host_chan {
116 u8 hc_num;
117
118 unsigned dev_addr:7;
119 unsigned ep_num:4;
120 unsigned ep_is_in:1;
121 unsigned speed:4;
122 unsigned ep_type:2;
123 unsigned max_packet:11;
124 unsigned data_pid_start:2;
125#define DWC2_HC_PID_DATA0 TSIZ_SC_MC_PID_DATA0
126#define DWC2_HC_PID_DATA2 TSIZ_SC_MC_PID_DATA2
127#define DWC2_HC_PID_DATA1 TSIZ_SC_MC_PID_DATA1
128#define DWC2_HC_PID_MDATA TSIZ_SC_MC_PID_MDATA
129#define DWC2_HC_PID_SETUP TSIZ_SC_MC_PID_SETUP
130
131 unsigned multi_count:2;
132
133 u8 *xfer_buf;
134 dma_addr_t xfer_dma;
135 dma_addr_t align_buf;
136 u32 xfer_len;
137 u32 xfer_count;
138 u16 start_pkt_count;
139 u8 xfer_started;
140 u8 do_ping;
141 u8 error_state;
142 u8 halt_on_queue;
143 u8 halt_pending;
144 u8 do_split;
145 u8 complete_split;
146 u8 hub_addr;
147 u8 hub_port;
148 u8 xact_pos;
149#define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
150#define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
151#define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
152#define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
153
154 u8 requests;
155 u8 schinfo;
156 u16 ntd;
157 enum dwc2_halt_status halt_status;
158 u32 hcint;
159 struct dwc2_qh *qh;
160 struct list_head hc_list_entry;
161 dma_addr_t desc_list_addr;
162};
163
164struct dwc2_hcd_pipe_info {
165 u8 dev_addr;
166 u8 ep_num;
167 u8 pipe_type;
168 u8 pipe_dir;
169 u16 mps;
170};
171
172struct dwc2_hcd_iso_packet_desc {
173 u32 offset;
174 u32 length;
175 u32 actual_length;
176 u32 status;
177};
178
179struct dwc2_qtd;
180
181struct dwc2_hcd_urb {
182 void *priv;
183 struct dwc2_qtd *qtd;
184 void *buf;
185 dma_addr_t dma;
186 void *setup_packet;
187 dma_addr_t setup_dma;
188 u32 length;
189 u32 actual_length;
190 u32 status;
191 u32 error_count;
192 u32 packet_count;
193 u32 flags;
194 u16 interval;
195 struct dwc2_hcd_pipe_info pipe_info;
196 struct dwc2_hcd_iso_packet_desc iso_descs[0];
197};
198
199/* Phases for control transfers */
200enum dwc2_control_phase {
201 DWC2_CONTROL_SETUP,
202 DWC2_CONTROL_DATA,
203 DWC2_CONTROL_STATUS,
204};
205
206/* Transaction types */
207enum dwc2_transaction_type {
208 DWC2_TRANSACTION_NONE,
209 DWC2_TRANSACTION_PERIODIC,
210 DWC2_TRANSACTION_NON_PERIODIC,
211 DWC2_TRANSACTION_ALL,
212};
213
214/**
215 * struct dwc2_qh - Software queue head structure
216 *
217 * @ep_type: Endpoint type. One of the following values:
218 * - USB_ENDPOINT_XFER_CONTROL
219 * - USB_ENDPOINT_XFER_BULK
220 * - USB_ENDPOINT_XFER_INT
221 * - USB_ENDPOINT_XFER_ISOC
222 * @ep_is_in: Endpoint direction
223 * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor
224 * @dev_speed: Device speed. One of the following values:
225 * - USB_SPEED_LOW
226 * - USB_SPEED_FULL
227 * - USB_SPEED_HIGH
228 * @data_toggle: Determines the PID of the next data packet for
229 * non-controltransfers. Ignored for control transfers.
230 * One of the following values:
231 * - DWC2_HC_PID_DATA0
232 * - DWC2_HC_PID_DATA1
233 * @ping_state: Ping state
234 * @do_split: Full/low speed endpoint on high-speed hub requires split
235 * @td_first: Index of first activated isochronous transfer descriptor
236 * @td_last: Index of last activated isochronous transfer descriptor
237 * @usecs: Bandwidth in microseconds per (micro)frame
238 * @interval: Interval between transfers in (micro)frames
239 * @sched_frame: (Micro)frame to initialize a periodic transfer.
240 * The transfer executes in the following (micro)frame.
241 * @frame_usecs: Internal variable used by the microframe scheduler
242 * @start_split_frame: (Micro)frame at which last start split was initialized
243 * @ntd: Actual number of transfer descriptors in a list
244 * @dw_align_buf: Used instead of original buffer if its physical address
245 * is not dword-aligned
246 * @dw_align_buf_dma: DMA address for align_buf
247 * @qtd_list: List of QTDs for this QH
248 * @channel: Host channel currently processing transfers for this QH
249 * @qh_list_entry: Entry for QH in either the periodic or non-periodic
250 * schedule
251 * @desc_list: List of transfer descriptors
252 * @desc_list_dma: Physical address of desc_list
253 * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer
254 * descriptor and indicates original XferSize value for the
255 * descriptor
256 * @tt_buffer_dirty True if clear_tt_buffer_complete is pending
257 *
258 * A Queue Head (QH) holds the static characteristics of an endpoint and
259 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
260 * be entered in either the non-periodic or periodic schedule.
261 */
262struct dwc2_qh {
263 u8 ep_type;
264 u8 ep_is_in;
265 u16 maxp;
266 u8 dev_speed;
267 u8 data_toggle;
268 u8 ping_state;
269 u8 do_split;
270 u8 td_first;
271 u8 td_last;
272 u16 usecs;
273 u16 interval;
274 u16 sched_frame;
275 u16 frame_usecs[8];
276 u16 start_split_frame;
277 u16 ntd;
278 u8 *dw_align_buf;
279 dma_addr_t dw_align_buf_dma;
280 struct list_head qtd_list;
281 struct dwc2_host_chan *channel;
282 struct list_head qh_list_entry;
283 struct dwc2_hcd_dma_desc *desc_list;
284 dma_addr_t desc_list_dma;
285 u32 *n_bytes;
286 unsigned tt_buffer_dirty:1;
287};
288
289/**
290 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
291 *
292 * @control_phase: Current phase for control transfers (Setup, Data, or
293 * Status)
294 * @in_process: Indicates if this QTD is currently processed by HW
295 * @data_toggle: Determines the PID of the next data packet for the
296 * data phase of control transfers. Ignored for other
297 * transfer types. One of the following values:
298 * - DWC2_HC_PID_DATA0
299 * - DWC2_HC_PID_DATA1
300 * @complete_split: Keeps track of the current split type for FS/LS
301 * endpoints on a HS Hub
302 * @isoc_split_pos: Position of the ISOC split in full/low speed
303 * @isoc_frame_index: Index of the next frame descriptor for an isochronous
304 * transfer. A frame descriptor describes the buffer
305 * position and length of the data to be transferred in the
306 * next scheduled (micro)frame of an isochronous transfer.
307 * It also holds status for that transaction. The frame
308 * index starts at 0.
309 * @isoc_split_offset: Position of the ISOC split in the buffer for the
310 * current frame
311 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
312 * @error_count: Holds the number of bus errors that have occurred for
313 * a transaction within this transfer
314 * @n_desc: Number of DMA descriptors for this QTD
315 * @isoc_frame_index_last: Last activated frame (packet) index, used in
316 * descriptor DMA mode only
317 * @urb: URB for this transfer
318 * @qh: Queue head for this QTD
319 * @qtd_list_entry: For linking to the QH's list of QTDs
320 *
321 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
322 * interrupt, or isochronous transfer. A single QTD is created for each URB
323 * (of one of these types) submitted to the HCD. The transfer associated with
324 * a QTD may require one or multiple transactions.
325 *
326 * A QTD is linked to a Queue Head, which is entered in either the
327 * non-periodic or periodic schedule for execution. When a QTD is chosen for
328 * execution, some or all of its transactions may be executed. After
329 * execution, the state of the QTD is updated. The QTD may be retired if all
330 * its transactions are complete or if an error occurred. Otherwise, it
331 * remains in the schedule so more transactions can be executed later.
332 */
333struct dwc2_qtd {
334 enum dwc2_control_phase control_phase;
335 u8 in_process;
336 u8 data_toggle;
337 u8 complete_split;
338 u8 isoc_split_pos;
339 u16 isoc_frame_index;
340 u16 isoc_split_offset;
341 u32 ssplit_out_xfer_count;
342 u8 error_count;
343 u8 n_desc;
344 u16 isoc_frame_index_last;
345 struct dwc2_hcd_urb *urb;
346 struct dwc2_qh *qh;
347 struct list_head qtd_list_entry;
348};
349
350#ifdef DEBUG
351struct hc_xfer_info {
352 struct dwc2_hsotg *hsotg;
353 struct dwc2_host_chan *chan;
354};
355#endif
356
357/* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
358static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
359{
360 return (struct usb_hcd *)hsotg->priv;
361}
362
363/*
364 * Inline used to disable one channel interrupt. Channel interrupts are
365 * disabled when the channel is halted or released by the interrupt handler.
366 * There is no need to handle further interrupts of that type until the
367 * channel is re-assigned. In fact, subsequent handling may cause crashes
368 * because the channel structures are cleaned up when the channel is released.
369 */
370static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
371{
372 u32 mask = readl(hsotg->regs + HCINTMSK(chnum));
373
374 mask &= ~intr;
375 writel(mask, hsotg->regs + HCINTMSK(chnum));
376}
377
378/*
379 * Returns the mode of operation, host or device
380 */
381static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
382{
383 return (readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
384}
385static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
386{
387 return (readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
388}
389
390/*
391 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
392 * are read as 1, they won't clear when written back.
393 */
394static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
395{
396 u32 hprt0 = readl(hsotg->regs + HPRT0);
397
398 hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
399 return hprt0;
400}
401
402static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
403{
404 return pipe->ep_num;
405}
406
407static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
408{
409 return pipe->pipe_type;
410}
411
412static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
413{
414 return pipe->mps;
415}
416
417static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
418{
419 return pipe->dev_addr;
420}
421
422static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
423{
424 return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
425}
426
427static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
428{
429 return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
430}
431
432static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
433{
434 return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
435}
436
437static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
438{
439 return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
440}
441
442static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
443{
444 return pipe->pipe_dir == USB_DIR_IN;
445}
446
447static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
448{
449 return !dwc2_hcd_is_pipe_in(pipe);
450}
451
452extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq,
453 const struct dwc2_core_params *params);
454extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
455extern void dwc2_set_parameters(struct dwc2_hsotg *hsotg,
456 const struct dwc2_core_params *params);
457extern void dwc2_set_all_params(struct dwc2_core_params *params, int value);
458extern int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
459
460/* Transaction Execution Functions */
461extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
462 struct dwc2_hsotg *hsotg);
463extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
464 enum dwc2_transaction_type tr_type);
465
466/* Schedule Queue Functions */
467/* Implemented in hcd_queue.c */
468extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
469extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
470extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
471extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
472extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
473 int sched_csplit);
474
475extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
476extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
477 struct dwc2_qh **qh, gfp_t mem_flags);
478
479/* Unlinks and frees a QTD */
480static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
481 struct dwc2_qtd *qtd,
482 struct dwc2_qh *qh)
483{
484 list_del(&qtd->qtd_list_entry);
485 kfree(qtd);
486}
487
488/* Descriptor DMA support functions */
489extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
490 struct dwc2_qh *qh);
491extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
492 struct dwc2_host_chan *chan, int chnum,
493 enum dwc2_halt_status halt_status);
494
495extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
496 gfp_t mem_flags);
497extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
498
499/* Check if QH is non-periodic */
500#define dwc2_qh_is_non_per(_qh_ptr_) \
501 ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
502 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
503
504#ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
505static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
506static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
507static inline bool dbg_urb(struct urb *urb) { return true; }
508static inline bool dbg_perio(void) { return true; }
509#else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
510static inline bool dbg_hc(struct dwc2_host_chan *hc)
511{
512 return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
513 hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
514}
515
516static inline bool dbg_qh(struct dwc2_qh *qh)
517{
518 return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
519 qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
520}
521
522static inline bool dbg_urb(struct urb *urb)
523{
524 return usb_pipetype(urb->pipe) == PIPE_BULK ||
525 usb_pipetype(urb->pipe) == PIPE_CONTROL;
526}
527
528static inline bool dbg_perio(void) { return false; }
529#endif
530
531/* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
532#define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
533
534/* Packet size for any kind of endpoint descriptor */
535#define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
536
537/*
538 * Returns true if frame1 is less than or equal to frame2. The comparison is
539 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
540 * frame number when the max frame number is reached.
541 */
542static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
543{
544 return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
545}
546
547/*
548 * Returns true if frame1 is greater than frame2. The comparison is done
549 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
550 * number when the max frame number is reached.
551 */
552static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
553{
554 return (frame1 != frame2) &&
555 ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
556}
557
558/*
559 * Increments frame by the amount specified by inc. The addition is done
560 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
561 */
562static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
563{
564 return (frame + inc) & HFNUM_MAX_FRNUM;
565}
566
567static inline u16 dwc2_full_frame_num(u16 frame)
568{
569 return (frame & HFNUM_MAX_FRNUM) >> 3;
570}
571
572static inline u16 dwc2_micro_frame_num(u16 frame)
573{
574 return frame & 0x7;
575}
576
577/*
578 * Returns the Core Interrupt Status register contents, ANDed with the Core
579 * Interrupt Mask register contents
580 */
581static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
582{
583 return readl(hsotg->regs + GINTSTS) & readl(hsotg->regs + GINTMSK);
584}
585
586static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
587{
588 return dwc2_urb->status;
589}
590
591static inline u32 dwc2_hcd_urb_get_actual_length(
592 struct dwc2_hcd_urb *dwc2_urb)
593{
594 return dwc2_urb->actual_length;
595}
596
597static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
598{
599 return dwc2_urb->error_count;
600}
601
602static inline void dwc2_hcd_urb_set_iso_desc_params(
603 struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
604 u32 length)
605{
606 dwc2_urb->iso_descs[desc_num].offset = offset;
607 dwc2_urb->iso_descs[desc_num].length = length;
608}
609
610static inline u32 dwc2_hcd_urb_get_iso_desc_status(
611 struct dwc2_hcd_urb *dwc2_urb, int desc_num)
612{
613 return dwc2_urb->iso_descs[desc_num].status;
614}
615
616static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
617 struct dwc2_hcd_urb *dwc2_urb, int desc_num)
618{
619 return dwc2_urb->iso_descs[desc_num].actual_length;
620}
621
622static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
623 struct usb_host_endpoint *ep)
624{
625 struct dwc2_qh *qh = ep->hcpriv;
626
627 if (qh && !list_empty(&qh->qh_list_entry))
628 return 1;
629
630 return 0;
631}
632
633static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
634 struct usb_host_endpoint *ep)
635{
636 struct dwc2_qh *qh = ep->hcpriv;
637
638 if (!qh) {
639 WARN_ON(1);
640 return 0;
641 }
642
643 return qh->usecs;
644}
645
646extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
647 struct dwc2_host_chan *chan, int chnum,
648 struct dwc2_qtd *qtd);
649
650/* HCD Core API */
651
652/**
653 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
654 *
655 * @hsotg: The DWC2 HCD
656 *
657 * Returns IRQ_HANDLED if interrupt is handled
658 * Return IRQ_NONE if interrupt is not handled
659 */
660extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
661
662/**
663 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
664 *
665 * @hsotg: The DWC2 HCD
666 */
667extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
668
669extern void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
670extern void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg);
671
672/**
673 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
674 * and 0 otherwise
675 *
676 * @hsotg: The DWC2 HCD
677 */
678extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
679
680/**
681 * dwc2_hcd_get_frame_number() - Returns current frame number
682 *
683 * @hsotg: The DWC2 HCD
684 */
685extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
686
687/**
688 * dwc2_hcd_dump_state() - Dumps hsotg state
689 *
690 * @hsotg: The DWC2 HCD
691 *
692 * NOTE: This function will be removed once the peripheral controller code
693 * is integrated and the driver is stable
694 */
695extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
696
697/**
698 * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
699 *
700 * @hsotg: The DWC2 HCD
701 *
702 * This can be used to determine average interrupt latency. Frame remaining is
703 * also shown for start transfer and two additional sample points.
704 *
705 * NOTE: This function will be removed once the peripheral controller code
706 * is integrated and the driver is stable
707 */
708extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
709
710/* URB interface */
711
712/* Transfer flags */
713#define URB_GIVEBACK_ASAP 0x1
714#define URB_SEND_ZERO_PACKET 0x2
715
716/* Host driver callbacks */
717
718extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
719extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
720extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
721 int *hub_addr, int *hub_port);
722extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
723extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
724 int status);
725
726#ifdef DEBUG
727/*
728 * Macro to sample the remaining PHY clocks left in the current frame. This
729 * may be used during debugging to determine the average time it takes to
730 * execute sections of code. There are two possible sample points, "a" and
731 * "b", so the _letter_ argument must be one of these values.
732 *
733 * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
734 * example, "cat /sys/devices/lm0/hcd_frrem".
735 */
736#define dwc2_sample_frrem(_hcd_, _qh_, _letter_) \
737do { \
738 struct hfnum_data _hfnum_; \
739 struct dwc2_qtd *_qtd_; \
740 \
741 _qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd, \
742 qtd_list_entry); \
743 if (usb_pipeint(_qtd_->urb->pipe) && \
744 (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) { \
745 _hfnum_.d32 = readl((_hcd_)->regs + HFNUM); \
746 switch (_hfnum_.b.frnum & 0x7) { \
747 case 7: \
748 (_hcd_)->hfnum_7_samples_##_letter_++; \
749 (_hcd_)->hfnum_7_frrem_accum_##_letter_ += \
750 _hfnum_.b.frrem; \
751 break; \
752 case 0: \
753 (_hcd_)->hfnum_0_samples_##_letter_++; \
754 (_hcd_)->hfnum_0_frrem_accum_##_letter_ += \
755 _hfnum_.b.frrem; \
756 break; \
757 default: \
758 (_hcd_)->hfnum_other_samples_##_letter_++; \
759 (_hcd_)->hfnum_other_frrem_accum_##_letter_ += \
760 _hfnum_.b.frrem; \
761 break; \
762 } \
763 } \
764} while (0)
765#else
766#define dwc2_sample_frrem(_hcd_, _qh_, _letter_) do {} while (0)
767#endif
768
769#endif /* __DWC2_HCD_H__ */