Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
10 */
11
12#include <linux/bcd.h>
13#include <linux/module.h>
14#include <linux/version.h>
15#include <linux/kernel.h>
16#include <linux/sched/task_stack.h>
17#include <linux/slab.h>
18#include <linux/completion.h>
19#include <linux/utsname.h>
20#include <linux/mm.h>
21#include <asm/io.h>
22#include <linux/device.h>
23#include <linux/dma-mapping.h>
24#include <linux/mutex.h>
25#include <asm/irq.h>
26#include <asm/byteorder.h>
27#include <asm/unaligned.h>
28#include <linux/platform_device.h>
29#include <linux/workqueue.h>
30#include <linux/pm_runtime.h>
31#include <linux/types.h>
32#include <linux/genalloc.h>
33#include <linux/io.h>
34
35#include <linux/phy/phy.h>
36#include <linux/usb.h>
37#include <linux/usb/hcd.h>
38#include <linux/usb/otg.h>
39
40#include "usb.h"
41#include "phy.h"
42
43
44/*-------------------------------------------------------------------------*/
45
46/*
47 * USB Host Controller Driver framework
48 *
49 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
50 * HCD-specific behaviors/bugs.
51 *
52 * This does error checks, tracks devices and urbs, and delegates to a
53 * "hc_driver" only for code (and data) that really needs to know about
54 * hardware differences. That includes root hub registers, i/o queues,
55 * and so on ... but as little else as possible.
56 *
57 * Shared code includes most of the "root hub" code (these are emulated,
58 * though each HC's hardware works differently) and PCI glue, plus request
59 * tracking overhead. The HCD code should only block on spinlocks or on
60 * hardware handshaking; blocking on software events (such as other kernel
61 * threads releasing resources, or completing actions) is all generic.
62 *
63 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
64 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
65 * only by the hub driver ... and that neither should be seen or used by
66 * usb client device drivers.
67 *
68 * Contributors of ideas or unattributed patches include: David Brownell,
69 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
70 *
71 * HISTORY:
72 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
73 * associated cleanup. "usb_hcd" still != "usb_bus".
74 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
75 */
76
77/*-------------------------------------------------------------------------*/
78
79/* Keep track of which host controller drivers are loaded */
80unsigned long usb_hcds_loaded;
81EXPORT_SYMBOL_GPL(usb_hcds_loaded);
82
83/* host controllers we manage */
84DEFINE_IDR (usb_bus_idr);
85EXPORT_SYMBOL_GPL (usb_bus_idr);
86
87/* used when allocating bus numbers */
88#define USB_MAXBUS 64
89
90/* used when updating list of hcds */
91DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
92EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
93
94/* used for controlling access to virtual root hubs */
95static DEFINE_SPINLOCK(hcd_root_hub_lock);
96
97/* used when updating an endpoint's URB list */
98static DEFINE_SPINLOCK(hcd_urb_list_lock);
99
100/* used to protect against unlinking URBs after the device is gone */
101static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
102
103/* wait queue for synchronous unlinks */
104DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
105
106/*-------------------------------------------------------------------------*/
107
108/*
109 * Sharable chunks of root hub code.
110 */
111
112/*-------------------------------------------------------------------------*/
113#define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
114#define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
115
116/* usb 3.1 root hub device descriptor */
117static const u8 usb31_rh_dev_descriptor[18] = {
118 0x12, /* __u8 bLength; */
119 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
120 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
121
122 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
123 0x00, /* __u8 bDeviceSubClass; */
124 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
125 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
126
127 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
128 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
129 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
130
131 0x03, /* __u8 iManufacturer; */
132 0x02, /* __u8 iProduct; */
133 0x01, /* __u8 iSerialNumber; */
134 0x01 /* __u8 bNumConfigurations; */
135};
136
137/* usb 3.0 root hub device descriptor */
138static const u8 usb3_rh_dev_descriptor[18] = {
139 0x12, /* __u8 bLength; */
140 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
141 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
142
143 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
144 0x00, /* __u8 bDeviceSubClass; */
145 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
146 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
147
148 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
149 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
150 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
151
152 0x03, /* __u8 iManufacturer; */
153 0x02, /* __u8 iProduct; */
154 0x01, /* __u8 iSerialNumber; */
155 0x01 /* __u8 bNumConfigurations; */
156};
157
158/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
159static const u8 usb25_rh_dev_descriptor[18] = {
160 0x12, /* __u8 bLength; */
161 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
162 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
163
164 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
165 0x00, /* __u8 bDeviceSubClass; */
166 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
167 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
168
169 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
170 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
171 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
172
173 0x03, /* __u8 iManufacturer; */
174 0x02, /* __u8 iProduct; */
175 0x01, /* __u8 iSerialNumber; */
176 0x01 /* __u8 bNumConfigurations; */
177};
178
179/* usb 2.0 root hub device descriptor */
180static const u8 usb2_rh_dev_descriptor[18] = {
181 0x12, /* __u8 bLength; */
182 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
183 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
184
185 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
186 0x00, /* __u8 bDeviceSubClass; */
187 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
188 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
189
190 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
191 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
192 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
193
194 0x03, /* __u8 iManufacturer; */
195 0x02, /* __u8 iProduct; */
196 0x01, /* __u8 iSerialNumber; */
197 0x01 /* __u8 bNumConfigurations; */
198};
199
200/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
201
202/* usb 1.1 root hub device descriptor */
203static const u8 usb11_rh_dev_descriptor[18] = {
204 0x12, /* __u8 bLength; */
205 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
206 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
207
208 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
209 0x00, /* __u8 bDeviceSubClass; */
210 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
211 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
212
213 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
214 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
215 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
216
217 0x03, /* __u8 iManufacturer; */
218 0x02, /* __u8 iProduct; */
219 0x01, /* __u8 iSerialNumber; */
220 0x01 /* __u8 bNumConfigurations; */
221};
222
223
224/*-------------------------------------------------------------------------*/
225
226/* Configuration descriptors for our root hubs */
227
228static const u8 fs_rh_config_descriptor[] = {
229
230 /* one configuration */
231 0x09, /* __u8 bLength; */
232 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
233 0x19, 0x00, /* __le16 wTotalLength; */
234 0x01, /* __u8 bNumInterfaces; (1) */
235 0x01, /* __u8 bConfigurationValue; */
236 0x00, /* __u8 iConfiguration; */
237 0xc0, /* __u8 bmAttributes;
238 Bit 7: must be set,
239 6: Self-powered,
240 5: Remote wakeup,
241 4..0: resvd */
242 0x00, /* __u8 MaxPower; */
243
244 /* USB 1.1:
245 * USB 2.0, single TT organization (mandatory):
246 * one interface, protocol 0
247 *
248 * USB 2.0, multiple TT organization (optional):
249 * two interfaces, protocols 1 (like single TT)
250 * and 2 (multiple TT mode) ... config is
251 * sometimes settable
252 * NOT IMPLEMENTED
253 */
254
255 /* one interface */
256 0x09, /* __u8 if_bLength; */
257 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
258 0x00, /* __u8 if_bInterfaceNumber; */
259 0x00, /* __u8 if_bAlternateSetting; */
260 0x01, /* __u8 if_bNumEndpoints; */
261 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
262 0x00, /* __u8 if_bInterfaceSubClass; */
263 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
264 0x00, /* __u8 if_iInterface; */
265
266 /* one endpoint (status change endpoint) */
267 0x07, /* __u8 ep_bLength; */
268 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
269 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
270 0x03, /* __u8 ep_bmAttributes; Interrupt */
271 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
272 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
273};
274
275static const u8 hs_rh_config_descriptor[] = {
276
277 /* one configuration */
278 0x09, /* __u8 bLength; */
279 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
280 0x19, 0x00, /* __le16 wTotalLength; */
281 0x01, /* __u8 bNumInterfaces; (1) */
282 0x01, /* __u8 bConfigurationValue; */
283 0x00, /* __u8 iConfiguration; */
284 0xc0, /* __u8 bmAttributes;
285 Bit 7: must be set,
286 6: Self-powered,
287 5: Remote wakeup,
288 4..0: resvd */
289 0x00, /* __u8 MaxPower; */
290
291 /* USB 1.1:
292 * USB 2.0, single TT organization (mandatory):
293 * one interface, protocol 0
294 *
295 * USB 2.0, multiple TT organization (optional):
296 * two interfaces, protocols 1 (like single TT)
297 * and 2 (multiple TT mode) ... config is
298 * sometimes settable
299 * NOT IMPLEMENTED
300 */
301
302 /* one interface */
303 0x09, /* __u8 if_bLength; */
304 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
305 0x00, /* __u8 if_bInterfaceNumber; */
306 0x00, /* __u8 if_bAlternateSetting; */
307 0x01, /* __u8 if_bNumEndpoints; */
308 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
309 0x00, /* __u8 if_bInterfaceSubClass; */
310 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
311 0x00, /* __u8 if_iInterface; */
312
313 /* one endpoint (status change endpoint) */
314 0x07, /* __u8 ep_bLength; */
315 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
316 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
317 0x03, /* __u8 ep_bmAttributes; Interrupt */
318 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
319 * see hub.c:hub_configure() for details. */
320 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
321 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
322};
323
324static const u8 ss_rh_config_descriptor[] = {
325 /* one configuration */
326 0x09, /* __u8 bLength; */
327 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
328 0x1f, 0x00, /* __le16 wTotalLength; */
329 0x01, /* __u8 bNumInterfaces; (1) */
330 0x01, /* __u8 bConfigurationValue; */
331 0x00, /* __u8 iConfiguration; */
332 0xc0, /* __u8 bmAttributes;
333 Bit 7: must be set,
334 6: Self-powered,
335 5: Remote wakeup,
336 4..0: resvd */
337 0x00, /* __u8 MaxPower; */
338
339 /* one interface */
340 0x09, /* __u8 if_bLength; */
341 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
342 0x00, /* __u8 if_bInterfaceNumber; */
343 0x00, /* __u8 if_bAlternateSetting; */
344 0x01, /* __u8 if_bNumEndpoints; */
345 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
346 0x00, /* __u8 if_bInterfaceSubClass; */
347 0x00, /* __u8 if_bInterfaceProtocol; */
348 0x00, /* __u8 if_iInterface; */
349
350 /* one endpoint (status change endpoint) */
351 0x07, /* __u8 ep_bLength; */
352 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
353 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
354 0x03, /* __u8 ep_bmAttributes; Interrupt */
355 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
356 * see hub.c:hub_configure() for details. */
357 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
358 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
359
360 /* one SuperSpeed endpoint companion descriptor */
361 0x06, /* __u8 ss_bLength */
362 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
363 /* Companion */
364 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
365 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
366 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
367};
368
369/* authorized_default behaviour:
370 * -1 is authorized for all devices except wireless (old behaviour)
371 * 0 is unauthorized for all devices
372 * 1 is authorized for all devices
373 * 2 is authorized for internal devices
374 */
375#define USB_AUTHORIZE_WIRED -1
376#define USB_AUTHORIZE_NONE 0
377#define USB_AUTHORIZE_ALL 1
378#define USB_AUTHORIZE_INTERNAL 2
379
380static int authorized_default = USB_AUTHORIZE_WIRED;
381module_param(authorized_default, int, S_IRUGO|S_IWUSR);
382MODULE_PARM_DESC(authorized_default,
383 "Default USB device authorization: 0 is not authorized, 1 is "
384 "authorized, 2 is authorized for internal devices, -1 is "
385 "authorized except for wireless USB (default, old behaviour)");
386/*-------------------------------------------------------------------------*/
387
388/**
389 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
390 * @s: Null-terminated ASCII (actually ISO-8859-1) string
391 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
392 * @len: Length (in bytes; may be odd) of descriptor buffer.
393 *
394 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
395 * whichever is less.
396 *
397 * Note:
398 * USB String descriptors can contain at most 126 characters; input
399 * strings longer than that are truncated.
400 */
401static unsigned
402ascii2desc(char const *s, u8 *buf, unsigned len)
403{
404 unsigned n, t = 2 + 2*strlen(s);
405
406 if (t > 254)
407 t = 254; /* Longest possible UTF string descriptor */
408 if (len > t)
409 len = t;
410
411 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
412
413 n = len;
414 while (n--) {
415 *buf++ = t;
416 if (!n--)
417 break;
418 *buf++ = t >> 8;
419 t = (unsigned char)*s++;
420 }
421 return len;
422}
423
424/**
425 * rh_string() - provides string descriptors for root hub
426 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
427 * @hcd: the host controller for this root hub
428 * @data: buffer for output packet
429 * @len: length of the provided buffer
430 *
431 * Produces either a manufacturer, product or serial number string for the
432 * virtual root hub device.
433 *
434 * Return: The number of bytes filled in: the length of the descriptor or
435 * of the provided buffer, whichever is less.
436 */
437static unsigned
438rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
439{
440 char buf[100];
441 char const *s;
442 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
443
444 /* language ids */
445 switch (id) {
446 case 0:
447 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
448 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
449 if (len > 4)
450 len = 4;
451 memcpy(data, langids, len);
452 return len;
453 case 1:
454 /* Serial number */
455 s = hcd->self.bus_name;
456 break;
457 case 2:
458 /* Product name */
459 s = hcd->product_desc;
460 break;
461 case 3:
462 /* Manufacturer */
463 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
464 init_utsname()->release, hcd->driver->description);
465 s = buf;
466 break;
467 default:
468 /* Can't happen; caller guarantees it */
469 return 0;
470 }
471
472 return ascii2desc(s, data, len);
473}
474
475
476/* Root hub control transfers execute synchronously */
477static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
478{
479 struct usb_ctrlrequest *cmd;
480 u16 typeReq, wValue, wIndex, wLength;
481 u8 *ubuf = urb->transfer_buffer;
482 unsigned len = 0;
483 int status;
484 u8 patch_wakeup = 0;
485 u8 patch_protocol = 0;
486 u16 tbuf_size;
487 u8 *tbuf = NULL;
488 const u8 *bufp;
489
490 might_sleep();
491
492 spin_lock_irq(&hcd_root_hub_lock);
493 status = usb_hcd_link_urb_to_ep(hcd, urb);
494 spin_unlock_irq(&hcd_root_hub_lock);
495 if (status)
496 return status;
497 urb->hcpriv = hcd; /* Indicate it's queued */
498
499 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
500 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
501 wValue = le16_to_cpu (cmd->wValue);
502 wIndex = le16_to_cpu (cmd->wIndex);
503 wLength = le16_to_cpu (cmd->wLength);
504
505 if (wLength > urb->transfer_buffer_length)
506 goto error;
507
508 /*
509 * tbuf should be at least as big as the
510 * USB hub descriptor.
511 */
512 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
513 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
514 if (!tbuf) {
515 status = -ENOMEM;
516 goto err_alloc;
517 }
518
519 bufp = tbuf;
520
521
522 urb->actual_length = 0;
523 switch (typeReq) {
524
525 /* DEVICE REQUESTS */
526
527 /* The root hub's remote wakeup enable bit is implemented using
528 * driver model wakeup flags. If this system supports wakeup
529 * through USB, userspace may change the default "allow wakeup"
530 * policy through sysfs or these calls.
531 *
532 * Most root hubs support wakeup from downstream devices, for
533 * runtime power management (disabling USB clocks and reducing
534 * VBUS power usage). However, not all of them do so; silicon,
535 * board, and BIOS bugs here are not uncommon, so these can't
536 * be treated quite like external hubs.
537 *
538 * Likewise, not all root hubs will pass wakeup events upstream,
539 * to wake up the whole system. So don't assume root hub and
540 * controller capabilities are identical.
541 */
542
543 case DeviceRequest | USB_REQ_GET_STATUS:
544 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
545 << USB_DEVICE_REMOTE_WAKEUP)
546 | (1 << USB_DEVICE_SELF_POWERED);
547 tbuf[1] = 0;
548 len = 2;
549 break;
550 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
551 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
552 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
553 else
554 goto error;
555 break;
556 case DeviceOutRequest | USB_REQ_SET_FEATURE:
557 if (device_can_wakeup(&hcd->self.root_hub->dev)
558 && wValue == USB_DEVICE_REMOTE_WAKEUP)
559 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
560 else
561 goto error;
562 break;
563 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
564 tbuf[0] = 1;
565 len = 1;
566 /* FALLTHROUGH */
567 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
568 break;
569 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
570 switch (wValue & 0xff00) {
571 case USB_DT_DEVICE << 8:
572 switch (hcd->speed) {
573 case HCD_USB32:
574 case HCD_USB31:
575 bufp = usb31_rh_dev_descriptor;
576 break;
577 case HCD_USB3:
578 bufp = usb3_rh_dev_descriptor;
579 break;
580 case HCD_USB25:
581 bufp = usb25_rh_dev_descriptor;
582 break;
583 case HCD_USB2:
584 bufp = usb2_rh_dev_descriptor;
585 break;
586 case HCD_USB11:
587 bufp = usb11_rh_dev_descriptor;
588 break;
589 default:
590 goto error;
591 }
592 len = 18;
593 if (hcd->has_tt)
594 patch_protocol = 1;
595 break;
596 case USB_DT_CONFIG << 8:
597 switch (hcd->speed) {
598 case HCD_USB32:
599 case HCD_USB31:
600 case HCD_USB3:
601 bufp = ss_rh_config_descriptor;
602 len = sizeof ss_rh_config_descriptor;
603 break;
604 case HCD_USB25:
605 case HCD_USB2:
606 bufp = hs_rh_config_descriptor;
607 len = sizeof hs_rh_config_descriptor;
608 break;
609 case HCD_USB11:
610 bufp = fs_rh_config_descriptor;
611 len = sizeof fs_rh_config_descriptor;
612 break;
613 default:
614 goto error;
615 }
616 if (device_can_wakeup(&hcd->self.root_hub->dev))
617 patch_wakeup = 1;
618 break;
619 case USB_DT_STRING << 8:
620 if ((wValue & 0xff) < 4)
621 urb->actual_length = rh_string(wValue & 0xff,
622 hcd, ubuf, wLength);
623 else /* unsupported IDs --> "protocol stall" */
624 goto error;
625 break;
626 case USB_DT_BOS << 8:
627 goto nongeneric;
628 default:
629 goto error;
630 }
631 break;
632 case DeviceRequest | USB_REQ_GET_INTERFACE:
633 tbuf[0] = 0;
634 len = 1;
635 /* FALLTHROUGH */
636 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
637 break;
638 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
639 /* wValue == urb->dev->devaddr */
640 dev_dbg (hcd->self.controller, "root hub device address %d\n",
641 wValue);
642 break;
643
644 /* INTERFACE REQUESTS (no defined feature/status flags) */
645
646 /* ENDPOINT REQUESTS */
647
648 case EndpointRequest | USB_REQ_GET_STATUS:
649 /* ENDPOINT_HALT flag */
650 tbuf[0] = 0;
651 tbuf[1] = 0;
652 len = 2;
653 /* FALLTHROUGH */
654 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
655 case EndpointOutRequest | USB_REQ_SET_FEATURE:
656 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
657 break;
658
659 /* CLASS REQUESTS (and errors) */
660
661 default:
662nongeneric:
663 /* non-generic request */
664 switch (typeReq) {
665 case GetHubStatus:
666 len = 4;
667 break;
668 case GetPortStatus:
669 if (wValue == HUB_PORT_STATUS)
670 len = 4;
671 else
672 /* other port status types return 8 bytes */
673 len = 8;
674 break;
675 case GetHubDescriptor:
676 len = sizeof (struct usb_hub_descriptor);
677 break;
678 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
679 /* len is returned by hub_control */
680 break;
681 }
682 status = hcd->driver->hub_control (hcd,
683 typeReq, wValue, wIndex,
684 tbuf, wLength);
685
686 if (typeReq == GetHubDescriptor)
687 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
688 (struct usb_hub_descriptor *)tbuf);
689 break;
690error:
691 /* "protocol stall" on error */
692 status = -EPIPE;
693 }
694
695 if (status < 0) {
696 len = 0;
697 if (status != -EPIPE) {
698 dev_dbg (hcd->self.controller,
699 "CTRL: TypeReq=0x%x val=0x%x "
700 "idx=0x%x len=%d ==> %d\n",
701 typeReq, wValue, wIndex,
702 wLength, status);
703 }
704 } else if (status > 0) {
705 /* hub_control may return the length of data copied. */
706 len = status;
707 status = 0;
708 }
709 if (len) {
710 if (urb->transfer_buffer_length < len)
711 len = urb->transfer_buffer_length;
712 urb->actual_length = len;
713 /* always USB_DIR_IN, toward host */
714 memcpy (ubuf, bufp, len);
715
716 /* report whether RH hardware supports remote wakeup */
717 if (patch_wakeup &&
718 len > offsetof (struct usb_config_descriptor,
719 bmAttributes))
720 ((struct usb_config_descriptor *)ubuf)->bmAttributes
721 |= USB_CONFIG_ATT_WAKEUP;
722
723 /* report whether RH hardware has an integrated TT */
724 if (patch_protocol &&
725 len > offsetof(struct usb_device_descriptor,
726 bDeviceProtocol))
727 ((struct usb_device_descriptor *) ubuf)->
728 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
729 }
730
731 kfree(tbuf);
732 err_alloc:
733
734 /* any errors get returned through the urb completion */
735 spin_lock_irq(&hcd_root_hub_lock);
736 usb_hcd_unlink_urb_from_ep(hcd, urb);
737 usb_hcd_giveback_urb(hcd, urb, status);
738 spin_unlock_irq(&hcd_root_hub_lock);
739 return 0;
740}
741
742/*-------------------------------------------------------------------------*/
743
744/*
745 * Root Hub interrupt transfers are polled using a timer if the
746 * driver requests it; otherwise the driver is responsible for
747 * calling usb_hcd_poll_rh_status() when an event occurs.
748 *
749 * Completions are called in_interrupt(), but they may or may not
750 * be in_irq().
751 */
752void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
753{
754 struct urb *urb;
755 int length;
756 unsigned long flags;
757 char buffer[6]; /* Any root hubs with > 31 ports? */
758
759 if (unlikely(!hcd->rh_pollable))
760 return;
761 if (!hcd->uses_new_polling && !hcd->status_urb)
762 return;
763
764 length = hcd->driver->hub_status_data(hcd, buffer);
765 if (length > 0) {
766
767 /* try to complete the status urb */
768 spin_lock_irqsave(&hcd_root_hub_lock, flags);
769 urb = hcd->status_urb;
770 if (urb) {
771 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
772 hcd->status_urb = NULL;
773 urb->actual_length = length;
774 memcpy(urb->transfer_buffer, buffer, length);
775
776 usb_hcd_unlink_urb_from_ep(hcd, urb);
777 usb_hcd_giveback_urb(hcd, urb, 0);
778 } else {
779 length = 0;
780 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
781 }
782 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
783 }
784
785 /* The USB 2.0 spec says 256 ms. This is close enough and won't
786 * exceed that limit if HZ is 100. The math is more clunky than
787 * maybe expected, this is to make sure that all timers for USB devices
788 * fire at the same time to give the CPU a break in between */
789 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
790 (length == 0 && hcd->status_urb != NULL))
791 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
792}
793EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
794
795/* timer callback */
796static void rh_timer_func (struct timer_list *t)
797{
798 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
799
800 usb_hcd_poll_rh_status(_hcd);
801}
802
803/*-------------------------------------------------------------------------*/
804
805static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
806{
807 int retval;
808 unsigned long flags;
809 unsigned len = 1 + (urb->dev->maxchild / 8);
810
811 spin_lock_irqsave (&hcd_root_hub_lock, flags);
812 if (hcd->status_urb || urb->transfer_buffer_length < len) {
813 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
814 retval = -EINVAL;
815 goto done;
816 }
817
818 retval = usb_hcd_link_urb_to_ep(hcd, urb);
819 if (retval)
820 goto done;
821
822 hcd->status_urb = urb;
823 urb->hcpriv = hcd; /* indicate it's queued */
824 if (!hcd->uses_new_polling)
825 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
826
827 /* If a status change has already occurred, report it ASAP */
828 else if (HCD_POLL_PENDING(hcd))
829 mod_timer(&hcd->rh_timer, jiffies);
830 retval = 0;
831 done:
832 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
833 return retval;
834}
835
836static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
837{
838 if (usb_endpoint_xfer_int(&urb->ep->desc))
839 return rh_queue_status (hcd, urb);
840 if (usb_endpoint_xfer_control(&urb->ep->desc))
841 return rh_call_control (hcd, urb);
842 return -EINVAL;
843}
844
845/*-------------------------------------------------------------------------*/
846
847/* Unlinks of root-hub control URBs are legal, but they don't do anything
848 * since these URBs always execute synchronously.
849 */
850static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
851{
852 unsigned long flags;
853 int rc;
854
855 spin_lock_irqsave(&hcd_root_hub_lock, flags);
856 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
857 if (rc)
858 goto done;
859
860 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
861 ; /* Do nothing */
862
863 } else { /* Status URB */
864 if (!hcd->uses_new_polling)
865 del_timer (&hcd->rh_timer);
866 if (urb == hcd->status_urb) {
867 hcd->status_urb = NULL;
868 usb_hcd_unlink_urb_from_ep(hcd, urb);
869 usb_hcd_giveback_urb(hcd, urb, status);
870 }
871 }
872 done:
873 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
874 return rc;
875}
876
877
878/*-------------------------------------------------------------------------*/
879
880/**
881 * usb_bus_init - shared initialization code
882 * @bus: the bus structure being initialized
883 *
884 * This code is used to initialize a usb_bus structure, memory for which is
885 * separately managed.
886 */
887static void usb_bus_init (struct usb_bus *bus)
888{
889 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
890
891 bus->devnum_next = 1;
892
893 bus->root_hub = NULL;
894 bus->busnum = -1;
895 bus->bandwidth_allocated = 0;
896 bus->bandwidth_int_reqs = 0;
897 bus->bandwidth_isoc_reqs = 0;
898 mutex_init(&bus->devnum_next_mutex);
899}
900
901/*-------------------------------------------------------------------------*/
902
903/**
904 * usb_register_bus - registers the USB host controller with the usb core
905 * @bus: pointer to the bus to register
906 * Context: !in_interrupt()
907 *
908 * Assigns a bus number, and links the controller into usbcore data
909 * structures so that it can be seen by scanning the bus list.
910 *
911 * Return: 0 if successful. A negative error code otherwise.
912 */
913static int usb_register_bus(struct usb_bus *bus)
914{
915 int result = -E2BIG;
916 int busnum;
917
918 mutex_lock(&usb_bus_idr_lock);
919 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
920 if (busnum < 0) {
921 pr_err("%s: failed to get bus number\n", usbcore_name);
922 goto error_find_busnum;
923 }
924 bus->busnum = busnum;
925 mutex_unlock(&usb_bus_idr_lock);
926
927 usb_notify_add_bus(bus);
928
929 dev_info (bus->controller, "new USB bus registered, assigned bus "
930 "number %d\n", bus->busnum);
931 return 0;
932
933error_find_busnum:
934 mutex_unlock(&usb_bus_idr_lock);
935 return result;
936}
937
938/**
939 * usb_deregister_bus - deregisters the USB host controller
940 * @bus: pointer to the bus to deregister
941 * Context: !in_interrupt()
942 *
943 * Recycles the bus number, and unlinks the controller from usbcore data
944 * structures so that it won't be seen by scanning the bus list.
945 */
946static void usb_deregister_bus (struct usb_bus *bus)
947{
948 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
949
950 /*
951 * NOTE: make sure that all the devices are removed by the
952 * controller code, as well as having it call this when cleaning
953 * itself up
954 */
955 mutex_lock(&usb_bus_idr_lock);
956 idr_remove(&usb_bus_idr, bus->busnum);
957 mutex_unlock(&usb_bus_idr_lock);
958
959 usb_notify_remove_bus(bus);
960}
961
962/**
963 * register_root_hub - called by usb_add_hcd() to register a root hub
964 * @hcd: host controller for this root hub
965 *
966 * This function registers the root hub with the USB subsystem. It sets up
967 * the device properly in the device tree and then calls usb_new_device()
968 * to register the usb device. It also assigns the root hub's USB address
969 * (always 1).
970 *
971 * Return: 0 if successful. A negative error code otherwise.
972 */
973static int register_root_hub(struct usb_hcd *hcd)
974{
975 struct device *parent_dev = hcd->self.controller;
976 struct usb_device *usb_dev = hcd->self.root_hub;
977 const int devnum = 1;
978 int retval;
979
980 usb_dev->devnum = devnum;
981 usb_dev->bus->devnum_next = devnum + 1;
982 set_bit (devnum, usb_dev->bus->devmap.devicemap);
983 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
984
985 mutex_lock(&usb_bus_idr_lock);
986
987 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
988 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
989 if (retval != sizeof usb_dev->descriptor) {
990 mutex_unlock(&usb_bus_idr_lock);
991 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
992 dev_name(&usb_dev->dev), retval);
993 return (retval < 0) ? retval : -EMSGSIZE;
994 }
995
996 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
997 retval = usb_get_bos_descriptor(usb_dev);
998 if (!retval) {
999 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1000 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1001 mutex_unlock(&usb_bus_idr_lock);
1002 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1003 dev_name(&usb_dev->dev), retval);
1004 return retval;
1005 }
1006 }
1007
1008 retval = usb_new_device (usb_dev);
1009 if (retval) {
1010 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1011 dev_name(&usb_dev->dev), retval);
1012 } else {
1013 spin_lock_irq (&hcd_root_hub_lock);
1014 hcd->rh_registered = 1;
1015 spin_unlock_irq (&hcd_root_hub_lock);
1016
1017 /* Did the HC die before the root hub was registered? */
1018 if (HCD_DEAD(hcd))
1019 usb_hc_died (hcd); /* This time clean up */
1020 }
1021 mutex_unlock(&usb_bus_idr_lock);
1022
1023 return retval;
1024}
1025
1026/*
1027 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1028 * @bus: the bus which the root hub belongs to
1029 * @portnum: the port which is being resumed
1030 *
1031 * HCDs should call this function when they know that a resume signal is
1032 * being sent to a root-hub port. The root hub will be prevented from
1033 * going into autosuspend until usb_hcd_end_port_resume() is called.
1034 *
1035 * The bus's private lock must be held by the caller.
1036 */
1037void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1038{
1039 unsigned bit = 1 << portnum;
1040
1041 if (!(bus->resuming_ports & bit)) {
1042 bus->resuming_ports |= bit;
1043 pm_runtime_get_noresume(&bus->root_hub->dev);
1044 }
1045}
1046EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1047
1048/*
1049 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1050 * @bus: the bus which the root hub belongs to
1051 * @portnum: the port which is being resumed
1052 *
1053 * HCDs should call this function when they know that a resume signal has
1054 * stopped being sent to a root-hub port. The root hub will be allowed to
1055 * autosuspend again.
1056 *
1057 * The bus's private lock must be held by the caller.
1058 */
1059void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1060{
1061 unsigned bit = 1 << portnum;
1062
1063 if (bus->resuming_ports & bit) {
1064 bus->resuming_ports &= ~bit;
1065 pm_runtime_put_noidle(&bus->root_hub->dev);
1066 }
1067}
1068EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1069
1070/*-------------------------------------------------------------------------*/
1071
1072/**
1073 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1074 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1075 * @is_input: true iff the transaction sends data to the host
1076 * @isoc: true for isochronous transactions, false for interrupt ones
1077 * @bytecount: how many bytes in the transaction.
1078 *
1079 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1080 *
1081 * Note:
1082 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1083 * scheduled in software, this function is only used for such scheduling.
1084 */
1085long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1086{
1087 unsigned long tmp;
1088
1089 switch (speed) {
1090 case USB_SPEED_LOW: /* INTR only */
1091 if (is_input) {
1092 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1093 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1094 } else {
1095 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1096 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1097 }
1098 case USB_SPEED_FULL: /* ISOC or INTR */
1099 if (isoc) {
1100 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1101 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1102 } else {
1103 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1104 return 9107L + BW_HOST_DELAY + tmp;
1105 }
1106 case USB_SPEED_HIGH: /* ISOC or INTR */
1107 /* FIXME adjust for input vs output */
1108 if (isoc)
1109 tmp = HS_NSECS_ISO (bytecount);
1110 else
1111 tmp = HS_NSECS (bytecount);
1112 return tmp;
1113 default:
1114 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1115 return -1;
1116 }
1117}
1118EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1119
1120
1121/*-------------------------------------------------------------------------*/
1122
1123/*
1124 * Generic HC operations.
1125 */
1126
1127/*-------------------------------------------------------------------------*/
1128
1129/**
1130 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1131 * @hcd: host controller to which @urb was submitted
1132 * @urb: URB being submitted
1133 *
1134 * Host controller drivers should call this routine in their enqueue()
1135 * method. The HCD's private spinlock must be held and interrupts must
1136 * be disabled. The actions carried out here are required for URB
1137 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1138 *
1139 * Return: 0 for no error, otherwise a negative error code (in which case
1140 * the enqueue() method must fail). If no error occurs but enqueue() fails
1141 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1142 * the private spinlock and returning.
1143 */
1144int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1145{
1146 int rc = 0;
1147
1148 spin_lock(&hcd_urb_list_lock);
1149
1150 /* Check that the URB isn't being killed */
1151 if (unlikely(atomic_read(&urb->reject))) {
1152 rc = -EPERM;
1153 goto done;
1154 }
1155
1156 if (unlikely(!urb->ep->enabled)) {
1157 rc = -ENOENT;
1158 goto done;
1159 }
1160
1161 if (unlikely(!urb->dev->can_submit)) {
1162 rc = -EHOSTUNREACH;
1163 goto done;
1164 }
1165
1166 /*
1167 * Check the host controller's state and add the URB to the
1168 * endpoint's queue.
1169 */
1170 if (HCD_RH_RUNNING(hcd)) {
1171 urb->unlinked = 0;
1172 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1173 } else {
1174 rc = -ESHUTDOWN;
1175 goto done;
1176 }
1177 done:
1178 spin_unlock(&hcd_urb_list_lock);
1179 return rc;
1180}
1181EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1182
1183/**
1184 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1185 * @hcd: host controller to which @urb was submitted
1186 * @urb: URB being checked for unlinkability
1187 * @status: error code to store in @urb if the unlink succeeds
1188 *
1189 * Host controller drivers should call this routine in their dequeue()
1190 * method. The HCD's private spinlock must be held and interrupts must
1191 * be disabled. The actions carried out here are required for making
1192 * sure than an unlink is valid.
1193 *
1194 * Return: 0 for no error, otherwise a negative error code (in which case
1195 * the dequeue() method must fail). The possible error codes are:
1196 *
1197 * -EIDRM: @urb was not submitted or has already completed.
1198 * The completion function may not have been called yet.
1199 *
1200 * -EBUSY: @urb has already been unlinked.
1201 */
1202int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1203 int status)
1204{
1205 struct list_head *tmp;
1206
1207 /* insist the urb is still queued */
1208 list_for_each(tmp, &urb->ep->urb_list) {
1209 if (tmp == &urb->urb_list)
1210 break;
1211 }
1212 if (tmp != &urb->urb_list)
1213 return -EIDRM;
1214
1215 /* Any status except -EINPROGRESS means something already started to
1216 * unlink this URB from the hardware. So there's no more work to do.
1217 */
1218 if (urb->unlinked)
1219 return -EBUSY;
1220 urb->unlinked = status;
1221 return 0;
1222}
1223EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1224
1225/**
1226 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1227 * @hcd: host controller to which @urb was submitted
1228 * @urb: URB being unlinked
1229 *
1230 * Host controller drivers should call this routine before calling
1231 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1232 * interrupts must be disabled. The actions carried out here are required
1233 * for URB completion.
1234 */
1235void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1236{
1237 /* clear all state linking urb to this dev (and hcd) */
1238 spin_lock(&hcd_urb_list_lock);
1239 list_del_init(&urb->urb_list);
1240 spin_unlock(&hcd_urb_list_lock);
1241}
1242EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1243
1244/*
1245 * Some usb host controllers can only perform dma using a small SRAM area.
1246 * The usb core itself is however optimized for host controllers that can dma
1247 * using regular system memory - like pci devices doing bus mastering.
1248 *
1249 * To support host controllers with limited dma capabilities we provide dma
1250 * bounce buffers. This feature can be enabled by initializing
1251 * hcd->localmem_pool using usb_hcd_setup_local_mem().
1252 *
1253 * The initialized hcd->localmem_pool then tells the usb code to allocate all
1254 * data for dma using the genalloc API.
1255 *
1256 * So, to summarize...
1257 *
1258 * - We need "local" memory, canonical example being
1259 * a small SRAM on a discrete controller being the
1260 * only memory that the controller can read ...
1261 * (a) "normal" kernel memory is no good, and
1262 * (b) there's not enough to share
1263 *
1264 * - So we use that, even though the primary requirement
1265 * is that the memory be "local" (hence addressable
1266 * by that device), not "coherent".
1267 *
1268 */
1269
1270static int hcd_alloc_coherent(struct usb_bus *bus,
1271 gfp_t mem_flags, dma_addr_t *dma_handle,
1272 void **vaddr_handle, size_t size,
1273 enum dma_data_direction dir)
1274{
1275 unsigned char *vaddr;
1276
1277 if (*vaddr_handle == NULL) {
1278 WARN_ON_ONCE(1);
1279 return -EFAULT;
1280 }
1281
1282 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1283 mem_flags, dma_handle);
1284 if (!vaddr)
1285 return -ENOMEM;
1286
1287 /*
1288 * Store the virtual address of the buffer at the end
1289 * of the allocated dma buffer. The size of the buffer
1290 * may be uneven so use unaligned functions instead
1291 * of just rounding up. It makes sense to optimize for
1292 * memory footprint over access speed since the amount
1293 * of memory available for dma may be limited.
1294 */
1295 put_unaligned((unsigned long)*vaddr_handle,
1296 (unsigned long *)(vaddr + size));
1297
1298 if (dir == DMA_TO_DEVICE)
1299 memcpy(vaddr, *vaddr_handle, size);
1300
1301 *vaddr_handle = vaddr;
1302 return 0;
1303}
1304
1305static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1306 void **vaddr_handle, size_t size,
1307 enum dma_data_direction dir)
1308{
1309 unsigned char *vaddr = *vaddr_handle;
1310
1311 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1312
1313 if (dir == DMA_FROM_DEVICE)
1314 memcpy(vaddr, *vaddr_handle, size);
1315
1316 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1317
1318 *vaddr_handle = vaddr;
1319 *dma_handle = 0;
1320}
1321
1322void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1323{
1324 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1325 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1326 dma_unmap_single(hcd->self.sysdev,
1327 urb->setup_dma,
1328 sizeof(struct usb_ctrlrequest),
1329 DMA_TO_DEVICE);
1330 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1331 hcd_free_coherent(urb->dev->bus,
1332 &urb->setup_dma,
1333 (void **) &urb->setup_packet,
1334 sizeof(struct usb_ctrlrequest),
1335 DMA_TO_DEVICE);
1336
1337 /* Make it safe to call this routine more than once */
1338 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1339}
1340EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1341
1342static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1343{
1344 if (hcd->driver->unmap_urb_for_dma)
1345 hcd->driver->unmap_urb_for_dma(hcd, urb);
1346 else
1347 usb_hcd_unmap_urb_for_dma(hcd, urb);
1348}
1349
1350void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1351{
1352 enum dma_data_direction dir;
1353
1354 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1355
1356 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1357 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1358 (urb->transfer_flags & URB_DMA_MAP_SG))
1359 dma_unmap_sg(hcd->self.sysdev,
1360 urb->sg,
1361 urb->num_sgs,
1362 dir);
1363 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1364 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1365 dma_unmap_page(hcd->self.sysdev,
1366 urb->transfer_dma,
1367 urb->transfer_buffer_length,
1368 dir);
1369 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1370 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1371 dma_unmap_single(hcd->self.sysdev,
1372 urb->transfer_dma,
1373 urb->transfer_buffer_length,
1374 dir);
1375 else if (urb->transfer_flags & URB_MAP_LOCAL)
1376 hcd_free_coherent(urb->dev->bus,
1377 &urb->transfer_dma,
1378 &urb->transfer_buffer,
1379 urb->transfer_buffer_length,
1380 dir);
1381
1382 /* Make it safe to call this routine more than once */
1383 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1384 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1385}
1386EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1387
1388static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1389 gfp_t mem_flags)
1390{
1391 if (hcd->driver->map_urb_for_dma)
1392 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1393 else
1394 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1395}
1396
1397int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1398 gfp_t mem_flags)
1399{
1400 enum dma_data_direction dir;
1401 int ret = 0;
1402
1403 /* Map the URB's buffers for DMA access.
1404 * Lower level HCD code should use *_dma exclusively,
1405 * unless it uses pio or talks to another transport,
1406 * or uses the provided scatter gather list for bulk.
1407 */
1408
1409 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1410 if (hcd->self.uses_pio_for_control)
1411 return ret;
1412 if (hcd_uses_dma(hcd)) {
1413 if (is_vmalloc_addr(urb->setup_packet)) {
1414 WARN_ONCE(1, "setup packet is not dma capable\n");
1415 return -EAGAIN;
1416 } else if (object_is_on_stack(urb->setup_packet)) {
1417 WARN_ONCE(1, "setup packet is on stack\n");
1418 return -EAGAIN;
1419 }
1420
1421 urb->setup_dma = dma_map_single(
1422 hcd->self.sysdev,
1423 urb->setup_packet,
1424 sizeof(struct usb_ctrlrequest),
1425 DMA_TO_DEVICE);
1426 if (dma_mapping_error(hcd->self.sysdev,
1427 urb->setup_dma))
1428 return -EAGAIN;
1429 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1430 } else if (hcd->localmem_pool) {
1431 ret = hcd_alloc_coherent(
1432 urb->dev->bus, mem_flags,
1433 &urb->setup_dma,
1434 (void **)&urb->setup_packet,
1435 sizeof(struct usb_ctrlrequest),
1436 DMA_TO_DEVICE);
1437 if (ret)
1438 return ret;
1439 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1440 }
1441 }
1442
1443 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1444 if (urb->transfer_buffer_length != 0
1445 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1446 if (hcd_uses_dma(hcd)) {
1447 if (urb->num_sgs) {
1448 int n;
1449
1450 /* We don't support sg for isoc transfers ! */
1451 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1452 WARN_ON(1);
1453 return -EINVAL;
1454 }
1455
1456 n = dma_map_sg(
1457 hcd->self.sysdev,
1458 urb->sg,
1459 urb->num_sgs,
1460 dir);
1461 if (n <= 0)
1462 ret = -EAGAIN;
1463 else
1464 urb->transfer_flags |= URB_DMA_MAP_SG;
1465 urb->num_mapped_sgs = n;
1466 if (n != urb->num_sgs)
1467 urb->transfer_flags |=
1468 URB_DMA_SG_COMBINED;
1469 } else if (urb->sg) {
1470 struct scatterlist *sg = urb->sg;
1471 urb->transfer_dma = dma_map_page(
1472 hcd->self.sysdev,
1473 sg_page(sg),
1474 sg->offset,
1475 urb->transfer_buffer_length,
1476 dir);
1477 if (dma_mapping_error(hcd->self.sysdev,
1478 urb->transfer_dma))
1479 ret = -EAGAIN;
1480 else
1481 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1482 } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1483 WARN_ONCE(1, "transfer buffer not dma capable\n");
1484 ret = -EAGAIN;
1485 } else if (object_is_on_stack(urb->transfer_buffer)) {
1486 WARN_ONCE(1, "transfer buffer is on stack\n");
1487 ret = -EAGAIN;
1488 } else {
1489 urb->transfer_dma = dma_map_single(
1490 hcd->self.sysdev,
1491 urb->transfer_buffer,
1492 urb->transfer_buffer_length,
1493 dir);
1494 if (dma_mapping_error(hcd->self.sysdev,
1495 urb->transfer_dma))
1496 ret = -EAGAIN;
1497 else
1498 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1499 }
1500 } else if (hcd->localmem_pool) {
1501 ret = hcd_alloc_coherent(
1502 urb->dev->bus, mem_flags,
1503 &urb->transfer_dma,
1504 &urb->transfer_buffer,
1505 urb->transfer_buffer_length,
1506 dir);
1507 if (ret == 0)
1508 urb->transfer_flags |= URB_MAP_LOCAL;
1509 }
1510 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1511 URB_SETUP_MAP_LOCAL)))
1512 usb_hcd_unmap_urb_for_dma(hcd, urb);
1513 }
1514 return ret;
1515}
1516EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1517
1518/*-------------------------------------------------------------------------*/
1519
1520/* may be called in any context with a valid urb->dev usecount
1521 * caller surrenders "ownership" of urb
1522 * expects usb_submit_urb() to have sanity checked and conditioned all
1523 * inputs in the urb
1524 */
1525int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1526{
1527 int status;
1528 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1529
1530 /* increment urb's reference count as part of giving it to the HCD
1531 * (which will control it). HCD guarantees that it either returns
1532 * an error or calls giveback(), but not both.
1533 */
1534 usb_get_urb(urb);
1535 atomic_inc(&urb->use_count);
1536 atomic_inc(&urb->dev->urbnum);
1537 usbmon_urb_submit(&hcd->self, urb);
1538
1539 /* NOTE requirements on root-hub callers (usbfs and the hub
1540 * driver, for now): URBs' urb->transfer_buffer must be
1541 * valid and usb_buffer_{sync,unmap}() not be needed, since
1542 * they could clobber root hub response data. Also, control
1543 * URBs must be submitted in process context with interrupts
1544 * enabled.
1545 */
1546
1547 if (is_root_hub(urb->dev)) {
1548 status = rh_urb_enqueue(hcd, urb);
1549 } else {
1550 status = map_urb_for_dma(hcd, urb, mem_flags);
1551 if (likely(status == 0)) {
1552 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1553 if (unlikely(status))
1554 unmap_urb_for_dma(hcd, urb);
1555 }
1556 }
1557
1558 if (unlikely(status)) {
1559 usbmon_urb_submit_error(&hcd->self, urb, status);
1560 urb->hcpriv = NULL;
1561 INIT_LIST_HEAD(&urb->urb_list);
1562 atomic_dec(&urb->use_count);
1563 atomic_dec(&urb->dev->urbnum);
1564 if (atomic_read(&urb->reject))
1565 wake_up(&usb_kill_urb_queue);
1566 usb_put_urb(urb);
1567 }
1568 return status;
1569}
1570
1571/*-------------------------------------------------------------------------*/
1572
1573/* this makes the hcd giveback() the urb more quickly, by kicking it
1574 * off hardware queues (which may take a while) and returning it as
1575 * soon as practical. we've already set up the urb's return status,
1576 * but we can't know if the callback completed already.
1577 */
1578static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1579{
1580 int value;
1581
1582 if (is_root_hub(urb->dev))
1583 value = usb_rh_urb_dequeue(hcd, urb, status);
1584 else {
1585
1586 /* The only reason an HCD might fail this call is if
1587 * it has not yet fully queued the urb to begin with.
1588 * Such failures should be harmless. */
1589 value = hcd->driver->urb_dequeue(hcd, urb, status);
1590 }
1591 return value;
1592}
1593
1594/*
1595 * called in any context
1596 *
1597 * caller guarantees urb won't be recycled till both unlink()
1598 * and the urb's completion function return
1599 */
1600int usb_hcd_unlink_urb (struct urb *urb, int status)
1601{
1602 struct usb_hcd *hcd;
1603 struct usb_device *udev = urb->dev;
1604 int retval = -EIDRM;
1605 unsigned long flags;
1606
1607 /* Prevent the device and bus from going away while
1608 * the unlink is carried out. If they are already gone
1609 * then urb->use_count must be 0, since disconnected
1610 * devices can't have any active URBs.
1611 */
1612 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1613 if (atomic_read(&urb->use_count) > 0) {
1614 retval = 0;
1615 usb_get_dev(udev);
1616 }
1617 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1618 if (retval == 0) {
1619 hcd = bus_to_hcd(urb->dev->bus);
1620 retval = unlink1(hcd, urb, status);
1621 if (retval == 0)
1622 retval = -EINPROGRESS;
1623 else if (retval != -EIDRM && retval != -EBUSY)
1624 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1625 urb, retval);
1626 usb_put_dev(udev);
1627 }
1628 return retval;
1629}
1630
1631/*-------------------------------------------------------------------------*/
1632
1633static void __usb_hcd_giveback_urb(struct urb *urb)
1634{
1635 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1636 struct usb_anchor *anchor = urb->anchor;
1637 int status = urb->unlinked;
1638
1639 urb->hcpriv = NULL;
1640 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1641 urb->actual_length < urb->transfer_buffer_length &&
1642 !status))
1643 status = -EREMOTEIO;
1644
1645 unmap_urb_for_dma(hcd, urb);
1646 usbmon_urb_complete(&hcd->self, urb, status);
1647 usb_anchor_suspend_wakeups(anchor);
1648 usb_unanchor_urb(urb);
1649 if (likely(status == 0))
1650 usb_led_activity(USB_LED_EVENT_HOST);
1651
1652 /* pass ownership to the completion handler */
1653 urb->status = status;
1654 urb->complete(urb);
1655
1656 usb_anchor_resume_wakeups(anchor);
1657 atomic_dec(&urb->use_count);
1658 if (unlikely(atomic_read(&urb->reject)))
1659 wake_up(&usb_kill_urb_queue);
1660 usb_put_urb(urb);
1661}
1662
1663static void usb_giveback_urb_bh(unsigned long param)
1664{
1665 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1666 struct list_head local_list;
1667
1668 spin_lock_irq(&bh->lock);
1669 bh->running = true;
1670 restart:
1671 list_replace_init(&bh->head, &local_list);
1672 spin_unlock_irq(&bh->lock);
1673
1674 while (!list_empty(&local_list)) {
1675 struct urb *urb;
1676
1677 urb = list_entry(local_list.next, struct urb, urb_list);
1678 list_del_init(&urb->urb_list);
1679 bh->completing_ep = urb->ep;
1680 __usb_hcd_giveback_urb(urb);
1681 bh->completing_ep = NULL;
1682 }
1683
1684 /* check if there are new URBs to giveback */
1685 spin_lock_irq(&bh->lock);
1686 if (!list_empty(&bh->head))
1687 goto restart;
1688 bh->running = false;
1689 spin_unlock_irq(&bh->lock);
1690}
1691
1692/**
1693 * usb_hcd_giveback_urb - return URB from HCD to device driver
1694 * @hcd: host controller returning the URB
1695 * @urb: urb being returned to the USB device driver.
1696 * @status: completion status code for the URB.
1697 * Context: in_interrupt()
1698 *
1699 * This hands the URB from HCD to its USB device driver, using its
1700 * completion function. The HCD has freed all per-urb resources
1701 * (and is done using urb->hcpriv). It also released all HCD locks;
1702 * the device driver won't cause problems if it frees, modifies,
1703 * or resubmits this URB.
1704 *
1705 * If @urb was unlinked, the value of @status will be overridden by
1706 * @urb->unlinked. Erroneous short transfers are detected in case
1707 * the HCD hasn't checked for them.
1708 */
1709void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1710{
1711 struct giveback_urb_bh *bh;
1712 bool running, high_prio_bh;
1713
1714 /* pass status to tasklet via unlinked */
1715 if (likely(!urb->unlinked))
1716 urb->unlinked = status;
1717
1718 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1719 __usb_hcd_giveback_urb(urb);
1720 return;
1721 }
1722
1723 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1724 bh = &hcd->high_prio_bh;
1725 high_prio_bh = true;
1726 } else {
1727 bh = &hcd->low_prio_bh;
1728 high_prio_bh = false;
1729 }
1730
1731 spin_lock(&bh->lock);
1732 list_add_tail(&urb->urb_list, &bh->head);
1733 running = bh->running;
1734 spin_unlock(&bh->lock);
1735
1736 if (running)
1737 ;
1738 else if (high_prio_bh)
1739 tasklet_hi_schedule(&bh->bh);
1740 else
1741 tasklet_schedule(&bh->bh);
1742}
1743EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1744
1745/*-------------------------------------------------------------------------*/
1746
1747/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1748 * queue to drain completely. The caller must first insure that no more
1749 * URBs can be submitted for this endpoint.
1750 */
1751void usb_hcd_flush_endpoint(struct usb_device *udev,
1752 struct usb_host_endpoint *ep)
1753{
1754 struct usb_hcd *hcd;
1755 struct urb *urb;
1756
1757 if (!ep)
1758 return;
1759 might_sleep();
1760 hcd = bus_to_hcd(udev->bus);
1761
1762 /* No more submits can occur */
1763 spin_lock_irq(&hcd_urb_list_lock);
1764rescan:
1765 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1766 int is_in;
1767
1768 if (urb->unlinked)
1769 continue;
1770 usb_get_urb (urb);
1771 is_in = usb_urb_dir_in(urb);
1772 spin_unlock(&hcd_urb_list_lock);
1773
1774 /* kick hcd */
1775 unlink1(hcd, urb, -ESHUTDOWN);
1776 dev_dbg (hcd->self.controller,
1777 "shutdown urb %pK ep%d%s-%s\n",
1778 urb, usb_endpoint_num(&ep->desc),
1779 is_in ? "in" : "out",
1780 usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1781 usb_put_urb (urb);
1782
1783 /* list contents may have changed */
1784 spin_lock(&hcd_urb_list_lock);
1785 goto rescan;
1786 }
1787 spin_unlock_irq(&hcd_urb_list_lock);
1788
1789 /* Wait until the endpoint queue is completely empty */
1790 while (!list_empty (&ep->urb_list)) {
1791 spin_lock_irq(&hcd_urb_list_lock);
1792
1793 /* The list may have changed while we acquired the spinlock */
1794 urb = NULL;
1795 if (!list_empty (&ep->urb_list)) {
1796 urb = list_entry (ep->urb_list.prev, struct urb,
1797 urb_list);
1798 usb_get_urb (urb);
1799 }
1800 spin_unlock_irq(&hcd_urb_list_lock);
1801
1802 if (urb) {
1803 usb_kill_urb (urb);
1804 usb_put_urb (urb);
1805 }
1806 }
1807}
1808
1809/**
1810 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1811 * the bus bandwidth
1812 * @udev: target &usb_device
1813 * @new_config: new configuration to install
1814 * @cur_alt: the current alternate interface setting
1815 * @new_alt: alternate interface setting that is being installed
1816 *
1817 * To change configurations, pass in the new configuration in new_config,
1818 * and pass NULL for cur_alt and new_alt.
1819 *
1820 * To reset a device's configuration (put the device in the ADDRESSED state),
1821 * pass in NULL for new_config, cur_alt, and new_alt.
1822 *
1823 * To change alternate interface settings, pass in NULL for new_config,
1824 * pass in the current alternate interface setting in cur_alt,
1825 * and pass in the new alternate interface setting in new_alt.
1826 *
1827 * Return: An error if the requested bandwidth change exceeds the
1828 * bus bandwidth or host controller internal resources.
1829 */
1830int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1831 struct usb_host_config *new_config,
1832 struct usb_host_interface *cur_alt,
1833 struct usb_host_interface *new_alt)
1834{
1835 int num_intfs, i, j;
1836 struct usb_host_interface *alt = NULL;
1837 int ret = 0;
1838 struct usb_hcd *hcd;
1839 struct usb_host_endpoint *ep;
1840
1841 hcd = bus_to_hcd(udev->bus);
1842 if (!hcd->driver->check_bandwidth)
1843 return 0;
1844
1845 /* Configuration is being removed - set configuration 0 */
1846 if (!new_config && !cur_alt) {
1847 for (i = 1; i < 16; ++i) {
1848 ep = udev->ep_out[i];
1849 if (ep)
1850 hcd->driver->drop_endpoint(hcd, udev, ep);
1851 ep = udev->ep_in[i];
1852 if (ep)
1853 hcd->driver->drop_endpoint(hcd, udev, ep);
1854 }
1855 hcd->driver->check_bandwidth(hcd, udev);
1856 return 0;
1857 }
1858 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1859 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1860 * of the bus. There will always be bandwidth for endpoint 0, so it's
1861 * ok to exclude it.
1862 */
1863 if (new_config) {
1864 num_intfs = new_config->desc.bNumInterfaces;
1865 /* Remove endpoints (except endpoint 0, which is always on the
1866 * schedule) from the old config from the schedule
1867 */
1868 for (i = 1; i < 16; ++i) {
1869 ep = udev->ep_out[i];
1870 if (ep) {
1871 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1872 if (ret < 0)
1873 goto reset;
1874 }
1875 ep = udev->ep_in[i];
1876 if (ep) {
1877 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1878 if (ret < 0)
1879 goto reset;
1880 }
1881 }
1882 for (i = 0; i < num_intfs; ++i) {
1883 struct usb_host_interface *first_alt;
1884 int iface_num;
1885
1886 first_alt = &new_config->intf_cache[i]->altsetting[0];
1887 iface_num = first_alt->desc.bInterfaceNumber;
1888 /* Set up endpoints for alternate interface setting 0 */
1889 alt = usb_find_alt_setting(new_config, iface_num, 0);
1890 if (!alt)
1891 /* No alt setting 0? Pick the first setting. */
1892 alt = first_alt;
1893
1894 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1895 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1896 if (ret < 0)
1897 goto reset;
1898 }
1899 }
1900 }
1901 if (cur_alt && new_alt) {
1902 struct usb_interface *iface = usb_ifnum_to_if(udev,
1903 cur_alt->desc.bInterfaceNumber);
1904
1905 if (!iface)
1906 return -EINVAL;
1907 if (iface->resetting_device) {
1908 /*
1909 * The USB core just reset the device, so the xHCI host
1910 * and the device will think alt setting 0 is installed.
1911 * However, the USB core will pass in the alternate
1912 * setting installed before the reset as cur_alt. Dig
1913 * out the alternate setting 0 structure, or the first
1914 * alternate setting if a broken device doesn't have alt
1915 * setting 0.
1916 */
1917 cur_alt = usb_altnum_to_altsetting(iface, 0);
1918 if (!cur_alt)
1919 cur_alt = &iface->altsetting[0];
1920 }
1921
1922 /* Drop all the endpoints in the current alt setting */
1923 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1924 ret = hcd->driver->drop_endpoint(hcd, udev,
1925 &cur_alt->endpoint[i]);
1926 if (ret < 0)
1927 goto reset;
1928 }
1929 /* Add all the endpoints in the new alt setting */
1930 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1931 ret = hcd->driver->add_endpoint(hcd, udev,
1932 &new_alt->endpoint[i]);
1933 if (ret < 0)
1934 goto reset;
1935 }
1936 }
1937 ret = hcd->driver->check_bandwidth(hcd, udev);
1938reset:
1939 if (ret < 0)
1940 hcd->driver->reset_bandwidth(hcd, udev);
1941 return ret;
1942}
1943
1944/* Disables the endpoint: synchronizes with the hcd to make sure all
1945 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1946 * have been called previously. Use for set_configuration, set_interface,
1947 * driver removal, physical disconnect.
1948 *
1949 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1950 * type, maxpacket size, toggle, halt status, and scheduling.
1951 */
1952void usb_hcd_disable_endpoint(struct usb_device *udev,
1953 struct usb_host_endpoint *ep)
1954{
1955 struct usb_hcd *hcd;
1956
1957 might_sleep();
1958 hcd = bus_to_hcd(udev->bus);
1959 if (hcd->driver->endpoint_disable)
1960 hcd->driver->endpoint_disable(hcd, ep);
1961}
1962
1963/**
1964 * usb_hcd_reset_endpoint - reset host endpoint state
1965 * @udev: USB device.
1966 * @ep: the endpoint to reset.
1967 *
1968 * Resets any host endpoint state such as the toggle bit, sequence
1969 * number and current window.
1970 */
1971void usb_hcd_reset_endpoint(struct usb_device *udev,
1972 struct usb_host_endpoint *ep)
1973{
1974 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1975
1976 if (hcd->driver->endpoint_reset)
1977 hcd->driver->endpoint_reset(hcd, ep);
1978 else {
1979 int epnum = usb_endpoint_num(&ep->desc);
1980 int is_out = usb_endpoint_dir_out(&ep->desc);
1981 int is_control = usb_endpoint_xfer_control(&ep->desc);
1982
1983 usb_settoggle(udev, epnum, is_out, 0);
1984 if (is_control)
1985 usb_settoggle(udev, epnum, !is_out, 0);
1986 }
1987}
1988
1989/**
1990 * usb_alloc_streams - allocate bulk endpoint stream IDs.
1991 * @interface: alternate setting that includes all endpoints.
1992 * @eps: array of endpoints that need streams.
1993 * @num_eps: number of endpoints in the array.
1994 * @num_streams: number of streams to allocate.
1995 * @mem_flags: flags hcd should use to allocate memory.
1996 *
1997 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
1998 * Drivers may queue multiple transfers to different stream IDs, which may
1999 * complete in a different order than they were queued.
2000 *
2001 * Return: On success, the number of allocated streams. On failure, a negative
2002 * error code.
2003 */
2004int usb_alloc_streams(struct usb_interface *interface,
2005 struct usb_host_endpoint **eps, unsigned int num_eps,
2006 unsigned int num_streams, gfp_t mem_flags)
2007{
2008 struct usb_hcd *hcd;
2009 struct usb_device *dev;
2010 int i, ret;
2011
2012 dev = interface_to_usbdev(interface);
2013 hcd = bus_to_hcd(dev->bus);
2014 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2015 return -EINVAL;
2016 if (dev->speed < USB_SPEED_SUPER)
2017 return -EINVAL;
2018 if (dev->state < USB_STATE_CONFIGURED)
2019 return -ENODEV;
2020
2021 for (i = 0; i < num_eps; i++) {
2022 /* Streams only apply to bulk endpoints. */
2023 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2024 return -EINVAL;
2025 /* Re-alloc is not allowed */
2026 if (eps[i]->streams)
2027 return -EINVAL;
2028 }
2029
2030 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2031 num_streams, mem_flags);
2032 if (ret < 0)
2033 return ret;
2034
2035 for (i = 0; i < num_eps; i++)
2036 eps[i]->streams = ret;
2037
2038 return ret;
2039}
2040EXPORT_SYMBOL_GPL(usb_alloc_streams);
2041
2042/**
2043 * usb_free_streams - free bulk endpoint stream IDs.
2044 * @interface: alternate setting that includes all endpoints.
2045 * @eps: array of endpoints to remove streams from.
2046 * @num_eps: number of endpoints in the array.
2047 * @mem_flags: flags hcd should use to allocate memory.
2048 *
2049 * Reverts a group of bulk endpoints back to not using stream IDs.
2050 * Can fail if we are given bad arguments, or HCD is broken.
2051 *
2052 * Return: 0 on success. On failure, a negative error code.
2053 */
2054int usb_free_streams(struct usb_interface *interface,
2055 struct usb_host_endpoint **eps, unsigned int num_eps,
2056 gfp_t mem_flags)
2057{
2058 struct usb_hcd *hcd;
2059 struct usb_device *dev;
2060 int i, ret;
2061
2062 dev = interface_to_usbdev(interface);
2063 hcd = bus_to_hcd(dev->bus);
2064 if (dev->speed < USB_SPEED_SUPER)
2065 return -EINVAL;
2066
2067 /* Double-free is not allowed */
2068 for (i = 0; i < num_eps; i++)
2069 if (!eps[i] || !eps[i]->streams)
2070 return -EINVAL;
2071
2072 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2073 if (ret < 0)
2074 return ret;
2075
2076 for (i = 0; i < num_eps; i++)
2077 eps[i]->streams = 0;
2078
2079 return ret;
2080}
2081EXPORT_SYMBOL_GPL(usb_free_streams);
2082
2083/* Protect against drivers that try to unlink URBs after the device
2084 * is gone, by waiting until all unlinks for @udev are finished.
2085 * Since we don't currently track URBs by device, simply wait until
2086 * nothing is running in the locked region of usb_hcd_unlink_urb().
2087 */
2088void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2089{
2090 spin_lock_irq(&hcd_urb_unlink_lock);
2091 spin_unlock_irq(&hcd_urb_unlink_lock);
2092}
2093
2094/*-------------------------------------------------------------------------*/
2095
2096/* called in any context */
2097int usb_hcd_get_frame_number (struct usb_device *udev)
2098{
2099 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2100
2101 if (!HCD_RH_RUNNING(hcd))
2102 return -ESHUTDOWN;
2103 return hcd->driver->get_frame_number (hcd);
2104}
2105
2106/*-------------------------------------------------------------------------*/
2107
2108#ifdef CONFIG_PM
2109
2110int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2111{
2112 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2113 int status;
2114 int old_state = hcd->state;
2115
2116 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2117 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2118 rhdev->do_remote_wakeup);
2119 if (HCD_DEAD(hcd)) {
2120 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2121 return 0;
2122 }
2123
2124 if (!hcd->driver->bus_suspend) {
2125 status = -ENOENT;
2126 } else {
2127 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2128 hcd->state = HC_STATE_QUIESCING;
2129 status = hcd->driver->bus_suspend(hcd);
2130 }
2131 if (status == 0) {
2132 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2133 hcd->state = HC_STATE_SUSPENDED;
2134
2135 if (!PMSG_IS_AUTO(msg))
2136 usb_phy_roothub_suspend(hcd->self.sysdev,
2137 hcd->phy_roothub);
2138
2139 /* Did we race with a root-hub wakeup event? */
2140 if (rhdev->do_remote_wakeup) {
2141 char buffer[6];
2142
2143 status = hcd->driver->hub_status_data(hcd, buffer);
2144 if (status != 0) {
2145 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2146 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2147 status = -EBUSY;
2148 }
2149 }
2150 } else {
2151 spin_lock_irq(&hcd_root_hub_lock);
2152 if (!HCD_DEAD(hcd)) {
2153 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2154 hcd->state = old_state;
2155 }
2156 spin_unlock_irq(&hcd_root_hub_lock);
2157 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2158 "suspend", status);
2159 }
2160 return status;
2161}
2162
2163int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2164{
2165 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2166 int status;
2167 int old_state = hcd->state;
2168
2169 dev_dbg(&rhdev->dev, "usb %sresume\n",
2170 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2171 if (HCD_DEAD(hcd)) {
2172 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2173 return 0;
2174 }
2175
2176 if (!PMSG_IS_AUTO(msg)) {
2177 status = usb_phy_roothub_resume(hcd->self.sysdev,
2178 hcd->phy_roothub);
2179 if (status)
2180 return status;
2181 }
2182
2183 if (!hcd->driver->bus_resume)
2184 return -ENOENT;
2185 if (HCD_RH_RUNNING(hcd))
2186 return 0;
2187
2188 hcd->state = HC_STATE_RESUMING;
2189 status = hcd->driver->bus_resume(hcd);
2190 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2191 if (status == 0)
2192 status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2193
2194 if (status == 0) {
2195 struct usb_device *udev;
2196 int port1;
2197
2198 spin_lock_irq(&hcd_root_hub_lock);
2199 if (!HCD_DEAD(hcd)) {
2200 usb_set_device_state(rhdev, rhdev->actconfig
2201 ? USB_STATE_CONFIGURED
2202 : USB_STATE_ADDRESS);
2203 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2204 hcd->state = HC_STATE_RUNNING;
2205 }
2206 spin_unlock_irq(&hcd_root_hub_lock);
2207
2208 /*
2209 * Check whether any of the enabled ports on the root hub are
2210 * unsuspended. If they are then a TRSMRCY delay is needed
2211 * (this is what the USB-2 spec calls a "global resume").
2212 * Otherwise we can skip the delay.
2213 */
2214 usb_hub_for_each_child(rhdev, port1, udev) {
2215 if (udev->state != USB_STATE_NOTATTACHED &&
2216 !udev->port_is_suspended) {
2217 usleep_range(10000, 11000); /* TRSMRCY */
2218 break;
2219 }
2220 }
2221 } else {
2222 hcd->state = old_state;
2223 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2224 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2225 "resume", status);
2226 if (status != -ESHUTDOWN)
2227 usb_hc_died(hcd);
2228 }
2229 return status;
2230}
2231
2232/* Workqueue routine for root-hub remote wakeup */
2233static void hcd_resume_work(struct work_struct *work)
2234{
2235 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2236 struct usb_device *udev = hcd->self.root_hub;
2237
2238 usb_remote_wakeup(udev);
2239}
2240
2241/**
2242 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2243 * @hcd: host controller for this root hub
2244 *
2245 * The USB host controller calls this function when its root hub is
2246 * suspended (with the remote wakeup feature enabled) and a remote
2247 * wakeup request is received. The routine submits a workqueue request
2248 * to resume the root hub (that is, manage its downstream ports again).
2249 */
2250void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2251{
2252 unsigned long flags;
2253
2254 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2255 if (hcd->rh_registered) {
2256 pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2257 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2258 queue_work(pm_wq, &hcd->wakeup_work);
2259 }
2260 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2261}
2262EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2263
2264#endif /* CONFIG_PM */
2265
2266/*-------------------------------------------------------------------------*/
2267
2268#ifdef CONFIG_USB_OTG
2269
2270/**
2271 * usb_bus_start_enum - start immediate enumeration (for OTG)
2272 * @bus: the bus (must use hcd framework)
2273 * @port_num: 1-based number of port; usually bus->otg_port
2274 * Context: in_interrupt()
2275 *
2276 * Starts enumeration, with an immediate reset followed later by
2277 * hub_wq identifying and possibly configuring the device.
2278 * This is needed by OTG controller drivers, where it helps meet
2279 * HNP protocol timing requirements for starting a port reset.
2280 *
2281 * Return: 0 if successful.
2282 */
2283int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2284{
2285 struct usb_hcd *hcd;
2286 int status = -EOPNOTSUPP;
2287
2288 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2289 * boards with root hubs hooked up to internal devices (instead of
2290 * just the OTG port) may need more attention to resetting...
2291 */
2292 hcd = bus_to_hcd(bus);
2293 if (port_num && hcd->driver->start_port_reset)
2294 status = hcd->driver->start_port_reset(hcd, port_num);
2295
2296 /* allocate hub_wq shortly after (first) root port reset finishes;
2297 * it may issue others, until at least 50 msecs have passed.
2298 */
2299 if (status == 0)
2300 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2301 return status;
2302}
2303EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2304
2305#endif
2306
2307/*-------------------------------------------------------------------------*/
2308
2309/**
2310 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2311 * @irq: the IRQ being raised
2312 * @__hcd: pointer to the HCD whose IRQ is being signaled
2313 *
2314 * If the controller isn't HALTed, calls the driver's irq handler.
2315 * Checks whether the controller is now dead.
2316 *
2317 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2318 */
2319irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2320{
2321 struct usb_hcd *hcd = __hcd;
2322 irqreturn_t rc;
2323
2324 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2325 rc = IRQ_NONE;
2326 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2327 rc = IRQ_NONE;
2328 else
2329 rc = IRQ_HANDLED;
2330
2331 return rc;
2332}
2333EXPORT_SYMBOL_GPL(usb_hcd_irq);
2334
2335/*-------------------------------------------------------------------------*/
2336
2337/* Workqueue routine for when the root-hub has died. */
2338static void hcd_died_work(struct work_struct *work)
2339{
2340 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2341 static char *env[] = {
2342 "ERROR=DEAD",
2343 NULL
2344 };
2345
2346 /* Notify user space that the host controller has died */
2347 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2348}
2349
2350/**
2351 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2352 * @hcd: pointer to the HCD representing the controller
2353 *
2354 * This is called by bus glue to report a USB host controller that died
2355 * while operations may still have been pending. It's called automatically
2356 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2357 *
2358 * Only call this function with the primary HCD.
2359 */
2360void usb_hc_died (struct usb_hcd *hcd)
2361{
2362 unsigned long flags;
2363
2364 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2365
2366 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2367 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2368 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2369 if (hcd->rh_registered) {
2370 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2371
2372 /* make hub_wq clean up old urbs and devices */
2373 usb_set_device_state (hcd->self.root_hub,
2374 USB_STATE_NOTATTACHED);
2375 usb_kick_hub_wq(hcd->self.root_hub);
2376 }
2377 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2378 hcd = hcd->shared_hcd;
2379 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2380 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2381 if (hcd->rh_registered) {
2382 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2383
2384 /* make hub_wq clean up old urbs and devices */
2385 usb_set_device_state(hcd->self.root_hub,
2386 USB_STATE_NOTATTACHED);
2387 usb_kick_hub_wq(hcd->self.root_hub);
2388 }
2389 }
2390
2391 /* Handle the case where this function gets called with a shared HCD */
2392 if (usb_hcd_is_primary_hcd(hcd))
2393 schedule_work(&hcd->died_work);
2394 else
2395 schedule_work(&hcd->primary_hcd->died_work);
2396
2397 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2398 /* Make sure that the other roothub is also deallocated. */
2399}
2400EXPORT_SYMBOL_GPL (usb_hc_died);
2401
2402/*-------------------------------------------------------------------------*/
2403
2404static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2405{
2406
2407 spin_lock_init(&bh->lock);
2408 INIT_LIST_HEAD(&bh->head);
2409 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2410}
2411
2412struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2413 struct device *sysdev, struct device *dev, const char *bus_name,
2414 struct usb_hcd *primary_hcd)
2415{
2416 struct usb_hcd *hcd;
2417
2418 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2419 if (!hcd)
2420 return NULL;
2421 if (primary_hcd == NULL) {
2422 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2423 GFP_KERNEL);
2424 if (!hcd->address0_mutex) {
2425 kfree(hcd);
2426 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2427 return NULL;
2428 }
2429 mutex_init(hcd->address0_mutex);
2430 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2431 GFP_KERNEL);
2432 if (!hcd->bandwidth_mutex) {
2433 kfree(hcd->address0_mutex);
2434 kfree(hcd);
2435 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2436 return NULL;
2437 }
2438 mutex_init(hcd->bandwidth_mutex);
2439 dev_set_drvdata(dev, hcd);
2440 } else {
2441 mutex_lock(&usb_port_peer_mutex);
2442 hcd->address0_mutex = primary_hcd->address0_mutex;
2443 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2444 hcd->primary_hcd = primary_hcd;
2445 primary_hcd->primary_hcd = primary_hcd;
2446 hcd->shared_hcd = primary_hcd;
2447 primary_hcd->shared_hcd = hcd;
2448 mutex_unlock(&usb_port_peer_mutex);
2449 }
2450
2451 kref_init(&hcd->kref);
2452
2453 usb_bus_init(&hcd->self);
2454 hcd->self.controller = dev;
2455 hcd->self.sysdev = sysdev;
2456 hcd->self.bus_name = bus_name;
2457
2458 timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2459#ifdef CONFIG_PM
2460 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2461#endif
2462
2463 INIT_WORK(&hcd->died_work, hcd_died_work);
2464
2465 hcd->driver = driver;
2466 hcd->speed = driver->flags & HCD_MASK;
2467 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2468 "USB Host Controller";
2469 return hcd;
2470}
2471EXPORT_SYMBOL_GPL(__usb_create_hcd);
2472
2473/**
2474 * usb_create_shared_hcd - create and initialize an HCD structure
2475 * @driver: HC driver that will use this hcd
2476 * @dev: device for this HC, stored in hcd->self.controller
2477 * @bus_name: value to store in hcd->self.bus_name
2478 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2479 * PCI device. Only allocate certain resources for the primary HCD
2480 * Context: !in_interrupt()
2481 *
2482 * Allocate a struct usb_hcd, with extra space at the end for the
2483 * HC driver's private data. Initialize the generic members of the
2484 * hcd structure.
2485 *
2486 * Return: On success, a pointer to the created and initialized HCD structure.
2487 * On failure (e.g. if memory is unavailable), %NULL.
2488 */
2489struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2490 struct device *dev, const char *bus_name,
2491 struct usb_hcd *primary_hcd)
2492{
2493 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2494}
2495EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2496
2497/**
2498 * usb_create_hcd - create and initialize an HCD structure
2499 * @driver: HC driver that will use this hcd
2500 * @dev: device for this HC, stored in hcd->self.controller
2501 * @bus_name: value to store in hcd->self.bus_name
2502 * Context: !in_interrupt()
2503 *
2504 * Allocate a struct usb_hcd, with extra space at the end for the
2505 * HC driver's private data. Initialize the generic members of the
2506 * hcd structure.
2507 *
2508 * Return: On success, a pointer to the created and initialized HCD
2509 * structure. On failure (e.g. if memory is unavailable), %NULL.
2510 */
2511struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2512 struct device *dev, const char *bus_name)
2513{
2514 return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2515}
2516EXPORT_SYMBOL_GPL(usb_create_hcd);
2517
2518/*
2519 * Roothubs that share one PCI device must also share the bandwidth mutex.
2520 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2521 * deallocated.
2522 *
2523 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2524 * freed. When hcd_release() is called for either hcd in a peer set,
2525 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2526 */
2527static void hcd_release(struct kref *kref)
2528{
2529 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2530
2531 mutex_lock(&usb_port_peer_mutex);
2532 if (hcd->shared_hcd) {
2533 struct usb_hcd *peer = hcd->shared_hcd;
2534
2535 peer->shared_hcd = NULL;
2536 peer->primary_hcd = NULL;
2537 } else {
2538 kfree(hcd->address0_mutex);
2539 kfree(hcd->bandwidth_mutex);
2540 }
2541 mutex_unlock(&usb_port_peer_mutex);
2542 kfree(hcd);
2543}
2544
2545struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2546{
2547 if (hcd)
2548 kref_get (&hcd->kref);
2549 return hcd;
2550}
2551EXPORT_SYMBOL_GPL(usb_get_hcd);
2552
2553void usb_put_hcd (struct usb_hcd *hcd)
2554{
2555 if (hcd)
2556 kref_put (&hcd->kref, hcd_release);
2557}
2558EXPORT_SYMBOL_GPL(usb_put_hcd);
2559
2560int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2561{
2562 if (!hcd->primary_hcd)
2563 return 1;
2564 return hcd == hcd->primary_hcd;
2565}
2566EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2567
2568int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2569{
2570 if (!hcd->driver->find_raw_port_number)
2571 return port1;
2572
2573 return hcd->driver->find_raw_port_number(hcd, port1);
2574}
2575
2576static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2577 unsigned int irqnum, unsigned long irqflags)
2578{
2579 int retval;
2580
2581 if (hcd->driver->irq) {
2582
2583 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2584 hcd->driver->description, hcd->self.busnum);
2585 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2586 hcd->irq_descr, hcd);
2587 if (retval != 0) {
2588 dev_err(hcd->self.controller,
2589 "request interrupt %d failed\n",
2590 irqnum);
2591 return retval;
2592 }
2593 hcd->irq = irqnum;
2594 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2595 (hcd->driver->flags & HCD_MEMORY) ?
2596 "io mem" : "io base",
2597 (unsigned long long)hcd->rsrc_start);
2598 } else {
2599 hcd->irq = 0;
2600 if (hcd->rsrc_start)
2601 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2602 (hcd->driver->flags & HCD_MEMORY) ?
2603 "io mem" : "io base",
2604 (unsigned long long)hcd->rsrc_start);
2605 }
2606 return 0;
2607}
2608
2609/*
2610 * Before we free this root hub, flush in-flight peering attempts
2611 * and disable peer lookups
2612 */
2613static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2614{
2615 struct usb_device *rhdev;
2616
2617 mutex_lock(&usb_port_peer_mutex);
2618 rhdev = hcd->self.root_hub;
2619 hcd->self.root_hub = NULL;
2620 mutex_unlock(&usb_port_peer_mutex);
2621 usb_put_dev(rhdev);
2622}
2623
2624/**
2625 * usb_add_hcd - finish generic HCD structure initialization and register
2626 * @hcd: the usb_hcd structure to initialize
2627 * @irqnum: Interrupt line to allocate
2628 * @irqflags: Interrupt type flags
2629 *
2630 * Finish the remaining parts of generic HCD initialization: allocate the
2631 * buffers of consistent memory, register the bus, request the IRQ line,
2632 * and call the driver's reset() and start() routines.
2633 */
2634int usb_add_hcd(struct usb_hcd *hcd,
2635 unsigned int irqnum, unsigned long irqflags)
2636{
2637 int retval;
2638 struct usb_device *rhdev;
2639
2640 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2641 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2642 if (IS_ERR(hcd->phy_roothub))
2643 return PTR_ERR(hcd->phy_roothub);
2644
2645 retval = usb_phy_roothub_init(hcd->phy_roothub);
2646 if (retval)
2647 return retval;
2648
2649 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2650 PHY_MODE_USB_HOST_SS);
2651 if (retval)
2652 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2653 PHY_MODE_USB_HOST);
2654 if (retval)
2655 goto err_usb_phy_roothub_power_on;
2656
2657 retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2658 if (retval)
2659 goto err_usb_phy_roothub_power_on;
2660 }
2661
2662 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2663
2664 switch (authorized_default) {
2665 case USB_AUTHORIZE_NONE:
2666 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2667 break;
2668
2669 case USB_AUTHORIZE_ALL:
2670 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2671 break;
2672
2673 case USB_AUTHORIZE_INTERNAL:
2674 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2675 break;
2676
2677 case USB_AUTHORIZE_WIRED:
2678 default:
2679 hcd->dev_policy = hcd->wireless ?
2680 USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL;
2681 break;
2682 }
2683
2684 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2685
2686 /* per default all interfaces are authorized */
2687 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2688
2689 /* HC is in reset state, but accessible. Now do the one-time init,
2690 * bottom up so that hcds can customize the root hubs before hub_wq
2691 * starts talking to them. (Note, bus id is assigned early too.)
2692 */
2693 retval = hcd_buffer_create(hcd);
2694 if (retval != 0) {
2695 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2696 goto err_create_buf;
2697 }
2698
2699 retval = usb_register_bus(&hcd->self);
2700 if (retval < 0)
2701 goto err_register_bus;
2702
2703 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2704 if (rhdev == NULL) {
2705 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2706 retval = -ENOMEM;
2707 goto err_allocate_root_hub;
2708 }
2709 mutex_lock(&usb_port_peer_mutex);
2710 hcd->self.root_hub = rhdev;
2711 mutex_unlock(&usb_port_peer_mutex);
2712
2713 rhdev->rx_lanes = 1;
2714 rhdev->tx_lanes = 1;
2715
2716 switch (hcd->speed) {
2717 case HCD_USB11:
2718 rhdev->speed = USB_SPEED_FULL;
2719 break;
2720 case HCD_USB2:
2721 rhdev->speed = USB_SPEED_HIGH;
2722 break;
2723 case HCD_USB25:
2724 rhdev->speed = USB_SPEED_WIRELESS;
2725 break;
2726 case HCD_USB3:
2727 rhdev->speed = USB_SPEED_SUPER;
2728 break;
2729 case HCD_USB32:
2730 rhdev->rx_lanes = 2;
2731 rhdev->tx_lanes = 2;
2732 /* fall through */
2733 case HCD_USB31:
2734 rhdev->speed = USB_SPEED_SUPER_PLUS;
2735 break;
2736 default:
2737 retval = -EINVAL;
2738 goto err_set_rh_speed;
2739 }
2740
2741 /* wakeup flag init defaults to "everything works" for root hubs,
2742 * but drivers can override it in reset() if needed, along with
2743 * recording the overall controller's system wakeup capability.
2744 */
2745 device_set_wakeup_capable(&rhdev->dev, 1);
2746
2747 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2748 * registered. But since the controller can die at any time,
2749 * let's initialize the flag before touching the hardware.
2750 */
2751 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2752
2753 /* "reset" is misnamed; its role is now one-time init. the controller
2754 * should already have been reset (and boot firmware kicked off etc).
2755 */
2756 if (hcd->driver->reset) {
2757 retval = hcd->driver->reset(hcd);
2758 if (retval < 0) {
2759 dev_err(hcd->self.controller, "can't setup: %d\n",
2760 retval);
2761 goto err_hcd_driver_setup;
2762 }
2763 }
2764 hcd->rh_pollable = 1;
2765
2766 retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2767 if (retval)
2768 goto err_hcd_driver_setup;
2769
2770 /* NOTE: root hub and controller capabilities may not be the same */
2771 if (device_can_wakeup(hcd->self.controller)
2772 && device_can_wakeup(&hcd->self.root_hub->dev))
2773 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2774
2775 /* initialize tasklets */
2776 init_giveback_urb_bh(&hcd->high_prio_bh);
2777 init_giveback_urb_bh(&hcd->low_prio_bh);
2778
2779 /* enable irqs just before we start the controller,
2780 * if the BIOS provides legacy PCI irqs.
2781 */
2782 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2783 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2784 if (retval)
2785 goto err_request_irq;
2786 }
2787
2788 hcd->state = HC_STATE_RUNNING;
2789 retval = hcd->driver->start(hcd);
2790 if (retval < 0) {
2791 dev_err(hcd->self.controller, "startup error %d\n", retval);
2792 goto err_hcd_driver_start;
2793 }
2794
2795 /* starting here, usbcore will pay attention to this root hub */
2796 retval = register_root_hub(hcd);
2797 if (retval != 0)
2798 goto err_register_root_hub;
2799
2800 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2801 usb_hcd_poll_rh_status(hcd);
2802
2803 return retval;
2804
2805err_register_root_hub:
2806 hcd->rh_pollable = 0;
2807 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2808 del_timer_sync(&hcd->rh_timer);
2809 hcd->driver->stop(hcd);
2810 hcd->state = HC_STATE_HALT;
2811 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2812 del_timer_sync(&hcd->rh_timer);
2813err_hcd_driver_start:
2814 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2815 free_irq(irqnum, hcd);
2816err_request_irq:
2817err_hcd_driver_setup:
2818err_set_rh_speed:
2819 usb_put_invalidate_rhdev(hcd);
2820err_allocate_root_hub:
2821 usb_deregister_bus(&hcd->self);
2822err_register_bus:
2823 hcd_buffer_destroy(hcd);
2824err_create_buf:
2825 usb_phy_roothub_power_off(hcd->phy_roothub);
2826err_usb_phy_roothub_power_on:
2827 usb_phy_roothub_exit(hcd->phy_roothub);
2828
2829 return retval;
2830}
2831EXPORT_SYMBOL_GPL(usb_add_hcd);
2832
2833/**
2834 * usb_remove_hcd - shutdown processing for generic HCDs
2835 * @hcd: the usb_hcd structure to remove
2836 * Context: !in_interrupt()
2837 *
2838 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2839 * invoking the HCD's stop() method.
2840 */
2841void usb_remove_hcd(struct usb_hcd *hcd)
2842{
2843 struct usb_device *rhdev = hcd->self.root_hub;
2844
2845 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2846
2847 usb_get_dev(rhdev);
2848 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2849 if (HC_IS_RUNNING (hcd->state))
2850 hcd->state = HC_STATE_QUIESCING;
2851
2852 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2853 spin_lock_irq (&hcd_root_hub_lock);
2854 hcd->rh_registered = 0;
2855 spin_unlock_irq (&hcd_root_hub_lock);
2856
2857#ifdef CONFIG_PM
2858 cancel_work_sync(&hcd->wakeup_work);
2859#endif
2860 cancel_work_sync(&hcd->died_work);
2861
2862 mutex_lock(&usb_bus_idr_lock);
2863 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2864 mutex_unlock(&usb_bus_idr_lock);
2865
2866 /*
2867 * tasklet_kill() isn't needed here because:
2868 * - driver's disconnect() called from usb_disconnect() should
2869 * make sure its URBs are completed during the disconnect()
2870 * callback
2871 *
2872 * - it is too late to run complete() here since driver may have
2873 * been removed already now
2874 */
2875
2876 /* Prevent any more root-hub status calls from the timer.
2877 * The HCD might still restart the timer (if a port status change
2878 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2879 * the hub_status_data() callback.
2880 */
2881 hcd->rh_pollable = 0;
2882 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2883 del_timer_sync(&hcd->rh_timer);
2884
2885 hcd->driver->stop(hcd);
2886 hcd->state = HC_STATE_HALT;
2887
2888 /* In case the HCD restarted the timer, stop it again. */
2889 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2890 del_timer_sync(&hcd->rh_timer);
2891
2892 if (usb_hcd_is_primary_hcd(hcd)) {
2893 if (hcd->irq > 0)
2894 free_irq(hcd->irq, hcd);
2895 }
2896
2897 usb_deregister_bus(&hcd->self);
2898 hcd_buffer_destroy(hcd);
2899
2900 usb_phy_roothub_power_off(hcd->phy_roothub);
2901 usb_phy_roothub_exit(hcd->phy_roothub);
2902
2903 usb_put_invalidate_rhdev(hcd);
2904 hcd->flags = 0;
2905}
2906EXPORT_SYMBOL_GPL(usb_remove_hcd);
2907
2908void
2909usb_hcd_platform_shutdown(struct platform_device *dev)
2910{
2911 struct usb_hcd *hcd = platform_get_drvdata(dev);
2912
2913 /* No need for pm_runtime_put(), we're shutting down */
2914 pm_runtime_get_sync(&dev->dev);
2915
2916 if (hcd->driver->shutdown)
2917 hcd->driver->shutdown(hcd);
2918}
2919EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2920
2921int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
2922 dma_addr_t dma, size_t size)
2923{
2924 int err;
2925 void *local_mem;
2926
2927 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
2928 dev_to_node(hcd->self.sysdev),
2929 dev_name(hcd->self.sysdev));
2930 if (IS_ERR(hcd->localmem_pool))
2931 return PTR_ERR(hcd->localmem_pool);
2932
2933 local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
2934 size, MEMREMAP_WC);
2935 if (IS_ERR(local_mem))
2936 return PTR_ERR(local_mem);
2937
2938 /*
2939 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
2940 * It's not backed by system memory and thus there's no kernel mapping
2941 * for it.
2942 */
2943 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
2944 dma, size, dev_to_node(hcd->self.sysdev));
2945 if (err < 0) {
2946 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
2947 err);
2948 return err;
2949 }
2950
2951 return 0;
2952}
2953EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
2954
2955/*-------------------------------------------------------------------------*/
2956
2957#if IS_ENABLED(CONFIG_USB_MON)
2958
2959const struct usb_mon_operations *mon_ops;
2960
2961/*
2962 * The registration is unlocked.
2963 * We do it this way because we do not want to lock in hot paths.
2964 *
2965 * Notice that the code is minimally error-proof. Because usbmon needs
2966 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2967 */
2968
2969int usb_mon_register(const struct usb_mon_operations *ops)
2970{
2971
2972 if (mon_ops)
2973 return -EBUSY;
2974
2975 mon_ops = ops;
2976 mb();
2977 return 0;
2978}
2979EXPORT_SYMBOL_GPL (usb_mon_register);
2980
2981void usb_mon_deregister (void)
2982{
2983
2984 if (mon_ops == NULL) {
2985 printk(KERN_ERR "USB: monitor was not registered\n");
2986 return;
2987 }
2988 mon_ops = NULL;
2989 mb();
2990}
2991EXPORT_SYMBOL_GPL (usb_mon_deregister);
2992
2993#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
1/*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25#include <linux/bcd.h>
26#include <linux/module.h>
27#include <linux/version.h>
28#include <linux/kernel.h>
29#include <linux/slab.h>
30#include <linux/completion.h>
31#include <linux/utsname.h>
32#include <linux/mm.h>
33#include <asm/io.h>
34#include <linux/device.h>
35#include <linux/dma-mapping.h>
36#include <linux/mutex.h>
37#include <asm/irq.h>
38#include <asm/byteorder.h>
39#include <asm/unaligned.h>
40#include <linux/platform_device.h>
41#include <linux/workqueue.h>
42#include <linux/pm_runtime.h>
43#include <linux/types.h>
44
45#include <linux/usb.h>
46#include <linux/usb/hcd.h>
47#include <linux/usb/phy.h>
48
49#include "usb.h"
50
51
52/*-------------------------------------------------------------------------*/
53
54/*
55 * USB Host Controller Driver framework
56 *
57 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
58 * HCD-specific behaviors/bugs.
59 *
60 * This does error checks, tracks devices and urbs, and delegates to a
61 * "hc_driver" only for code (and data) that really needs to know about
62 * hardware differences. That includes root hub registers, i/o queues,
63 * and so on ... but as little else as possible.
64 *
65 * Shared code includes most of the "root hub" code (these are emulated,
66 * though each HC's hardware works differently) and PCI glue, plus request
67 * tracking overhead. The HCD code should only block on spinlocks or on
68 * hardware handshaking; blocking on software events (such as other kernel
69 * threads releasing resources, or completing actions) is all generic.
70 *
71 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
72 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
73 * only by the hub driver ... and that neither should be seen or used by
74 * usb client device drivers.
75 *
76 * Contributors of ideas or unattributed patches include: David Brownell,
77 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
78 *
79 * HISTORY:
80 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
81 * associated cleanup. "usb_hcd" still != "usb_bus".
82 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
83 */
84
85/*-------------------------------------------------------------------------*/
86
87/* Keep track of which host controller drivers are loaded */
88unsigned long usb_hcds_loaded;
89EXPORT_SYMBOL_GPL(usb_hcds_loaded);
90
91/* host controllers we manage */
92LIST_HEAD (usb_bus_list);
93EXPORT_SYMBOL_GPL (usb_bus_list);
94
95/* used when allocating bus numbers */
96#define USB_MAXBUS 64
97static DECLARE_BITMAP(busmap, USB_MAXBUS);
98
99/* used when updating list of hcds */
100DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
101EXPORT_SYMBOL_GPL (usb_bus_list_lock);
102
103/* used for controlling access to virtual root hubs */
104static DEFINE_SPINLOCK(hcd_root_hub_lock);
105
106/* used when updating an endpoint's URB list */
107static DEFINE_SPINLOCK(hcd_urb_list_lock);
108
109/* used to protect against unlinking URBs after the device is gone */
110static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
111
112/* wait queue for synchronous unlinks */
113DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
114
115static inline int is_root_hub(struct usb_device *udev)
116{
117 return (udev->parent == NULL);
118}
119
120/*-------------------------------------------------------------------------*/
121
122/*
123 * Sharable chunks of root hub code.
124 */
125
126/*-------------------------------------------------------------------------*/
127#define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
128#define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
129
130/* usb 3.0 root hub device descriptor */
131static const u8 usb3_rh_dev_descriptor[18] = {
132 0x12, /* __u8 bLength; */
133 0x01, /* __u8 bDescriptorType; Device */
134 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
135
136 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
137 0x00, /* __u8 bDeviceSubClass; */
138 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
139 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
140
141 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
142 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
143 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
144
145 0x03, /* __u8 iManufacturer; */
146 0x02, /* __u8 iProduct; */
147 0x01, /* __u8 iSerialNumber; */
148 0x01 /* __u8 bNumConfigurations; */
149};
150
151/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
152static const u8 usb25_rh_dev_descriptor[18] = {
153 0x12, /* __u8 bLength; */
154 0x01, /* __u8 bDescriptorType; Device */
155 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
156
157 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
158 0x00, /* __u8 bDeviceSubClass; */
159 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
160 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
161
162 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
163 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
164 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
165
166 0x03, /* __u8 iManufacturer; */
167 0x02, /* __u8 iProduct; */
168 0x01, /* __u8 iSerialNumber; */
169 0x01 /* __u8 bNumConfigurations; */
170};
171
172/* usb 2.0 root hub device descriptor */
173static const u8 usb2_rh_dev_descriptor[18] = {
174 0x12, /* __u8 bLength; */
175 0x01, /* __u8 bDescriptorType; Device */
176 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
177
178 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
179 0x00, /* __u8 bDeviceSubClass; */
180 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
181 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
182
183 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
184 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
185 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
186
187 0x03, /* __u8 iManufacturer; */
188 0x02, /* __u8 iProduct; */
189 0x01, /* __u8 iSerialNumber; */
190 0x01 /* __u8 bNumConfigurations; */
191};
192
193/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
194
195/* usb 1.1 root hub device descriptor */
196static const u8 usb11_rh_dev_descriptor[18] = {
197 0x12, /* __u8 bLength; */
198 0x01, /* __u8 bDescriptorType; Device */
199 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
200
201 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
202 0x00, /* __u8 bDeviceSubClass; */
203 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
204 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
205
206 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
207 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
208 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
209
210 0x03, /* __u8 iManufacturer; */
211 0x02, /* __u8 iProduct; */
212 0x01, /* __u8 iSerialNumber; */
213 0x01 /* __u8 bNumConfigurations; */
214};
215
216
217/*-------------------------------------------------------------------------*/
218
219/* Configuration descriptors for our root hubs */
220
221static const u8 fs_rh_config_descriptor[] = {
222
223 /* one configuration */
224 0x09, /* __u8 bLength; */
225 0x02, /* __u8 bDescriptorType; Configuration */
226 0x19, 0x00, /* __le16 wTotalLength; */
227 0x01, /* __u8 bNumInterfaces; (1) */
228 0x01, /* __u8 bConfigurationValue; */
229 0x00, /* __u8 iConfiguration; */
230 0xc0, /* __u8 bmAttributes;
231 Bit 7: must be set,
232 6: Self-powered,
233 5: Remote wakeup,
234 4..0: resvd */
235 0x00, /* __u8 MaxPower; */
236
237 /* USB 1.1:
238 * USB 2.0, single TT organization (mandatory):
239 * one interface, protocol 0
240 *
241 * USB 2.0, multiple TT organization (optional):
242 * two interfaces, protocols 1 (like single TT)
243 * and 2 (multiple TT mode) ... config is
244 * sometimes settable
245 * NOT IMPLEMENTED
246 */
247
248 /* one interface */
249 0x09, /* __u8 if_bLength; */
250 0x04, /* __u8 if_bDescriptorType; Interface */
251 0x00, /* __u8 if_bInterfaceNumber; */
252 0x00, /* __u8 if_bAlternateSetting; */
253 0x01, /* __u8 if_bNumEndpoints; */
254 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
255 0x00, /* __u8 if_bInterfaceSubClass; */
256 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
257 0x00, /* __u8 if_iInterface; */
258
259 /* one endpoint (status change endpoint) */
260 0x07, /* __u8 ep_bLength; */
261 0x05, /* __u8 ep_bDescriptorType; Endpoint */
262 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
263 0x03, /* __u8 ep_bmAttributes; Interrupt */
264 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
265 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
266};
267
268static const u8 hs_rh_config_descriptor[] = {
269
270 /* one configuration */
271 0x09, /* __u8 bLength; */
272 0x02, /* __u8 bDescriptorType; Configuration */
273 0x19, 0x00, /* __le16 wTotalLength; */
274 0x01, /* __u8 bNumInterfaces; (1) */
275 0x01, /* __u8 bConfigurationValue; */
276 0x00, /* __u8 iConfiguration; */
277 0xc0, /* __u8 bmAttributes;
278 Bit 7: must be set,
279 6: Self-powered,
280 5: Remote wakeup,
281 4..0: resvd */
282 0x00, /* __u8 MaxPower; */
283
284 /* USB 1.1:
285 * USB 2.0, single TT organization (mandatory):
286 * one interface, protocol 0
287 *
288 * USB 2.0, multiple TT organization (optional):
289 * two interfaces, protocols 1 (like single TT)
290 * and 2 (multiple TT mode) ... config is
291 * sometimes settable
292 * NOT IMPLEMENTED
293 */
294
295 /* one interface */
296 0x09, /* __u8 if_bLength; */
297 0x04, /* __u8 if_bDescriptorType; Interface */
298 0x00, /* __u8 if_bInterfaceNumber; */
299 0x00, /* __u8 if_bAlternateSetting; */
300 0x01, /* __u8 if_bNumEndpoints; */
301 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
302 0x00, /* __u8 if_bInterfaceSubClass; */
303 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
304 0x00, /* __u8 if_iInterface; */
305
306 /* one endpoint (status change endpoint) */
307 0x07, /* __u8 ep_bLength; */
308 0x05, /* __u8 ep_bDescriptorType; Endpoint */
309 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
310 0x03, /* __u8 ep_bmAttributes; Interrupt */
311 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
312 * see hub.c:hub_configure() for details. */
313 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
314 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
315};
316
317static const u8 ss_rh_config_descriptor[] = {
318 /* one configuration */
319 0x09, /* __u8 bLength; */
320 0x02, /* __u8 bDescriptorType; Configuration */
321 0x1f, 0x00, /* __le16 wTotalLength; */
322 0x01, /* __u8 bNumInterfaces; (1) */
323 0x01, /* __u8 bConfigurationValue; */
324 0x00, /* __u8 iConfiguration; */
325 0xc0, /* __u8 bmAttributes;
326 Bit 7: must be set,
327 6: Self-powered,
328 5: Remote wakeup,
329 4..0: resvd */
330 0x00, /* __u8 MaxPower; */
331
332 /* one interface */
333 0x09, /* __u8 if_bLength; */
334 0x04, /* __u8 if_bDescriptorType; Interface */
335 0x00, /* __u8 if_bInterfaceNumber; */
336 0x00, /* __u8 if_bAlternateSetting; */
337 0x01, /* __u8 if_bNumEndpoints; */
338 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
339 0x00, /* __u8 if_bInterfaceSubClass; */
340 0x00, /* __u8 if_bInterfaceProtocol; */
341 0x00, /* __u8 if_iInterface; */
342
343 /* one endpoint (status change endpoint) */
344 0x07, /* __u8 ep_bLength; */
345 0x05, /* __u8 ep_bDescriptorType; Endpoint */
346 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
347 0x03, /* __u8 ep_bmAttributes; Interrupt */
348 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
349 * see hub.c:hub_configure() for details. */
350 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
351 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
352
353 /* one SuperSpeed endpoint companion descriptor */
354 0x06, /* __u8 ss_bLength */
355 0x30, /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
356 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
357 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
358 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
359};
360
361/* authorized_default behaviour:
362 * -1 is authorized for all devices except wireless (old behaviour)
363 * 0 is unauthorized for all devices
364 * 1 is authorized for all devices
365 */
366static int authorized_default = -1;
367module_param(authorized_default, int, S_IRUGO|S_IWUSR);
368MODULE_PARM_DESC(authorized_default,
369 "Default USB device authorization: 0 is not authorized, 1 is "
370 "authorized, -1 is authorized except for wireless USB (default, "
371 "old behaviour");
372/*-------------------------------------------------------------------------*/
373
374/**
375 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
376 * @s: Null-terminated ASCII (actually ISO-8859-1) string
377 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
378 * @len: Length (in bytes; may be odd) of descriptor buffer.
379 *
380 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
381 * whichever is less.
382 *
383 * Note:
384 * USB String descriptors can contain at most 126 characters; input
385 * strings longer than that are truncated.
386 */
387static unsigned
388ascii2desc(char const *s, u8 *buf, unsigned len)
389{
390 unsigned n, t = 2 + 2*strlen(s);
391
392 if (t > 254)
393 t = 254; /* Longest possible UTF string descriptor */
394 if (len > t)
395 len = t;
396
397 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
398
399 n = len;
400 while (n--) {
401 *buf++ = t;
402 if (!n--)
403 break;
404 *buf++ = t >> 8;
405 t = (unsigned char)*s++;
406 }
407 return len;
408}
409
410/**
411 * rh_string() - provides string descriptors for root hub
412 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
413 * @hcd: the host controller for this root hub
414 * @data: buffer for output packet
415 * @len: length of the provided buffer
416 *
417 * Produces either a manufacturer, product or serial number string for the
418 * virtual root hub device.
419 *
420 * Return: The number of bytes filled in: the length of the descriptor or
421 * of the provided buffer, whichever is less.
422 */
423static unsigned
424rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
425{
426 char buf[100];
427 char const *s;
428 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
429
430 /* language ids */
431 switch (id) {
432 case 0:
433 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
434 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
435 if (len > 4)
436 len = 4;
437 memcpy(data, langids, len);
438 return len;
439 case 1:
440 /* Serial number */
441 s = hcd->self.bus_name;
442 break;
443 case 2:
444 /* Product name */
445 s = hcd->product_desc;
446 break;
447 case 3:
448 /* Manufacturer */
449 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
450 init_utsname()->release, hcd->driver->description);
451 s = buf;
452 break;
453 default:
454 /* Can't happen; caller guarantees it */
455 return 0;
456 }
457
458 return ascii2desc(s, data, len);
459}
460
461
462/* Root hub control transfers execute synchronously */
463static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
464{
465 struct usb_ctrlrequest *cmd;
466 u16 typeReq, wValue, wIndex, wLength;
467 u8 *ubuf = urb->transfer_buffer;
468 unsigned len = 0;
469 int status;
470 u8 patch_wakeup = 0;
471 u8 patch_protocol = 0;
472 u16 tbuf_size;
473 u8 *tbuf = NULL;
474 const u8 *bufp;
475
476 might_sleep();
477
478 spin_lock_irq(&hcd_root_hub_lock);
479 status = usb_hcd_link_urb_to_ep(hcd, urb);
480 spin_unlock_irq(&hcd_root_hub_lock);
481 if (status)
482 return status;
483 urb->hcpriv = hcd; /* Indicate it's queued */
484
485 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
486 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
487 wValue = le16_to_cpu (cmd->wValue);
488 wIndex = le16_to_cpu (cmd->wIndex);
489 wLength = le16_to_cpu (cmd->wLength);
490
491 if (wLength > urb->transfer_buffer_length)
492 goto error;
493
494 /*
495 * tbuf should be at least as big as the
496 * USB hub descriptor.
497 */
498 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
499 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
500 if (!tbuf)
501 return -ENOMEM;
502
503 bufp = tbuf;
504
505
506 urb->actual_length = 0;
507 switch (typeReq) {
508
509 /* DEVICE REQUESTS */
510
511 /* The root hub's remote wakeup enable bit is implemented using
512 * driver model wakeup flags. If this system supports wakeup
513 * through USB, userspace may change the default "allow wakeup"
514 * policy through sysfs or these calls.
515 *
516 * Most root hubs support wakeup from downstream devices, for
517 * runtime power management (disabling USB clocks and reducing
518 * VBUS power usage). However, not all of them do so; silicon,
519 * board, and BIOS bugs here are not uncommon, so these can't
520 * be treated quite like external hubs.
521 *
522 * Likewise, not all root hubs will pass wakeup events upstream,
523 * to wake up the whole system. So don't assume root hub and
524 * controller capabilities are identical.
525 */
526
527 case DeviceRequest | USB_REQ_GET_STATUS:
528 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
529 << USB_DEVICE_REMOTE_WAKEUP)
530 | (1 << USB_DEVICE_SELF_POWERED);
531 tbuf[1] = 0;
532 len = 2;
533 break;
534 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
535 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
536 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
537 else
538 goto error;
539 break;
540 case DeviceOutRequest | USB_REQ_SET_FEATURE:
541 if (device_can_wakeup(&hcd->self.root_hub->dev)
542 && wValue == USB_DEVICE_REMOTE_WAKEUP)
543 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
544 else
545 goto error;
546 break;
547 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
548 tbuf[0] = 1;
549 len = 1;
550 /* FALLTHROUGH */
551 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
552 break;
553 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
554 switch (wValue & 0xff00) {
555 case USB_DT_DEVICE << 8:
556 switch (hcd->speed) {
557 case HCD_USB3:
558 bufp = usb3_rh_dev_descriptor;
559 break;
560 case HCD_USB25:
561 bufp = usb25_rh_dev_descriptor;
562 break;
563 case HCD_USB2:
564 bufp = usb2_rh_dev_descriptor;
565 break;
566 case HCD_USB11:
567 bufp = usb11_rh_dev_descriptor;
568 break;
569 default:
570 goto error;
571 }
572 len = 18;
573 if (hcd->has_tt)
574 patch_protocol = 1;
575 break;
576 case USB_DT_CONFIG << 8:
577 switch (hcd->speed) {
578 case HCD_USB3:
579 bufp = ss_rh_config_descriptor;
580 len = sizeof ss_rh_config_descriptor;
581 break;
582 case HCD_USB25:
583 case HCD_USB2:
584 bufp = hs_rh_config_descriptor;
585 len = sizeof hs_rh_config_descriptor;
586 break;
587 case HCD_USB11:
588 bufp = fs_rh_config_descriptor;
589 len = sizeof fs_rh_config_descriptor;
590 break;
591 default:
592 goto error;
593 }
594 if (device_can_wakeup(&hcd->self.root_hub->dev))
595 patch_wakeup = 1;
596 break;
597 case USB_DT_STRING << 8:
598 if ((wValue & 0xff) < 4)
599 urb->actual_length = rh_string(wValue & 0xff,
600 hcd, ubuf, wLength);
601 else /* unsupported IDs --> "protocol stall" */
602 goto error;
603 break;
604 case USB_DT_BOS << 8:
605 goto nongeneric;
606 default:
607 goto error;
608 }
609 break;
610 case DeviceRequest | USB_REQ_GET_INTERFACE:
611 tbuf[0] = 0;
612 len = 1;
613 /* FALLTHROUGH */
614 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
615 break;
616 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
617 /* wValue == urb->dev->devaddr */
618 dev_dbg (hcd->self.controller, "root hub device address %d\n",
619 wValue);
620 break;
621
622 /* INTERFACE REQUESTS (no defined feature/status flags) */
623
624 /* ENDPOINT REQUESTS */
625
626 case EndpointRequest | USB_REQ_GET_STATUS:
627 /* ENDPOINT_HALT flag */
628 tbuf[0] = 0;
629 tbuf[1] = 0;
630 len = 2;
631 /* FALLTHROUGH */
632 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
633 case EndpointOutRequest | USB_REQ_SET_FEATURE:
634 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
635 break;
636
637 /* CLASS REQUESTS (and errors) */
638
639 default:
640nongeneric:
641 /* non-generic request */
642 switch (typeReq) {
643 case GetHubStatus:
644 case GetPortStatus:
645 len = 4;
646 break;
647 case GetHubDescriptor:
648 len = sizeof (struct usb_hub_descriptor);
649 break;
650 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
651 /* len is returned by hub_control */
652 break;
653 }
654 status = hcd->driver->hub_control (hcd,
655 typeReq, wValue, wIndex,
656 tbuf, wLength);
657
658 if (typeReq == GetHubDescriptor)
659 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
660 (struct usb_hub_descriptor *)tbuf);
661 break;
662error:
663 /* "protocol stall" on error */
664 status = -EPIPE;
665 }
666
667 if (status < 0) {
668 len = 0;
669 if (status != -EPIPE) {
670 dev_dbg (hcd->self.controller,
671 "CTRL: TypeReq=0x%x val=0x%x "
672 "idx=0x%x len=%d ==> %d\n",
673 typeReq, wValue, wIndex,
674 wLength, status);
675 }
676 } else if (status > 0) {
677 /* hub_control may return the length of data copied. */
678 len = status;
679 status = 0;
680 }
681 if (len) {
682 if (urb->transfer_buffer_length < len)
683 len = urb->transfer_buffer_length;
684 urb->actual_length = len;
685 /* always USB_DIR_IN, toward host */
686 memcpy (ubuf, bufp, len);
687
688 /* report whether RH hardware supports remote wakeup */
689 if (patch_wakeup &&
690 len > offsetof (struct usb_config_descriptor,
691 bmAttributes))
692 ((struct usb_config_descriptor *)ubuf)->bmAttributes
693 |= USB_CONFIG_ATT_WAKEUP;
694
695 /* report whether RH hardware has an integrated TT */
696 if (patch_protocol &&
697 len > offsetof(struct usb_device_descriptor,
698 bDeviceProtocol))
699 ((struct usb_device_descriptor *) ubuf)->
700 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
701 }
702
703 kfree(tbuf);
704
705 /* any errors get returned through the urb completion */
706 spin_lock_irq(&hcd_root_hub_lock);
707 usb_hcd_unlink_urb_from_ep(hcd, urb);
708 usb_hcd_giveback_urb(hcd, urb, status);
709 spin_unlock_irq(&hcd_root_hub_lock);
710 return 0;
711}
712
713/*-------------------------------------------------------------------------*/
714
715/*
716 * Root Hub interrupt transfers are polled using a timer if the
717 * driver requests it; otherwise the driver is responsible for
718 * calling usb_hcd_poll_rh_status() when an event occurs.
719 *
720 * Completions are called in_interrupt(), but they may or may not
721 * be in_irq().
722 */
723void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
724{
725 struct urb *urb;
726 int length;
727 unsigned long flags;
728 char buffer[6]; /* Any root hubs with > 31 ports? */
729
730 if (unlikely(!hcd->rh_pollable))
731 return;
732 if (!hcd->uses_new_polling && !hcd->status_urb)
733 return;
734
735 length = hcd->driver->hub_status_data(hcd, buffer);
736 if (length > 0) {
737
738 /* try to complete the status urb */
739 spin_lock_irqsave(&hcd_root_hub_lock, flags);
740 urb = hcd->status_urb;
741 if (urb) {
742 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
743 hcd->status_urb = NULL;
744 urb->actual_length = length;
745 memcpy(urb->transfer_buffer, buffer, length);
746
747 usb_hcd_unlink_urb_from_ep(hcd, urb);
748 usb_hcd_giveback_urb(hcd, urb, 0);
749 } else {
750 length = 0;
751 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
752 }
753 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
754 }
755
756 /* The USB 2.0 spec says 256 ms. This is close enough and won't
757 * exceed that limit if HZ is 100. The math is more clunky than
758 * maybe expected, this is to make sure that all timers for USB devices
759 * fire at the same time to give the CPU a break in between */
760 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
761 (length == 0 && hcd->status_urb != NULL))
762 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
763}
764EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
765
766/* timer callback */
767static void rh_timer_func (unsigned long _hcd)
768{
769 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
770}
771
772/*-------------------------------------------------------------------------*/
773
774static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
775{
776 int retval;
777 unsigned long flags;
778 unsigned len = 1 + (urb->dev->maxchild / 8);
779
780 spin_lock_irqsave (&hcd_root_hub_lock, flags);
781 if (hcd->status_urb || urb->transfer_buffer_length < len) {
782 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
783 retval = -EINVAL;
784 goto done;
785 }
786
787 retval = usb_hcd_link_urb_to_ep(hcd, urb);
788 if (retval)
789 goto done;
790
791 hcd->status_urb = urb;
792 urb->hcpriv = hcd; /* indicate it's queued */
793 if (!hcd->uses_new_polling)
794 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
795
796 /* If a status change has already occurred, report it ASAP */
797 else if (HCD_POLL_PENDING(hcd))
798 mod_timer(&hcd->rh_timer, jiffies);
799 retval = 0;
800 done:
801 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
802 return retval;
803}
804
805static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
806{
807 if (usb_endpoint_xfer_int(&urb->ep->desc))
808 return rh_queue_status (hcd, urb);
809 if (usb_endpoint_xfer_control(&urb->ep->desc))
810 return rh_call_control (hcd, urb);
811 return -EINVAL;
812}
813
814/*-------------------------------------------------------------------------*/
815
816/* Unlinks of root-hub control URBs are legal, but they don't do anything
817 * since these URBs always execute synchronously.
818 */
819static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
820{
821 unsigned long flags;
822 int rc;
823
824 spin_lock_irqsave(&hcd_root_hub_lock, flags);
825 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
826 if (rc)
827 goto done;
828
829 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
830 ; /* Do nothing */
831
832 } else { /* Status URB */
833 if (!hcd->uses_new_polling)
834 del_timer (&hcd->rh_timer);
835 if (urb == hcd->status_urb) {
836 hcd->status_urb = NULL;
837 usb_hcd_unlink_urb_from_ep(hcd, urb);
838 usb_hcd_giveback_urb(hcd, urb, status);
839 }
840 }
841 done:
842 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
843 return rc;
844}
845
846
847
848/*
849 * Show & store the current value of authorized_default
850 */
851static ssize_t authorized_default_show(struct device *dev,
852 struct device_attribute *attr, char *buf)
853{
854 struct usb_device *rh_usb_dev = to_usb_device(dev);
855 struct usb_bus *usb_bus = rh_usb_dev->bus;
856 struct usb_hcd *usb_hcd;
857
858 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
859 return -ENODEV;
860 usb_hcd = bus_to_hcd(usb_bus);
861 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
862}
863
864static ssize_t authorized_default_store(struct device *dev,
865 struct device_attribute *attr,
866 const char *buf, size_t size)
867{
868 ssize_t result;
869 unsigned val;
870 struct usb_device *rh_usb_dev = to_usb_device(dev);
871 struct usb_bus *usb_bus = rh_usb_dev->bus;
872 struct usb_hcd *usb_hcd;
873
874 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
875 return -ENODEV;
876 usb_hcd = bus_to_hcd(usb_bus);
877 result = sscanf(buf, "%u\n", &val);
878 if (result == 1) {
879 usb_hcd->authorized_default = val ? 1 : 0;
880 result = size;
881 } else {
882 result = -EINVAL;
883 }
884 return result;
885}
886static DEVICE_ATTR_RW(authorized_default);
887
888/* Group all the USB bus attributes */
889static struct attribute *usb_bus_attrs[] = {
890 &dev_attr_authorized_default.attr,
891 NULL,
892};
893
894static struct attribute_group usb_bus_attr_group = {
895 .name = NULL, /* we want them in the same directory */
896 .attrs = usb_bus_attrs,
897};
898
899
900
901/*-------------------------------------------------------------------------*/
902
903/**
904 * usb_bus_init - shared initialization code
905 * @bus: the bus structure being initialized
906 *
907 * This code is used to initialize a usb_bus structure, memory for which is
908 * separately managed.
909 */
910static void usb_bus_init (struct usb_bus *bus)
911{
912 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
913
914 bus->devnum_next = 1;
915
916 bus->root_hub = NULL;
917 bus->busnum = -1;
918 bus->bandwidth_allocated = 0;
919 bus->bandwidth_int_reqs = 0;
920 bus->bandwidth_isoc_reqs = 0;
921
922 INIT_LIST_HEAD (&bus->bus_list);
923}
924
925/*-------------------------------------------------------------------------*/
926
927/**
928 * usb_register_bus - registers the USB host controller with the usb core
929 * @bus: pointer to the bus to register
930 * Context: !in_interrupt()
931 *
932 * Assigns a bus number, and links the controller into usbcore data
933 * structures so that it can be seen by scanning the bus list.
934 *
935 * Return: 0 if successful. A negative error code otherwise.
936 */
937static int usb_register_bus(struct usb_bus *bus)
938{
939 int result = -E2BIG;
940 int busnum;
941
942 mutex_lock(&usb_bus_list_lock);
943 busnum = find_next_zero_bit(busmap, USB_MAXBUS, 1);
944 if (busnum >= USB_MAXBUS) {
945 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
946 goto error_find_busnum;
947 }
948 set_bit(busnum, busmap);
949 bus->busnum = busnum;
950
951 /* Add it to the local list of buses */
952 list_add (&bus->bus_list, &usb_bus_list);
953 mutex_unlock(&usb_bus_list_lock);
954
955 usb_notify_add_bus(bus);
956
957 dev_info (bus->controller, "new USB bus registered, assigned bus "
958 "number %d\n", bus->busnum);
959 return 0;
960
961error_find_busnum:
962 mutex_unlock(&usb_bus_list_lock);
963 return result;
964}
965
966/**
967 * usb_deregister_bus - deregisters the USB host controller
968 * @bus: pointer to the bus to deregister
969 * Context: !in_interrupt()
970 *
971 * Recycles the bus number, and unlinks the controller from usbcore data
972 * structures so that it won't be seen by scanning the bus list.
973 */
974static void usb_deregister_bus (struct usb_bus *bus)
975{
976 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
977
978 /*
979 * NOTE: make sure that all the devices are removed by the
980 * controller code, as well as having it call this when cleaning
981 * itself up
982 */
983 mutex_lock(&usb_bus_list_lock);
984 list_del (&bus->bus_list);
985 mutex_unlock(&usb_bus_list_lock);
986
987 usb_notify_remove_bus(bus);
988
989 clear_bit(bus->busnum, busmap);
990}
991
992/**
993 * register_root_hub - called by usb_add_hcd() to register a root hub
994 * @hcd: host controller for this root hub
995 *
996 * This function registers the root hub with the USB subsystem. It sets up
997 * the device properly in the device tree and then calls usb_new_device()
998 * to register the usb device. It also assigns the root hub's USB address
999 * (always 1).
1000 *
1001 * Return: 0 if successful. A negative error code otherwise.
1002 */
1003static int register_root_hub(struct usb_hcd *hcd)
1004{
1005 struct device *parent_dev = hcd->self.controller;
1006 struct usb_device *usb_dev = hcd->self.root_hub;
1007 const int devnum = 1;
1008 int retval;
1009
1010 usb_dev->devnum = devnum;
1011 usb_dev->bus->devnum_next = devnum + 1;
1012 memset (&usb_dev->bus->devmap.devicemap, 0,
1013 sizeof usb_dev->bus->devmap.devicemap);
1014 set_bit (devnum, usb_dev->bus->devmap.devicemap);
1015 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1016
1017 mutex_lock(&usb_bus_list_lock);
1018
1019 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1020 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1021 if (retval != sizeof usb_dev->descriptor) {
1022 mutex_unlock(&usb_bus_list_lock);
1023 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1024 dev_name(&usb_dev->dev), retval);
1025 return (retval < 0) ? retval : -EMSGSIZE;
1026 }
1027 if (usb_dev->speed == USB_SPEED_SUPER) {
1028 retval = usb_get_bos_descriptor(usb_dev);
1029 if (retval < 0) {
1030 mutex_unlock(&usb_bus_list_lock);
1031 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1032 dev_name(&usb_dev->dev), retval);
1033 return retval;
1034 }
1035 }
1036
1037 retval = usb_new_device (usb_dev);
1038 if (retval) {
1039 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1040 dev_name(&usb_dev->dev), retval);
1041 } else {
1042 spin_lock_irq (&hcd_root_hub_lock);
1043 hcd->rh_registered = 1;
1044 spin_unlock_irq (&hcd_root_hub_lock);
1045
1046 /* Did the HC die before the root hub was registered? */
1047 if (HCD_DEAD(hcd))
1048 usb_hc_died (hcd); /* This time clean up */
1049 }
1050 mutex_unlock(&usb_bus_list_lock);
1051
1052 return retval;
1053}
1054
1055/*
1056 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1057 * @bus: the bus which the root hub belongs to
1058 * @portnum: the port which is being resumed
1059 *
1060 * HCDs should call this function when they know that a resume signal is
1061 * being sent to a root-hub port. The root hub will be prevented from
1062 * going into autosuspend until usb_hcd_end_port_resume() is called.
1063 *
1064 * The bus's private lock must be held by the caller.
1065 */
1066void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1067{
1068 unsigned bit = 1 << portnum;
1069
1070 if (!(bus->resuming_ports & bit)) {
1071 bus->resuming_ports |= bit;
1072 pm_runtime_get_noresume(&bus->root_hub->dev);
1073 }
1074}
1075EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1076
1077/*
1078 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1079 * @bus: the bus which the root hub belongs to
1080 * @portnum: the port which is being resumed
1081 *
1082 * HCDs should call this function when they know that a resume signal has
1083 * stopped being sent to a root-hub port. The root hub will be allowed to
1084 * autosuspend again.
1085 *
1086 * The bus's private lock must be held by the caller.
1087 */
1088void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1089{
1090 unsigned bit = 1 << portnum;
1091
1092 if (bus->resuming_ports & bit) {
1093 bus->resuming_ports &= ~bit;
1094 pm_runtime_put_noidle(&bus->root_hub->dev);
1095 }
1096}
1097EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1098
1099/*-------------------------------------------------------------------------*/
1100
1101/**
1102 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1103 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1104 * @is_input: true iff the transaction sends data to the host
1105 * @isoc: true for isochronous transactions, false for interrupt ones
1106 * @bytecount: how many bytes in the transaction.
1107 *
1108 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1109 *
1110 * Note:
1111 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1112 * scheduled in software, this function is only used for such scheduling.
1113 */
1114long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1115{
1116 unsigned long tmp;
1117
1118 switch (speed) {
1119 case USB_SPEED_LOW: /* INTR only */
1120 if (is_input) {
1121 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1122 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1123 } else {
1124 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1125 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1126 }
1127 case USB_SPEED_FULL: /* ISOC or INTR */
1128 if (isoc) {
1129 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1130 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1131 } else {
1132 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1133 return 9107L + BW_HOST_DELAY + tmp;
1134 }
1135 case USB_SPEED_HIGH: /* ISOC or INTR */
1136 /* FIXME adjust for input vs output */
1137 if (isoc)
1138 tmp = HS_NSECS_ISO (bytecount);
1139 else
1140 tmp = HS_NSECS (bytecount);
1141 return tmp;
1142 default:
1143 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1144 return -1;
1145 }
1146}
1147EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1148
1149
1150/*-------------------------------------------------------------------------*/
1151
1152/*
1153 * Generic HC operations.
1154 */
1155
1156/*-------------------------------------------------------------------------*/
1157
1158/**
1159 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1160 * @hcd: host controller to which @urb was submitted
1161 * @urb: URB being submitted
1162 *
1163 * Host controller drivers should call this routine in their enqueue()
1164 * method. The HCD's private spinlock must be held and interrupts must
1165 * be disabled. The actions carried out here are required for URB
1166 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1167 *
1168 * Return: 0 for no error, otherwise a negative error code (in which case
1169 * the enqueue() method must fail). If no error occurs but enqueue() fails
1170 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1171 * the private spinlock and returning.
1172 */
1173int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1174{
1175 int rc = 0;
1176
1177 spin_lock(&hcd_urb_list_lock);
1178
1179 /* Check that the URB isn't being killed */
1180 if (unlikely(atomic_read(&urb->reject))) {
1181 rc = -EPERM;
1182 goto done;
1183 }
1184
1185 if (unlikely(!urb->ep->enabled)) {
1186 rc = -ENOENT;
1187 goto done;
1188 }
1189
1190 if (unlikely(!urb->dev->can_submit)) {
1191 rc = -EHOSTUNREACH;
1192 goto done;
1193 }
1194
1195 /*
1196 * Check the host controller's state and add the URB to the
1197 * endpoint's queue.
1198 */
1199 if (HCD_RH_RUNNING(hcd)) {
1200 urb->unlinked = 0;
1201 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1202 } else {
1203 rc = -ESHUTDOWN;
1204 goto done;
1205 }
1206 done:
1207 spin_unlock(&hcd_urb_list_lock);
1208 return rc;
1209}
1210EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1211
1212/**
1213 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1214 * @hcd: host controller to which @urb was submitted
1215 * @urb: URB being checked for unlinkability
1216 * @status: error code to store in @urb if the unlink succeeds
1217 *
1218 * Host controller drivers should call this routine in their dequeue()
1219 * method. The HCD's private spinlock must be held and interrupts must
1220 * be disabled. The actions carried out here are required for making
1221 * sure than an unlink is valid.
1222 *
1223 * Return: 0 for no error, otherwise a negative error code (in which case
1224 * the dequeue() method must fail). The possible error codes are:
1225 *
1226 * -EIDRM: @urb was not submitted or has already completed.
1227 * The completion function may not have been called yet.
1228 *
1229 * -EBUSY: @urb has already been unlinked.
1230 */
1231int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1232 int status)
1233{
1234 struct list_head *tmp;
1235
1236 /* insist the urb is still queued */
1237 list_for_each(tmp, &urb->ep->urb_list) {
1238 if (tmp == &urb->urb_list)
1239 break;
1240 }
1241 if (tmp != &urb->urb_list)
1242 return -EIDRM;
1243
1244 /* Any status except -EINPROGRESS means something already started to
1245 * unlink this URB from the hardware. So there's no more work to do.
1246 */
1247 if (urb->unlinked)
1248 return -EBUSY;
1249 urb->unlinked = status;
1250 return 0;
1251}
1252EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1253
1254/**
1255 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1256 * @hcd: host controller to which @urb was submitted
1257 * @urb: URB being unlinked
1258 *
1259 * Host controller drivers should call this routine before calling
1260 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1261 * interrupts must be disabled. The actions carried out here are required
1262 * for URB completion.
1263 */
1264void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1265{
1266 /* clear all state linking urb to this dev (and hcd) */
1267 spin_lock(&hcd_urb_list_lock);
1268 list_del_init(&urb->urb_list);
1269 spin_unlock(&hcd_urb_list_lock);
1270}
1271EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1272
1273/*
1274 * Some usb host controllers can only perform dma using a small SRAM area.
1275 * The usb core itself is however optimized for host controllers that can dma
1276 * using regular system memory - like pci devices doing bus mastering.
1277 *
1278 * To support host controllers with limited dma capabilites we provide dma
1279 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1280 * For this to work properly the host controller code must first use the
1281 * function dma_declare_coherent_memory() to point out which memory area
1282 * that should be used for dma allocations.
1283 *
1284 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1285 * dma using dma_alloc_coherent() which in turn allocates from the memory
1286 * area pointed out with dma_declare_coherent_memory().
1287 *
1288 * So, to summarize...
1289 *
1290 * - We need "local" memory, canonical example being
1291 * a small SRAM on a discrete controller being the
1292 * only memory that the controller can read ...
1293 * (a) "normal" kernel memory is no good, and
1294 * (b) there's not enough to share
1295 *
1296 * - The only *portable* hook for such stuff in the
1297 * DMA framework is dma_declare_coherent_memory()
1298 *
1299 * - So we use that, even though the primary requirement
1300 * is that the memory be "local" (hence addressable
1301 * by that device), not "coherent".
1302 *
1303 */
1304
1305static int hcd_alloc_coherent(struct usb_bus *bus,
1306 gfp_t mem_flags, dma_addr_t *dma_handle,
1307 void **vaddr_handle, size_t size,
1308 enum dma_data_direction dir)
1309{
1310 unsigned char *vaddr;
1311
1312 if (*vaddr_handle == NULL) {
1313 WARN_ON_ONCE(1);
1314 return -EFAULT;
1315 }
1316
1317 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1318 mem_flags, dma_handle);
1319 if (!vaddr)
1320 return -ENOMEM;
1321
1322 /*
1323 * Store the virtual address of the buffer at the end
1324 * of the allocated dma buffer. The size of the buffer
1325 * may be uneven so use unaligned functions instead
1326 * of just rounding up. It makes sense to optimize for
1327 * memory footprint over access speed since the amount
1328 * of memory available for dma may be limited.
1329 */
1330 put_unaligned((unsigned long)*vaddr_handle,
1331 (unsigned long *)(vaddr + size));
1332
1333 if (dir == DMA_TO_DEVICE)
1334 memcpy(vaddr, *vaddr_handle, size);
1335
1336 *vaddr_handle = vaddr;
1337 return 0;
1338}
1339
1340static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1341 void **vaddr_handle, size_t size,
1342 enum dma_data_direction dir)
1343{
1344 unsigned char *vaddr = *vaddr_handle;
1345
1346 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1347
1348 if (dir == DMA_FROM_DEVICE)
1349 memcpy(vaddr, *vaddr_handle, size);
1350
1351 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1352
1353 *vaddr_handle = vaddr;
1354 *dma_handle = 0;
1355}
1356
1357void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1358{
1359 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1360 dma_unmap_single(hcd->self.controller,
1361 urb->setup_dma,
1362 sizeof(struct usb_ctrlrequest),
1363 DMA_TO_DEVICE);
1364 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1365 hcd_free_coherent(urb->dev->bus,
1366 &urb->setup_dma,
1367 (void **) &urb->setup_packet,
1368 sizeof(struct usb_ctrlrequest),
1369 DMA_TO_DEVICE);
1370
1371 /* Make it safe to call this routine more than once */
1372 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1373}
1374EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1375
1376static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1377{
1378 if (hcd->driver->unmap_urb_for_dma)
1379 hcd->driver->unmap_urb_for_dma(hcd, urb);
1380 else
1381 usb_hcd_unmap_urb_for_dma(hcd, urb);
1382}
1383
1384void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1385{
1386 enum dma_data_direction dir;
1387
1388 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1389
1390 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1391 if (urb->transfer_flags & URB_DMA_MAP_SG)
1392 dma_unmap_sg(hcd->self.controller,
1393 urb->sg,
1394 urb->num_sgs,
1395 dir);
1396 else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1397 dma_unmap_page(hcd->self.controller,
1398 urb->transfer_dma,
1399 urb->transfer_buffer_length,
1400 dir);
1401 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1402 dma_unmap_single(hcd->self.controller,
1403 urb->transfer_dma,
1404 urb->transfer_buffer_length,
1405 dir);
1406 else if (urb->transfer_flags & URB_MAP_LOCAL)
1407 hcd_free_coherent(urb->dev->bus,
1408 &urb->transfer_dma,
1409 &urb->transfer_buffer,
1410 urb->transfer_buffer_length,
1411 dir);
1412
1413 /* Make it safe to call this routine more than once */
1414 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1415 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1416}
1417EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1418
1419static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1420 gfp_t mem_flags)
1421{
1422 if (hcd->driver->map_urb_for_dma)
1423 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1424 else
1425 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1426}
1427
1428int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1429 gfp_t mem_flags)
1430{
1431 enum dma_data_direction dir;
1432 int ret = 0;
1433
1434 /* Map the URB's buffers for DMA access.
1435 * Lower level HCD code should use *_dma exclusively,
1436 * unless it uses pio or talks to another transport,
1437 * or uses the provided scatter gather list for bulk.
1438 */
1439
1440 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1441 if (hcd->self.uses_pio_for_control)
1442 return ret;
1443 if (hcd->self.uses_dma) {
1444 urb->setup_dma = dma_map_single(
1445 hcd->self.controller,
1446 urb->setup_packet,
1447 sizeof(struct usb_ctrlrequest),
1448 DMA_TO_DEVICE);
1449 if (dma_mapping_error(hcd->self.controller,
1450 urb->setup_dma))
1451 return -EAGAIN;
1452 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1453 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1454 ret = hcd_alloc_coherent(
1455 urb->dev->bus, mem_flags,
1456 &urb->setup_dma,
1457 (void **)&urb->setup_packet,
1458 sizeof(struct usb_ctrlrequest),
1459 DMA_TO_DEVICE);
1460 if (ret)
1461 return ret;
1462 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1463 }
1464 }
1465
1466 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1467 if (urb->transfer_buffer_length != 0
1468 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1469 if (hcd->self.uses_dma) {
1470 if (urb->num_sgs) {
1471 int n;
1472
1473 /* We don't support sg for isoc transfers ! */
1474 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1475 WARN_ON(1);
1476 return -EINVAL;
1477 }
1478
1479 n = dma_map_sg(
1480 hcd->self.controller,
1481 urb->sg,
1482 urb->num_sgs,
1483 dir);
1484 if (n <= 0)
1485 ret = -EAGAIN;
1486 else
1487 urb->transfer_flags |= URB_DMA_MAP_SG;
1488 urb->num_mapped_sgs = n;
1489 if (n != urb->num_sgs)
1490 urb->transfer_flags |=
1491 URB_DMA_SG_COMBINED;
1492 } else if (urb->sg) {
1493 struct scatterlist *sg = urb->sg;
1494 urb->transfer_dma = dma_map_page(
1495 hcd->self.controller,
1496 sg_page(sg),
1497 sg->offset,
1498 urb->transfer_buffer_length,
1499 dir);
1500 if (dma_mapping_error(hcd->self.controller,
1501 urb->transfer_dma))
1502 ret = -EAGAIN;
1503 else
1504 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1505 } else {
1506 urb->transfer_dma = dma_map_single(
1507 hcd->self.controller,
1508 urb->transfer_buffer,
1509 urb->transfer_buffer_length,
1510 dir);
1511 if (dma_mapping_error(hcd->self.controller,
1512 urb->transfer_dma))
1513 ret = -EAGAIN;
1514 else
1515 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1516 }
1517 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1518 ret = hcd_alloc_coherent(
1519 urb->dev->bus, mem_flags,
1520 &urb->transfer_dma,
1521 &urb->transfer_buffer,
1522 urb->transfer_buffer_length,
1523 dir);
1524 if (ret == 0)
1525 urb->transfer_flags |= URB_MAP_LOCAL;
1526 }
1527 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1528 URB_SETUP_MAP_LOCAL)))
1529 usb_hcd_unmap_urb_for_dma(hcd, urb);
1530 }
1531 return ret;
1532}
1533EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1534
1535/*-------------------------------------------------------------------------*/
1536
1537/* may be called in any context with a valid urb->dev usecount
1538 * caller surrenders "ownership" of urb
1539 * expects usb_submit_urb() to have sanity checked and conditioned all
1540 * inputs in the urb
1541 */
1542int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1543{
1544 int status;
1545 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1546
1547 /* increment urb's reference count as part of giving it to the HCD
1548 * (which will control it). HCD guarantees that it either returns
1549 * an error or calls giveback(), but not both.
1550 */
1551 usb_get_urb(urb);
1552 atomic_inc(&urb->use_count);
1553 atomic_inc(&urb->dev->urbnum);
1554 usbmon_urb_submit(&hcd->self, urb);
1555
1556 /* NOTE requirements on root-hub callers (usbfs and the hub
1557 * driver, for now): URBs' urb->transfer_buffer must be
1558 * valid and usb_buffer_{sync,unmap}() not be needed, since
1559 * they could clobber root hub response data. Also, control
1560 * URBs must be submitted in process context with interrupts
1561 * enabled.
1562 */
1563
1564 if (is_root_hub(urb->dev)) {
1565 status = rh_urb_enqueue(hcd, urb);
1566 } else {
1567 status = map_urb_for_dma(hcd, urb, mem_flags);
1568 if (likely(status == 0)) {
1569 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1570 if (unlikely(status))
1571 unmap_urb_for_dma(hcd, urb);
1572 }
1573 }
1574
1575 if (unlikely(status)) {
1576 usbmon_urb_submit_error(&hcd->self, urb, status);
1577 urb->hcpriv = NULL;
1578 INIT_LIST_HEAD(&urb->urb_list);
1579 atomic_dec(&urb->use_count);
1580 atomic_dec(&urb->dev->urbnum);
1581 if (atomic_read(&urb->reject))
1582 wake_up(&usb_kill_urb_queue);
1583 usb_put_urb(urb);
1584 }
1585 return status;
1586}
1587
1588/*-------------------------------------------------------------------------*/
1589
1590/* this makes the hcd giveback() the urb more quickly, by kicking it
1591 * off hardware queues (which may take a while) and returning it as
1592 * soon as practical. we've already set up the urb's return status,
1593 * but we can't know if the callback completed already.
1594 */
1595static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1596{
1597 int value;
1598
1599 if (is_root_hub(urb->dev))
1600 value = usb_rh_urb_dequeue(hcd, urb, status);
1601 else {
1602
1603 /* The only reason an HCD might fail this call is if
1604 * it has not yet fully queued the urb to begin with.
1605 * Such failures should be harmless. */
1606 value = hcd->driver->urb_dequeue(hcd, urb, status);
1607 }
1608 return value;
1609}
1610
1611/*
1612 * called in any context
1613 *
1614 * caller guarantees urb won't be recycled till both unlink()
1615 * and the urb's completion function return
1616 */
1617int usb_hcd_unlink_urb (struct urb *urb, int status)
1618{
1619 struct usb_hcd *hcd;
1620 int retval = -EIDRM;
1621 unsigned long flags;
1622
1623 /* Prevent the device and bus from going away while
1624 * the unlink is carried out. If they are already gone
1625 * then urb->use_count must be 0, since disconnected
1626 * devices can't have any active URBs.
1627 */
1628 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1629 if (atomic_read(&urb->use_count) > 0) {
1630 retval = 0;
1631 usb_get_dev(urb->dev);
1632 }
1633 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1634 if (retval == 0) {
1635 hcd = bus_to_hcd(urb->dev->bus);
1636 retval = unlink1(hcd, urb, status);
1637 usb_put_dev(urb->dev);
1638 }
1639
1640 if (retval == 0)
1641 retval = -EINPROGRESS;
1642 else if (retval != -EIDRM && retval != -EBUSY)
1643 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1644 urb, retval);
1645 return retval;
1646}
1647
1648/*-------------------------------------------------------------------------*/
1649
1650static void __usb_hcd_giveback_urb(struct urb *urb)
1651{
1652 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1653 struct usb_anchor *anchor = urb->anchor;
1654 int status = urb->unlinked;
1655 unsigned long flags;
1656
1657 urb->hcpriv = NULL;
1658 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1659 urb->actual_length < urb->transfer_buffer_length &&
1660 !status))
1661 status = -EREMOTEIO;
1662
1663 unmap_urb_for_dma(hcd, urb);
1664 usbmon_urb_complete(&hcd->self, urb, status);
1665 usb_anchor_suspend_wakeups(anchor);
1666 usb_unanchor_urb(urb);
1667
1668 /* pass ownership to the completion handler */
1669 urb->status = status;
1670
1671 /*
1672 * We disable local IRQs here avoid possible deadlock because
1673 * drivers may call spin_lock() to hold lock which might be
1674 * acquired in one hard interrupt handler.
1675 *
1676 * The local_irq_save()/local_irq_restore() around complete()
1677 * will be removed if current USB drivers have been cleaned up
1678 * and no one may trigger the above deadlock situation when
1679 * running complete() in tasklet.
1680 */
1681 local_irq_save(flags);
1682 urb->complete(urb);
1683 local_irq_restore(flags);
1684
1685 usb_anchor_resume_wakeups(anchor);
1686 atomic_dec(&urb->use_count);
1687 if (unlikely(atomic_read(&urb->reject)))
1688 wake_up(&usb_kill_urb_queue);
1689 usb_put_urb(urb);
1690}
1691
1692static void usb_giveback_urb_bh(unsigned long param)
1693{
1694 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1695 struct list_head local_list;
1696
1697 spin_lock_irq(&bh->lock);
1698 bh->running = true;
1699 restart:
1700 list_replace_init(&bh->head, &local_list);
1701 spin_unlock_irq(&bh->lock);
1702
1703 while (!list_empty(&local_list)) {
1704 struct urb *urb;
1705
1706 urb = list_entry(local_list.next, struct urb, urb_list);
1707 list_del_init(&urb->urb_list);
1708 bh->completing_ep = urb->ep;
1709 __usb_hcd_giveback_urb(urb);
1710 bh->completing_ep = NULL;
1711 }
1712
1713 /* check if there are new URBs to giveback */
1714 spin_lock_irq(&bh->lock);
1715 if (!list_empty(&bh->head))
1716 goto restart;
1717 bh->running = false;
1718 spin_unlock_irq(&bh->lock);
1719}
1720
1721/**
1722 * usb_hcd_giveback_urb - return URB from HCD to device driver
1723 * @hcd: host controller returning the URB
1724 * @urb: urb being returned to the USB device driver.
1725 * @status: completion status code for the URB.
1726 * Context: in_interrupt()
1727 *
1728 * This hands the URB from HCD to its USB device driver, using its
1729 * completion function. The HCD has freed all per-urb resources
1730 * (and is done using urb->hcpriv). It also released all HCD locks;
1731 * the device driver won't cause problems if it frees, modifies,
1732 * or resubmits this URB.
1733 *
1734 * If @urb was unlinked, the value of @status will be overridden by
1735 * @urb->unlinked. Erroneous short transfers are detected in case
1736 * the HCD hasn't checked for them.
1737 */
1738void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1739{
1740 struct giveback_urb_bh *bh;
1741 bool running, high_prio_bh;
1742
1743 /* pass status to tasklet via unlinked */
1744 if (likely(!urb->unlinked))
1745 urb->unlinked = status;
1746
1747 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1748 __usb_hcd_giveback_urb(urb);
1749 return;
1750 }
1751
1752 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1753 bh = &hcd->high_prio_bh;
1754 high_prio_bh = true;
1755 } else {
1756 bh = &hcd->low_prio_bh;
1757 high_prio_bh = false;
1758 }
1759
1760 spin_lock(&bh->lock);
1761 list_add_tail(&urb->urb_list, &bh->head);
1762 running = bh->running;
1763 spin_unlock(&bh->lock);
1764
1765 if (running)
1766 ;
1767 else if (high_prio_bh)
1768 tasklet_hi_schedule(&bh->bh);
1769 else
1770 tasklet_schedule(&bh->bh);
1771}
1772EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1773
1774/*-------------------------------------------------------------------------*/
1775
1776/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1777 * queue to drain completely. The caller must first insure that no more
1778 * URBs can be submitted for this endpoint.
1779 */
1780void usb_hcd_flush_endpoint(struct usb_device *udev,
1781 struct usb_host_endpoint *ep)
1782{
1783 struct usb_hcd *hcd;
1784 struct urb *urb;
1785
1786 if (!ep)
1787 return;
1788 might_sleep();
1789 hcd = bus_to_hcd(udev->bus);
1790
1791 /* No more submits can occur */
1792 spin_lock_irq(&hcd_urb_list_lock);
1793rescan:
1794 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1795 int is_in;
1796
1797 if (urb->unlinked)
1798 continue;
1799 usb_get_urb (urb);
1800 is_in = usb_urb_dir_in(urb);
1801 spin_unlock(&hcd_urb_list_lock);
1802
1803 /* kick hcd */
1804 unlink1(hcd, urb, -ESHUTDOWN);
1805 dev_dbg (hcd->self.controller,
1806 "shutdown urb %p ep%d%s%s\n",
1807 urb, usb_endpoint_num(&ep->desc),
1808 is_in ? "in" : "out",
1809 ({ char *s;
1810
1811 switch (usb_endpoint_type(&ep->desc)) {
1812 case USB_ENDPOINT_XFER_CONTROL:
1813 s = ""; break;
1814 case USB_ENDPOINT_XFER_BULK:
1815 s = "-bulk"; break;
1816 case USB_ENDPOINT_XFER_INT:
1817 s = "-intr"; break;
1818 default:
1819 s = "-iso"; break;
1820 };
1821 s;
1822 }));
1823 usb_put_urb (urb);
1824
1825 /* list contents may have changed */
1826 spin_lock(&hcd_urb_list_lock);
1827 goto rescan;
1828 }
1829 spin_unlock_irq(&hcd_urb_list_lock);
1830
1831 /* Wait until the endpoint queue is completely empty */
1832 while (!list_empty (&ep->urb_list)) {
1833 spin_lock_irq(&hcd_urb_list_lock);
1834
1835 /* The list may have changed while we acquired the spinlock */
1836 urb = NULL;
1837 if (!list_empty (&ep->urb_list)) {
1838 urb = list_entry (ep->urb_list.prev, struct urb,
1839 urb_list);
1840 usb_get_urb (urb);
1841 }
1842 spin_unlock_irq(&hcd_urb_list_lock);
1843
1844 if (urb) {
1845 usb_kill_urb (urb);
1846 usb_put_urb (urb);
1847 }
1848 }
1849}
1850
1851/**
1852 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1853 * the bus bandwidth
1854 * @udev: target &usb_device
1855 * @new_config: new configuration to install
1856 * @cur_alt: the current alternate interface setting
1857 * @new_alt: alternate interface setting that is being installed
1858 *
1859 * To change configurations, pass in the new configuration in new_config,
1860 * and pass NULL for cur_alt and new_alt.
1861 *
1862 * To reset a device's configuration (put the device in the ADDRESSED state),
1863 * pass in NULL for new_config, cur_alt, and new_alt.
1864 *
1865 * To change alternate interface settings, pass in NULL for new_config,
1866 * pass in the current alternate interface setting in cur_alt,
1867 * and pass in the new alternate interface setting in new_alt.
1868 *
1869 * Return: An error if the requested bandwidth change exceeds the
1870 * bus bandwidth or host controller internal resources.
1871 */
1872int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1873 struct usb_host_config *new_config,
1874 struct usb_host_interface *cur_alt,
1875 struct usb_host_interface *new_alt)
1876{
1877 int num_intfs, i, j;
1878 struct usb_host_interface *alt = NULL;
1879 int ret = 0;
1880 struct usb_hcd *hcd;
1881 struct usb_host_endpoint *ep;
1882
1883 hcd = bus_to_hcd(udev->bus);
1884 if (!hcd->driver->check_bandwidth)
1885 return 0;
1886
1887 /* Configuration is being removed - set configuration 0 */
1888 if (!new_config && !cur_alt) {
1889 for (i = 1; i < 16; ++i) {
1890 ep = udev->ep_out[i];
1891 if (ep)
1892 hcd->driver->drop_endpoint(hcd, udev, ep);
1893 ep = udev->ep_in[i];
1894 if (ep)
1895 hcd->driver->drop_endpoint(hcd, udev, ep);
1896 }
1897 hcd->driver->check_bandwidth(hcd, udev);
1898 return 0;
1899 }
1900 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1901 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1902 * of the bus. There will always be bandwidth for endpoint 0, so it's
1903 * ok to exclude it.
1904 */
1905 if (new_config) {
1906 num_intfs = new_config->desc.bNumInterfaces;
1907 /* Remove endpoints (except endpoint 0, which is always on the
1908 * schedule) from the old config from the schedule
1909 */
1910 for (i = 1; i < 16; ++i) {
1911 ep = udev->ep_out[i];
1912 if (ep) {
1913 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1914 if (ret < 0)
1915 goto reset;
1916 }
1917 ep = udev->ep_in[i];
1918 if (ep) {
1919 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1920 if (ret < 0)
1921 goto reset;
1922 }
1923 }
1924 for (i = 0; i < num_intfs; ++i) {
1925 struct usb_host_interface *first_alt;
1926 int iface_num;
1927
1928 first_alt = &new_config->intf_cache[i]->altsetting[0];
1929 iface_num = first_alt->desc.bInterfaceNumber;
1930 /* Set up endpoints for alternate interface setting 0 */
1931 alt = usb_find_alt_setting(new_config, iface_num, 0);
1932 if (!alt)
1933 /* No alt setting 0? Pick the first setting. */
1934 alt = first_alt;
1935
1936 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1937 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1938 if (ret < 0)
1939 goto reset;
1940 }
1941 }
1942 }
1943 if (cur_alt && new_alt) {
1944 struct usb_interface *iface = usb_ifnum_to_if(udev,
1945 cur_alt->desc.bInterfaceNumber);
1946
1947 if (!iface)
1948 return -EINVAL;
1949 if (iface->resetting_device) {
1950 /*
1951 * The USB core just reset the device, so the xHCI host
1952 * and the device will think alt setting 0 is installed.
1953 * However, the USB core will pass in the alternate
1954 * setting installed before the reset as cur_alt. Dig
1955 * out the alternate setting 0 structure, or the first
1956 * alternate setting if a broken device doesn't have alt
1957 * setting 0.
1958 */
1959 cur_alt = usb_altnum_to_altsetting(iface, 0);
1960 if (!cur_alt)
1961 cur_alt = &iface->altsetting[0];
1962 }
1963
1964 /* Drop all the endpoints in the current alt setting */
1965 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1966 ret = hcd->driver->drop_endpoint(hcd, udev,
1967 &cur_alt->endpoint[i]);
1968 if (ret < 0)
1969 goto reset;
1970 }
1971 /* Add all the endpoints in the new alt setting */
1972 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1973 ret = hcd->driver->add_endpoint(hcd, udev,
1974 &new_alt->endpoint[i]);
1975 if (ret < 0)
1976 goto reset;
1977 }
1978 }
1979 ret = hcd->driver->check_bandwidth(hcd, udev);
1980reset:
1981 if (ret < 0)
1982 hcd->driver->reset_bandwidth(hcd, udev);
1983 return ret;
1984}
1985
1986/* Disables the endpoint: synchronizes with the hcd to make sure all
1987 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1988 * have been called previously. Use for set_configuration, set_interface,
1989 * driver removal, physical disconnect.
1990 *
1991 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1992 * type, maxpacket size, toggle, halt status, and scheduling.
1993 */
1994void usb_hcd_disable_endpoint(struct usb_device *udev,
1995 struct usb_host_endpoint *ep)
1996{
1997 struct usb_hcd *hcd;
1998
1999 might_sleep();
2000 hcd = bus_to_hcd(udev->bus);
2001 if (hcd->driver->endpoint_disable)
2002 hcd->driver->endpoint_disable(hcd, ep);
2003}
2004
2005/**
2006 * usb_hcd_reset_endpoint - reset host endpoint state
2007 * @udev: USB device.
2008 * @ep: the endpoint to reset.
2009 *
2010 * Resets any host endpoint state such as the toggle bit, sequence
2011 * number and current window.
2012 */
2013void usb_hcd_reset_endpoint(struct usb_device *udev,
2014 struct usb_host_endpoint *ep)
2015{
2016 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2017
2018 if (hcd->driver->endpoint_reset)
2019 hcd->driver->endpoint_reset(hcd, ep);
2020 else {
2021 int epnum = usb_endpoint_num(&ep->desc);
2022 int is_out = usb_endpoint_dir_out(&ep->desc);
2023 int is_control = usb_endpoint_xfer_control(&ep->desc);
2024
2025 usb_settoggle(udev, epnum, is_out, 0);
2026 if (is_control)
2027 usb_settoggle(udev, epnum, !is_out, 0);
2028 }
2029}
2030
2031/**
2032 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2033 * @interface: alternate setting that includes all endpoints.
2034 * @eps: array of endpoints that need streams.
2035 * @num_eps: number of endpoints in the array.
2036 * @num_streams: number of streams to allocate.
2037 * @mem_flags: flags hcd should use to allocate memory.
2038 *
2039 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2040 * Drivers may queue multiple transfers to different stream IDs, which may
2041 * complete in a different order than they were queued.
2042 *
2043 * Return: On success, the number of allocated streams. On failure, a negative
2044 * error code.
2045 */
2046int usb_alloc_streams(struct usb_interface *interface,
2047 struct usb_host_endpoint **eps, unsigned int num_eps,
2048 unsigned int num_streams, gfp_t mem_flags)
2049{
2050 struct usb_hcd *hcd;
2051 struct usb_device *dev;
2052 int i, ret;
2053
2054 dev = interface_to_usbdev(interface);
2055 hcd = bus_to_hcd(dev->bus);
2056 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2057 return -EINVAL;
2058 if (dev->speed != USB_SPEED_SUPER)
2059 return -EINVAL;
2060
2061 for (i = 0; i < num_eps; i++) {
2062 /* Streams only apply to bulk endpoints. */
2063 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2064 return -EINVAL;
2065 /* Re-alloc is not allowed */
2066 if (eps[i]->streams)
2067 return -EINVAL;
2068 }
2069
2070 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2071 num_streams, mem_flags);
2072 if (ret < 0)
2073 return ret;
2074
2075 for (i = 0; i < num_eps; i++)
2076 eps[i]->streams = ret;
2077
2078 return ret;
2079}
2080EXPORT_SYMBOL_GPL(usb_alloc_streams);
2081
2082/**
2083 * usb_free_streams - free bulk endpoint stream IDs.
2084 * @interface: alternate setting that includes all endpoints.
2085 * @eps: array of endpoints to remove streams from.
2086 * @num_eps: number of endpoints in the array.
2087 * @mem_flags: flags hcd should use to allocate memory.
2088 *
2089 * Reverts a group of bulk endpoints back to not using stream IDs.
2090 * Can fail if we are given bad arguments, or HCD is broken.
2091 *
2092 * Return: 0 on success. On failure, a negative error code.
2093 */
2094int usb_free_streams(struct usb_interface *interface,
2095 struct usb_host_endpoint **eps, unsigned int num_eps,
2096 gfp_t mem_flags)
2097{
2098 struct usb_hcd *hcd;
2099 struct usb_device *dev;
2100 int i, ret;
2101
2102 dev = interface_to_usbdev(interface);
2103 hcd = bus_to_hcd(dev->bus);
2104 if (dev->speed != USB_SPEED_SUPER)
2105 return -EINVAL;
2106
2107 /* Double-free is not allowed */
2108 for (i = 0; i < num_eps; i++)
2109 if (!eps[i] || !eps[i]->streams)
2110 return -EINVAL;
2111
2112 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2113 if (ret < 0)
2114 return ret;
2115
2116 for (i = 0; i < num_eps; i++)
2117 eps[i]->streams = 0;
2118
2119 return ret;
2120}
2121EXPORT_SYMBOL_GPL(usb_free_streams);
2122
2123/* Protect against drivers that try to unlink URBs after the device
2124 * is gone, by waiting until all unlinks for @udev are finished.
2125 * Since we don't currently track URBs by device, simply wait until
2126 * nothing is running in the locked region of usb_hcd_unlink_urb().
2127 */
2128void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2129{
2130 spin_lock_irq(&hcd_urb_unlink_lock);
2131 spin_unlock_irq(&hcd_urb_unlink_lock);
2132}
2133
2134/*-------------------------------------------------------------------------*/
2135
2136/* called in any context */
2137int usb_hcd_get_frame_number (struct usb_device *udev)
2138{
2139 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2140
2141 if (!HCD_RH_RUNNING(hcd))
2142 return -ESHUTDOWN;
2143 return hcd->driver->get_frame_number (hcd);
2144}
2145
2146/*-------------------------------------------------------------------------*/
2147
2148#ifdef CONFIG_PM
2149
2150int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2151{
2152 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2153 int status;
2154 int old_state = hcd->state;
2155
2156 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2157 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2158 rhdev->do_remote_wakeup);
2159 if (HCD_DEAD(hcd)) {
2160 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2161 return 0;
2162 }
2163
2164 if (!hcd->driver->bus_suspend) {
2165 status = -ENOENT;
2166 } else {
2167 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2168 hcd->state = HC_STATE_QUIESCING;
2169 status = hcd->driver->bus_suspend(hcd);
2170 }
2171 if (status == 0) {
2172 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2173 hcd->state = HC_STATE_SUSPENDED;
2174
2175 /* Did we race with a root-hub wakeup event? */
2176 if (rhdev->do_remote_wakeup) {
2177 char buffer[6];
2178
2179 status = hcd->driver->hub_status_data(hcd, buffer);
2180 if (status != 0) {
2181 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2182 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2183 status = -EBUSY;
2184 }
2185 }
2186 } else {
2187 spin_lock_irq(&hcd_root_hub_lock);
2188 if (!HCD_DEAD(hcd)) {
2189 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2190 hcd->state = old_state;
2191 }
2192 spin_unlock_irq(&hcd_root_hub_lock);
2193 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2194 "suspend", status);
2195 }
2196 return status;
2197}
2198
2199int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2200{
2201 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2202 int status;
2203 int old_state = hcd->state;
2204
2205 dev_dbg(&rhdev->dev, "usb %sresume\n",
2206 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2207 if (HCD_DEAD(hcd)) {
2208 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2209 return 0;
2210 }
2211 if (!hcd->driver->bus_resume)
2212 return -ENOENT;
2213 if (HCD_RH_RUNNING(hcd))
2214 return 0;
2215
2216 hcd->state = HC_STATE_RESUMING;
2217 status = hcd->driver->bus_resume(hcd);
2218 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2219 if (status == 0) {
2220 struct usb_device *udev;
2221 int port1;
2222
2223 spin_lock_irq(&hcd_root_hub_lock);
2224 if (!HCD_DEAD(hcd)) {
2225 usb_set_device_state(rhdev, rhdev->actconfig
2226 ? USB_STATE_CONFIGURED
2227 : USB_STATE_ADDRESS);
2228 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2229 hcd->state = HC_STATE_RUNNING;
2230 }
2231 spin_unlock_irq(&hcd_root_hub_lock);
2232
2233 /*
2234 * Check whether any of the enabled ports on the root hub are
2235 * unsuspended. If they are then a TRSMRCY delay is needed
2236 * (this is what the USB-2 spec calls a "global resume").
2237 * Otherwise we can skip the delay.
2238 */
2239 usb_hub_for_each_child(rhdev, port1, udev) {
2240 if (udev->state != USB_STATE_NOTATTACHED &&
2241 !udev->port_is_suspended) {
2242 usleep_range(10000, 11000); /* TRSMRCY */
2243 break;
2244 }
2245 }
2246 } else {
2247 hcd->state = old_state;
2248 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2249 "resume", status);
2250 if (status != -ESHUTDOWN)
2251 usb_hc_died(hcd);
2252 }
2253 return status;
2254}
2255
2256#endif /* CONFIG_PM */
2257
2258#ifdef CONFIG_PM_RUNTIME
2259
2260/* Workqueue routine for root-hub remote wakeup */
2261static void hcd_resume_work(struct work_struct *work)
2262{
2263 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2264 struct usb_device *udev = hcd->self.root_hub;
2265
2266 usb_lock_device(udev);
2267 usb_remote_wakeup(udev);
2268 usb_unlock_device(udev);
2269}
2270
2271/**
2272 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2273 * @hcd: host controller for this root hub
2274 *
2275 * The USB host controller calls this function when its root hub is
2276 * suspended (with the remote wakeup feature enabled) and a remote
2277 * wakeup request is received. The routine submits a workqueue request
2278 * to resume the root hub (that is, manage its downstream ports again).
2279 */
2280void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2281{
2282 unsigned long flags;
2283
2284 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2285 if (hcd->rh_registered) {
2286 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2287 queue_work(pm_wq, &hcd->wakeup_work);
2288 }
2289 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2290}
2291EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2292
2293#endif /* CONFIG_PM_RUNTIME */
2294
2295/*-------------------------------------------------------------------------*/
2296
2297#ifdef CONFIG_USB_OTG
2298
2299/**
2300 * usb_bus_start_enum - start immediate enumeration (for OTG)
2301 * @bus: the bus (must use hcd framework)
2302 * @port_num: 1-based number of port; usually bus->otg_port
2303 * Context: in_interrupt()
2304 *
2305 * Starts enumeration, with an immediate reset followed later by
2306 * khubd identifying and possibly configuring the device.
2307 * This is needed by OTG controller drivers, where it helps meet
2308 * HNP protocol timing requirements for starting a port reset.
2309 *
2310 * Return: 0 if successful.
2311 */
2312int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2313{
2314 struct usb_hcd *hcd;
2315 int status = -EOPNOTSUPP;
2316
2317 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2318 * boards with root hubs hooked up to internal devices (instead of
2319 * just the OTG port) may need more attention to resetting...
2320 */
2321 hcd = container_of (bus, struct usb_hcd, self);
2322 if (port_num && hcd->driver->start_port_reset)
2323 status = hcd->driver->start_port_reset(hcd, port_num);
2324
2325 /* run khubd shortly after (first) root port reset finishes;
2326 * it may issue others, until at least 50 msecs have passed.
2327 */
2328 if (status == 0)
2329 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2330 return status;
2331}
2332EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2333
2334#endif
2335
2336/*-------------------------------------------------------------------------*/
2337
2338/**
2339 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2340 * @irq: the IRQ being raised
2341 * @__hcd: pointer to the HCD whose IRQ is being signaled
2342 *
2343 * If the controller isn't HALTed, calls the driver's irq handler.
2344 * Checks whether the controller is now dead.
2345 *
2346 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2347 */
2348irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2349{
2350 struct usb_hcd *hcd = __hcd;
2351 irqreturn_t rc;
2352
2353 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2354 rc = IRQ_NONE;
2355 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2356 rc = IRQ_NONE;
2357 else
2358 rc = IRQ_HANDLED;
2359
2360 return rc;
2361}
2362EXPORT_SYMBOL_GPL(usb_hcd_irq);
2363
2364/*-------------------------------------------------------------------------*/
2365
2366/**
2367 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2368 * @hcd: pointer to the HCD representing the controller
2369 *
2370 * This is called by bus glue to report a USB host controller that died
2371 * while operations may still have been pending. It's called automatically
2372 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2373 *
2374 * Only call this function with the primary HCD.
2375 */
2376void usb_hc_died (struct usb_hcd *hcd)
2377{
2378 unsigned long flags;
2379
2380 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2381
2382 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2383 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2384 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2385 if (hcd->rh_registered) {
2386 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2387
2388 /* make khubd clean up old urbs and devices */
2389 usb_set_device_state (hcd->self.root_hub,
2390 USB_STATE_NOTATTACHED);
2391 usb_kick_khubd (hcd->self.root_hub);
2392 }
2393 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2394 hcd = hcd->shared_hcd;
2395 if (hcd->rh_registered) {
2396 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2397
2398 /* make khubd clean up old urbs and devices */
2399 usb_set_device_state(hcd->self.root_hub,
2400 USB_STATE_NOTATTACHED);
2401 usb_kick_khubd(hcd->self.root_hub);
2402 }
2403 }
2404 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2405 /* Make sure that the other roothub is also deallocated. */
2406}
2407EXPORT_SYMBOL_GPL (usb_hc_died);
2408
2409/*-------------------------------------------------------------------------*/
2410
2411static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2412{
2413
2414 spin_lock_init(&bh->lock);
2415 INIT_LIST_HEAD(&bh->head);
2416 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2417}
2418
2419/**
2420 * usb_create_shared_hcd - create and initialize an HCD structure
2421 * @driver: HC driver that will use this hcd
2422 * @dev: device for this HC, stored in hcd->self.controller
2423 * @bus_name: value to store in hcd->self.bus_name
2424 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2425 * PCI device. Only allocate certain resources for the primary HCD
2426 * Context: !in_interrupt()
2427 *
2428 * Allocate a struct usb_hcd, with extra space at the end for the
2429 * HC driver's private data. Initialize the generic members of the
2430 * hcd structure.
2431 *
2432 * Return: On success, a pointer to the created and initialized HCD structure.
2433 * On failure (e.g. if memory is unavailable), %NULL.
2434 */
2435struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2436 struct device *dev, const char *bus_name,
2437 struct usb_hcd *primary_hcd)
2438{
2439 struct usb_hcd *hcd;
2440
2441 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2442 if (!hcd) {
2443 dev_dbg (dev, "hcd alloc failed\n");
2444 return NULL;
2445 }
2446 if (primary_hcd == NULL) {
2447 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2448 GFP_KERNEL);
2449 if (!hcd->bandwidth_mutex) {
2450 kfree(hcd);
2451 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2452 return NULL;
2453 }
2454 mutex_init(hcd->bandwidth_mutex);
2455 dev_set_drvdata(dev, hcd);
2456 } else {
2457 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2458 hcd->primary_hcd = primary_hcd;
2459 primary_hcd->primary_hcd = primary_hcd;
2460 hcd->shared_hcd = primary_hcd;
2461 primary_hcd->shared_hcd = hcd;
2462 }
2463
2464 kref_init(&hcd->kref);
2465
2466 usb_bus_init(&hcd->self);
2467 hcd->self.controller = dev;
2468 hcd->self.bus_name = bus_name;
2469 hcd->self.uses_dma = (dev->dma_mask != NULL);
2470
2471 init_timer(&hcd->rh_timer);
2472 hcd->rh_timer.function = rh_timer_func;
2473 hcd->rh_timer.data = (unsigned long) hcd;
2474#ifdef CONFIG_PM_RUNTIME
2475 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2476#endif
2477
2478 hcd->driver = driver;
2479 hcd->speed = driver->flags & HCD_MASK;
2480 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2481 "USB Host Controller";
2482 return hcd;
2483}
2484EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2485
2486/**
2487 * usb_create_hcd - create and initialize an HCD structure
2488 * @driver: HC driver that will use this hcd
2489 * @dev: device for this HC, stored in hcd->self.controller
2490 * @bus_name: value to store in hcd->self.bus_name
2491 * Context: !in_interrupt()
2492 *
2493 * Allocate a struct usb_hcd, with extra space at the end for the
2494 * HC driver's private data. Initialize the generic members of the
2495 * hcd structure.
2496 *
2497 * Return: On success, a pointer to the created and initialized HCD
2498 * structure. On failure (e.g. if memory is unavailable), %NULL.
2499 */
2500struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2501 struct device *dev, const char *bus_name)
2502{
2503 return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2504}
2505EXPORT_SYMBOL_GPL(usb_create_hcd);
2506
2507/*
2508 * Roothubs that share one PCI device must also share the bandwidth mutex.
2509 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2510 * deallocated.
2511 *
2512 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2513 * freed. When hcd_release() is called for the non-primary HCD, set the
2514 * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2515 * freed shortly).
2516 */
2517static void hcd_release (struct kref *kref)
2518{
2519 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2520
2521 if (usb_hcd_is_primary_hcd(hcd))
2522 kfree(hcd->bandwidth_mutex);
2523 else
2524 hcd->shared_hcd->shared_hcd = NULL;
2525 kfree(hcd);
2526}
2527
2528struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2529{
2530 if (hcd)
2531 kref_get (&hcd->kref);
2532 return hcd;
2533}
2534EXPORT_SYMBOL_GPL(usb_get_hcd);
2535
2536void usb_put_hcd (struct usb_hcd *hcd)
2537{
2538 if (hcd)
2539 kref_put (&hcd->kref, hcd_release);
2540}
2541EXPORT_SYMBOL_GPL(usb_put_hcd);
2542
2543int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2544{
2545 if (!hcd->primary_hcd)
2546 return 1;
2547 return hcd == hcd->primary_hcd;
2548}
2549EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2550
2551int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2552{
2553 if (!hcd->driver->find_raw_port_number)
2554 return port1;
2555
2556 return hcd->driver->find_raw_port_number(hcd, port1);
2557}
2558
2559static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2560 unsigned int irqnum, unsigned long irqflags)
2561{
2562 int retval;
2563
2564 if (hcd->driver->irq) {
2565
2566 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2567 hcd->driver->description, hcd->self.busnum);
2568 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2569 hcd->irq_descr, hcd);
2570 if (retval != 0) {
2571 dev_err(hcd->self.controller,
2572 "request interrupt %d failed\n",
2573 irqnum);
2574 return retval;
2575 }
2576 hcd->irq = irqnum;
2577 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2578 (hcd->driver->flags & HCD_MEMORY) ?
2579 "io mem" : "io base",
2580 (unsigned long long)hcd->rsrc_start);
2581 } else {
2582 hcd->irq = 0;
2583 if (hcd->rsrc_start)
2584 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2585 (hcd->driver->flags & HCD_MEMORY) ?
2586 "io mem" : "io base",
2587 (unsigned long long)hcd->rsrc_start);
2588 }
2589 return 0;
2590}
2591
2592/**
2593 * usb_add_hcd - finish generic HCD structure initialization and register
2594 * @hcd: the usb_hcd structure to initialize
2595 * @irqnum: Interrupt line to allocate
2596 * @irqflags: Interrupt type flags
2597 *
2598 * Finish the remaining parts of generic HCD initialization: allocate the
2599 * buffers of consistent memory, register the bus, request the IRQ line,
2600 * and call the driver's reset() and start() routines.
2601 */
2602int usb_add_hcd(struct usb_hcd *hcd,
2603 unsigned int irqnum, unsigned long irqflags)
2604{
2605 int retval;
2606 struct usb_device *rhdev;
2607
2608 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->phy) {
2609 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2610
2611 if (IS_ERR(phy)) {
2612 retval = PTR_ERR(phy);
2613 if (retval == -EPROBE_DEFER)
2614 return retval;
2615 } else {
2616 retval = usb_phy_init(phy);
2617 if (retval) {
2618 usb_put_phy(phy);
2619 return retval;
2620 }
2621 hcd->phy = phy;
2622 hcd->remove_phy = 1;
2623 }
2624 }
2625
2626 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2627
2628 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2629 if (authorized_default < 0 || authorized_default > 1)
2630 hcd->authorized_default = hcd->wireless ? 0 : 1;
2631 else
2632 hcd->authorized_default = authorized_default;
2633 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2634
2635 /* HC is in reset state, but accessible. Now do the one-time init,
2636 * bottom up so that hcds can customize the root hubs before khubd
2637 * starts talking to them. (Note, bus id is assigned early too.)
2638 */
2639 if ((retval = hcd_buffer_create(hcd)) != 0) {
2640 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2641 goto err_remove_phy;
2642 }
2643
2644 if ((retval = usb_register_bus(&hcd->self)) < 0)
2645 goto err_register_bus;
2646
2647 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2648 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2649 retval = -ENOMEM;
2650 goto err_allocate_root_hub;
2651 }
2652 hcd->self.root_hub = rhdev;
2653
2654 switch (hcd->speed) {
2655 case HCD_USB11:
2656 rhdev->speed = USB_SPEED_FULL;
2657 break;
2658 case HCD_USB2:
2659 rhdev->speed = USB_SPEED_HIGH;
2660 break;
2661 case HCD_USB25:
2662 rhdev->speed = USB_SPEED_WIRELESS;
2663 break;
2664 case HCD_USB3:
2665 rhdev->speed = USB_SPEED_SUPER;
2666 break;
2667 default:
2668 retval = -EINVAL;
2669 goto err_set_rh_speed;
2670 }
2671
2672 /* wakeup flag init defaults to "everything works" for root hubs,
2673 * but drivers can override it in reset() if needed, along with
2674 * recording the overall controller's system wakeup capability.
2675 */
2676 device_set_wakeup_capable(&rhdev->dev, 1);
2677
2678 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2679 * registered. But since the controller can die at any time,
2680 * let's initialize the flag before touching the hardware.
2681 */
2682 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2683
2684 /* "reset" is misnamed; its role is now one-time init. the controller
2685 * should already have been reset (and boot firmware kicked off etc).
2686 */
2687 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2688 dev_err(hcd->self.controller, "can't setup: %d\n", retval);
2689 goto err_hcd_driver_setup;
2690 }
2691 hcd->rh_pollable = 1;
2692
2693 /* NOTE: root hub and controller capabilities may not be the same */
2694 if (device_can_wakeup(hcd->self.controller)
2695 && device_can_wakeup(&hcd->self.root_hub->dev))
2696 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2697
2698 /* initialize tasklets */
2699 init_giveback_urb_bh(&hcd->high_prio_bh);
2700 init_giveback_urb_bh(&hcd->low_prio_bh);
2701
2702 /* enable irqs just before we start the controller,
2703 * if the BIOS provides legacy PCI irqs.
2704 */
2705 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2706 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2707 if (retval)
2708 goto err_request_irq;
2709 }
2710
2711 hcd->state = HC_STATE_RUNNING;
2712 retval = hcd->driver->start(hcd);
2713 if (retval < 0) {
2714 dev_err(hcd->self.controller, "startup error %d\n", retval);
2715 goto err_hcd_driver_start;
2716 }
2717
2718 /* starting here, usbcore will pay attention to this root hub */
2719 if ((retval = register_root_hub(hcd)) != 0)
2720 goto err_register_root_hub;
2721
2722 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2723 if (retval < 0) {
2724 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2725 retval);
2726 goto error_create_attr_group;
2727 }
2728 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2729 usb_hcd_poll_rh_status(hcd);
2730
2731 return retval;
2732
2733error_create_attr_group:
2734 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2735 if (HC_IS_RUNNING(hcd->state))
2736 hcd->state = HC_STATE_QUIESCING;
2737 spin_lock_irq(&hcd_root_hub_lock);
2738 hcd->rh_registered = 0;
2739 spin_unlock_irq(&hcd_root_hub_lock);
2740
2741#ifdef CONFIG_PM_RUNTIME
2742 cancel_work_sync(&hcd->wakeup_work);
2743#endif
2744 mutex_lock(&usb_bus_list_lock);
2745 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2746 mutex_unlock(&usb_bus_list_lock);
2747err_register_root_hub:
2748 hcd->rh_pollable = 0;
2749 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2750 del_timer_sync(&hcd->rh_timer);
2751 hcd->driver->stop(hcd);
2752 hcd->state = HC_STATE_HALT;
2753 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2754 del_timer_sync(&hcd->rh_timer);
2755err_hcd_driver_start:
2756 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2757 free_irq(irqnum, hcd);
2758err_request_irq:
2759err_hcd_driver_setup:
2760err_set_rh_speed:
2761 usb_put_dev(hcd->self.root_hub);
2762err_allocate_root_hub:
2763 usb_deregister_bus(&hcd->self);
2764err_register_bus:
2765 hcd_buffer_destroy(hcd);
2766err_remove_phy:
2767 if (hcd->remove_phy && hcd->phy) {
2768 usb_phy_shutdown(hcd->phy);
2769 usb_put_phy(hcd->phy);
2770 hcd->phy = NULL;
2771 }
2772 return retval;
2773}
2774EXPORT_SYMBOL_GPL(usb_add_hcd);
2775
2776/**
2777 * usb_remove_hcd - shutdown processing for generic HCDs
2778 * @hcd: the usb_hcd structure to remove
2779 * Context: !in_interrupt()
2780 *
2781 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2782 * invoking the HCD's stop() method.
2783 */
2784void usb_remove_hcd(struct usb_hcd *hcd)
2785{
2786 struct usb_device *rhdev = hcd->self.root_hub;
2787
2788 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2789
2790 usb_get_dev(rhdev);
2791 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2792
2793 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2794 if (HC_IS_RUNNING (hcd->state))
2795 hcd->state = HC_STATE_QUIESCING;
2796
2797 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2798 spin_lock_irq (&hcd_root_hub_lock);
2799 hcd->rh_registered = 0;
2800 spin_unlock_irq (&hcd_root_hub_lock);
2801
2802#ifdef CONFIG_PM_RUNTIME
2803 cancel_work_sync(&hcd->wakeup_work);
2804#endif
2805
2806 mutex_lock(&usb_bus_list_lock);
2807 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2808 mutex_unlock(&usb_bus_list_lock);
2809
2810 /*
2811 * tasklet_kill() isn't needed here because:
2812 * - driver's disconnect() called from usb_disconnect() should
2813 * make sure its URBs are completed during the disconnect()
2814 * callback
2815 *
2816 * - it is too late to run complete() here since driver may have
2817 * been removed already now
2818 */
2819
2820 /* Prevent any more root-hub status calls from the timer.
2821 * The HCD might still restart the timer (if a port status change
2822 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2823 * the hub_status_data() callback.
2824 */
2825 hcd->rh_pollable = 0;
2826 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2827 del_timer_sync(&hcd->rh_timer);
2828
2829 hcd->driver->stop(hcd);
2830 hcd->state = HC_STATE_HALT;
2831
2832 /* In case the HCD restarted the timer, stop it again. */
2833 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2834 del_timer_sync(&hcd->rh_timer);
2835
2836 if (usb_hcd_is_primary_hcd(hcd)) {
2837 if (hcd->irq > 0)
2838 free_irq(hcd->irq, hcd);
2839 }
2840
2841 usb_put_dev(hcd->self.root_hub);
2842 usb_deregister_bus(&hcd->self);
2843 hcd_buffer_destroy(hcd);
2844 if (hcd->remove_phy && hcd->phy) {
2845 usb_phy_shutdown(hcd->phy);
2846 usb_put_phy(hcd->phy);
2847 hcd->phy = NULL;
2848 }
2849}
2850EXPORT_SYMBOL_GPL(usb_remove_hcd);
2851
2852void
2853usb_hcd_platform_shutdown(struct platform_device *dev)
2854{
2855 struct usb_hcd *hcd = platform_get_drvdata(dev);
2856
2857 if (hcd->driver->shutdown)
2858 hcd->driver->shutdown(hcd);
2859}
2860EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2861
2862/*-------------------------------------------------------------------------*/
2863
2864#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2865
2866struct usb_mon_operations *mon_ops;
2867
2868/*
2869 * The registration is unlocked.
2870 * We do it this way because we do not want to lock in hot paths.
2871 *
2872 * Notice that the code is minimally error-proof. Because usbmon needs
2873 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2874 */
2875
2876int usb_mon_register (struct usb_mon_operations *ops)
2877{
2878
2879 if (mon_ops)
2880 return -EBUSY;
2881
2882 mon_ops = ops;
2883 mb();
2884 return 0;
2885}
2886EXPORT_SYMBOL_GPL (usb_mon_register);
2887
2888void usb_mon_deregister (void)
2889{
2890
2891 if (mon_ops == NULL) {
2892 printk(KERN_ERR "USB: monitor was not registered\n");
2893 return;
2894 }
2895 mon_ops = NULL;
2896 mb();
2897}
2898EXPORT_SYMBOL_GPL (usb_mon_deregister);
2899
2900#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */