Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1/*
   2 * MSM 7k/8k High speed uart driver
   3 *
   4 * Copyright (c) 2007-2011, Code Aurora Forum. All rights reserved.
   5 * Copyright (c) 2008 Google Inc.
   6 * Modified: Nick Pelly <npelly@google.com>
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License
  10 * version 2 as published by the Free Software Foundation.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  15 * See the GNU General Public License for more details.
  16 *
  17 * Has optional support for uart power management independent of linux
  18 * suspend/resume:
  19 *
  20 * RX wakeup.
  21 * UART wakeup can be triggered by RX activity (using a wakeup GPIO on the
  22 * UART RX pin). This should only be used if there is not a wakeup
  23 * GPIO on the UART CTS, and the first RX byte is known (for example, with the
  24 * Bluetooth Texas Instruments HCILL protocol), since the first RX byte will
  25 * always be lost. RTS will be asserted even while the UART is off in this mode
  26 * of operation. See msm_serial_hs_platform_data.rx_wakeup_irq.
  27 */
  28
  29#include <linux/module.h>
  30
  31#include <linux/serial.h>
  32#include <linux/serial_core.h>
  33#include <linux/tty.h>
  34#include <linux/tty_flip.h>
  35#include <linux/slab.h>
  36#include <linux/init.h>
  37#include <linux/interrupt.h>
  38#include <linux/irq.h>
  39#include <linux/io.h>
  40#include <linux/ioport.h>
  41#include <linux/kernel.h>
  42#include <linux/timer.h>
  43#include <linux/clk.h>
  44#include <linux/platform_device.h>
  45#include <linux/pm_runtime.h>
  46#include <linux/dma-mapping.h>
  47#include <linux/dmapool.h>
  48#include <linux/wait.h>
  49#include <linux/workqueue.h>
  50
  51#include <linux/atomic.h>
  52#include <asm/irq.h>
  53
  54#include <mach/hardware.h>
  55#include <mach/dma.h>
  56#include <linux/platform_data/msm_serial_hs.h>
  57
  58/* HSUART Registers */
  59#define UARTDM_MR1_ADDR 0x0
  60#define UARTDM_MR2_ADDR 0x4
  61
  62/* Data Mover result codes */
  63#define RSLT_FIFO_CNTR_BMSK (0xE << 28)
  64#define RSLT_VLD            BIT(1)
  65
  66/* write only register */
  67#define UARTDM_CSR_ADDR 0x8
  68#define UARTDM_CSR_115200 0xFF
  69#define UARTDM_CSR_57600  0xEE
  70#define UARTDM_CSR_38400  0xDD
  71#define UARTDM_CSR_28800  0xCC
  72#define UARTDM_CSR_19200  0xBB
  73#define UARTDM_CSR_14400  0xAA
  74#define UARTDM_CSR_9600   0x99
  75#define UARTDM_CSR_7200   0x88
  76#define UARTDM_CSR_4800   0x77
  77#define UARTDM_CSR_3600   0x66
  78#define UARTDM_CSR_2400   0x55
  79#define UARTDM_CSR_1200   0x44
  80#define UARTDM_CSR_600    0x33
  81#define UARTDM_CSR_300    0x22
  82#define UARTDM_CSR_150    0x11
  83#define UARTDM_CSR_75     0x00
  84
  85/* write only register */
  86#define UARTDM_TF_ADDR 0x70
  87#define UARTDM_TF2_ADDR 0x74
  88#define UARTDM_TF3_ADDR 0x78
  89#define UARTDM_TF4_ADDR 0x7C
  90
  91/* write only register */
  92#define UARTDM_CR_ADDR 0x10
  93#define UARTDM_IMR_ADDR 0x14
  94
  95#define UARTDM_IPR_ADDR 0x18
  96#define UARTDM_TFWR_ADDR 0x1c
  97#define UARTDM_RFWR_ADDR 0x20
  98#define UARTDM_HCR_ADDR 0x24
  99#define UARTDM_DMRX_ADDR 0x34
 100#define UARTDM_IRDA_ADDR 0x38
 101#define UARTDM_DMEN_ADDR 0x3c
 102
 103/* UART_DM_NO_CHARS_FOR_TX */
 104#define UARTDM_NCF_TX_ADDR 0x40
 105
 106#define UARTDM_BADR_ADDR 0x44
 107
 108#define UARTDM_SIM_CFG_ADDR 0x80
 109/* Read Only register */
 110#define UARTDM_SR_ADDR 0x8
 111
 112/* Read Only register */
 113#define UARTDM_RF_ADDR  0x70
 114#define UARTDM_RF2_ADDR 0x74
 115#define UARTDM_RF3_ADDR 0x78
 116#define UARTDM_RF4_ADDR 0x7C
 117
 118/* Read Only register */
 119#define UARTDM_MISR_ADDR 0x10
 120
 121/* Read Only register */
 122#define UARTDM_ISR_ADDR 0x14
 123#define UARTDM_RX_TOTAL_SNAP_ADDR 0x38
 124
 125#define UARTDM_RXFS_ADDR 0x50
 126
 127/* Register field Mask Mapping */
 128#define UARTDM_SR_PAR_FRAME_BMSK        BIT(5)
 129#define UARTDM_SR_OVERRUN_BMSK          BIT(4)
 130#define UARTDM_SR_TXEMT_BMSK            BIT(3)
 131#define UARTDM_SR_TXRDY_BMSK            BIT(2)
 132#define UARTDM_SR_RXRDY_BMSK            BIT(0)
 133
 134#define UARTDM_CR_TX_DISABLE_BMSK       BIT(3)
 135#define UARTDM_CR_RX_DISABLE_BMSK       BIT(1)
 136#define UARTDM_CR_TX_EN_BMSK            BIT(2)
 137#define UARTDM_CR_RX_EN_BMSK            BIT(0)
 138
 139/* UARTDM_CR channel_comman bit value (register field is bits 8:4) */
 140#define RESET_RX                0x10
 141#define RESET_TX                0x20
 142#define RESET_ERROR_STATUS      0x30
 143#define RESET_BREAK_INT         0x40
 144#define START_BREAK             0x50
 145#define STOP_BREAK              0x60
 146#define RESET_CTS               0x70
 147#define RESET_STALE_INT         0x80
 148#define RFR_LOW                 0xD0
 149#define RFR_HIGH                0xE0
 150#define CR_PROTECTION_EN        0x100
 151#define STALE_EVENT_ENABLE      0x500
 152#define STALE_EVENT_DISABLE     0x600
 153#define FORCE_STALE_EVENT       0x400
 154#define CLEAR_TX_READY          0x300
 155#define RESET_TX_ERROR          0x800
 156#define RESET_TX_DONE           0x810
 157
 158#define UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK 0xffffff00
 159#define UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK 0x3f
 160#define UARTDM_MR1_CTS_CTL_BMSK 0x40
 161#define UARTDM_MR1_RX_RDY_CTL_BMSK 0x80
 162
 163#define UARTDM_MR2_ERROR_MODE_BMSK 0x40
 164#define UARTDM_MR2_BITS_PER_CHAR_BMSK 0x30
 165
 166/* bits per character configuration */
 167#define FIVE_BPC  (0 << 4)
 168#define SIX_BPC   (1 << 4)
 169#define SEVEN_BPC (2 << 4)
 170#define EIGHT_BPC (3 << 4)
 171
 172#define UARTDM_MR2_STOP_BIT_LEN_BMSK 0xc
 173#define STOP_BIT_ONE (1 << 2)
 174#define STOP_BIT_TWO (3 << 2)
 175
 176#define UARTDM_MR2_PARITY_MODE_BMSK 0x3
 177
 178/* Parity configuration */
 179#define NO_PARITY 0x0
 180#define EVEN_PARITY 0x1
 181#define ODD_PARITY 0x2
 182#define SPACE_PARITY 0x3
 183
 184#define UARTDM_IPR_STALE_TIMEOUT_MSB_BMSK 0xffffff80
 185#define UARTDM_IPR_STALE_LSB_BMSK 0x1f
 186
 187/* These can be used for both ISR and IMR register */
 188#define UARTDM_ISR_TX_READY_BMSK        BIT(7)
 189#define UARTDM_ISR_CURRENT_CTS_BMSK     BIT(6)
 190#define UARTDM_ISR_DELTA_CTS_BMSK       BIT(5)
 191#define UARTDM_ISR_RXLEV_BMSK           BIT(4)
 192#define UARTDM_ISR_RXSTALE_BMSK         BIT(3)
 193#define UARTDM_ISR_RXBREAK_BMSK         BIT(2)
 194#define UARTDM_ISR_RXHUNT_BMSK          BIT(1)
 195#define UARTDM_ISR_TXLEV_BMSK           BIT(0)
 196
 197/* Field definitions for UART_DM_DMEN*/
 198#define UARTDM_TX_DM_EN_BMSK 0x1
 199#define UARTDM_RX_DM_EN_BMSK 0x2
 200
 201#define UART_FIFOSIZE 64
 202#define UARTCLK 7372800
 203
 204/* Rx DMA request states */
 205enum flush_reason {
 206	FLUSH_NONE,
 207	FLUSH_DATA_READY,
 208	FLUSH_DATA_INVALID,  /* values after this indicate invalid data */
 209	FLUSH_IGNORE = FLUSH_DATA_INVALID,
 210	FLUSH_STOP,
 211	FLUSH_SHUTDOWN,
 212};
 213
 214/* UART clock states */
 215enum msm_hs_clk_states_e {
 216	MSM_HS_CLK_PORT_OFF,     /* port not in use */
 217	MSM_HS_CLK_OFF,          /* clock disabled */
 218	MSM_HS_CLK_REQUEST_OFF,  /* disable after TX and RX flushed */
 219	MSM_HS_CLK_ON,           /* clock enabled */
 220};
 221
 222/* Track the forced RXSTALE flush during clock off sequence.
 223 * These states are only valid during MSM_HS_CLK_REQUEST_OFF */
 224enum msm_hs_clk_req_off_state_e {
 225	CLK_REQ_OFF_START,
 226	CLK_REQ_OFF_RXSTALE_ISSUED,
 227	CLK_REQ_OFF_FLUSH_ISSUED,
 228	CLK_REQ_OFF_RXSTALE_FLUSHED,
 229};
 230
 231/**
 232 * struct msm_hs_tx
 233 * @tx_ready_int_en: ok to dma more tx?
 234 * @dma_in_flight: tx dma in progress
 235 * @xfer: top level DMA command pointer structure
 236 * @command_ptr: third level command struct pointer
 237 * @command_ptr_ptr: second level command list struct pointer
 238 * @mapped_cmd_ptr: DMA view of third level command struct
 239 * @mapped_cmd_ptr_ptr: DMA view of second level command list struct
 240 * @tx_count: number of bytes to transfer in DMA transfer
 241 * @dma_base: DMA view of UART xmit buffer
 242 *
 243 * This structure describes a single Tx DMA transaction. MSM DMA
 244 * commands have two levels of indirection. The top level command
 245 * ptr points to a list of command ptr which in turn points to a
 246 * single DMA 'command'. In our case each Tx transaction consists
 247 * of a single second level pointer pointing to a 'box type' command.
 248 */
 249struct msm_hs_tx {
 250	unsigned int tx_ready_int_en;
 251	unsigned int dma_in_flight;
 252	struct msm_dmov_cmd xfer;
 253	dmov_box *command_ptr;
 254	u32 *command_ptr_ptr;
 255	dma_addr_t mapped_cmd_ptr;
 256	dma_addr_t mapped_cmd_ptr_ptr;
 257	int tx_count;
 258	dma_addr_t dma_base;
 259};
 260
 261/**
 262 * struct msm_hs_rx
 263 * @flush: Rx DMA request state
 264 * @xfer: top level DMA command pointer structure
 265 * @cmdptr_dmaaddr: DMA view of second level command structure
 266 * @command_ptr: third level DMA command pointer structure
 267 * @command_ptr_ptr: second level DMA command list pointer
 268 * @mapped_cmd_ptr: DMA view of the third level command structure
 269 * @wait: wait for DMA completion before shutdown
 270 * @buffer: destination buffer for RX DMA
 271 * @rbuffer: DMA view of buffer
 272 * @pool: dma pool out of which coherent rx buffer is allocated
 273 * @tty_work: private work-queue for tty flip buffer push task
 274 *
 275 * This structure describes a single Rx DMA transaction. Rx DMA
 276 * transactions use box mode DMA commands.
 277 */
 278struct msm_hs_rx {
 279	enum flush_reason flush;
 280	struct msm_dmov_cmd xfer;
 281	dma_addr_t cmdptr_dmaaddr;
 282	dmov_box *command_ptr;
 283	u32 *command_ptr_ptr;
 284	dma_addr_t mapped_cmd_ptr;
 285	wait_queue_head_t wait;
 286	dma_addr_t rbuffer;
 287	unsigned char *buffer;
 288	struct dma_pool *pool;
 289	struct work_struct tty_work;
 290};
 291
 292/**
 293 * struct msm_hs_rx_wakeup
 294 * @irq: IRQ line to be configured as interrupt source on Rx activity
 295 * @ignore: boolean value. 1 = ignore the wakeup interrupt
 296 * @rx_to_inject: extra character to be inserted to Rx tty on wakeup
 297 * @inject_rx: 1 = insert rx_to_inject. 0 = do not insert extra character
 298 *
 299 * This is an optional structure required for UART Rx GPIO IRQ based
 300 * wakeup from low power state. UART wakeup can be triggered by RX activity
 301 * (using a wakeup GPIO on the UART RX pin). This should only be used if
 302 * there is not a wakeup GPIO on the UART CTS, and the first RX byte is
 303 * known (eg., with the Bluetooth Texas Instruments HCILL protocol),
 304 * since the first RX byte will always be lost. RTS will be asserted even
 305 * while the UART is clocked off in this mode of operation.
 306 */
 307struct msm_hs_rx_wakeup {
 308	int irq;  /* < 0 indicates low power wakeup disabled */
 309	unsigned char ignore;
 310	unsigned char inject_rx;
 311	char rx_to_inject;
 312};
 313
 314/**
 315 * struct msm_hs_port
 316 * @uport: embedded uart port structure
 317 * @imr_reg: shadow value of UARTDM_IMR
 318 * @clk: uart input clock handle
 319 * @tx: Tx transaction related data structure
 320 * @rx: Rx transaction related data structure
 321 * @dma_tx_channel: Tx DMA command channel
 322 * @dma_rx_channel Rx DMA command channel
 323 * @dma_tx_crci: Tx channel rate control interface number
 324 * @dma_rx_crci: Rx channel rate control interface number
 325 * @clk_off_timer: Timer to poll DMA event completion before clock off
 326 * @clk_off_delay: clk_off_timer poll interval
 327 * @clk_state: overall clock state
 328 * @clk_req_off_state: post flush clock states
 329 * @rx_wakeup: optional rx_wakeup feature related data
 330 * @exit_lpm_cb: optional callback to exit low power mode
 331 *
 332 * Low level serial port structure.
 333 */
 334struct msm_hs_port {
 335	struct uart_port uport;
 336	unsigned long imr_reg;
 337	struct clk *clk;
 338	struct msm_hs_tx tx;
 339	struct msm_hs_rx rx;
 340
 341	int dma_tx_channel;
 342	int dma_rx_channel;
 343	int dma_tx_crci;
 344	int dma_rx_crci;
 345
 346	struct hrtimer clk_off_timer;
 347	ktime_t clk_off_delay;
 348	enum msm_hs_clk_states_e clk_state;
 349	enum msm_hs_clk_req_off_state_e clk_req_off_state;
 350
 351	struct msm_hs_rx_wakeup rx_wakeup;
 352	void (*exit_lpm_cb)(struct uart_port *);
 353};
 354
 355#define MSM_UARTDM_BURST_SIZE 16   /* DM burst size (in bytes) */
 356#define UARTDM_TX_BUF_SIZE UART_XMIT_SIZE
 357#define UARTDM_RX_BUF_SIZE 512
 358
 359#define UARTDM_NR 2
 360
 361static struct msm_hs_port q_uart_port[UARTDM_NR];
 362static struct platform_driver msm_serial_hs_platform_driver;
 363static struct uart_driver msm_hs_driver;
 364static struct uart_ops msm_hs_ops;
 365static struct workqueue_struct *msm_hs_workqueue;
 366
 367#define UARTDM_TO_MSM(uart_port) \
 368	container_of((uart_port), struct msm_hs_port, uport)
 369
 370static unsigned int use_low_power_rx_wakeup(struct msm_hs_port
 371						   *msm_uport)
 372{
 373	return (msm_uport->rx_wakeup.irq >= 0);
 374}
 375
 376static unsigned int msm_hs_read(struct uart_port *uport,
 377				       unsigned int offset)
 378{
 379	return ioread32(uport->membase + offset);
 380}
 381
 382static void msm_hs_write(struct uart_port *uport, unsigned int offset,
 383				 unsigned int value)
 384{
 385	iowrite32(value, uport->membase + offset);
 386}
 387
 388static void msm_hs_release_port(struct uart_port *port)
 389{
 390	iounmap(port->membase);
 391}
 392
 393static int msm_hs_request_port(struct uart_port *port)
 394{
 395	port->membase = ioremap(port->mapbase, PAGE_SIZE);
 396	if (unlikely(!port->membase))
 397		return -ENOMEM;
 398
 399	/* configure the CR Protection to Enable */
 400	msm_hs_write(port, UARTDM_CR_ADDR, CR_PROTECTION_EN);
 401	return 0;
 402}
 403
 404static int msm_hs_remove(struct platform_device *pdev)
 405{
 406
 407	struct msm_hs_port *msm_uport;
 408	struct device *dev;
 409
 410	if (pdev->id < 0 || pdev->id >= UARTDM_NR) {
 411		printk(KERN_ERR "Invalid plaform device ID = %d\n", pdev->id);
 412		return -EINVAL;
 413	}
 414
 415	msm_uport = &q_uart_port[pdev->id];
 416	dev = msm_uport->uport.dev;
 417
 418	dma_unmap_single(dev, msm_uport->rx.mapped_cmd_ptr, sizeof(dmov_box),
 419			 DMA_TO_DEVICE);
 420	dma_pool_free(msm_uport->rx.pool, msm_uport->rx.buffer,
 421		      msm_uport->rx.rbuffer);
 422	dma_pool_destroy(msm_uport->rx.pool);
 423
 424	dma_unmap_single(dev, msm_uport->rx.cmdptr_dmaaddr, sizeof(u32),
 425			 DMA_TO_DEVICE);
 426	dma_unmap_single(dev, msm_uport->tx.mapped_cmd_ptr_ptr, sizeof(u32),
 427			 DMA_TO_DEVICE);
 428	dma_unmap_single(dev, msm_uport->tx.mapped_cmd_ptr, sizeof(dmov_box),
 429			 DMA_TO_DEVICE);
 430
 431	uart_remove_one_port(&msm_hs_driver, &msm_uport->uport);
 432	clk_put(msm_uport->clk);
 433
 434	/* Free the tx resources */
 435	kfree(msm_uport->tx.command_ptr);
 436	kfree(msm_uport->tx.command_ptr_ptr);
 437
 438	/* Free the rx resources */
 439	kfree(msm_uport->rx.command_ptr);
 440	kfree(msm_uport->rx.command_ptr_ptr);
 441
 442	iounmap(msm_uport->uport.membase);
 443
 444	return 0;
 445}
 446
 447static int msm_hs_init_clk_locked(struct uart_port *uport)
 448{
 449	int ret;
 450	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 451
 452	ret = clk_enable(msm_uport->clk);
 453	if (ret) {
 454		printk(KERN_ERR "Error could not turn on UART clk\n");
 455		return ret;
 456	}
 457
 458	/* Set up the MREG/NREG/DREG/MNDREG */
 459	ret = clk_set_rate(msm_uport->clk, uport->uartclk);
 460	if (ret) {
 461		printk(KERN_WARNING "Error setting clock rate on UART\n");
 462		clk_disable(msm_uport->clk);
 463		return ret;
 464	}
 465
 466	msm_uport->clk_state = MSM_HS_CLK_ON;
 467	return 0;
 468}
 469
 470/* Enable and Disable clocks  (Used for power management) */
 471static void msm_hs_pm(struct uart_port *uport, unsigned int state,
 472		      unsigned int oldstate)
 473{
 474	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 475
 476	if (use_low_power_rx_wakeup(msm_uport) ||
 477	    msm_uport->exit_lpm_cb)
 478		return;  /* ignore linux PM states,
 479			    use msm_hs_request_clock API */
 480
 481	switch (state) {
 482	case 0:
 483		clk_enable(msm_uport->clk);
 484		break;
 485	case 3:
 486		clk_disable(msm_uport->clk);
 487		break;
 488	default:
 489		dev_err(uport->dev, "msm_serial: Unknown PM state %d\n",
 490			state);
 491	}
 492}
 493
 494/*
 495 * programs the UARTDM_CSR register with correct bit rates
 496 *
 497 * Interrupts should be disabled before we are called, as
 498 * we modify Set Baud rate
 499 * Set receive stale interrupt level, dependent on Bit Rate
 500 * Goal is to have around 8 ms before indicate stale.
 501 * roundup (((Bit Rate * .008) / 10) + 1
 502 */
 503static void msm_hs_set_bps_locked(struct uart_port *uport,
 504				  unsigned int bps)
 505{
 506	unsigned long rxstale;
 507	unsigned long data;
 508	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 509
 510	switch (bps) {
 511	case 300:
 512		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_75);
 513		rxstale = 1;
 514		break;
 515	case 600:
 516		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_150);
 517		rxstale = 1;
 518		break;
 519	case 1200:
 520		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_300);
 521		rxstale = 1;
 522		break;
 523	case 2400:
 524		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_600);
 525		rxstale = 1;
 526		break;
 527	case 4800:
 528		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_1200);
 529		rxstale = 1;
 530		break;
 531	case 9600:
 532		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_2400);
 533		rxstale = 2;
 534		break;
 535	case 14400:
 536		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_3600);
 537		rxstale = 3;
 538		break;
 539	case 19200:
 540		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_4800);
 541		rxstale = 4;
 542		break;
 543	case 28800:
 544		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_7200);
 545		rxstale = 6;
 546		break;
 547	case 38400:
 548		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_9600);
 549		rxstale = 8;
 550		break;
 551	case 57600:
 552		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_14400);
 553		rxstale = 16;
 554		break;
 555	case 76800:
 556		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_19200);
 557		rxstale = 16;
 558		break;
 559	case 115200:
 560		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_28800);
 561		rxstale = 31;
 562		break;
 563	case 230400:
 564		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_57600);
 565		rxstale = 31;
 566		break;
 567	case 460800:
 568		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_115200);
 569		rxstale = 31;
 570		break;
 571	case 4000000:
 572	case 3686400:
 573	case 3200000:
 574	case 3500000:
 575	case 3000000:
 576	case 2500000:
 577	case 1500000:
 578	case 1152000:
 579	case 1000000:
 580	case 921600:
 581		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_115200);
 582		rxstale = 31;
 583		break;
 584	default:
 585		msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_2400);
 586		/* default to 9600 */
 587		bps = 9600;
 588		rxstale = 2;
 589		break;
 590	}
 591	if (bps > 460800)
 592		uport->uartclk = bps * 16;
 593	else
 594		uport->uartclk = UARTCLK;
 595
 596	if (clk_set_rate(msm_uport->clk, uport->uartclk)) {
 597		printk(KERN_WARNING "Error setting clock rate on UART\n");
 598		return;
 599	}
 600
 601	data = rxstale & UARTDM_IPR_STALE_LSB_BMSK;
 602	data |= UARTDM_IPR_STALE_TIMEOUT_MSB_BMSK & (rxstale << 2);
 603
 604	msm_hs_write(uport, UARTDM_IPR_ADDR, data);
 605}
 606
 607/*
 608 * termios :  new ktermios
 609 * oldtermios:  old ktermios previous setting
 610 *
 611 * Configure the serial port
 612 */
 613static void msm_hs_set_termios(struct uart_port *uport,
 614			       struct ktermios *termios,
 615			       struct ktermios *oldtermios)
 616{
 617	unsigned int bps;
 618	unsigned long data;
 619	unsigned long flags;
 620	unsigned int c_cflag = termios->c_cflag;
 621	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 622
 623	spin_lock_irqsave(&uport->lock, flags);
 624	clk_enable(msm_uport->clk);
 625
 626	/* 300 is the minimum baud support by the driver  */
 627	bps = uart_get_baud_rate(uport, termios, oldtermios, 200, 4000000);
 628
 629	/* Temporary remapping  200 BAUD to 3.2 mbps */
 630	if (bps == 200)
 631		bps = 3200000;
 632
 633	msm_hs_set_bps_locked(uport, bps);
 634
 635	data = msm_hs_read(uport, UARTDM_MR2_ADDR);
 636	data &= ~UARTDM_MR2_PARITY_MODE_BMSK;
 637	/* set parity */
 638	if (PARENB == (c_cflag & PARENB)) {
 639		if (PARODD == (c_cflag & PARODD))
 640			data |= ODD_PARITY;
 641		else if (CMSPAR == (c_cflag & CMSPAR))
 642			data |= SPACE_PARITY;
 643		else
 644			data |= EVEN_PARITY;
 645	}
 646
 647	/* Set bits per char */
 648	data &= ~UARTDM_MR2_BITS_PER_CHAR_BMSK;
 649
 650	switch (c_cflag & CSIZE) {
 651	case CS5:
 652		data |= FIVE_BPC;
 653		break;
 654	case CS6:
 655		data |= SIX_BPC;
 656		break;
 657	case CS7:
 658		data |= SEVEN_BPC;
 659		break;
 660	default:
 661		data |= EIGHT_BPC;
 662		break;
 663	}
 664	/* stop bits */
 665	if (c_cflag & CSTOPB) {
 666		data |= STOP_BIT_TWO;
 667	} else {
 668		/* otherwise 1 stop bit */
 669		data |= STOP_BIT_ONE;
 670	}
 671	data |= UARTDM_MR2_ERROR_MODE_BMSK;
 672	/* write parity/bits per char/stop bit configuration */
 673	msm_hs_write(uport, UARTDM_MR2_ADDR, data);
 674
 675	/* Configure HW flow control */
 676	data = msm_hs_read(uport, UARTDM_MR1_ADDR);
 677
 678	data &= ~(UARTDM_MR1_CTS_CTL_BMSK | UARTDM_MR1_RX_RDY_CTL_BMSK);
 679
 680	if (c_cflag & CRTSCTS) {
 681		data |= UARTDM_MR1_CTS_CTL_BMSK;
 682		data |= UARTDM_MR1_RX_RDY_CTL_BMSK;
 683	}
 684
 685	msm_hs_write(uport, UARTDM_MR1_ADDR, data);
 686
 687	uport->ignore_status_mask = termios->c_iflag & INPCK;
 688	uport->ignore_status_mask |= termios->c_iflag & IGNPAR;
 689	uport->read_status_mask = (termios->c_cflag & CREAD);
 690
 691	msm_hs_write(uport, UARTDM_IMR_ADDR, 0);
 692
 693	/* Set Transmit software time out */
 694	uart_update_timeout(uport, c_cflag, bps);
 695
 696	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_RX);
 697	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_TX);
 698
 699	if (msm_uport->rx.flush == FLUSH_NONE) {
 700		msm_uport->rx.flush = FLUSH_IGNORE;
 701		msm_dmov_stop_cmd(msm_uport->dma_rx_channel, NULL, 1);
 702	}
 703
 704	msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
 705
 706	clk_disable(msm_uport->clk);
 707	spin_unlock_irqrestore(&uport->lock, flags);
 708}
 709
 710/*
 711 *  Standard API, Transmitter
 712 *  Any character in the transmit shift register is sent
 713 */
 714static unsigned int msm_hs_tx_empty(struct uart_port *uport)
 715{
 716	unsigned int data;
 717	unsigned int ret = 0;
 718	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 719
 720	clk_enable(msm_uport->clk);
 721
 722	data = msm_hs_read(uport, UARTDM_SR_ADDR);
 723	if (data & UARTDM_SR_TXEMT_BMSK)
 724		ret = TIOCSER_TEMT;
 725
 726	clk_disable(msm_uport->clk);
 727
 728	return ret;
 729}
 730
 731/*
 732 *  Standard API, Stop transmitter.
 733 *  Any character in the transmit shift register is sent as
 734 *  well as the current data mover transfer .
 735 */
 736static void msm_hs_stop_tx_locked(struct uart_port *uport)
 737{
 738	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 739
 740	msm_uport->tx.tx_ready_int_en = 0;
 741}
 742
 743/*
 744 *  Standard API, Stop receiver as soon as possible.
 745 *
 746 *  Function immediately terminates the operation of the
 747 *  channel receiver and any incoming characters are lost. None
 748 *  of the receiver status bits are affected by this command and
 749 *  characters that are already in the receive FIFO there.
 750 */
 751static void msm_hs_stop_rx_locked(struct uart_port *uport)
 752{
 753	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 754	unsigned int data;
 755
 756	clk_enable(msm_uport->clk);
 757
 758	/* disable dlink */
 759	data = msm_hs_read(uport, UARTDM_DMEN_ADDR);
 760	data &= ~UARTDM_RX_DM_EN_BMSK;
 761	msm_hs_write(uport, UARTDM_DMEN_ADDR, data);
 762
 763	/* Disable the receiver */
 764	if (msm_uport->rx.flush == FLUSH_NONE)
 765		msm_dmov_stop_cmd(msm_uport->dma_rx_channel, NULL, 1);
 766
 767	if (msm_uport->rx.flush != FLUSH_SHUTDOWN)
 768		msm_uport->rx.flush = FLUSH_STOP;
 769
 770	clk_disable(msm_uport->clk);
 771}
 772
 773/*  Transmit the next chunk of data */
 774static void msm_hs_submit_tx_locked(struct uart_port *uport)
 775{
 776	int left;
 777	int tx_count;
 778	dma_addr_t src_addr;
 779	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 780	struct msm_hs_tx *tx = &msm_uport->tx;
 781	struct circ_buf *tx_buf = &msm_uport->uport.state->xmit;
 782
 783	if (uart_circ_empty(tx_buf) || uport->state->port.tty->stopped) {
 784		msm_hs_stop_tx_locked(uport);
 785		return;
 786	}
 787
 788	tx->dma_in_flight = 1;
 789
 790	tx_count = uart_circ_chars_pending(tx_buf);
 791
 792	if (UARTDM_TX_BUF_SIZE < tx_count)
 793		tx_count = UARTDM_TX_BUF_SIZE;
 794
 795	left = UART_XMIT_SIZE - tx_buf->tail;
 796
 797	if (tx_count > left)
 798		tx_count = left;
 799
 800	src_addr = tx->dma_base + tx_buf->tail;
 801	dma_sync_single_for_device(uport->dev, src_addr, tx_count,
 802				   DMA_TO_DEVICE);
 803
 804	tx->command_ptr->num_rows = (((tx_count + 15) >> 4) << 16) |
 805				     ((tx_count + 15) >> 4);
 806	tx->command_ptr->src_row_addr = src_addr;
 807
 808	dma_sync_single_for_device(uport->dev, tx->mapped_cmd_ptr,
 809				   sizeof(dmov_box), DMA_TO_DEVICE);
 810
 811	*tx->command_ptr_ptr = CMD_PTR_LP | DMOV_CMD_ADDR(tx->mapped_cmd_ptr);
 812
 813	dma_sync_single_for_device(uport->dev, tx->mapped_cmd_ptr_ptr,
 814				   sizeof(u32), DMA_TO_DEVICE);
 815
 816	/* Save tx_count to use in Callback */
 817	tx->tx_count = tx_count;
 818	msm_hs_write(uport, UARTDM_NCF_TX_ADDR, tx_count);
 819
 820	/* Disable the tx_ready interrupt */
 821	msm_uport->imr_reg &= ~UARTDM_ISR_TX_READY_BMSK;
 822	msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
 823	msm_dmov_enqueue_cmd(msm_uport->dma_tx_channel, &tx->xfer);
 824}
 825
 826/* Start to receive the next chunk of data */
 827static void msm_hs_start_rx_locked(struct uart_port *uport)
 828{
 829	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 830
 831	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_STALE_INT);
 832	msm_hs_write(uport, UARTDM_DMRX_ADDR, UARTDM_RX_BUF_SIZE);
 833	msm_hs_write(uport, UARTDM_CR_ADDR, STALE_EVENT_ENABLE);
 834	msm_uport->imr_reg |= UARTDM_ISR_RXLEV_BMSK;
 835	msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
 836
 837	msm_uport->rx.flush = FLUSH_NONE;
 838	msm_dmov_enqueue_cmd(msm_uport->dma_rx_channel, &msm_uport->rx.xfer);
 839
 840	/* might have finished RX and be ready to clock off */
 841	hrtimer_start(&msm_uport->clk_off_timer, msm_uport->clk_off_delay,
 842			HRTIMER_MODE_REL);
 843}
 844
 845/* Enable the transmitter Interrupt */
 846static void msm_hs_start_tx_locked(struct uart_port *uport)
 847{
 848	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
 849
 850	clk_enable(msm_uport->clk);
 851
 852	if (msm_uport->exit_lpm_cb)
 853		msm_uport->exit_lpm_cb(uport);
 854
 855	if (msm_uport->tx.tx_ready_int_en == 0) {
 856		msm_uport->tx.tx_ready_int_en = 1;
 857		msm_hs_submit_tx_locked(uport);
 858	}
 859
 860	clk_disable(msm_uport->clk);
 861}
 862
 863/*
 864 *  This routine is called when we are done with a DMA transfer
 865 *
 866 *  This routine is registered with Data mover when we set
 867 *  up a Data Mover transfer. It is called from Data mover ISR
 868 *  when the DMA transfer is done.
 869 */
 870static void msm_hs_dmov_tx_callback(struct msm_dmov_cmd *cmd_ptr,
 871					unsigned int result,
 872					struct msm_dmov_errdata *err)
 873{
 874	unsigned long flags;
 875	struct msm_hs_port *msm_uport;
 876
 877	/* DMA did not finish properly */
 878	WARN_ON((((result & RSLT_FIFO_CNTR_BMSK) >> 28) == 1) &&
 879		!(result & RSLT_VLD));
 880
 881	msm_uport = container_of(cmd_ptr, struct msm_hs_port, tx.xfer);
 882
 883	spin_lock_irqsave(&msm_uport->uport.lock, flags);
 884	clk_enable(msm_uport->clk);
 885
 886	msm_uport->imr_reg |= UARTDM_ISR_TX_READY_BMSK;
 887	msm_hs_write(&msm_uport->uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
 888
 889	clk_disable(msm_uport->clk);
 890	spin_unlock_irqrestore(&msm_uport->uport.lock, flags);
 891}
 892
 893/*
 894 * This routine is called when we are done with a DMA transfer or the
 895 * a flush has been sent to the data mover driver.
 896 *
 897 * This routine is registered with Data mover when we set up a Data Mover
 898 *  transfer. It is called from Data mover ISR when the DMA transfer is done.
 899 */
 900static void msm_hs_dmov_rx_callback(struct msm_dmov_cmd *cmd_ptr,
 901					unsigned int result,
 902					struct msm_dmov_errdata *err)
 903{
 904	int retval;
 905	int rx_count;
 906	unsigned long status;
 907	unsigned int error_f = 0;
 908	unsigned long flags;
 909	unsigned int flush;
 910	struct tty_port *port;
 911	struct uart_port *uport;
 912	struct msm_hs_port *msm_uport;
 913
 914	msm_uport = container_of(cmd_ptr, struct msm_hs_port, rx.xfer);
 915	uport = &msm_uport->uport;
 916
 917	spin_lock_irqsave(&uport->lock, flags);
 918	clk_enable(msm_uport->clk);
 919
 920	port = &uport->state->port;
 921
 922	msm_hs_write(uport, UARTDM_CR_ADDR, STALE_EVENT_DISABLE);
 923
 924	status = msm_hs_read(uport, UARTDM_SR_ADDR);
 925
 926	/* overflow is not connect to data in a FIFO */
 927	if (unlikely((status & UARTDM_SR_OVERRUN_BMSK) &&
 928		     (uport->read_status_mask & CREAD))) {
 929		tty_insert_flip_char(port, 0, TTY_OVERRUN);
 930		uport->icount.buf_overrun++;
 931		error_f = 1;
 932	}
 933
 934	if (!(uport->ignore_status_mask & INPCK))
 935		status = status & ~(UARTDM_SR_PAR_FRAME_BMSK);
 936
 937	if (unlikely(status & UARTDM_SR_PAR_FRAME_BMSK)) {
 938		/* Can not tell difference between parity & frame error */
 939		uport->icount.parity++;
 940		error_f = 1;
 941		if (uport->ignore_status_mask & IGNPAR)
 942			tty_insert_flip_char(port, 0, TTY_PARITY);
 943	}
 944
 945	if (error_f)
 946		msm_hs_write(uport, UARTDM_CR_ADDR, RESET_ERROR_STATUS);
 947
 948	if (msm_uport->clk_req_off_state == CLK_REQ_OFF_FLUSH_ISSUED)
 949		msm_uport->clk_req_off_state = CLK_REQ_OFF_RXSTALE_FLUSHED;
 950
 951	flush = msm_uport->rx.flush;
 952	if (flush == FLUSH_IGNORE)
 953		msm_hs_start_rx_locked(uport);
 954	if (flush == FLUSH_STOP)
 955		msm_uport->rx.flush = FLUSH_SHUTDOWN;
 956	if (flush >= FLUSH_DATA_INVALID)
 957		goto out;
 958
 959	rx_count = msm_hs_read(uport, UARTDM_RX_TOTAL_SNAP_ADDR);
 960
 961	if (0 != (uport->read_status_mask & CREAD)) {
 962		retval = tty_insert_flip_string(port, msm_uport->rx.buffer,
 963						rx_count);
 964		BUG_ON(retval != rx_count);
 965	}
 966
 967	msm_hs_start_rx_locked(uport);
 968
 969out:
 970	clk_disable(msm_uport->clk);
 971
 972	spin_unlock_irqrestore(&uport->lock, flags);
 973
 974	if (flush < FLUSH_DATA_INVALID)
 975		queue_work(msm_hs_workqueue, &msm_uport->rx.tty_work);
 976}
 977
 978static void msm_hs_tty_flip_buffer_work(struct work_struct *work)
 979{
 980	struct msm_hs_port *msm_uport =
 981			container_of(work, struct msm_hs_port, rx.tty_work);
 982
 983	tty_flip_buffer_push(&msm_uport->uport.state->port);
 984}
 985
 986/*
 987 *  Standard API, Current states of modem control inputs
 988 *
 989 * Since CTS can be handled entirely by HARDWARE we always
 990 * indicate clear to send and count on the TX FIFO to block when
 991 * it fills up.
 992 *
 993 * - TIOCM_DCD
 994 * - TIOCM_CTS
 995 * - TIOCM_DSR
 996 * - TIOCM_RI
 997 *  (Unsupported) DCD and DSR will return them high. RI will return low.
 998 */
 999static unsigned int msm_hs_get_mctrl_locked(struct uart_port *uport)
1000{
1001	return TIOCM_DSR | TIOCM_CAR | TIOCM_CTS;
1002}
1003
1004/*
1005 * True enables UART auto RFR, which indicates we are ready for data if the RX
1006 * buffer is not full. False disables auto RFR, and deasserts RFR to indicate
1007 * we are not ready for data. Must be called with UART clock on.
1008 */
1009static void set_rfr_locked(struct uart_port *uport, int auto_rfr)
1010{
1011	unsigned int data;
1012
1013	data = msm_hs_read(uport, UARTDM_MR1_ADDR);
1014
1015	if (auto_rfr) {
1016		/* enable auto ready-for-receiving */
1017		data |= UARTDM_MR1_RX_RDY_CTL_BMSK;
1018		msm_hs_write(uport, UARTDM_MR1_ADDR, data);
1019	} else {
1020		/* disable auto ready-for-receiving */
1021		data &= ~UARTDM_MR1_RX_RDY_CTL_BMSK;
1022		msm_hs_write(uport, UARTDM_MR1_ADDR, data);
1023		/* RFR is active low, set high */
1024		msm_hs_write(uport, UARTDM_CR_ADDR, RFR_HIGH);
1025	}
1026}
1027
1028/*
1029 *  Standard API, used to set or clear RFR
1030 */
1031static void msm_hs_set_mctrl_locked(struct uart_port *uport,
1032				    unsigned int mctrl)
1033{
1034	unsigned int auto_rfr;
1035	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1036
1037	clk_enable(msm_uport->clk);
1038
1039	auto_rfr = TIOCM_RTS & mctrl ? 1 : 0;
1040	set_rfr_locked(uport, auto_rfr);
1041
1042	clk_disable(msm_uport->clk);
1043}
1044
1045/* Standard API, Enable modem status (CTS) interrupt  */
1046static void msm_hs_enable_ms_locked(struct uart_port *uport)
1047{
1048	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1049
1050	clk_enable(msm_uport->clk);
1051
1052	/* Enable DELTA_CTS Interrupt */
1053	msm_uport->imr_reg |= UARTDM_ISR_DELTA_CTS_BMSK;
1054	msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1055
1056	clk_disable(msm_uport->clk);
1057
1058}
1059
1060/*
1061 *  Standard API, Break Signal
1062 *
1063 * Control the transmission of a break signal. ctl eq 0 => break
1064 * signal terminate ctl ne 0 => start break signal
1065 */
1066static void msm_hs_break_ctl(struct uart_port *uport, int ctl)
1067{
1068	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1069
1070	clk_enable(msm_uport->clk);
1071	msm_hs_write(uport, UARTDM_CR_ADDR, ctl ? START_BREAK : STOP_BREAK);
1072	clk_disable(msm_uport->clk);
1073}
1074
1075static void msm_hs_config_port(struct uart_port *uport, int cfg_flags)
1076{
1077	unsigned long flags;
1078
1079	spin_lock_irqsave(&uport->lock, flags);
1080	if (cfg_flags & UART_CONFIG_TYPE) {
1081		uport->type = PORT_MSM;
1082		msm_hs_request_port(uport);
1083	}
1084	spin_unlock_irqrestore(&uport->lock, flags);
1085}
1086
1087/*  Handle CTS changes (Called from interrupt handler) */
1088static void msm_hs_handle_delta_cts_locked(struct uart_port *uport)
1089{
1090	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1091
1092	clk_enable(msm_uport->clk);
1093
1094	/* clear interrupt */
1095	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_CTS);
1096	uport->icount.cts++;
1097
1098	clk_disable(msm_uport->clk);
1099
1100	/* clear the IOCTL TIOCMIWAIT if called */
1101	wake_up_interruptible(&uport->state->port.delta_msr_wait);
1102}
1103
1104/* check if the TX path is flushed, and if so clock off
1105 * returns 0 did not clock off, need to retry (still sending final byte)
1106 *        -1 did not clock off, do not retry
1107 *         1 if we clocked off
1108 */
1109static int msm_hs_check_clock_off_locked(struct uart_port *uport)
1110{
1111	unsigned long sr_status;
1112	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1113	struct circ_buf *tx_buf = &uport->state->xmit;
1114
1115	/* Cancel if tx tty buffer is not empty, dma is in flight,
1116	 * or tx fifo is not empty, or rx fifo is not empty */
1117	if (msm_uport->clk_state != MSM_HS_CLK_REQUEST_OFF ||
1118	    !uart_circ_empty(tx_buf) || msm_uport->tx.dma_in_flight ||
1119	    (msm_uport->imr_reg & UARTDM_ISR_TXLEV_BMSK) ||
1120	    !(msm_uport->imr_reg & UARTDM_ISR_RXLEV_BMSK))  {
1121		return -1;
1122	}
1123
1124	/* Make sure the uart is finished with the last byte */
1125	sr_status = msm_hs_read(uport, UARTDM_SR_ADDR);
1126	if (!(sr_status & UARTDM_SR_TXEMT_BMSK))
1127		return 0;  /* retry */
1128
1129	/* Make sure forced RXSTALE flush complete */
1130	switch (msm_uport->clk_req_off_state) {
1131	case CLK_REQ_OFF_START:
1132		msm_uport->clk_req_off_state = CLK_REQ_OFF_RXSTALE_ISSUED;
1133		msm_hs_write(uport, UARTDM_CR_ADDR, FORCE_STALE_EVENT);
1134		return 0;  /* RXSTALE flush not complete - retry */
1135	case CLK_REQ_OFF_RXSTALE_ISSUED:
1136	case CLK_REQ_OFF_FLUSH_ISSUED:
1137		return 0;  /* RXSTALE flush not complete - retry */
1138	case CLK_REQ_OFF_RXSTALE_FLUSHED:
1139		break;  /* continue */
1140	}
1141
1142	if (msm_uport->rx.flush != FLUSH_SHUTDOWN) {
1143		if (msm_uport->rx.flush == FLUSH_NONE)
1144			msm_hs_stop_rx_locked(uport);
1145		return 0;  /* come back later to really clock off */
1146	}
1147
1148	/* we really want to clock off */
1149	clk_disable(msm_uport->clk);
1150	msm_uport->clk_state = MSM_HS_CLK_OFF;
1151
1152	if (use_low_power_rx_wakeup(msm_uport)) {
1153		msm_uport->rx_wakeup.ignore = 1;
1154		enable_irq(msm_uport->rx_wakeup.irq);
1155	}
1156	return 1;
1157}
1158
1159static enum hrtimer_restart msm_hs_clk_off_retry(struct hrtimer *timer)
1160{
1161	unsigned long flags;
1162	int ret = HRTIMER_NORESTART;
1163	struct msm_hs_port *msm_uport = container_of(timer, struct msm_hs_port,
1164						     clk_off_timer);
1165	struct uart_port *uport = &msm_uport->uport;
1166
1167	spin_lock_irqsave(&uport->lock, flags);
1168
1169	if (!msm_hs_check_clock_off_locked(uport)) {
1170		hrtimer_forward_now(timer, msm_uport->clk_off_delay);
1171		ret = HRTIMER_RESTART;
1172	}
1173
1174	spin_unlock_irqrestore(&uport->lock, flags);
1175
1176	return ret;
1177}
1178
1179static irqreturn_t msm_hs_isr(int irq, void *dev)
1180{
1181	unsigned long flags;
1182	unsigned long isr_status;
1183	struct msm_hs_port *msm_uport = dev;
1184	struct uart_port *uport = &msm_uport->uport;
1185	struct circ_buf *tx_buf = &uport->state->xmit;
1186	struct msm_hs_tx *tx = &msm_uport->tx;
1187	struct msm_hs_rx *rx = &msm_uport->rx;
1188
1189	spin_lock_irqsave(&uport->lock, flags);
1190
1191	isr_status = msm_hs_read(uport, UARTDM_MISR_ADDR);
1192
1193	/* Uart RX starting */
1194	if (isr_status & UARTDM_ISR_RXLEV_BMSK) {
1195		msm_uport->imr_reg &= ~UARTDM_ISR_RXLEV_BMSK;
1196		msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1197	}
1198	/* Stale rx interrupt */
1199	if (isr_status & UARTDM_ISR_RXSTALE_BMSK) {
1200		msm_hs_write(uport, UARTDM_CR_ADDR, STALE_EVENT_DISABLE);
1201		msm_hs_write(uport, UARTDM_CR_ADDR, RESET_STALE_INT);
1202
1203		if (msm_uport->clk_req_off_state == CLK_REQ_OFF_RXSTALE_ISSUED)
1204			msm_uport->clk_req_off_state =
1205					CLK_REQ_OFF_FLUSH_ISSUED;
1206		if (rx->flush == FLUSH_NONE) {
1207			rx->flush = FLUSH_DATA_READY;
1208			msm_dmov_stop_cmd(msm_uport->dma_rx_channel, NULL, 1);
1209		}
1210	}
1211	/* tx ready interrupt */
1212	if (isr_status & UARTDM_ISR_TX_READY_BMSK) {
1213		/* Clear  TX Ready */
1214		msm_hs_write(uport, UARTDM_CR_ADDR, CLEAR_TX_READY);
1215
1216		if (msm_uport->clk_state == MSM_HS_CLK_REQUEST_OFF) {
1217			msm_uport->imr_reg |= UARTDM_ISR_TXLEV_BMSK;
1218			msm_hs_write(uport, UARTDM_IMR_ADDR,
1219				     msm_uport->imr_reg);
1220		}
1221
1222		/* Complete DMA TX transactions and submit new transactions */
1223		tx_buf->tail = (tx_buf->tail + tx->tx_count) & ~UART_XMIT_SIZE;
1224
1225		tx->dma_in_flight = 0;
1226
1227		uport->icount.tx += tx->tx_count;
1228		if (tx->tx_ready_int_en)
1229			msm_hs_submit_tx_locked(uport);
1230
1231		if (uart_circ_chars_pending(tx_buf) < WAKEUP_CHARS)
1232			uart_write_wakeup(uport);
1233	}
1234	if (isr_status & UARTDM_ISR_TXLEV_BMSK) {
1235		/* TX FIFO is empty */
1236		msm_uport->imr_reg &= ~UARTDM_ISR_TXLEV_BMSK;
1237		msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1238		if (!msm_hs_check_clock_off_locked(uport))
1239			hrtimer_start(&msm_uport->clk_off_timer,
1240				      msm_uport->clk_off_delay,
1241				      HRTIMER_MODE_REL);
1242	}
1243
1244	/* Change in CTS interrupt */
1245	if (isr_status & UARTDM_ISR_DELTA_CTS_BMSK)
1246		msm_hs_handle_delta_cts_locked(uport);
1247
1248	spin_unlock_irqrestore(&uport->lock, flags);
1249
1250	return IRQ_HANDLED;
1251}
1252
1253void msm_hs_request_clock_off_locked(struct uart_port *uport)
1254{
1255	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1256
1257	if (msm_uport->clk_state == MSM_HS_CLK_ON) {
1258		msm_uport->clk_state = MSM_HS_CLK_REQUEST_OFF;
1259		msm_uport->clk_req_off_state = CLK_REQ_OFF_START;
1260		if (!use_low_power_rx_wakeup(msm_uport))
1261			set_rfr_locked(uport, 0);
1262		msm_uport->imr_reg |= UARTDM_ISR_TXLEV_BMSK;
1263		msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1264	}
1265}
1266
1267/**
1268 * msm_hs_request_clock_off - request to (i.e. asynchronously) turn off uart
1269 * clock once pending TX is flushed and Rx DMA command is terminated.
1270 * @uport: uart_port structure for the device instance.
1271 *
1272 * This functions puts the device into a partially active low power mode. It
1273 * waits to complete all pending tx transactions, flushes ongoing Rx DMA
1274 * command and terminates UART side Rx transaction, puts UART HW in non DMA
1275 * mode and then clocks off the device. A client calls this when no UART
1276 * data is expected. msm_request_clock_on() must be called before any further
1277 * UART can be sent or received.
1278 */
1279void msm_hs_request_clock_off(struct uart_port *uport)
1280{
1281	unsigned long flags;
1282
1283	spin_lock_irqsave(&uport->lock, flags);
1284	msm_hs_request_clock_off_locked(uport);
1285	spin_unlock_irqrestore(&uport->lock, flags);
1286}
1287
1288void msm_hs_request_clock_on_locked(struct uart_port *uport)
1289{
1290	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1291	unsigned int data;
1292
1293	switch (msm_uport->clk_state) {
1294	case MSM_HS_CLK_OFF:
1295		clk_enable(msm_uport->clk);
1296		disable_irq_nosync(msm_uport->rx_wakeup.irq);
1297		/* fall-through */
1298	case MSM_HS_CLK_REQUEST_OFF:
1299		if (msm_uport->rx.flush == FLUSH_STOP ||
1300		    msm_uport->rx.flush == FLUSH_SHUTDOWN) {
1301			msm_hs_write(uport, UARTDM_CR_ADDR, RESET_RX);
1302			data = msm_hs_read(uport, UARTDM_DMEN_ADDR);
1303			data |= UARTDM_RX_DM_EN_BMSK;
1304			msm_hs_write(uport, UARTDM_DMEN_ADDR, data);
1305		}
1306		hrtimer_try_to_cancel(&msm_uport->clk_off_timer);
1307		if (msm_uport->rx.flush == FLUSH_SHUTDOWN)
1308			msm_hs_start_rx_locked(uport);
1309		if (!use_low_power_rx_wakeup(msm_uport))
1310			set_rfr_locked(uport, 1);
1311		if (msm_uport->rx.flush == FLUSH_STOP)
1312			msm_uport->rx.flush = FLUSH_IGNORE;
1313		msm_uport->clk_state = MSM_HS_CLK_ON;
1314		break;
1315	case MSM_HS_CLK_ON:
1316		break;
1317	case MSM_HS_CLK_PORT_OFF:
1318		break;
1319	}
1320}
1321
1322/**
1323 * msm_hs_request_clock_on - Switch the device from partially active low
1324 * power mode to fully active (i.e. clock on) mode.
1325 * @uport: uart_port structure for the device.
1326 *
1327 * This function switches on the input clock, puts UART HW into DMA mode
1328 * and enqueues an Rx DMA command if the device was in partially active
1329 * mode. It has no effect if called with the device in inactive state.
1330 */
1331void msm_hs_request_clock_on(struct uart_port *uport)
1332{
1333	unsigned long flags;
1334
1335	spin_lock_irqsave(&uport->lock, flags);
1336	msm_hs_request_clock_on_locked(uport);
1337	spin_unlock_irqrestore(&uport->lock, flags);
1338}
1339
1340static irqreturn_t msm_hs_rx_wakeup_isr(int irq, void *dev)
1341{
1342	unsigned int wakeup = 0;
1343	unsigned long flags;
1344	struct msm_hs_port *msm_uport = dev;
1345	struct uart_port *uport = &msm_uport->uport;
1346
1347	spin_lock_irqsave(&uport->lock, flags);
1348	if (msm_uport->clk_state == MSM_HS_CLK_OFF) {
1349		/* ignore the first irq - it is a pending irq that occurred
1350		 * before enable_irq() */
1351		if (msm_uport->rx_wakeup.ignore)
1352			msm_uport->rx_wakeup.ignore = 0;
1353		else
1354			wakeup = 1;
1355	}
1356
1357	if (wakeup) {
1358		/* the uart was clocked off during an rx, wake up and
1359		 * optionally inject char into tty rx */
1360		msm_hs_request_clock_on_locked(uport);
1361		if (msm_uport->rx_wakeup.inject_rx) {
1362			tty_insert_flip_char(&uport->state->port,
1363					     msm_uport->rx_wakeup.rx_to_inject,
1364					     TTY_NORMAL);
1365			queue_work(msm_hs_workqueue, &msm_uport->rx.tty_work);
1366		}
1367	}
1368
1369	spin_unlock_irqrestore(&uport->lock, flags);
1370
1371	return IRQ_HANDLED;
1372}
1373
1374static const char *msm_hs_type(struct uart_port *port)
1375{
1376	return (port->type == PORT_MSM) ? "MSM_HS_UART" : NULL;
1377}
1378
1379/* Called when port is opened */
1380static int msm_hs_startup(struct uart_port *uport)
1381{
1382	int ret;
1383	int rfr_level;
1384	unsigned long flags;
1385	unsigned int data;
1386	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1387	struct circ_buf *tx_buf = &uport->state->xmit;
1388	struct msm_hs_tx *tx = &msm_uport->tx;
1389	struct msm_hs_rx *rx = &msm_uport->rx;
1390
1391	rfr_level = uport->fifosize;
1392	if (rfr_level > 16)
1393		rfr_level -= 16;
1394
1395	tx->dma_base = dma_map_single(uport->dev, tx_buf->buf, UART_XMIT_SIZE,
1396				      DMA_TO_DEVICE);
1397
1398	/* do not let tty layer execute RX in global workqueue, use a
1399	 * dedicated workqueue managed by this driver */
1400	uport->state->port.low_latency = 1;
1401
1402	/* turn on uart clk */
1403	ret = msm_hs_init_clk_locked(uport);
1404	if (unlikely(ret)) {
1405		printk(KERN_ERR "Turning uartclk failed!\n");
1406		goto err_msm_hs_init_clk;
1407	}
1408
1409	/* Set auto RFR Level */
1410	data = msm_hs_read(uport, UARTDM_MR1_ADDR);
1411	data &= ~UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK;
1412	data &= ~UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK;
1413	data |= (UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK & (rfr_level << 2));
1414	data |= (UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK & rfr_level);
1415	msm_hs_write(uport, UARTDM_MR1_ADDR, data);
1416
1417	/* Make sure RXSTALE count is non-zero */
1418	data = msm_hs_read(uport, UARTDM_IPR_ADDR);
1419	if (!data) {
1420		data |= 0x1f & UARTDM_IPR_STALE_LSB_BMSK;
1421		msm_hs_write(uport, UARTDM_IPR_ADDR, data);
1422	}
1423
1424	/* Enable Data Mover Mode */
1425	data = UARTDM_TX_DM_EN_BMSK | UARTDM_RX_DM_EN_BMSK;
1426	msm_hs_write(uport, UARTDM_DMEN_ADDR, data);
1427
1428	/* Reset TX */
1429	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_TX);
1430	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_RX);
1431	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_ERROR_STATUS);
1432	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_BREAK_INT);
1433	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_STALE_INT);
1434	msm_hs_write(uport, UARTDM_CR_ADDR, RESET_CTS);
1435	msm_hs_write(uport, UARTDM_CR_ADDR, RFR_LOW);
1436	/* Turn on Uart Receiver */
1437	msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_RX_EN_BMSK);
1438
1439	/* Turn on Uart Transmitter */
1440	msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_TX_EN_BMSK);
1441
1442	/* Initialize the tx */
1443	tx->tx_ready_int_en = 0;
1444	tx->dma_in_flight = 0;
1445
1446	tx->xfer.complete_func = msm_hs_dmov_tx_callback;
1447	tx->xfer.execute_func = NULL;
1448
1449	tx->command_ptr->cmd = CMD_LC |
1450	    CMD_DST_CRCI(msm_uport->dma_tx_crci) | CMD_MODE_BOX;
1451
1452	tx->command_ptr->src_dst_len = (MSM_UARTDM_BURST_SIZE << 16)
1453					   | (MSM_UARTDM_BURST_SIZE);
1454
1455	tx->command_ptr->row_offset = (MSM_UARTDM_BURST_SIZE << 16);
1456
1457	tx->command_ptr->dst_row_addr =
1458	    msm_uport->uport.mapbase + UARTDM_TF_ADDR;
1459
1460
1461	/* Turn on Uart Receive */
1462	rx->xfer.complete_func = msm_hs_dmov_rx_callback;
1463	rx->xfer.execute_func = NULL;
1464
1465	rx->command_ptr->cmd = CMD_LC |
1466	    CMD_SRC_CRCI(msm_uport->dma_rx_crci) | CMD_MODE_BOX;
1467
1468	rx->command_ptr->src_dst_len = (MSM_UARTDM_BURST_SIZE << 16)
1469					   | (MSM_UARTDM_BURST_SIZE);
1470	rx->command_ptr->row_offset =  MSM_UARTDM_BURST_SIZE;
1471	rx->command_ptr->src_row_addr = uport->mapbase + UARTDM_RF_ADDR;
1472
1473
1474	msm_uport->imr_reg |= UARTDM_ISR_RXSTALE_BMSK;
1475	/* Enable reading the current CTS, no harm even if CTS is ignored */
1476	msm_uport->imr_reg |= UARTDM_ISR_CURRENT_CTS_BMSK;
1477
1478	msm_hs_write(uport, UARTDM_TFWR_ADDR, 0);  /* TXLEV on empty TX fifo */
1479
1480
1481	ret = request_irq(uport->irq, msm_hs_isr, IRQF_TRIGGER_HIGH,
1482			  "msm_hs_uart", msm_uport);
1483	if (unlikely(ret)) {
1484		printk(KERN_ERR "Request msm_hs_uart IRQ failed!\n");
1485		goto err_request_irq;
1486	}
1487	if (use_low_power_rx_wakeup(msm_uport)) {
1488		ret = request_irq(msm_uport->rx_wakeup.irq,
1489				  msm_hs_rx_wakeup_isr,
1490				  IRQF_TRIGGER_FALLING,
1491				  "msm_hs_rx_wakeup", msm_uport);
1492		if (unlikely(ret)) {
1493			printk(KERN_ERR "Request msm_hs_rx_wakeup IRQ failed!\n");
1494			free_irq(uport->irq, msm_uport);
1495			goto err_request_irq;
1496		}
1497		disable_irq(msm_uport->rx_wakeup.irq);
1498	}
1499
1500	spin_lock_irqsave(&uport->lock, flags);
1501
1502	msm_hs_write(uport, UARTDM_RFWR_ADDR, 0);
1503	msm_hs_start_rx_locked(uport);
1504
1505	spin_unlock_irqrestore(&uport->lock, flags);
1506	ret = pm_runtime_set_active(uport->dev);
1507	if (ret)
1508		dev_err(uport->dev, "set active error:%d\n", ret);
1509	pm_runtime_enable(uport->dev);
1510
1511	return 0;
1512
1513err_request_irq:
1514err_msm_hs_init_clk:
1515	dma_unmap_single(uport->dev, tx->dma_base,
1516				UART_XMIT_SIZE, DMA_TO_DEVICE);
1517	return ret;
1518}
1519
1520/* Initialize tx and rx data structures */
1521static int uartdm_init_port(struct uart_port *uport)
1522{
1523	int ret = 0;
1524	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1525	struct msm_hs_tx *tx = &msm_uport->tx;
1526	struct msm_hs_rx *rx = &msm_uport->rx;
1527
1528	/* Allocate the command pointer. Needs to be 64 bit aligned */
1529	tx->command_ptr = kmalloc(sizeof(dmov_box), GFP_KERNEL | __GFP_DMA);
1530	if (!tx->command_ptr)
1531		return -ENOMEM;
1532
1533	tx->command_ptr_ptr = kmalloc(sizeof(u32), GFP_KERNEL | __GFP_DMA);
1534	if (!tx->command_ptr_ptr) {
1535		ret = -ENOMEM;
1536		goto err_tx_command_ptr_ptr;
1537	}
1538
1539	tx->mapped_cmd_ptr = dma_map_single(uport->dev, tx->command_ptr,
1540					    sizeof(dmov_box), DMA_TO_DEVICE);
1541	tx->mapped_cmd_ptr_ptr = dma_map_single(uport->dev,
1542						tx->command_ptr_ptr,
1543						sizeof(u32), DMA_TO_DEVICE);
1544	tx->xfer.cmdptr = DMOV_CMD_ADDR(tx->mapped_cmd_ptr_ptr);
1545
1546	init_waitqueue_head(&rx->wait);
1547
1548	rx->pool = dma_pool_create("rx_buffer_pool", uport->dev,
1549				   UARTDM_RX_BUF_SIZE, 16, 0);
1550	if (!rx->pool) {
1551		pr_err("%s(): cannot allocate rx_buffer_pool", __func__);
1552		ret = -ENOMEM;
1553		goto err_dma_pool_create;
1554	}
1555
1556	rx->buffer = dma_pool_alloc(rx->pool, GFP_KERNEL, &rx->rbuffer);
1557	if (!rx->buffer) {
1558		pr_err("%s(): cannot allocate rx->buffer", __func__);
1559		ret = -ENOMEM;
1560		goto err_dma_pool_alloc;
1561	}
1562
1563	/* Allocate the command pointer. Needs to be 64 bit aligned */
1564	rx->command_ptr = kmalloc(sizeof(dmov_box), GFP_KERNEL | __GFP_DMA);
1565	if (!rx->command_ptr) {
1566		pr_err("%s(): cannot allocate rx->command_ptr", __func__);
1567		ret = -ENOMEM;
1568		goto err_rx_command_ptr;
1569	}
1570
1571	rx->command_ptr_ptr = kmalloc(sizeof(u32), GFP_KERNEL | __GFP_DMA);
1572	if (!rx->command_ptr_ptr) {
1573		pr_err("%s(): cannot allocate rx->command_ptr_ptr", __func__);
1574		ret = -ENOMEM;
1575		goto err_rx_command_ptr_ptr;
1576	}
1577
1578	rx->command_ptr->num_rows = ((UARTDM_RX_BUF_SIZE >> 4) << 16) |
1579					 (UARTDM_RX_BUF_SIZE >> 4);
1580
1581	rx->command_ptr->dst_row_addr = rx->rbuffer;
1582
1583	rx->mapped_cmd_ptr = dma_map_single(uport->dev, rx->command_ptr,
1584					    sizeof(dmov_box), DMA_TO_DEVICE);
1585
1586	*rx->command_ptr_ptr = CMD_PTR_LP | DMOV_CMD_ADDR(rx->mapped_cmd_ptr);
1587
1588	rx->cmdptr_dmaaddr = dma_map_single(uport->dev, rx->command_ptr_ptr,
1589					    sizeof(u32), DMA_TO_DEVICE);
1590	rx->xfer.cmdptr = DMOV_CMD_ADDR(rx->cmdptr_dmaaddr);
1591
1592	INIT_WORK(&rx->tty_work, msm_hs_tty_flip_buffer_work);
1593
1594	return ret;
1595
1596err_rx_command_ptr_ptr:
1597	kfree(rx->command_ptr);
1598err_rx_command_ptr:
1599	dma_pool_free(msm_uport->rx.pool, msm_uport->rx.buffer,
1600						msm_uport->rx.rbuffer);
1601err_dma_pool_alloc:
1602	dma_pool_destroy(msm_uport->rx.pool);
1603err_dma_pool_create:
1604	dma_unmap_single(uport->dev, msm_uport->tx.mapped_cmd_ptr_ptr,
1605				sizeof(u32), DMA_TO_DEVICE);
1606	dma_unmap_single(uport->dev, msm_uport->tx.mapped_cmd_ptr,
1607				sizeof(dmov_box), DMA_TO_DEVICE);
1608	kfree(msm_uport->tx.command_ptr_ptr);
1609err_tx_command_ptr_ptr:
1610	kfree(msm_uport->tx.command_ptr);
1611	return ret;
1612}
1613
1614static int msm_hs_probe(struct platform_device *pdev)
1615{
1616	int ret;
1617	struct uart_port *uport;
1618	struct msm_hs_port *msm_uport;
1619	struct resource *resource;
1620	const struct msm_serial_hs_platform_data *pdata =
1621						dev_get_platdata(&pdev->dev);
1622
1623	if (pdev->id < 0 || pdev->id >= UARTDM_NR) {
1624		printk(KERN_ERR "Invalid plaform device ID = %d\n", pdev->id);
1625		return -EINVAL;
1626	}
1627
1628	msm_uport = &q_uart_port[pdev->id];
1629	uport = &msm_uport->uport;
1630
1631	uport->dev = &pdev->dev;
1632
1633	resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1634	if (unlikely(!resource))
1635		return -ENXIO;
1636
1637	uport->mapbase = resource->start;
1638	uport->irq = platform_get_irq(pdev, 0);
1639	if (unlikely(uport->irq < 0))
1640		return -ENXIO;
1641
1642	if (unlikely(irq_set_irq_wake(uport->irq, 1)))
1643		return -ENXIO;
1644
1645	if (pdata == NULL || pdata->rx_wakeup_irq < 0)
1646		msm_uport->rx_wakeup.irq = -1;
1647	else {
1648		msm_uport->rx_wakeup.irq = pdata->rx_wakeup_irq;
1649		msm_uport->rx_wakeup.ignore = 1;
1650		msm_uport->rx_wakeup.inject_rx = pdata->inject_rx_on_wakeup;
1651		msm_uport->rx_wakeup.rx_to_inject = pdata->rx_to_inject;
1652
1653		if (unlikely(msm_uport->rx_wakeup.irq < 0))
1654			return -ENXIO;
1655
1656		if (unlikely(irq_set_irq_wake(msm_uport->rx_wakeup.irq, 1)))
1657			return -ENXIO;
1658	}
1659
1660	if (pdata == NULL)
1661		msm_uport->exit_lpm_cb = NULL;
1662	else
1663		msm_uport->exit_lpm_cb = pdata->exit_lpm_cb;
1664
1665	resource = platform_get_resource_byname(pdev, IORESOURCE_DMA,
1666						"uartdm_channels");
1667	if (unlikely(!resource))
1668		return -ENXIO;
1669
1670	msm_uport->dma_tx_channel = resource->start;
1671	msm_uport->dma_rx_channel = resource->end;
1672
1673	resource = platform_get_resource_byname(pdev, IORESOURCE_DMA,
1674						"uartdm_crci");
1675	if (unlikely(!resource))
1676		return -ENXIO;
1677
1678	msm_uport->dma_tx_crci = resource->start;
1679	msm_uport->dma_rx_crci = resource->end;
1680
1681	uport->iotype = UPIO_MEM;
1682	uport->fifosize = UART_FIFOSIZE;
1683	uport->ops = &msm_hs_ops;
1684	uport->flags = UPF_BOOT_AUTOCONF;
1685	uport->uartclk = UARTCLK;
1686	msm_uport->imr_reg = 0x0;
1687	msm_uport->clk = clk_get(&pdev->dev, "uartdm_clk");
1688	if (IS_ERR(msm_uport->clk))
1689		return PTR_ERR(msm_uport->clk);
1690
1691	ret = uartdm_init_port(uport);
1692	if (unlikely(ret))
1693		return ret;
1694
1695	msm_uport->clk_state = MSM_HS_CLK_PORT_OFF;
1696	hrtimer_init(&msm_uport->clk_off_timer, CLOCK_MONOTONIC,
1697		     HRTIMER_MODE_REL);
1698	msm_uport->clk_off_timer.function = msm_hs_clk_off_retry;
1699	msm_uport->clk_off_delay = ktime_set(0, 1000000);  /* 1ms */
1700
1701	uport->line = pdev->id;
1702	return uart_add_one_port(&msm_hs_driver, uport);
1703}
1704
1705static int __init msm_serial_hs_init(void)
1706{
1707	int ret, i;
1708
1709	/* Init all UARTS as non-configured */
1710	for (i = 0; i < UARTDM_NR; i++)
1711		q_uart_port[i].uport.type = PORT_UNKNOWN;
1712
1713	msm_hs_workqueue = create_singlethread_workqueue("msm_serial_hs");
1714	if (unlikely(!msm_hs_workqueue))
1715		return -ENOMEM;
1716
1717	ret = uart_register_driver(&msm_hs_driver);
1718	if (unlikely(ret)) {
1719		printk(KERN_ERR "%s failed to load\n", __func__);
1720		goto err_uart_register_driver;
1721	}
1722
1723	ret = platform_driver_register(&msm_serial_hs_platform_driver);
1724	if (ret) {
1725		printk(KERN_ERR "%s failed to load\n", __func__);
1726		goto err_platform_driver_register;
1727	}
1728
1729	return ret;
1730
1731err_platform_driver_register:
1732	uart_unregister_driver(&msm_hs_driver);
1733err_uart_register_driver:
1734	destroy_workqueue(msm_hs_workqueue);
1735	return ret;
1736}
1737module_init(msm_serial_hs_init);
1738
1739/*
1740 *  Called by the upper layer when port is closed.
1741 *     - Disables the port
1742 *     - Unhook the ISR
1743 */
1744static void msm_hs_shutdown(struct uart_port *uport)
1745{
1746	unsigned long flags;
1747	struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1748
1749	BUG_ON(msm_uport->rx.flush < FLUSH_STOP);
1750
1751	spin_lock_irqsave(&uport->lock, flags);
1752	clk_enable(msm_uport->clk);
1753
1754	/* Disable the transmitter */
1755	msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_TX_DISABLE_BMSK);
1756	/* Disable the receiver */
1757	msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_RX_DISABLE_BMSK);
1758
1759	pm_runtime_disable(uport->dev);
1760	pm_runtime_set_suspended(uport->dev);
1761
1762	/* Free the interrupt */
1763	free_irq(uport->irq, msm_uport);
1764	if (use_low_power_rx_wakeup(msm_uport))
1765		free_irq(msm_uport->rx_wakeup.irq, msm_uport);
1766
1767	msm_uport->imr_reg = 0;
1768	msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1769
1770	wait_event(msm_uport->rx.wait, msm_uport->rx.flush == FLUSH_SHUTDOWN);
1771
1772	clk_disable(msm_uport->clk);  /* to balance local clk_enable() */
1773	if (msm_uport->clk_state != MSM_HS_CLK_OFF)
1774		clk_disable(msm_uport->clk);  /* to balance clk_state */
1775	msm_uport->clk_state = MSM_HS_CLK_PORT_OFF;
1776
1777	dma_unmap_single(uport->dev, msm_uport->tx.dma_base,
1778			 UART_XMIT_SIZE, DMA_TO_DEVICE);
1779
1780	spin_unlock_irqrestore(&uport->lock, flags);
1781
1782	if (cancel_work_sync(&msm_uport->rx.tty_work))
1783		msm_hs_tty_flip_buffer_work(&msm_uport->rx.tty_work);
1784}
1785
1786static void __exit msm_serial_hs_exit(void)
1787{
1788	flush_workqueue(msm_hs_workqueue);
1789	destroy_workqueue(msm_hs_workqueue);
1790	platform_driver_unregister(&msm_serial_hs_platform_driver);
1791	uart_unregister_driver(&msm_hs_driver);
1792}
1793module_exit(msm_serial_hs_exit);
1794
1795#ifdef CONFIG_PM_RUNTIME
1796static int msm_hs_runtime_idle(struct device *dev)
1797{
1798	/*
1799	 * returning success from idle results in runtime suspend to be
1800	 * called
1801	 */
1802	return 0;
1803}
1804
1805static int msm_hs_runtime_resume(struct device *dev)
1806{
1807	struct platform_device *pdev = container_of(dev, struct
1808						    platform_device, dev);
1809	struct msm_hs_port *msm_uport = &q_uart_port[pdev->id];
1810
1811	msm_hs_request_clock_on(&msm_uport->uport);
1812	return 0;
1813}
1814
1815static int msm_hs_runtime_suspend(struct device *dev)
1816{
1817	struct platform_device *pdev = container_of(dev, struct
1818						    platform_device, dev);
1819	struct msm_hs_port *msm_uport = &q_uart_port[pdev->id];
1820
1821	msm_hs_request_clock_off(&msm_uport->uport);
1822	return 0;
1823}
1824#else
1825#define msm_hs_runtime_idle NULL
1826#define msm_hs_runtime_resume NULL
1827#define msm_hs_runtime_suspend NULL
1828#endif
1829
1830static const struct dev_pm_ops msm_hs_dev_pm_ops = {
1831	.runtime_suspend = msm_hs_runtime_suspend,
1832	.runtime_resume  = msm_hs_runtime_resume,
1833	.runtime_idle    = msm_hs_runtime_idle,
1834};
1835
1836static struct platform_driver msm_serial_hs_platform_driver = {
1837	.probe = msm_hs_probe,
1838	.remove = msm_hs_remove,
1839	.driver = {
1840		.name = "msm_serial_hs",
1841		.owner = THIS_MODULE,
1842		.pm   = &msm_hs_dev_pm_ops,
1843	},
1844};
1845
1846static struct uart_driver msm_hs_driver = {
1847	.owner = THIS_MODULE,
1848	.driver_name = "msm_serial_hs",
1849	.dev_name = "ttyHS",
1850	.nr = UARTDM_NR,
1851	.cons = 0,
1852};
1853
1854static struct uart_ops msm_hs_ops = {
1855	.tx_empty = msm_hs_tx_empty,
1856	.set_mctrl = msm_hs_set_mctrl_locked,
1857	.get_mctrl = msm_hs_get_mctrl_locked,
1858	.stop_tx = msm_hs_stop_tx_locked,
1859	.start_tx = msm_hs_start_tx_locked,
1860	.stop_rx = msm_hs_stop_rx_locked,
1861	.enable_ms = msm_hs_enable_ms_locked,
1862	.break_ctl = msm_hs_break_ctl,
1863	.startup = msm_hs_startup,
1864	.shutdown = msm_hs_shutdown,
1865	.set_termios = msm_hs_set_termios,
1866	.pm = msm_hs_pm,
1867	.type = msm_hs_type,
1868	.config_port = msm_hs_config_port,
1869	.release_port = msm_hs_release_port,
1870	.request_port = msm_hs_request_port,
1871};
1872
1873MODULE_DESCRIPTION("High Speed UART Driver for the MSM chipset");
1874MODULE_VERSION("1.2");
1875MODULE_LICENSE("GPL v2");