Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 *  Driver for AMBA serial ports
   4 *
   5 *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
   6 *
   7 *  Copyright 1999 ARM Limited
   8 *  Copyright (C) 2000 Deep Blue Solutions Ltd.
   9 *  Copyright (C) 2010 ST-Ericsson SA
  10 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  11 * This is a generic driver for ARM AMBA-type serial ports.  They
  12 * have a lot of 16550-like features, but are not register compatible.
  13 * Note that although they do have CTS, DCD and DSR inputs, they do
  14 * not have an RI input, nor do they have DTR or RTS outputs.  If
  15 * required, these have to be supplied via some other means (eg, GPIO)
  16 * and hooked into this driver.
  17 */
  18
  19
  20#if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  21#define SUPPORT_SYSRQ
  22#endif
  23
  24#include <linux/module.h>
  25#include <linux/ioport.h>
  26#include <linux/init.h>
  27#include <linux/console.h>
  28#include <linux/sysrq.h>
  29#include <linux/device.h>
  30#include <linux/tty.h>
  31#include <linux/tty_flip.h>
  32#include <linux/serial_core.h>
  33#include <linux/serial.h>
  34#include <linux/amba/bus.h>
  35#include <linux/amba/serial.h>
  36#include <linux/clk.h>
  37#include <linux/slab.h>
  38#include <linux/dmaengine.h>
  39#include <linux/dma-mapping.h>
  40#include <linux/scatterlist.h>
  41#include <linux/delay.h>
  42#include <linux/types.h>
  43#include <linux/of.h>
  44#include <linux/of_device.h>
  45#include <linux/pinctrl/consumer.h>
  46#include <linux/sizes.h>
  47#include <linux/io.h>
  48#include <linux/acpi.h>
  49
  50#include "amba-pl011.h"
  51
  52#define UART_NR			14
  53
  54#define SERIAL_AMBA_MAJOR	204
  55#define SERIAL_AMBA_MINOR	64
  56#define SERIAL_AMBA_NR		UART_NR
  57
  58#define AMBA_ISR_PASS_LIMIT	256
  59
  60#define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
  61#define UART_DUMMY_DR_RX	(1 << 16)
  62
  63static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
  64	[REG_DR] = UART01x_DR,
  65	[REG_FR] = UART01x_FR,
  66	[REG_LCRH_RX] = UART011_LCRH,
  67	[REG_LCRH_TX] = UART011_LCRH,
  68	[REG_IBRD] = UART011_IBRD,
  69	[REG_FBRD] = UART011_FBRD,
  70	[REG_CR] = UART011_CR,
  71	[REG_IFLS] = UART011_IFLS,
  72	[REG_IMSC] = UART011_IMSC,
  73	[REG_RIS] = UART011_RIS,
  74	[REG_MIS] = UART011_MIS,
  75	[REG_ICR] = UART011_ICR,
  76	[REG_DMACR] = UART011_DMACR,
  77};
  78
  79/* There is by now at least one vendor with differing details, so handle it */
  80struct vendor_data {
  81	const u16		*reg_offset;
  82	unsigned int		ifls;
  83	unsigned int		fr_busy;
  84	unsigned int		fr_dsr;
  85	unsigned int		fr_cts;
  86	unsigned int		fr_ri;
  87	unsigned int		inv_fr;
  88	bool			access_32b;
  89	bool			oversampling;
  90	bool			dma_threshold;
  91	bool			cts_event_workaround;
  92	bool			always_enabled;
  93	bool			fixed_options;
  94
  95	unsigned int (*get_fifosize)(struct amba_device *dev);
  96};
  97
  98static unsigned int get_fifosize_arm(struct amba_device *dev)
  99{
 100	return amba_rev(dev) < 3 ? 16 : 32;
 101}
 102
 103static struct vendor_data vendor_arm = {
 104	.reg_offset		= pl011_std_offsets,
 105	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
 106	.fr_busy		= UART01x_FR_BUSY,
 107	.fr_dsr			= UART01x_FR_DSR,
 108	.fr_cts			= UART01x_FR_CTS,
 109	.fr_ri			= UART011_FR_RI,
 110	.oversampling		= false,
 111	.dma_threshold		= false,
 112	.cts_event_workaround	= false,
 113	.always_enabled		= false,
 114	.fixed_options		= false,
 115	.get_fifosize		= get_fifosize_arm,
 116};
 117
 118static const struct vendor_data vendor_sbsa = {
 119	.reg_offset		= pl011_std_offsets,
 120	.fr_busy		= UART01x_FR_BUSY,
 121	.fr_dsr			= UART01x_FR_DSR,
 122	.fr_cts			= UART01x_FR_CTS,
 123	.fr_ri			= UART011_FR_RI,
 124	.access_32b		= true,
 125	.oversampling		= false,
 126	.dma_threshold		= false,
 127	.cts_event_workaround	= false,
 128	.always_enabled		= true,
 129	.fixed_options		= true,
 130};
 131
 132#ifdef CONFIG_ACPI_SPCR_TABLE
 133static const struct vendor_data vendor_qdt_qdf2400_e44 = {
 134	.reg_offset		= pl011_std_offsets,
 135	.fr_busy		= UART011_FR_TXFE,
 136	.fr_dsr			= UART01x_FR_DSR,
 137	.fr_cts			= UART01x_FR_CTS,
 138	.fr_ri			= UART011_FR_RI,
 139	.inv_fr			= UART011_FR_TXFE,
 140	.access_32b		= true,
 141	.oversampling		= false,
 142	.dma_threshold		= false,
 143	.cts_event_workaround	= false,
 144	.always_enabled		= true,
 145	.fixed_options		= true,
 146};
 147#endif
 148
 149static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
 150	[REG_DR] = UART01x_DR,
 151	[REG_ST_DMAWM] = ST_UART011_DMAWM,
 152	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
 153	[REG_FR] = UART01x_FR,
 154	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
 155	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
 156	[REG_IBRD] = UART011_IBRD,
 157	[REG_FBRD] = UART011_FBRD,
 158	[REG_CR] = UART011_CR,
 159	[REG_IFLS] = UART011_IFLS,
 160	[REG_IMSC] = UART011_IMSC,
 161	[REG_RIS] = UART011_RIS,
 162	[REG_MIS] = UART011_MIS,
 163	[REG_ICR] = UART011_ICR,
 164	[REG_DMACR] = UART011_DMACR,
 165	[REG_ST_XFCR] = ST_UART011_XFCR,
 166	[REG_ST_XON1] = ST_UART011_XON1,
 167	[REG_ST_XON2] = ST_UART011_XON2,
 168	[REG_ST_XOFF1] = ST_UART011_XOFF1,
 169	[REG_ST_XOFF2] = ST_UART011_XOFF2,
 170	[REG_ST_ITCR] = ST_UART011_ITCR,
 171	[REG_ST_ITIP] = ST_UART011_ITIP,
 172	[REG_ST_ABCR] = ST_UART011_ABCR,
 173	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
 174};
 175
 176static unsigned int get_fifosize_st(struct amba_device *dev)
 177{
 178	return 64;
 179}
 180
 181static struct vendor_data vendor_st = {
 182	.reg_offset		= pl011_st_offsets,
 183	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
 184	.fr_busy		= UART01x_FR_BUSY,
 185	.fr_dsr			= UART01x_FR_DSR,
 186	.fr_cts			= UART01x_FR_CTS,
 187	.fr_ri			= UART011_FR_RI,
 188	.oversampling		= true,
 189	.dma_threshold		= true,
 190	.cts_event_workaround	= true,
 191	.always_enabled		= false,
 192	.fixed_options		= false,
 193	.get_fifosize		= get_fifosize_st,
 194};
 195
 196static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
 197	[REG_DR] = ZX_UART011_DR,
 198	[REG_FR] = ZX_UART011_FR,
 199	[REG_LCRH_RX] = ZX_UART011_LCRH,
 200	[REG_LCRH_TX] = ZX_UART011_LCRH,
 201	[REG_IBRD] = ZX_UART011_IBRD,
 202	[REG_FBRD] = ZX_UART011_FBRD,
 203	[REG_CR] = ZX_UART011_CR,
 204	[REG_IFLS] = ZX_UART011_IFLS,
 205	[REG_IMSC] = ZX_UART011_IMSC,
 206	[REG_RIS] = ZX_UART011_RIS,
 207	[REG_MIS] = ZX_UART011_MIS,
 208	[REG_ICR] = ZX_UART011_ICR,
 209	[REG_DMACR] = ZX_UART011_DMACR,
 210};
 211
 212static unsigned int get_fifosize_zte(struct amba_device *dev)
 213{
 214	return 16;
 215}
 216
 217static struct vendor_data vendor_zte = {
 218	.reg_offset		= pl011_zte_offsets,
 219	.access_32b		= true,
 220	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
 221	.fr_busy		= ZX_UART01x_FR_BUSY,
 222	.fr_dsr			= ZX_UART01x_FR_DSR,
 223	.fr_cts			= ZX_UART01x_FR_CTS,
 224	.fr_ri			= ZX_UART011_FR_RI,
 225	.get_fifosize		= get_fifosize_zte,
 226};
 227
 228/* Deals with DMA transactions */
 229
 230struct pl011_sgbuf {
 231	struct scatterlist sg;
 232	char *buf;
 233};
 234
 235struct pl011_dmarx_data {
 236	struct dma_chan		*chan;
 237	struct completion	complete;
 238	bool			use_buf_b;
 239	struct pl011_sgbuf	sgbuf_a;
 240	struct pl011_sgbuf	sgbuf_b;
 241	dma_cookie_t		cookie;
 242	bool			running;
 243	struct timer_list	timer;
 244	unsigned int last_residue;
 245	unsigned long last_jiffies;
 246	bool auto_poll_rate;
 247	unsigned int poll_rate;
 248	unsigned int poll_timeout;
 249};
 250
 251struct pl011_dmatx_data {
 252	struct dma_chan		*chan;
 253	struct scatterlist	sg;
 254	char			*buf;
 255	bool			queued;
 256};
 257
 258/*
 259 * We wrap our port structure around the generic uart_port.
 260 */
 261struct uart_amba_port {
 262	struct uart_port	port;
 263	const u16		*reg_offset;
 264	struct clk		*clk;
 265	const struct vendor_data *vendor;
 266	unsigned int		dmacr;		/* dma control reg */
 267	unsigned int		im;		/* interrupt mask */
 268	unsigned int		old_status;
 269	unsigned int		fifosize;	/* vendor-specific */
 
 
 270	unsigned int		old_cr;		/* state during shutdown */
 271	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
 272	char			type[12];
 273#ifdef CONFIG_DMA_ENGINE
 274	/* DMA stuff */
 275	bool			using_tx_dma;
 276	bool			using_rx_dma;
 277	struct pl011_dmarx_data dmarx;
 278	struct pl011_dmatx_data	dmatx;
 279	bool			dma_probed;
 280#endif
 281};
 282
 283static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
 284	unsigned int reg)
 285{
 286	return uap->reg_offset[reg];
 287}
 288
 289static unsigned int pl011_read(const struct uart_amba_port *uap,
 290	unsigned int reg)
 291{
 292	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 293
 294	return (uap->port.iotype == UPIO_MEM32) ?
 295		readl_relaxed(addr) : readw_relaxed(addr);
 296}
 297
 298static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
 299	unsigned int reg)
 300{
 301	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 302
 303	if (uap->port.iotype == UPIO_MEM32)
 304		writel_relaxed(val, addr);
 305	else
 306		writew_relaxed(val, addr);
 307}
 308
 309/*
 310 * Reads up to 256 characters from the FIFO or until it's empty and
 311 * inserts them into the TTY layer. Returns the number of characters
 312 * read from the FIFO.
 313 */
 314static int pl011_fifo_to_tty(struct uart_amba_port *uap)
 315{
 316	u16 status;
 317	unsigned int ch, flag, fifotaken;
 
 318
 319	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
 320		status = pl011_read(uap, REG_FR);
 321		if (status & UART01x_FR_RXFE)
 322			break;
 323
 324		/* Take chars from the FIFO and update status */
 325		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
 
 326		flag = TTY_NORMAL;
 327		uap->port.icount.rx++;
 
 328
 329		if (unlikely(ch & UART_DR_ERROR)) {
 330			if (ch & UART011_DR_BE) {
 331				ch &= ~(UART011_DR_FE | UART011_DR_PE);
 332				uap->port.icount.brk++;
 333				if (uart_handle_break(&uap->port))
 334					continue;
 335			} else if (ch & UART011_DR_PE)
 336				uap->port.icount.parity++;
 337			else if (ch & UART011_DR_FE)
 338				uap->port.icount.frame++;
 339			if (ch & UART011_DR_OE)
 340				uap->port.icount.overrun++;
 341
 342			ch &= uap->port.read_status_mask;
 343
 344			if (ch & UART011_DR_BE)
 345				flag = TTY_BREAK;
 346			else if (ch & UART011_DR_PE)
 347				flag = TTY_PARITY;
 348			else if (ch & UART011_DR_FE)
 349				flag = TTY_FRAME;
 350		}
 351
 352		if (uart_handle_sysrq_char(&uap->port, ch & 255))
 353			continue;
 354
 355		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
 356	}
 357
 358	return fifotaken;
 359}
 360
 361
 362/*
 363 * All the DMA operation mode stuff goes inside this ifdef.
 364 * This assumes that you have a generic DMA device interface,
 365 * no custom DMA interfaces are supported.
 366 */
 367#ifdef CONFIG_DMA_ENGINE
 368
 369#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
 370
 371static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
 372	enum dma_data_direction dir)
 373{
 374	dma_addr_t dma_addr;
 375
 376	sg->buf = dma_alloc_coherent(chan->device->dev,
 377		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
 378	if (!sg->buf)
 379		return -ENOMEM;
 380
 381	sg_init_table(&sg->sg, 1);
 382	sg_set_page(&sg->sg, phys_to_page(dma_addr),
 383		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
 384	sg_dma_address(&sg->sg) = dma_addr;
 385	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
 386
 387	return 0;
 388}
 389
 390static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
 391	enum dma_data_direction dir)
 392{
 393	if (sg->buf) {
 394		dma_free_coherent(chan->device->dev,
 395			PL011_DMA_BUFFER_SIZE, sg->buf,
 396			sg_dma_address(&sg->sg));
 397	}
 398}
 399
 400static void pl011_dma_probe(struct uart_amba_port *uap)
 401{
 402	/* DMA is the sole user of the platform data right now */
 403	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
 404	struct device *dev = uap->port.dev;
 405	struct dma_slave_config tx_conf = {
 406		.dst_addr = uap->port.mapbase +
 407				 pl011_reg_to_offset(uap, REG_DR),
 408		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 409		.direction = DMA_MEM_TO_DEV,
 410		.dst_maxburst = uap->fifosize >> 1,
 411		.device_fc = false,
 412	};
 413	struct dma_chan *chan;
 414	dma_cap_mask_t mask;
 415
 416	uap->dma_probed = true;
 417	chan = dma_request_slave_channel_reason(dev, "tx");
 418	if (IS_ERR(chan)) {
 419		if (PTR_ERR(chan) == -EPROBE_DEFER) {
 420			uap->dma_probed = false;
 421			return;
 422		}
 423
 
 424		/* We need platform data */
 425		if (!plat || !plat->dma_filter) {
 426			dev_info(uap->port.dev, "no DMA platform data\n");
 427			return;
 428		}
 429
 430		/* Try to acquire a generic DMA engine slave TX channel */
 431		dma_cap_zero(mask);
 432		dma_cap_set(DMA_SLAVE, mask);
 433
 434		chan = dma_request_channel(mask, plat->dma_filter,
 435						plat->dma_tx_param);
 436		if (!chan) {
 437			dev_err(uap->port.dev, "no TX DMA channel!\n");
 438			return;
 439		}
 440	}
 441
 442	dmaengine_slave_config(chan, &tx_conf);
 443	uap->dmatx.chan = chan;
 444
 445	dev_info(uap->port.dev, "DMA channel TX %s\n",
 446		 dma_chan_name(uap->dmatx.chan));
 447
 448	/* Optionally make use of an RX channel as well */
 449	chan = dma_request_slave_channel(dev, "rx");
 450
 451	if (!chan && plat && plat->dma_rx_param) {
 452		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
 453
 454		if (!chan) {
 455			dev_err(uap->port.dev, "no RX DMA channel!\n");
 456			return;
 457		}
 458	}
 459
 460	if (chan) {
 461		struct dma_slave_config rx_conf = {
 462			.src_addr = uap->port.mapbase +
 463				pl011_reg_to_offset(uap, REG_DR),
 464			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 465			.direction = DMA_DEV_TO_MEM,
 466			.src_maxburst = uap->fifosize >> 2,
 467			.device_fc = false,
 468		};
 469		struct dma_slave_caps caps;
 470
 471		/*
 472		 * Some DMA controllers provide information on their capabilities.
 473		 * If the controller does, check for suitable residue processing
 474		 * otherwise assime all is well.
 475		 */
 476		if (0 == dma_get_slave_caps(chan, &caps)) {
 477			if (caps.residue_granularity ==
 478					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
 479				dma_release_channel(chan);
 480				dev_info(uap->port.dev,
 481					"RX DMA disabled - no residue processing\n");
 482				return;
 483			}
 484		}
 485		dmaengine_slave_config(chan, &rx_conf);
 486		uap->dmarx.chan = chan;
 487
 488		uap->dmarx.auto_poll_rate = false;
 489		if (plat && plat->dma_rx_poll_enable) {
 490			/* Set poll rate if specified. */
 491			if (plat->dma_rx_poll_rate) {
 492				uap->dmarx.auto_poll_rate = false;
 493				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
 494			} else {
 495				/*
 496				 * 100 ms defaults to poll rate if not
 497				 * specified. This will be adjusted with
 498				 * the baud rate at set_termios.
 499				 */
 500				uap->dmarx.auto_poll_rate = true;
 501				uap->dmarx.poll_rate =  100;
 502			}
 503			/* 3 secs defaults poll_timeout if not specified. */
 504			if (plat->dma_rx_poll_timeout)
 505				uap->dmarx.poll_timeout =
 506					plat->dma_rx_poll_timeout;
 507			else
 508				uap->dmarx.poll_timeout = 3000;
 509		} else if (!plat && dev->of_node) {
 510			uap->dmarx.auto_poll_rate = of_property_read_bool(
 511						dev->of_node, "auto-poll");
 512			if (uap->dmarx.auto_poll_rate) {
 513				u32 x;
 514
 515				if (0 == of_property_read_u32(dev->of_node,
 516						"poll-rate-ms", &x))
 517					uap->dmarx.poll_rate = x;
 518				else
 519					uap->dmarx.poll_rate = 100;
 520				if (0 == of_property_read_u32(dev->of_node,
 521						"poll-timeout-ms", &x))
 522					uap->dmarx.poll_timeout = x;
 523				else
 524					uap->dmarx.poll_timeout = 3000;
 525			}
 526		}
 527		dev_info(uap->port.dev, "DMA channel RX %s\n",
 528			 dma_chan_name(uap->dmarx.chan));
 529	}
 530}
 531
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 532static void pl011_dma_remove(struct uart_amba_port *uap)
 533{
 
 534	if (uap->dmatx.chan)
 535		dma_release_channel(uap->dmatx.chan);
 536	if (uap->dmarx.chan)
 537		dma_release_channel(uap->dmarx.chan);
 538}
 539
 540/* Forward declare these for the refill routine */
 541static int pl011_dma_tx_refill(struct uart_amba_port *uap);
 542static void pl011_start_tx_pio(struct uart_amba_port *uap);
 543
 544/*
 545 * The current DMA TX buffer has been sent.
 546 * Try to queue up another DMA buffer.
 547 */
 548static void pl011_dma_tx_callback(void *data)
 549{
 550	struct uart_amba_port *uap = data;
 551	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 552	unsigned long flags;
 553	u16 dmacr;
 554
 555	spin_lock_irqsave(&uap->port.lock, flags);
 556	if (uap->dmatx.queued)
 557		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
 558			     DMA_TO_DEVICE);
 559
 560	dmacr = uap->dmacr;
 561	uap->dmacr = dmacr & ~UART011_TXDMAE;
 562	pl011_write(uap->dmacr, uap, REG_DMACR);
 563
 564	/*
 565	 * If TX DMA was disabled, it means that we've stopped the DMA for
 566	 * some reason (eg, XOFF received, or we want to send an X-char.)
 567	 *
 568	 * Note: we need to be careful here of a potential race between DMA
 569	 * and the rest of the driver - if the driver disables TX DMA while
 570	 * a TX buffer completing, we must update the tx queued status to
 571	 * get further refills (hence we check dmacr).
 572	 */
 573	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
 574	    uart_circ_empty(&uap->port.state->xmit)) {
 575		uap->dmatx.queued = false;
 576		spin_unlock_irqrestore(&uap->port.lock, flags);
 577		return;
 578	}
 579
 580	if (pl011_dma_tx_refill(uap) <= 0)
 581		/*
 582		 * We didn't queue a DMA buffer for some reason, but we
 583		 * have data pending to be sent.  Re-enable the TX IRQ.
 584		 */
 585		pl011_start_tx_pio(uap);
 586
 
 587	spin_unlock_irqrestore(&uap->port.lock, flags);
 588}
 589
 590/*
 591 * Try to refill the TX DMA buffer.
 592 * Locking: called with port lock held and IRQs disabled.
 593 * Returns:
 594 *   1 if we queued up a TX DMA buffer.
 595 *   0 if we didn't want to handle this by DMA
 596 *  <0 on error
 597 */
 598static int pl011_dma_tx_refill(struct uart_amba_port *uap)
 599{
 600	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 601	struct dma_chan *chan = dmatx->chan;
 602	struct dma_device *dma_dev = chan->device;
 603	struct dma_async_tx_descriptor *desc;
 604	struct circ_buf *xmit = &uap->port.state->xmit;
 605	unsigned int count;
 606
 607	/*
 608	 * Try to avoid the overhead involved in using DMA if the
 609	 * transaction fits in the first half of the FIFO, by using
 610	 * the standard interrupt handling.  This ensures that we
 611	 * issue a uart_write_wakeup() at the appropriate time.
 612	 */
 613	count = uart_circ_chars_pending(xmit);
 614	if (count < (uap->fifosize >> 1)) {
 615		uap->dmatx.queued = false;
 616		return 0;
 617	}
 618
 619	/*
 620	 * Bodge: don't send the last character by DMA, as this
 621	 * will prevent XON from notifying us to restart DMA.
 622	 */
 623	count -= 1;
 624
 625	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
 626	if (count > PL011_DMA_BUFFER_SIZE)
 627		count = PL011_DMA_BUFFER_SIZE;
 628
 629	if (xmit->tail < xmit->head)
 630		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
 631	else {
 632		size_t first = UART_XMIT_SIZE - xmit->tail;
 633		size_t second;
 634
 635		if (first > count)
 636			first = count;
 637		second = count - first;
 638
 639		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
 640		if (second)
 641			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
 642	}
 643
 644	dmatx->sg.length = count;
 645
 646	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
 647		uap->dmatx.queued = false;
 648		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
 649		return -EBUSY;
 650	}
 651
 652	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
 653					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 654	if (!desc) {
 655		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
 656		uap->dmatx.queued = false;
 657		/*
 658		 * If DMA cannot be used right now, we complete this
 659		 * transaction via IRQ and let the TTY layer retry.
 660		 */
 661		dev_dbg(uap->port.dev, "TX DMA busy\n");
 662		return -EBUSY;
 663	}
 664
 665	/* Some data to go along to the callback */
 666	desc->callback = pl011_dma_tx_callback;
 667	desc->callback_param = uap;
 668
 669	/* All errors should happen at prepare time */
 670	dmaengine_submit(desc);
 671
 672	/* Fire the DMA transaction */
 673	dma_dev->device_issue_pending(chan);
 674
 675	uap->dmacr |= UART011_TXDMAE;
 676	pl011_write(uap->dmacr, uap, REG_DMACR);
 677	uap->dmatx.queued = true;
 678
 679	/*
 680	 * Now we know that DMA will fire, so advance the ring buffer
 681	 * with the stuff we just dispatched.
 682	 */
 683	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
 684	uap->port.icount.tx += count;
 685
 686	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 687		uart_write_wakeup(&uap->port);
 688
 689	return 1;
 690}
 691
 692/*
 693 * We received a transmit interrupt without a pending X-char but with
 694 * pending characters.
 695 * Locking: called with port lock held and IRQs disabled.
 696 * Returns:
 697 *   false if we want to use PIO to transmit
 698 *   true if we queued a DMA buffer
 699 */
 700static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
 701{
 702	if (!uap->using_tx_dma)
 703		return false;
 704
 705	/*
 706	 * If we already have a TX buffer queued, but received a
 707	 * TX interrupt, it will be because we've just sent an X-char.
 708	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
 709	 */
 710	if (uap->dmatx.queued) {
 711		uap->dmacr |= UART011_TXDMAE;
 712		pl011_write(uap->dmacr, uap, REG_DMACR);
 713		uap->im &= ~UART011_TXIM;
 714		pl011_write(uap->im, uap, REG_IMSC);
 715		return true;
 716	}
 717
 718	/*
 719	 * We don't have a TX buffer queued, so try to queue one.
 720	 * If we successfully queued a buffer, mask the TX IRQ.
 721	 */
 722	if (pl011_dma_tx_refill(uap) > 0) {
 723		uap->im &= ~UART011_TXIM;
 724		pl011_write(uap->im, uap, REG_IMSC);
 725		return true;
 726	}
 727	return false;
 728}
 729
 730/*
 731 * Stop the DMA transmit (eg, due to received XOFF).
 732 * Locking: called with port lock held and IRQs disabled.
 733 */
 734static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
 735{
 736	if (uap->dmatx.queued) {
 737		uap->dmacr &= ~UART011_TXDMAE;
 738		pl011_write(uap->dmacr, uap, REG_DMACR);
 739	}
 740}
 741
 742/*
 743 * Try to start a DMA transmit, or in the case of an XON/OFF
 744 * character queued for send, try to get that character out ASAP.
 745 * Locking: called with port lock held and IRQs disabled.
 746 * Returns:
 747 *   false if we want the TX IRQ to be enabled
 748 *   true if we have a buffer queued
 749 */
 750static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
 751{
 752	u16 dmacr;
 753
 754	if (!uap->using_tx_dma)
 755		return false;
 756
 757	if (!uap->port.x_char) {
 758		/* no X-char, try to push chars out in DMA mode */
 759		bool ret = true;
 760
 761		if (!uap->dmatx.queued) {
 762			if (pl011_dma_tx_refill(uap) > 0) {
 763				uap->im &= ~UART011_TXIM;
 764				pl011_write(uap->im, uap, REG_IMSC);
 765			} else
 
 766				ret = false;
 
 
 767		} else if (!(uap->dmacr & UART011_TXDMAE)) {
 768			uap->dmacr |= UART011_TXDMAE;
 769			pl011_write(uap->dmacr, uap, REG_DMACR);
 
 770		}
 771		return ret;
 772	}
 773
 774	/*
 775	 * We have an X-char to send.  Disable DMA to prevent it loading
 776	 * the TX fifo, and then see if we can stuff it into the FIFO.
 777	 */
 778	dmacr = uap->dmacr;
 779	uap->dmacr &= ~UART011_TXDMAE;
 780	pl011_write(uap->dmacr, uap, REG_DMACR);
 781
 782	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
 783		/*
 784		 * No space in the FIFO, so enable the transmit interrupt
 785		 * so we know when there is space.  Note that once we've
 786		 * loaded the character, we should just re-enable DMA.
 787		 */
 788		return false;
 789	}
 790
 791	pl011_write(uap->port.x_char, uap, REG_DR);
 792	uap->port.icount.tx++;
 793	uap->port.x_char = 0;
 794
 795	/* Success - restore the DMA state */
 796	uap->dmacr = dmacr;
 797	pl011_write(dmacr, uap, REG_DMACR);
 798
 799	return true;
 800}
 801
 802/*
 803 * Flush the transmit buffer.
 804 * Locking: called with port lock held and IRQs disabled.
 805 */
 806static void pl011_dma_flush_buffer(struct uart_port *port)
 807__releases(&uap->port.lock)
 808__acquires(&uap->port.lock)
 809{
 810	struct uart_amba_port *uap =
 811	    container_of(port, struct uart_amba_port, port);
 812
 813	if (!uap->using_tx_dma)
 814		return;
 815
 816	/* Avoid deadlock with the DMA engine callback */
 817	spin_unlock(&uap->port.lock);
 818	dmaengine_terminate_all(uap->dmatx.chan);
 819	spin_lock(&uap->port.lock);
 820	if (uap->dmatx.queued) {
 821		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
 822			     DMA_TO_DEVICE);
 823		uap->dmatx.queued = false;
 824		uap->dmacr &= ~UART011_TXDMAE;
 825		pl011_write(uap->dmacr, uap, REG_DMACR);
 826	}
 827}
 828
 829static void pl011_dma_rx_callback(void *data);
 830
 831static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
 832{
 833	struct dma_chan *rxchan = uap->dmarx.chan;
 834	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 835	struct dma_async_tx_descriptor *desc;
 836	struct pl011_sgbuf *sgbuf;
 837
 838	if (!rxchan)
 839		return -EIO;
 840
 841	/* Start the RX DMA job */
 842	sgbuf = uap->dmarx.use_buf_b ?
 843		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 844	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
 845					DMA_DEV_TO_MEM,
 846					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 847	/*
 848	 * If the DMA engine is busy and cannot prepare a
 849	 * channel, no big deal, the driver will fall back
 850	 * to interrupt mode as a result of this error code.
 851	 */
 852	if (!desc) {
 853		uap->dmarx.running = false;
 854		dmaengine_terminate_all(rxchan);
 855		return -EBUSY;
 856	}
 857
 858	/* Some data to go along to the callback */
 859	desc->callback = pl011_dma_rx_callback;
 860	desc->callback_param = uap;
 861	dmarx->cookie = dmaengine_submit(desc);
 862	dma_async_issue_pending(rxchan);
 863
 864	uap->dmacr |= UART011_RXDMAE;
 865	pl011_write(uap->dmacr, uap, REG_DMACR);
 866	uap->dmarx.running = true;
 867
 868	uap->im &= ~UART011_RXIM;
 869	pl011_write(uap->im, uap, REG_IMSC);
 870
 871	return 0;
 872}
 873
 874/*
 875 * This is called when either the DMA job is complete, or
 876 * the FIFO timeout interrupt occurred. This must be called
 877 * with the port spinlock uap->port.lock held.
 878 */
 879static void pl011_dma_rx_chars(struct uart_amba_port *uap,
 880			       u32 pending, bool use_buf_b,
 881			       bool readfifo)
 882{
 883	struct tty_port *port = &uap->port.state->port;
 884	struct pl011_sgbuf *sgbuf = use_buf_b ?
 885		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 886	int dma_count = 0;
 887	u32 fifotaken = 0; /* only used for vdbg() */
 888
 889	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 890	int dmataken = 0;
 891
 892	if (uap->dmarx.poll_rate) {
 893		/* The data can be taken by polling */
 894		dmataken = sgbuf->sg.length - dmarx->last_residue;
 895		/* Recalculate the pending size */
 896		if (pending >= dmataken)
 897			pending -= dmataken;
 898	}
 899
 900	/* Pick the remain data from the DMA */
 901	if (pending) {
 902
 903		/*
 904		 * First take all chars in the DMA pipe, then look in the FIFO.
 905		 * Note that tty_insert_flip_buf() tries to take as many chars
 906		 * as it can.
 907		 */
 908		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
 909				pending);
 910
 911		uap->port.icount.rx += dma_count;
 912		if (dma_count < pending)
 913			dev_warn(uap->port.dev,
 914				 "couldn't insert all characters (TTY is full?)\n");
 915	}
 916
 917	/* Reset the last_residue for Rx DMA poll */
 918	if (uap->dmarx.poll_rate)
 919		dmarx->last_residue = sgbuf->sg.length;
 920
 921	/*
 922	 * Only continue with trying to read the FIFO if all DMA chars have
 923	 * been taken first.
 924	 */
 925	if (dma_count == pending && readfifo) {
 926		/* Clear any error flags */
 927		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
 928			    UART011_FEIS, uap, REG_ICR);
 929
 930		/*
 931		 * If we read all the DMA'd characters, and we had an
 932		 * incomplete buffer, that could be due to an rx error, or
 933		 * maybe we just timed out. Read any pending chars and check
 934		 * the error status.
 935		 *
 936		 * Error conditions will only occur in the FIFO, these will
 937		 * trigger an immediate interrupt and stop the DMA job, so we
 938		 * will always find the error in the FIFO, never in the DMA
 939		 * buffer.
 940		 */
 941		fifotaken = pl011_fifo_to_tty(uap);
 942	}
 943
 944	spin_unlock(&uap->port.lock);
 945	dev_vdbg(uap->port.dev,
 946		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
 947		 dma_count, fifotaken);
 948	tty_flip_buffer_push(port);
 949	spin_lock(&uap->port.lock);
 950}
 951
 952static void pl011_dma_rx_irq(struct uart_amba_port *uap)
 953{
 954	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 955	struct dma_chan *rxchan = dmarx->chan;
 956	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
 957		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
 958	size_t pending;
 959	struct dma_tx_state state;
 960	enum dma_status dmastat;
 961
 962	/*
 963	 * Pause the transfer so we can trust the current counter,
 964	 * do this before we pause the PL011 block, else we may
 965	 * overflow the FIFO.
 966	 */
 967	if (dmaengine_pause(rxchan))
 968		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 969	dmastat = rxchan->device->device_tx_status(rxchan,
 970						   dmarx->cookie, &state);
 971	if (dmastat != DMA_PAUSED)
 972		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 973
 974	/* Disable RX DMA - incoming data will wait in the FIFO */
 975	uap->dmacr &= ~UART011_RXDMAE;
 976	pl011_write(uap->dmacr, uap, REG_DMACR);
 977	uap->dmarx.running = false;
 978
 979	pending = sgbuf->sg.length - state.residue;
 980	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 981	/* Then we terminate the transfer - we now know our residue */
 982	dmaengine_terminate_all(rxchan);
 983
 984	/*
 985	 * This will take the chars we have so far and insert
 986	 * into the framework.
 987	 */
 988	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
 989
 990	/* Switch buffer & re-trigger DMA job */
 991	dmarx->use_buf_b = !dmarx->use_buf_b;
 992	if (pl011_dma_rx_trigger_dma(uap)) {
 993		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 994			"fall back to interrupt mode\n");
 995		uap->im |= UART011_RXIM;
 996		pl011_write(uap->im, uap, REG_IMSC);
 997	}
 998}
 999
1000static void pl011_dma_rx_callback(void *data)
1001{
1002	struct uart_amba_port *uap = data;
1003	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1004	struct dma_chan *rxchan = dmarx->chan;
1005	bool lastbuf = dmarx->use_buf_b;
1006	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1007		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
1008	size_t pending;
1009	struct dma_tx_state state;
1010	int ret;
1011
1012	/*
1013	 * This completion interrupt occurs typically when the
1014	 * RX buffer is totally stuffed but no timeout has yet
1015	 * occurred. When that happens, we just want the RX
1016	 * routine to flush out the secondary DMA buffer while
1017	 * we immediately trigger the next DMA job.
1018	 */
1019	spin_lock_irq(&uap->port.lock);
1020	/*
1021	 * Rx data can be taken by the UART interrupts during
1022	 * the DMA irq handler. So we check the residue here.
1023	 */
1024	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1025	pending = sgbuf->sg.length - state.residue;
1026	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1027	/* Then we terminate the transfer - we now know our residue */
1028	dmaengine_terminate_all(rxchan);
1029
1030	uap->dmarx.running = false;
1031	dmarx->use_buf_b = !lastbuf;
1032	ret = pl011_dma_rx_trigger_dma(uap);
1033
1034	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1035	spin_unlock_irq(&uap->port.lock);
1036	/*
1037	 * Do this check after we picked the DMA chars so we don't
1038	 * get some IRQ immediately from RX.
1039	 */
1040	if (ret) {
1041		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1042			"fall back to interrupt mode\n");
1043		uap->im |= UART011_RXIM;
1044		pl011_write(uap->im, uap, REG_IMSC);
1045	}
1046}
1047
1048/*
1049 * Stop accepting received characters, when we're shutting down or
1050 * suspending this port.
1051 * Locking: called with port lock held and IRQs disabled.
1052 */
1053static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1054{
1055	/* FIXME.  Just disable the DMA enable */
1056	uap->dmacr &= ~UART011_RXDMAE;
1057	pl011_write(uap->dmacr, uap, REG_DMACR);
1058}
1059
1060/*
1061 * Timer handler for Rx DMA polling.
1062 * Every polling, It checks the residue in the dma buffer and transfer
1063 * data to the tty. Also, last_residue is updated for the next polling.
1064 */
1065static void pl011_dma_rx_poll(struct timer_list *t)
1066{
1067	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1068	struct tty_port *port = &uap->port.state->port;
1069	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1070	struct dma_chan *rxchan = uap->dmarx.chan;
1071	unsigned long flags = 0;
1072	unsigned int dmataken = 0;
1073	unsigned int size = 0;
1074	struct pl011_sgbuf *sgbuf;
1075	int dma_count;
1076	struct dma_tx_state state;
1077
1078	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1079	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1080	if (likely(state.residue < dmarx->last_residue)) {
1081		dmataken = sgbuf->sg.length - dmarx->last_residue;
1082		size = dmarx->last_residue - state.residue;
1083		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1084				size);
1085		if (dma_count == size)
1086			dmarx->last_residue =  state.residue;
1087		dmarx->last_jiffies = jiffies;
1088	}
1089	tty_flip_buffer_push(port);
1090
1091	/*
1092	 * If no data is received in poll_timeout, the driver will fall back
1093	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1094	 */
1095	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1096			> uap->dmarx.poll_timeout) {
1097
1098		spin_lock_irqsave(&uap->port.lock, flags);
1099		pl011_dma_rx_stop(uap);
1100		uap->im |= UART011_RXIM;
1101		pl011_write(uap->im, uap, REG_IMSC);
1102		spin_unlock_irqrestore(&uap->port.lock, flags);
1103
1104		uap->dmarx.running = false;
1105		dmaengine_terminate_all(rxchan);
1106		del_timer(&uap->dmarx.timer);
1107	} else {
1108		mod_timer(&uap->dmarx.timer,
1109			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1110	}
1111}
1112
1113static void pl011_dma_startup(struct uart_amba_port *uap)
1114{
1115	int ret;
1116
1117	if (!uap->dma_probed)
1118		pl011_dma_probe(uap);
1119
1120	if (!uap->dmatx.chan)
1121		return;
1122
1123	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1124	if (!uap->dmatx.buf) {
1125		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1126		uap->port.fifosize = uap->fifosize;
1127		return;
1128	}
1129
1130	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1131
1132	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1133	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1134	uap->using_tx_dma = true;
1135
1136	if (!uap->dmarx.chan)
1137		goto skip_rx;
1138
1139	/* Allocate and map DMA RX buffers */
1140	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1141			       DMA_FROM_DEVICE);
1142	if (ret) {
1143		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1144			"RX buffer A", ret);
1145		goto skip_rx;
1146	}
1147
1148	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1149			       DMA_FROM_DEVICE);
1150	if (ret) {
1151		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1152			"RX buffer B", ret);
1153		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1154				 DMA_FROM_DEVICE);
1155		goto skip_rx;
1156	}
1157
1158	uap->using_rx_dma = true;
1159
1160skip_rx:
1161	/* Turn on DMA error (RX/TX will be enabled on demand) */
1162	uap->dmacr |= UART011_DMAONERR;
1163	pl011_write(uap->dmacr, uap, REG_DMACR);
1164
1165	/*
1166	 * ST Micro variants has some specific dma burst threshold
1167	 * compensation. Set this to 16 bytes, so burst will only
1168	 * be issued above/below 16 bytes.
1169	 */
1170	if (uap->vendor->dma_threshold)
1171		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1172			    uap, REG_ST_DMAWM);
1173
1174	if (uap->using_rx_dma) {
1175		if (pl011_dma_rx_trigger_dma(uap))
1176			dev_dbg(uap->port.dev, "could not trigger initial "
1177				"RX DMA job, fall back to interrupt mode\n");
1178		if (uap->dmarx.poll_rate) {
1179			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
 
 
1180			mod_timer(&uap->dmarx.timer,
1181				jiffies +
1182				msecs_to_jiffies(uap->dmarx.poll_rate));
1183			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1184			uap->dmarx.last_jiffies = jiffies;
1185		}
1186	}
1187}
1188
1189static void pl011_dma_shutdown(struct uart_amba_port *uap)
1190{
1191	if (!(uap->using_tx_dma || uap->using_rx_dma))
1192		return;
1193
1194	/* Disable RX and TX DMA */
1195	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1196		cpu_relax();
1197
1198	spin_lock_irq(&uap->port.lock);
1199	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1200	pl011_write(uap->dmacr, uap, REG_DMACR);
1201	spin_unlock_irq(&uap->port.lock);
1202
1203	if (uap->using_tx_dma) {
1204		/* In theory, this should already be done by pl011_dma_flush_buffer */
1205		dmaengine_terminate_all(uap->dmatx.chan);
1206		if (uap->dmatx.queued) {
1207			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1208				     DMA_TO_DEVICE);
1209			uap->dmatx.queued = false;
1210		}
1211
1212		kfree(uap->dmatx.buf);
1213		uap->using_tx_dma = false;
1214	}
1215
1216	if (uap->using_rx_dma) {
1217		dmaengine_terminate_all(uap->dmarx.chan);
1218		/* Clean up the RX DMA */
1219		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1220		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1221		if (uap->dmarx.poll_rate)
1222			del_timer_sync(&uap->dmarx.timer);
1223		uap->using_rx_dma = false;
1224	}
1225}
1226
1227static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1228{
1229	return uap->using_rx_dma;
1230}
1231
1232static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1233{
1234	return uap->using_rx_dma && uap->dmarx.running;
1235}
1236
1237#else
1238/* Blank functions if the DMA engine is not available */
1239static inline void pl011_dma_probe(struct uart_amba_port *uap)
1240{
1241}
1242
1243static inline void pl011_dma_remove(struct uart_amba_port *uap)
1244{
1245}
1246
1247static inline void pl011_dma_startup(struct uart_amba_port *uap)
1248{
1249}
1250
1251static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1252{
1253}
1254
1255static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1256{
1257	return false;
1258}
1259
1260static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1261{
1262}
1263
1264static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1265{
1266	return false;
1267}
1268
1269static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1270{
1271}
1272
1273static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1274{
1275}
1276
1277static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1278{
1279	return -EIO;
1280}
1281
1282static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1283{
1284	return false;
1285}
1286
1287static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1288{
1289	return false;
1290}
1291
1292#define pl011_dma_flush_buffer	NULL
1293#endif
1294
1295static void pl011_stop_tx(struct uart_port *port)
1296{
1297	struct uart_amba_port *uap =
1298	    container_of(port, struct uart_amba_port, port);
1299
1300	uap->im &= ~UART011_TXIM;
1301	pl011_write(uap->im, uap, REG_IMSC);
1302	pl011_dma_tx_stop(uap);
1303}
1304
1305static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1306
1307/* Start TX with programmed I/O only (no DMA) */
1308static void pl011_start_tx_pio(struct uart_amba_port *uap)
1309{
1310	if (pl011_tx_chars(uap, false)) {
1311		uap->im |= UART011_TXIM;
1312		pl011_write(uap->im, uap, REG_IMSC);
1313	}
1314}
1315
1316static void pl011_start_tx(struct uart_port *port)
1317{
1318	struct uart_amba_port *uap =
1319	    container_of(port, struct uart_amba_port, port);
1320
1321	if (!pl011_dma_tx_start(uap))
1322		pl011_start_tx_pio(uap);
 
 
1323}
1324
1325static void pl011_stop_rx(struct uart_port *port)
1326{
1327	struct uart_amba_port *uap =
1328	    container_of(port, struct uart_amba_port, port);
1329
1330	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1331		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1332	pl011_write(uap->im, uap, REG_IMSC);
1333
1334	pl011_dma_rx_stop(uap);
1335}
1336
1337static void pl011_enable_ms(struct uart_port *port)
1338{
1339	struct uart_amba_port *uap =
1340	    container_of(port, struct uart_amba_port, port);
1341
1342	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1343	pl011_write(uap->im, uap, REG_IMSC);
1344}
1345
1346static void pl011_rx_chars(struct uart_amba_port *uap)
1347__releases(&uap->port.lock)
1348__acquires(&uap->port.lock)
1349{
1350	pl011_fifo_to_tty(uap);
1351
1352	spin_unlock(&uap->port.lock);
1353	tty_flip_buffer_push(&uap->port.state->port);
1354	/*
1355	 * If we were temporarily out of DMA mode for a while,
1356	 * attempt to switch back to DMA mode again.
1357	 */
1358	if (pl011_dma_rx_available(uap)) {
1359		if (pl011_dma_rx_trigger_dma(uap)) {
1360			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1361				"fall back to interrupt mode again\n");
1362			uap->im |= UART011_RXIM;
1363			pl011_write(uap->im, uap, REG_IMSC);
1364		} else {
1365#ifdef CONFIG_DMA_ENGINE
1366			/* Start Rx DMA poll */
1367			if (uap->dmarx.poll_rate) {
1368				uap->dmarx.last_jiffies = jiffies;
1369				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1370				mod_timer(&uap->dmarx.timer,
1371					jiffies +
1372					msecs_to_jiffies(uap->dmarx.poll_rate));
1373			}
1374#endif
1375		}
1376	}
1377	spin_lock(&uap->port.lock);
1378}
1379
1380static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1381			  bool from_irq)
1382{
1383	if (unlikely(!from_irq) &&
1384	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1385		return false; /* unable to transmit character */
1386
1387	pl011_write(c, uap, REG_DR);
1388	uap->port.icount.tx++;
1389
1390	return true;
1391}
1392
1393/* Returns true if tx interrupts have to be (kept) enabled  */
1394static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1395{
1396	struct circ_buf *xmit = &uap->port.state->xmit;
1397	int count = uap->fifosize >> 1;
1398
1399	if (uap->port.x_char) {
1400		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1401			return true;
1402		uap->port.x_char = 0;
1403		--count;
1404	}
1405	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1406		pl011_stop_tx(&uap->port);
1407		return false;
1408	}
1409
1410	/* If we are using DMA mode, try to send some characters. */
1411	if (pl011_dma_tx_irq(uap))
1412		return true;
1413
 
1414	do {
1415		if (likely(from_irq) && count-- == 0)
1416			break;
1417
1418		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1419			break;
1420
1421		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1422	} while (!uart_circ_empty(xmit));
 
 
 
1423
1424	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1425		uart_write_wakeup(&uap->port);
1426
1427	if (uart_circ_empty(xmit)) {
1428		pl011_stop_tx(&uap->port);
1429		return false;
1430	}
1431	return true;
1432}
1433
1434static void pl011_modem_status(struct uart_amba_port *uap)
1435{
1436	unsigned int status, delta;
1437
1438	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1439
1440	delta = status ^ uap->old_status;
1441	uap->old_status = status;
1442
1443	if (!delta)
1444		return;
1445
1446	if (delta & UART01x_FR_DCD)
1447		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1448
1449	if (delta & uap->vendor->fr_dsr)
1450		uap->port.icount.dsr++;
1451
1452	if (delta & uap->vendor->fr_cts)
1453		uart_handle_cts_change(&uap->port,
1454				       status & uap->vendor->fr_cts);
1455
1456	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1457}
1458
1459static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1460{
1461	unsigned int dummy_read;
1462
1463	if (!uap->vendor->cts_event_workaround)
1464		return;
1465
1466	/* workaround to make sure that all bits are unlocked.. */
1467	pl011_write(0x00, uap, REG_ICR);
1468
1469	/*
1470	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1471	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1472	 * so add 2 dummy reads
1473	 */
1474	dummy_read = pl011_read(uap, REG_ICR);
1475	dummy_read = pl011_read(uap, REG_ICR);
1476}
1477
1478static irqreturn_t pl011_int(int irq, void *dev_id)
1479{
1480	struct uart_amba_port *uap = dev_id;
1481	unsigned long flags;
1482	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1483	int handled = 0;
 
1484
1485	spin_lock_irqsave(&uap->port.lock, flags);
1486	status = pl011_read(uap, REG_RIS) & uap->im;
1487	if (status) {
1488		do {
1489			check_apply_cts_event_workaround(uap);
 
 
 
 
 
 
 
 
 
 
 
1490
1491			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1492					       UART011_RXIS),
1493				    uap, REG_ICR);
1494
1495			if (status & (UART011_RTIS|UART011_RXIS)) {
1496				if (pl011_dma_rx_running(uap))
1497					pl011_dma_rx_irq(uap);
1498				else
1499					pl011_rx_chars(uap);
1500			}
1501			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1502				      UART011_CTSMIS|UART011_RIMIS))
1503				pl011_modem_status(uap);
1504			if (status & UART011_TXIS)
1505				pl011_tx_chars(uap, true);
1506
1507			if (pass_counter-- == 0)
1508				break;
1509
1510			status = pl011_read(uap, REG_RIS) & uap->im;
1511		} while (status != 0);
1512		handled = 1;
1513	}
1514
1515	spin_unlock_irqrestore(&uap->port.lock, flags);
1516
1517	return IRQ_RETVAL(handled);
1518}
1519
1520static unsigned int pl011_tx_empty(struct uart_port *port)
1521{
1522	struct uart_amba_port *uap =
1523	    container_of(port, struct uart_amba_port, port);
1524
1525	/* Allow feature register bits to be inverted to work around errata */
1526	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1527
1528	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1529							0 : TIOCSER_TEMT;
1530}
1531
1532static unsigned int pl011_get_mctrl(struct uart_port *port)
1533{
1534	struct uart_amba_port *uap =
1535	    container_of(port, struct uart_amba_port, port);
1536	unsigned int result = 0;
1537	unsigned int status = pl011_read(uap, REG_FR);
1538
1539#define TIOCMBIT(uartbit, tiocmbit)	\
1540	if (status & uartbit)		\
1541		result |= tiocmbit
1542
1543	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1544	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1545	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1546	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1547#undef TIOCMBIT
1548	return result;
1549}
1550
1551static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1552{
1553	struct uart_amba_port *uap =
1554	    container_of(port, struct uart_amba_port, port);
1555	unsigned int cr;
1556
1557	cr = pl011_read(uap, REG_CR);
1558
1559#define	TIOCMBIT(tiocmbit, uartbit)		\
1560	if (mctrl & tiocmbit)		\
1561		cr |= uartbit;		\
1562	else				\
1563		cr &= ~uartbit
1564
1565	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1566	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1567	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1568	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1569	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1570
1571	if (port->status & UPSTAT_AUTORTS) {
1572		/* We need to disable auto-RTS if we want to turn RTS off */
1573		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1574	}
1575#undef TIOCMBIT
1576
1577	pl011_write(cr, uap, REG_CR);
1578}
1579
1580static void pl011_break_ctl(struct uart_port *port, int break_state)
1581{
1582	struct uart_amba_port *uap =
1583	    container_of(port, struct uart_amba_port, port);
1584	unsigned long flags;
1585	unsigned int lcr_h;
1586
1587	spin_lock_irqsave(&uap->port.lock, flags);
1588	lcr_h = pl011_read(uap, REG_LCRH_TX);
1589	if (break_state == -1)
1590		lcr_h |= UART01x_LCRH_BRK;
1591	else
1592		lcr_h &= ~UART01x_LCRH_BRK;
1593	pl011_write(lcr_h, uap, REG_LCRH_TX);
1594	spin_unlock_irqrestore(&uap->port.lock, flags);
1595}
1596
1597#ifdef CONFIG_CONSOLE_POLL
1598
1599static void pl011_quiesce_irqs(struct uart_port *port)
1600{
1601	struct uart_amba_port *uap =
1602	    container_of(port, struct uart_amba_port, port);
1603
1604	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1605	/*
1606	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1607	 * we simply mask it. start_tx() will unmask it.
1608	 *
1609	 * Note we can race with start_tx(), and if the race happens, the
1610	 * polling user might get another interrupt just after we clear it.
1611	 * But it should be OK and can happen even w/o the race, e.g.
1612	 * controller immediately got some new data and raised the IRQ.
1613	 *
1614	 * And whoever uses polling routines assumes that it manages the device
1615	 * (including tx queue), so we're also fine with start_tx()'s caller
1616	 * side.
1617	 */
1618	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1619		    REG_IMSC);
1620}
1621
1622static int pl011_get_poll_char(struct uart_port *port)
1623{
1624	struct uart_amba_port *uap =
1625	    container_of(port, struct uart_amba_port, port);
1626	unsigned int status;
1627
1628	/*
1629	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1630	 * debugger.
1631	 */
1632	pl011_quiesce_irqs(port);
1633
1634	status = pl011_read(uap, REG_FR);
1635	if (status & UART01x_FR_RXFE)
1636		return NO_POLL_CHAR;
1637
1638	return pl011_read(uap, REG_DR);
1639}
1640
1641static void pl011_put_poll_char(struct uart_port *port,
1642			 unsigned char ch)
1643{
1644	struct uart_amba_port *uap =
1645	    container_of(port, struct uart_amba_port, port);
1646
1647	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1648		cpu_relax();
1649
1650	pl011_write(ch, uap, REG_DR);
1651}
1652
1653#endif /* CONFIG_CONSOLE_POLL */
1654
1655static int pl011_hwinit(struct uart_port *port)
1656{
1657	struct uart_amba_port *uap =
1658	    container_of(port, struct uart_amba_port, port);
1659	int retval;
1660
1661	/* Optionaly enable pins to be muxed in and configured */
1662	pinctrl_pm_select_default_state(port->dev);
1663
1664	/*
1665	 * Try to enable the clock producer.
1666	 */
1667	retval = clk_prepare_enable(uap->clk);
1668	if (retval)
1669		return retval;
1670
1671	uap->port.uartclk = clk_get_rate(uap->clk);
1672
1673	/* Clear pending error and receive interrupts */
1674	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1675		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1676		    uap, REG_ICR);
1677
1678	/*
1679	 * Save interrupts enable mask, and enable RX interrupts in case if
1680	 * the interrupt is used for NMI entry.
1681	 */
1682	uap->im = pl011_read(uap, REG_IMSC);
1683	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1684
1685	if (dev_get_platdata(uap->port.dev)) {
1686		struct amba_pl011_data *plat;
1687
1688		plat = dev_get_platdata(uap->port.dev);
1689		if (plat->init)
1690			plat->init();
1691	}
1692	return 0;
1693}
1694
1695static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1696{
1697	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1698	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1699}
1700
1701static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1702{
1703	pl011_write(lcr_h, uap, REG_LCRH_RX);
1704	if (pl011_split_lcrh(uap)) {
1705		int i;
1706		/*
1707		 * Wait 10 PCLKs before writing LCRH_TX register,
1708		 * to get this delay write read only register 10 times
1709		 */
1710		for (i = 0; i < 10; ++i)
1711			pl011_write(0xff, uap, REG_MIS);
1712		pl011_write(lcr_h, uap, REG_LCRH_TX);
1713	}
1714}
1715
1716static int pl011_allocate_irq(struct uart_amba_port *uap)
1717{
1718	pl011_write(uap->im, uap, REG_IMSC);
1719
1720	return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1721}
1722
1723/*
1724 * Enable interrupts, only timeouts when using DMA
1725 * if initial RX DMA job failed, start in interrupt mode
1726 * as well.
1727 */
1728static void pl011_enable_interrupts(struct uart_amba_port *uap)
1729{
1730	unsigned int i;
1731
1732	spin_lock_irq(&uap->port.lock);
1733
1734	/* Clear out any spuriously appearing RX interrupts */
1735	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1736
1737	/*
1738	 * RXIS is asserted only when the RX FIFO transitions from below
1739	 * to above the trigger threshold.  If the RX FIFO is already
1740	 * full to the threshold this can't happen and RXIS will now be
1741	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1742	 */
1743	for (i = 0; i < uap->fifosize * 2; ++i) {
1744		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1745			break;
1746
1747		pl011_read(uap, REG_DR);
1748	}
1749
1750	uap->im = UART011_RTIM;
1751	if (!pl011_dma_rx_running(uap))
1752		uap->im |= UART011_RXIM;
1753	pl011_write(uap->im, uap, REG_IMSC);
1754	spin_unlock_irq(&uap->port.lock);
1755}
1756
1757static int pl011_startup(struct uart_port *port)
1758{
1759	struct uart_amba_port *uap =
1760	    container_of(port, struct uart_amba_port, port);
1761	unsigned int cr;
1762	int retval;
1763
1764	retval = pl011_hwinit(port);
1765	if (retval)
1766		goto clk_dis;
1767
1768	retval = pl011_allocate_irq(uap);
 
 
 
 
 
1769	if (retval)
1770		goto clk_dis;
1771
1772	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1773
 
 
 
 
 
1774	spin_lock_irq(&uap->port.lock);
1775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1776	/* restore RTS and DTR */
1777	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1778	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1779	pl011_write(cr, uap, REG_CR);
1780
1781	spin_unlock_irq(&uap->port.lock);
1782
1783	/*
1784	 * initialise the old status of the modem signals
1785	 */
1786	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1787
1788	/* Startup DMA */
1789	pl011_dma_startup(uap);
1790
1791	pl011_enable_interrupts(uap);
 
 
 
 
 
 
 
 
 
 
 
 
 
1792
1793	return 0;
1794
1795 clk_dis:
1796	clk_disable_unprepare(uap->clk);
1797	return retval;
1798}
1799
1800static int sbsa_uart_startup(struct uart_port *port)
1801{
1802	struct uart_amba_port *uap =
1803		container_of(port, struct uart_amba_port, port);
1804	int retval;
1805
1806	retval = pl011_hwinit(port);
1807	if (retval)
1808		return retval;
1809
1810	retval = pl011_allocate_irq(uap);
1811	if (retval)
1812		return retval;
1813
1814	/* The SBSA UART does not support any modem status lines. */
1815	uap->old_status = 0;
1816
1817	pl011_enable_interrupts(uap);
1818
1819	return 0;
1820}
1821
1822static void pl011_shutdown_channel(struct uart_amba_port *uap,
1823					unsigned int lcrh)
1824{
1825      unsigned long val;
1826
1827      val = pl011_read(uap, lcrh);
1828      val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1829      pl011_write(val, uap, lcrh);
1830}
1831
1832/*
1833 * disable the port. It should not disable RTS and DTR.
1834 * Also RTS and DTR state should be preserved to restore
1835 * it during startup().
1836 */
1837static void pl011_disable_uart(struct uart_amba_port *uap)
1838{
 
1839	unsigned int cr;
1840
1841	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1842	spin_lock_irq(&uap->port.lock);
1843	cr = pl011_read(uap, REG_CR);
1844	uap->old_cr = cr;
1845	cr &= UART011_CR_RTS | UART011_CR_DTR;
1846	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1847	pl011_write(cr, uap, REG_CR);
1848	spin_unlock_irq(&uap->port.lock);
1849
1850	/*
1851	 * disable break condition and fifos
1852	 */
1853	pl011_shutdown_channel(uap, REG_LCRH_RX);
1854	if (pl011_split_lcrh(uap))
1855		pl011_shutdown_channel(uap, REG_LCRH_TX);
1856}
1857
1858static void pl011_disable_interrupts(struct uart_amba_port *uap)
1859{
1860	spin_lock_irq(&uap->port.lock);
1861
1862	/* mask all interrupts and clear all pending ones */
1863	uap->im = 0;
1864	pl011_write(uap->im, uap, REG_IMSC);
1865	pl011_write(0xffff, uap, REG_ICR);
1866
1867	spin_unlock_irq(&uap->port.lock);
1868}
1869
1870static void pl011_shutdown(struct uart_port *port)
1871{
1872	struct uart_amba_port *uap =
1873		container_of(port, struct uart_amba_port, port);
1874
1875	pl011_disable_interrupts(uap);
1876
1877	pl011_dma_shutdown(uap);
1878
 
 
 
1879	free_irq(uap->port.irq, uap);
1880
1881	pl011_disable_uart(uap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1882
1883	/*
1884	 * Shut down the clock producer
1885	 */
1886	clk_disable_unprepare(uap->clk);
1887	/* Optionally let pins go into sleep states */
1888	pinctrl_pm_select_sleep_state(port->dev);
1889
1890	if (dev_get_platdata(uap->port.dev)) {
1891		struct amba_pl011_data *plat;
1892
1893		plat = dev_get_platdata(uap->port.dev);
1894		if (plat->exit)
1895			plat->exit();
1896	}
1897
1898	if (uap->port.ops->flush_buffer)
1899		uap->port.ops->flush_buffer(port);
1900}
1901
1902static void sbsa_uart_shutdown(struct uart_port *port)
1903{
1904	struct uart_amba_port *uap =
1905		container_of(port, struct uart_amba_port, port);
1906
1907	pl011_disable_interrupts(uap);
1908
1909	free_irq(uap->port.irq, uap);
1910
1911	if (uap->port.ops->flush_buffer)
1912		uap->port.ops->flush_buffer(port);
1913}
1914
1915static void
1916pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1917{
1918	port->read_status_mask = UART011_DR_OE | 255;
1919	if (termios->c_iflag & INPCK)
1920		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1921	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1922		port->read_status_mask |= UART011_DR_BE;
1923
1924	/*
1925	 * Characters to ignore
1926	 */
1927	port->ignore_status_mask = 0;
1928	if (termios->c_iflag & IGNPAR)
1929		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1930	if (termios->c_iflag & IGNBRK) {
1931		port->ignore_status_mask |= UART011_DR_BE;
1932		/*
1933		 * If we're ignoring parity and break indicators,
1934		 * ignore overruns too (for real raw support).
1935		 */
1936		if (termios->c_iflag & IGNPAR)
1937			port->ignore_status_mask |= UART011_DR_OE;
1938	}
1939
1940	/*
1941	 * Ignore all characters if CREAD is not set.
1942	 */
1943	if ((termios->c_cflag & CREAD) == 0)
1944		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1945}
1946
1947static void
1948pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1949		     struct ktermios *old)
1950{
1951	struct uart_amba_port *uap =
1952	    container_of(port, struct uart_amba_port, port);
1953	unsigned int lcr_h, old_cr;
1954	unsigned long flags;
1955	unsigned int baud, quot, clkdiv;
1956
1957	if (uap->vendor->oversampling)
1958		clkdiv = 8;
1959	else
1960		clkdiv = 16;
1961
1962	/*
1963	 * Ask the core to calculate the divisor for us.
1964	 */
1965	baud = uart_get_baud_rate(port, termios, old, 0,
1966				  port->uartclk / clkdiv);
1967#ifdef CONFIG_DMA_ENGINE
1968	/*
1969	 * Adjust RX DMA polling rate with baud rate if not specified.
1970	 */
1971	if (uap->dmarx.auto_poll_rate)
1972		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1973#endif
1974
1975	if (baud > port->uartclk/16)
1976		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1977	else
1978		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1979
1980	switch (termios->c_cflag & CSIZE) {
1981	case CS5:
1982		lcr_h = UART01x_LCRH_WLEN_5;
1983		break;
1984	case CS6:
1985		lcr_h = UART01x_LCRH_WLEN_6;
1986		break;
1987	case CS7:
1988		lcr_h = UART01x_LCRH_WLEN_7;
1989		break;
1990	default: // CS8
1991		lcr_h = UART01x_LCRH_WLEN_8;
1992		break;
1993	}
1994	if (termios->c_cflag & CSTOPB)
1995		lcr_h |= UART01x_LCRH_STP2;
1996	if (termios->c_cflag & PARENB) {
1997		lcr_h |= UART01x_LCRH_PEN;
1998		if (!(termios->c_cflag & PARODD))
1999			lcr_h |= UART01x_LCRH_EPS;
2000		if (termios->c_cflag & CMSPAR)
2001			lcr_h |= UART011_LCRH_SPS;
2002	}
2003	if (uap->fifosize > 1)
2004		lcr_h |= UART01x_LCRH_FEN;
2005
2006	spin_lock_irqsave(&port->lock, flags);
2007
2008	/*
2009	 * Update the per-port timeout.
2010	 */
2011	uart_update_timeout(port, termios->c_cflag, baud);
2012
2013	pl011_setup_status_masks(port, termios);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2014
2015	if (UART_ENABLE_MS(port, termios->c_cflag))
2016		pl011_enable_ms(port);
2017
2018	/* first, disable everything */
2019	old_cr = pl011_read(uap, REG_CR);
2020	pl011_write(0, uap, REG_CR);
2021
2022	if (termios->c_cflag & CRTSCTS) {
2023		if (old_cr & UART011_CR_RTS)
2024			old_cr |= UART011_CR_RTSEN;
2025
2026		old_cr |= UART011_CR_CTSEN;
2027		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2028	} else {
2029		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2030		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2031	}
2032
2033	if (uap->vendor->oversampling) {
2034		if (baud > port->uartclk / 16)
2035			old_cr |= ST_UART011_CR_OVSFACT;
2036		else
2037			old_cr &= ~ST_UART011_CR_OVSFACT;
2038	}
2039
2040	/*
2041	 * Workaround for the ST Micro oversampling variants to
2042	 * increase the bitrate slightly, by lowering the divisor,
2043	 * to avoid delayed sampling of start bit at high speeds,
2044	 * else we see data corruption.
2045	 */
2046	if (uap->vendor->oversampling) {
2047		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2048			quot -= 1;
2049		else if ((baud > 3250000) && (quot > 2))
2050			quot -= 2;
2051	}
2052	/* Set baud rate */
2053	pl011_write(quot & 0x3f, uap, REG_FBRD);
2054	pl011_write(quot >> 6, uap, REG_IBRD);
2055
2056	/*
2057	 * ----------v----------v----------v----------v-----
2058	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2059	 * REG_FBRD & REG_IBRD.
2060	 * ----------^----------^----------^----------^-----
2061	 */
2062	pl011_write_lcr_h(uap, lcr_h);
2063	pl011_write(old_cr, uap, REG_CR);
2064
2065	spin_unlock_irqrestore(&port->lock, flags);
2066}
2067
2068static void
2069sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2070		      struct ktermios *old)
2071{
2072	struct uart_amba_port *uap =
2073	    container_of(port, struct uart_amba_port, port);
2074	unsigned long flags;
2075
2076	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2077
2078	/* The SBSA UART only supports 8n1 without hardware flow control. */
2079	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2080	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2081	termios->c_cflag |= CS8 | CLOCAL;
2082
2083	spin_lock_irqsave(&port->lock, flags);
2084	uart_update_timeout(port, CS8, uap->fixed_baud);
2085	pl011_setup_status_masks(port, termios);
2086	spin_unlock_irqrestore(&port->lock, flags);
2087}
2088
2089static const char *pl011_type(struct uart_port *port)
2090{
2091	struct uart_amba_port *uap =
2092	    container_of(port, struct uart_amba_port, port);
2093	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2094}
2095
2096/*
2097 * Release the memory region(s) being used by 'port'
2098 */
2099static void pl011_release_port(struct uart_port *port)
2100{
2101	release_mem_region(port->mapbase, SZ_4K);
2102}
2103
2104/*
2105 * Request the memory region(s) being used by 'port'
2106 */
2107static int pl011_request_port(struct uart_port *port)
2108{
2109	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2110			!= NULL ? 0 : -EBUSY;
2111}
2112
2113/*
2114 * Configure/autoconfigure the port.
2115 */
2116static void pl011_config_port(struct uart_port *port, int flags)
2117{
2118	if (flags & UART_CONFIG_TYPE) {
2119		port->type = PORT_AMBA;
2120		pl011_request_port(port);
2121	}
2122}
2123
2124/*
2125 * verify the new serial_struct (for TIOCSSERIAL).
2126 */
2127static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2128{
2129	int ret = 0;
2130	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2131		ret = -EINVAL;
2132	if (ser->irq < 0 || ser->irq >= nr_irqs)
2133		ret = -EINVAL;
2134	if (ser->baud_base < 9600)
2135		ret = -EINVAL;
2136	return ret;
2137}
2138
2139static const struct uart_ops amba_pl011_pops = {
2140	.tx_empty	= pl011_tx_empty,
2141	.set_mctrl	= pl011_set_mctrl,
2142	.get_mctrl	= pl011_get_mctrl,
2143	.stop_tx	= pl011_stop_tx,
2144	.start_tx	= pl011_start_tx,
2145	.stop_rx	= pl011_stop_rx,
2146	.enable_ms	= pl011_enable_ms,
2147	.break_ctl	= pl011_break_ctl,
2148	.startup	= pl011_startup,
2149	.shutdown	= pl011_shutdown,
2150	.flush_buffer	= pl011_dma_flush_buffer,
2151	.set_termios	= pl011_set_termios,
2152	.type		= pl011_type,
2153	.release_port	= pl011_release_port,
2154	.request_port	= pl011_request_port,
2155	.config_port	= pl011_config_port,
2156	.verify_port	= pl011_verify_port,
2157#ifdef CONFIG_CONSOLE_POLL
2158	.poll_init     = pl011_hwinit,
2159	.poll_get_char = pl011_get_poll_char,
2160	.poll_put_char = pl011_put_poll_char,
2161#endif
2162};
2163
2164static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2165{
2166}
2167
2168static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2169{
2170	return 0;
2171}
2172
2173static const struct uart_ops sbsa_uart_pops = {
2174	.tx_empty	= pl011_tx_empty,
2175	.set_mctrl	= sbsa_uart_set_mctrl,
2176	.get_mctrl	= sbsa_uart_get_mctrl,
2177	.stop_tx	= pl011_stop_tx,
2178	.start_tx	= pl011_start_tx,
2179	.stop_rx	= pl011_stop_rx,
2180	.startup	= sbsa_uart_startup,
2181	.shutdown	= sbsa_uart_shutdown,
2182	.set_termios	= sbsa_uart_set_termios,
2183	.type		= pl011_type,
2184	.release_port	= pl011_release_port,
2185	.request_port	= pl011_request_port,
2186	.config_port	= pl011_config_port,
2187	.verify_port	= pl011_verify_port,
2188#ifdef CONFIG_CONSOLE_POLL
2189	.poll_init     = pl011_hwinit,
2190	.poll_get_char = pl011_get_poll_char,
2191	.poll_put_char = pl011_put_poll_char,
2192#endif
2193};
2194
2195static struct uart_amba_port *amba_ports[UART_NR];
2196
2197#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2198
2199static void pl011_console_putchar(struct uart_port *port, int ch)
2200{
2201	struct uart_amba_port *uap =
2202	    container_of(port, struct uart_amba_port, port);
2203
2204	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2205		cpu_relax();
2206	pl011_write(ch, uap, REG_DR);
2207}
2208
2209static void
2210pl011_console_write(struct console *co, const char *s, unsigned int count)
2211{
2212	struct uart_amba_port *uap = amba_ports[co->index];
2213	unsigned int old_cr = 0, new_cr;
2214	unsigned long flags;
2215	int locked = 1;
2216
2217	clk_enable(uap->clk);
2218
2219	local_irq_save(flags);
2220	if (uap->port.sysrq)
2221		locked = 0;
2222	else if (oops_in_progress)
2223		locked = spin_trylock(&uap->port.lock);
2224	else
2225		spin_lock(&uap->port.lock);
2226
2227	/*
2228	 *	First save the CR then disable the interrupts
2229	 */
2230	if (!uap->vendor->always_enabled) {
2231		old_cr = pl011_read(uap, REG_CR);
2232		new_cr = old_cr & ~UART011_CR_CTSEN;
2233		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2234		pl011_write(new_cr, uap, REG_CR);
2235	}
2236
2237	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2238
2239	/*
2240	 *	Finally, wait for transmitter to become empty and restore the
2241	 *	TCR. Allow feature register bits to be inverted to work around
2242	 *	errata.
2243	 */
2244	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2245						& uap->vendor->fr_busy)
2246		cpu_relax();
2247	if (!uap->vendor->always_enabled)
2248		pl011_write(old_cr, uap, REG_CR);
2249
2250	if (locked)
2251		spin_unlock(&uap->port.lock);
2252	local_irq_restore(flags);
2253
2254	clk_disable(uap->clk);
2255}
2256
2257static void __init
2258pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2259			     int *parity, int *bits)
2260{
2261	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2262		unsigned int lcr_h, ibrd, fbrd;
2263
2264		lcr_h = pl011_read(uap, REG_LCRH_TX);
2265
2266		*parity = 'n';
2267		if (lcr_h & UART01x_LCRH_PEN) {
2268			if (lcr_h & UART01x_LCRH_EPS)
2269				*parity = 'e';
2270			else
2271				*parity = 'o';
2272		}
2273
2274		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2275			*bits = 7;
2276		else
2277			*bits = 8;
2278
2279		ibrd = pl011_read(uap, REG_IBRD);
2280		fbrd = pl011_read(uap, REG_FBRD);
2281
2282		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2283
2284		if (uap->vendor->oversampling) {
2285			if (pl011_read(uap, REG_CR)
2286				  & ST_UART011_CR_OVSFACT)
2287				*baud *= 2;
2288		}
2289	}
2290}
2291
2292static int __init pl011_console_setup(struct console *co, char *options)
2293{
2294	struct uart_amba_port *uap;
2295	int baud = 38400;
2296	int bits = 8;
2297	int parity = 'n';
2298	int flow = 'n';
2299	int ret;
2300
2301	/*
2302	 * Check whether an invalid uart number has been specified, and
2303	 * if so, search for the first available port that does have
2304	 * console support.
2305	 */
2306	if (co->index >= UART_NR)
2307		co->index = 0;
2308	uap = amba_ports[co->index];
2309	if (!uap)
2310		return -ENODEV;
2311
2312	/* Allow pins to be muxed in and configured */
2313	pinctrl_pm_select_default_state(uap->port.dev);
2314
2315	ret = clk_prepare(uap->clk);
2316	if (ret)
2317		return ret;
2318
2319	if (dev_get_platdata(uap->port.dev)) {
2320		struct amba_pl011_data *plat;
2321
2322		plat = dev_get_platdata(uap->port.dev);
2323		if (plat->init)
2324			plat->init();
2325	}
2326
2327	uap->port.uartclk = clk_get_rate(uap->clk);
2328
2329	if (uap->vendor->fixed_options) {
2330		baud = uap->fixed_baud;
2331	} else {
2332		if (options)
2333			uart_parse_options(options,
2334					   &baud, &parity, &bits, &flow);
2335		else
2336			pl011_console_get_options(uap, &baud, &parity, &bits);
2337	}
2338
2339	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2340}
2341
2342/**
2343 *	pl011_console_match - non-standard console matching
2344 *	@co:	  registering console
2345 *	@name:	  name from console command line
2346 *	@idx:	  index from console command line
2347 *	@options: ptr to option string from console command line
2348 *
2349 *	Only attempts to match console command lines of the form:
2350 *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2351 *	    console=pl011,0x<addr>[,<options>]
2352 *	This form is used to register an initial earlycon boot console and
2353 *	replace it with the amba_console at pl011 driver init.
2354 *
2355 *	Performs console setup for a match (as required by interface)
2356 *	If no <options> are specified, then assume the h/w is already setup.
2357 *
2358 *	Returns 0 if console matches; otherwise non-zero to use default matching
2359 */
2360static int __init pl011_console_match(struct console *co, char *name, int idx,
2361				      char *options)
2362{
2363	unsigned char iotype;
2364	resource_size_t addr;
2365	int i;
2366
2367	/*
2368	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2369	 * have a distinct console name, so make sure we check for that.
2370	 * The actual implementation of the erratum occurs in the probe
2371	 * function.
2372	 */
2373	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2374		return -ENODEV;
2375
2376	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2377		return -ENODEV;
2378
2379	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2380		return -ENODEV;
2381
2382	/* try to match the port specified on the command line */
2383	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2384		struct uart_port *port;
2385
2386		if (!amba_ports[i])
2387			continue;
2388
2389		port = &amba_ports[i]->port;
2390
2391		if (port->mapbase != addr)
2392			continue;
2393
2394		co->index = i;
2395		port->cons = co;
2396		return pl011_console_setup(co, options);
2397	}
2398
2399	return -ENODEV;
2400}
2401
2402static struct uart_driver amba_reg;
2403static struct console amba_console = {
2404	.name		= "ttyAMA",
2405	.write		= pl011_console_write,
2406	.device		= uart_console_device,
2407	.setup		= pl011_console_setup,
2408	.match		= pl011_console_match,
2409	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2410	.index		= -1,
2411	.data		= &amba_reg,
2412};
2413
2414#define AMBA_CONSOLE	(&amba_console)
2415
2416static void qdf2400_e44_putc(struct uart_port *port, int c)
2417{
2418	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2419		cpu_relax();
2420	writel(c, port->membase + UART01x_DR);
2421	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2422		cpu_relax();
2423}
2424
2425static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2426{
2427	struct earlycon_device *dev = con->data;
2428
2429	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2430}
2431
2432static void pl011_putc(struct uart_port *port, int c)
2433{
2434	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2435		cpu_relax();
2436	if (port->iotype == UPIO_MEM32)
2437		writel(c, port->membase + UART01x_DR);
2438	else
2439		writeb(c, port->membase + UART01x_DR);
2440	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2441		cpu_relax();
2442}
2443
2444static void pl011_early_write(struct console *con, const char *s, unsigned n)
2445{
2446	struct earlycon_device *dev = con->data;
2447
2448	uart_console_write(&dev->port, s, n, pl011_putc);
2449}
2450
2451/*
2452 * On non-ACPI systems, earlycon is enabled by specifying
2453 * "earlycon=pl011,<address>" on the kernel command line.
2454 *
2455 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2456 * by specifying only "earlycon" on the command line.  Because it requires
2457 * SPCR, the console starts after ACPI is parsed, which is later than a
2458 * traditional early console.
2459 *
2460 * To get the traditional early console that starts before ACPI is parsed,
2461 * specify the full "earlycon=pl011,<address>" option.
2462 */
2463static int __init pl011_early_console_setup(struct earlycon_device *device,
2464					    const char *opt)
2465{
2466	if (!device->port.membase)
2467		return -ENODEV;
2468
2469	device->con->write = pl011_early_write;
2470
2471	return 0;
2472}
2473OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2474OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2475
2476/*
2477 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2478 * Erratum 44, traditional earlycon can be enabled by specifying
2479 * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2480 *
2481 * Alternatively, you can just specify "earlycon", and the early console
2482 * will be enabled with the information from the SPCR table.  In this
2483 * case, the SPCR code will detect the need for the E44 work-around,
2484 * and set the console name to "qdf2400_e44".
2485 */
2486static int __init
2487qdf2400_e44_early_console_setup(struct earlycon_device *device,
2488				const char *opt)
2489{
2490	if (!device->port.membase)
2491		return -ENODEV;
2492
2493	device->con->write = qdf2400_e44_early_write;
2494	return 0;
2495}
2496EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2497
2498#else
2499#define AMBA_CONSOLE	NULL
2500#endif
2501
2502static struct uart_driver amba_reg = {
2503	.owner			= THIS_MODULE,
2504	.driver_name		= "ttyAMA",
2505	.dev_name		= "ttyAMA",
2506	.major			= SERIAL_AMBA_MAJOR,
2507	.minor			= SERIAL_AMBA_MINOR,
2508	.nr			= UART_NR,
2509	.cons			= AMBA_CONSOLE,
2510};
2511
2512static int pl011_probe_dt_alias(int index, struct device *dev)
2513{
2514	struct device_node *np;
2515	static bool seen_dev_with_alias = false;
2516	static bool seen_dev_without_alias = false;
2517	int ret = index;
2518
2519	if (!IS_ENABLED(CONFIG_OF))
2520		return ret;
2521
2522	np = dev->of_node;
2523	if (!np)
2524		return ret;
2525
2526	ret = of_alias_get_id(np, "serial");
2527	if (ret < 0) {
2528		seen_dev_without_alias = true;
2529		ret = index;
2530	} else {
2531		seen_dev_with_alias = true;
2532		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2533			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2534			ret = index;
2535		}
2536	}
2537
2538	if (seen_dev_with_alias && seen_dev_without_alias)
2539		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2540
2541	return ret;
2542}
2543
2544/* unregisters the driver also if no more ports are left */
2545static void pl011_unregister_port(struct uart_amba_port *uap)
2546{
2547	int i;
2548	bool busy = false;
2549
2550	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2551		if (amba_ports[i] == uap)
2552			amba_ports[i] = NULL;
2553		else if (amba_ports[i])
2554			busy = true;
2555	}
2556	pl011_dma_remove(uap);
2557	if (!busy)
2558		uart_unregister_driver(&amba_reg);
2559}
2560
2561static int pl011_find_free_port(void)
2562{
2563	int i;
 
 
 
2564
2565	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2566		if (amba_ports[i] == NULL)
2567			return i;
2568
2569	return -EBUSY;
2570}
 
 
2571
2572static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2573			    struct resource *mmiobase, int index)
2574{
2575	void __iomem *base;
 
 
2576
2577	base = devm_ioremap_resource(dev, mmiobase);
2578	if (IS_ERR(base))
2579		return PTR_ERR(base);
 
 
 
 
 
2580
2581	index = pl011_probe_dt_alias(index, dev);
 
 
 
 
2582
 
 
 
2583	uap->old_cr = 0;
2584	uap->port.dev = dev;
2585	uap->port.mapbase = mmiobase->start;
 
2586	uap->port.membase = base;
 
 
2587	uap->port.fifosize = uap->fifosize;
 
2588	uap->port.flags = UPF_BOOT_AUTOCONF;
2589	uap->port.line = index;
 
2590
2591	amba_ports[index] = uap;
 
 
2592
2593	return 0;
2594}
2595
2596static int pl011_register_port(struct uart_amba_port *uap)
2597{
2598	int ret;
2599
2600	/* Ensure interrupts from this UART are masked and cleared */
2601	pl011_write(0, uap, REG_IMSC);
2602	pl011_write(0xffff, uap, REG_ICR);
2603
2604	if (!amba_reg.state) {
2605		ret = uart_register_driver(&amba_reg);
2606		if (ret < 0) {
2607			dev_err(uap->port.dev,
2608				"Failed to register AMBA-PL011 driver\n");
2609			return ret;
2610		}
2611	}
2612
2613	ret = uart_add_one_port(&amba_reg, &uap->port);
2614	if (ret)
2615		pl011_unregister_port(uap);
2616
 
 
 
2617	return ret;
2618}
2619
2620static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2621{
2622	struct uart_amba_port *uap;
2623	struct vendor_data *vendor = id->data;
2624	int portnr, ret;
2625
2626	portnr = pl011_find_free_port();
2627	if (portnr < 0)
2628		return portnr;
2629
2630	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2631			   GFP_KERNEL);
2632	if (!uap)
2633		return -ENOMEM;
2634
2635	uap->clk = devm_clk_get(&dev->dev, NULL);
2636	if (IS_ERR(uap->clk))
2637		return PTR_ERR(uap->clk);
2638
2639	uap->reg_offset = vendor->reg_offset;
2640	uap->vendor = vendor;
2641	uap->fifosize = vendor->get_fifosize(dev);
2642	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2643	uap->port.irq = dev->irq[0];
2644	uap->port.ops = &amba_pl011_pops;
2645
2646	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2647
2648	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2649	if (ret)
2650		return ret;
2651
2652	amba_set_drvdata(dev, uap);
2653
2654	return pl011_register_port(uap);
2655}
2656
2657static int pl011_remove(struct amba_device *dev)
2658{
2659	struct uart_amba_port *uap = amba_get_drvdata(dev);
 
 
2660
2661	uart_remove_one_port(&amba_reg, &uap->port);
2662	pl011_unregister_port(uap);
 
 
 
 
 
 
 
 
 
2663	return 0;
2664}
2665
2666#ifdef CONFIG_PM_SLEEP
2667static int pl011_suspend(struct device *dev)
2668{
2669	struct uart_amba_port *uap = dev_get_drvdata(dev);
2670
2671	if (!uap)
2672		return -EINVAL;
2673
2674	return uart_suspend_port(&amba_reg, &uap->port);
2675}
2676
2677static int pl011_resume(struct device *dev)
2678{
2679	struct uart_amba_port *uap = dev_get_drvdata(dev);
2680
2681	if (!uap)
2682		return -EINVAL;
2683
2684	return uart_resume_port(&amba_reg, &uap->port);
2685}
2686#endif
2687
2688static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2689
2690static int sbsa_uart_probe(struct platform_device *pdev)
2691{
2692	struct uart_amba_port *uap;
2693	struct resource *r;
2694	int portnr, ret;
2695	int baudrate;
2696
2697	/*
2698	 * Check the mandatory baud rate parameter in the DT node early
2699	 * so that we can easily exit with the error.
2700	 */
2701	if (pdev->dev.of_node) {
2702		struct device_node *np = pdev->dev.of_node;
2703
2704		ret = of_property_read_u32(np, "current-speed", &baudrate);
2705		if (ret)
2706			return ret;
2707	} else {
2708		baudrate = 115200;
2709	}
2710
2711	portnr = pl011_find_free_port();
2712	if (portnr < 0)
2713		return portnr;
2714
2715	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2716			   GFP_KERNEL);
2717	if (!uap)
2718		return -ENOMEM;
2719
2720	ret = platform_get_irq(pdev, 0);
2721	if (ret < 0)
2722		return ret;
2723	uap->port.irq	= ret;
2724
2725#ifdef CONFIG_ACPI_SPCR_TABLE
2726	if (qdf2400_e44_present) {
2727		dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2728		uap->vendor = &vendor_qdt_qdf2400_e44;
2729	} else
2730#endif
2731		uap->vendor = &vendor_sbsa;
2732
2733	uap->reg_offset	= uap->vendor->reg_offset;
2734	uap->fifosize	= 32;
2735	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2736	uap->port.ops	= &sbsa_uart_pops;
2737	uap->fixed_baud = baudrate;
2738
2739	snprintf(uap->type, sizeof(uap->type), "SBSA");
2740
2741	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2742
2743	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2744	if (ret)
2745		return ret;
2746
2747	platform_set_drvdata(pdev, uap);
2748
2749	return pl011_register_port(uap);
2750}
2751
2752static int sbsa_uart_remove(struct platform_device *pdev)
2753{
2754	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2755
2756	uart_remove_one_port(&amba_reg, &uap->port);
2757	pl011_unregister_port(uap);
2758	return 0;
2759}
2760
2761static const struct of_device_id sbsa_uart_of_match[] = {
2762	{ .compatible = "arm,sbsa-uart", },
2763	{},
2764};
2765MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2766
2767static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2768	{ "ARMH0011", 0 },
2769	{},
2770};
2771MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2772
2773static struct platform_driver arm_sbsa_uart_platform_driver = {
2774	.probe		= sbsa_uart_probe,
2775	.remove		= sbsa_uart_remove,
2776	.driver	= {
2777		.name	= "sbsa-uart",
2778		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2779		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2780		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2781	},
2782};
2783
2784static const struct amba_id pl011_ids[] = {
2785	{
2786		.id	= 0x00041011,
2787		.mask	= 0x000fffff,
2788		.data	= &vendor_arm,
2789	},
2790	{
2791		.id	= 0x00380802,
2792		.mask	= 0x00ffffff,
2793		.data	= &vendor_st,
2794	},
2795	{
2796		.id	= AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2797		.mask	= 0x00ffffff,
2798		.data	= &vendor_zte,
2799	},
2800	{ 0, 0 },
2801};
2802
2803MODULE_DEVICE_TABLE(amba, pl011_ids);
2804
2805static struct amba_driver pl011_driver = {
2806	.drv = {
2807		.name	= "uart-pl011",
2808		.pm	= &pl011_dev_pm_ops,
2809		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2810	},
2811	.id_table	= pl011_ids,
2812	.probe		= pl011_probe,
2813	.remove		= pl011_remove,
2814};
2815
2816static int __init pl011_init(void)
2817{
2818	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2819
2820	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2821		pr_warn("could not register SBSA UART platform driver\n");
2822	return amba_driver_register(&pl011_driver);
2823}
2824
2825static void __exit pl011_exit(void)
2826{
2827	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2828	amba_driver_unregister(&pl011_driver);
2829}
2830
2831/*
2832 * While this can be a module, if builtin it's most likely the console
2833 * So let's leave module_exit but move module_init to an earlier place
2834 */
2835arch_initcall(pl011_init);
2836module_exit(pl011_exit);
2837
2838MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2839MODULE_DESCRIPTION("ARM AMBA serial port driver");
2840MODULE_LICENSE("GPL");
v3.15
 
   1/*
   2 *  Driver for AMBA serial ports
   3 *
   4 *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
   5 *
   6 *  Copyright 1999 ARM Limited
   7 *  Copyright (C) 2000 Deep Blue Solutions Ltd.
   8 *  Copyright (C) 2010 ST-Ericsson SA
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or
  13 * (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23 *
  24 * This is a generic driver for ARM AMBA-type serial ports.  They
  25 * have a lot of 16550-like features, but are not register compatible.
  26 * Note that although they do have CTS, DCD and DSR inputs, they do
  27 * not have an RI input, nor do they have DTR or RTS outputs.  If
  28 * required, these have to be supplied via some other means (eg, GPIO)
  29 * and hooked into this driver.
  30 */
  31
  32
  33#if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  34#define SUPPORT_SYSRQ
  35#endif
  36
  37#include <linux/module.h>
  38#include <linux/ioport.h>
  39#include <linux/init.h>
  40#include <linux/console.h>
  41#include <linux/sysrq.h>
  42#include <linux/device.h>
  43#include <linux/tty.h>
  44#include <linux/tty_flip.h>
  45#include <linux/serial_core.h>
  46#include <linux/serial.h>
  47#include <linux/amba/bus.h>
  48#include <linux/amba/serial.h>
  49#include <linux/clk.h>
  50#include <linux/slab.h>
  51#include <linux/dmaengine.h>
  52#include <linux/dma-mapping.h>
  53#include <linux/scatterlist.h>
  54#include <linux/delay.h>
  55#include <linux/types.h>
  56#include <linux/of.h>
  57#include <linux/of_device.h>
  58#include <linux/pinctrl/consumer.h>
  59#include <linux/sizes.h>
  60#include <linux/io.h>
 
 
 
  61
  62#define UART_NR			14
  63
  64#define SERIAL_AMBA_MAJOR	204
  65#define SERIAL_AMBA_MINOR	64
  66#define SERIAL_AMBA_NR		UART_NR
  67
  68#define AMBA_ISR_PASS_LIMIT	256
  69
  70#define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
  71#define UART_DUMMY_DR_RX	(1 << 16)
  72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  73/* There is by now at least one vendor with differing details, so handle it */
  74struct vendor_data {
 
  75	unsigned int		ifls;
  76	unsigned int		lcrh_tx;
  77	unsigned int		lcrh_rx;
 
 
 
 
  78	bool			oversampling;
  79	bool			dma_threshold;
  80	bool			cts_event_workaround;
 
 
  81
  82	unsigned int (*get_fifosize)(struct amba_device *dev);
  83};
  84
  85static unsigned int get_fifosize_arm(struct amba_device *dev)
  86{
  87	return amba_rev(dev) < 3 ? 16 : 32;
  88}
  89
  90static struct vendor_data vendor_arm = {
 
  91	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
  92	.lcrh_tx		= UART011_LCRH,
  93	.lcrh_rx		= UART011_LCRH,
 
 
  94	.oversampling		= false,
  95	.dma_threshold		= false,
  96	.cts_event_workaround	= false,
 
 
  97	.get_fifosize		= get_fifosize_arm,
  98};
  99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 100static unsigned int get_fifosize_st(struct amba_device *dev)
 101{
 102	return 64;
 103}
 104
 105static struct vendor_data vendor_st = {
 
 106	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
 107	.lcrh_tx		= ST_UART011_LCRH_TX,
 108	.lcrh_rx		= ST_UART011_LCRH_RX,
 
 
 109	.oversampling		= true,
 110	.dma_threshold		= true,
 111	.cts_event_workaround	= true,
 
 
 112	.get_fifosize		= get_fifosize_st,
 113};
 114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115/* Deals with DMA transactions */
 116
 117struct pl011_sgbuf {
 118	struct scatterlist sg;
 119	char *buf;
 120};
 121
 122struct pl011_dmarx_data {
 123	struct dma_chan		*chan;
 124	struct completion	complete;
 125	bool			use_buf_b;
 126	struct pl011_sgbuf	sgbuf_a;
 127	struct pl011_sgbuf	sgbuf_b;
 128	dma_cookie_t		cookie;
 129	bool			running;
 130	struct timer_list	timer;
 131	unsigned int last_residue;
 132	unsigned long last_jiffies;
 133	bool auto_poll_rate;
 134	unsigned int poll_rate;
 135	unsigned int poll_timeout;
 136};
 137
 138struct pl011_dmatx_data {
 139	struct dma_chan		*chan;
 140	struct scatterlist	sg;
 141	char			*buf;
 142	bool			queued;
 143};
 144
 145/*
 146 * We wrap our port structure around the generic uart_port.
 147 */
 148struct uart_amba_port {
 149	struct uart_port	port;
 
 150	struct clk		*clk;
 151	const struct vendor_data *vendor;
 152	unsigned int		dmacr;		/* dma control reg */
 153	unsigned int		im;		/* interrupt mask */
 154	unsigned int		old_status;
 155	unsigned int		fifosize;	/* vendor-specific */
 156	unsigned int		lcrh_tx;	/* vendor-specific */
 157	unsigned int		lcrh_rx;	/* vendor-specific */
 158	unsigned int		old_cr;		/* state during shutdown */
 159	bool			autorts;
 160	char			type[12];
 161#ifdef CONFIG_DMA_ENGINE
 162	/* DMA stuff */
 163	bool			using_tx_dma;
 164	bool			using_rx_dma;
 165	struct pl011_dmarx_data dmarx;
 166	struct pl011_dmatx_data	dmatx;
 
 167#endif
 168};
 169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 170/*
 171 * Reads up to 256 characters from the FIFO or until it's empty and
 172 * inserts them into the TTY layer. Returns the number of characters
 173 * read from the FIFO.
 174 */
 175static int pl011_fifo_to_tty(struct uart_amba_port *uap)
 176{
 177	u16 status, ch;
 178	unsigned int flag, max_count = 256;
 179	int fifotaken = 0;
 180
 181	while (max_count--) {
 182		status = readw(uap->port.membase + UART01x_FR);
 183		if (status & UART01x_FR_RXFE)
 184			break;
 185
 186		/* Take chars from the FIFO and update status */
 187		ch = readw(uap->port.membase + UART01x_DR) |
 188			UART_DUMMY_DR_RX;
 189		flag = TTY_NORMAL;
 190		uap->port.icount.rx++;
 191		fifotaken++;
 192
 193		if (unlikely(ch & UART_DR_ERROR)) {
 194			if (ch & UART011_DR_BE) {
 195				ch &= ~(UART011_DR_FE | UART011_DR_PE);
 196				uap->port.icount.brk++;
 197				if (uart_handle_break(&uap->port))
 198					continue;
 199			} else if (ch & UART011_DR_PE)
 200				uap->port.icount.parity++;
 201			else if (ch & UART011_DR_FE)
 202				uap->port.icount.frame++;
 203			if (ch & UART011_DR_OE)
 204				uap->port.icount.overrun++;
 205
 206			ch &= uap->port.read_status_mask;
 207
 208			if (ch & UART011_DR_BE)
 209				flag = TTY_BREAK;
 210			else if (ch & UART011_DR_PE)
 211				flag = TTY_PARITY;
 212			else if (ch & UART011_DR_FE)
 213				flag = TTY_FRAME;
 214		}
 215
 216		if (uart_handle_sysrq_char(&uap->port, ch & 255))
 217			continue;
 218
 219		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
 220	}
 221
 222	return fifotaken;
 223}
 224
 225
 226/*
 227 * All the DMA operation mode stuff goes inside this ifdef.
 228 * This assumes that you have a generic DMA device interface,
 229 * no custom DMA interfaces are supported.
 230 */
 231#ifdef CONFIG_DMA_ENGINE
 232
 233#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
 234
 235static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
 236	enum dma_data_direction dir)
 237{
 238	dma_addr_t dma_addr;
 239
 240	sg->buf = dma_alloc_coherent(chan->device->dev,
 241		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
 242	if (!sg->buf)
 243		return -ENOMEM;
 244
 245	sg_init_table(&sg->sg, 1);
 246	sg_set_page(&sg->sg, phys_to_page(dma_addr),
 247		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
 248	sg_dma_address(&sg->sg) = dma_addr;
 
 249
 250	return 0;
 251}
 252
 253static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
 254	enum dma_data_direction dir)
 255{
 256	if (sg->buf) {
 257		dma_free_coherent(chan->device->dev,
 258			PL011_DMA_BUFFER_SIZE, sg->buf,
 259			sg_dma_address(&sg->sg));
 260	}
 261}
 262
 263static void pl011_dma_probe_initcall(struct device *dev, struct uart_amba_port *uap)
 264{
 265	/* DMA is the sole user of the platform data right now */
 266	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
 
 267	struct dma_slave_config tx_conf = {
 268		.dst_addr = uap->port.mapbase + UART01x_DR,
 
 269		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 270		.direction = DMA_MEM_TO_DEV,
 271		.dst_maxburst = uap->fifosize >> 1,
 272		.device_fc = false,
 273	};
 274	struct dma_chan *chan;
 275	dma_cap_mask_t mask;
 276
 277	chan = dma_request_slave_channel(dev, "tx");
 
 
 
 
 
 
 278
 279	if (!chan) {
 280		/* We need platform data */
 281		if (!plat || !plat->dma_filter) {
 282			dev_info(uap->port.dev, "no DMA platform data\n");
 283			return;
 284		}
 285
 286		/* Try to acquire a generic DMA engine slave TX channel */
 287		dma_cap_zero(mask);
 288		dma_cap_set(DMA_SLAVE, mask);
 289
 290		chan = dma_request_channel(mask, plat->dma_filter,
 291						plat->dma_tx_param);
 292		if (!chan) {
 293			dev_err(uap->port.dev, "no TX DMA channel!\n");
 294			return;
 295		}
 296	}
 297
 298	dmaengine_slave_config(chan, &tx_conf);
 299	uap->dmatx.chan = chan;
 300
 301	dev_info(uap->port.dev, "DMA channel TX %s\n",
 302		 dma_chan_name(uap->dmatx.chan));
 303
 304	/* Optionally make use of an RX channel as well */
 305	chan = dma_request_slave_channel(dev, "rx");
 306	
 307	if (!chan && plat->dma_rx_param) {
 308		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
 309
 310		if (!chan) {
 311			dev_err(uap->port.dev, "no RX DMA channel!\n");
 312			return;
 313		}
 314	}
 315
 316	if (chan) {
 317		struct dma_slave_config rx_conf = {
 318			.src_addr = uap->port.mapbase + UART01x_DR,
 
 319			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 320			.direction = DMA_DEV_TO_MEM,
 321			.src_maxburst = uap->fifosize >> 2,
 322			.device_fc = false,
 323		};
 
 324
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 325		dmaengine_slave_config(chan, &rx_conf);
 326		uap->dmarx.chan = chan;
 327
 
 328		if (plat && plat->dma_rx_poll_enable) {
 329			/* Set poll rate if specified. */
 330			if (plat->dma_rx_poll_rate) {
 331				uap->dmarx.auto_poll_rate = false;
 332				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
 333			} else {
 334				/*
 335				 * 100 ms defaults to poll rate if not
 336				 * specified. This will be adjusted with
 337				 * the baud rate at set_termios.
 338				 */
 339				uap->dmarx.auto_poll_rate = true;
 340				uap->dmarx.poll_rate =  100;
 341			}
 342			/* 3 secs defaults poll_timeout if not specified. */
 343			if (plat->dma_rx_poll_timeout)
 344				uap->dmarx.poll_timeout =
 345					plat->dma_rx_poll_timeout;
 346			else
 347				uap->dmarx.poll_timeout = 3000;
 348		} else
 349			uap->dmarx.auto_poll_rate = false;
 350
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 351		dev_info(uap->port.dev, "DMA channel RX %s\n",
 352			 dma_chan_name(uap->dmarx.chan));
 353	}
 354}
 355
 356#ifndef MODULE
 357/*
 358 * Stack up the UARTs and let the above initcall be done at device
 359 * initcall time, because the serial driver is called as an arch
 360 * initcall, and at this time the DMA subsystem is not yet registered.
 361 * At this point the driver will switch over to using DMA where desired.
 362 */
 363struct dma_uap {
 364	struct list_head node;
 365	struct uart_amba_port *uap;
 366	struct device *dev;
 367};
 368
 369static LIST_HEAD(pl011_dma_uarts);
 370
 371static int __init pl011_dma_initcall(void)
 372{
 373	struct list_head *node, *tmp;
 374
 375	list_for_each_safe(node, tmp, &pl011_dma_uarts) {
 376		struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
 377		pl011_dma_probe_initcall(dmau->dev, dmau->uap);
 378		list_del(node);
 379		kfree(dmau);
 380	}
 381	return 0;
 382}
 383
 384device_initcall(pl011_dma_initcall);
 385
 386static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
 387{
 388	struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
 389	if (dmau) {
 390		dmau->uap = uap;
 391		dmau->dev = dev;
 392		list_add_tail(&dmau->node, &pl011_dma_uarts);
 393	}
 394}
 395#else
 396static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
 397{
 398	pl011_dma_probe_initcall(dev, uap);
 399}
 400#endif
 401
 402static void pl011_dma_remove(struct uart_amba_port *uap)
 403{
 404	/* TODO: remove the initcall if it has not yet executed */
 405	if (uap->dmatx.chan)
 406		dma_release_channel(uap->dmatx.chan);
 407	if (uap->dmarx.chan)
 408		dma_release_channel(uap->dmarx.chan);
 409}
 410
 411/* Forward declare this for the refill routine */
 412static int pl011_dma_tx_refill(struct uart_amba_port *uap);
 
 413
 414/*
 415 * The current DMA TX buffer has been sent.
 416 * Try to queue up another DMA buffer.
 417 */
 418static void pl011_dma_tx_callback(void *data)
 419{
 420	struct uart_amba_port *uap = data;
 421	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 422	unsigned long flags;
 423	u16 dmacr;
 424
 425	spin_lock_irqsave(&uap->port.lock, flags);
 426	if (uap->dmatx.queued)
 427		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
 428			     DMA_TO_DEVICE);
 429
 430	dmacr = uap->dmacr;
 431	uap->dmacr = dmacr & ~UART011_TXDMAE;
 432	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 433
 434	/*
 435	 * If TX DMA was disabled, it means that we've stopped the DMA for
 436	 * some reason (eg, XOFF received, or we want to send an X-char.)
 437	 *
 438	 * Note: we need to be careful here of a potential race between DMA
 439	 * and the rest of the driver - if the driver disables TX DMA while
 440	 * a TX buffer completing, we must update the tx queued status to
 441	 * get further refills (hence we check dmacr).
 442	 */
 443	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
 444	    uart_circ_empty(&uap->port.state->xmit)) {
 445		uap->dmatx.queued = false;
 446		spin_unlock_irqrestore(&uap->port.lock, flags);
 447		return;
 448	}
 449
 450	if (pl011_dma_tx_refill(uap) <= 0) {
 451		/*
 452		 * We didn't queue a DMA buffer for some reason, but we
 453		 * have data pending to be sent.  Re-enable the TX IRQ.
 454		 */
 455		uap->im |= UART011_TXIM;
 456		writew(uap->im, uap->port.membase + UART011_IMSC);
 457	}
 458	spin_unlock_irqrestore(&uap->port.lock, flags);
 459}
 460
 461/*
 462 * Try to refill the TX DMA buffer.
 463 * Locking: called with port lock held and IRQs disabled.
 464 * Returns:
 465 *   1 if we queued up a TX DMA buffer.
 466 *   0 if we didn't want to handle this by DMA
 467 *  <0 on error
 468 */
 469static int pl011_dma_tx_refill(struct uart_amba_port *uap)
 470{
 471	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 472	struct dma_chan *chan = dmatx->chan;
 473	struct dma_device *dma_dev = chan->device;
 474	struct dma_async_tx_descriptor *desc;
 475	struct circ_buf *xmit = &uap->port.state->xmit;
 476	unsigned int count;
 477
 478	/*
 479	 * Try to avoid the overhead involved in using DMA if the
 480	 * transaction fits in the first half of the FIFO, by using
 481	 * the standard interrupt handling.  This ensures that we
 482	 * issue a uart_write_wakeup() at the appropriate time.
 483	 */
 484	count = uart_circ_chars_pending(xmit);
 485	if (count < (uap->fifosize >> 1)) {
 486		uap->dmatx.queued = false;
 487		return 0;
 488	}
 489
 490	/*
 491	 * Bodge: don't send the last character by DMA, as this
 492	 * will prevent XON from notifying us to restart DMA.
 493	 */
 494	count -= 1;
 495
 496	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
 497	if (count > PL011_DMA_BUFFER_SIZE)
 498		count = PL011_DMA_BUFFER_SIZE;
 499
 500	if (xmit->tail < xmit->head)
 501		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
 502	else {
 503		size_t first = UART_XMIT_SIZE - xmit->tail;
 504		size_t second = xmit->head;
 
 
 
 
 505
 506		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
 507		if (second)
 508			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
 509	}
 510
 511	dmatx->sg.length = count;
 512
 513	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
 514		uap->dmatx.queued = false;
 515		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
 516		return -EBUSY;
 517	}
 518
 519	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
 520					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 521	if (!desc) {
 522		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
 523		uap->dmatx.queued = false;
 524		/*
 525		 * If DMA cannot be used right now, we complete this
 526		 * transaction via IRQ and let the TTY layer retry.
 527		 */
 528		dev_dbg(uap->port.dev, "TX DMA busy\n");
 529		return -EBUSY;
 530	}
 531
 532	/* Some data to go along to the callback */
 533	desc->callback = pl011_dma_tx_callback;
 534	desc->callback_param = uap;
 535
 536	/* All errors should happen at prepare time */
 537	dmaengine_submit(desc);
 538
 539	/* Fire the DMA transaction */
 540	dma_dev->device_issue_pending(chan);
 541
 542	uap->dmacr |= UART011_TXDMAE;
 543	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 544	uap->dmatx.queued = true;
 545
 546	/*
 547	 * Now we know that DMA will fire, so advance the ring buffer
 548	 * with the stuff we just dispatched.
 549	 */
 550	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
 551	uap->port.icount.tx += count;
 552
 553	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 554		uart_write_wakeup(&uap->port);
 555
 556	return 1;
 557}
 558
 559/*
 560 * We received a transmit interrupt without a pending X-char but with
 561 * pending characters.
 562 * Locking: called with port lock held and IRQs disabled.
 563 * Returns:
 564 *   false if we want to use PIO to transmit
 565 *   true if we queued a DMA buffer
 566 */
 567static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
 568{
 569	if (!uap->using_tx_dma)
 570		return false;
 571
 572	/*
 573	 * If we already have a TX buffer queued, but received a
 574	 * TX interrupt, it will be because we've just sent an X-char.
 575	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
 576	 */
 577	if (uap->dmatx.queued) {
 578		uap->dmacr |= UART011_TXDMAE;
 579		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 580		uap->im &= ~UART011_TXIM;
 581		writew(uap->im, uap->port.membase + UART011_IMSC);
 582		return true;
 583	}
 584
 585	/*
 586	 * We don't have a TX buffer queued, so try to queue one.
 587	 * If we successfully queued a buffer, mask the TX IRQ.
 588	 */
 589	if (pl011_dma_tx_refill(uap) > 0) {
 590		uap->im &= ~UART011_TXIM;
 591		writew(uap->im, uap->port.membase + UART011_IMSC);
 592		return true;
 593	}
 594	return false;
 595}
 596
 597/*
 598 * Stop the DMA transmit (eg, due to received XOFF).
 599 * Locking: called with port lock held and IRQs disabled.
 600 */
 601static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
 602{
 603	if (uap->dmatx.queued) {
 604		uap->dmacr &= ~UART011_TXDMAE;
 605		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 606	}
 607}
 608
 609/*
 610 * Try to start a DMA transmit, or in the case of an XON/OFF
 611 * character queued for send, try to get that character out ASAP.
 612 * Locking: called with port lock held and IRQs disabled.
 613 * Returns:
 614 *   false if we want the TX IRQ to be enabled
 615 *   true if we have a buffer queued
 616 */
 617static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
 618{
 619	u16 dmacr;
 620
 621	if (!uap->using_tx_dma)
 622		return false;
 623
 624	if (!uap->port.x_char) {
 625		/* no X-char, try to push chars out in DMA mode */
 626		bool ret = true;
 627
 628		if (!uap->dmatx.queued) {
 629			if (pl011_dma_tx_refill(uap) > 0) {
 630				uap->im &= ~UART011_TXIM;
 631				ret = true;
 632			} else {
 633				uap->im |= UART011_TXIM;
 634				ret = false;
 635			}
 636			writew(uap->im, uap->port.membase + UART011_IMSC);
 637		} else if (!(uap->dmacr & UART011_TXDMAE)) {
 638			uap->dmacr |= UART011_TXDMAE;
 639			writew(uap->dmacr,
 640				       uap->port.membase + UART011_DMACR);
 641		}
 642		return ret;
 643	}
 644
 645	/*
 646	 * We have an X-char to send.  Disable DMA to prevent it loading
 647	 * the TX fifo, and then see if we can stuff it into the FIFO.
 648	 */
 649	dmacr = uap->dmacr;
 650	uap->dmacr &= ~UART011_TXDMAE;
 651	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 652
 653	if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
 654		/*
 655		 * No space in the FIFO, so enable the transmit interrupt
 656		 * so we know when there is space.  Note that once we've
 657		 * loaded the character, we should just re-enable DMA.
 658		 */
 659		return false;
 660	}
 661
 662	writew(uap->port.x_char, uap->port.membase + UART01x_DR);
 663	uap->port.icount.tx++;
 664	uap->port.x_char = 0;
 665
 666	/* Success - restore the DMA state */
 667	uap->dmacr = dmacr;
 668	writew(dmacr, uap->port.membase + UART011_DMACR);
 669
 670	return true;
 671}
 672
 673/*
 674 * Flush the transmit buffer.
 675 * Locking: called with port lock held and IRQs disabled.
 676 */
 677static void pl011_dma_flush_buffer(struct uart_port *port)
 678__releases(&uap->port.lock)
 679__acquires(&uap->port.lock)
 680{
 681	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
 682
 683	if (!uap->using_tx_dma)
 684		return;
 685
 686	/* Avoid deadlock with the DMA engine callback */
 687	spin_unlock(&uap->port.lock);
 688	dmaengine_terminate_all(uap->dmatx.chan);
 689	spin_lock(&uap->port.lock);
 690	if (uap->dmatx.queued) {
 691		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
 692			     DMA_TO_DEVICE);
 693		uap->dmatx.queued = false;
 694		uap->dmacr &= ~UART011_TXDMAE;
 695		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 696	}
 697}
 698
 699static void pl011_dma_rx_callback(void *data);
 700
 701static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
 702{
 703	struct dma_chan *rxchan = uap->dmarx.chan;
 704	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 705	struct dma_async_tx_descriptor *desc;
 706	struct pl011_sgbuf *sgbuf;
 707
 708	if (!rxchan)
 709		return -EIO;
 710
 711	/* Start the RX DMA job */
 712	sgbuf = uap->dmarx.use_buf_b ?
 713		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 714	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
 715					DMA_DEV_TO_MEM,
 716					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 717	/*
 718	 * If the DMA engine is busy and cannot prepare a
 719	 * channel, no big deal, the driver will fall back
 720	 * to interrupt mode as a result of this error code.
 721	 */
 722	if (!desc) {
 723		uap->dmarx.running = false;
 724		dmaengine_terminate_all(rxchan);
 725		return -EBUSY;
 726	}
 727
 728	/* Some data to go along to the callback */
 729	desc->callback = pl011_dma_rx_callback;
 730	desc->callback_param = uap;
 731	dmarx->cookie = dmaengine_submit(desc);
 732	dma_async_issue_pending(rxchan);
 733
 734	uap->dmacr |= UART011_RXDMAE;
 735	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 736	uap->dmarx.running = true;
 737
 738	uap->im &= ~UART011_RXIM;
 739	writew(uap->im, uap->port.membase + UART011_IMSC);
 740
 741	return 0;
 742}
 743
 744/*
 745 * This is called when either the DMA job is complete, or
 746 * the FIFO timeout interrupt occurred. This must be called
 747 * with the port spinlock uap->port.lock held.
 748 */
 749static void pl011_dma_rx_chars(struct uart_amba_port *uap,
 750			       u32 pending, bool use_buf_b,
 751			       bool readfifo)
 752{
 753	struct tty_port *port = &uap->port.state->port;
 754	struct pl011_sgbuf *sgbuf = use_buf_b ?
 755		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 756	int dma_count = 0;
 757	u32 fifotaken = 0; /* only used for vdbg() */
 758
 759	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 760	int dmataken = 0;
 761
 762	if (uap->dmarx.poll_rate) {
 763		/* The data can be taken by polling */
 764		dmataken = sgbuf->sg.length - dmarx->last_residue;
 765		/* Recalculate the pending size */
 766		if (pending >= dmataken)
 767			pending -= dmataken;
 768	}
 769
 770	/* Pick the remain data from the DMA */
 771	if (pending) {
 772
 773		/*
 774		 * First take all chars in the DMA pipe, then look in the FIFO.
 775		 * Note that tty_insert_flip_buf() tries to take as many chars
 776		 * as it can.
 777		 */
 778		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
 779				pending);
 780
 781		uap->port.icount.rx += dma_count;
 782		if (dma_count < pending)
 783			dev_warn(uap->port.dev,
 784				 "couldn't insert all characters (TTY is full?)\n");
 785	}
 786
 787	/* Reset the last_residue for Rx DMA poll */
 788	if (uap->dmarx.poll_rate)
 789		dmarx->last_residue = sgbuf->sg.length;
 790
 791	/*
 792	 * Only continue with trying to read the FIFO if all DMA chars have
 793	 * been taken first.
 794	 */
 795	if (dma_count == pending && readfifo) {
 796		/* Clear any error flags */
 797		writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
 798		       uap->port.membase + UART011_ICR);
 799
 800		/*
 801		 * If we read all the DMA'd characters, and we had an
 802		 * incomplete buffer, that could be due to an rx error, or
 803		 * maybe we just timed out. Read any pending chars and check
 804		 * the error status.
 805		 *
 806		 * Error conditions will only occur in the FIFO, these will
 807		 * trigger an immediate interrupt and stop the DMA job, so we
 808		 * will always find the error in the FIFO, never in the DMA
 809		 * buffer.
 810		 */
 811		fifotaken = pl011_fifo_to_tty(uap);
 812	}
 813
 814	spin_unlock(&uap->port.lock);
 815	dev_vdbg(uap->port.dev,
 816		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
 817		 dma_count, fifotaken);
 818	tty_flip_buffer_push(port);
 819	spin_lock(&uap->port.lock);
 820}
 821
 822static void pl011_dma_rx_irq(struct uart_amba_port *uap)
 823{
 824	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 825	struct dma_chan *rxchan = dmarx->chan;
 826	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
 827		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
 828	size_t pending;
 829	struct dma_tx_state state;
 830	enum dma_status dmastat;
 831
 832	/*
 833	 * Pause the transfer so we can trust the current counter,
 834	 * do this before we pause the PL011 block, else we may
 835	 * overflow the FIFO.
 836	 */
 837	if (dmaengine_pause(rxchan))
 838		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 839	dmastat = rxchan->device->device_tx_status(rxchan,
 840						   dmarx->cookie, &state);
 841	if (dmastat != DMA_PAUSED)
 842		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 843
 844	/* Disable RX DMA - incoming data will wait in the FIFO */
 845	uap->dmacr &= ~UART011_RXDMAE;
 846	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 847	uap->dmarx.running = false;
 848
 849	pending = sgbuf->sg.length - state.residue;
 850	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 851	/* Then we terminate the transfer - we now know our residue */
 852	dmaengine_terminate_all(rxchan);
 853
 854	/*
 855	 * This will take the chars we have so far and insert
 856	 * into the framework.
 857	 */
 858	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
 859
 860	/* Switch buffer & re-trigger DMA job */
 861	dmarx->use_buf_b = !dmarx->use_buf_b;
 862	if (pl011_dma_rx_trigger_dma(uap)) {
 863		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 864			"fall back to interrupt mode\n");
 865		uap->im |= UART011_RXIM;
 866		writew(uap->im, uap->port.membase + UART011_IMSC);
 867	}
 868}
 869
 870static void pl011_dma_rx_callback(void *data)
 871{
 872	struct uart_amba_port *uap = data;
 873	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 874	struct dma_chan *rxchan = dmarx->chan;
 875	bool lastbuf = dmarx->use_buf_b;
 876	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
 877		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
 878	size_t pending;
 879	struct dma_tx_state state;
 880	int ret;
 881
 882	/*
 883	 * This completion interrupt occurs typically when the
 884	 * RX buffer is totally stuffed but no timeout has yet
 885	 * occurred. When that happens, we just want the RX
 886	 * routine to flush out the secondary DMA buffer while
 887	 * we immediately trigger the next DMA job.
 888	 */
 889	spin_lock_irq(&uap->port.lock);
 890	/*
 891	 * Rx data can be taken by the UART interrupts during
 892	 * the DMA irq handler. So we check the residue here.
 893	 */
 894	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
 895	pending = sgbuf->sg.length - state.residue;
 896	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 897	/* Then we terminate the transfer - we now know our residue */
 898	dmaengine_terminate_all(rxchan);
 899
 900	uap->dmarx.running = false;
 901	dmarx->use_buf_b = !lastbuf;
 902	ret = pl011_dma_rx_trigger_dma(uap);
 903
 904	pl011_dma_rx_chars(uap, pending, lastbuf, false);
 905	spin_unlock_irq(&uap->port.lock);
 906	/*
 907	 * Do this check after we picked the DMA chars so we don't
 908	 * get some IRQ immediately from RX.
 909	 */
 910	if (ret) {
 911		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 912			"fall back to interrupt mode\n");
 913		uap->im |= UART011_RXIM;
 914		writew(uap->im, uap->port.membase + UART011_IMSC);
 915	}
 916}
 917
 918/*
 919 * Stop accepting received characters, when we're shutting down or
 920 * suspending this port.
 921 * Locking: called with port lock held and IRQs disabled.
 922 */
 923static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
 924{
 925	/* FIXME.  Just disable the DMA enable */
 926	uap->dmacr &= ~UART011_RXDMAE;
 927	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 928}
 929
 930/*
 931 * Timer handler for Rx DMA polling.
 932 * Every polling, It checks the residue in the dma buffer and transfer
 933 * data to the tty. Also, last_residue is updated for the next polling.
 934 */
 935static void pl011_dma_rx_poll(unsigned long args)
 936{
 937	struct uart_amba_port *uap = (struct uart_amba_port *)args;
 938	struct tty_port *port = &uap->port.state->port;
 939	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 940	struct dma_chan *rxchan = uap->dmarx.chan;
 941	unsigned long flags = 0;
 942	unsigned int dmataken = 0;
 943	unsigned int size = 0;
 944	struct pl011_sgbuf *sgbuf;
 945	int dma_count;
 946	struct dma_tx_state state;
 947
 948	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 949	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
 950	if (likely(state.residue < dmarx->last_residue)) {
 951		dmataken = sgbuf->sg.length - dmarx->last_residue;
 952		size = dmarx->last_residue - state.residue;
 953		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
 954				size);
 955		if (dma_count == size)
 956			dmarx->last_residue =  state.residue;
 957		dmarx->last_jiffies = jiffies;
 958	}
 959	tty_flip_buffer_push(port);
 960
 961	/*
 962	 * If no data is received in poll_timeout, the driver will fall back
 963	 * to interrupt mode. We will retrigger DMA at the first interrupt.
 964	 */
 965	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
 966			> uap->dmarx.poll_timeout) {
 967
 968		spin_lock_irqsave(&uap->port.lock, flags);
 969		pl011_dma_rx_stop(uap);
 970		uap->im |= UART011_RXIM;
 971		writew(uap->im, uap->port.membase + UART011_IMSC);
 972		spin_unlock_irqrestore(&uap->port.lock, flags);
 973
 974		uap->dmarx.running = false;
 975		dmaengine_terminate_all(rxchan);
 976		del_timer(&uap->dmarx.timer);
 977	} else {
 978		mod_timer(&uap->dmarx.timer,
 979			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
 980	}
 981}
 982
 983static void pl011_dma_startup(struct uart_amba_port *uap)
 984{
 985	int ret;
 986
 
 
 
 987	if (!uap->dmatx.chan)
 988		return;
 989
 990	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
 991	if (!uap->dmatx.buf) {
 992		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
 993		uap->port.fifosize = uap->fifosize;
 994		return;
 995	}
 996
 997	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
 998
 999	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1000	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1001	uap->using_tx_dma = true;
1002
1003	if (!uap->dmarx.chan)
1004		goto skip_rx;
1005
1006	/* Allocate and map DMA RX buffers */
1007	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1008			       DMA_FROM_DEVICE);
1009	if (ret) {
1010		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1011			"RX buffer A", ret);
1012		goto skip_rx;
1013	}
1014
1015	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1016			       DMA_FROM_DEVICE);
1017	if (ret) {
1018		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1019			"RX buffer B", ret);
1020		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1021				 DMA_FROM_DEVICE);
1022		goto skip_rx;
1023	}
1024
1025	uap->using_rx_dma = true;
1026
1027skip_rx:
1028	/* Turn on DMA error (RX/TX will be enabled on demand) */
1029	uap->dmacr |= UART011_DMAONERR;
1030	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
1031
1032	/*
1033	 * ST Micro variants has some specific dma burst threshold
1034	 * compensation. Set this to 16 bytes, so burst will only
1035	 * be issued above/below 16 bytes.
1036	 */
1037	if (uap->vendor->dma_threshold)
1038		writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1039			       uap->port.membase + ST_UART011_DMAWM);
1040
1041	if (uap->using_rx_dma) {
1042		if (pl011_dma_rx_trigger_dma(uap))
1043			dev_dbg(uap->port.dev, "could not trigger initial "
1044				"RX DMA job, fall back to interrupt mode\n");
1045		if (uap->dmarx.poll_rate) {
1046			init_timer(&(uap->dmarx.timer));
1047			uap->dmarx.timer.function = pl011_dma_rx_poll;
1048			uap->dmarx.timer.data = (unsigned long)uap;
1049			mod_timer(&uap->dmarx.timer,
1050				jiffies +
1051				msecs_to_jiffies(uap->dmarx.poll_rate));
1052			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1053			uap->dmarx.last_jiffies = jiffies;
1054		}
1055	}
1056}
1057
1058static void pl011_dma_shutdown(struct uart_amba_port *uap)
1059{
1060	if (!(uap->using_tx_dma || uap->using_rx_dma))
1061		return;
1062
1063	/* Disable RX and TX DMA */
1064	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1065		barrier();
1066
1067	spin_lock_irq(&uap->port.lock);
1068	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1069	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
1070	spin_unlock_irq(&uap->port.lock);
1071
1072	if (uap->using_tx_dma) {
1073		/* In theory, this should already be done by pl011_dma_flush_buffer */
1074		dmaengine_terminate_all(uap->dmatx.chan);
1075		if (uap->dmatx.queued) {
1076			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1077				     DMA_TO_DEVICE);
1078			uap->dmatx.queued = false;
1079		}
1080
1081		kfree(uap->dmatx.buf);
1082		uap->using_tx_dma = false;
1083	}
1084
1085	if (uap->using_rx_dma) {
1086		dmaengine_terminate_all(uap->dmarx.chan);
1087		/* Clean up the RX DMA */
1088		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1089		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1090		if (uap->dmarx.poll_rate)
1091			del_timer_sync(&uap->dmarx.timer);
1092		uap->using_rx_dma = false;
1093	}
1094}
1095
1096static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1097{
1098	return uap->using_rx_dma;
1099}
1100
1101static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1102{
1103	return uap->using_rx_dma && uap->dmarx.running;
1104}
1105
1106#else
1107/* Blank functions if the DMA engine is not available */
1108static inline void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
1109{
1110}
1111
1112static inline void pl011_dma_remove(struct uart_amba_port *uap)
1113{
1114}
1115
1116static inline void pl011_dma_startup(struct uart_amba_port *uap)
1117{
1118}
1119
1120static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1121{
1122}
1123
1124static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1125{
1126	return false;
1127}
1128
1129static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1130{
1131}
1132
1133static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1134{
1135	return false;
1136}
1137
1138static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1139{
1140}
1141
1142static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1143{
1144}
1145
1146static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1147{
1148	return -EIO;
1149}
1150
1151static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1152{
1153	return false;
1154}
1155
1156static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1157{
1158	return false;
1159}
1160
1161#define pl011_dma_flush_buffer	NULL
1162#endif
1163
1164static void pl011_stop_tx(struct uart_port *port)
1165{
1166	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1167
1168	uap->im &= ~UART011_TXIM;
1169	writew(uap->im, uap->port.membase + UART011_IMSC);
1170	pl011_dma_tx_stop(uap);
1171}
1172
 
 
 
 
 
 
 
 
 
 
 
1173static void pl011_start_tx(struct uart_port *port)
1174{
1175	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1176
1177	if (!pl011_dma_tx_start(uap)) {
1178		uap->im |= UART011_TXIM;
1179		writew(uap->im, uap->port.membase + UART011_IMSC);
1180	}
1181}
1182
1183static void pl011_stop_rx(struct uart_port *port)
1184{
1185	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1186
1187	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1188		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1189	writew(uap->im, uap->port.membase + UART011_IMSC);
1190
1191	pl011_dma_rx_stop(uap);
1192}
1193
1194static void pl011_enable_ms(struct uart_port *port)
1195{
1196	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1197
1198	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1199	writew(uap->im, uap->port.membase + UART011_IMSC);
1200}
1201
1202static void pl011_rx_chars(struct uart_amba_port *uap)
1203__releases(&uap->port.lock)
1204__acquires(&uap->port.lock)
1205{
1206	pl011_fifo_to_tty(uap);
1207
1208	spin_unlock(&uap->port.lock);
1209	tty_flip_buffer_push(&uap->port.state->port);
1210	/*
1211	 * If we were temporarily out of DMA mode for a while,
1212	 * attempt to switch back to DMA mode again.
1213	 */
1214	if (pl011_dma_rx_available(uap)) {
1215		if (pl011_dma_rx_trigger_dma(uap)) {
1216			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1217				"fall back to interrupt mode again\n");
1218			uap->im |= UART011_RXIM;
1219			writew(uap->im, uap->port.membase + UART011_IMSC);
1220		} else {
1221#ifdef CONFIG_DMA_ENGINE
1222			/* Start Rx DMA poll */
1223			if (uap->dmarx.poll_rate) {
1224				uap->dmarx.last_jiffies = jiffies;
1225				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1226				mod_timer(&uap->dmarx.timer,
1227					jiffies +
1228					msecs_to_jiffies(uap->dmarx.poll_rate));
1229			}
1230#endif
1231		}
1232	}
1233	spin_lock(&uap->port.lock);
1234}
1235
1236static void pl011_tx_chars(struct uart_amba_port *uap)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237{
1238	struct circ_buf *xmit = &uap->port.state->xmit;
1239	int count;
1240
1241	if (uap->port.x_char) {
1242		writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1243		uap->port.icount.tx++;
1244		uap->port.x_char = 0;
1245		return;
1246	}
1247	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1248		pl011_stop_tx(&uap->port);
1249		return;
1250	}
1251
1252	/* If we are using DMA mode, try to send some characters. */
1253	if (pl011_dma_tx_irq(uap))
1254		return;
1255
1256	count = uap->fifosize >> 1;
1257	do {
1258		writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
 
 
 
 
 
1259		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1260		uap->port.icount.tx++;
1261		if (uart_circ_empty(xmit))
1262			break;
1263	} while (--count > 0);
1264
1265	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1266		uart_write_wakeup(&uap->port);
1267
1268	if (uart_circ_empty(xmit))
1269		pl011_stop_tx(&uap->port);
 
 
 
1270}
1271
1272static void pl011_modem_status(struct uart_amba_port *uap)
1273{
1274	unsigned int status, delta;
1275
1276	status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1277
1278	delta = status ^ uap->old_status;
1279	uap->old_status = status;
1280
1281	if (!delta)
1282		return;
1283
1284	if (delta & UART01x_FR_DCD)
1285		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1286
1287	if (delta & UART01x_FR_DSR)
1288		uap->port.icount.dsr++;
1289
1290	if (delta & UART01x_FR_CTS)
1291		uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
 
1292
1293	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1294}
1295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1296static irqreturn_t pl011_int(int irq, void *dev_id)
1297{
1298	struct uart_amba_port *uap = dev_id;
1299	unsigned long flags;
1300	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1301	int handled = 0;
1302	unsigned int dummy_read;
1303
1304	spin_lock_irqsave(&uap->port.lock, flags);
1305	status = readw(uap->port.membase + UART011_MIS);
1306	if (status) {
1307		do {
1308			if (uap->vendor->cts_event_workaround) {
1309				/* workaround to make sure that all bits are unlocked.. */
1310				writew(0x00, uap->port.membase + UART011_ICR);
1311
1312				/*
1313				 * WA: introduce 26ns(1 uart clk) delay before W1C;
1314				 * single apb access will incur 2 pclk(133.12Mhz) delay,
1315				 * so add 2 dummy reads
1316				 */
1317				dummy_read = readw(uap->port.membase + UART011_ICR);
1318				dummy_read = readw(uap->port.membase + UART011_ICR);
1319			}
1320
1321			writew(status & ~(UART011_TXIS|UART011_RTIS|
1322					  UART011_RXIS),
1323			       uap->port.membase + UART011_ICR);
1324
1325			if (status & (UART011_RTIS|UART011_RXIS)) {
1326				if (pl011_dma_rx_running(uap))
1327					pl011_dma_rx_irq(uap);
1328				else
1329					pl011_rx_chars(uap);
1330			}
1331			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1332				      UART011_CTSMIS|UART011_RIMIS))
1333				pl011_modem_status(uap);
1334			if (status & UART011_TXIS)
1335				pl011_tx_chars(uap);
1336
1337			if (pass_counter-- == 0)
1338				break;
1339
1340			status = readw(uap->port.membase + UART011_MIS);
1341		} while (status != 0);
1342		handled = 1;
1343	}
1344
1345	spin_unlock_irqrestore(&uap->port.lock, flags);
1346
1347	return IRQ_RETVAL(handled);
1348}
1349
1350static unsigned int pl011_tx_empty(struct uart_port *port)
1351{
1352	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1353	unsigned int status = readw(uap->port.membase + UART01x_FR);
1354	return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
 
 
 
 
 
1355}
1356
1357static unsigned int pl011_get_mctrl(struct uart_port *port)
1358{
1359	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1360	unsigned int result = 0;
1361	unsigned int status = readw(uap->port.membase + UART01x_FR);
1362
1363#define TIOCMBIT(uartbit, tiocmbit)	\
1364	if (status & uartbit)		\
1365		result |= tiocmbit
1366
1367	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1368	TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1369	TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1370	TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1371#undef TIOCMBIT
1372	return result;
1373}
1374
1375static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1376{
1377	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1378	unsigned int cr;
1379
1380	cr = readw(uap->port.membase + UART011_CR);
1381
1382#define	TIOCMBIT(tiocmbit, uartbit)		\
1383	if (mctrl & tiocmbit)		\
1384		cr |= uartbit;		\
1385	else				\
1386		cr &= ~uartbit
1387
1388	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1389	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1390	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1391	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1392	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1393
1394	if (uap->autorts) {
1395		/* We need to disable auto-RTS if we want to turn RTS off */
1396		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1397	}
1398#undef TIOCMBIT
1399
1400	writew(cr, uap->port.membase + UART011_CR);
1401}
1402
1403static void pl011_break_ctl(struct uart_port *port, int break_state)
1404{
1405	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1406	unsigned long flags;
1407	unsigned int lcr_h;
1408
1409	spin_lock_irqsave(&uap->port.lock, flags);
1410	lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1411	if (break_state == -1)
1412		lcr_h |= UART01x_LCRH_BRK;
1413	else
1414		lcr_h &= ~UART01x_LCRH_BRK;
1415	writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1416	spin_unlock_irqrestore(&uap->port.lock, flags);
1417}
1418
1419#ifdef CONFIG_CONSOLE_POLL
1420
1421static void pl011_quiesce_irqs(struct uart_port *port)
1422{
1423	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1424	unsigned char __iomem *regs = uap->port.membase;
1425
1426	writew(readw(regs + UART011_MIS), regs + UART011_ICR);
1427	/*
1428	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1429	 * we simply mask it. start_tx() will unmask it.
1430	 *
1431	 * Note we can race with start_tx(), and if the race happens, the
1432	 * polling user might get another interrupt just after we clear it.
1433	 * But it should be OK and can happen even w/o the race, e.g.
1434	 * controller immediately got some new data and raised the IRQ.
1435	 *
1436	 * And whoever uses polling routines assumes that it manages the device
1437	 * (including tx queue), so we're also fine with start_tx()'s caller
1438	 * side.
1439	 */
1440	writew(readw(regs + UART011_IMSC) & ~UART011_TXIM, regs + UART011_IMSC);
 
1441}
1442
1443static int pl011_get_poll_char(struct uart_port *port)
1444{
1445	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1446	unsigned int status;
1447
1448	/*
1449	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1450	 * debugger.
1451	 */
1452	pl011_quiesce_irqs(port);
1453
1454	status = readw(uap->port.membase + UART01x_FR);
1455	if (status & UART01x_FR_RXFE)
1456		return NO_POLL_CHAR;
1457
1458	return readw(uap->port.membase + UART01x_DR);
1459}
1460
1461static void pl011_put_poll_char(struct uart_port *port,
1462			 unsigned char ch)
1463{
1464	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1465
1466	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1467		barrier();
1468
1469	writew(ch, uap->port.membase + UART01x_DR);
1470}
1471
1472#endif /* CONFIG_CONSOLE_POLL */
1473
1474static int pl011_hwinit(struct uart_port *port)
1475{
1476	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1477	int retval;
1478
1479	/* Optionaly enable pins to be muxed in and configured */
1480	pinctrl_pm_select_default_state(port->dev);
1481
1482	/*
1483	 * Try to enable the clock producer.
1484	 */
1485	retval = clk_prepare_enable(uap->clk);
1486	if (retval)
1487		goto out;
1488
1489	uap->port.uartclk = clk_get_rate(uap->clk);
1490
1491	/* Clear pending error and receive interrupts */
1492	writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS |
1493	       UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR);
 
1494
1495	/*
1496	 * Save interrupts enable mask, and enable RX interrupts in case if
1497	 * the interrupt is used for NMI entry.
1498	 */
1499	uap->im = readw(uap->port.membase + UART011_IMSC);
1500	writew(UART011_RTIM | UART011_RXIM, uap->port.membase + UART011_IMSC);
1501
1502	if (dev_get_platdata(uap->port.dev)) {
1503		struct amba_pl011_data *plat;
1504
1505		plat = dev_get_platdata(uap->port.dev);
1506		if (plat->init)
1507			plat->init();
1508	}
1509	return 0;
1510 out:
1511	return retval;
 
 
 
 
1512}
1513
1514static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1515{
1516	writew(lcr_h, uap->port.membase + uap->lcrh_rx);
1517	if (uap->lcrh_rx != uap->lcrh_tx) {
1518		int i;
1519		/*
1520		 * Wait 10 PCLKs before writing LCRH_TX register,
1521		 * to get this delay write read only register 10 times
1522		 */
1523		for (i = 0; i < 10; ++i)
1524			writew(0xff, uap->port.membase + UART011_MIS);
1525		writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1526	}
1527}
1528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1529static int pl011_startup(struct uart_port *port)
1530{
1531	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1532	unsigned int cr, lcr_h, fbrd, ibrd;
 
1533	int retval;
1534
1535	retval = pl011_hwinit(port);
1536	if (retval)
1537		goto clk_dis;
1538
1539	writew(uap->im, uap->port.membase + UART011_IMSC);
1540
1541	/*
1542	 * Allocate the IRQ
1543	 */
1544	retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1545	if (retval)
1546		goto clk_dis;
1547
1548	writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
1549
1550	/*
1551	 * Provoke TX FIFO interrupt into asserting. Taking care to preserve
1552	 * baud rate and data format specified by FBRD, IBRD and LCRH as the
1553	 * UART may already be in use as a console.
1554	 */
1555	spin_lock_irq(&uap->port.lock);
1556
1557	fbrd = readw(uap->port.membase + UART011_FBRD);
1558	ibrd = readw(uap->port.membase + UART011_IBRD);
1559	lcr_h = readw(uap->port.membase + uap->lcrh_rx);
1560
1561	cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
1562	writew(cr, uap->port.membase + UART011_CR);
1563	writew(0, uap->port.membase + UART011_FBRD);
1564	writew(1, uap->port.membase + UART011_IBRD);
1565	pl011_write_lcr_h(uap, 0);
1566	writew(0, uap->port.membase + UART01x_DR);
1567	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1568		barrier();
1569
1570	writew(fbrd, uap->port.membase + UART011_FBRD);
1571	writew(ibrd, uap->port.membase + UART011_IBRD);
1572	pl011_write_lcr_h(uap, lcr_h);
1573
1574	/* restore RTS and DTR */
1575	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1576	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1577	writew(cr, uap->port.membase + UART011_CR);
1578
1579	spin_unlock_irq(&uap->port.lock);
1580
1581	/*
1582	 * initialise the old status of the modem signals
1583	 */
1584	uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1585
1586	/* Startup DMA */
1587	pl011_dma_startup(uap);
1588
1589	/*
1590	 * Finally, enable interrupts, only timeouts when using DMA
1591	 * if initial RX DMA job failed, start in interrupt mode
1592	 * as well.
1593	 */
1594	spin_lock_irq(&uap->port.lock);
1595	/* Clear out any spuriously appearing RX interrupts */
1596	 writew(UART011_RTIS | UART011_RXIS,
1597		uap->port.membase + UART011_ICR);
1598	uap->im = UART011_RTIM;
1599	if (!pl011_dma_rx_running(uap))
1600		uap->im |= UART011_RXIM;
1601	writew(uap->im, uap->port.membase + UART011_IMSC);
1602	spin_unlock_irq(&uap->port.lock);
1603
1604	return 0;
1605
1606 clk_dis:
1607	clk_disable_unprepare(uap->clk);
1608	return retval;
1609}
1610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1611static void pl011_shutdown_channel(struct uart_amba_port *uap,
1612					unsigned int lcrh)
1613{
1614      unsigned long val;
1615
1616      val = readw(uap->port.membase + lcrh);
1617      val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1618      writew(val, uap->port.membase + lcrh);
1619}
1620
1621static void pl011_shutdown(struct uart_port *port)
 
 
 
 
 
1622{
1623	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1624	unsigned int cr;
1625
 
 
 
 
 
 
 
 
 
1626	/*
1627	 * disable all interrupts
1628	 */
 
 
 
 
 
 
 
1629	spin_lock_irq(&uap->port.lock);
 
 
1630	uap->im = 0;
1631	writew(uap->im, uap->port.membase + UART011_IMSC);
1632	writew(0xffff, uap->port.membase + UART011_ICR);
 
1633	spin_unlock_irq(&uap->port.lock);
 
 
 
 
 
 
 
 
1634
1635	pl011_dma_shutdown(uap);
1636
1637	/*
1638	 * Free the interrupt
1639	 */
1640	free_irq(uap->port.irq, uap);
1641
1642	/*
1643	 * disable the port
1644	 * disable the port. It should not disable RTS and DTR.
1645	 * Also RTS and DTR state should be preserved to restore
1646	 * it during startup().
1647	 */
1648	uap->autorts = false;
1649	spin_lock_irq(&uap->port.lock);
1650	cr = readw(uap->port.membase + UART011_CR);
1651	uap->old_cr = cr;
1652	cr &= UART011_CR_RTS | UART011_CR_DTR;
1653	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1654	writew(cr, uap->port.membase + UART011_CR);
1655	spin_unlock_irq(&uap->port.lock);
1656
1657	/*
1658	 * disable break condition and fifos
1659	 */
1660	pl011_shutdown_channel(uap, uap->lcrh_rx);
1661	if (uap->lcrh_rx != uap->lcrh_tx)
1662		pl011_shutdown_channel(uap, uap->lcrh_tx);
1663
1664	/*
1665	 * Shut down the clock producer
1666	 */
1667	clk_disable_unprepare(uap->clk);
1668	/* Optionally let pins go into sleep states */
1669	pinctrl_pm_select_sleep_state(port->dev);
1670
1671	if (dev_get_platdata(uap->port.dev)) {
1672		struct amba_pl011_data *plat;
1673
1674		plat = dev_get_platdata(uap->port.dev);
1675		if (plat->exit)
1676			plat->exit();
1677	}
1678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1679}
1680
1681static void
1682pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1683		     struct ktermios *old)
1684{
1685	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1686	unsigned int lcr_h, old_cr;
1687	unsigned long flags;
1688	unsigned int baud, quot, clkdiv;
1689
1690	if (uap->vendor->oversampling)
1691		clkdiv = 8;
1692	else
1693		clkdiv = 16;
1694
1695	/*
1696	 * Ask the core to calculate the divisor for us.
1697	 */
1698	baud = uart_get_baud_rate(port, termios, old, 0,
1699				  port->uartclk / clkdiv);
1700#ifdef CONFIG_DMA_ENGINE
1701	/*
1702	 * Adjust RX DMA polling rate with baud rate if not specified.
1703	 */
1704	if (uap->dmarx.auto_poll_rate)
1705		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1706#endif
1707
1708	if (baud > port->uartclk/16)
1709		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1710	else
1711		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1712
1713	switch (termios->c_cflag & CSIZE) {
1714	case CS5:
1715		lcr_h = UART01x_LCRH_WLEN_5;
1716		break;
1717	case CS6:
1718		lcr_h = UART01x_LCRH_WLEN_6;
1719		break;
1720	case CS7:
1721		lcr_h = UART01x_LCRH_WLEN_7;
1722		break;
1723	default: // CS8
1724		lcr_h = UART01x_LCRH_WLEN_8;
1725		break;
1726	}
1727	if (termios->c_cflag & CSTOPB)
1728		lcr_h |= UART01x_LCRH_STP2;
1729	if (termios->c_cflag & PARENB) {
1730		lcr_h |= UART01x_LCRH_PEN;
1731		if (!(termios->c_cflag & PARODD))
1732			lcr_h |= UART01x_LCRH_EPS;
 
 
1733	}
1734	if (uap->fifosize > 1)
1735		lcr_h |= UART01x_LCRH_FEN;
1736
1737	spin_lock_irqsave(&port->lock, flags);
1738
1739	/*
1740	 * Update the per-port timeout.
1741	 */
1742	uart_update_timeout(port, termios->c_cflag, baud);
1743
1744	port->read_status_mask = UART011_DR_OE | 255;
1745	if (termios->c_iflag & INPCK)
1746		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1747	if (termios->c_iflag & (BRKINT | PARMRK))
1748		port->read_status_mask |= UART011_DR_BE;
1749
1750	/*
1751	 * Characters to ignore
1752	 */
1753	port->ignore_status_mask = 0;
1754	if (termios->c_iflag & IGNPAR)
1755		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1756	if (termios->c_iflag & IGNBRK) {
1757		port->ignore_status_mask |= UART011_DR_BE;
1758		/*
1759		 * If we're ignoring parity and break indicators,
1760		 * ignore overruns too (for real raw support).
1761		 */
1762		if (termios->c_iflag & IGNPAR)
1763			port->ignore_status_mask |= UART011_DR_OE;
1764	}
1765
1766	/*
1767	 * Ignore all characters if CREAD is not set.
1768	 */
1769	if ((termios->c_cflag & CREAD) == 0)
1770		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1771
1772	if (UART_ENABLE_MS(port, termios->c_cflag))
1773		pl011_enable_ms(port);
1774
1775	/* first, disable everything */
1776	old_cr = readw(port->membase + UART011_CR);
1777	writew(0, port->membase + UART011_CR);
1778
1779	if (termios->c_cflag & CRTSCTS) {
1780		if (old_cr & UART011_CR_RTS)
1781			old_cr |= UART011_CR_RTSEN;
1782
1783		old_cr |= UART011_CR_CTSEN;
1784		uap->autorts = true;
1785	} else {
1786		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1787		uap->autorts = false;
1788	}
1789
1790	if (uap->vendor->oversampling) {
1791		if (baud > port->uartclk / 16)
1792			old_cr |= ST_UART011_CR_OVSFACT;
1793		else
1794			old_cr &= ~ST_UART011_CR_OVSFACT;
1795	}
1796
1797	/*
1798	 * Workaround for the ST Micro oversampling variants to
1799	 * increase the bitrate slightly, by lowering the divisor,
1800	 * to avoid delayed sampling of start bit at high speeds,
1801	 * else we see data corruption.
1802	 */
1803	if (uap->vendor->oversampling) {
1804		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
1805			quot -= 1;
1806		else if ((baud > 3250000) && (quot > 2))
1807			quot -= 2;
1808	}
1809	/* Set baud rate */
1810	writew(quot & 0x3f, port->membase + UART011_FBRD);
1811	writew(quot >> 6, port->membase + UART011_IBRD);
1812
1813	/*
1814	 * ----------v----------v----------v----------v-----
1815	 * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER
1816	 * UART011_FBRD & UART011_IBRD.
1817	 * ----------^----------^----------^----------^-----
1818	 */
1819	pl011_write_lcr_h(uap, lcr_h);
1820	writew(old_cr, port->membase + UART011_CR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1821
 
 
 
1822	spin_unlock_irqrestore(&port->lock, flags);
1823}
1824
1825static const char *pl011_type(struct uart_port *port)
1826{
1827	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1828	return uap->port.type == PORT_AMBA ? uap->type : NULL;
1829}
1830
1831/*
1832 * Release the memory region(s) being used by 'port'
1833 */
1834static void pl011_release_port(struct uart_port *port)
1835{
1836	release_mem_region(port->mapbase, SZ_4K);
1837}
1838
1839/*
1840 * Request the memory region(s) being used by 'port'
1841 */
1842static int pl011_request_port(struct uart_port *port)
1843{
1844	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1845			!= NULL ? 0 : -EBUSY;
1846}
1847
1848/*
1849 * Configure/autoconfigure the port.
1850 */
1851static void pl011_config_port(struct uart_port *port, int flags)
1852{
1853	if (flags & UART_CONFIG_TYPE) {
1854		port->type = PORT_AMBA;
1855		pl011_request_port(port);
1856	}
1857}
1858
1859/*
1860 * verify the new serial_struct (for TIOCSSERIAL).
1861 */
1862static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
1863{
1864	int ret = 0;
1865	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1866		ret = -EINVAL;
1867	if (ser->irq < 0 || ser->irq >= nr_irqs)
1868		ret = -EINVAL;
1869	if (ser->baud_base < 9600)
1870		ret = -EINVAL;
1871	return ret;
1872}
1873
1874static struct uart_ops amba_pl011_pops = {
1875	.tx_empty	= pl011_tx_empty,
1876	.set_mctrl	= pl011_set_mctrl,
1877	.get_mctrl	= pl011_get_mctrl,
1878	.stop_tx	= pl011_stop_tx,
1879	.start_tx	= pl011_start_tx,
1880	.stop_rx	= pl011_stop_rx,
1881	.enable_ms	= pl011_enable_ms,
1882	.break_ctl	= pl011_break_ctl,
1883	.startup	= pl011_startup,
1884	.shutdown	= pl011_shutdown,
1885	.flush_buffer	= pl011_dma_flush_buffer,
1886	.set_termios	= pl011_set_termios,
1887	.type		= pl011_type,
1888	.release_port	= pl011_release_port,
1889	.request_port	= pl011_request_port,
1890	.config_port	= pl011_config_port,
1891	.verify_port	= pl011_verify_port,
1892#ifdef CONFIG_CONSOLE_POLL
1893	.poll_init     = pl011_hwinit,
1894	.poll_get_char = pl011_get_poll_char,
1895	.poll_put_char = pl011_put_poll_char,
1896#endif
1897};
1898
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1899static struct uart_amba_port *amba_ports[UART_NR];
1900
1901#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1902
1903static void pl011_console_putchar(struct uart_port *port, int ch)
1904{
1905	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1906
1907	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1908		barrier();
1909	writew(ch, uap->port.membase + UART01x_DR);
1910}
1911
1912static void
1913pl011_console_write(struct console *co, const char *s, unsigned int count)
1914{
1915	struct uart_amba_port *uap = amba_ports[co->index];
1916	unsigned int status, old_cr, new_cr;
1917	unsigned long flags;
1918	int locked = 1;
1919
1920	clk_enable(uap->clk);
1921
1922	local_irq_save(flags);
1923	if (uap->port.sysrq)
1924		locked = 0;
1925	else if (oops_in_progress)
1926		locked = spin_trylock(&uap->port.lock);
1927	else
1928		spin_lock(&uap->port.lock);
1929
1930	/*
1931	 *	First save the CR then disable the interrupts
1932	 */
1933	old_cr = readw(uap->port.membase + UART011_CR);
1934	new_cr = old_cr & ~UART011_CR_CTSEN;
1935	new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1936	writew(new_cr, uap->port.membase + UART011_CR);
 
 
1937
1938	uart_console_write(&uap->port, s, count, pl011_console_putchar);
1939
1940	/*
1941	 *	Finally, wait for transmitter to become empty
1942	 *	and restore the TCR
1943	 */
1944	do {
1945		status = readw(uap->port.membase + UART01x_FR);
1946	} while (status & UART01x_FR_BUSY);
1947	writew(old_cr, uap->port.membase + UART011_CR);
 
 
1948
1949	if (locked)
1950		spin_unlock(&uap->port.lock);
1951	local_irq_restore(flags);
1952
1953	clk_disable(uap->clk);
1954}
1955
1956static void __init
1957pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1958			     int *parity, int *bits)
1959{
1960	if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1961		unsigned int lcr_h, ibrd, fbrd;
1962
1963		lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1964
1965		*parity = 'n';
1966		if (lcr_h & UART01x_LCRH_PEN) {
1967			if (lcr_h & UART01x_LCRH_EPS)
1968				*parity = 'e';
1969			else
1970				*parity = 'o';
1971		}
1972
1973		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1974			*bits = 7;
1975		else
1976			*bits = 8;
1977
1978		ibrd = readw(uap->port.membase + UART011_IBRD);
1979		fbrd = readw(uap->port.membase + UART011_FBRD);
1980
1981		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1982
1983		if (uap->vendor->oversampling) {
1984			if (readw(uap->port.membase + UART011_CR)
1985				  & ST_UART011_CR_OVSFACT)
1986				*baud *= 2;
1987		}
1988	}
1989}
1990
1991static int __init pl011_console_setup(struct console *co, char *options)
1992{
1993	struct uart_amba_port *uap;
1994	int baud = 38400;
1995	int bits = 8;
1996	int parity = 'n';
1997	int flow = 'n';
1998	int ret;
1999
2000	/*
2001	 * Check whether an invalid uart number has been specified, and
2002	 * if so, search for the first available port that does have
2003	 * console support.
2004	 */
2005	if (co->index >= UART_NR)
2006		co->index = 0;
2007	uap = amba_ports[co->index];
2008	if (!uap)
2009		return -ENODEV;
2010
2011	/* Allow pins to be muxed in and configured */
2012	pinctrl_pm_select_default_state(uap->port.dev);
2013
2014	ret = clk_prepare(uap->clk);
2015	if (ret)
2016		return ret;
2017
2018	if (dev_get_platdata(uap->port.dev)) {
2019		struct amba_pl011_data *plat;
2020
2021		plat = dev_get_platdata(uap->port.dev);
2022		if (plat->init)
2023			plat->init();
2024	}
2025
2026	uap->port.uartclk = clk_get_rate(uap->clk);
2027
2028	if (options)
2029		uart_parse_options(options, &baud, &parity, &bits, &flow);
2030	else
2031		pl011_console_get_options(uap, &baud, &parity, &bits);
 
 
 
 
 
2032
2033	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2034}
2035
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2036static struct uart_driver amba_reg;
2037static struct console amba_console = {
2038	.name		= "ttyAMA",
2039	.write		= pl011_console_write,
2040	.device		= uart_console_device,
2041	.setup		= pl011_console_setup,
2042	.flags		= CON_PRINTBUFFER,
 
2043	.index		= -1,
2044	.data		= &amba_reg,
2045};
2046
2047#define AMBA_CONSOLE	(&amba_console)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2048#else
2049#define AMBA_CONSOLE	NULL
2050#endif
2051
2052static struct uart_driver amba_reg = {
2053	.owner			= THIS_MODULE,
2054	.driver_name		= "ttyAMA",
2055	.dev_name		= "ttyAMA",
2056	.major			= SERIAL_AMBA_MAJOR,
2057	.minor			= SERIAL_AMBA_MINOR,
2058	.nr			= UART_NR,
2059	.cons			= AMBA_CONSOLE,
2060};
2061
2062static int pl011_probe_dt_alias(int index, struct device *dev)
2063{
2064	struct device_node *np;
2065	static bool seen_dev_with_alias = false;
2066	static bool seen_dev_without_alias = false;
2067	int ret = index;
2068
2069	if (!IS_ENABLED(CONFIG_OF))
2070		return ret;
2071
2072	np = dev->of_node;
2073	if (!np)
2074		return ret;
2075
2076	ret = of_alias_get_id(np, "serial");
2077	if (IS_ERR_VALUE(ret)) {
2078		seen_dev_without_alias = true;
2079		ret = index;
2080	} else {
2081		seen_dev_with_alias = true;
2082		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2083			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2084			ret = index;
2085		}
2086	}
2087
2088	if (seen_dev_with_alias && seen_dev_without_alias)
2089		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2090
2091	return ret;
2092}
2093
2094static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2095{
2096	struct uart_amba_port *uap;
2097	struct vendor_data *vendor = id->data;
2098	void __iomem *base;
2099	int i, ret;
2100
2101	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2102		if (amba_ports[i] == NULL)
2103			break;
2104
2105	if (i == ARRAY_SIZE(amba_ports)) {
2106		ret = -EBUSY;
2107		goto out;
2108	}
2109
2110	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2111			   GFP_KERNEL);
2112	if (uap == NULL) {
2113		ret = -ENOMEM;
2114		goto out;
2115	}
2116
2117	i = pl011_probe_dt_alias(i, &dev->dev);
2118
2119	base = devm_ioremap(&dev->dev, dev->res.start,
2120			    resource_size(&dev->res));
2121	if (!base) {
2122		ret = -ENOMEM;
2123		goto out;
2124	}
2125
2126	uap->clk = devm_clk_get(&dev->dev, NULL);
2127	if (IS_ERR(uap->clk)) {
2128		ret = PTR_ERR(uap->clk);
2129		goto out;
2130	}
2131
2132	uap->vendor = vendor;
2133	uap->lcrh_rx = vendor->lcrh_rx;
2134	uap->lcrh_tx = vendor->lcrh_tx;
2135	uap->old_cr = 0;
2136	uap->fifosize = vendor->get_fifosize(dev);
2137	uap->port.dev = &dev->dev;
2138	uap->port.mapbase = dev->res.start;
2139	uap->port.membase = base;
2140	uap->port.iotype = UPIO_MEM;
2141	uap->port.irq = dev->irq[0];
2142	uap->port.fifosize = uap->fifosize;
2143	uap->port.ops = &amba_pl011_pops;
2144	uap->port.flags = UPF_BOOT_AUTOCONF;
2145	uap->port.line = i;
2146	pl011_dma_probe(&dev->dev, uap);
2147
2148	/* Ensure interrupts from this UART are masked and cleared */
2149	writew(0, uap->port.membase + UART011_IMSC);
2150	writew(0xffff, uap->port.membase + UART011_ICR);
2151
2152	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
 
2153
2154	amba_ports[i] = uap;
 
 
2155
2156	amba_set_drvdata(dev, uap);
 
 
2157
2158	if (!amba_reg.state) {
2159		ret = uart_register_driver(&amba_reg);
2160		if (ret < 0) {
2161			pr_err("Failed to register AMBA-PL011 driver\n");
 
2162			return ret;
2163		}
2164	}
2165
2166	ret = uart_add_one_port(&amba_reg, &uap->port);
2167	if (ret) {
2168		amba_ports[i] = NULL;
2169		uart_unregister_driver(&amba_reg);
2170		pl011_dma_remove(uap);
2171	}
2172 out:
2173	return ret;
2174}
2175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2176static int pl011_remove(struct amba_device *dev)
2177{
2178	struct uart_amba_port *uap = amba_get_drvdata(dev);
2179	bool busy = false;
2180	int i;
2181
2182	uart_remove_one_port(&amba_reg, &uap->port);
2183
2184	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2185		if (amba_ports[i] == uap)
2186			amba_ports[i] = NULL;
2187		else if (amba_ports[i])
2188			busy = true;
2189
2190	pl011_dma_remove(uap);
2191	if (!busy)
2192		uart_unregister_driver(&amba_reg);
2193	return 0;
2194}
2195
2196#ifdef CONFIG_PM_SLEEP
2197static int pl011_suspend(struct device *dev)
2198{
2199	struct uart_amba_port *uap = dev_get_drvdata(dev);
2200
2201	if (!uap)
2202		return -EINVAL;
2203
2204	return uart_suspend_port(&amba_reg, &uap->port);
2205}
2206
2207static int pl011_resume(struct device *dev)
2208{
2209	struct uart_amba_port *uap = dev_get_drvdata(dev);
2210
2211	if (!uap)
2212		return -EINVAL;
2213
2214	return uart_resume_port(&amba_reg, &uap->port);
2215}
2216#endif
2217
2218static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2219
2220static struct amba_id pl011_ids[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2221	{
2222		.id	= 0x00041011,
2223		.mask	= 0x000fffff,
2224		.data	= &vendor_arm,
2225	},
2226	{
2227		.id	= 0x00380802,
2228		.mask	= 0x00ffffff,
2229		.data	= &vendor_st,
2230	},
 
 
 
 
 
2231	{ 0, 0 },
2232};
2233
2234MODULE_DEVICE_TABLE(amba, pl011_ids);
2235
2236static struct amba_driver pl011_driver = {
2237	.drv = {
2238		.name	= "uart-pl011",
2239		.pm	= &pl011_dev_pm_ops,
 
2240	},
2241	.id_table	= pl011_ids,
2242	.probe		= pl011_probe,
2243	.remove		= pl011_remove,
2244};
2245
2246static int __init pl011_init(void)
2247{
2248	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2249
 
 
2250	return amba_driver_register(&pl011_driver);
2251}
2252
2253static void __exit pl011_exit(void)
2254{
 
2255	amba_driver_unregister(&pl011_driver);
2256}
2257
2258/*
2259 * While this can be a module, if builtin it's most likely the console
2260 * So let's leave module_exit but move module_init to an earlier place
2261 */
2262arch_initcall(pl011_init);
2263module_exit(pl011_exit);
2264
2265MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2266MODULE_DESCRIPTION("ARM AMBA serial port driver");
2267MODULE_LICENSE("GPL");