Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
Note: File does not exist in v5.4.
  1#include <linux/perf_event.h>
  2#include <linux/export.h>
  3#include <linux/types.h>
  4#include <linux/init.h>
  5#include <linux/slab.h>
  6#include <asm/apicdef.h>
  7
  8#include "perf_event.h"
  9
 10static __initconst const u64 amd_hw_cache_event_ids
 11				[PERF_COUNT_HW_CACHE_MAX]
 12				[PERF_COUNT_HW_CACHE_OP_MAX]
 13				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
 14{
 15 [ C(L1D) ] = {
 16	[ C(OP_READ) ] = {
 17		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
 18		[ C(RESULT_MISS)   ] = 0x0141, /* Data Cache Misses          */
 19	},
 20	[ C(OP_WRITE) ] = {
 21		[ C(RESULT_ACCESS) ] = 0x0142, /* Data Cache Refills :system */
 22		[ C(RESULT_MISS)   ] = 0,
 23	},
 24	[ C(OP_PREFETCH) ] = {
 25		[ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts  */
 26		[ C(RESULT_MISS)   ] = 0x0167, /* Data Prefetcher :cancelled */
 27	},
 28 },
 29 [ C(L1I ) ] = {
 30	[ C(OP_READ) ] = {
 31		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches  */
 32		[ C(RESULT_MISS)   ] = 0x0081, /* Instruction cache misses   */
 33	},
 34	[ C(OP_WRITE) ] = {
 35		[ C(RESULT_ACCESS) ] = -1,
 36		[ C(RESULT_MISS)   ] = -1,
 37	},
 38	[ C(OP_PREFETCH) ] = {
 39		[ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
 40		[ C(RESULT_MISS)   ] = 0,
 41	},
 42 },
 43 [ C(LL  ) ] = {
 44	[ C(OP_READ) ] = {
 45		[ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
 46		[ C(RESULT_MISS)   ] = 0x037E, /* L2 Cache Misses : IC+DC     */
 47	},
 48	[ C(OP_WRITE) ] = {
 49		[ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback           */
 50		[ C(RESULT_MISS)   ] = 0,
 51	},
 52	[ C(OP_PREFETCH) ] = {
 53		[ C(RESULT_ACCESS) ] = 0,
 54		[ C(RESULT_MISS)   ] = 0,
 55	},
 56 },
 57 [ C(DTLB) ] = {
 58	[ C(OP_READ) ] = {
 59		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
 60		[ C(RESULT_MISS)   ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
 61	},
 62	[ C(OP_WRITE) ] = {
 63		[ C(RESULT_ACCESS) ] = 0,
 64		[ C(RESULT_MISS)   ] = 0,
 65	},
 66	[ C(OP_PREFETCH) ] = {
 67		[ C(RESULT_ACCESS) ] = 0,
 68		[ C(RESULT_MISS)   ] = 0,
 69	},
 70 },
 71 [ C(ITLB) ] = {
 72	[ C(OP_READ) ] = {
 73		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes        */
 74		[ C(RESULT_MISS)   ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
 75	},
 76	[ C(OP_WRITE) ] = {
 77		[ C(RESULT_ACCESS) ] = -1,
 78		[ C(RESULT_MISS)   ] = -1,
 79	},
 80	[ C(OP_PREFETCH) ] = {
 81		[ C(RESULT_ACCESS) ] = -1,
 82		[ C(RESULT_MISS)   ] = -1,
 83	},
 84 },
 85 [ C(BPU ) ] = {
 86	[ C(OP_READ) ] = {
 87		[ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr.      */
 88		[ C(RESULT_MISS)   ] = 0x00c3, /* Retired Mispredicted BI    */
 89	},
 90	[ C(OP_WRITE) ] = {
 91		[ C(RESULT_ACCESS) ] = -1,
 92		[ C(RESULT_MISS)   ] = -1,
 93	},
 94	[ C(OP_PREFETCH) ] = {
 95		[ C(RESULT_ACCESS) ] = -1,
 96		[ C(RESULT_MISS)   ] = -1,
 97	},
 98 },
 99 [ C(NODE) ] = {
100	[ C(OP_READ) ] = {
101		[ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
102		[ C(RESULT_MISS)   ] = 0x98e9, /* CPU Request to Memory, r   */
103	},
104	[ C(OP_WRITE) ] = {
105		[ C(RESULT_ACCESS) ] = -1,
106		[ C(RESULT_MISS)   ] = -1,
107	},
108	[ C(OP_PREFETCH) ] = {
109		[ C(RESULT_ACCESS) ] = -1,
110		[ C(RESULT_MISS)   ] = -1,
111	},
112 },
113};
114
115/*
116 * AMD Performance Monitor K7 and later.
117 */
118static const u64 amd_perfmon_event_map[] =
119{
120  [PERF_COUNT_HW_CPU_CYCLES]			= 0x0076,
121  [PERF_COUNT_HW_INSTRUCTIONS]			= 0x00c0,
122  [PERF_COUNT_HW_CACHE_REFERENCES]		= 0x0080,
123  [PERF_COUNT_HW_CACHE_MISSES]			= 0x0081,
124  [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]		= 0x00c2,
125  [PERF_COUNT_HW_BRANCH_MISSES]			= 0x00c3,
126  [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= 0x00d0, /* "Decoder empty" event */
127  [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= 0x00d1, /* "Dispatch stalls" event */
128};
129
130static u64 amd_pmu_event_map(int hw_event)
131{
132	return amd_perfmon_event_map[hw_event];
133}
134
135/*
136 * Previously calculated offsets
137 */
138static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly;
139static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly;
140
141/*
142 * Legacy CPUs:
143 *   4 counters starting at 0xc0010000 each offset by 1
144 *
145 * CPUs with core performance counter extensions:
146 *   6 counters starting at 0xc0010200 each offset by 2
147 */
148static inline int amd_pmu_addr_offset(int index, bool eventsel)
149{
150	int offset;
151
152	if (!index)
153		return index;
154
155	if (eventsel)
156		offset = event_offsets[index];
157	else
158		offset = count_offsets[index];
159
160	if (offset)
161		return offset;
162
163	if (!cpu_has_perfctr_core)
164		offset = index;
165	else
166		offset = index << 1;
167
168	if (eventsel)
169		event_offsets[index] = offset;
170	else
171		count_offsets[index] = offset;
172
173	return offset;
174}
175
176static int amd_core_hw_config(struct perf_event *event)
177{
178	if (event->attr.exclude_host && event->attr.exclude_guest)
179		/*
180		 * When HO == GO == 1 the hardware treats that as GO == HO == 0
181		 * and will count in both modes. We don't want to count in that
182		 * case so we emulate no-counting by setting US = OS = 0.
183		 */
184		event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
185				      ARCH_PERFMON_EVENTSEL_OS);
186	else if (event->attr.exclude_host)
187		event->hw.config |= AMD64_EVENTSEL_GUESTONLY;
188	else if (event->attr.exclude_guest)
189		event->hw.config |= AMD64_EVENTSEL_HOSTONLY;
190
191	return 0;
192}
193
194/*
195 * AMD64 events are detected based on their event codes.
196 */
197static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
198{
199	return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
200}
201
202static inline int amd_is_nb_event(struct hw_perf_event *hwc)
203{
204	return (hwc->config & 0xe0) == 0xe0;
205}
206
207static inline int amd_has_nb(struct cpu_hw_events *cpuc)
208{
209	struct amd_nb *nb = cpuc->amd_nb;
210
211	return nb && nb->nb_id != -1;
212}
213
214static int amd_pmu_hw_config(struct perf_event *event)
215{
216	int ret;
217
218	/* pass precise event sampling to ibs: */
219	if (event->attr.precise_ip && get_ibs_caps())
220		return -ENOENT;
221
222	if (has_branch_stack(event))
223		return -EOPNOTSUPP;
224
225	ret = x86_pmu_hw_config(event);
226	if (ret)
227		return ret;
228
229	if (event->attr.type == PERF_TYPE_RAW)
230		event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;
231
232	return amd_core_hw_config(event);
233}
234
235static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc,
236					   struct perf_event *event)
237{
238	struct amd_nb *nb = cpuc->amd_nb;
239	int i;
240
241	/*
242	 * need to scan whole list because event may not have
243	 * been assigned during scheduling
244	 *
245	 * no race condition possible because event can only
246	 * be removed on one CPU at a time AND PMU is disabled
247	 * when we come here
248	 */
249	for (i = 0; i < x86_pmu.num_counters; i++) {
250		if (cmpxchg(nb->owners + i, event, NULL) == event)
251			break;
252	}
253}
254
255 /*
256  * AMD64 NorthBridge events need special treatment because
257  * counter access needs to be synchronized across all cores
258  * of a package. Refer to BKDG section 3.12
259  *
260  * NB events are events measuring L3 cache, Hypertransport
261  * traffic. They are identified by an event code >= 0xe00.
262  * They measure events on the NorthBride which is shared
263  * by all cores on a package. NB events are counted on a
264  * shared set of counters. When a NB event is programmed
265  * in a counter, the data actually comes from a shared
266  * counter. Thus, access to those counters needs to be
267  * synchronized.
268  *
269  * We implement the synchronization such that no two cores
270  * can be measuring NB events using the same counters. Thus,
271  * we maintain a per-NB allocation table. The available slot
272  * is propagated using the event_constraint structure.
273  *
274  * We provide only one choice for each NB event based on
275  * the fact that only NB events have restrictions. Consequently,
276  * if a counter is available, there is a guarantee the NB event
277  * will be assigned to it. If no slot is available, an empty
278  * constraint is returned and scheduling will eventually fail
279  * for this event.
280  *
281  * Note that all cores attached the same NB compete for the same
282  * counters to host NB events, this is why we use atomic ops. Some
283  * multi-chip CPUs may have more than one NB.
284  *
285  * Given that resources are allocated (cmpxchg), they must be
286  * eventually freed for others to use. This is accomplished by
287  * calling __amd_put_nb_event_constraints()
288  *
289  * Non NB events are not impacted by this restriction.
290  */
291static struct event_constraint *
292__amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
293			       struct event_constraint *c)
294{
295	struct hw_perf_event *hwc = &event->hw;
296	struct amd_nb *nb = cpuc->amd_nb;
297	struct perf_event *old;
298	int idx, new = -1;
299
300	if (!c)
301		c = &unconstrained;
302
303	if (cpuc->is_fake)
304		return c;
305
306	/*
307	 * detect if already present, if so reuse
308	 *
309	 * cannot merge with actual allocation
310	 * because of possible holes
311	 *
312	 * event can already be present yet not assigned (in hwc->idx)
313	 * because of successive calls to x86_schedule_events() from
314	 * hw_perf_group_sched_in() without hw_perf_enable()
315	 */
316	for_each_set_bit(idx, c->idxmsk, x86_pmu.num_counters) {
317		if (new == -1 || hwc->idx == idx)
318			/* assign free slot, prefer hwc->idx */
319			old = cmpxchg(nb->owners + idx, NULL, event);
320		else if (nb->owners[idx] == event)
321			/* event already present */
322			old = event;
323		else
324			continue;
325
326		if (old && old != event)
327			continue;
328
329		/* reassign to this slot */
330		if (new != -1)
331			cmpxchg(nb->owners + new, event, NULL);
332		new = idx;
333
334		/* already present, reuse */
335		if (old == event)
336			break;
337	}
338
339	if (new == -1)
340		return &emptyconstraint;
341
342	return &nb->event_constraints[new];
343}
344
345static struct amd_nb *amd_alloc_nb(int cpu)
346{
347	struct amd_nb *nb;
348	int i;
349
350	nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu));
351	if (!nb)
352		return NULL;
353
354	nb->nb_id = -1;
355
356	/*
357	 * initialize all possible NB constraints
358	 */
359	for (i = 0; i < x86_pmu.num_counters; i++) {
360		__set_bit(i, nb->event_constraints[i].idxmsk);
361		nb->event_constraints[i].weight = 1;
362	}
363	return nb;
364}
365
366static int amd_pmu_cpu_prepare(int cpu)
367{
368	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
369
370	WARN_ON_ONCE(cpuc->amd_nb);
371
372	if (boot_cpu_data.x86_max_cores < 2)
373		return NOTIFY_OK;
374
375	cpuc->amd_nb = amd_alloc_nb(cpu);
376	if (!cpuc->amd_nb)
377		return NOTIFY_BAD;
378
379	return NOTIFY_OK;
380}
381
382static void amd_pmu_cpu_starting(int cpu)
383{
384	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
385	struct amd_nb *nb;
386	int i, nb_id;
387
388	cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
389
390	if (boot_cpu_data.x86_max_cores < 2)
391		return;
392
393	nb_id = amd_get_nb_id(cpu);
394	WARN_ON_ONCE(nb_id == BAD_APICID);
395
396	for_each_online_cpu(i) {
397		nb = per_cpu(cpu_hw_events, i).amd_nb;
398		if (WARN_ON_ONCE(!nb))
399			continue;
400
401		if (nb->nb_id == nb_id) {
402			cpuc->kfree_on_online = cpuc->amd_nb;
403			cpuc->amd_nb = nb;
404			break;
405		}
406	}
407
408	cpuc->amd_nb->nb_id = nb_id;
409	cpuc->amd_nb->refcnt++;
410}
411
412static void amd_pmu_cpu_dead(int cpu)
413{
414	struct cpu_hw_events *cpuhw;
415
416	if (boot_cpu_data.x86_max_cores < 2)
417		return;
418
419	cpuhw = &per_cpu(cpu_hw_events, cpu);
420
421	if (cpuhw->amd_nb) {
422		struct amd_nb *nb = cpuhw->amd_nb;
423
424		if (nb->nb_id == -1 || --nb->refcnt == 0)
425			kfree(nb);
426
427		cpuhw->amd_nb = NULL;
428	}
429}
430
431static struct event_constraint *
432amd_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
433{
434	/*
435	 * if not NB event or no NB, then no constraints
436	 */
437	if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)))
438		return &unconstrained;
439
440	return __amd_get_nb_event_constraints(cpuc, event, NULL);
441}
442
443static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
444				      struct perf_event *event)
445{
446	if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))
447		__amd_put_nb_event_constraints(cpuc, event);
448}
449
450PMU_FORMAT_ATTR(event,	"config:0-7,32-35");
451PMU_FORMAT_ATTR(umask,	"config:8-15"	);
452PMU_FORMAT_ATTR(edge,	"config:18"	);
453PMU_FORMAT_ATTR(inv,	"config:23"	);
454PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
455
456static struct attribute *amd_format_attr[] = {
457	&format_attr_event.attr,
458	&format_attr_umask.attr,
459	&format_attr_edge.attr,
460	&format_attr_inv.attr,
461	&format_attr_cmask.attr,
462	NULL,
463};
464
465/* AMD Family 15h */
466
467#define AMD_EVENT_TYPE_MASK	0x000000F0ULL
468
469#define AMD_EVENT_FP		0x00000000ULL ... 0x00000010ULL
470#define AMD_EVENT_LS		0x00000020ULL ... 0x00000030ULL
471#define AMD_EVENT_DC		0x00000040ULL ... 0x00000050ULL
472#define AMD_EVENT_CU		0x00000060ULL ... 0x00000070ULL
473#define AMD_EVENT_IC_DE		0x00000080ULL ... 0x00000090ULL
474#define AMD_EVENT_EX_LS		0x000000C0ULL
475#define AMD_EVENT_DE		0x000000D0ULL
476#define AMD_EVENT_NB		0x000000E0ULL ... 0x000000F0ULL
477
478/*
479 * AMD family 15h event code/PMC mappings:
480 *
481 * type = event_code & 0x0F0:
482 *
483 * 0x000	FP	PERF_CTL[5:3]
484 * 0x010	FP	PERF_CTL[5:3]
485 * 0x020	LS	PERF_CTL[5:0]
486 * 0x030	LS	PERF_CTL[5:0]
487 * 0x040	DC	PERF_CTL[5:0]
488 * 0x050	DC	PERF_CTL[5:0]
489 * 0x060	CU	PERF_CTL[2:0]
490 * 0x070	CU	PERF_CTL[2:0]
491 * 0x080	IC/DE	PERF_CTL[2:0]
492 * 0x090	IC/DE	PERF_CTL[2:0]
493 * 0x0A0	---
494 * 0x0B0	---
495 * 0x0C0	EX/LS	PERF_CTL[5:0]
496 * 0x0D0	DE	PERF_CTL[2:0]
497 * 0x0E0	NB	NB_PERF_CTL[3:0]
498 * 0x0F0	NB	NB_PERF_CTL[3:0]
499 *
500 * Exceptions:
501 *
502 * 0x000	FP	PERF_CTL[3], PERF_CTL[5:3] (*)
503 * 0x003	FP	PERF_CTL[3]
504 * 0x004	FP	PERF_CTL[3], PERF_CTL[5:3] (*)
505 * 0x00B	FP	PERF_CTL[3]
506 * 0x00D	FP	PERF_CTL[3]
507 * 0x023	DE	PERF_CTL[2:0]
508 * 0x02D	LS	PERF_CTL[3]
509 * 0x02E	LS	PERF_CTL[3,0]
510 * 0x031	LS	PERF_CTL[2:0] (**)
511 * 0x043	CU	PERF_CTL[2:0]
512 * 0x045	CU	PERF_CTL[2:0]
513 * 0x046	CU	PERF_CTL[2:0]
514 * 0x054	CU	PERF_CTL[2:0]
515 * 0x055	CU	PERF_CTL[2:0]
516 * 0x08F	IC	PERF_CTL[0]
517 * 0x187	DE	PERF_CTL[0]
518 * 0x188	DE	PERF_CTL[0]
519 * 0x0DB	EX	PERF_CTL[5:0]
520 * 0x0DC	LS	PERF_CTL[5:0]
521 * 0x0DD	LS	PERF_CTL[5:0]
522 * 0x0DE	LS	PERF_CTL[5:0]
523 * 0x0DF	LS	PERF_CTL[5:0]
524 * 0x1C0	EX	PERF_CTL[5:3]
525 * 0x1D6	EX	PERF_CTL[5:0]
526 * 0x1D8	EX	PERF_CTL[5:0]
527 *
528 * (*)  depending on the umask all FPU counters may be used
529 * (**) only one unitmask enabled at a time
530 */
531
532static struct event_constraint amd_f15_PMC0  = EVENT_CONSTRAINT(0, 0x01, 0);
533static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
534static struct event_constraint amd_f15_PMC3  = EVENT_CONSTRAINT(0, 0x08, 0);
535static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
536static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
537static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);
538
539static struct event_constraint *
540amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, struct perf_event *event)
541{
542	struct hw_perf_event *hwc = &event->hw;
543	unsigned int event_code = amd_get_event_code(hwc);
544
545	switch (event_code & AMD_EVENT_TYPE_MASK) {
546	case AMD_EVENT_FP:
547		switch (event_code) {
548		case 0x000:
549			if (!(hwc->config & 0x0000F000ULL))
550				break;
551			if (!(hwc->config & 0x00000F00ULL))
552				break;
553			return &amd_f15_PMC3;
554		case 0x004:
555			if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
556				break;
557			return &amd_f15_PMC3;
558		case 0x003:
559		case 0x00B:
560		case 0x00D:
561			return &amd_f15_PMC3;
562		}
563		return &amd_f15_PMC53;
564	case AMD_EVENT_LS:
565	case AMD_EVENT_DC:
566	case AMD_EVENT_EX_LS:
567		switch (event_code) {
568		case 0x023:
569		case 0x043:
570		case 0x045:
571		case 0x046:
572		case 0x054:
573		case 0x055:
574			return &amd_f15_PMC20;
575		case 0x02D:
576			return &amd_f15_PMC3;
577		case 0x02E:
578			return &amd_f15_PMC30;
579		case 0x031:
580			if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
581				return &amd_f15_PMC20;
582			return &emptyconstraint;
583		case 0x1C0:
584			return &amd_f15_PMC53;
585		default:
586			return &amd_f15_PMC50;
587		}
588	case AMD_EVENT_CU:
589	case AMD_EVENT_IC_DE:
590	case AMD_EVENT_DE:
591		switch (event_code) {
592		case 0x08F:
593		case 0x187:
594		case 0x188:
595			return &amd_f15_PMC0;
596		case 0x0DB ... 0x0DF:
597		case 0x1D6:
598		case 0x1D8:
599			return &amd_f15_PMC50;
600		default:
601			return &amd_f15_PMC20;
602		}
603	case AMD_EVENT_NB:
604		/* moved to perf_event_amd_uncore.c */
605		return &emptyconstraint;
606	default:
607		return &emptyconstraint;
608	}
609}
610
611static ssize_t amd_event_sysfs_show(char *page, u64 config)
612{
613	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) |
614		    (config & AMD64_EVENTSEL_EVENT) >> 24;
615
616	return x86_event_sysfs_show(page, config, event);
617}
618
619static __initconst const struct x86_pmu amd_pmu = {
620	.name			= "AMD",
621	.handle_irq		= x86_pmu_handle_irq,
622	.disable_all		= x86_pmu_disable_all,
623	.enable_all		= x86_pmu_enable_all,
624	.enable			= x86_pmu_enable_event,
625	.disable		= x86_pmu_disable_event,
626	.hw_config		= amd_pmu_hw_config,
627	.schedule_events	= x86_schedule_events,
628	.eventsel		= MSR_K7_EVNTSEL0,
629	.perfctr		= MSR_K7_PERFCTR0,
630	.addr_offset            = amd_pmu_addr_offset,
631	.event_map		= amd_pmu_event_map,
632	.max_events		= ARRAY_SIZE(amd_perfmon_event_map),
633	.num_counters		= AMD64_NUM_COUNTERS,
634	.cntval_bits		= 48,
635	.cntval_mask		= (1ULL << 48) - 1,
636	.apic			= 1,
637	/* use highest bit to detect overflow */
638	.max_period		= (1ULL << 47) - 1,
639	.get_event_constraints	= amd_get_event_constraints,
640	.put_event_constraints	= amd_put_event_constraints,
641
642	.format_attrs		= amd_format_attr,
643	.events_sysfs_show	= amd_event_sysfs_show,
644
645	.cpu_prepare		= amd_pmu_cpu_prepare,
646	.cpu_starting		= amd_pmu_cpu_starting,
647	.cpu_dead		= amd_pmu_cpu_dead,
648};
649
650static int __init amd_core_pmu_init(void)
651{
652	if (!cpu_has_perfctr_core)
653		return 0;
654
655	switch (boot_cpu_data.x86) {
656	case 0x15:
657		pr_cont("Fam15h ");
658		x86_pmu.get_event_constraints = amd_get_event_constraints_f15h;
659		break;
660
661	default:
662		pr_err("core perfctr but no constraints; unknown hardware!\n");
663		return -ENODEV;
664	}
665
666	/*
667	 * If core performance counter extensions exists, we must use
668	 * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
669	 * amd_pmu_addr_offset().
670	 */
671	x86_pmu.eventsel	= MSR_F15H_PERF_CTL;
672	x86_pmu.perfctr		= MSR_F15H_PERF_CTR;
673	x86_pmu.num_counters	= AMD64_NUM_COUNTERS_CORE;
674
675	pr_cont("core perfctr, ");
676	return 0;
677}
678
679__init int amd_pmu_init(void)
680{
681	int ret;
682
683	/* Performance-monitoring supported from K7 and later: */
684	if (boot_cpu_data.x86 < 6)
685		return -ENODEV;
686
687	x86_pmu = amd_pmu;
688
689	ret = amd_core_pmu_init();
690	if (ret)
691		return ret;
692
693	/* Events are common for all AMDs */
694	memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
695	       sizeof(hw_cache_event_ids));
696
697	return 0;
698}
699
700void amd_pmu_enable_virt(void)
701{
702	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
703
704	cpuc->perf_ctr_virt_mask = 0;
705
706	/* Reload all events */
707	x86_pmu_disable_all();
708	x86_pmu_enable_all(0);
709}
710EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);
711
712void amd_pmu_disable_virt(void)
713{
714	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
715
716	/*
717	 * We only mask out the Host-only bit so that host-only counting works
718	 * when SVM is disabled. If someone sets up a guest-only counter when
719	 * SVM is disabled the Guest-only bits still gets set and the counter
720	 * will not count anything.
721	 */
722	cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
723
724	/* Reload all events */
725	x86_pmu_disable_all();
726	x86_pmu_enable_all(0);
727}
728EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);