Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright (C) 2013 Imagination Technologies
  4 * Author: Paul Burton <paul.burton@mips.com>
 
 
 
 
 
  5 */
  6
  7#include <linux/cpu.h>
  8#include <linux/delay.h>
  9#include <linux/io.h>
 10#include <linux/sched/task_stack.h>
 11#include <linux/sched/hotplug.h>
 12#include <linux/slab.h>
 13#include <linux/smp.h>
 14#include <linux/types.h>
 15
 16#include <asm/bcache.h>
 17#include <asm/mips-cps.h>
 
 
 18#include <asm/mips_mt.h>
 19#include <asm/mipsregs.h>
 20#include <asm/pm-cps.h>
 21#include <asm/r4kcache.h>
 22#include <asm/smp-cps.h>
 23#include <asm/time.h>
 24#include <asm/uasm.h>
 25
 26static bool threads_disabled;
 27static DECLARE_BITMAP(core_power, NR_CPUS);
 28
 29struct core_boot_config *mips_cps_core_bootcfg;
 30
 31static int __init setup_nothreads(char *s)
 32{
 33	threads_disabled = true;
 34	return 0;
 35}
 36early_param("nothreads", setup_nothreads);
 37
 38static unsigned core_vpe_count(unsigned int cluster, unsigned core)
 39{
 40	if (threads_disabled)
 41		return 1;
 42
 43	return mips_cps_numvps(cluster, core);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 44}
 45
 46static void __init cps_smp_setup(void)
 47{
 48	unsigned int nclusters, ncores, nvpes, core_vpes;
 49	unsigned long core_entry;
 50	int cl, c, v;
 51
 52	/* Detect & record VPE topology */
 53	nvpes = 0;
 54	nclusters = mips_cps_numclusters();
 55	pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
 56	for (cl = 0; cl < nclusters; cl++) {
 57		if (cl > 0)
 58			pr_cont(",");
 59		pr_cont("{");
 60
 61		ncores = mips_cps_numcores(cl);
 62		for (c = 0; c < ncores; c++) {
 63			core_vpes = core_vpe_count(cl, c);
 64
 65			if (c > 0)
 66				pr_cont(",");
 67			pr_cont("%u", core_vpes);
 68
 69			/* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */
 70			if (!cl && !c)
 71				smp_num_siblings = core_vpes;
 72
 73			for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
 74				cpu_set_cluster(&cpu_data[nvpes + v], cl);
 75				cpu_set_core(&cpu_data[nvpes + v], c);
 76				cpu_set_vpe_id(&cpu_data[nvpes + v], v);
 77			}
 78
 79			nvpes += core_vpes;
 
 
 
 
 
 
 80		}
 81
 82		pr_cont("}");
 83	}
 84	pr_cont(" total %u\n", nvpes);
 85
 86	/* Indicate present CPUs (CPU being synonymous with VPE) */
 87	for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
 88		set_cpu_possible(v, cpu_cluster(&cpu_data[v]) == 0);
 89		set_cpu_present(v, cpu_cluster(&cpu_data[v]) == 0);
 90		__cpu_number_map[v] = v;
 91		__cpu_logical_map[v] = v;
 92	}
 93
 94	/* Set a coherent default CCA (CWB) */
 95	change_c0_config(CONF_CM_CMASK, 0x5);
 96
 97	/* Core 0 is powered up (we're running on it) */
 98	bitmap_set(core_power, 0, 1);
 99
 
 
 
 
100	/* Initialise core 0 */
101	mips_cps_core_init();
 
 
 
 
102
103	/* Make core 0 coherent with everything */
104	write_gcr_cl_coherence(0xff);
105
106	if (mips_cm_revision() >= CM_REV_CM3) {
107		core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
108		write_gcr_bev_base(core_entry);
109	}
110
111#ifdef CONFIG_MIPS_MT_FPAFF
112	/* If we have an FPU, enroll ourselves in the FPU-full mask */
113	if (cpu_has_fpu)
114		cpumask_set_cpu(0, &mt_fpu_cpumask);
115#endif /* CONFIG_MIPS_MT_FPAFF */
116}
117
118static void __init cps_prepare_cpus(unsigned int max_cpus)
119{
120	unsigned ncores, core_vpes, c, cca;
121	bool cca_unsuitable, cores_limited;
122	u32 *entry_code;
123
124	mips_mt_set_cpuoptions();
125
126	/* Detect whether the CCA is unsuited to multi-core SMP */
127	cca = read_c0_config() & CONF_CM_CMASK;
128	switch (cca) {
129	case 0x4: /* CWBE */
130	case 0x5: /* CWB */
131		/* The CCA is coherent, multi-core is fine */
132		cca_unsuitable = false;
133		break;
134
135	default:
136		/* CCA is not coherent, multi-core is not usable */
137		cca_unsuitable = true;
138	}
139
140	/* Warn the user if the CCA prevents multi-core */
141	cores_limited = false;
142	if (cca_unsuitable || cpu_has_dc_aliases) {
143		for_each_present_cpu(c) {
144			if (cpus_are_siblings(smp_processor_id(), c))
145				continue;
146
147			set_cpu_present(c, false);
148			cores_limited = true;
149		}
150	}
151	if (cores_limited)
152		pr_warn("Using only one core due to %s%s%s\n",
153			cca_unsuitable ? "unsuitable CCA" : "",
154			(cca_unsuitable && cpu_has_dc_aliases) ? " & " : "",
155			cpu_has_dc_aliases ? "dcache aliasing" : "");
156
157	/*
158	 * Patch the start of mips_cps_core_entry to provide:
159	 *
160	 * s0 = kseg0 CCA
161	 */
162	entry_code = (u32 *)&mips_cps_core_entry;
163	uasm_i_addiu(&entry_code, 16, 0, cca);
164	blast_dcache_range((unsigned long)&mips_cps_core_entry,
165			   (unsigned long)entry_code);
166	bc_wback_inv((unsigned long)&mips_cps_core_entry,
167		     (void *)entry_code - (void *)&mips_cps_core_entry);
168	__sync();
169
170	/* Allocate core boot configuration structs */
171	ncores = mips_cps_numcores(0);
172	mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
173					GFP_KERNEL);
174	if (!mips_cps_core_bootcfg) {
175		pr_err("Failed to allocate boot config for %u cores\n", ncores);
176		goto err_out;
177	}
178
179	/* Allocate VPE boot configuration structs */
180	for (c = 0; c < ncores; c++) {
181		core_vpes = core_vpe_count(0, c);
182		mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
183				sizeof(*mips_cps_core_bootcfg[c].vpe_config),
184				GFP_KERNEL);
185		if (!mips_cps_core_bootcfg[c].vpe_config) {
186			pr_err("Failed to allocate %u VPE boot configs\n",
187			       core_vpes);
188			goto err_out;
189		}
190	}
191
192	/* Mark this CPU as booted */
193	atomic_set(&mips_cps_core_bootcfg[cpu_core(&current_cpu_data)].vpe_mask,
194		   1 << cpu_vpe_id(&current_cpu_data));
195
196	return;
197err_out:
198	/* Clean up allocations */
199	if (mips_cps_core_bootcfg) {
200		for (c = 0; c < ncores; c++)
201			kfree(mips_cps_core_bootcfg[c].vpe_config);
202		kfree(mips_cps_core_bootcfg);
203		mips_cps_core_bootcfg = NULL;
204	}
205
206	/* Effectively disable SMP by declaring CPUs not present */
207	for_each_possible_cpu(c) {
208		if (c == 0)
209			continue;
210		set_cpu_present(c, false);
211	}
212}
213
214static void boot_core(unsigned int core, unsigned int vpe_id)
215{
216	u32 stat, seq_state;
217	unsigned timeout;
218
219	/* Select the appropriate core */
220	mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
221
222	/* Set its reset vector */
223	write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
224
225	/* Ensure its coherency is disabled */
226	write_gcr_co_coherence(0);
227
228	/* Start it with the legacy memory map and exception base */
229	write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB);
230
231	/* Ensure the core can access the GCRs */
232	set_gcr_access(1 << core);
 
 
233
234	if (mips_cpc_present()) {
235		/* Reset the core */
236		mips_cpc_lock_other(core);
237
238		if (mips_cm_revision() >= CM_REV_CM3) {
239			/* Run only the requested VP following the reset */
240			write_cpc_co_vp_stop(0xf);
241			write_cpc_co_vp_run(1 << vpe_id);
242
243			/*
244			 * Ensure that the VP_RUN register is written before the
245			 * core leaves reset.
246			 */
247			wmb();
248		}
249
 
250		write_cpc_co_cmd(CPC_Cx_CMD_RESET);
251
252		timeout = 100;
253		while (true) {
254			stat = read_cpc_co_stat_conf();
255			seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
256			seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
257
258			/* U6 == coherent execution, ie. the core is up */
259			if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
260				break;
261
262			/* Delay a little while before we start warning */
263			if (timeout) {
264				timeout--;
265				mdelay(10);
266				continue;
267			}
268
269			pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
270				core, stat);
271			mdelay(1000);
272		}
273
274		mips_cpc_unlock_other();
275	} else {
276		/* Take the core out of reset */
277		write_gcr_co_reset_release(0);
278	}
279
280	mips_cm_unlock_other();
281
282	/* The core is now powered up */
283	bitmap_set(core_power, core, 1);
284}
285
286static void remote_vpe_boot(void *dummy)
287{
288	unsigned core = cpu_core(&current_cpu_data);
289	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
 
 
 
 
 
 
 
 
 
290
291	mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
292}
293
294static int cps_boot_secondary(int cpu, struct task_struct *idle)
295{
296	unsigned core = cpu_core(&cpu_data[cpu]);
297	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
298	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
299	struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
300	unsigned long core_entry;
301	unsigned int remote;
302	int err;
303
304	/* We don't yet support booting CPUs in other clusters */
305	if (cpu_cluster(&cpu_data[cpu]) != cpu_cluster(&raw_current_cpu_data))
306		return -ENOSYS;
307
308	vpe_cfg->pc = (unsigned long)&smp_bootstrap;
309	vpe_cfg->sp = __KSTK_TOS(idle);
310	vpe_cfg->gp = (unsigned long)task_thread_info(idle);
311
312	atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
313
314	preempt_disable();
315
316	if (!test_bit(core, core_power)) {
317		/* Boot a VPE on a powered down core */
318		boot_core(core, vpe_id);
319		goto out;
320	}
321
322	if (cpu_has_vp) {
323		mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
324		core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
325		write_gcr_co_reset_base(core_entry);
326		mips_cm_unlock_other();
327	}
328
329	if (!cpus_are_siblings(cpu, smp_processor_id())) {
330		/* Boot a VPE on another powered up core */
331		for (remote = 0; remote < NR_CPUS; remote++) {
332			if (!cpus_are_siblings(cpu, remote))
333				continue;
334			if (cpu_online(remote))
335				break;
336		}
337		if (remote >= NR_CPUS) {
338			pr_crit("No online CPU in core %u to start CPU%d\n",
339				core, cpu);
340			goto out;
341		}
342
343		err = smp_call_function_single(remote, remote_vpe_boot,
344					       NULL, 1);
345		if (err)
346			panic("Failed to call remote CPU\n");
347		goto out;
348	}
349
350	BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
351
352	/* Boot a VPE on this core */
353	mips_cps_boot_vpes(core_cfg, vpe_id);
354out:
355	preempt_enable();
356	return 0;
357}
358
359static void cps_init_secondary(void)
360{
361	/* Disable MT - we only want to run 1 TC per VPE */
362	if (cpu_has_mipsmt)
363		dmt();
364
365	if (mips_cm_revision() >= CM_REV_CM3) {
366		unsigned int ident = read_gic_vl_ident();
 
367
368		/*
369		 * Ensure that our calculation of the VP ID matches up with
370		 * what the GIC reports, otherwise we'll have configured
371		 * interrupts incorrectly.
372		 */
373		BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
374	}
375
376	if (cpu_has_veic)
377		clear_c0_status(ST0_IM);
378	else
379		change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
380					 STATUSF_IP4 | STATUSF_IP5 |
381					 STATUSF_IP6 | STATUSF_IP7);
382}
383
384static void cps_smp_finish(void)
385{
386	write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
387
388#ifdef CONFIG_MIPS_MT_FPAFF
389	/* If we have an FPU, enroll ourselves in the FPU-full mask */
390	if (cpu_has_fpu)
391		cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
392#endif /* CONFIG_MIPS_MT_FPAFF */
393
394	local_irq_enable();
395}
396
397#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_KEXEC)
398
399enum cpu_death {
400	CPU_DEATH_HALT,
401	CPU_DEATH_POWER,
402};
403
404static void cps_shutdown_this_cpu(enum cpu_death death)
405{
406	unsigned int cpu, core, vpe_id;
407
408	cpu = smp_processor_id();
409	core = cpu_core(&cpu_data[cpu]);
410
411	if (death == CPU_DEATH_HALT) {
412		vpe_id = cpu_vpe_id(&cpu_data[cpu]);
413
414		pr_debug("Halting core %d VP%d\n", core, vpe_id);
415		if (cpu_has_mipsmt) {
416			/* Halt this TC */
417			write_c0_tchalt(TCHALT_H);
418			instruction_hazard();
419		} else if (cpu_has_vp) {
420			write_cpc_cl_vp_stop(1 << vpe_id);
421
422			/* Ensure that the VP_STOP register is written */
423			wmb();
424		}
425	} else {
426		pr_debug("Gating power to core %d\n", core);
427		/* Power down the core */
428		cps_pm_enter_state(CPS_PM_POWER_GATED);
429	}
430}
431
432#ifdef CONFIG_KEXEC
433
434static void cps_kexec_nonboot_cpu(void)
435{
436	if (cpu_has_mipsmt || cpu_has_vp)
437		cps_shutdown_this_cpu(CPU_DEATH_HALT);
438	else
439		cps_shutdown_this_cpu(CPU_DEATH_POWER);
440}
441
442#endif /* CONFIG_KEXEC */
443
444#endif /* CONFIG_HOTPLUG_CPU || CONFIG_KEXEC */
445
446#ifdef CONFIG_HOTPLUG_CPU
447
448static int cps_cpu_disable(void)
449{
450	unsigned cpu = smp_processor_id();
451	struct core_boot_config *core_cfg;
452
453	if (!cpu)
454		return -EBUSY;
455
456	if (!cps_pm_support_state(CPS_PM_POWER_GATED))
457		return -EINVAL;
458
459	core_cfg = &mips_cps_core_bootcfg[cpu_core(&current_cpu_data)];
460	atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
461	smp_mb__after_atomic();
462	set_cpu_online(cpu, false);
463	calculate_cpu_foreign_map();
464
465	return 0;
466}
467
468static unsigned cpu_death_sibling;
469static enum cpu_death cpu_death;
470
471void play_dead(void)
472{
473	unsigned int cpu;
474
475	local_irq_disable();
476	idle_task_exit();
477	cpu = smp_processor_id();
478	cpu_death = CPU_DEATH_POWER;
479
480	pr_debug("CPU%d going offline\n", cpu);
481
482	if (cpu_has_mipsmt || cpu_has_vp) {
483		/* Look for another online VPE within the core */
484		for_each_online_cpu(cpu_death_sibling) {
485			if (!cpus_are_siblings(cpu, cpu_death_sibling))
486				continue;
487
488			/*
489			 * There is an online VPE within the core. Just halt
490			 * this TC and leave the core alone.
491			 */
492			cpu_death = CPU_DEATH_HALT;
493			break;
494		}
495	}
496
497	/* This CPU has chosen its way out */
498	(void)cpu_report_death();
499
500	cps_shutdown_this_cpu(cpu_death);
501
502	/* This should never be reached */
503	panic("Failed to offline CPU %u", cpu);
504}
505
506static void wait_for_sibling_halt(void *ptr_cpu)
507{
508	unsigned cpu = (unsigned long)ptr_cpu;
509	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
510	unsigned halted;
511	unsigned long flags;
512
513	do {
514		local_irq_save(flags);
515		settc(vpe_id);
516		halted = read_tc_c0_tchalt();
517		local_irq_restore(flags);
518	} while (!(halted & TCHALT_H));
519}
520
521static void cps_cpu_die(unsigned int cpu)
522{
523	unsigned core = cpu_core(&cpu_data[cpu]);
524	unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
525	ktime_t fail_time;
526	unsigned stat;
527	int err;
528
529	/* Wait for the cpu to choose its way out */
530	if (!cpu_wait_death(cpu, 5)) {
531		pr_err("CPU%u: didn't offline\n", cpu);
532		return;
533	}
534
535	/*
536	 * Now wait for the CPU to actually offline. Without doing this that
537	 * offlining may race with one or more of:
538	 *
539	 *   - Onlining the CPU again.
540	 *   - Powering down the core if another VPE within it is offlined.
541	 *   - A sibling VPE entering a non-coherent state.
542	 *
543	 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
544	 * with which we could race, so do nothing.
545	 */
546	if (cpu_death == CPU_DEATH_POWER) {
547		/*
548		 * Wait for the core to enter a powered down or clock gated
549		 * state, the latter happening when a JTAG probe is connected
550		 * in which case the CPC will refuse to power down the core.
551		 */
552		fail_time = ktime_add_ms(ktime_get(), 2000);
553		do {
554			mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
555			mips_cpc_lock_other(core);
556			stat = read_cpc_co_stat_conf();
557			stat &= CPC_Cx_STAT_CONF_SEQSTATE;
558			stat >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
559			mips_cpc_unlock_other();
560			mips_cm_unlock_other();
561
562			if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 ||
563			    stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 ||
564			    stat == CPC_Cx_STAT_CONF_SEQSTATE_U2)
565				break;
566
567			/*
568			 * The core ought to have powered down, but didn't &
569			 * now we don't really know what state it's in. It's
570			 * likely that its _pwr_up pin has been wired to logic
571			 * 1 & it powered back up as soon as we powered it
572			 * down...
573			 *
574			 * The best we can do is warn the user & continue in
575			 * the hope that the core is doing nothing harmful &
576			 * might behave properly if we online it later.
577			 */
578			if (WARN(ktime_after(ktime_get(), fail_time),
579				 "CPU%u hasn't powered down, seq. state %u\n",
580				 cpu, stat))
581				break;
582		} while (1);
583
584		/* Indicate the core is powered off */
585		bitmap_clear(core_power, core, 1);
586	} else if (cpu_has_mipsmt) {
587		/*
588		 * Have a CPU with access to the offlined CPUs registers wait
589		 * for its TC to halt.
590		 */
591		err = smp_call_function_single(cpu_death_sibling,
592					       wait_for_sibling_halt,
593					       (void *)(unsigned long)cpu, 1);
594		if (err)
595			panic("Failed to call remote sibling CPU\n");
596	} else if (cpu_has_vp) {
597		do {
598			mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
599			stat = read_cpc_co_vp_running();
600			mips_cm_unlock_other();
601		} while (stat & (1 << vpe_id));
602	}
603}
604
605#endif /* CONFIG_HOTPLUG_CPU */
606
607static const struct plat_smp_ops cps_smp_ops = {
608	.smp_setup		= cps_smp_setup,
609	.prepare_cpus		= cps_prepare_cpus,
610	.boot_secondary		= cps_boot_secondary,
611	.init_secondary		= cps_init_secondary,
612	.smp_finish		= cps_smp_finish,
613	.send_ipi_single	= mips_smp_send_ipi_single,
614	.send_ipi_mask		= mips_smp_send_ipi_mask,
615#ifdef CONFIG_HOTPLUG_CPU
616	.cpu_disable		= cps_cpu_disable,
617	.cpu_die		= cps_cpu_die,
618#endif
619#ifdef CONFIG_KEXEC
620	.kexec_nonboot_cpu	= cps_kexec_nonboot_cpu,
621#endif
622};
623
624bool mips_cps_smp_in_use(void)
625{
626	extern const struct plat_smp_ops *mp_ops;
627	return mp_ops == &cps_smp_ops;
628}
629
630int register_cps_smp_ops(void)
631{
632	if (!mips_cm_present()) {
633		pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
634		return -ENODEV;
635	}
636
637	/* check we have a GIC - we need one for IPIs */
638	if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX)) {
639		pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
640		return -ENODEV;
641	}
642
643	register_smp_ops(&cps_smp_ops);
644	return 0;
645}
v3.15
 
  1/*
  2 * Copyright (C) 2013 Imagination Technologies
  3 * Author: Paul Burton <paul.burton@imgtec.com>
  4 *
  5 * This program is free software; you can redistribute it and/or modify it
  6 * under the terms of the GNU General Public License as published by the
  7 * Free Software Foundation;  either version 2 of the  License, or (at your
  8 * option) any later version.
  9 */
 10
 
 
 11#include <linux/io.h>
 12#include <linux/sched.h>
 
 13#include <linux/slab.h>
 14#include <linux/smp.h>
 15#include <linux/types.h>
 16
 17#include <asm/cacheflush.h>
 18#include <asm/gic.h>
 19#include <asm/mips-cm.h>
 20#include <asm/mips-cpc.h>
 21#include <asm/mips_mt.h>
 22#include <asm/mipsregs.h>
 
 
 23#include <asm/smp-cps.h>
 24#include <asm/time.h>
 25#include <asm/uasm.h>
 26
 
 27static DECLARE_BITMAP(core_power, NR_CPUS);
 28
 29struct boot_config mips_cps_bootcfg;
 30
 31static void init_core(void)
 32{
 33	unsigned int nvpes, t;
 34	u32 mvpconf0, vpeconf0, vpecontrol, tcstatus, tcbind, status;
 
 
 35
 36	if (!cpu_has_mipsmt)
 37		return;
 
 
 38
 39	/* Enter VPE configuration state */
 40	dvpe();
 41	set_c0_mvpcontrol(MVPCONTROL_VPC);
 42
 43	/* Retrieve the count of VPEs in this core */
 44	mvpconf0 = read_c0_mvpconf0();
 45	nvpes = ((mvpconf0 & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
 46	smp_num_siblings = nvpes;
 47
 48	for (t = 1; t < nvpes; t++) {
 49		/* Use a 1:1 mapping of TC index to VPE index */
 50		settc(t);
 51
 52		/* Bind 1 TC to this VPE */
 53		tcbind = read_tc_c0_tcbind();
 54		tcbind &= ~TCBIND_CURVPE;
 55		tcbind |= t << TCBIND_CURVPE_SHIFT;
 56		write_tc_c0_tcbind(tcbind);
 57
 58		/* Set exclusive TC, non-active, master */
 59		vpeconf0 = read_vpe_c0_vpeconf0();
 60		vpeconf0 &= ~(VPECONF0_XTC | VPECONF0_VPA);
 61		vpeconf0 |= t << VPECONF0_XTC_SHIFT;
 62		vpeconf0 |= VPECONF0_MVP;
 63		write_vpe_c0_vpeconf0(vpeconf0);
 64
 65		/* Declare TC non-active, non-allocatable & interrupt exempt */
 66		tcstatus = read_tc_c0_tcstatus();
 67		tcstatus &= ~(TCSTATUS_A | TCSTATUS_DA);
 68		tcstatus |= TCSTATUS_IXMT;
 69		write_tc_c0_tcstatus(tcstatus);
 70
 71		/* Halt the TC */
 72		write_tc_c0_tchalt(TCHALT_H);
 73
 74		/* Allow only 1 TC to execute */
 75		vpecontrol = read_vpe_c0_vpecontrol();
 76		vpecontrol &= ~VPECONTROL_TE;
 77		write_vpe_c0_vpecontrol(vpecontrol);
 78
 79		/* Copy (most of) Status from VPE 0 */
 80		status = read_c0_status();
 81		status &= ~(ST0_IM | ST0_IE | ST0_KSU);
 82		status |= ST0_CU0;
 83		write_vpe_c0_status(status);
 84
 85		/* Copy Config from VPE 0 */
 86		write_vpe_c0_config(read_c0_config());
 87		write_vpe_c0_config7(read_c0_config7());
 88
 89		/* Ensure no software interrupts are pending */
 90		write_vpe_c0_cause(0);
 91
 92		/* Sync Count */
 93		write_vpe_c0_count(read_c0_count());
 94	}
 95
 96	/* Leave VPE configuration state */
 97	clear_c0_mvpcontrol(MVPCONTROL_VPC);
 98}
 99
100static void __init cps_smp_setup(void)
101{
102	unsigned int ncores, nvpes, core_vpes;
103	int c, v;
104	u32 core_cfg, *entry_code;
105
106	/* Detect & record VPE topology */
107	ncores = mips_cm_numcores();
108	pr_info("VPE topology ");
109	for (c = nvpes = 0; c < ncores; c++) {
110		if (cpu_has_mipsmt && config_enabled(CONFIG_MIPS_MT_SMP)) {
111			write_gcr_cl_other(c << CM_GCR_Cx_OTHER_CORENUM_SHF);
112			core_cfg = read_gcr_co_config();
113			core_vpes = ((core_cfg & CM_GCR_Cx_CONFIG_PVPE_MSK) >>
114				     CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
115		} else {
116			core_vpes = 1;
117		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
119		pr_cont("%c%u", c ? ',' : '{', core_vpes);
120
121		for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
122			cpu_data[nvpes + v].core = c;
123#ifdef CONFIG_MIPS_MT_SMP
124			cpu_data[nvpes + v].vpe_id = v;
125#endif
126		}
127
128		nvpes += core_vpes;
129	}
130	pr_cont("} total %u\n", nvpes);
131
132	/* Indicate present CPUs (CPU being synonymous with VPE) */
133	for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
134		set_cpu_possible(v, true);
135		set_cpu_present(v, true);
136		__cpu_number_map[v] = v;
137		__cpu_logical_map[v] = v;
138	}
139
 
 
 
140	/* Core 0 is powered up (we're running on it) */
141	bitmap_set(core_power, 0, 1);
142
143	/* Disable MT - we only want to run 1 TC per VPE */
144	if (cpu_has_mipsmt)
145		dmt();
146
147	/* Initialise core 0 */
148	init_core();
149
150	/* Patch the start of mips_cps_core_entry to provide the CM base */
151	entry_code = (u32 *)&mips_cps_core_entry;
152	UASM_i_LA(&entry_code, 3, (long)mips_cm_base);
153
154	/* Make core 0 coherent with everything */
155	write_gcr_cl_coherence(0xff);
 
 
 
 
 
 
 
 
 
 
 
156}
157
158static void __init cps_prepare_cpus(unsigned int max_cpus)
159{
 
 
 
 
160	mips_mt_set_cpuoptions();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161}
162
163static void boot_core(struct boot_config *cfg)
164{
165	u32 access;
 
166
167	/* Select the appropriate core */
168	write_gcr_cl_other(cfg->core << CM_GCR_Cx_OTHER_CORENUM_SHF);
169
170	/* Set its reset vector */
171	write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
172
173	/* Ensure its coherency is disabled */
174	write_gcr_co_coherence(0);
175
 
 
 
176	/* Ensure the core can access the GCRs */
177	access = read_gcr_access();
178	access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + cfg->core);
179	write_gcr_access(access);
180
181	/* Copy cfg */
182	mips_cps_bootcfg = *cfg;
 
183
184	if (mips_cpc_present()) {
185		/* Select the appropriate core */
186		write_cpc_cl_other(cfg->core << CPC_Cx_OTHER_CORENUM_SHF);
 
 
 
 
 
 
 
 
187
188		/* Reset the core */
189		write_cpc_co_cmd(CPC_Cx_CMD_RESET);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190	} else {
191		/* Take the core out of reset */
192		write_gcr_co_reset_release(0);
193	}
194
 
 
195	/* The core is now powered up */
196	bitmap_set(core_power, cfg->core, 1);
197}
198
199static void boot_vpe(void *info)
200{
201	struct boot_config *cfg = info;
202	u32 tcstatus, vpeconf0;
203
204	/* Enter VPE configuration state */
205	dvpe();
206	set_c0_mvpcontrol(MVPCONTROL_VPC);
207
208	settc(cfg->vpe);
209
210	/* Set the TC restart PC */
211	write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
212
213	/* Activate the TC, allow interrupts */
214	tcstatus = read_tc_c0_tcstatus();
215	tcstatus &= ~TCSTATUS_IXMT;
216	tcstatus |= TCSTATUS_A;
217	write_tc_c0_tcstatus(tcstatus);
218
219	/* Clear the TC halt bit */
220	write_tc_c0_tchalt(0);
221
222	/* Activate the VPE */
223	vpeconf0 = read_vpe_c0_vpeconf0();
224	vpeconf0 |= VPECONF0_VPA;
225	write_vpe_c0_vpeconf0(vpeconf0);
226
227	/* Set the stack & global pointer registers */
228	write_tc_gpr_sp(cfg->sp);
229	write_tc_gpr_gp(cfg->gp);
230
231	/* Leave VPE configuration state */
232	clear_c0_mvpcontrol(MVPCONTROL_VPC);
233
234	/* Enable other VPEs to execute */
235	evpe(EVPE_ENABLE);
236}
237
238static void cps_boot_secondary(int cpu, struct task_struct *idle)
239{
240	struct boot_config cfg;
 
 
 
 
241	unsigned int remote;
242	int err;
243
244	cfg.core = cpu_data[cpu].core;
245	cfg.vpe = cpu_vpe_id(&cpu_data[cpu]);
246	cfg.pc = (unsigned long)&smp_bootstrap;
247	cfg.sp = __KSTK_TOS(idle);
248	cfg.gp = (unsigned long)task_thread_info(idle);
 
 
 
 
 
 
249
250	if (!test_bit(cfg.core, core_power)) {
251		/* Boot a VPE on a powered down core */
252		boot_core(&cfg);
253		return;
 
 
 
 
 
 
 
254	}
255
256	if (cfg.core != current_cpu_data.core) {
257		/* Boot a VPE on another powered up core */
258		for (remote = 0; remote < NR_CPUS; remote++) {
259			if (cpu_data[remote].core != cfg.core)
260				continue;
261			if (cpu_online(remote))
262				break;
263		}
264		BUG_ON(remote >= NR_CPUS);
 
 
 
 
265
266		err = smp_call_function_single(remote, boot_vpe, &cfg, 1);
 
267		if (err)
268			panic("Failed to call remote CPU\n");
269		return;
270	}
271
272	BUG_ON(!cpu_has_mipsmt);
273
274	/* Boot a VPE on this core */
275	boot_vpe(&cfg);
 
 
 
276}
277
278static void cps_init_secondary(void)
279{
280	/* Disable MT - we only want to run 1 TC per VPE */
281	if (cpu_has_mipsmt)
282		dmt();
283
284	/* TODO: revisit this assumption once hotplug is implemented */
285	if (cpu_vpe_id(&current_cpu_data) == 0)
286		init_core();
287
288	change_c0_status(ST0_IM, STATUSF_IP3 | STATUSF_IP4 |
289				 STATUSF_IP6 | STATUSF_IP7);
 
 
 
 
 
 
 
 
 
 
 
 
290}
291
292static void cps_smp_finish(void)
293{
294	write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
295
296#ifdef CONFIG_MIPS_MT_FPAFF
297	/* If we have an FPU, enroll ourselves in the FPU-full mask */
298	if (cpu_has_fpu)
299		cpu_set(smp_processor_id(), mt_fpu_cpumask);
300#endif /* CONFIG_MIPS_MT_FPAFF */
301
302	local_irq_enable();
303}
304
305static void cps_cpus_done(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
307}
308
309static struct plat_smp_ops cps_smp_ops = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310	.smp_setup		= cps_smp_setup,
311	.prepare_cpus		= cps_prepare_cpus,
312	.boot_secondary		= cps_boot_secondary,
313	.init_secondary		= cps_init_secondary,
314	.smp_finish		= cps_smp_finish,
315	.send_ipi_single	= gic_send_ipi_single,
316	.send_ipi_mask		= gic_send_ipi_mask,
317	.cpus_done		= cps_cpus_done,
 
 
 
 
 
 
318};
319
 
 
 
 
 
 
320int register_cps_smp_ops(void)
321{
322	if (!mips_cm_present()) {
323		pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
324		return -ENODEV;
325	}
326
327	/* check we have a GIC - we need one for IPIs */
328	if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
329		pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
330		return -ENODEV;
331	}
332
333	register_smp_ops(&cps_smp_ops);
334	return 0;
335}