Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
  1#include <linux/mm.h>
  2#include <linux/mmzone.h>
  3#include <linux/bootmem.h>
  4#include <linux/bit_spinlock.h>
  5#include <linux/page_cgroup.h>
  6#include <linux/hash.h>
  7#include <linux/slab.h>
  8#include <linux/memory.h>
  9#include <linux/vmalloc.h>
 10#include <linux/cgroup.h>
 11#include <linux/swapops.h>
 12#include <linux/kmemleak.h>
 13
 14static unsigned long total_usage;
 15
 16#if !defined(CONFIG_SPARSEMEM)
 17
 18
 19void __meminit pgdat_page_cgroup_init(struct pglist_data *pgdat)
 20{
 21	pgdat->node_page_cgroup = NULL;
 22}
 23
 24struct page_cgroup *lookup_page_cgroup(struct page *page)
 25{
 26	unsigned long pfn = page_to_pfn(page);
 27	unsigned long offset;
 28	struct page_cgroup *base;
 29
 30	base = NODE_DATA(page_to_nid(page))->node_page_cgroup;
 31#ifdef CONFIG_DEBUG_VM
 32	/*
 33	 * The sanity checks the page allocator does upon freeing a
 34	 * page can reach here before the page_cgroup arrays are
 35	 * allocated when feeding a range of pages to the allocator
 36	 * for the first time during bootup or memory hotplug.
 37	 */
 38	if (unlikely(!base))
 39		return NULL;
 40#endif
 41	offset = pfn - NODE_DATA(page_to_nid(page))->node_start_pfn;
 42	return base + offset;
 43}
 44
 45static int __init alloc_node_page_cgroup(int nid)
 46{
 47	struct page_cgroup *base;
 48	unsigned long table_size;
 49	unsigned long nr_pages;
 50
 51	nr_pages = NODE_DATA(nid)->node_spanned_pages;
 52	if (!nr_pages)
 53		return 0;
 54
 55	table_size = sizeof(struct page_cgroup) * nr_pages;
 56
 57	base = memblock_virt_alloc_try_nid_nopanic(
 58			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
 59			BOOTMEM_ALLOC_ACCESSIBLE, nid);
 60	if (!base)
 61		return -ENOMEM;
 62	NODE_DATA(nid)->node_page_cgroup = base;
 63	total_usage += table_size;
 64	return 0;
 65}
 66
 67void __init page_cgroup_init_flatmem(void)
 68{
 69
 70	int nid, fail;
 71
 72	if (mem_cgroup_disabled())
 73		return;
 74
 75	for_each_online_node(nid)  {
 76		fail = alloc_node_page_cgroup(nid);
 77		if (fail)
 78			goto fail;
 79	}
 80	printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage);
 81	printk(KERN_INFO "please try 'cgroup_disable=memory' option if you"
 82	" don't want memory cgroups\n");
 83	return;
 84fail:
 85	printk(KERN_CRIT "allocation of page_cgroup failed.\n");
 86	printk(KERN_CRIT "please try 'cgroup_disable=memory' boot option\n");
 87	panic("Out of memory");
 88}
 89
 90#else /* CONFIG_FLAT_NODE_MEM_MAP */
 91
 92struct page_cgroup *lookup_page_cgroup(struct page *page)
 93{
 94	unsigned long pfn = page_to_pfn(page);
 95	struct mem_section *section = __pfn_to_section(pfn);
 96#ifdef CONFIG_DEBUG_VM
 97	/*
 98	 * The sanity checks the page allocator does upon freeing a
 99	 * page can reach here before the page_cgroup arrays are
100	 * allocated when feeding a range of pages to the allocator
101	 * for the first time during bootup or memory hotplug.
102	 */
103	if (!section->page_cgroup)
104		return NULL;
105#endif
106	return section->page_cgroup + pfn;
107}
108
109static void *__meminit alloc_page_cgroup(size_t size, int nid)
110{
111	gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
112	void *addr = NULL;
113
114	addr = alloc_pages_exact_nid(nid, size, flags);
115	if (addr) {
116		kmemleak_alloc(addr, size, 1, flags);
117		return addr;
118	}
119
120	if (node_state(nid, N_HIGH_MEMORY))
121		addr = vzalloc_node(size, nid);
122	else
123		addr = vzalloc(size);
124
125	return addr;
126}
127
128static int __meminit init_section_page_cgroup(unsigned long pfn, int nid)
129{
130	struct mem_section *section;
131	struct page_cgroup *base;
132	unsigned long table_size;
133
134	section = __pfn_to_section(pfn);
135
136	if (section->page_cgroup)
137		return 0;
138
139	table_size = sizeof(struct page_cgroup) * PAGES_PER_SECTION;
140	base = alloc_page_cgroup(table_size, nid);
141
142	/*
143	 * The value stored in section->page_cgroup is (base - pfn)
144	 * and it does not point to the memory block allocated above,
145	 * causing kmemleak false positives.
146	 */
147	kmemleak_not_leak(base);
148
149	if (!base) {
150		printk(KERN_ERR "page cgroup allocation failure\n");
151		return -ENOMEM;
152	}
153
154	/*
155	 * The passed "pfn" may not be aligned to SECTION.  For the calculation
156	 * we need to apply a mask.
157	 */
158	pfn &= PAGE_SECTION_MASK;
159	section->page_cgroup = base - pfn;
160	total_usage += table_size;
161	return 0;
162}
163#ifdef CONFIG_MEMORY_HOTPLUG
164static void free_page_cgroup(void *addr)
165{
166	if (is_vmalloc_addr(addr)) {
167		vfree(addr);
168	} else {
169		struct page *page = virt_to_page(addr);
170		size_t table_size =
171			sizeof(struct page_cgroup) * PAGES_PER_SECTION;
172
173		BUG_ON(PageReserved(page));
174		free_pages_exact(addr, table_size);
175	}
176}
177
178static void __free_page_cgroup(unsigned long pfn)
179{
180	struct mem_section *ms;
181	struct page_cgroup *base;
182
183	ms = __pfn_to_section(pfn);
184	if (!ms || !ms->page_cgroup)
185		return;
186	base = ms->page_cgroup + pfn;
187	free_page_cgroup(base);
188	ms->page_cgroup = NULL;
189}
190
191static int __meminit online_page_cgroup(unsigned long start_pfn,
192				unsigned long nr_pages,
193				int nid)
194{
195	unsigned long start, end, pfn;
196	int fail = 0;
197
198	start = SECTION_ALIGN_DOWN(start_pfn);
199	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
200
201	if (nid == -1) {
202		/*
203		 * In this case, "nid" already exists and contains valid memory.
204		 * "start_pfn" passed to us is a pfn which is an arg for
205		 * online__pages(), and start_pfn should exist.
206		 */
207		nid = pfn_to_nid(start_pfn);
208		VM_BUG_ON(!node_state(nid, N_ONLINE));
209	}
210
211	for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
212		if (!pfn_present(pfn))
213			continue;
214		fail = init_section_page_cgroup(pfn, nid);
215	}
216	if (!fail)
217		return 0;
218
219	/* rollback */
220	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
221		__free_page_cgroup(pfn);
222
223	return -ENOMEM;
224}
225
226static int __meminit offline_page_cgroup(unsigned long start_pfn,
227				unsigned long nr_pages, int nid)
228{
229	unsigned long start, end, pfn;
230
231	start = SECTION_ALIGN_DOWN(start_pfn);
232	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
233
234	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
235		__free_page_cgroup(pfn);
236	return 0;
237
238}
239
240static int __meminit page_cgroup_callback(struct notifier_block *self,
241			       unsigned long action, void *arg)
242{
243	struct memory_notify *mn = arg;
244	int ret = 0;
245	switch (action) {
246	case MEM_GOING_ONLINE:
247		ret = online_page_cgroup(mn->start_pfn,
248				   mn->nr_pages, mn->status_change_nid);
249		break;
250	case MEM_OFFLINE:
251		offline_page_cgroup(mn->start_pfn,
252				mn->nr_pages, mn->status_change_nid);
253		break;
254	case MEM_CANCEL_ONLINE:
255		offline_page_cgroup(mn->start_pfn,
256				mn->nr_pages, mn->status_change_nid);
257		break;
258	case MEM_GOING_OFFLINE:
259		break;
260	case MEM_ONLINE:
261	case MEM_CANCEL_OFFLINE:
262		break;
263	}
264
265	return notifier_from_errno(ret);
266}
267
268#endif
269
270void __init page_cgroup_init(void)
271{
272	unsigned long pfn;
273	int nid;
274
275	if (mem_cgroup_disabled())
276		return;
277
278	for_each_node_state(nid, N_MEMORY) {
279		unsigned long start_pfn, end_pfn;
280
281		start_pfn = node_start_pfn(nid);
282		end_pfn = node_end_pfn(nid);
283		/*
284		 * start_pfn and end_pfn may not be aligned to SECTION and the
285		 * page->flags of out of node pages are not initialized.  So we
286		 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
287		 */
288		for (pfn = start_pfn;
289		     pfn < end_pfn;
290                     pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
291
292			if (!pfn_valid(pfn))
293				continue;
294			/*
295			 * Nodes's pfns can be overlapping.
296			 * We know some arch can have a nodes layout such as
297			 * -------------pfn-------------->
298			 * N0 | N1 | N2 | N0 | N1 | N2|....
299			 */
300			if (pfn_to_nid(pfn) != nid)
301				continue;
302			if (init_section_page_cgroup(pfn, nid))
303				goto oom;
304		}
305	}
306	hotplug_memory_notifier(page_cgroup_callback, 0);
307	printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage);
308	printk(KERN_INFO "please try 'cgroup_disable=memory' option if you "
309			 "don't want memory cgroups\n");
310	return;
311oom:
312	printk(KERN_CRIT "try 'cgroup_disable=memory' boot option\n");
313	panic("Out of memory");
314}
315
316void __meminit pgdat_page_cgroup_init(struct pglist_data *pgdat)
317{
318	return;
319}
320
321#endif
322
323
324#ifdef CONFIG_MEMCG_SWAP
325
326static DEFINE_MUTEX(swap_cgroup_mutex);
327struct swap_cgroup_ctrl {
328	struct page **map;
329	unsigned long length;
330	spinlock_t	lock;
331};
332
333static struct swap_cgroup_ctrl swap_cgroup_ctrl[MAX_SWAPFILES];
334
335struct swap_cgroup {
336	unsigned short		id;
337};
338#define SC_PER_PAGE	(PAGE_SIZE/sizeof(struct swap_cgroup))
339
340/*
341 * SwapCgroup implements "lookup" and "exchange" operations.
342 * In typical usage, this swap_cgroup is accessed via memcg's charge/uncharge
343 * against SwapCache. At swap_free(), this is accessed directly from swap.
344 *
345 * This means,
346 *  - we have no race in "exchange" when we're accessed via SwapCache because
347 *    SwapCache(and its swp_entry) is under lock.
348 *  - When called via swap_free(), there is no user of this entry and no race.
349 * Then, we don't need lock around "exchange".
350 *
351 * TODO: we can push these buffers out to HIGHMEM.
352 */
353
354/*
355 * allocate buffer for swap_cgroup.
356 */
357static int swap_cgroup_prepare(int type)
358{
359	struct page *page;
360	struct swap_cgroup_ctrl *ctrl;
361	unsigned long idx, max;
362
363	ctrl = &swap_cgroup_ctrl[type];
364
365	for (idx = 0; idx < ctrl->length; idx++) {
366		page = alloc_page(GFP_KERNEL | __GFP_ZERO);
367		if (!page)
368			goto not_enough_page;
369		ctrl->map[idx] = page;
370	}
371	return 0;
372not_enough_page:
373	max = idx;
374	for (idx = 0; idx < max; idx++)
375		__free_page(ctrl->map[idx]);
376
377	return -ENOMEM;
378}
379
380static struct swap_cgroup *lookup_swap_cgroup(swp_entry_t ent,
381					struct swap_cgroup_ctrl **ctrlp)
382{
383	pgoff_t offset = swp_offset(ent);
384	struct swap_cgroup_ctrl *ctrl;
385	struct page *mappage;
386	struct swap_cgroup *sc;
387
388	ctrl = &swap_cgroup_ctrl[swp_type(ent)];
389	if (ctrlp)
390		*ctrlp = ctrl;
391
392	mappage = ctrl->map[offset / SC_PER_PAGE];
393	sc = page_address(mappage);
394	return sc + offset % SC_PER_PAGE;
395}
396
397/**
398 * swap_cgroup_cmpxchg - cmpxchg mem_cgroup's id for this swp_entry.
399 * @ent: swap entry to be cmpxchged
400 * @old: old id
401 * @new: new id
402 *
403 * Returns old id at success, 0 at failure.
404 * (There is no mem_cgroup using 0 as its id)
405 */
406unsigned short swap_cgroup_cmpxchg(swp_entry_t ent,
407					unsigned short old, unsigned short new)
408{
409	struct swap_cgroup_ctrl *ctrl;
410	struct swap_cgroup *sc;
411	unsigned long flags;
412	unsigned short retval;
413
414	sc = lookup_swap_cgroup(ent, &ctrl);
415
416	spin_lock_irqsave(&ctrl->lock, flags);
417	retval = sc->id;
418	if (retval == old)
419		sc->id = new;
420	else
421		retval = 0;
422	spin_unlock_irqrestore(&ctrl->lock, flags);
423	return retval;
424}
425
426/**
427 * swap_cgroup_record - record mem_cgroup for this swp_entry.
428 * @ent: swap entry to be recorded into
429 * @id: mem_cgroup to be recorded
430 *
431 * Returns old value at success, 0 at failure.
432 * (Of course, old value can be 0.)
433 */
434unsigned short swap_cgroup_record(swp_entry_t ent, unsigned short id)
435{
436	struct swap_cgroup_ctrl *ctrl;
437	struct swap_cgroup *sc;
438	unsigned short old;
439	unsigned long flags;
440
441	sc = lookup_swap_cgroup(ent, &ctrl);
442
443	spin_lock_irqsave(&ctrl->lock, flags);
444	old = sc->id;
445	sc->id = id;
446	spin_unlock_irqrestore(&ctrl->lock, flags);
447
448	return old;
449}
450
451/**
452 * lookup_swap_cgroup_id - lookup mem_cgroup id tied to swap entry
453 * @ent: swap entry to be looked up.
454 *
455 * Returns ID of mem_cgroup at success. 0 at failure. (0 is invalid ID)
456 */
457unsigned short lookup_swap_cgroup_id(swp_entry_t ent)
458{
459	return lookup_swap_cgroup(ent, NULL)->id;
460}
461
462int swap_cgroup_swapon(int type, unsigned long max_pages)
463{
464	void *array;
465	unsigned long array_size;
466	unsigned long length;
467	struct swap_cgroup_ctrl *ctrl;
468
469	if (!do_swap_account)
470		return 0;
471
472	length = DIV_ROUND_UP(max_pages, SC_PER_PAGE);
473	array_size = length * sizeof(void *);
474
475	array = vzalloc(array_size);
476	if (!array)
477		goto nomem;
478
479	ctrl = &swap_cgroup_ctrl[type];
480	mutex_lock(&swap_cgroup_mutex);
481	ctrl->length = length;
482	ctrl->map = array;
483	spin_lock_init(&ctrl->lock);
484	if (swap_cgroup_prepare(type)) {
485		/* memory shortage */
486		ctrl->map = NULL;
487		ctrl->length = 0;
488		mutex_unlock(&swap_cgroup_mutex);
489		vfree(array);
490		goto nomem;
491	}
492	mutex_unlock(&swap_cgroup_mutex);
493
494	return 0;
495nomem:
496	printk(KERN_INFO "couldn't allocate enough memory for swap_cgroup.\n");
497	printk(KERN_INFO
498		"swap_cgroup can be disabled by swapaccount=0 boot option\n");
499	return -ENOMEM;
500}
501
502void swap_cgroup_swapoff(int type)
503{
504	struct page **map;
505	unsigned long i, length;
506	struct swap_cgroup_ctrl *ctrl;
507
508	if (!do_swap_account)
509		return;
510
511	mutex_lock(&swap_cgroup_mutex);
512	ctrl = &swap_cgroup_ctrl[type];
513	map = ctrl->map;
514	length = ctrl->length;
515	ctrl->map = NULL;
516	ctrl->length = 0;
517	mutex_unlock(&swap_cgroup_mutex);
518
519	if (map) {
520		for (i = 0; i < length; i++) {
521			struct page *page = map[i];
522			if (page)
523				__free_page(page);
524		}
525		vfree(map);
526	}
527}
528
529#endif