Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1/*
  2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
  3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
  4 *
  5 * This software is available to you under a choice of one of two
  6 * licenses.  You may choose to be licensed under the terms of the GNU
  7 * General Public License (GPL) Version 2, available from the file
  8 * COPYING in the main directory of this source tree, or the
  9 * OpenIB.org BSD license below:
 10 *
 11 *     Redistribution and use in source and binary forms, with or
 12 *     without modification, are permitted provided that the following
 13 *     conditions are met:
 14 *
 15 *      - Redistributions of source code must retain the above
 16 *        copyright notice, this list of conditions and the following
 17 *        disclaimer.
 18 *
 19 *      - Redistributions in binary form must reproduce the above
 20 *        copyright notice, this list of conditions and the following
 21 *        disclaimer in the documentation and/or other materials
 22 *        provided with the distribution.
 23 *
 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 31 * SOFTWARE.
 32 */
 33
 34#ifndef _TLS_OFFLOAD_H
 35#define _TLS_OFFLOAD_H
 36
 37#include <linux/types.h>
 38#include <asm/byteorder.h>
 39#include <linux/crypto.h>
 40#include <linux/socket.h>
 41#include <linux/tcp.h>
 42#include <linux/skmsg.h>
 43#include <linux/mutex.h>
 44#include <linux/netdevice.h>
 45#include <linux/rcupdate.h>
 46
 47#include <net/tcp.h>
 48#include <net/strparser.h>
 49#include <crypto/aead.h>
 50#include <uapi/linux/tls.h>
 51
 52
 53/* Maximum data size carried in a TLS record */
 54#define TLS_MAX_PAYLOAD_SIZE		((size_t)1 << 14)
 55
 56#define TLS_HEADER_SIZE			5
 57#define TLS_NONCE_OFFSET		TLS_HEADER_SIZE
 58
 59#define TLS_CRYPTO_INFO_READY(info)	((info)->cipher_type)
 60
 61#define TLS_RECORD_TYPE_DATA		0x17
 62
 63#define TLS_AAD_SPACE_SIZE		13
 64#define TLS_DEVICE_NAME_MAX		32
 65
 66#define MAX_IV_SIZE			16
 67#define TLS_MAX_REC_SEQ_SIZE		8
 68
 69/* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes.
 70 *
 71 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
 72 *
 73 * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
 74 * Hence b0 contains (3 - 1) = 2.
 75 */
 76#define TLS_AES_CCM_IV_B0_BYTE		2
 77
 78/*
 79 * This structure defines the routines for Inline TLS driver.
 80 * The following routines are optional and filled with a
 81 * null pointer if not defined.
 82 *
 83 * @name: Its the name of registered Inline tls device
 84 * @dev_list: Inline tls device list
 85 * int (*feature)(struct tls_device *device);
 86 *     Called to return Inline TLS driver capability
 87 *
 88 * int (*hash)(struct tls_device *device, struct sock *sk);
 89 *     This function sets Inline driver for listen and program
 90 *     device specific functioanlity as required
 91 *
 92 * void (*unhash)(struct tls_device *device, struct sock *sk);
 93 *     This function cleans listen state set by Inline TLS driver
 94 *
 95 * void (*release)(struct kref *kref);
 96 *     Release the registered device and allocated resources
 97 * @kref: Number of reference to tls_device
 98 */
 99struct tls_device {
100	char name[TLS_DEVICE_NAME_MAX];
101	struct list_head dev_list;
102	int  (*feature)(struct tls_device *device);
103	int  (*hash)(struct tls_device *device, struct sock *sk);
104	void (*unhash)(struct tls_device *device, struct sock *sk);
105	void (*release)(struct kref *kref);
106	struct kref kref;
107};
108
109enum {
110	TLS_BASE,
111	TLS_SW,
112	TLS_HW,
113	TLS_HW_RECORD,
114	TLS_NUM_CONFIG,
115};
116
117/* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
118 * allocated or mapped for each TLS record. After encryption, the records are
119 * stores in a linked list.
120 */
121struct tls_rec {
122	struct list_head list;
123	int tx_ready;
124	int tx_flags;
125	int inplace_crypto;
126
127	struct sk_msg msg_plaintext;
128	struct sk_msg msg_encrypted;
129
130	/* AAD | msg_plaintext.sg.data | sg_tag */
131	struct scatterlist sg_aead_in[2];
132	/* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
133	struct scatterlist sg_aead_out[2];
134
135	char content_type;
136	struct scatterlist sg_content_type;
137
138	char aad_space[TLS_AAD_SPACE_SIZE];
139	u8 iv_data[MAX_IV_SIZE];
140	struct aead_request aead_req;
141	u8 aead_req_ctx[];
142};
143
144struct tls_msg {
145	struct strp_msg rxm;
146	u8 control;
147};
148
149struct tx_work {
150	struct delayed_work work;
151	struct sock *sk;
152};
153
154struct tls_sw_context_tx {
155	struct crypto_aead *aead_send;
156	struct crypto_wait async_wait;
157	struct tx_work tx_work;
158	struct tls_rec *open_rec;
159	struct list_head tx_list;
160	atomic_t encrypt_pending;
161	int async_notify;
162	int async_capable;
163
164#define BIT_TX_SCHEDULED	0
165#define BIT_TX_CLOSING		1
166	unsigned long tx_bitmask;
167};
168
169struct tls_sw_context_rx {
170	struct crypto_aead *aead_recv;
171	struct crypto_wait async_wait;
172	struct strparser strp;
173	struct sk_buff_head rx_list;	/* list of decrypted 'data' records */
174	void (*saved_data_ready)(struct sock *sk);
175
176	struct sk_buff *recv_pkt;
177	u8 control;
178	int async_capable;
179	bool decrypted;
180	atomic_t decrypt_pending;
181	bool async_notify;
182};
183
184struct tls_record_info {
185	struct list_head list;
186	u32 end_seq;
187	int len;
188	int num_frags;
189	skb_frag_t frags[MAX_SKB_FRAGS];
190};
191
192struct tls_offload_context_tx {
193	struct crypto_aead *aead_send;
194	spinlock_t lock;	/* protects records list */
195	struct list_head records_list;
196	struct tls_record_info *open_record;
197	struct tls_record_info *retransmit_hint;
198	u64 hint_record_sn;
199	u64 unacked_record_sn;
200
201	struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
202	void (*sk_destruct)(struct sock *sk);
203	u8 driver_state[] __aligned(8);
204	/* The TLS layer reserves room for driver specific state
205	 * Currently the belief is that there is not enough
206	 * driver specific state to justify another layer of indirection
207	 */
208#define TLS_DRIVER_STATE_SIZE_TX	16
209};
210
211#define TLS_OFFLOAD_CONTEXT_SIZE_TX                                            \
212	(sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
213
214enum tls_context_flags {
215	TLS_RX_SYNC_RUNNING = 0,
216	/* Unlike RX where resync is driven entirely by the core in TX only
217	 * the driver knows when things went out of sync, so we need the flag
218	 * to be atomic.
219	 */
220	TLS_TX_SYNC_SCHED = 1,
221};
222
223struct cipher_context {
224	char *iv;
225	char *rec_seq;
226};
227
228union tls_crypto_context {
229	struct tls_crypto_info info;
230	union {
231		struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
232		struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
233	};
234};
235
236struct tls_prot_info {
237	u16 version;
238	u16 cipher_type;
239	u16 prepend_size;
240	u16 tag_size;
241	u16 overhead_size;
242	u16 iv_size;
243	u16 salt_size;
244	u16 rec_seq_size;
245	u16 aad_size;
246	u16 tail_size;
247};
248
249struct tls_context {
250	/* read-only cache line */
251	struct tls_prot_info prot_info;
252
253	u8 tx_conf:3;
254	u8 rx_conf:3;
255
256	int (*push_pending_record)(struct sock *sk, int flags);
257	void (*sk_write_space)(struct sock *sk);
258
259	void *priv_ctx_tx;
260	void *priv_ctx_rx;
261
262	struct net_device *netdev;
263
264	/* rw cache line */
265	struct cipher_context tx;
266	struct cipher_context rx;
267
268	struct scatterlist *partially_sent_record;
269	u16 partially_sent_offset;
270
271	bool in_tcp_sendpages;
272	bool pending_open_record_frags;
273
274	struct mutex tx_lock; /* protects partially_sent_* fields and
275			       * per-type TX fields
276			       */
277	unsigned long flags;
278
279	/* cache cold stuff */
280	struct proto *sk_proto;
281
282	void (*sk_destruct)(struct sock *sk);
283
284	union tls_crypto_context crypto_send;
285	union tls_crypto_context crypto_recv;
286
287	struct list_head list;
288	refcount_t refcount;
289	struct rcu_head rcu;
290};
291
292enum tls_offload_ctx_dir {
293	TLS_OFFLOAD_CTX_DIR_RX,
294	TLS_OFFLOAD_CTX_DIR_TX,
295};
296
297struct tlsdev_ops {
298	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
299			   enum tls_offload_ctx_dir direction,
300			   struct tls_crypto_info *crypto_info,
301			   u32 start_offload_tcp_sn);
302	void (*tls_dev_del)(struct net_device *netdev,
303			    struct tls_context *ctx,
304			    enum tls_offload_ctx_dir direction);
305	int (*tls_dev_resync)(struct net_device *netdev,
306			      struct sock *sk, u32 seq, u8 *rcd_sn,
307			      enum tls_offload_ctx_dir direction);
308};
309
310enum tls_offload_sync_type {
311	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
312	TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
313};
314
315#define TLS_DEVICE_RESYNC_NH_START_IVAL		2
316#define TLS_DEVICE_RESYNC_NH_MAX_IVAL		128
317
318struct tls_offload_context_rx {
319	/* sw must be the first member of tls_offload_context_rx */
320	struct tls_sw_context_rx sw;
321	enum tls_offload_sync_type resync_type;
322	/* this member is set regardless of resync_type, to avoid branches */
323	u8 resync_nh_reset:1;
324	/* CORE_NEXT_HINT-only member, but use the hole here */
325	u8 resync_nh_do_now:1;
326	union {
327		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
328		struct {
329			atomic64_t resync_req;
330		};
331		/* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
332		struct {
333			u32 decrypted_failed;
334			u32 decrypted_tgt;
335		} resync_nh;
336	};
337	u8 driver_state[] __aligned(8);
338	/* The TLS layer reserves room for driver specific state
339	 * Currently the belief is that there is not enough
340	 * driver specific state to justify another layer of indirection
341	 */
342#define TLS_DRIVER_STATE_SIZE_RX	8
343};
344
345#define TLS_OFFLOAD_CONTEXT_SIZE_RX					\
346	(sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
347
348void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
349int wait_on_pending_writer(struct sock *sk, long *timeo);
350int tls_sk_query(struct sock *sk, int optname, char __user *optval,
351		int __user *optlen);
352int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
353		  unsigned int optlen);
354
355int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
356void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
357void tls_sw_strparser_done(struct tls_context *tls_ctx);
358int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
359int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
360			   int offset, size_t size, int flags);
361int tls_sw_sendpage(struct sock *sk, struct page *page,
362		    int offset, size_t size, int flags);
363void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
364void tls_sw_release_resources_tx(struct sock *sk);
365void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
366void tls_sw_free_resources_rx(struct sock *sk);
367void tls_sw_release_resources_rx(struct sock *sk);
368void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
369int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
370		   int nonblock, int flags, int *addr_len);
371bool tls_sw_stream_read(const struct sock *sk);
372ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
373			   struct pipe_inode_info *pipe,
374			   size_t len, unsigned int flags);
375
376int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
377int tls_device_sendpage(struct sock *sk, struct page *page,
378			int offset, size_t size, int flags);
379int tls_tx_records(struct sock *sk, int flags);
380
381struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
382				       u32 seq, u64 *p_record_sn);
383
384static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
385{
386	return rec->len == 0;
387}
388
389static inline u32 tls_record_start_seq(struct tls_record_info *rec)
390{
391	return rec->end_seq - rec->len;
392}
393
394int tls_push_sg(struct sock *sk, struct tls_context *ctx,
395		struct scatterlist *sg, u16 first_offset,
396		int flags);
397int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
398			    int flags);
399bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
400
401static inline struct tls_msg *tls_msg(struct sk_buff *skb)
402{
403	return (struct tls_msg *)strp_msg(skb);
404}
405
406static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
407{
408	return !!ctx->partially_sent_record;
409}
410
411static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
412{
413	return tls_ctx->pending_open_record_frags;
414}
415
416static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
417{
418	struct tls_rec *rec;
419
420	rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
421	if (!rec)
422		return false;
423
424	return READ_ONCE(rec->tx_ready);
425}
426
427static inline u16 tls_user_config(struct tls_context *ctx, bool tx)
428{
429	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
430
431	switch (config) {
432	case TLS_BASE:
433		return TLS_CONF_BASE;
434	case TLS_SW:
435		return TLS_CONF_SW;
436	case TLS_HW:
437		return TLS_CONF_HW;
438	case TLS_HW_RECORD:
439		return TLS_CONF_HW_RECORD;
440	}
441	return 0;
442}
443
444struct sk_buff *
445tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
446		      struct sk_buff *skb);
447
448static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
449{
450#ifdef CONFIG_SOCK_VALIDATE_XMIT
451	return sk_fullsock(sk) &&
452	       (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
453	       &tls_validate_xmit_skb);
454#else
455	return false;
456#endif
457}
458
459static inline void tls_err_abort(struct sock *sk, int err)
460{
461	sk->sk_err = err;
462	sk->sk_error_report(sk);
463}
464
465static inline bool tls_bigint_increment(unsigned char *seq, int len)
466{
467	int i;
468
469	for (i = len - 1; i >= 0; i--) {
470		++seq[i];
471		if (seq[i] != 0)
472			break;
473	}
474
475	return (i == -1);
476}
477
478static inline struct tls_context *tls_get_ctx(const struct sock *sk)
479{
480	struct inet_connection_sock *icsk = inet_csk(sk);
481
482	/* Use RCU on icsk_ulp_data only for sock diag code,
483	 * TLS data path doesn't need rcu_dereference().
484	 */
485	return (__force void *)icsk->icsk_ulp_data;
486}
487
488static inline void tls_advance_record_sn(struct sock *sk,
489					 struct tls_prot_info *prot,
490					 struct cipher_context *ctx)
491{
492	if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
493		tls_err_abort(sk, EBADMSG);
494
495	if (prot->version != TLS_1_3_VERSION)
496		tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
497				     prot->iv_size);
498}
499
500static inline void tls_fill_prepend(struct tls_context *ctx,
501			     char *buf,
502			     size_t plaintext_len,
503			     unsigned char record_type,
504			     int version)
505{
506	struct tls_prot_info *prot = &ctx->prot_info;
507	size_t pkt_len, iv_size = prot->iv_size;
508
509	pkt_len = plaintext_len + prot->tag_size;
510	if (version != TLS_1_3_VERSION) {
511		pkt_len += iv_size;
512
513		memcpy(buf + TLS_NONCE_OFFSET,
514		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size);
515	}
516
517	/* we cover nonce explicit here as well, so buf should be of
518	 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
519	 */
520	buf[0] = version == TLS_1_3_VERSION ?
521		   TLS_RECORD_TYPE_DATA : record_type;
522	/* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
523	buf[1] = TLS_1_2_VERSION_MINOR;
524	buf[2] = TLS_1_2_VERSION_MAJOR;
525	/* we can use IV for nonce explicit according to spec */
526	buf[3] = pkt_len >> 8;
527	buf[4] = pkt_len & 0xFF;
528}
529
530static inline void tls_make_aad(char *buf,
531				size_t size,
532				char *record_sequence,
533				int record_sequence_size,
534				unsigned char record_type,
535				int version)
536{
537	if (version != TLS_1_3_VERSION) {
538		memcpy(buf, record_sequence, record_sequence_size);
539		buf += 8;
540	} else {
541		size += TLS_CIPHER_AES_GCM_128_TAG_SIZE;
542	}
543
544	buf[0] = version == TLS_1_3_VERSION ?
545		  TLS_RECORD_TYPE_DATA : record_type;
546	buf[1] = TLS_1_2_VERSION_MAJOR;
547	buf[2] = TLS_1_2_VERSION_MINOR;
548	buf[3] = size >> 8;
549	buf[4] = size & 0xFF;
550}
551
552static inline void xor_iv_with_seq(int version, char *iv, char *seq)
553{
554	int i;
555
556	if (version == TLS_1_3_VERSION) {
557		for (i = 0; i < 8; i++)
558			iv[i + 4] ^= seq[i];
559	}
560}
561
562
563static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
564		const struct tls_context *tls_ctx)
565{
566	return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
567}
568
569static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
570		const struct tls_context *tls_ctx)
571{
572	return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
573}
574
575static inline struct tls_offload_context_tx *
576tls_offload_ctx_tx(const struct tls_context *tls_ctx)
577{
578	return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
579}
580
581static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
582{
583	struct tls_context *ctx = tls_get_ctx(sk);
584
585	if (!ctx)
586		return false;
587	return !!tls_sw_ctx_tx(ctx);
588}
589
590void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
591void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
592
593static inline struct tls_offload_context_rx *
594tls_offload_ctx_rx(const struct tls_context *tls_ctx)
595{
596	return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
597}
598
599#if IS_ENABLED(CONFIG_TLS_DEVICE)
600static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
601				     enum tls_offload_ctx_dir direction)
602{
603	if (direction == TLS_OFFLOAD_CTX_DIR_TX)
604		return tls_offload_ctx_tx(tls_ctx)->driver_state;
605	else
606		return tls_offload_ctx_rx(tls_ctx)->driver_state;
607}
608
609static inline void *
610tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
611{
612	return __tls_driver_ctx(tls_get_ctx(sk), direction);
613}
614#endif
615
616/* The TLS context is valid until sk_destruct is called */
617static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
618{
619	struct tls_context *tls_ctx = tls_get_ctx(sk);
620	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
621
622	atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | 1);
623}
624
625static inline void
626tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
627{
628	struct tls_context *tls_ctx = tls_get_ctx(sk);
629
630	tls_offload_ctx_rx(tls_ctx)->resync_type = type;
631}
632
633static inline void tls_offload_tx_resync_request(struct sock *sk)
634{
635	struct tls_context *tls_ctx = tls_get_ctx(sk);
636
637	WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
638}
639
640/* Driver's seq tracking has to be disabled until resync succeeded */
641static inline bool tls_offload_tx_resync_pending(struct sock *sk)
642{
643	struct tls_context *tls_ctx = tls_get_ctx(sk);
644	bool ret;
645
646	ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
647	smp_mb__after_atomic();
648	return ret;
649}
650
651int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
652		      unsigned char *record_type);
653void tls_register_device(struct tls_device *device);
654void tls_unregister_device(struct tls_device *device);
655int decrypt_skb(struct sock *sk, struct sk_buff *skb,
656		struct scatterlist *sgout);
657struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
658
659struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
660				      struct net_device *dev,
661				      struct sk_buff *skb);
662
663int tls_sw_fallback_init(struct sock *sk,
664			 struct tls_offload_context_tx *offload_ctx,
665			 struct tls_crypto_info *crypto_info);
666
667#ifdef CONFIG_TLS_DEVICE
668void tls_device_init(void);
669void tls_device_cleanup(void);
670int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
671void tls_device_free_resources_tx(struct sock *sk);
672int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
673void tls_device_offload_cleanup_rx(struct sock *sk);
674void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
675int tls_device_decrypted(struct sock *sk, struct sk_buff *skb);
676#else
677static inline void tls_device_init(void) {}
678static inline void tls_device_cleanup(void) {}
679
680static inline int
681tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
682{
683	return -EOPNOTSUPP;
684}
685
686static inline void tls_device_free_resources_tx(struct sock *sk) {}
687
688static inline int
689tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
690{
691	return -EOPNOTSUPP;
692}
693
694static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
695static inline void
696tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
697
698static inline int tls_device_decrypted(struct sock *sk, struct sk_buff *skb)
699{
700	return 0;
701}
702#endif
703#endif /* _TLS_OFFLOAD_H */