Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include "xfs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
 
  12#include "xfs_sb.h"
 
  13#include "xfs_mount.h"
 
  14#include "xfs_inode.h"
  15#include "xfs_btree.h"
  16#include "xfs_bmap.h"
  17#include "xfs_alloc.h"
 
  18#include "xfs_fsops.h"
  19#include "xfs_trans.h"
  20#include "xfs_buf_item.h"
  21#include "xfs_log.h"
  22#include "xfs_log_priv.h"
 
  23#include "xfs_dir2.h"
  24#include "xfs_extfree_item.h"
  25#include "xfs_mru_cache.h"
  26#include "xfs_inode_item.h"
  27#include "xfs_icache.h"
  28#include "xfs_trace.h"
  29#include "xfs_icreate_item.h"
 
  30#include "xfs_filestream.h"
  31#include "xfs_quota.h"
  32#include "xfs_sysfs.h"
  33#include "xfs_ondisk.h"
  34#include "xfs_rmap_item.h"
  35#include "xfs_refcount_item.h"
  36#include "xfs_bmap_item.h"
  37#include "xfs_reflink.h"
  38
  39#include <linux/magic.h>
 
 
 
 
 
 
 
  40#include <linux/parser.h>
  41
  42static const struct super_operations xfs_super_operations;
  43struct bio_set xfs_ioend_bioset;
 
  44
  45static struct kset *xfs_kset;		/* top-level xfs sysfs dir */
  46#ifdef DEBUG
  47static struct xfs_kobj xfs_dbg_kobj;	/* global debug sysfs attrs */
  48#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  49
  50/*
  51 * Table driven mount option parser.
 
 
 
  52 */
  53enum {
  54	Opt_logbufs, Opt_logbsize, Opt_logdev, Opt_rtdev, Opt_biosize,
  55	Opt_wsync, Opt_noalign, Opt_swalloc, Opt_sunit, Opt_swidth, Opt_nouuid,
  56	Opt_grpid, Opt_nogrpid, Opt_bsdgroups, Opt_sysvgroups,
  57	Opt_allocsize, Opt_norecovery, Opt_inode64, Opt_inode32, Opt_ikeep,
  58	Opt_noikeep, Opt_largeio, Opt_nolargeio, Opt_attr2, Opt_noattr2,
  59	Opt_filestreams, Opt_quota, Opt_noquota, Opt_usrquota, Opt_grpquota,
  60	Opt_prjquota, Opt_uquota, Opt_gquota, Opt_pquota,
  61	Opt_uqnoenforce, Opt_gqnoenforce, Opt_pqnoenforce, Opt_qnoenforce,
  62	Opt_discard, Opt_nodiscard, Opt_dax, Opt_err,
  63};
  64
  65static const match_table_t tokens = {
  66	{Opt_logbufs,	"logbufs=%u"},	/* number of XFS log buffers */
  67	{Opt_logbsize,	"logbsize=%s"},	/* size of XFS log buffers */
  68	{Opt_logdev,	"logdev=%s"},	/* log device */
  69	{Opt_rtdev,	"rtdev=%s"},	/* realtime I/O device */
  70	{Opt_biosize,	"biosize=%u"},	/* log2 of preferred buffered io size */
  71	{Opt_wsync,	"wsync"},	/* safe-mode nfs compatible mount */
  72	{Opt_noalign,	"noalign"},	/* turn off stripe alignment */
  73	{Opt_swalloc,	"swalloc"},	/* turn on stripe width allocation */
  74	{Opt_sunit,	"sunit=%u"},	/* data volume stripe unit */
  75	{Opt_swidth,	"swidth=%u"},	/* data volume stripe width */
  76	{Opt_nouuid,	"nouuid"},	/* ignore filesystem UUID */
  77	{Opt_grpid,	"grpid"},	/* group-ID from parent directory */
  78	{Opt_nogrpid,	"nogrpid"},	/* group-ID from current process */
  79	{Opt_bsdgroups,	"bsdgroups"},	/* group-ID from parent directory */
  80	{Opt_sysvgroups,"sysvgroups"},	/* group-ID from current process */
  81	{Opt_allocsize,	"allocsize=%s"},/* preferred allocation size */
  82	{Opt_norecovery,"norecovery"},	/* don't run XFS recovery */
  83	{Opt_inode64,	"inode64"},	/* inodes can be allocated anywhere */
  84	{Opt_inode32,   "inode32"},	/* inode allocation limited to
  85					 * XFS_MAXINUMBER_32 */
  86	{Opt_ikeep,	"ikeep"},	/* do not free empty inode clusters */
  87	{Opt_noikeep,	"noikeep"},	/* free empty inode clusters */
  88	{Opt_largeio,	"largeio"},	/* report large I/O sizes in stat() */
  89	{Opt_nolargeio,	"nolargeio"},	/* do not report large I/O sizes
  90					 * in stat(). */
  91	{Opt_attr2,	"attr2"},	/* do use attr2 attribute format */
  92	{Opt_noattr2,	"noattr2"},	/* do not use attr2 attribute format */
  93	{Opt_filestreams,"filestreams"},/* use filestreams allocator */
  94	{Opt_quota,	"quota"},	/* disk quotas (user) */
  95	{Opt_noquota,	"noquota"},	/* no quotas */
  96	{Opt_usrquota,	"usrquota"},	/* user quota enabled */
  97	{Opt_grpquota,	"grpquota"},	/* group quota enabled */
  98	{Opt_prjquota,	"prjquota"},	/* project quota enabled */
  99	{Opt_uquota,	"uquota"},	/* user quota (IRIX variant) */
 100	{Opt_gquota,	"gquota"},	/* group quota (IRIX variant) */
 101	{Opt_pquota,	"pquota"},	/* project quota (IRIX variant) */
 102	{Opt_uqnoenforce,"uqnoenforce"},/* user quota limit enforcement */
 103	{Opt_gqnoenforce,"gqnoenforce"},/* group quota limit enforcement */
 104	{Opt_pqnoenforce,"pqnoenforce"},/* project quota limit enforcement */
 105	{Opt_qnoenforce, "qnoenforce"},	/* same as uqnoenforce */
 106	{Opt_discard,	"discard"},	/* Discard unused blocks */
 107	{Opt_nodiscard,	"nodiscard"},	/* Do not discard unused blocks */
 108	{Opt_dax,	"dax"},		/* Enable direct access to bdev pages */
 109	{Opt_err,	NULL},
 110};
 111
 112
 113STATIC int
 114suffix_kstrtoint(const substring_t *s, unsigned int base, int *res)
 115{
 116	int	last, shift_left_factor = 0, _res;
 117	char	*value;
 118	int	ret = 0;
 119
 120	value = match_strdup(s);
 121	if (!value)
 122		return -ENOMEM;
 123
 124	last = strlen(value) - 1;
 125	if (value[last] == 'K' || value[last] == 'k') {
 126		shift_left_factor = 10;
 127		value[last] = '\0';
 128	}
 129	if (value[last] == 'M' || value[last] == 'm') {
 130		shift_left_factor = 20;
 131		value[last] = '\0';
 132	}
 133	if (value[last] == 'G' || value[last] == 'g') {
 134		shift_left_factor = 30;
 135		value[last] = '\0';
 136	}
 137
 138	if (kstrtoint(value, base, &_res))
 139		ret = -EINVAL;
 140	kfree(value);
 141	*res = _res << shift_left_factor;
 142	return ret;
 143}
 144
 145/*
 146 * This function fills in xfs_mount_t fields based on mount args.
 147 * Note: the superblock has _not_ yet been read in.
 148 *
 149 * Note that this function leaks the various device name allocations on
 150 * failure.  The caller takes care of them.
 151 *
 152 * *sb is const because this is also used to test options on the remount
 153 * path, and we don't want this to have any side effects at remount time.
 154 * Today this function does not change *sb, but just to future-proof...
 155 */
 156STATIC int
 157xfs_parseargs(
 158	struct xfs_mount	*mp,
 159	char			*options)
 160{
 161	const struct super_block *sb = mp->m_super;
 162	char			*p;
 163	substring_t		args[MAX_OPT_ARGS];
 164	int			dsunit = 0;
 165	int			dswidth = 0;
 166	int			iosize = 0;
 167	uint8_t			iosizelog = 0;
 168
 169	/*
 170	 * set up the mount name first so all the errors will refer to the
 171	 * correct device.
 172	 */
 173	mp->m_fsname = kstrndup(sb->s_id, MAXNAMELEN, GFP_KERNEL);
 174	if (!mp->m_fsname)
 175		return -ENOMEM;
 176	mp->m_fsname_len = strlen(mp->m_fsname) + 1;
 177
 178	/*
 179	 * Copy binary VFS mount flags we are interested in.
 180	 */
 181	if (sb_rdonly(sb))
 182		mp->m_flags |= XFS_MOUNT_RDONLY;
 183	if (sb->s_flags & SB_DIRSYNC)
 184		mp->m_flags |= XFS_MOUNT_DIRSYNC;
 185	if (sb->s_flags & SB_SYNCHRONOUS)
 186		mp->m_flags |= XFS_MOUNT_WSYNC;
 187
 188	/*
 189	 * Set some default flags that could be cleared by the mount option
 190	 * parsing.
 191	 */
 
 192	mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
 
 
 
 193
 194	/*
 195	 * These can be overridden by the mount option parsing.
 196	 */
 197	mp->m_logbufs = -1;
 198	mp->m_logbsize = -1;
 199
 200	if (!options)
 201		goto done;
 202
 203	while ((p = strsep(&options, ",")) != NULL) {
 204		int		token;
 205
 206		if (!*p)
 207			continue;
 
 
 208
 209		token = match_token(p, tokens, args);
 210		switch (token) {
 211		case Opt_logbufs:
 212			if (match_int(args, &mp->m_logbufs))
 213				return -EINVAL;
 214			break;
 215		case Opt_logbsize:
 216			if (suffix_kstrtoint(args, 10, &mp->m_logbsize))
 217				return -EINVAL;
 218			break;
 219		case Opt_logdev:
 220			kfree(mp->m_logname);
 221			mp->m_logname = match_strdup(args);
 
 
 
 
 
 
 
 
 
 
 222			if (!mp->m_logname)
 223				return -ENOMEM;
 224			break;
 225		case Opt_rtdev:
 226			kfree(mp->m_rtname);
 227			mp->m_rtname = match_strdup(args);
 
 
 
 
 
 
 
 228			if (!mp->m_rtname)
 229				return -ENOMEM;
 230			break;
 231		case Opt_allocsize:
 232		case Opt_biosize:
 233			if (suffix_kstrtoint(args, 10, &iosize))
 234				return -EINVAL;
 
 
 
 235			iosizelog = ffs(iosize) - 1;
 236			break;
 237		case Opt_grpid:
 238		case Opt_bsdgroups:
 
 
 
 
 
 
 
 
 239			mp->m_flags |= XFS_MOUNT_GRPID;
 240			break;
 241		case Opt_nogrpid:
 242		case Opt_sysvgroups:
 243			mp->m_flags &= ~XFS_MOUNT_GRPID;
 244			break;
 245		case Opt_wsync:
 246			mp->m_flags |= XFS_MOUNT_WSYNC;
 247			break;
 248		case Opt_norecovery:
 249			mp->m_flags |= XFS_MOUNT_NORECOVERY;
 250			break;
 251		case Opt_noalign:
 252			mp->m_flags |= XFS_MOUNT_NOALIGN;
 253			break;
 254		case Opt_swalloc:
 255			mp->m_flags |= XFS_MOUNT_SWALLOC;
 256			break;
 257		case Opt_sunit:
 258			if (match_int(args, &dsunit))
 259				return -EINVAL;
 260			break;
 261		case Opt_swidth:
 262			if (match_int(args, &dswidth))
 263				return -EINVAL;
 264			break;
 265		case Opt_inode32:
 
 
 
 
 
 
 
 266			mp->m_flags |= XFS_MOUNT_SMALL_INUMS;
 267			break;
 268		case Opt_inode64:
 269			mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS;
 270			break;
 271		case Opt_nouuid:
 
 
 
 
 272			mp->m_flags |= XFS_MOUNT_NOUUID;
 273			break;
 274		case Opt_ikeep:
 
 
 
 275			mp->m_flags |= XFS_MOUNT_IKEEP;
 276			break;
 277		case Opt_noikeep:
 278			mp->m_flags &= ~XFS_MOUNT_IKEEP;
 279			break;
 280		case Opt_largeio:
 281			mp->m_flags &= ~XFS_MOUNT_COMPAT_IOSIZE;
 282			break;
 283		case Opt_nolargeio:
 284			mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
 285			break;
 286		case Opt_attr2:
 287			mp->m_flags |= XFS_MOUNT_ATTR2;
 288			break;
 289		case Opt_noattr2:
 290			mp->m_flags &= ~XFS_MOUNT_ATTR2;
 291			mp->m_flags |= XFS_MOUNT_NOATTR2;
 292			break;
 293		case Opt_filestreams:
 294			mp->m_flags |= XFS_MOUNT_FILESTREAMS;
 295			break;
 296		case Opt_noquota:
 297			mp->m_qflags &= ~XFS_ALL_QUOTA_ACCT;
 298			mp->m_qflags &= ~XFS_ALL_QUOTA_ENFD;
 299			mp->m_qflags &= ~XFS_ALL_QUOTA_ACTIVE;
 300			break;
 301		case Opt_quota:
 302		case Opt_uquota:
 303		case Opt_usrquota:
 304			mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE |
 305					 XFS_UQUOTA_ENFD);
 306			break;
 307		case Opt_qnoenforce:
 308		case Opt_uqnoenforce:
 309			mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE);
 310			mp->m_qflags &= ~XFS_UQUOTA_ENFD;
 311			break;
 312		case Opt_pquota:
 313		case Opt_prjquota:
 314			mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE |
 315					 XFS_PQUOTA_ENFD);
 316			break;
 317		case Opt_pqnoenforce:
 318			mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE);
 319			mp->m_qflags &= ~XFS_PQUOTA_ENFD;
 320			break;
 321		case Opt_gquota:
 322		case Opt_grpquota:
 323			mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE |
 324					 XFS_GQUOTA_ENFD);
 325			break;
 326		case Opt_gqnoenforce:
 327			mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE);
 328			mp->m_qflags &= ~XFS_GQUOTA_ENFD;
 329			break;
 330		case Opt_discard:
 
 
 
 
 
 331			mp->m_flags |= XFS_MOUNT_DISCARD;
 332			break;
 333		case Opt_nodiscard:
 334			mp->m_flags &= ~XFS_MOUNT_DISCARD;
 335			break;
 336#ifdef CONFIG_FS_DAX
 337		case Opt_dax:
 338			mp->m_flags |= XFS_MOUNT_DAX;
 339			break;
 340#endif
 341		default:
 342			xfs_warn(mp, "unknown mount option [%s].", p);
 343			return -EINVAL;
 
 
 
 
 
 
 344		}
 345	}
 346
 347	/*
 348	 * no recovery flag requires a read-only mount
 349	 */
 350	if ((mp->m_flags & XFS_MOUNT_NORECOVERY) &&
 351	    !(mp->m_flags & XFS_MOUNT_RDONLY)) {
 352		xfs_warn(mp, "no-recovery mounts must be read-only.");
 353		return -EINVAL;
 354	}
 355
 356	if ((mp->m_flags & XFS_MOUNT_NOALIGN) && (dsunit || dswidth)) {
 357		xfs_warn(mp,
 358	"sunit and swidth options incompatible with the noalign option");
 359		return -EINVAL;
 360	}
 361
 362#ifndef CONFIG_XFS_QUOTA
 363	if (XFS_IS_QUOTA_RUNNING(mp)) {
 364		xfs_warn(mp, "quota support not available in this kernel.");
 365		return -EINVAL;
 366	}
 367#endif
 368
 369	if ((dsunit && !dswidth) || (!dsunit && dswidth)) {
 370		xfs_warn(mp, "sunit and swidth must be specified together");
 371		return -EINVAL;
 372	}
 373
 374	if (dsunit && (dswidth % dsunit != 0)) {
 375		xfs_warn(mp,
 376	"stripe width (%d) must be a multiple of the stripe unit (%d)",
 377			dswidth, dsunit);
 378		return -EINVAL;
 379	}
 380
 381done:
 382	if (dsunit && !(mp->m_flags & XFS_MOUNT_NOALIGN)) {
 383		/*
 384		 * At this point the superblock has not been read
 385		 * in, therefore we do not know the block size.
 386		 * Before the mount call ends we will convert
 387		 * these to FSBs.
 388		 */
 389		mp->m_dalign = dsunit;
 390		mp->m_swidth = dswidth;
 391	}
 392
 393	if (mp->m_logbufs != -1 &&
 394	    mp->m_logbufs != 0 &&
 395	    (mp->m_logbufs < XLOG_MIN_ICLOGS ||
 396	     mp->m_logbufs > XLOG_MAX_ICLOGS)) {
 397		xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]",
 398			mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS);
 399		return -EINVAL;
 400	}
 401	if (mp->m_logbsize != -1 &&
 402	    mp->m_logbsize !=  0 &&
 403	    (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE ||
 404	     mp->m_logbsize > XLOG_MAX_RECORD_BSIZE ||
 405	     !is_power_of_2(mp->m_logbsize))) {
 406		xfs_warn(mp,
 407			"invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]",
 408			mp->m_logbsize);
 409		return -EINVAL;
 410	}
 411
 412	if (iosizelog) {
 413		if (iosizelog > XFS_MAX_IO_LOG ||
 414		    iosizelog < XFS_MIN_IO_LOG) {
 415			xfs_warn(mp, "invalid log iosize: %d [not %d-%d]",
 416				iosizelog, XFS_MIN_IO_LOG,
 417				XFS_MAX_IO_LOG);
 418			return -EINVAL;
 419		}
 420
 421		mp->m_flags |= XFS_MOUNT_DFLT_IOSIZE;
 422		mp->m_readio_log = iosizelog;
 423		mp->m_writeio_log = iosizelog;
 424	}
 425
 426	return 0;
 427}
 428
 429struct proc_xfs_info {
 430	uint64_t	flag;
 431	char		*str;
 432};
 433
 434STATIC void
 435xfs_showargs(
 436	struct xfs_mount	*mp,
 437	struct seq_file		*m)
 438{
 439	static struct proc_xfs_info xfs_info_set[] = {
 440		/* the few simple ones we can get from the mount struct */
 441		{ XFS_MOUNT_IKEEP,		",ikeep" },
 442		{ XFS_MOUNT_WSYNC,		",wsync" },
 443		{ XFS_MOUNT_NOALIGN,		",noalign" },
 444		{ XFS_MOUNT_SWALLOC,		",swalloc" },
 445		{ XFS_MOUNT_NOUUID,		",nouuid" },
 446		{ XFS_MOUNT_NORECOVERY,		",norecovery" },
 447		{ XFS_MOUNT_ATTR2,		",attr2" },
 448		{ XFS_MOUNT_FILESTREAMS,	",filestreams" },
 449		{ XFS_MOUNT_GRPID,		",grpid" },
 450		{ XFS_MOUNT_DISCARD,		",discard" },
 451		{ XFS_MOUNT_SMALL_INUMS,	",inode32" },
 452		{ XFS_MOUNT_DAX,		",dax" },
 453		{ 0, NULL }
 454	};
 455	static struct proc_xfs_info xfs_info_unset[] = {
 456		/* the few simple ones we can get from the mount struct */
 457		{ XFS_MOUNT_COMPAT_IOSIZE,	",largeio" },
 458		{ XFS_MOUNT_SMALL_INUMS,	",inode64" },
 
 459		{ 0, NULL }
 460	};
 461	struct proc_xfs_info	*xfs_infop;
 462
 463	for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) {
 464		if (mp->m_flags & xfs_infop->flag)
 465			seq_puts(m, xfs_infop->str);
 466	}
 467	for (xfs_infop = xfs_info_unset; xfs_infop->flag; xfs_infop++) {
 468		if (!(mp->m_flags & xfs_infop->flag))
 469			seq_puts(m, xfs_infop->str);
 470	}
 471
 472	if (mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)
 473		seq_printf(m, ",allocsize=%dk",
 474				(int)(1 << mp->m_writeio_log) >> 10);
 475
 476	if (mp->m_logbufs > 0)
 477		seq_printf(m, ",logbufs=%d", mp->m_logbufs);
 478	if (mp->m_logbsize > 0)
 479		seq_printf(m, ",logbsize=%dk", mp->m_logbsize >> 10);
 480
 481	if (mp->m_logname)
 482		seq_show_option(m, "logdev", mp->m_logname);
 483	if (mp->m_rtname)
 484		seq_show_option(m, "rtdev", mp->m_rtname);
 485
 486	if (mp->m_dalign > 0)
 487		seq_printf(m, ",sunit=%d",
 488				(int)XFS_FSB_TO_BB(mp, mp->m_dalign));
 489	if (mp->m_swidth > 0)
 490		seq_printf(m, ",swidth=%d",
 491				(int)XFS_FSB_TO_BB(mp, mp->m_swidth));
 492
 493	if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD))
 494		seq_puts(m, ",usrquota");
 495	else if (mp->m_qflags & XFS_UQUOTA_ACCT)
 496		seq_puts(m, ",uqnoenforce");
 497
 498	if (mp->m_qflags & XFS_PQUOTA_ACCT) {
 499		if (mp->m_qflags & XFS_PQUOTA_ENFD)
 500			seq_puts(m, ",prjquota");
 501		else
 502			seq_puts(m, ",pqnoenforce");
 503	}
 504	if (mp->m_qflags & XFS_GQUOTA_ACCT) {
 505		if (mp->m_qflags & XFS_GQUOTA_ENFD)
 506			seq_puts(m, ",grpquota");
 507		else
 508			seq_puts(m, ",gqnoenforce");
 509	}
 510
 511	if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT))
 512		seq_puts(m, ",noquota");
 513}
 514
 515static uint64_t
 
 
 516xfs_max_file_offset(
 517	unsigned int		blockshift)
 518{
 519	unsigned int		pagefactor = 1;
 520	unsigned int		bitshift = BITS_PER_LONG - 1;
 521
 522	/* Figure out maximum filesize, on Linux this can depend on
 523	 * the filesystem blocksize (on 32 bit platforms).
 524	 * __block_write_begin does this in an [unsigned] long long...
 525	 *      page->index << (PAGE_SHIFT - bbits)
 526	 * So, for page sized blocks (4K on 32 bit platforms),
 527	 * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
 528	 *      (((u64)PAGE_SIZE << (BITS_PER_LONG-1))-1)
 529	 * but for smaller blocksizes it is less (bbits = log2 bsize).
 
 
 
 
 530	 */
 531
 532#if BITS_PER_LONG == 32
 
 533	ASSERT(sizeof(sector_t) == 8);
 534	pagefactor = PAGE_SIZE;
 535	bitshift = BITS_PER_LONG;
 
 
 
 536#endif
 537
 538	return (((uint64_t)pagefactor) << bitshift) - 1;
 539}
 540
 541/*
 542 * Set parameters for inode allocation heuristics, taking into account
 543 * filesystem size and inode32/inode64 mount options; i.e. specifically
 544 * whether or not XFS_MOUNT_SMALL_INUMS is set.
 545 *
 546 * Inode allocation patterns are altered only if inode32 is requested
 547 * (XFS_MOUNT_SMALL_INUMS), and the filesystem is sufficiently large.
 548 * If altered, XFS_MOUNT_32BITINODES is set as well.
 549 *
 550 * An agcount independent of that in the mount structure is provided
 551 * because in the growfs case, mp->m_sb.sb_agcount is not yet updated
 552 * to the potentially higher ag count.
 553 *
 554 * Returns the maximum AG index which may contain inodes.
 555 */
 556xfs_agnumber_t
 557xfs_set_inode_alloc(
 558	struct xfs_mount *mp,
 559	xfs_agnumber_t	agcount)
 560{
 561	xfs_agnumber_t	index;
 562	xfs_agnumber_t	maxagi = 0;
 563	xfs_sb_t	*sbp = &mp->m_sb;
 564	xfs_agnumber_t	max_metadata;
 565	xfs_agino_t	agino;
 566	xfs_ino_t	ino;
 
 567
 568	/*
 569	 * Calculate how much should be reserved for inodes to meet
 570	 * the max inode percentage.  Used only for inode32.
 571	 */
 572	if (M_IGEO(mp)->maxicount) {
 573		uint64_t	icount;
 574
 575		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
 576		do_div(icount, 100);
 577		icount += sbp->sb_agblocks - 1;
 578		do_div(icount, sbp->sb_agblocks);
 579		max_metadata = icount;
 580	} else {
 581		max_metadata = agcount;
 582	}
 583
 584	/* Get the last possible inode in the filesystem */
 585	agino =	XFS_AGB_TO_AGINO(mp, sbp->sb_agblocks - 1);
 586	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
 587
 588	/*
 589	 * If user asked for no more than 32-bit inodes, and the fs is
 590	 * sufficiently large, set XFS_MOUNT_32BITINODES if we must alter
 591	 * the allocator to accommodate the request.
 592	 */
 593	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
 594		mp->m_flags |= XFS_MOUNT_32BITINODES;
 595	else
 596		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
 597
 598	for (index = 0; index < agcount; index++) {
 599		struct xfs_perag	*pag;
 
 
 
 
 
 
 
 600
 601		ino = XFS_AGINO_TO_INO(mp, index, agino);
 
 602
 603		pag = xfs_perag_get(mp, index);
 
 
 
 604
 605		if (mp->m_flags & XFS_MOUNT_32BITINODES) {
 606			if (ino > XFS_MAXINUMBER_32) {
 607				pag->pagi_inodeok = 0;
 608				pag->pagf_metadata = 0;
 609			} else {
 610				pag->pagi_inodeok = 1;
 611				maxagi++;
 612				if (index < max_metadata)
 613					pag->pagf_metadata = 1;
 614				else
 615					pag->pagf_metadata = 0;
 616			}
 617		} else {
 618			pag->pagi_inodeok = 1;
 619			pag->pagf_metadata = 0;
 620		}
 621
 
 
 
 622		xfs_perag_put(pag);
 623	}
 624
 625	return (mp->m_flags & XFS_MOUNT_32BITINODES) ? maxagi : agcount;
 
 
 
 
 
 
 
 626}
 627
 628STATIC int
 629xfs_blkdev_get(
 630	xfs_mount_t		*mp,
 631	const char		*name,
 632	struct block_device	**bdevp)
 633{
 634	int			error = 0;
 635
 636	*bdevp = blkdev_get_by_path(name, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
 637				    mp);
 638	if (IS_ERR(*bdevp)) {
 639		error = PTR_ERR(*bdevp);
 640		xfs_warn(mp, "Invalid device [%s], error=%d", name, error);
 641	}
 642
 643	return error;
 644}
 645
 646STATIC void
 647xfs_blkdev_put(
 648	struct block_device	*bdev)
 649{
 650	if (bdev)
 651		blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
 652}
 653
 654void
 655xfs_blkdev_issue_flush(
 656	xfs_buftarg_t		*buftarg)
 657{
 658	blkdev_issue_flush(buftarg->bt_bdev, GFP_NOFS, NULL);
 659}
 660
 661STATIC void
 662xfs_close_devices(
 663	struct xfs_mount	*mp)
 664{
 665	struct dax_device *dax_ddev = mp->m_ddev_targp->bt_daxdev;
 666
 667	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
 668		struct block_device *logdev = mp->m_logdev_targp->bt_bdev;
 669		struct dax_device *dax_logdev = mp->m_logdev_targp->bt_daxdev;
 670
 671		xfs_free_buftarg(mp->m_logdev_targp);
 672		xfs_blkdev_put(logdev);
 673		fs_put_dax(dax_logdev);
 674	}
 675	if (mp->m_rtdev_targp) {
 676		struct block_device *rtdev = mp->m_rtdev_targp->bt_bdev;
 677		struct dax_device *dax_rtdev = mp->m_rtdev_targp->bt_daxdev;
 678
 679		xfs_free_buftarg(mp->m_rtdev_targp);
 680		xfs_blkdev_put(rtdev);
 681		fs_put_dax(dax_rtdev);
 682	}
 683	xfs_free_buftarg(mp->m_ddev_targp);
 684	fs_put_dax(dax_ddev);
 685}
 686
 687/*
 688 * The file system configurations are:
 689 *	(1) device (partition) with data and internal log
 690 *	(2) logical volume with data and log subvolumes.
 691 *	(3) logical volume with data, log, and realtime subvolumes.
 692 *
 693 * We only have to handle opening the log and realtime volumes here if
 694 * they are present.  The data subvolume has already been opened by
 695 * get_sb_bdev() and is stored in sb->s_bdev.
 696 */
 697STATIC int
 698xfs_open_devices(
 699	struct xfs_mount	*mp)
 700{
 701	struct block_device	*ddev = mp->m_super->s_bdev;
 702	struct dax_device	*dax_ddev = fs_dax_get_by_bdev(ddev);
 703	struct dax_device	*dax_logdev = NULL, *dax_rtdev = NULL;
 704	struct block_device	*logdev = NULL, *rtdev = NULL;
 705	int			error;
 706
 707	/*
 708	 * Open real time and log devices - order is important.
 709	 */
 710	if (mp->m_logname) {
 711		error = xfs_blkdev_get(mp, mp->m_logname, &logdev);
 712		if (error)
 713			goto out;
 714		dax_logdev = fs_dax_get_by_bdev(logdev);
 715	}
 716
 717	if (mp->m_rtname) {
 718		error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev);
 719		if (error)
 720			goto out_close_logdev;
 721
 722		if (rtdev == ddev || rtdev == logdev) {
 723			xfs_warn(mp,
 724	"Cannot mount filesystem with identical rtdev and ddev/logdev.");
 725			error = -EINVAL;
 726			goto out_close_rtdev;
 727		}
 728		dax_rtdev = fs_dax_get_by_bdev(rtdev);
 729	}
 730
 731	/*
 732	 * Setup xfs_mount buffer target pointers
 733	 */
 734	error = -ENOMEM;
 735	mp->m_ddev_targp = xfs_alloc_buftarg(mp, ddev, dax_ddev);
 736	if (!mp->m_ddev_targp)
 737		goto out_close_rtdev;
 738
 739	if (rtdev) {
 740		mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev, dax_rtdev);
 
 741		if (!mp->m_rtdev_targp)
 742			goto out_free_ddev_targ;
 743	}
 744
 745	if (logdev && logdev != ddev) {
 746		mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev, dax_logdev);
 
 747		if (!mp->m_logdev_targp)
 748			goto out_free_rtdev_targ;
 749	} else {
 750		mp->m_logdev_targp = mp->m_ddev_targp;
 751	}
 752
 753	return 0;
 754
 755 out_free_rtdev_targ:
 756	if (mp->m_rtdev_targp)
 757		xfs_free_buftarg(mp->m_rtdev_targp);
 758 out_free_ddev_targ:
 759	xfs_free_buftarg(mp->m_ddev_targp);
 760 out_close_rtdev:
 761	xfs_blkdev_put(rtdev);
 762	fs_put_dax(dax_rtdev);
 763 out_close_logdev:
 764	if (logdev && logdev != ddev) {
 765		xfs_blkdev_put(logdev);
 766		fs_put_dax(dax_logdev);
 767	}
 768 out:
 769	fs_put_dax(dax_ddev);
 770	return error;
 771}
 772
 773/*
 774 * Setup xfs_mount buffer target pointers based on superblock
 775 */
 776STATIC int
 777xfs_setup_devices(
 778	struct xfs_mount	*mp)
 779{
 780	int			error;
 781
 782	error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_sectsize);
 
 783	if (error)
 784		return error;
 785
 786	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
 787		unsigned int	log_sector_size = BBSIZE;
 788
 789		if (xfs_sb_version_hassector(&mp->m_sb))
 790			log_sector_size = mp->m_sb.sb_logsectsize;
 791		error = xfs_setsize_buftarg(mp->m_logdev_targp,
 
 792					    log_sector_size);
 793		if (error)
 794			return error;
 795	}
 796	if (mp->m_rtdev_targp) {
 797		error = xfs_setsize_buftarg(mp->m_rtdev_targp,
 
 798					    mp->m_sb.sb_sectsize);
 799		if (error)
 800			return error;
 801	}
 802
 803	return 0;
 804}
 805
 806STATIC int
 807xfs_init_mount_workqueues(
 808	struct xfs_mount	*mp)
 809{
 810	mp->m_buf_workqueue = alloc_workqueue("xfs-buf/%s",
 811			WQ_MEM_RECLAIM|WQ_FREEZABLE, 1, mp->m_fsname);
 812	if (!mp->m_buf_workqueue)
 813		goto out;
 814
 815	mp->m_unwritten_workqueue = alloc_workqueue("xfs-conv/%s",
 816			WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_fsname);
 817	if (!mp->m_unwritten_workqueue)
 818		goto out_destroy_buf;
 819
 820	mp->m_cil_workqueue = alloc_workqueue("xfs-cil/%s",
 821			WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND,
 822			0, mp->m_fsname);
 823	if (!mp->m_cil_workqueue)
 824		goto out_destroy_unwritten;
 825
 826	mp->m_reclaim_workqueue = alloc_workqueue("xfs-reclaim/%s",
 827			WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_fsname);
 828	if (!mp->m_reclaim_workqueue)
 829		goto out_destroy_cil;
 830
 831	mp->m_eofblocks_workqueue = alloc_workqueue("xfs-eofblocks/%s",
 832			WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_fsname);
 833	if (!mp->m_eofblocks_workqueue)
 834		goto out_destroy_reclaim;
 835
 836	mp->m_sync_workqueue = alloc_workqueue("xfs-sync/%s", WQ_FREEZABLE, 0,
 837					       mp->m_fsname);
 838	if (!mp->m_sync_workqueue)
 839		goto out_destroy_eofb;
 840
 841	return 0;
 842
 843out_destroy_eofb:
 844	destroy_workqueue(mp->m_eofblocks_workqueue);
 845out_destroy_reclaim:
 846	destroy_workqueue(mp->m_reclaim_workqueue);
 847out_destroy_cil:
 848	destroy_workqueue(mp->m_cil_workqueue);
 849out_destroy_unwritten:
 850	destroy_workqueue(mp->m_unwritten_workqueue);
 851out_destroy_buf:
 852	destroy_workqueue(mp->m_buf_workqueue);
 853out:
 854	return -ENOMEM;
 855}
 856
 857STATIC void
 858xfs_destroy_mount_workqueues(
 859	struct xfs_mount	*mp)
 860{
 861	destroy_workqueue(mp->m_sync_workqueue);
 862	destroy_workqueue(mp->m_eofblocks_workqueue);
 
 863	destroy_workqueue(mp->m_reclaim_workqueue);
 864	destroy_workqueue(mp->m_cil_workqueue);
 
 865	destroy_workqueue(mp->m_unwritten_workqueue);
 866	destroy_workqueue(mp->m_buf_workqueue);
 867}
 868
 869/*
 870 * Flush all dirty data to disk. Must not be called while holding an XFS_ILOCK
 871 * or a page lock. We use sync_inodes_sb() here to ensure we block while waiting
 872 * for IO to complete so that we effectively throttle multiple callers to the
 873 * rate at which IO is completing.
 874 */
 875void
 876xfs_flush_inodes(
 877	struct xfs_mount	*mp)
 878{
 879	struct super_block	*sb = mp->m_super;
 880
 881	if (down_read_trylock(&sb->s_umount)) {
 882		sync_inodes_sb(sb);
 883		up_read(&sb->s_umount);
 884	}
 885}
 886
 887/* Catch misguided souls that try to use this interface on XFS */
 888STATIC struct inode *
 889xfs_fs_alloc_inode(
 890	struct super_block	*sb)
 891{
 892	BUG();
 893	return NULL;
 894}
 895
 896#ifdef DEBUG
 897static void
 898xfs_check_delalloc(
 899	struct xfs_inode	*ip,
 900	int			whichfork)
 901{
 902	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
 903	struct xfs_bmbt_irec	got;
 904	struct xfs_iext_cursor	icur;
 905
 906	if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
 907		return;
 908	do {
 909		if (isnullstartblock(got.br_startblock)) {
 910			xfs_warn(ip->i_mount,
 911	"ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
 912				ip->i_ino,
 913				whichfork == XFS_DATA_FORK ? "data" : "cow",
 914				got.br_startoff, got.br_blockcount);
 915		}
 916	} while (xfs_iext_next_extent(ifp, &icur, &got));
 917}
 918#else
 919#define xfs_check_delalloc(ip, whichfork)	do { } while (0)
 920#endif
 921
 922/*
 923 * Now that the generic code is guaranteed not to be accessing
 924 * the linux inode, we can inactivate and reclaim the inode.
 925 */
 926STATIC void
 927xfs_fs_destroy_inode(
 928	struct inode		*inode)
 929{
 930	struct xfs_inode	*ip = XFS_I(inode);
 931
 932	trace_xfs_destroy_inode(ip);
 933
 934	ASSERT(!rwsem_is_locked(&inode->i_rwsem));
 935	XFS_STATS_INC(ip->i_mount, vn_rele);
 936	XFS_STATS_INC(ip->i_mount, vn_remove);
 937
 938	xfs_inactive(ip);
 939
 940	if (!XFS_FORCED_SHUTDOWN(ip->i_mount) && ip->i_delayed_blks) {
 941		xfs_check_delalloc(ip, XFS_DATA_FORK);
 942		xfs_check_delalloc(ip, XFS_COW_FORK);
 943		ASSERT(0);
 944	}
 945
 946	XFS_STATS_INC(ip->i_mount, vn_reclaim);
 947
 948	/*
 949	 * We should never get here with one of the reclaim flags already set.
 950	 */
 951	ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIMABLE));
 952	ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM));
 953
 954	/*
 955	 * We always use background reclaim here because even if the
 956	 * inode is clean, it still may be under IO and hence we have
 957	 * to take the flush lock. The background reclaim path handles
 958	 * this more efficiently than we can here, so simply let background
 959	 * reclaim tear down all inodes.
 960	 */
 961	xfs_inode_set_reclaim_tag(ip);
 962}
 963
 964static void
 965xfs_fs_dirty_inode(
 966	struct inode			*inode,
 967	int				flag)
 968{
 969	struct xfs_inode		*ip = XFS_I(inode);
 970	struct xfs_mount		*mp = ip->i_mount;
 971	struct xfs_trans		*tp;
 972
 973	if (!(inode->i_sb->s_flags & SB_LAZYTIME))
 974		return;
 975	if (flag != I_DIRTY_SYNC || !(inode->i_state & I_DIRTY_TIME))
 976		return;
 977
 978	if (xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp))
 979		return;
 980	xfs_ilock(ip, XFS_ILOCK_EXCL);
 981	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 982	xfs_trans_log_inode(tp, ip, XFS_ILOG_TIMESTAMP);
 983	xfs_trans_commit(tp);
 984}
 985
 986/*
 987 * Slab object creation initialisation for the XFS inode.
 988 * This covers only the idempotent fields in the XFS inode;
 989 * all other fields need to be initialised on allocation
 990 * from the slab. This avoids the need to repeatedly initialise
 991 * fields in the xfs inode that left in the initialise state
 992 * when freeing the inode.
 993 */
 994STATIC void
 995xfs_fs_inode_init_once(
 996	void			*inode)
 997{
 998	struct xfs_inode	*ip = inode;
 999
1000	memset(ip, 0, sizeof(struct xfs_inode));
1001
1002	/* vfs inode */
1003	inode_init_once(VFS_I(ip));
1004
1005	/* xfs inode */
1006	atomic_set(&ip->i_pincount, 0);
1007	spin_lock_init(&ip->i_flags_lock);
1008
1009	mrlock_init(&ip->i_mmaplock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
1010		     "xfsino", ip->i_ino);
1011	mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
1012		     "xfsino", ip->i_ino);
1013}
1014
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015/*
1016 * We do an unlocked check for XFS_IDONTCACHE here because we are already
1017 * serialised against cache hits here via the inode->i_lock and igrab() in
1018 * xfs_iget_cache_hit(). Hence a lookup that might clear this flag will not be
1019 * racing with us, and it avoids needing to grab a spinlock here for every inode
1020 * we drop the final reference on.
1021 */
1022STATIC int
1023xfs_fs_drop_inode(
1024	struct inode		*inode)
1025{
1026	struct xfs_inode	*ip = XFS_I(inode);
1027
1028	/*
1029	 * If this unlinked inode is in the middle of recovery, don't
1030	 * drop the inode just yet; log recovery will take care of
1031	 * that.  See the comment for this inode flag.
1032	 */
1033	if (ip->i_flags & XFS_IRECOVERY) {
1034		ASSERT(ip->i_mount->m_log->l_flags & XLOG_RECOVERY_NEEDED);
1035		return 0;
1036	}
1037
1038	return generic_drop_inode(inode) || (ip->i_flags & XFS_IDONTCACHE);
1039}
1040
1041STATIC void
1042xfs_free_fsname(
1043	struct xfs_mount	*mp)
1044{
1045	kfree(mp->m_fsname);
1046	kfree(mp->m_rtname);
1047	kfree(mp->m_logname);
1048}
1049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1050STATIC int
1051xfs_fs_sync_fs(
1052	struct super_block	*sb,
1053	int			wait)
1054{
1055	struct xfs_mount	*mp = XFS_M(sb);
1056
1057	/*
1058	 * Doing anything during the async pass would be counterproductive.
1059	 */
1060	if (!wait)
1061		return 0;
1062
1063	xfs_log_force(mp, XFS_LOG_SYNC);
1064	if (laptop_mode) {
1065		/*
1066		 * The disk must be active because we're syncing.
1067		 * We schedule log work now (now that the disk is
1068		 * active) instead of later (when it might not be).
1069		 */
1070		flush_delayed_work(&mp->m_log->l_work);
1071	}
1072
1073	return 0;
1074}
1075
1076STATIC int
1077xfs_fs_statfs(
1078	struct dentry		*dentry,
1079	struct kstatfs		*statp)
1080{
1081	struct xfs_mount	*mp = XFS_M(dentry->d_sb);
1082	xfs_sb_t		*sbp = &mp->m_sb;
1083	struct xfs_inode	*ip = XFS_I(d_inode(dentry));
1084	uint64_t		fakeinos, id;
1085	uint64_t		icount;
1086	uint64_t		ifree;
1087	uint64_t		fdblocks;
1088	xfs_extlen_t		lsize;
1089	int64_t			ffree;
1090
1091	statp->f_type = XFS_SUPER_MAGIC;
1092	statp->f_namelen = MAXNAMELEN - 1;
1093
1094	id = huge_encode_dev(mp->m_ddev_targp->bt_dev);
1095	statp->f_fsid.val[0] = (u32)id;
1096	statp->f_fsid.val[1] = (u32)(id >> 32);
1097
1098	icount = percpu_counter_sum(&mp->m_icount);
1099	ifree = percpu_counter_sum(&mp->m_ifree);
1100	fdblocks = percpu_counter_sum(&mp->m_fdblocks);
1101
1102	spin_lock(&mp->m_sb_lock);
1103	statp->f_bsize = sbp->sb_blocksize;
1104	lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0;
1105	statp->f_blocks = sbp->sb_dblocks - lsize;
1106	spin_unlock(&mp->m_sb_lock);
1107
1108	statp->f_bfree = fdblocks - mp->m_alloc_set_aside;
1109	statp->f_bavail = statp->f_bfree;
1110
1111	fakeinos = XFS_FSB_TO_INO(mp, statp->f_bfree);
1112	statp->f_files = min(icount + fakeinos, (uint64_t)XFS_MAXINUMBER);
1113	if (M_IGEO(mp)->maxicount)
1114		statp->f_files = min_t(typeof(statp->f_files),
1115					statp->f_files,
1116					M_IGEO(mp)->maxicount);
1117
1118	/* If sb_icount overshot maxicount, report actual allocation */
1119	statp->f_files = max_t(typeof(statp->f_files),
1120					statp->f_files,
1121					sbp->sb_icount);
1122
1123	/* make sure statp->f_ffree does not underflow */
1124	ffree = statp->f_files - (icount - ifree);
1125	statp->f_ffree = max_t(int64_t, ffree, 0);
1126
 
1127
1128	if ((ip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1129	    ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))) ==
1130			      (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))
1131		xfs_qm_statvfs(ip, statp);
1132
1133	if (XFS_IS_REALTIME_MOUNT(mp) &&
1134	    (ip->i_d.di_flags & (XFS_DIFLAG_RTINHERIT | XFS_DIFLAG_REALTIME))) {
1135		statp->f_blocks = sbp->sb_rblocks;
1136		statp->f_bavail = statp->f_bfree =
1137			sbp->sb_frextents * sbp->sb_rextsize;
1138	}
1139
1140	return 0;
1141}
1142
1143STATIC void
1144xfs_save_resvblks(struct xfs_mount *mp)
1145{
1146	uint64_t resblks = 0;
1147
1148	mp->m_resblks_save = mp->m_resblks;
1149	xfs_reserve_blocks(mp, &resblks, NULL);
1150}
1151
1152STATIC void
1153xfs_restore_resvblks(struct xfs_mount *mp)
1154{
1155	uint64_t resblks;
1156
1157	if (mp->m_resblks_save) {
1158		resblks = mp->m_resblks_save;
1159		mp->m_resblks_save = 0;
1160	} else
1161		resblks = xfs_default_resblks(mp);
1162
1163	xfs_reserve_blocks(mp, &resblks, NULL);
1164}
1165
1166/*
1167 * Trigger writeback of all the dirty metadata in the file system.
1168 *
1169 * This ensures that the metadata is written to their location on disk rather
1170 * than just existing in transactions in the log. This means after a quiesce
1171 * there is no log replay required to write the inodes to disk - this is the
1172 * primary difference between a sync and a quiesce.
1173 *
1174 * Note: xfs_log_quiesce() stops background log work - the callers must ensure
1175 * it is started again when appropriate.
1176 */
1177void
1178xfs_quiesce_attr(
1179	struct xfs_mount	*mp)
1180{
1181	int	error = 0;
1182
1183	/* wait for all modifications to complete */
1184	while (atomic_read(&mp->m_active_trans) > 0)
1185		delay(100);
1186
1187	/* force the log to unpin objects from the now complete transactions */
1188	xfs_log_force(mp, XFS_LOG_SYNC);
1189
1190	/* reclaim inodes to do any IO before the freeze completes */
1191	xfs_reclaim_inodes(mp, 0);
1192	xfs_reclaim_inodes(mp, SYNC_WAIT);
1193
1194	/* Push the superblock and write an unmount record */
1195	error = xfs_log_sbcount(mp);
1196	if (error)
1197		xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
1198				"Frozen image may not be consistent.");
1199	/*
1200	 * Just warn here till VFS can correctly support
1201	 * read-only remount without racing.
1202	 */
1203	WARN_ON(atomic_read(&mp->m_active_trans) != 0);
1204
1205	xfs_log_quiesce(mp);
1206}
1207
1208STATIC int
1209xfs_test_remount_options(
1210	struct super_block	*sb,
1211	char			*options)
1212{
1213	int			error = 0;
1214	struct xfs_mount	*tmp_mp;
1215
1216	tmp_mp = kmem_zalloc(sizeof(*tmp_mp), KM_MAYFAIL);
1217	if (!tmp_mp)
1218		return -ENOMEM;
1219
1220	tmp_mp->m_super = sb;
1221	error = xfs_parseargs(tmp_mp, options);
1222	xfs_free_fsname(tmp_mp);
1223	kmem_free(tmp_mp);
1224
1225	return error;
1226}
1227
1228STATIC int
1229xfs_fs_remount(
1230	struct super_block	*sb,
1231	int			*flags,
1232	char			*options)
1233{
1234	struct xfs_mount	*mp = XFS_M(sb);
1235	xfs_sb_t		*sbp = &mp->m_sb;
1236	substring_t		args[MAX_OPT_ARGS];
1237	char			*p;
1238	int			error;
1239
1240	/* First, check for complete junk; i.e. invalid options */
1241	error = xfs_test_remount_options(sb, options);
1242	if (error)
1243		return error;
1244
1245	sync_filesystem(sb);
1246	while ((p = strsep(&options, ",")) != NULL) {
1247		int token;
1248
1249		if (!*p)
1250			continue;
1251
1252		token = match_token(p, tokens, args);
1253		switch (token) {
 
 
 
 
 
 
1254		case Opt_inode64:
1255			mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS;
1256			mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount);
1257			break;
1258		case Opt_inode32:
1259			mp->m_flags |= XFS_MOUNT_SMALL_INUMS;
1260			mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount);
1261			break;
1262		default:
1263			/*
1264			 * Logically we would return an error here to prevent
1265			 * users from believing they might have changed
1266			 * mount options using remount which can't be changed.
1267			 *
1268			 * But unfortunately mount(8) adds all options from
1269			 * mtab and fstab to the mount arguments in some cases
1270			 * so we can't blindly reject options, but have to
1271			 * check for each specified option if it actually
1272			 * differs from the currently set option and only
1273			 * reject it if that's the case.
1274			 *
1275			 * Until that is implemented we return success for
1276			 * every remount request, and silently ignore all
1277			 * options that we can't actually change.
1278			 */
1279#if 0
1280			xfs_info(mp,
1281		"mount option \"%s\" not supported for remount", p);
1282			return -EINVAL;
1283#else
1284			break;
1285#endif
1286		}
1287	}
1288
1289	/* ro -> rw */
1290	if ((mp->m_flags & XFS_MOUNT_RDONLY) && !(*flags & SB_RDONLY)) {
1291		if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
1292			xfs_warn(mp,
1293		"ro->rw transition prohibited on norecovery mount");
1294			return -EINVAL;
1295		}
1296
1297		if (XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5 &&
1298		    xfs_sb_has_ro_compat_feature(sbp,
1299					XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) {
1300			xfs_warn(mp,
1301"ro->rw transition prohibited on unknown (0x%x) ro-compat filesystem",
1302				(sbp->sb_features_ro_compat &
1303					XFS_SB_FEAT_RO_COMPAT_UNKNOWN));
1304			return -EINVAL;
1305		}
1306
1307		mp->m_flags &= ~XFS_MOUNT_RDONLY;
1308
1309		/*
1310		 * If this is the first remount to writeable state we
1311		 * might have some superblock changes to update.
1312		 */
1313		if (mp->m_update_sb) {
1314			error = xfs_sync_sb(mp, false);
1315			if (error) {
1316				xfs_warn(mp, "failed to write sb changes");
1317				return error;
1318			}
1319			mp->m_update_sb = false;
1320		}
1321
1322		/*
1323		 * Fill out the reserve pool if it is empty. Use the stashed
1324		 * value if it is non-zero, otherwise go with the default.
1325		 */
1326		xfs_restore_resvblks(mp);
1327		xfs_log_work_queue(mp);
1328
1329		/* Recover any CoW blocks that never got remapped. */
1330		error = xfs_reflink_recover_cow(mp);
1331		if (error) {
1332			xfs_err(mp,
1333	"Error %d recovering leftover CoW allocations.", error);
1334			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1335			return error;
1336		}
1337		xfs_start_block_reaping(mp);
1338
1339		/* Create the per-AG metadata reservation pool .*/
1340		error = xfs_fs_reserve_ag_blocks(mp);
1341		if (error && error != -ENOSPC)
1342			return error;
1343	}
1344
1345	/* rw -> ro */
1346	if (!(mp->m_flags & XFS_MOUNT_RDONLY) && (*flags & SB_RDONLY)) {
1347		/*
1348		 * Cancel background eofb scanning so it cannot race with the
1349		 * final log force+buftarg wait and deadlock the remount.
1350		 */
1351		xfs_stop_block_reaping(mp);
1352
1353		/* Get rid of any leftover CoW reservations... */
1354		error = xfs_icache_free_cowblocks(mp, NULL);
1355		if (error) {
1356			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1357			return error;
1358		}
1359
1360		/* Free the per-AG metadata reservation pool. */
1361		error = xfs_fs_unreserve_ag_blocks(mp);
1362		if (error) {
1363			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1364			return error;
1365		}
1366
1367		/*
1368		 * Before we sync the metadata, we need to free up the reserve
1369		 * block pool so that the used block count in the superblock on
1370		 * disk is correct at the end of the remount. Stash the current
1371		 * reserve pool size so that if we get remounted rw, we can
1372		 * return it to the same size.
1373		 */
1374		xfs_save_resvblks(mp);
1375
1376		xfs_quiesce_attr(mp);
1377		mp->m_flags |= XFS_MOUNT_RDONLY;
1378	}
1379
1380	return 0;
1381}
1382
1383/*
1384 * Second stage of a freeze. The data is already frozen so we only
1385 * need to take care of the metadata. Once that's done sync the superblock
1386 * to the log to dirty it in case of a crash while frozen. This ensures that we
1387 * will recover the unlinked inode lists on the next mount.
1388 */
1389STATIC int
1390xfs_fs_freeze(
1391	struct super_block	*sb)
1392{
1393	struct xfs_mount	*mp = XFS_M(sb);
1394
1395	xfs_stop_block_reaping(mp);
1396	xfs_save_resvblks(mp);
1397	xfs_quiesce_attr(mp);
1398	return xfs_sync_sb(mp, true);
1399}
1400
1401STATIC int
1402xfs_fs_unfreeze(
1403	struct super_block	*sb)
1404{
1405	struct xfs_mount	*mp = XFS_M(sb);
1406
1407	xfs_restore_resvblks(mp);
1408	xfs_log_work_queue(mp);
1409	xfs_start_block_reaping(mp);
1410	return 0;
1411}
1412
1413STATIC int
1414xfs_fs_show_options(
1415	struct seq_file		*m,
1416	struct dentry		*root)
1417{
1418	xfs_showargs(XFS_M(root->d_sb), m);
1419	return 0;
1420}
1421
1422/*
1423 * This function fills in xfs_mount_t fields based on mount args.
1424 * Note: the superblock _has_ now been read in.
1425 */
1426STATIC int
1427xfs_finish_flags(
1428	struct xfs_mount	*mp)
1429{
1430	int			ronly = (mp->m_flags & XFS_MOUNT_RDONLY);
1431
1432	/* Fail a mount where the logbuf is smaller than the log stripe */
1433	if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1434		if (mp->m_logbsize <= 0 &&
1435		    mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) {
1436			mp->m_logbsize = mp->m_sb.sb_logsunit;
1437		} else if (mp->m_logbsize > 0 &&
1438			   mp->m_logbsize < mp->m_sb.sb_logsunit) {
1439			xfs_warn(mp,
1440		"logbuf size must be greater than or equal to log stripe size");
1441			return -EINVAL;
1442		}
1443	} else {
1444		/* Fail a mount if the logbuf is larger than 32K */
1445		if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) {
1446			xfs_warn(mp,
1447		"logbuf size for version 1 logs must be 16K or 32K");
1448			return -EINVAL;
1449		}
1450	}
1451
1452	/*
1453	 * V5 filesystems always use attr2 format for attributes.
1454	 */
1455	if (xfs_sb_version_hascrc(&mp->m_sb) &&
1456	    (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1457		xfs_warn(mp, "Cannot mount a V5 filesystem as noattr2. "
1458			     "attr2 is always enabled for V5 filesystems.");
1459		return -EINVAL;
 
1460	}
1461
1462	/*
1463	 * mkfs'ed attr2 will turn on attr2 mount unless explicitly
1464	 * told by noattr2 to turn it off
1465	 */
1466	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1467	    !(mp->m_flags & XFS_MOUNT_NOATTR2))
1468		mp->m_flags |= XFS_MOUNT_ATTR2;
1469
1470	/*
1471	 * prohibit r/w mounts of read-only filesystems
1472	 */
1473	if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) {
1474		xfs_warn(mp,
1475			"cannot mount a read-only filesystem as read-write");
1476		return -EROFS;
1477	}
1478
1479	if ((mp->m_qflags & (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE)) &&
1480	    (mp->m_qflags & (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE)) &&
1481	    !xfs_sb_version_has_pquotino(&mp->m_sb)) {
1482		xfs_warn(mp,
1483		  "Super block does not support project and group quota together");
1484		return -EINVAL;
1485	}
1486
1487	return 0;
1488}
1489
1490static int
1491xfs_init_percpu_counters(
1492	struct xfs_mount	*mp)
1493{
1494	int		error;
1495
1496	error = percpu_counter_init(&mp->m_icount, 0, GFP_KERNEL);
1497	if (error)
1498		return -ENOMEM;
1499
1500	error = percpu_counter_init(&mp->m_ifree, 0, GFP_KERNEL);
1501	if (error)
1502		goto free_icount;
1503
1504	error = percpu_counter_init(&mp->m_fdblocks, 0, GFP_KERNEL);
1505	if (error)
1506		goto free_ifree;
1507
1508	error = percpu_counter_init(&mp->m_delalloc_blks, 0, GFP_KERNEL);
1509	if (error)
1510		goto free_fdblocks;
1511
1512	return 0;
1513
1514free_fdblocks:
1515	percpu_counter_destroy(&mp->m_fdblocks);
1516free_ifree:
1517	percpu_counter_destroy(&mp->m_ifree);
1518free_icount:
1519	percpu_counter_destroy(&mp->m_icount);
1520	return -ENOMEM;
1521}
1522
1523void
1524xfs_reinit_percpu_counters(
1525	struct xfs_mount	*mp)
1526{
1527	percpu_counter_set(&mp->m_icount, mp->m_sb.sb_icount);
1528	percpu_counter_set(&mp->m_ifree, mp->m_sb.sb_ifree);
1529	percpu_counter_set(&mp->m_fdblocks, mp->m_sb.sb_fdblocks);
1530}
1531
1532static void
1533xfs_destroy_percpu_counters(
1534	struct xfs_mount	*mp)
1535{
1536	percpu_counter_destroy(&mp->m_icount);
1537	percpu_counter_destroy(&mp->m_ifree);
1538	percpu_counter_destroy(&mp->m_fdblocks);
1539	ASSERT(XFS_FORCED_SHUTDOWN(mp) ||
1540	       percpu_counter_sum(&mp->m_delalloc_blks) == 0);
1541	percpu_counter_destroy(&mp->m_delalloc_blks);
1542}
1543
1544static struct xfs_mount *
1545xfs_mount_alloc(
1546	struct super_block	*sb)
1547{
1548	struct xfs_mount	*mp;
1549
1550	mp = kzalloc(sizeof(struct xfs_mount), GFP_KERNEL);
1551	if (!mp)
1552		return NULL;
1553
1554	mp->m_super = sb;
1555	spin_lock_init(&mp->m_sb_lock);
1556	spin_lock_init(&mp->m_agirotor_lock);
1557	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1558	spin_lock_init(&mp->m_perag_lock);
1559	mutex_init(&mp->m_growlock);
1560	atomic_set(&mp->m_active_trans, 0);
1561	INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker);
1562	INIT_DELAYED_WORK(&mp->m_eofblocks_work, xfs_eofblocks_worker);
1563	INIT_DELAYED_WORK(&mp->m_cowblocks_work, xfs_cowblocks_worker);
1564	mp->m_kobj.kobject.kset = xfs_kset;
1565	/*
1566	 * We don't create the finobt per-ag space reservation until after log
1567	 * recovery, so we must set this to true so that an ifree transaction
1568	 * started during log recovery will not depend on space reservations
1569	 * for finobt expansion.
1570	 */
1571	mp->m_finobt_nores = true;
1572	return mp;
1573}
1574
1575
1576STATIC int
1577xfs_fs_fill_super(
1578	struct super_block	*sb,
1579	void			*data,
1580	int			silent)
1581{
1582	struct inode		*root;
1583	struct xfs_mount	*mp = NULL;
1584	int			flags = 0, error = -ENOMEM;
1585
1586	/*
1587	 * allocate mp and do all low-level struct initializations before we
1588	 * attach it to the super
1589	 */
1590	mp = xfs_mount_alloc(sb);
1591	if (!mp)
1592		goto out;
 
 
 
 
 
 
 
 
1593	sb->s_fs_info = mp;
1594
1595	error = xfs_parseargs(mp, (char *)data);
1596	if (error)
1597		goto out_free_fsname;
1598
1599	sb_min_blocksize(sb, BBSIZE);
1600	sb->s_xattr = xfs_xattr_handlers;
1601	sb->s_export_op = &xfs_export_operations;
1602#ifdef CONFIG_XFS_QUOTA
1603	sb->s_qcop = &xfs_quotactl_operations;
1604	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
1605#endif
1606	sb->s_op = &xfs_super_operations;
1607
1608	/*
1609	 * Delay mount work if the debug hook is set. This is debug
1610	 * instrumention to coordinate simulation of xfs mount failures with
1611	 * VFS superblock operations
1612	 */
1613	if (xfs_globals.mount_delay) {
1614		xfs_notice(mp, "Delaying mount for %d seconds.",
1615			xfs_globals.mount_delay);
1616		msleep(xfs_globals.mount_delay * 1000);
1617	}
1618
1619	if (silent)
1620		flags |= XFS_MFSI_QUIET;
1621
1622	error = xfs_open_devices(mp);
1623	if (error)
1624		goto out_free_fsname;
1625
1626	error = xfs_init_mount_workqueues(mp);
1627	if (error)
1628		goto out_close_devices;
1629
1630	error = xfs_init_percpu_counters(mp);
1631	if (error)
1632		goto out_destroy_workqueues;
1633
1634	/* Allocate stats memory before we do operations that might use it */
1635	mp->m_stats.xs_stats = alloc_percpu(struct xfsstats);
1636	if (!mp->m_stats.xs_stats) {
1637		error = -ENOMEM;
1638		goto out_destroy_counters;
1639	}
1640
1641	error = xfs_readsb(mp, flags);
1642	if (error)
1643		goto out_free_stats;
1644
1645	error = xfs_finish_flags(mp);
1646	if (error)
1647		goto out_free_sb;
1648
1649	error = xfs_setup_devices(mp);
1650	if (error)
1651		goto out_free_sb;
1652
1653	error = xfs_filestream_mount(mp);
1654	if (error)
1655		goto out_free_sb;
1656
1657	/*
1658	 * we must configure the block size in the superblock before we run the
1659	 * full mount process as the mount process can lookup and cache inodes.
1660	 */
1661	sb->s_magic = XFS_SUPER_MAGIC;
1662	sb->s_blocksize = mp->m_sb.sb_blocksize;
1663	sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1;
1664	sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
1665	sb->s_max_links = XFS_MAXLINK;
1666	sb->s_time_gran = 1;
1667	sb->s_time_min = S32_MIN;
1668	sb->s_time_max = S32_MAX;
1669	sb->s_iflags |= SB_I_CGROUPWB;
1670
1671	set_posix_acl_flag(sb);
1672
1673	/* version 5 superblocks support inode version counters. */
1674	if (XFS_SB_VERSION_NUM(&mp->m_sb) == XFS_SB_VERSION_5)
1675		sb->s_flags |= SB_I_VERSION;
1676
1677	if (mp->m_flags & XFS_MOUNT_DAX) {
1678		bool rtdev_is_dax = false, datadev_is_dax;
1679
1680		xfs_warn(mp,
1681		"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1682
1683		datadev_is_dax = bdev_dax_supported(mp->m_ddev_targp->bt_bdev,
1684			sb->s_blocksize);
1685		if (mp->m_rtdev_targp)
1686			rtdev_is_dax = bdev_dax_supported(
1687				mp->m_rtdev_targp->bt_bdev, sb->s_blocksize);
1688		if (!rtdev_is_dax && !datadev_is_dax) {
1689			xfs_alert(mp,
1690			"DAX unsupported by block device. Turning off DAX.");
1691			mp->m_flags &= ~XFS_MOUNT_DAX;
1692		}
1693		if (xfs_sb_version_hasreflink(&mp->m_sb)) {
1694			xfs_alert(mp,
1695		"DAX and reflink cannot be used together!");
1696			error = -EINVAL;
1697			goto out_filestream_unmount;
1698		}
1699	}
1700
1701	if (mp->m_flags & XFS_MOUNT_DISCARD) {
1702		struct request_queue *q = bdev_get_queue(sb->s_bdev);
1703
1704		if (!blk_queue_discard(q)) {
1705			xfs_warn(mp, "mounting with \"discard\" option, but "
1706					"the device does not support discard");
1707			mp->m_flags &= ~XFS_MOUNT_DISCARD;
1708		}
1709	}
1710
1711	if (xfs_sb_version_hasreflink(&mp->m_sb)) {
1712		if (mp->m_sb.sb_rblocks) {
1713			xfs_alert(mp,
1714	"reflink not compatible with realtime device!");
1715			error = -EINVAL;
1716			goto out_filestream_unmount;
1717		}
1718
1719		if (xfs_globals.always_cow) {
1720			xfs_info(mp, "using DEBUG-only always_cow mode.");
1721			mp->m_always_cow = true;
1722		}
1723	}
1724
1725	if (xfs_sb_version_hasrmapbt(&mp->m_sb) && mp->m_sb.sb_rblocks) {
1726		xfs_alert(mp,
1727	"reverse mapping btree not compatible with realtime device!");
1728		error = -EINVAL;
1729		goto out_filestream_unmount;
1730	}
1731
1732	error = xfs_mountfs(mp);
1733	if (error)
1734		goto out_filestream_unmount;
1735
1736	root = igrab(VFS_I(mp->m_rootip));
1737	if (!root) {
1738		error = -ENOENT;
1739		goto out_unmount;
1740	}
1741	sb->s_root = d_make_root(root);
1742	if (!sb->s_root) {
1743		error = -ENOMEM;
1744		goto out_unmount;
1745	}
1746
1747	return 0;
1748
1749 out_filestream_unmount:
1750	xfs_filestream_unmount(mp);
1751 out_free_sb:
1752	xfs_freesb(mp);
1753 out_free_stats:
1754	free_percpu(mp->m_stats.xs_stats);
1755 out_destroy_counters:
1756	xfs_destroy_percpu_counters(mp);
1757 out_destroy_workqueues:
1758	xfs_destroy_mount_workqueues(mp);
1759 out_close_devices:
1760	xfs_close_devices(mp);
1761 out_free_fsname:
1762	sb->s_fs_info = NULL;
1763	xfs_free_fsname(mp);
1764	kfree(mp);
1765 out:
1766	return error;
1767
1768 out_unmount:
1769	xfs_filestream_unmount(mp);
1770	xfs_unmountfs(mp);
1771	goto out_free_sb;
1772}
1773
1774STATIC void
1775xfs_fs_put_super(
1776	struct super_block	*sb)
1777{
1778	struct xfs_mount	*mp = XFS_M(sb);
1779
1780	/* if ->fill_super failed, we have no mount to tear down */
1781	if (!sb->s_fs_info)
1782		return;
1783
1784	xfs_notice(mp, "Unmounting Filesystem");
1785	xfs_filestream_unmount(mp);
1786	xfs_unmountfs(mp);
1787
1788	xfs_freesb(mp);
1789	free_percpu(mp->m_stats.xs_stats);
1790	xfs_destroy_percpu_counters(mp);
1791	xfs_destroy_mount_workqueues(mp);
1792	xfs_close_devices(mp);
1793
1794	sb->s_fs_info = NULL;
1795	xfs_free_fsname(mp);
1796	kfree(mp);
1797}
1798
1799STATIC struct dentry *
1800xfs_fs_mount(
1801	struct file_system_type	*fs_type,
1802	int			flags,
1803	const char		*dev_name,
1804	void			*data)
1805{
1806	return mount_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super);
1807}
1808
1809static long
1810xfs_fs_nr_cached_objects(
1811	struct super_block	*sb,
1812	struct shrink_control	*sc)
1813{
1814	/* Paranoia: catch incorrect calls during mount setup or teardown */
1815	if (WARN_ON_ONCE(!sb->s_fs_info))
1816		return 0;
1817	return xfs_reclaim_inodes_count(XFS_M(sb));
1818}
1819
1820static long
1821xfs_fs_free_cached_objects(
1822	struct super_block	*sb,
1823	struct shrink_control	*sc)
 
1824{
1825	return xfs_reclaim_inodes_nr(XFS_M(sb), sc->nr_to_scan);
1826}
1827
1828static const struct super_operations xfs_super_operations = {
1829	.alloc_inode		= xfs_fs_alloc_inode,
1830	.destroy_inode		= xfs_fs_destroy_inode,
1831	.dirty_inode		= xfs_fs_dirty_inode,
1832	.drop_inode		= xfs_fs_drop_inode,
1833	.put_super		= xfs_fs_put_super,
1834	.sync_fs		= xfs_fs_sync_fs,
1835	.freeze_fs		= xfs_fs_freeze,
1836	.unfreeze_fs		= xfs_fs_unfreeze,
1837	.statfs			= xfs_fs_statfs,
1838	.remount_fs		= xfs_fs_remount,
1839	.show_options		= xfs_fs_show_options,
1840	.nr_cached_objects	= xfs_fs_nr_cached_objects,
1841	.free_cached_objects	= xfs_fs_free_cached_objects,
1842};
1843
1844static struct file_system_type xfs_fs_type = {
1845	.owner			= THIS_MODULE,
1846	.name			= "xfs",
1847	.mount			= xfs_fs_mount,
1848	.kill_sb		= kill_block_super,
1849	.fs_flags		= FS_REQUIRES_DEV,
1850};
1851MODULE_ALIAS_FS("xfs");
1852
1853STATIC int __init
1854xfs_init_zones(void)
1855{
1856	if (bioset_init(&xfs_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1857			offsetof(struct xfs_ioend, io_inline_bio),
1858			BIOSET_NEED_BVECS))
1859		goto out;
1860
 
 
 
 
 
1861	xfs_log_ticket_zone = kmem_zone_init(sizeof(xlog_ticket_t),
1862						"xfs_log_ticket");
1863	if (!xfs_log_ticket_zone)
1864		goto out_free_ioend_bioset;
1865
1866	xfs_bmap_free_item_zone = kmem_zone_init(
1867			sizeof(struct xfs_extent_free_item),
1868			"xfs_bmap_free_item");
1869	if (!xfs_bmap_free_item_zone)
1870		goto out_destroy_log_ticket_zone;
1871
1872	xfs_btree_cur_zone = kmem_zone_init(sizeof(xfs_btree_cur_t),
1873						"xfs_btree_cur");
1874	if (!xfs_btree_cur_zone)
1875		goto out_destroy_bmap_free_item_zone;
1876
1877	xfs_da_state_zone = kmem_zone_init(sizeof(xfs_da_state_t),
1878						"xfs_da_state");
1879	if (!xfs_da_state_zone)
1880		goto out_destroy_btree_cur_zone;
1881
1882	xfs_ifork_zone = kmem_zone_init(sizeof(struct xfs_ifork), "xfs_ifork");
1883	if (!xfs_ifork_zone)
1884		goto out_destroy_da_state_zone;
1885
1886	xfs_trans_zone = kmem_zone_init(sizeof(xfs_trans_t), "xfs_trans");
1887	if (!xfs_trans_zone)
1888		goto out_destroy_ifork_zone;
1889
 
 
 
 
 
1890
1891	/*
1892	 * The size of the zone allocated buf log item is the maximum
1893	 * size possible under XFS.  This wastes a little bit of memory,
1894	 * but it is much faster.
1895	 */
1896	xfs_buf_item_zone = kmem_zone_init(sizeof(struct xfs_buf_log_item),
1897					   "xfs_buf_item");
1898	if (!xfs_buf_item_zone)
1899		goto out_destroy_trans_zone;
1900
1901	xfs_efd_zone = kmem_zone_init((sizeof(xfs_efd_log_item_t) +
1902			((XFS_EFD_MAX_FAST_EXTENTS - 1) *
1903				 sizeof(xfs_extent_t))), "xfs_efd_item");
1904	if (!xfs_efd_zone)
1905		goto out_destroy_buf_item_zone;
1906
1907	xfs_efi_zone = kmem_zone_init((sizeof(xfs_efi_log_item_t) +
1908			((XFS_EFI_MAX_FAST_EXTENTS - 1) *
1909				sizeof(xfs_extent_t))), "xfs_efi_item");
1910	if (!xfs_efi_zone)
1911		goto out_destroy_efd_zone;
1912
1913	xfs_inode_zone =
1914		kmem_zone_init_flags(sizeof(xfs_inode_t), "xfs_inode",
1915			KM_ZONE_HWALIGN | KM_ZONE_RECLAIM | KM_ZONE_SPREAD |
1916			KM_ZONE_ACCOUNT, xfs_fs_inode_init_once);
1917	if (!xfs_inode_zone)
1918		goto out_destroy_efi_zone;
1919
1920	xfs_ili_zone =
1921		kmem_zone_init_flags(sizeof(xfs_inode_log_item_t), "xfs_ili",
1922					KM_ZONE_SPREAD, NULL);
1923	if (!xfs_ili_zone)
1924		goto out_destroy_inode_zone;
1925	xfs_icreate_zone = kmem_zone_init(sizeof(struct xfs_icreate_item),
1926					"xfs_icr");
1927	if (!xfs_icreate_zone)
1928		goto out_destroy_ili_zone;
1929
1930	xfs_rud_zone = kmem_zone_init(sizeof(struct xfs_rud_log_item),
1931			"xfs_rud_item");
1932	if (!xfs_rud_zone)
1933		goto out_destroy_icreate_zone;
1934
1935	xfs_rui_zone = kmem_zone_init(
1936			xfs_rui_log_item_sizeof(XFS_RUI_MAX_FAST_EXTENTS),
1937			"xfs_rui_item");
1938	if (!xfs_rui_zone)
1939		goto out_destroy_rud_zone;
1940
1941	xfs_cud_zone = kmem_zone_init(sizeof(struct xfs_cud_log_item),
1942			"xfs_cud_item");
1943	if (!xfs_cud_zone)
1944		goto out_destroy_rui_zone;
1945
1946	xfs_cui_zone = kmem_zone_init(
1947			xfs_cui_log_item_sizeof(XFS_CUI_MAX_FAST_EXTENTS),
1948			"xfs_cui_item");
1949	if (!xfs_cui_zone)
1950		goto out_destroy_cud_zone;
1951
1952	xfs_bud_zone = kmem_zone_init(sizeof(struct xfs_bud_log_item),
1953			"xfs_bud_item");
1954	if (!xfs_bud_zone)
1955		goto out_destroy_cui_zone;
1956
1957	xfs_bui_zone = kmem_zone_init(
1958			xfs_bui_log_item_sizeof(XFS_BUI_MAX_FAST_EXTENTS),
1959			"xfs_bui_item");
1960	if (!xfs_bui_zone)
1961		goto out_destroy_bud_zone;
1962
1963	return 0;
1964
1965 out_destroy_bud_zone:
1966	kmem_zone_destroy(xfs_bud_zone);
1967 out_destroy_cui_zone:
1968	kmem_zone_destroy(xfs_cui_zone);
1969 out_destroy_cud_zone:
1970	kmem_zone_destroy(xfs_cud_zone);
1971 out_destroy_rui_zone:
1972	kmem_zone_destroy(xfs_rui_zone);
1973 out_destroy_rud_zone:
1974	kmem_zone_destroy(xfs_rud_zone);
1975 out_destroy_icreate_zone:
1976	kmem_zone_destroy(xfs_icreate_zone);
1977 out_destroy_ili_zone:
1978	kmem_zone_destroy(xfs_ili_zone);
1979 out_destroy_inode_zone:
1980	kmem_zone_destroy(xfs_inode_zone);
1981 out_destroy_efi_zone:
1982	kmem_zone_destroy(xfs_efi_zone);
1983 out_destroy_efd_zone:
1984	kmem_zone_destroy(xfs_efd_zone);
1985 out_destroy_buf_item_zone:
1986	kmem_zone_destroy(xfs_buf_item_zone);
 
 
1987 out_destroy_trans_zone:
1988	kmem_zone_destroy(xfs_trans_zone);
1989 out_destroy_ifork_zone:
1990	kmem_zone_destroy(xfs_ifork_zone);
1991 out_destroy_da_state_zone:
1992	kmem_zone_destroy(xfs_da_state_zone);
1993 out_destroy_btree_cur_zone:
1994	kmem_zone_destroy(xfs_btree_cur_zone);
1995 out_destroy_bmap_free_item_zone:
1996	kmem_zone_destroy(xfs_bmap_free_item_zone);
1997 out_destroy_log_ticket_zone:
1998	kmem_zone_destroy(xfs_log_ticket_zone);
1999 out_free_ioend_bioset:
2000	bioset_exit(&xfs_ioend_bioset);
 
 
2001 out:
2002	return -ENOMEM;
2003}
2004
2005STATIC void
2006xfs_destroy_zones(void)
2007{
2008	/*
2009	 * Make sure all delayed rcu free are flushed before we
2010	 * destroy caches.
2011	 */
2012	rcu_barrier();
2013	kmem_zone_destroy(xfs_bui_zone);
2014	kmem_zone_destroy(xfs_bud_zone);
2015	kmem_zone_destroy(xfs_cui_zone);
2016	kmem_zone_destroy(xfs_cud_zone);
2017	kmem_zone_destroy(xfs_rui_zone);
2018	kmem_zone_destroy(xfs_rud_zone);
2019	kmem_zone_destroy(xfs_icreate_zone);
2020	kmem_zone_destroy(xfs_ili_zone);
2021	kmem_zone_destroy(xfs_inode_zone);
2022	kmem_zone_destroy(xfs_efi_zone);
2023	kmem_zone_destroy(xfs_efd_zone);
2024	kmem_zone_destroy(xfs_buf_item_zone);
 
2025	kmem_zone_destroy(xfs_trans_zone);
2026	kmem_zone_destroy(xfs_ifork_zone);
2027	kmem_zone_destroy(xfs_da_state_zone);
2028	kmem_zone_destroy(xfs_btree_cur_zone);
2029	kmem_zone_destroy(xfs_bmap_free_item_zone);
2030	kmem_zone_destroy(xfs_log_ticket_zone);
2031	bioset_exit(&xfs_ioend_bioset);
 
 
2032}
2033
2034STATIC int __init
2035xfs_init_workqueues(void)
2036{
2037	/*
2038	 * The allocation workqueue can be used in memory reclaim situations
2039	 * (writepage path), and parallelism is only limited by the number of
2040	 * AGs in all the filesystems mounted. Hence use the default large
2041	 * max_active value for this workqueue.
2042	 */
2043	xfs_alloc_wq = alloc_workqueue("xfsalloc",
2044			WQ_MEM_RECLAIM|WQ_FREEZABLE, 0);
2045	if (!xfs_alloc_wq)
2046		return -ENOMEM;
2047
2048	xfs_discard_wq = alloc_workqueue("xfsdiscard", WQ_UNBOUND, 0);
2049	if (!xfs_discard_wq)
2050		goto out_free_alloc_wq;
2051
2052	return 0;
2053out_free_alloc_wq:
2054	destroy_workqueue(xfs_alloc_wq);
2055	return -ENOMEM;
2056}
2057
2058STATIC void
2059xfs_destroy_workqueues(void)
2060{
2061	destroy_workqueue(xfs_discard_wq);
2062	destroy_workqueue(xfs_alloc_wq);
2063}
2064
2065STATIC int __init
2066init_xfs_fs(void)
2067{
2068	int			error;
2069
2070	xfs_check_ondisk_structs();
2071
2072	printk(KERN_INFO XFS_VERSION_STRING " with "
2073			 XFS_BUILD_OPTIONS " enabled\n");
2074
2075	xfs_dir_startup();
2076
2077	error = xfs_init_zones();
2078	if (error)
2079		goto out;
2080
2081	error = xfs_init_workqueues();
2082	if (error)
2083		goto out_destroy_zones;
2084
2085	error = xfs_mru_cache_init();
2086	if (error)
2087		goto out_destroy_wq;
2088
2089	error = xfs_buf_init();
2090	if (error)
2091		goto out_mru_cache_uninit;
2092
 
 
 
 
2093	error = xfs_init_procfs();
2094	if (error)
2095		goto out_buf_terminate;
2096
2097	error = xfs_sysctl_register();
2098	if (error)
2099		goto out_cleanup_procfs;
2100
2101	xfs_kset = kset_create_and_add("xfs", NULL, fs_kobj);
2102	if (!xfs_kset) {
2103		error = -ENOMEM;
2104		goto out_sysctl_unregister;
2105	}
2106
2107	xfsstats.xs_kobj.kobject.kset = xfs_kset;
2108
2109	xfsstats.xs_stats = alloc_percpu(struct xfsstats);
2110	if (!xfsstats.xs_stats) {
2111		error = -ENOMEM;
2112		goto out_kset_unregister;
2113	}
2114
2115	error = xfs_sysfs_init(&xfsstats.xs_kobj, &xfs_stats_ktype, NULL,
2116			       "stats");
2117	if (error)
2118		goto out_free_stats;
2119
2120#ifdef DEBUG
2121	xfs_dbg_kobj.kobject.kset = xfs_kset;
2122	error = xfs_sysfs_init(&xfs_dbg_kobj, &xfs_dbg_ktype, NULL, "debug");
2123	if (error)
2124		goto out_remove_stats_kobj;
2125#endif
2126
2127	error = xfs_qm_init();
2128	if (error)
2129		goto out_remove_dbg_kobj;
2130
2131	error = register_filesystem(&xfs_fs_type);
2132	if (error)
2133		goto out_qm_exit;
2134	return 0;
2135
2136 out_qm_exit:
2137	xfs_qm_exit();
2138 out_remove_dbg_kobj:
2139#ifdef DEBUG
2140	xfs_sysfs_del(&xfs_dbg_kobj);
2141 out_remove_stats_kobj:
2142#endif
2143	xfs_sysfs_del(&xfsstats.xs_kobj);
2144 out_free_stats:
2145	free_percpu(xfsstats.xs_stats);
2146 out_kset_unregister:
2147	kset_unregister(xfs_kset);
2148 out_sysctl_unregister:
2149	xfs_sysctl_unregister();
2150 out_cleanup_procfs:
2151	xfs_cleanup_procfs();
2152 out_buf_terminate:
2153	xfs_buf_terminate();
 
 
2154 out_mru_cache_uninit:
2155	xfs_mru_cache_uninit();
2156 out_destroy_wq:
2157	xfs_destroy_workqueues();
2158 out_destroy_zones:
2159	xfs_destroy_zones();
2160 out:
2161	return error;
2162}
2163
2164STATIC void __exit
2165exit_xfs_fs(void)
2166{
2167	xfs_qm_exit();
2168	unregister_filesystem(&xfs_fs_type);
2169#ifdef DEBUG
2170	xfs_sysfs_del(&xfs_dbg_kobj);
2171#endif
2172	xfs_sysfs_del(&xfsstats.xs_kobj);
2173	free_percpu(xfsstats.xs_stats);
2174	kset_unregister(xfs_kset);
2175	xfs_sysctl_unregister();
2176	xfs_cleanup_procfs();
2177	xfs_buf_terminate();
 
2178	xfs_mru_cache_uninit();
2179	xfs_destroy_workqueues();
2180	xfs_destroy_zones();
2181	xfs_uuid_table_free();
2182}
2183
2184module_init(init_xfs_fs);
2185module_exit(exit_xfs_fs);
2186
2187MODULE_AUTHOR("Silicon Graphics, Inc.");
2188MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
2189MODULE_LICENSE("GPL");
v3.15
 
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18
  19#include "xfs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_inum.h"
  25#include "xfs_sb.h"
  26#include "xfs_ag.h"
  27#include "xfs_mount.h"
  28#include "xfs_da_format.h"
  29#include "xfs_inode.h"
  30#include "xfs_btree.h"
  31#include "xfs_bmap.h"
  32#include "xfs_alloc.h"
  33#include "xfs_error.h"
  34#include "xfs_fsops.h"
  35#include "xfs_trans.h"
  36#include "xfs_buf_item.h"
  37#include "xfs_log.h"
  38#include "xfs_log_priv.h"
  39#include "xfs_da_btree.h"
  40#include "xfs_dir2.h"
  41#include "xfs_extfree_item.h"
  42#include "xfs_mru_cache.h"
  43#include "xfs_inode_item.h"
  44#include "xfs_icache.h"
  45#include "xfs_trace.h"
  46#include "xfs_icreate_item.h"
  47#include "xfs_dinode.h"
  48#include "xfs_filestream.h"
  49#include "xfs_quota.h"
 
 
 
 
 
 
  50
  51#include <linux/namei.h>
  52#include <linux/init.h>
  53#include <linux/slab.h>
  54#include <linux/mount.h>
  55#include <linux/mempool.h>
  56#include <linux/writeback.h>
  57#include <linux/kthread.h>
  58#include <linux/freezer.h>
  59#include <linux/parser.h>
  60
  61static const struct super_operations xfs_super_operations;
  62static kmem_zone_t *xfs_ioend_zone;
  63mempool_t *xfs_ioend_pool;
  64
  65#define MNTOPT_LOGBUFS	"logbufs"	/* number of XFS log buffers */
  66#define MNTOPT_LOGBSIZE	"logbsize"	/* size of XFS log buffers */
  67#define MNTOPT_LOGDEV	"logdev"	/* log device */
  68#define MNTOPT_RTDEV	"rtdev"		/* realtime I/O device */
  69#define MNTOPT_BIOSIZE	"biosize"	/* log2 of preferred buffered io size */
  70#define MNTOPT_WSYNC	"wsync"		/* safe-mode nfs compatible mount */
  71#define MNTOPT_NOALIGN	"noalign"	/* turn off stripe alignment */
  72#define MNTOPT_SWALLOC	"swalloc"	/* turn on stripe width allocation */
  73#define MNTOPT_SUNIT	"sunit"		/* data volume stripe unit */
  74#define MNTOPT_SWIDTH	"swidth"	/* data volume stripe width */
  75#define MNTOPT_NOUUID	"nouuid"	/* ignore filesystem UUID */
  76#define MNTOPT_MTPT	"mtpt"		/* filesystem mount point */
  77#define MNTOPT_GRPID	"grpid"		/* group-ID from parent directory */
  78#define MNTOPT_NOGRPID	"nogrpid"	/* group-ID from current process */
  79#define MNTOPT_BSDGROUPS    "bsdgroups"    /* group-ID from parent directory */
  80#define MNTOPT_SYSVGROUPS   "sysvgroups"   /* group-ID from current process */
  81#define MNTOPT_ALLOCSIZE    "allocsize"    /* preferred allocation size */
  82#define MNTOPT_NORECOVERY   "norecovery"   /* don't run XFS recovery */
  83#define MNTOPT_BARRIER	"barrier"	/* use writer barriers for log write and
  84					 * unwritten extent conversion */
  85#define MNTOPT_NOBARRIER "nobarrier"	/* .. disable */
  86#define MNTOPT_64BITINODE   "inode64"	/* inodes can be allocated anywhere */
  87#define MNTOPT_32BITINODE   "inode32"	/* inode allocation limited to
  88					 * XFS_MAXINUMBER_32 */
  89#define MNTOPT_IKEEP	"ikeep"		/* do not free empty inode clusters */
  90#define MNTOPT_NOIKEEP	"noikeep"	/* free empty inode clusters */
  91#define MNTOPT_LARGEIO	   "largeio"	/* report large I/O sizes in stat() */
  92#define MNTOPT_NOLARGEIO   "nolargeio"	/* do not report large I/O sizes
  93					 * in stat(). */
  94#define MNTOPT_ATTR2	"attr2"		/* do use attr2 attribute format */
  95#define MNTOPT_NOATTR2	"noattr2"	/* do not use attr2 attribute format */
  96#define MNTOPT_FILESTREAM  "filestreams" /* use filestreams allocator */
  97#define MNTOPT_QUOTA	"quota"		/* disk quotas (user) */
  98#define MNTOPT_NOQUOTA	"noquota"	/* no quotas */
  99#define MNTOPT_USRQUOTA	"usrquota"	/* user quota enabled */
 100#define MNTOPT_GRPQUOTA	"grpquota"	/* group quota enabled */
 101#define MNTOPT_PRJQUOTA	"prjquota"	/* project quota enabled */
 102#define MNTOPT_UQUOTA	"uquota"	/* user quota (IRIX variant) */
 103#define MNTOPT_GQUOTA	"gquota"	/* group quota (IRIX variant) */
 104#define MNTOPT_PQUOTA	"pquota"	/* project quota (IRIX variant) */
 105#define MNTOPT_UQUOTANOENF "uqnoenforce"/* user quota limit enforcement */
 106#define MNTOPT_GQUOTANOENF "gqnoenforce"/* group quota limit enforcement */
 107#define MNTOPT_PQUOTANOENF "pqnoenforce"/* project quota limit enforcement */
 108#define MNTOPT_QUOTANOENF  "qnoenforce"	/* same as uqnoenforce */
 109#define MNTOPT_DELAYLOG    "delaylog"	/* Delayed logging enabled */
 110#define MNTOPT_NODELAYLOG  "nodelaylog"	/* Delayed logging disabled */
 111#define MNTOPT_DISCARD	   "discard"	/* Discard unused blocks */
 112#define MNTOPT_NODISCARD   "nodiscard"	/* Do not discard unused blocks */
 113
 114/*
 115 * Table driven mount option parser.
 116 *
 117 * Currently only used for remount, but it will be used for mount
 118 * in the future, too.
 119 */
 120enum {
 121	Opt_barrier,
 122	Opt_nobarrier,
 123	Opt_inode64,
 124	Opt_inode32,
 125	Opt_err
 
 
 
 
 126};
 127
 128static const match_table_t tokens = {
 129	{Opt_barrier, "barrier"},
 130	{Opt_nobarrier, "nobarrier"},
 131	{Opt_inode64, "inode64"},
 132	{Opt_inode32, "inode32"},
 133	{Opt_err, NULL}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134};
 135
 136
 137STATIC unsigned long
 138suffix_kstrtoint(char *s, unsigned int base, int *res)
 139{
 140	int	last, shift_left_factor = 0, _res;
 141	char	*value = s;
 
 
 
 
 
 142
 143	last = strlen(value) - 1;
 144	if (value[last] == 'K' || value[last] == 'k') {
 145		shift_left_factor = 10;
 146		value[last] = '\0';
 147	}
 148	if (value[last] == 'M' || value[last] == 'm') {
 149		shift_left_factor = 20;
 150		value[last] = '\0';
 151	}
 152	if (value[last] == 'G' || value[last] == 'g') {
 153		shift_left_factor = 30;
 154		value[last] = '\0';
 155	}
 156
 157	if (kstrtoint(s, base, &_res))
 158		return -EINVAL;
 
 159	*res = _res << shift_left_factor;
 160	return 0;
 161}
 162
 163/*
 164 * This function fills in xfs_mount_t fields based on mount args.
 165 * Note: the superblock has _not_ yet been read in.
 166 *
 167 * Note that this function leaks the various device name allocations on
 168 * failure.  The caller takes care of them.
 
 
 
 
 169 */
 170STATIC int
 171xfs_parseargs(
 172	struct xfs_mount	*mp,
 173	char			*options)
 174{
 175	struct super_block	*sb = mp->m_super;
 176	char			*this_char, *value;
 
 177	int			dsunit = 0;
 178	int			dswidth = 0;
 179	int			iosize = 0;
 180	__uint8_t		iosizelog = 0;
 181
 182	/*
 183	 * set up the mount name first so all the errors will refer to the
 184	 * correct device.
 185	 */
 186	mp->m_fsname = kstrndup(sb->s_id, MAXNAMELEN, GFP_KERNEL);
 187	if (!mp->m_fsname)
 188		return ENOMEM;
 189	mp->m_fsname_len = strlen(mp->m_fsname) + 1;
 190
 191	/*
 192	 * Copy binary VFS mount flags we are interested in.
 193	 */
 194	if (sb->s_flags & MS_RDONLY)
 195		mp->m_flags |= XFS_MOUNT_RDONLY;
 196	if (sb->s_flags & MS_DIRSYNC)
 197		mp->m_flags |= XFS_MOUNT_DIRSYNC;
 198	if (sb->s_flags & MS_SYNCHRONOUS)
 199		mp->m_flags |= XFS_MOUNT_WSYNC;
 200
 201	/*
 202	 * Set some default flags that could be cleared by the mount option
 203	 * parsing.
 204	 */
 205	mp->m_flags |= XFS_MOUNT_BARRIER;
 206	mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
 207#if !XFS_BIG_INUMS
 208	mp->m_flags |= XFS_MOUNT_SMALL_INUMS;
 209#endif
 210
 211	/*
 212	 * These can be overridden by the mount option parsing.
 213	 */
 214	mp->m_logbufs = -1;
 215	mp->m_logbsize = -1;
 216
 217	if (!options)
 218		goto done;
 219
 220	while ((this_char = strsep(&options, ",")) != NULL) {
 221		if (!*this_char)
 
 
 222			continue;
 223		if ((value = strchr(this_char, '=')) != NULL)
 224			*value++ = 0;
 225
 226		if (!strcmp(this_char, MNTOPT_LOGBUFS)) {
 227			if (!value || !*value) {
 228				xfs_warn(mp, "%s option requires an argument",
 229					this_char);
 230				return EINVAL;
 231			}
 232			if (kstrtoint(value, 10, &mp->m_logbufs))
 233				return EINVAL;
 234		} else if (!strcmp(this_char, MNTOPT_LOGBSIZE)) {
 235			if (!value || !*value) {
 236				xfs_warn(mp, "%s option requires an argument",
 237					this_char);
 238				return EINVAL;
 239			}
 240			if (suffix_kstrtoint(value, 10, &mp->m_logbsize))
 241				return EINVAL;
 242		} else if (!strcmp(this_char, MNTOPT_LOGDEV)) {
 243			if (!value || !*value) {
 244				xfs_warn(mp, "%s option requires an argument",
 245					this_char);
 246				return EINVAL;
 247			}
 248			mp->m_logname = kstrndup(value, MAXNAMELEN, GFP_KERNEL);
 249			if (!mp->m_logname)
 250				return ENOMEM;
 251		} else if (!strcmp(this_char, MNTOPT_MTPT)) {
 252			xfs_warn(mp, "%s option not allowed on this system",
 253				this_char);
 254			return EINVAL;
 255		} else if (!strcmp(this_char, MNTOPT_RTDEV)) {
 256			if (!value || !*value) {
 257				xfs_warn(mp, "%s option requires an argument",
 258					this_char);
 259				return EINVAL;
 260			}
 261			mp->m_rtname = kstrndup(value, MAXNAMELEN, GFP_KERNEL);
 262			if (!mp->m_rtname)
 263				return ENOMEM;
 264		} else if (!strcmp(this_char, MNTOPT_BIOSIZE)) {
 265			if (!value || !*value) {
 266				xfs_warn(mp, "%s option requires an argument",
 267					this_char);
 268				return EINVAL;
 269			}
 270			if (kstrtoint(value, 10, &iosize))
 271				return EINVAL;
 272			iosizelog = ffs(iosize) - 1;
 273		} else if (!strcmp(this_char, MNTOPT_ALLOCSIZE)) {
 274			if (!value || !*value) {
 275				xfs_warn(mp, "%s option requires an argument",
 276					this_char);
 277				return EINVAL;
 278			}
 279			if (suffix_kstrtoint(value, 10, &iosize))
 280				return EINVAL;
 281			iosizelog = ffs(iosize) - 1;
 282		} else if (!strcmp(this_char, MNTOPT_GRPID) ||
 283			   !strcmp(this_char, MNTOPT_BSDGROUPS)) {
 284			mp->m_flags |= XFS_MOUNT_GRPID;
 285		} else if (!strcmp(this_char, MNTOPT_NOGRPID) ||
 286			   !strcmp(this_char, MNTOPT_SYSVGROUPS)) {
 
 287			mp->m_flags &= ~XFS_MOUNT_GRPID;
 288		} else if (!strcmp(this_char, MNTOPT_WSYNC)) {
 
 289			mp->m_flags |= XFS_MOUNT_WSYNC;
 290		} else if (!strcmp(this_char, MNTOPT_NORECOVERY)) {
 
 291			mp->m_flags |= XFS_MOUNT_NORECOVERY;
 292		} else if (!strcmp(this_char, MNTOPT_NOALIGN)) {
 
 293			mp->m_flags |= XFS_MOUNT_NOALIGN;
 294		} else if (!strcmp(this_char, MNTOPT_SWALLOC)) {
 
 295			mp->m_flags |= XFS_MOUNT_SWALLOC;
 296		} else if (!strcmp(this_char, MNTOPT_SUNIT)) {
 297			if (!value || !*value) {
 298				xfs_warn(mp, "%s option requires an argument",
 299					this_char);
 300				return EINVAL;
 301			}
 302			if (kstrtoint(value, 10, &dsunit))
 303				return EINVAL;
 304		} else if (!strcmp(this_char, MNTOPT_SWIDTH)) {
 305			if (!value || !*value) {
 306				xfs_warn(mp, "%s option requires an argument",
 307					this_char);
 308				return EINVAL;
 309			}
 310			if (kstrtoint(value, 10, &dswidth))
 311				return EINVAL;
 312		} else if (!strcmp(this_char, MNTOPT_32BITINODE)) {
 313			mp->m_flags |= XFS_MOUNT_SMALL_INUMS;
 314		} else if (!strcmp(this_char, MNTOPT_64BITINODE)) {
 
 315			mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS;
 316#if !XFS_BIG_INUMS
 317			xfs_warn(mp, "%s option not allowed on this system",
 318				this_char);
 319			return EINVAL;
 320#endif
 321		} else if (!strcmp(this_char, MNTOPT_NOUUID)) {
 322			mp->m_flags |= XFS_MOUNT_NOUUID;
 323		} else if (!strcmp(this_char, MNTOPT_BARRIER)) {
 324			mp->m_flags |= XFS_MOUNT_BARRIER;
 325		} else if (!strcmp(this_char, MNTOPT_NOBARRIER)) {
 326			mp->m_flags &= ~XFS_MOUNT_BARRIER;
 327		} else if (!strcmp(this_char, MNTOPT_IKEEP)) {
 328			mp->m_flags |= XFS_MOUNT_IKEEP;
 329		} else if (!strcmp(this_char, MNTOPT_NOIKEEP)) {
 
 330			mp->m_flags &= ~XFS_MOUNT_IKEEP;
 331		} else if (!strcmp(this_char, MNTOPT_LARGEIO)) {
 
 332			mp->m_flags &= ~XFS_MOUNT_COMPAT_IOSIZE;
 333		} else if (!strcmp(this_char, MNTOPT_NOLARGEIO)) {
 
 334			mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
 335		} else if (!strcmp(this_char, MNTOPT_ATTR2)) {
 
 336			mp->m_flags |= XFS_MOUNT_ATTR2;
 337		} else if (!strcmp(this_char, MNTOPT_NOATTR2)) {
 
 338			mp->m_flags &= ~XFS_MOUNT_ATTR2;
 339			mp->m_flags |= XFS_MOUNT_NOATTR2;
 340		} else if (!strcmp(this_char, MNTOPT_FILESTREAM)) {
 
 341			mp->m_flags |= XFS_MOUNT_FILESTREAMS;
 342		} else if (!strcmp(this_char, MNTOPT_NOQUOTA)) {
 
 343			mp->m_qflags &= ~XFS_ALL_QUOTA_ACCT;
 344			mp->m_qflags &= ~XFS_ALL_QUOTA_ENFD;
 345			mp->m_qflags &= ~XFS_ALL_QUOTA_ACTIVE;
 346		} else if (!strcmp(this_char, MNTOPT_QUOTA) ||
 347			   !strcmp(this_char, MNTOPT_UQUOTA) ||
 348			   !strcmp(this_char, MNTOPT_USRQUOTA)) {
 
 349			mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE |
 350					 XFS_UQUOTA_ENFD);
 351		} else if (!strcmp(this_char, MNTOPT_QUOTANOENF) ||
 352			   !strcmp(this_char, MNTOPT_UQUOTANOENF)) {
 
 353			mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE);
 354			mp->m_qflags &= ~XFS_UQUOTA_ENFD;
 355		} else if (!strcmp(this_char, MNTOPT_PQUOTA) ||
 356			   !strcmp(this_char, MNTOPT_PRJQUOTA)) {
 
 357			mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE |
 358					 XFS_PQUOTA_ENFD);
 359		} else if (!strcmp(this_char, MNTOPT_PQUOTANOENF)) {
 
 360			mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE);
 361			mp->m_qflags &= ~XFS_PQUOTA_ENFD;
 362		} else if (!strcmp(this_char, MNTOPT_GQUOTA) ||
 363			   !strcmp(this_char, MNTOPT_GRPQUOTA)) {
 
 364			mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE |
 365					 XFS_GQUOTA_ENFD);
 366		} else if (!strcmp(this_char, MNTOPT_GQUOTANOENF)) {
 
 367			mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE);
 368			mp->m_qflags &= ~XFS_GQUOTA_ENFD;
 369		} else if (!strcmp(this_char, MNTOPT_DELAYLOG)) {
 370			xfs_warn(mp,
 371	"delaylog is the default now, option is deprecated.");
 372		} else if (!strcmp(this_char, MNTOPT_NODELAYLOG)) {
 373			xfs_warn(mp,
 374	"nodelaylog support has been removed, option is deprecated.");
 375		} else if (!strcmp(this_char, MNTOPT_DISCARD)) {
 376			mp->m_flags |= XFS_MOUNT_DISCARD;
 377		} else if (!strcmp(this_char, MNTOPT_NODISCARD)) {
 
 378			mp->m_flags &= ~XFS_MOUNT_DISCARD;
 379		} else if (!strcmp(this_char, "ihashsize")) {
 380			xfs_warn(mp,
 381	"ihashsize no longer used, option is deprecated.");
 382		} else if (!strcmp(this_char, "osyncisdsync")) {
 383			xfs_warn(mp,
 384	"osyncisdsync has no effect, option is deprecated.");
 385		} else if (!strcmp(this_char, "osyncisosync")) {
 386			xfs_warn(mp,
 387	"osyncisosync has no effect, option is deprecated.");
 388		} else if (!strcmp(this_char, "irixsgid")) {
 389			xfs_warn(mp,
 390	"irixsgid is now a sysctl(2) variable, option is deprecated.");
 391		} else {
 392			xfs_warn(mp, "unknown mount option [%s].", this_char);
 393			return EINVAL;
 394		}
 395	}
 396
 397	/*
 398	 * no recovery flag requires a read-only mount
 399	 */
 400	if ((mp->m_flags & XFS_MOUNT_NORECOVERY) &&
 401	    !(mp->m_flags & XFS_MOUNT_RDONLY)) {
 402		xfs_warn(mp, "no-recovery mounts must be read-only.");
 403		return EINVAL;
 404	}
 405
 406	if ((mp->m_flags & XFS_MOUNT_NOALIGN) && (dsunit || dswidth)) {
 407		xfs_warn(mp,
 408	"sunit and swidth options incompatible with the noalign option");
 409		return EINVAL;
 410	}
 411
 412#ifndef CONFIG_XFS_QUOTA
 413	if (XFS_IS_QUOTA_RUNNING(mp)) {
 414		xfs_warn(mp, "quota support not available in this kernel.");
 415		return EINVAL;
 416	}
 417#endif
 418
 419	if ((dsunit && !dswidth) || (!dsunit && dswidth)) {
 420		xfs_warn(mp, "sunit and swidth must be specified together");
 421		return EINVAL;
 422	}
 423
 424	if (dsunit && (dswidth % dsunit != 0)) {
 425		xfs_warn(mp,
 426	"stripe width (%d) must be a multiple of the stripe unit (%d)",
 427			dswidth, dsunit);
 428		return EINVAL;
 429	}
 430
 431done:
 432	if (dsunit && !(mp->m_flags & XFS_MOUNT_NOALIGN)) {
 433		/*
 434		 * At this point the superblock has not been read
 435		 * in, therefore we do not know the block size.
 436		 * Before the mount call ends we will convert
 437		 * these to FSBs.
 438		 */
 439		mp->m_dalign = dsunit;
 440		mp->m_swidth = dswidth;
 441	}
 442
 443	if (mp->m_logbufs != -1 &&
 444	    mp->m_logbufs != 0 &&
 445	    (mp->m_logbufs < XLOG_MIN_ICLOGS ||
 446	     mp->m_logbufs > XLOG_MAX_ICLOGS)) {
 447		xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]",
 448			mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS);
 449		return XFS_ERROR(EINVAL);
 450	}
 451	if (mp->m_logbsize != -1 &&
 452	    mp->m_logbsize !=  0 &&
 453	    (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE ||
 454	     mp->m_logbsize > XLOG_MAX_RECORD_BSIZE ||
 455	     !is_power_of_2(mp->m_logbsize))) {
 456		xfs_warn(mp,
 457			"invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]",
 458			mp->m_logbsize);
 459		return XFS_ERROR(EINVAL);
 460	}
 461
 462	if (iosizelog) {
 463		if (iosizelog > XFS_MAX_IO_LOG ||
 464		    iosizelog < XFS_MIN_IO_LOG) {
 465			xfs_warn(mp, "invalid log iosize: %d [not %d-%d]",
 466				iosizelog, XFS_MIN_IO_LOG,
 467				XFS_MAX_IO_LOG);
 468			return XFS_ERROR(EINVAL);
 469		}
 470
 471		mp->m_flags |= XFS_MOUNT_DFLT_IOSIZE;
 472		mp->m_readio_log = iosizelog;
 473		mp->m_writeio_log = iosizelog;
 474	}
 475
 476	return 0;
 477}
 478
 479struct proc_xfs_info {
 480	int	flag;
 481	char	*str;
 482};
 483
 484STATIC int
 485xfs_showargs(
 486	struct xfs_mount	*mp,
 487	struct seq_file		*m)
 488{
 489	static struct proc_xfs_info xfs_info_set[] = {
 490		/* the few simple ones we can get from the mount struct */
 491		{ XFS_MOUNT_IKEEP,		"," MNTOPT_IKEEP },
 492		{ XFS_MOUNT_WSYNC,		"," MNTOPT_WSYNC },
 493		{ XFS_MOUNT_NOALIGN,		"," MNTOPT_NOALIGN },
 494		{ XFS_MOUNT_SWALLOC,		"," MNTOPT_SWALLOC },
 495		{ XFS_MOUNT_NOUUID,		"," MNTOPT_NOUUID },
 496		{ XFS_MOUNT_NORECOVERY,		"," MNTOPT_NORECOVERY },
 497		{ XFS_MOUNT_ATTR2,		"," MNTOPT_ATTR2 },
 498		{ XFS_MOUNT_FILESTREAMS,	"," MNTOPT_FILESTREAM },
 499		{ XFS_MOUNT_GRPID,		"," MNTOPT_GRPID },
 500		{ XFS_MOUNT_DISCARD,		"," MNTOPT_DISCARD },
 501		{ XFS_MOUNT_SMALL_INUMS,	"," MNTOPT_32BITINODE },
 
 502		{ 0, NULL }
 503	};
 504	static struct proc_xfs_info xfs_info_unset[] = {
 505		/* the few simple ones we can get from the mount struct */
 506		{ XFS_MOUNT_COMPAT_IOSIZE,	"," MNTOPT_LARGEIO },
 507		{ XFS_MOUNT_BARRIER,		"," MNTOPT_NOBARRIER },
 508		{ XFS_MOUNT_SMALL_INUMS,	"," MNTOPT_64BITINODE },
 509		{ 0, NULL }
 510	};
 511	struct proc_xfs_info	*xfs_infop;
 512
 513	for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) {
 514		if (mp->m_flags & xfs_infop->flag)
 515			seq_puts(m, xfs_infop->str);
 516	}
 517	for (xfs_infop = xfs_info_unset; xfs_infop->flag; xfs_infop++) {
 518		if (!(mp->m_flags & xfs_infop->flag))
 519			seq_puts(m, xfs_infop->str);
 520	}
 521
 522	if (mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)
 523		seq_printf(m, "," MNTOPT_ALLOCSIZE "=%dk",
 524				(int)(1 << mp->m_writeio_log) >> 10);
 525
 526	if (mp->m_logbufs > 0)
 527		seq_printf(m, "," MNTOPT_LOGBUFS "=%d", mp->m_logbufs);
 528	if (mp->m_logbsize > 0)
 529		seq_printf(m, "," MNTOPT_LOGBSIZE "=%dk", mp->m_logbsize >> 10);
 530
 531	if (mp->m_logname)
 532		seq_printf(m, "," MNTOPT_LOGDEV "=%s", mp->m_logname);
 533	if (mp->m_rtname)
 534		seq_printf(m, "," MNTOPT_RTDEV "=%s", mp->m_rtname);
 535
 536	if (mp->m_dalign > 0)
 537		seq_printf(m, "," MNTOPT_SUNIT "=%d",
 538				(int)XFS_FSB_TO_BB(mp, mp->m_dalign));
 539	if (mp->m_swidth > 0)
 540		seq_printf(m, "," MNTOPT_SWIDTH "=%d",
 541				(int)XFS_FSB_TO_BB(mp, mp->m_swidth));
 542
 543	if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD))
 544		seq_puts(m, "," MNTOPT_USRQUOTA);
 545	else if (mp->m_qflags & XFS_UQUOTA_ACCT)
 546		seq_puts(m, "," MNTOPT_UQUOTANOENF);
 547
 548	if (mp->m_qflags & XFS_PQUOTA_ACCT) {
 549		if (mp->m_qflags & XFS_PQUOTA_ENFD)
 550			seq_puts(m, "," MNTOPT_PRJQUOTA);
 551		else
 552			seq_puts(m, "," MNTOPT_PQUOTANOENF);
 553	}
 554	if (mp->m_qflags & XFS_GQUOTA_ACCT) {
 555		if (mp->m_qflags & XFS_GQUOTA_ENFD)
 556			seq_puts(m, "," MNTOPT_GRPQUOTA);
 557		else
 558			seq_puts(m, "," MNTOPT_GQUOTANOENF);
 559	}
 560
 561	if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT))
 562		seq_puts(m, "," MNTOPT_NOQUOTA);
 
 563
 564	return 0;
 565}
 566__uint64_t
 567xfs_max_file_offset(
 568	unsigned int		blockshift)
 569{
 570	unsigned int		pagefactor = 1;
 571	unsigned int		bitshift = BITS_PER_LONG - 1;
 572
 573	/* Figure out maximum filesize, on Linux this can depend on
 574	 * the filesystem blocksize (on 32 bit platforms).
 575	 * __block_write_begin does this in an [unsigned] long...
 576	 *      page->index << (PAGE_CACHE_SHIFT - bbits)
 577	 * So, for page sized blocks (4K on 32 bit platforms),
 578	 * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
 579	 *      (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
 580	 * but for smaller blocksizes it is less (bbits = log2 bsize).
 581	 * Note1: get_block_t takes a long (implicit cast from above)
 582	 * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
 583	 * can optionally convert the [unsigned] long from above into
 584	 * an [unsigned] long long.
 585	 */
 586
 587#if BITS_PER_LONG == 32
 588# if defined(CONFIG_LBDAF)
 589	ASSERT(sizeof(sector_t) == 8);
 590	pagefactor = PAGE_CACHE_SIZE;
 591	bitshift = BITS_PER_LONG;
 592# else
 593	pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
 594# endif
 595#endif
 596
 597	return (((__uint64_t)pagefactor) << bitshift) - 1;
 598}
 599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 600xfs_agnumber_t
 601xfs_set_inode32(struct xfs_mount *mp)
 
 
 602{
 603	xfs_agnumber_t	index = 0;
 604	xfs_agnumber_t	maxagi = 0;
 605	xfs_sb_t	*sbp = &mp->m_sb;
 606	xfs_agnumber_t	max_metadata;
 607	xfs_agino_t	agino =	XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks -1, 0);
 608	xfs_ino_t	ino = XFS_AGINO_TO_INO(mp, sbp->sb_agcount -1, agino);
 609	xfs_perag_t	*pag;
 610
 611	/* Calculate how much should be reserved for inodes to meet
 612	 * the max inode percentage.
 
 613	 */
 614	if (mp->m_maxicount) {
 615		__uint64_t	icount;
 616
 617		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
 618		do_div(icount, 100);
 619		icount += sbp->sb_agblocks - 1;
 620		do_div(icount, sbp->sb_agblocks);
 621		max_metadata = icount;
 622	} else {
 623		max_metadata = sbp->sb_agcount;
 624	}
 625
 626	for (index = 0; index < sbp->sb_agcount; index++) {
 627		ino = XFS_AGINO_TO_INO(mp, index, agino);
 
 628
 629		if (ino > XFS_MAXINUMBER_32) {
 630			pag = xfs_perag_get(mp, index);
 631			pag->pagi_inodeok = 0;
 632			pag->pagf_metadata = 0;
 633			xfs_perag_put(pag);
 634			continue;
 635		}
 
 
 636
 637		pag = xfs_perag_get(mp, index);
 638		pag->pagi_inodeok = 1;
 639		maxagi++;
 640		if (index < max_metadata)
 641			pag->pagf_metadata = 1;
 642		xfs_perag_put(pag);
 643	}
 644	mp->m_flags |= (XFS_MOUNT_32BITINODES |
 645			XFS_MOUNT_SMALL_INUMS);
 646
 647	return maxagi;
 648}
 649
 650xfs_agnumber_t
 651xfs_set_inode64(struct xfs_mount *mp)
 652{
 653	xfs_agnumber_t index = 0;
 654
 655	for (index = 0; index < mp->m_sb.sb_agcount; index++) {
 656		struct xfs_perag	*pag;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657
 658		pag = xfs_perag_get(mp, index);
 659		pag->pagi_inodeok = 1;
 660		pag->pagf_metadata = 0;
 661		xfs_perag_put(pag);
 662	}
 663
 664	/* There is no need for lock protection on m_flags,
 665	 * the rw_semaphore of the VFS superblock is locked
 666	 * during mount/umount/remount operations, so this is
 667	 * enough to avoid concurency on the m_flags field
 668	 */
 669	mp->m_flags &= ~(XFS_MOUNT_32BITINODES |
 670			 XFS_MOUNT_SMALL_INUMS);
 671	return index;
 672}
 673
 674STATIC int
 675xfs_blkdev_get(
 676	xfs_mount_t		*mp,
 677	const char		*name,
 678	struct block_device	**bdevp)
 679{
 680	int			error = 0;
 681
 682	*bdevp = blkdev_get_by_path(name, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
 683				    mp);
 684	if (IS_ERR(*bdevp)) {
 685		error = PTR_ERR(*bdevp);
 686		xfs_warn(mp, "Invalid device [%s], error=%d\n", name, error);
 687	}
 688
 689	return -error;
 690}
 691
 692STATIC void
 693xfs_blkdev_put(
 694	struct block_device	*bdev)
 695{
 696	if (bdev)
 697		blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
 698}
 699
 700void
 701xfs_blkdev_issue_flush(
 702	xfs_buftarg_t		*buftarg)
 703{
 704	blkdev_issue_flush(buftarg->bt_bdev, GFP_NOFS, NULL);
 705}
 706
 707STATIC void
 708xfs_close_devices(
 709	struct xfs_mount	*mp)
 710{
 
 
 711	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
 712		struct block_device *logdev = mp->m_logdev_targp->bt_bdev;
 713		xfs_free_buftarg(mp, mp->m_logdev_targp);
 
 
 714		xfs_blkdev_put(logdev);
 
 715	}
 716	if (mp->m_rtdev_targp) {
 717		struct block_device *rtdev = mp->m_rtdev_targp->bt_bdev;
 718		xfs_free_buftarg(mp, mp->m_rtdev_targp);
 
 
 719		xfs_blkdev_put(rtdev);
 
 720	}
 721	xfs_free_buftarg(mp, mp->m_ddev_targp);
 
 722}
 723
 724/*
 725 * The file system configurations are:
 726 *	(1) device (partition) with data and internal log
 727 *	(2) logical volume with data and log subvolumes.
 728 *	(3) logical volume with data, log, and realtime subvolumes.
 729 *
 730 * We only have to handle opening the log and realtime volumes here if
 731 * they are present.  The data subvolume has already been opened by
 732 * get_sb_bdev() and is stored in sb->s_bdev.
 733 */
 734STATIC int
 735xfs_open_devices(
 736	struct xfs_mount	*mp)
 737{
 738	struct block_device	*ddev = mp->m_super->s_bdev;
 
 
 739	struct block_device	*logdev = NULL, *rtdev = NULL;
 740	int			error;
 741
 742	/*
 743	 * Open real time and log devices - order is important.
 744	 */
 745	if (mp->m_logname) {
 746		error = xfs_blkdev_get(mp, mp->m_logname, &logdev);
 747		if (error)
 748			goto out;
 
 749	}
 750
 751	if (mp->m_rtname) {
 752		error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev);
 753		if (error)
 754			goto out_close_logdev;
 755
 756		if (rtdev == ddev || rtdev == logdev) {
 757			xfs_warn(mp,
 758	"Cannot mount filesystem with identical rtdev and ddev/logdev.");
 759			error = EINVAL;
 760			goto out_close_rtdev;
 761		}
 
 762	}
 763
 764	/*
 765	 * Setup xfs_mount buffer target pointers
 766	 */
 767	error = ENOMEM;
 768	mp->m_ddev_targp = xfs_alloc_buftarg(mp, ddev, 0, mp->m_fsname);
 769	if (!mp->m_ddev_targp)
 770		goto out_close_rtdev;
 771
 772	if (rtdev) {
 773		mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev, 1,
 774							mp->m_fsname);
 775		if (!mp->m_rtdev_targp)
 776			goto out_free_ddev_targ;
 777	}
 778
 779	if (logdev && logdev != ddev) {
 780		mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev, 1,
 781							mp->m_fsname);
 782		if (!mp->m_logdev_targp)
 783			goto out_free_rtdev_targ;
 784	} else {
 785		mp->m_logdev_targp = mp->m_ddev_targp;
 786	}
 787
 788	return 0;
 789
 790 out_free_rtdev_targ:
 791	if (mp->m_rtdev_targp)
 792		xfs_free_buftarg(mp, mp->m_rtdev_targp);
 793 out_free_ddev_targ:
 794	xfs_free_buftarg(mp, mp->m_ddev_targp);
 795 out_close_rtdev:
 796	if (rtdev)
 797		xfs_blkdev_put(rtdev);
 798 out_close_logdev:
 799	if (logdev && logdev != ddev)
 800		xfs_blkdev_put(logdev);
 
 
 801 out:
 
 802	return error;
 803}
 804
 805/*
 806 * Setup xfs_mount buffer target pointers based on superblock
 807 */
 808STATIC int
 809xfs_setup_devices(
 810	struct xfs_mount	*mp)
 811{
 812	int			error;
 813
 814	error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_blocksize,
 815				    mp->m_sb.sb_sectsize);
 816	if (error)
 817		return error;
 818
 819	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
 820		unsigned int	log_sector_size = BBSIZE;
 821
 822		if (xfs_sb_version_hassector(&mp->m_sb))
 823			log_sector_size = mp->m_sb.sb_logsectsize;
 824		error = xfs_setsize_buftarg(mp->m_logdev_targp,
 825					    mp->m_sb.sb_blocksize,
 826					    log_sector_size);
 827		if (error)
 828			return error;
 829	}
 830	if (mp->m_rtdev_targp) {
 831		error = xfs_setsize_buftarg(mp->m_rtdev_targp,
 832					    mp->m_sb.sb_blocksize,
 833					    mp->m_sb.sb_sectsize);
 834		if (error)
 835			return error;
 836	}
 837
 838	return 0;
 839}
 840
 841STATIC int
 842xfs_init_mount_workqueues(
 843	struct xfs_mount	*mp)
 844{
 845	mp->m_data_workqueue = alloc_workqueue("xfs-data/%s",
 846			WQ_MEM_RECLAIM, 0, mp->m_fsname);
 847	if (!mp->m_data_workqueue)
 848		goto out;
 849
 850	mp->m_unwritten_workqueue = alloc_workqueue("xfs-conv/%s",
 851			WQ_MEM_RECLAIM, 0, mp->m_fsname);
 852	if (!mp->m_unwritten_workqueue)
 853		goto out_destroy_data_iodone_queue;
 854
 855	mp->m_cil_workqueue = alloc_workqueue("xfs-cil/%s",
 856			WQ_MEM_RECLAIM, 0, mp->m_fsname);
 
 857	if (!mp->m_cil_workqueue)
 858		goto out_destroy_unwritten;
 859
 860	mp->m_reclaim_workqueue = alloc_workqueue("xfs-reclaim/%s",
 861			0, 0, mp->m_fsname);
 862	if (!mp->m_reclaim_workqueue)
 863		goto out_destroy_cil;
 864
 865	mp->m_log_workqueue = alloc_workqueue("xfs-log/%s",
 866			0, 0, mp->m_fsname);
 867	if (!mp->m_log_workqueue)
 868		goto out_destroy_reclaim;
 869
 870	mp->m_eofblocks_workqueue = alloc_workqueue("xfs-eofblocks/%s",
 871			0, 0, mp->m_fsname);
 872	if (!mp->m_eofblocks_workqueue)
 873		goto out_destroy_log;
 874
 875	return 0;
 876
 877out_destroy_log:
 878	destroy_workqueue(mp->m_log_workqueue);
 879out_destroy_reclaim:
 880	destroy_workqueue(mp->m_reclaim_workqueue);
 881out_destroy_cil:
 882	destroy_workqueue(mp->m_cil_workqueue);
 883out_destroy_unwritten:
 884	destroy_workqueue(mp->m_unwritten_workqueue);
 885out_destroy_data_iodone_queue:
 886	destroy_workqueue(mp->m_data_workqueue);
 887out:
 888	return -ENOMEM;
 889}
 890
 891STATIC void
 892xfs_destroy_mount_workqueues(
 893	struct xfs_mount	*mp)
 894{
 
 895	destroy_workqueue(mp->m_eofblocks_workqueue);
 896	destroy_workqueue(mp->m_log_workqueue);
 897	destroy_workqueue(mp->m_reclaim_workqueue);
 898	destroy_workqueue(mp->m_cil_workqueue);
 899	destroy_workqueue(mp->m_data_workqueue);
 900	destroy_workqueue(mp->m_unwritten_workqueue);
 
 901}
 902
 903/*
 904 * Flush all dirty data to disk. Must not be called while holding an XFS_ILOCK
 905 * or a page lock. We use sync_inodes_sb() here to ensure we block while waiting
 906 * for IO to complete so that we effectively throttle multiple callers to the
 907 * rate at which IO is completing.
 908 */
 909void
 910xfs_flush_inodes(
 911	struct xfs_mount	*mp)
 912{
 913	struct super_block	*sb = mp->m_super;
 914
 915	if (down_read_trylock(&sb->s_umount)) {
 916		sync_inodes_sb(sb);
 917		up_read(&sb->s_umount);
 918	}
 919}
 920
 921/* Catch misguided souls that try to use this interface on XFS */
 922STATIC struct inode *
 923xfs_fs_alloc_inode(
 924	struct super_block	*sb)
 925{
 926	BUG();
 927	return NULL;
 928}
 929
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 930/*
 931 * Now that the generic code is guaranteed not to be accessing
 932 * the linux inode, we can reclaim the inode.
 933 */
 934STATIC void
 935xfs_fs_destroy_inode(
 936	struct inode		*inode)
 937{
 938	struct xfs_inode	*ip = XFS_I(inode);
 939
 940	trace_xfs_destroy_inode(ip);
 941
 942	XFS_STATS_INC(vn_reclaim);
 
 
 
 
 
 
 
 
 
 
 943
 944	ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0);
 945
 946	/*
 947	 * We should never get here with one of the reclaim flags already set.
 948	 */
 949	ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIMABLE));
 950	ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM));
 951
 952	/*
 953	 * We always use background reclaim here because even if the
 954	 * inode is clean, it still may be under IO and hence we have
 955	 * to take the flush lock. The background reclaim path handles
 956	 * this more efficiently than we can here, so simply let background
 957	 * reclaim tear down all inodes.
 958	 */
 959	xfs_inode_set_reclaim_tag(ip);
 960}
 961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 962/*
 963 * Slab object creation initialisation for the XFS inode.
 964 * This covers only the idempotent fields in the XFS inode;
 965 * all other fields need to be initialised on allocation
 966 * from the slab. This avoids the need to repeatedly initialise
 967 * fields in the xfs inode that left in the initialise state
 968 * when freeing the inode.
 969 */
 970STATIC void
 971xfs_fs_inode_init_once(
 972	void			*inode)
 973{
 974	struct xfs_inode	*ip = inode;
 975
 976	memset(ip, 0, sizeof(struct xfs_inode));
 977
 978	/* vfs inode */
 979	inode_init_once(VFS_I(ip));
 980
 981	/* xfs inode */
 982	atomic_set(&ip->i_pincount, 0);
 983	spin_lock_init(&ip->i_flags_lock);
 984
 
 
 985	mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
 986		     "xfsino", ip->i_ino);
 987}
 988
 989STATIC void
 990xfs_fs_evict_inode(
 991	struct inode		*inode)
 992{
 993	xfs_inode_t		*ip = XFS_I(inode);
 994
 995	ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
 996
 997	trace_xfs_evict_inode(ip);
 998
 999	truncate_inode_pages_final(&inode->i_data);
1000	clear_inode(inode);
1001	XFS_STATS_INC(vn_rele);
1002	XFS_STATS_INC(vn_remove);
1003	XFS_STATS_DEC(vn_active);
1004
1005	xfs_inactive(ip);
1006}
1007
1008/*
1009 * We do an unlocked check for XFS_IDONTCACHE here because we are already
1010 * serialised against cache hits here via the inode->i_lock and igrab() in
1011 * xfs_iget_cache_hit(). Hence a lookup that might clear this flag will not be
1012 * racing with us, and it avoids needing to grab a spinlock here for every inode
1013 * we drop the final reference on.
1014 */
1015STATIC int
1016xfs_fs_drop_inode(
1017	struct inode		*inode)
1018{
1019	struct xfs_inode	*ip = XFS_I(inode);
1020
 
 
 
 
 
 
 
 
 
 
1021	return generic_drop_inode(inode) || (ip->i_flags & XFS_IDONTCACHE);
1022}
1023
1024STATIC void
1025xfs_free_fsname(
1026	struct xfs_mount	*mp)
1027{
1028	kfree(mp->m_fsname);
1029	kfree(mp->m_rtname);
1030	kfree(mp->m_logname);
1031}
1032
1033STATIC void
1034xfs_fs_put_super(
1035	struct super_block	*sb)
1036{
1037	struct xfs_mount	*mp = XFS_M(sb);
1038
1039	xfs_filestream_unmount(mp);
1040	xfs_unmountfs(mp);
1041
1042	xfs_freesb(mp);
1043	xfs_icsb_destroy_counters(mp);
1044	xfs_destroy_mount_workqueues(mp);
1045	xfs_close_devices(mp);
1046	xfs_free_fsname(mp);
1047	kfree(mp);
1048}
1049
1050STATIC int
1051xfs_fs_sync_fs(
1052	struct super_block	*sb,
1053	int			wait)
1054{
1055	struct xfs_mount	*mp = XFS_M(sb);
1056
1057	/*
1058	 * Doing anything during the async pass would be counterproductive.
1059	 */
1060	if (!wait)
1061		return 0;
1062
1063	xfs_log_force(mp, XFS_LOG_SYNC);
1064	if (laptop_mode) {
1065		/*
1066		 * The disk must be active because we're syncing.
1067		 * We schedule log work now (now that the disk is
1068		 * active) instead of later (when it might not be).
1069		 */
1070		flush_delayed_work(&mp->m_log->l_work);
1071	}
1072
1073	return 0;
1074}
1075
1076STATIC int
1077xfs_fs_statfs(
1078	struct dentry		*dentry,
1079	struct kstatfs		*statp)
1080{
1081	struct xfs_mount	*mp = XFS_M(dentry->d_sb);
1082	xfs_sb_t		*sbp = &mp->m_sb;
1083	struct xfs_inode	*ip = XFS_I(dentry->d_inode);
1084	__uint64_t		fakeinos, id;
 
 
 
1085	xfs_extlen_t		lsize;
1086	__int64_t		ffree;
1087
1088	statp->f_type = XFS_SB_MAGIC;
1089	statp->f_namelen = MAXNAMELEN - 1;
1090
1091	id = huge_encode_dev(mp->m_ddev_targp->bt_dev);
1092	statp->f_fsid.val[0] = (u32)id;
1093	statp->f_fsid.val[1] = (u32)(id >> 32);
1094
1095	xfs_icsb_sync_counters(mp, XFS_ICSB_LAZY_COUNT);
 
 
1096
1097	spin_lock(&mp->m_sb_lock);
1098	statp->f_bsize = sbp->sb_blocksize;
1099	lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0;
1100	statp->f_blocks = sbp->sb_dblocks - lsize;
1101	statp->f_bfree = statp->f_bavail =
1102				sbp->sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1103	fakeinos = statp->f_bfree << sbp->sb_inopblog;
1104	statp->f_files =
1105	    MIN(sbp->sb_icount + fakeinos, (__uint64_t)XFS_MAXINUMBER);
1106	if (mp->m_maxicount)
 
 
1107		statp->f_files = min_t(typeof(statp->f_files),
1108					statp->f_files,
1109					mp->m_maxicount);
 
 
 
 
 
1110
1111	/* make sure statp->f_ffree does not underflow */
1112	ffree = statp->f_files - (sbp->sb_icount - sbp->sb_ifree);
1113	statp->f_ffree = max_t(__int64_t, ffree, 0);
1114
1115	spin_unlock(&mp->m_sb_lock);
1116
1117	if ((ip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1118	    ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))) ==
1119			      (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))
1120		xfs_qm_statvfs(ip, statp);
 
 
 
 
 
 
 
 
1121	return 0;
1122}
1123
1124STATIC void
1125xfs_save_resvblks(struct xfs_mount *mp)
1126{
1127	__uint64_t resblks = 0;
1128
1129	mp->m_resblks_save = mp->m_resblks;
1130	xfs_reserve_blocks(mp, &resblks, NULL);
1131}
1132
1133STATIC void
1134xfs_restore_resvblks(struct xfs_mount *mp)
1135{
1136	__uint64_t resblks;
1137
1138	if (mp->m_resblks_save) {
1139		resblks = mp->m_resblks_save;
1140		mp->m_resblks_save = 0;
1141	} else
1142		resblks = xfs_default_resblks(mp);
1143
1144	xfs_reserve_blocks(mp, &resblks, NULL);
1145}
1146
1147/*
1148 * Trigger writeback of all the dirty metadata in the file system.
1149 *
1150 * This ensures that the metadata is written to their location on disk rather
1151 * than just existing in transactions in the log. This means after a quiesce
1152 * there is no log replay required to write the inodes to disk - this is the
1153 * primary difference between a sync and a quiesce.
1154 *
1155 * Note: xfs_log_quiesce() stops background log work - the callers must ensure
1156 * it is started again when appropriate.
1157 */
1158static void
1159xfs_quiesce_attr(
1160	struct xfs_mount	*mp)
1161{
1162	int	error = 0;
1163
1164	/* wait for all modifications to complete */
1165	while (atomic_read(&mp->m_active_trans) > 0)
1166		delay(100);
1167
1168	/* force the log to unpin objects from the now complete transactions */
1169	xfs_log_force(mp, XFS_LOG_SYNC);
1170
1171	/* reclaim inodes to do any IO before the freeze completes */
1172	xfs_reclaim_inodes(mp, 0);
1173	xfs_reclaim_inodes(mp, SYNC_WAIT);
1174
1175	/* Push the superblock and write an unmount record */
1176	error = xfs_log_sbcount(mp);
1177	if (error)
1178		xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
1179				"Frozen image may not be consistent.");
1180	/*
1181	 * Just warn here till VFS can correctly support
1182	 * read-only remount without racing.
1183	 */
1184	WARN_ON(atomic_read(&mp->m_active_trans) != 0);
1185
1186	xfs_log_quiesce(mp);
1187}
1188
1189STATIC int
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1190xfs_fs_remount(
1191	struct super_block	*sb,
1192	int			*flags,
1193	char			*options)
1194{
1195	struct xfs_mount	*mp = XFS_M(sb);
 
1196	substring_t		args[MAX_OPT_ARGS];
1197	char			*p;
1198	int			error;
1199
 
 
 
 
 
1200	sync_filesystem(sb);
1201	while ((p = strsep(&options, ",")) != NULL) {
1202		int token;
1203
1204		if (!*p)
1205			continue;
1206
1207		token = match_token(p, tokens, args);
1208		switch (token) {
1209		case Opt_barrier:
1210			mp->m_flags |= XFS_MOUNT_BARRIER;
1211			break;
1212		case Opt_nobarrier:
1213			mp->m_flags &= ~XFS_MOUNT_BARRIER;
1214			break;
1215		case Opt_inode64:
1216			mp->m_maxagi = xfs_set_inode64(mp);
 
1217			break;
1218		case Opt_inode32:
1219			mp->m_maxagi = xfs_set_inode32(mp);
 
1220			break;
1221		default:
1222			/*
1223			 * Logically we would return an error here to prevent
1224			 * users from believing they might have changed
1225			 * mount options using remount which can't be changed.
1226			 *
1227			 * But unfortunately mount(8) adds all options from
1228			 * mtab and fstab to the mount arguments in some cases
1229			 * so we can't blindly reject options, but have to
1230			 * check for each specified option if it actually
1231			 * differs from the currently set option and only
1232			 * reject it if that's the case.
1233			 *
1234			 * Until that is implemented we return success for
1235			 * every remount request, and silently ignore all
1236			 * options that we can't actually change.
1237			 */
1238#if 0
1239			xfs_info(mp,
1240		"mount option \"%s\" not supported for remount", p);
1241			return -EINVAL;
1242#else
1243			break;
1244#endif
1245		}
1246	}
1247
1248	/* ro -> rw */
1249	if ((mp->m_flags & XFS_MOUNT_RDONLY) && !(*flags & MS_RDONLY)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1250		mp->m_flags &= ~XFS_MOUNT_RDONLY;
1251
1252		/*
1253		 * If this is the first remount to writeable state we
1254		 * might have some superblock changes to update.
1255		 */
1256		if (mp->m_update_flags) {
1257			error = xfs_mount_log_sb(mp, mp->m_update_flags);
1258			if (error) {
1259				xfs_warn(mp, "failed to write sb changes");
1260				return error;
1261			}
1262			mp->m_update_flags = 0;
1263		}
1264
1265		/*
1266		 * Fill out the reserve pool if it is empty. Use the stashed
1267		 * value if it is non-zero, otherwise go with the default.
1268		 */
1269		xfs_restore_resvblks(mp);
1270		xfs_log_work_queue(mp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1271	}
1272
1273	/* rw -> ro */
1274	if (!(mp->m_flags & XFS_MOUNT_RDONLY) && (*flags & MS_RDONLY)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1275		/*
1276		 * Before we sync the metadata, we need to free up the reserve
1277		 * block pool so that the used block count in the superblock on
1278		 * disk is correct at the end of the remount. Stash the current
1279		 * reserve pool size so that if we get remounted rw, we can
1280		 * return it to the same size.
1281		 */
1282		xfs_save_resvblks(mp);
 
1283		xfs_quiesce_attr(mp);
1284		mp->m_flags |= XFS_MOUNT_RDONLY;
1285	}
1286
1287	return 0;
1288}
1289
1290/*
1291 * Second stage of a freeze. The data is already frozen so we only
1292 * need to take care of the metadata. Once that's done write a dummy
1293 * record to dirty the log in case of a crash while frozen.
 
1294 */
1295STATIC int
1296xfs_fs_freeze(
1297	struct super_block	*sb)
1298{
1299	struct xfs_mount	*mp = XFS_M(sb);
1300
 
1301	xfs_save_resvblks(mp);
1302	xfs_quiesce_attr(mp);
1303	return -xfs_fs_log_dummy(mp);
1304}
1305
1306STATIC int
1307xfs_fs_unfreeze(
1308	struct super_block	*sb)
1309{
1310	struct xfs_mount	*mp = XFS_M(sb);
1311
1312	xfs_restore_resvblks(mp);
1313	xfs_log_work_queue(mp);
 
1314	return 0;
1315}
1316
1317STATIC int
1318xfs_fs_show_options(
1319	struct seq_file		*m,
1320	struct dentry		*root)
1321{
1322	return -xfs_showargs(XFS_M(root->d_sb), m);
 
1323}
1324
1325/*
1326 * This function fills in xfs_mount_t fields based on mount args.
1327 * Note: the superblock _has_ now been read in.
1328 */
1329STATIC int
1330xfs_finish_flags(
1331	struct xfs_mount	*mp)
1332{
1333	int			ronly = (mp->m_flags & XFS_MOUNT_RDONLY);
1334
1335	/* Fail a mount where the logbuf is smaller than the log stripe */
1336	if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1337		if (mp->m_logbsize <= 0 &&
1338		    mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) {
1339			mp->m_logbsize = mp->m_sb.sb_logsunit;
1340		} else if (mp->m_logbsize > 0 &&
1341			   mp->m_logbsize < mp->m_sb.sb_logsunit) {
1342			xfs_warn(mp,
1343		"logbuf size must be greater than or equal to log stripe size");
1344			return XFS_ERROR(EINVAL);
1345		}
1346	} else {
1347		/* Fail a mount if the logbuf is larger than 32K */
1348		if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) {
1349			xfs_warn(mp,
1350		"logbuf size for version 1 logs must be 16K or 32K");
1351			return XFS_ERROR(EINVAL);
1352		}
1353	}
1354
1355	/*
1356	 * V5 filesystems always use attr2 format for attributes.
1357	 */
1358	if (xfs_sb_version_hascrc(&mp->m_sb) &&
1359	    (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1360		xfs_warn(mp,
1361"Cannot mount a V5 filesystem as %s. %s is always enabled for V5 filesystems.",
1362			MNTOPT_NOATTR2, MNTOPT_ATTR2);
1363		return XFS_ERROR(EINVAL);
1364	}
1365
1366	/*
1367	 * mkfs'ed attr2 will turn on attr2 mount unless explicitly
1368	 * told by noattr2 to turn it off
1369	 */
1370	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1371	    !(mp->m_flags & XFS_MOUNT_NOATTR2))
1372		mp->m_flags |= XFS_MOUNT_ATTR2;
1373
1374	/*
1375	 * prohibit r/w mounts of read-only filesystems
1376	 */
1377	if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) {
1378		xfs_warn(mp,
1379			"cannot mount a read-only filesystem as read-write");
1380		return XFS_ERROR(EROFS);
1381	}
1382
1383	if ((mp->m_qflags & (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE)) &&
1384	    (mp->m_qflags & (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE)) &&
1385	    !xfs_sb_version_has_pquotino(&mp->m_sb)) {
1386		xfs_warn(mp,
1387		  "Super block does not support project and group quota together");
1388		return XFS_ERROR(EINVAL);
1389	}
1390
1391	return 0;
1392}
1393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1394STATIC int
1395xfs_fs_fill_super(
1396	struct super_block	*sb,
1397	void			*data,
1398	int			silent)
1399{
1400	struct inode		*root;
1401	struct xfs_mount	*mp = NULL;
1402	int			flags = 0, error = ENOMEM;
1403
1404	mp = kzalloc(sizeof(struct xfs_mount), GFP_KERNEL);
 
 
 
 
1405	if (!mp)
1406		goto out;
1407
1408	spin_lock_init(&mp->m_sb_lock);
1409	mutex_init(&mp->m_growlock);
1410	atomic_set(&mp->m_active_trans, 0);
1411	INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker);
1412	INIT_DELAYED_WORK(&mp->m_eofblocks_work, xfs_eofblocks_worker);
1413
1414	mp->m_super = sb;
1415	sb->s_fs_info = mp;
1416
1417	error = xfs_parseargs(mp, (char *)data);
1418	if (error)
1419		goto out_free_fsname;
1420
1421	sb_min_blocksize(sb, BBSIZE);
1422	sb->s_xattr = xfs_xattr_handlers;
1423	sb->s_export_op = &xfs_export_operations;
1424#ifdef CONFIG_XFS_QUOTA
1425	sb->s_qcop = &xfs_quotactl_operations;
 
1426#endif
1427	sb->s_op = &xfs_super_operations;
1428
 
 
 
 
 
 
 
 
 
 
 
1429	if (silent)
1430		flags |= XFS_MFSI_QUIET;
1431
1432	error = xfs_open_devices(mp);
1433	if (error)
1434		goto out_free_fsname;
1435
1436	error = -xfs_init_mount_workqueues(mp);
1437	if (error)
1438		goto out_close_devices;
1439
1440	error = -xfs_icsb_init_counters(mp);
1441	if (error)
1442		goto out_destroy_workqueues;
1443
 
 
 
 
 
 
 
1444	error = xfs_readsb(mp, flags);
1445	if (error)
1446		goto out_destroy_counters;
1447
1448	error = xfs_finish_flags(mp);
1449	if (error)
1450		goto out_free_sb;
1451
1452	error = xfs_setup_devices(mp);
1453	if (error)
1454		goto out_free_sb;
1455
1456	error = xfs_filestream_mount(mp);
1457	if (error)
1458		goto out_free_sb;
1459
1460	/*
1461	 * we must configure the block size in the superblock before we run the
1462	 * full mount process as the mount process can lookup and cache inodes.
1463	 */
1464	sb->s_magic = XFS_SB_MAGIC;
1465	sb->s_blocksize = mp->m_sb.sb_blocksize;
1466	sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1;
1467	sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
1468	sb->s_max_links = XFS_MAXLINK;
1469	sb->s_time_gran = 1;
 
 
 
 
1470	set_posix_acl_flag(sb);
1471
1472	/* version 5 superblocks support inode version counters. */
1473	if (XFS_SB_VERSION_NUM(&mp->m_sb) == XFS_SB_VERSION_5)
1474		sb->s_flags |= MS_I_VERSION;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1475
1476	error = xfs_mountfs(mp);
1477	if (error)
1478		goto out_filestream_unmount;
1479
1480	root = igrab(VFS_I(mp->m_rootip));
1481	if (!root) {
1482		error = ENOENT;
1483		goto out_unmount;
1484	}
1485	sb->s_root = d_make_root(root);
1486	if (!sb->s_root) {
1487		error = ENOMEM;
1488		goto out_unmount;
1489	}
1490
1491	return 0;
1492
1493 out_filestream_unmount:
1494	xfs_filestream_unmount(mp);
1495 out_free_sb:
1496	xfs_freesb(mp);
 
 
1497 out_destroy_counters:
1498	xfs_icsb_destroy_counters(mp);
1499out_destroy_workqueues:
1500	xfs_destroy_mount_workqueues(mp);
1501 out_close_devices:
1502	xfs_close_devices(mp);
1503 out_free_fsname:
 
1504	xfs_free_fsname(mp);
1505	kfree(mp);
1506 out:
1507	return -error;
1508
1509 out_unmount:
1510	xfs_filestream_unmount(mp);
1511	xfs_unmountfs(mp);
1512	goto out_free_sb;
1513}
1514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1515STATIC struct dentry *
1516xfs_fs_mount(
1517	struct file_system_type	*fs_type,
1518	int			flags,
1519	const char		*dev_name,
1520	void			*data)
1521{
1522	return mount_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super);
1523}
1524
1525static long
1526xfs_fs_nr_cached_objects(
1527	struct super_block	*sb,
1528	int			nid)
1529{
 
 
 
1530	return xfs_reclaim_inodes_count(XFS_M(sb));
1531}
1532
1533static long
1534xfs_fs_free_cached_objects(
1535	struct super_block	*sb,
1536	long			nr_to_scan,
1537	int			nid)
1538{
1539	return xfs_reclaim_inodes_nr(XFS_M(sb), nr_to_scan);
1540}
1541
1542static const struct super_operations xfs_super_operations = {
1543	.alloc_inode		= xfs_fs_alloc_inode,
1544	.destroy_inode		= xfs_fs_destroy_inode,
1545	.evict_inode		= xfs_fs_evict_inode,
1546	.drop_inode		= xfs_fs_drop_inode,
1547	.put_super		= xfs_fs_put_super,
1548	.sync_fs		= xfs_fs_sync_fs,
1549	.freeze_fs		= xfs_fs_freeze,
1550	.unfreeze_fs		= xfs_fs_unfreeze,
1551	.statfs			= xfs_fs_statfs,
1552	.remount_fs		= xfs_fs_remount,
1553	.show_options		= xfs_fs_show_options,
1554	.nr_cached_objects	= xfs_fs_nr_cached_objects,
1555	.free_cached_objects	= xfs_fs_free_cached_objects,
1556};
1557
1558static struct file_system_type xfs_fs_type = {
1559	.owner			= THIS_MODULE,
1560	.name			= "xfs",
1561	.mount			= xfs_fs_mount,
1562	.kill_sb		= kill_block_super,
1563	.fs_flags		= FS_REQUIRES_DEV,
1564};
1565MODULE_ALIAS_FS("xfs");
1566
1567STATIC int __init
1568xfs_init_zones(void)
1569{
1570
1571	xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
1572	if (!xfs_ioend_zone)
1573		goto out;
1574
1575	xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
1576						  xfs_ioend_zone);
1577	if (!xfs_ioend_pool)
1578		goto out_destroy_ioend_zone;
1579
1580	xfs_log_ticket_zone = kmem_zone_init(sizeof(xlog_ticket_t),
1581						"xfs_log_ticket");
1582	if (!xfs_log_ticket_zone)
1583		goto out_destroy_ioend_pool;
1584
1585	xfs_bmap_free_item_zone = kmem_zone_init(sizeof(xfs_bmap_free_item_t),
1586						"xfs_bmap_free_item");
 
1587	if (!xfs_bmap_free_item_zone)
1588		goto out_destroy_log_ticket_zone;
1589
1590	xfs_btree_cur_zone = kmem_zone_init(sizeof(xfs_btree_cur_t),
1591						"xfs_btree_cur");
1592	if (!xfs_btree_cur_zone)
1593		goto out_destroy_bmap_free_item_zone;
1594
1595	xfs_da_state_zone = kmem_zone_init(sizeof(xfs_da_state_t),
1596						"xfs_da_state");
1597	if (!xfs_da_state_zone)
1598		goto out_destroy_btree_cur_zone;
1599
1600	xfs_ifork_zone = kmem_zone_init(sizeof(xfs_ifork_t), "xfs_ifork");
1601	if (!xfs_ifork_zone)
1602		goto out_destroy_da_state_zone;
1603
1604	xfs_trans_zone = kmem_zone_init(sizeof(xfs_trans_t), "xfs_trans");
1605	if (!xfs_trans_zone)
1606		goto out_destroy_ifork_zone;
1607
1608	xfs_log_item_desc_zone =
1609		kmem_zone_init(sizeof(struct xfs_log_item_desc),
1610			       "xfs_log_item_desc");
1611	if (!xfs_log_item_desc_zone)
1612		goto out_destroy_trans_zone;
1613
1614	/*
1615	 * The size of the zone allocated buf log item is the maximum
1616	 * size possible under XFS.  This wastes a little bit of memory,
1617	 * but it is much faster.
1618	 */
1619	xfs_buf_item_zone = kmem_zone_init(sizeof(struct xfs_buf_log_item),
1620					   "xfs_buf_item");
1621	if (!xfs_buf_item_zone)
1622		goto out_destroy_log_item_desc_zone;
1623
1624	xfs_efd_zone = kmem_zone_init((sizeof(xfs_efd_log_item_t) +
1625			((XFS_EFD_MAX_FAST_EXTENTS - 1) *
1626				 sizeof(xfs_extent_t))), "xfs_efd_item");
1627	if (!xfs_efd_zone)
1628		goto out_destroy_buf_item_zone;
1629
1630	xfs_efi_zone = kmem_zone_init((sizeof(xfs_efi_log_item_t) +
1631			((XFS_EFI_MAX_FAST_EXTENTS - 1) *
1632				sizeof(xfs_extent_t))), "xfs_efi_item");
1633	if (!xfs_efi_zone)
1634		goto out_destroy_efd_zone;
1635
1636	xfs_inode_zone =
1637		kmem_zone_init_flags(sizeof(xfs_inode_t), "xfs_inode",
1638			KM_ZONE_HWALIGN | KM_ZONE_RECLAIM | KM_ZONE_SPREAD,
1639			xfs_fs_inode_init_once);
1640	if (!xfs_inode_zone)
1641		goto out_destroy_efi_zone;
1642
1643	xfs_ili_zone =
1644		kmem_zone_init_flags(sizeof(xfs_inode_log_item_t), "xfs_ili",
1645					KM_ZONE_SPREAD, NULL);
1646	if (!xfs_ili_zone)
1647		goto out_destroy_inode_zone;
1648	xfs_icreate_zone = kmem_zone_init(sizeof(struct xfs_icreate_item),
1649					"xfs_icr");
1650	if (!xfs_icreate_zone)
1651		goto out_destroy_ili_zone;
1652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1653	return 0;
1654
 
 
 
 
 
 
 
 
 
 
 
 
1655 out_destroy_ili_zone:
1656	kmem_zone_destroy(xfs_ili_zone);
1657 out_destroy_inode_zone:
1658	kmem_zone_destroy(xfs_inode_zone);
1659 out_destroy_efi_zone:
1660	kmem_zone_destroy(xfs_efi_zone);
1661 out_destroy_efd_zone:
1662	kmem_zone_destroy(xfs_efd_zone);
1663 out_destroy_buf_item_zone:
1664	kmem_zone_destroy(xfs_buf_item_zone);
1665 out_destroy_log_item_desc_zone:
1666	kmem_zone_destroy(xfs_log_item_desc_zone);
1667 out_destroy_trans_zone:
1668	kmem_zone_destroy(xfs_trans_zone);
1669 out_destroy_ifork_zone:
1670	kmem_zone_destroy(xfs_ifork_zone);
1671 out_destroy_da_state_zone:
1672	kmem_zone_destroy(xfs_da_state_zone);
1673 out_destroy_btree_cur_zone:
1674	kmem_zone_destroy(xfs_btree_cur_zone);
1675 out_destroy_bmap_free_item_zone:
1676	kmem_zone_destroy(xfs_bmap_free_item_zone);
1677 out_destroy_log_ticket_zone:
1678	kmem_zone_destroy(xfs_log_ticket_zone);
1679 out_destroy_ioend_pool:
1680	mempool_destroy(xfs_ioend_pool);
1681 out_destroy_ioend_zone:
1682	kmem_zone_destroy(xfs_ioend_zone);
1683 out:
1684	return -ENOMEM;
1685}
1686
1687STATIC void
1688xfs_destroy_zones(void)
1689{
1690	/*
1691	 * Make sure all delayed rcu free are flushed before we
1692	 * destroy caches.
1693	 */
1694	rcu_barrier();
 
 
 
 
 
 
1695	kmem_zone_destroy(xfs_icreate_zone);
1696	kmem_zone_destroy(xfs_ili_zone);
1697	kmem_zone_destroy(xfs_inode_zone);
1698	kmem_zone_destroy(xfs_efi_zone);
1699	kmem_zone_destroy(xfs_efd_zone);
1700	kmem_zone_destroy(xfs_buf_item_zone);
1701	kmem_zone_destroy(xfs_log_item_desc_zone);
1702	kmem_zone_destroy(xfs_trans_zone);
1703	kmem_zone_destroy(xfs_ifork_zone);
1704	kmem_zone_destroy(xfs_da_state_zone);
1705	kmem_zone_destroy(xfs_btree_cur_zone);
1706	kmem_zone_destroy(xfs_bmap_free_item_zone);
1707	kmem_zone_destroy(xfs_log_ticket_zone);
1708	mempool_destroy(xfs_ioend_pool);
1709	kmem_zone_destroy(xfs_ioend_zone);
1710
1711}
1712
1713STATIC int __init
1714xfs_init_workqueues(void)
1715{
1716	/*
1717	 * The allocation workqueue can be used in memory reclaim situations
1718	 * (writepage path), and parallelism is only limited by the number of
1719	 * AGs in all the filesystems mounted. Hence use the default large
1720	 * max_active value for this workqueue.
1721	 */
1722	xfs_alloc_wq = alloc_workqueue("xfsalloc", WQ_MEM_RECLAIM, 0);
 
1723	if (!xfs_alloc_wq)
1724		return -ENOMEM;
1725
 
 
 
 
1726	return 0;
 
 
 
1727}
1728
1729STATIC void
1730xfs_destroy_workqueues(void)
1731{
 
1732	destroy_workqueue(xfs_alloc_wq);
1733}
1734
1735STATIC int __init
1736init_xfs_fs(void)
1737{
1738	int			error;
1739
 
 
1740	printk(KERN_INFO XFS_VERSION_STRING " with "
1741			 XFS_BUILD_OPTIONS " enabled\n");
1742
1743	xfs_dir_startup();
1744
1745	error = xfs_init_zones();
1746	if (error)
1747		goto out;
1748
1749	error = xfs_init_workqueues();
1750	if (error)
1751		goto out_destroy_zones;
1752
1753	error = xfs_mru_cache_init();
1754	if (error)
1755		goto out_destroy_wq;
1756
1757	error = xfs_filestream_init();
1758	if (error)
1759		goto out_mru_cache_uninit;
1760
1761	error = xfs_buf_init();
1762	if (error)
1763		goto out_filestream_uninit;
1764
1765	error = xfs_init_procfs();
1766	if (error)
1767		goto out_buf_terminate;
1768
1769	error = xfs_sysctl_register();
1770	if (error)
1771		goto out_cleanup_procfs;
1772
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1773	error = xfs_qm_init();
1774	if (error)
1775		goto out_sysctl_unregister;
1776
1777	error = register_filesystem(&xfs_fs_type);
1778	if (error)
1779		goto out_qm_exit;
1780	return 0;
1781
1782 out_qm_exit:
1783	xfs_qm_exit();
 
 
 
 
 
 
 
 
 
 
1784 out_sysctl_unregister:
1785	xfs_sysctl_unregister();
1786 out_cleanup_procfs:
1787	xfs_cleanup_procfs();
1788 out_buf_terminate:
1789	xfs_buf_terminate();
1790 out_filestream_uninit:
1791	xfs_filestream_uninit();
1792 out_mru_cache_uninit:
1793	xfs_mru_cache_uninit();
1794 out_destroy_wq:
1795	xfs_destroy_workqueues();
1796 out_destroy_zones:
1797	xfs_destroy_zones();
1798 out:
1799	return error;
1800}
1801
1802STATIC void __exit
1803exit_xfs_fs(void)
1804{
1805	xfs_qm_exit();
1806	unregister_filesystem(&xfs_fs_type);
 
 
 
 
 
 
1807	xfs_sysctl_unregister();
1808	xfs_cleanup_procfs();
1809	xfs_buf_terminate();
1810	xfs_filestream_uninit();
1811	xfs_mru_cache_uninit();
1812	xfs_destroy_workqueues();
1813	xfs_destroy_zones();
 
1814}
1815
1816module_init(init_xfs_fs);
1817module_exit(exit_xfs_fs);
1818
1819MODULE_AUTHOR("Silicon Graphics, Inc.");
1820MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
1821MODULE_LICENSE("GPL");