Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * This file is part of UBIFS.
  4 *
  5 * Copyright (C) 2006-2008 Nokia Corporation.
  6 *
 
 
 
 
 
 
 
 
 
 
 
 
 
  7 * Authors: Adrian Hunter
  8 *          Artem Bityutskiy (Битюцкий Артём)
  9 */
 10
 11/*
 12 * This file implements the budgeting sub-system which is responsible for UBIFS
 13 * space management.
 14 *
 15 * Factors such as compression, wasted space at the ends of LEBs, space in other
 16 * journal heads, the effect of updates on the index, and so on, make it
 17 * impossible to accurately predict the amount of space needed. Consequently
 18 * approximations are used.
 19 */
 20
 21#include "ubifs.h"
 22#include <linux/writeback.h>
 23#include <linux/math64.h>
 24
 25/*
 26 * When pessimistic budget calculations say that there is no enough space,
 27 * UBIFS starts writing back dirty inodes and pages, doing garbage collection,
 28 * or committing. The below constant defines maximum number of times UBIFS
 29 * repeats the operations.
 30 */
 31#define MAX_MKSPC_RETRIES 3
 32
 33/*
 34 * The below constant defines amount of dirty pages which should be written
 35 * back at when trying to shrink the liability.
 36 */
 37#define NR_TO_WRITE 16
 38
 39/**
 40 * shrink_liability - write-back some dirty pages/inodes.
 41 * @c: UBIFS file-system description object
 42 * @nr_to_write: how many dirty pages to write-back
 43 *
 44 * This function shrinks UBIFS liability by means of writing back some amount
 45 * of dirty inodes and their pages.
 46 *
 47 * Note, this function synchronizes even VFS inodes which are locked
 48 * (@i_mutex) by the caller of the budgeting function, because write-back does
 49 * not touch @i_mutex.
 50 */
 51static void shrink_liability(struct ubifs_info *c, int nr_to_write)
 52{
 53	down_read(&c->vfs_sb->s_umount);
 54	writeback_inodes_sb_nr(c->vfs_sb, nr_to_write, WB_REASON_FS_FREE_SPACE);
 55	up_read(&c->vfs_sb->s_umount);
 56}
 57
 58/**
 59 * run_gc - run garbage collector.
 60 * @c: UBIFS file-system description object
 61 *
 62 * This function runs garbage collector to make some more free space. Returns
 63 * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a
 64 * negative error code in case of failure.
 65 */
 66static int run_gc(struct ubifs_info *c)
 67{
 68	int err, lnum;
 69
 70	/* Make some free space by garbage-collecting dirty space */
 71	down_read(&c->commit_sem);
 72	lnum = ubifs_garbage_collect(c, 1);
 73	up_read(&c->commit_sem);
 74	if (lnum < 0)
 75		return lnum;
 76
 77	/* GC freed one LEB, return it to lprops */
 78	dbg_budg("GC freed LEB %d", lnum);
 79	err = ubifs_return_leb(c, lnum);
 80	if (err)
 81		return err;
 82	return 0;
 83}
 84
 85/**
 86 * get_liability - calculate current liability.
 87 * @c: UBIFS file-system description object
 88 *
 89 * This function calculates and returns current UBIFS liability, i.e. the
 90 * amount of bytes UBIFS has "promised" to write to the media.
 91 */
 92static long long get_liability(struct ubifs_info *c)
 93{
 94	long long liab;
 95
 96	spin_lock(&c->space_lock);
 97	liab = c->bi.idx_growth + c->bi.data_growth + c->bi.dd_growth;
 98	spin_unlock(&c->space_lock);
 99	return liab;
100}
101
102/**
103 * make_free_space - make more free space on the file-system.
104 * @c: UBIFS file-system description object
105 *
106 * This function is called when an operation cannot be budgeted because there
107 * is supposedly no free space. But in most cases there is some free space:
108 *   o budgeting is pessimistic, so it always budgets more than it is actually
109 *     needed, so shrinking the liability is one way to make free space - the
110 *     cached data will take less space then it was budgeted for;
111 *   o GC may turn some dark space into free space (budgeting treats dark space
112 *     as not available);
113 *   o commit may free some LEB, i.e., turn freeable LEBs into free LEBs.
114 *
115 * So this function tries to do the above. Returns %-EAGAIN if some free space
116 * was presumably made and the caller has to re-try budgeting the operation.
117 * Returns %-ENOSPC if it couldn't do more free space, and other negative error
118 * codes on failures.
119 */
120static int make_free_space(struct ubifs_info *c)
121{
122	int err, retries = 0;
123	long long liab1, liab2;
124
125	do {
126		liab1 = get_liability(c);
127		/*
128		 * We probably have some dirty pages or inodes (liability), try
129		 * to write them back.
130		 */
131		dbg_budg("liability %lld, run write-back", liab1);
132		shrink_liability(c, NR_TO_WRITE);
133
134		liab2 = get_liability(c);
135		if (liab2 < liab1)
136			return -EAGAIN;
137
138		dbg_budg("new liability %lld (not shrunk)", liab2);
139
140		/* Liability did not shrink again, try GC */
141		dbg_budg("Run GC");
142		err = run_gc(c);
143		if (!err)
144			return -EAGAIN;
145
146		if (err != -EAGAIN && err != -ENOSPC)
147			/* Some real error happened */
148			return err;
149
150		dbg_budg("Run commit (retries %d)", retries);
151		err = ubifs_run_commit(c);
152		if (err)
153			return err;
154	} while (retries++ < MAX_MKSPC_RETRIES);
155
156	return -ENOSPC;
157}
158
159/**
160 * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index.
161 * @c: UBIFS file-system description object
162 *
163 * This function calculates and returns the number of LEBs which should be kept
164 * for index usage.
165 */
166int ubifs_calc_min_idx_lebs(struct ubifs_info *c)
167{
168	int idx_lebs;
169	long long idx_size;
170
171	idx_size = c->bi.old_idx_sz + c->bi.idx_growth + c->bi.uncommitted_idx;
172	/* And make sure we have thrice the index size of space reserved */
173	idx_size += idx_size << 1;
174	/*
175	 * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes'
176	 * pair, nor similarly the two variables for the new index size, so we
177	 * have to do this costly 64-bit division on fast-path.
178	 */
179	idx_lebs = div_u64(idx_size + c->idx_leb_size - 1, c->idx_leb_size);
180	/*
181	 * The index head is not available for the in-the-gaps method, so add an
182	 * extra LEB to compensate.
183	 */
184	idx_lebs += 1;
185	if (idx_lebs < MIN_INDEX_LEBS)
186		idx_lebs = MIN_INDEX_LEBS;
187	return idx_lebs;
188}
189
190/**
191 * ubifs_calc_available - calculate available FS space.
192 * @c: UBIFS file-system description object
193 * @min_idx_lebs: minimum number of LEBs reserved for the index
194 *
195 * This function calculates and returns amount of FS space available for use.
196 */
197long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs)
198{
199	int subtract_lebs;
200	long long available;
201
202	available = c->main_bytes - c->lst.total_used;
203
204	/*
205	 * Now 'available' contains theoretically available flash space
206	 * assuming there is no index, so we have to subtract the space which
207	 * is reserved for the index.
208	 */
209	subtract_lebs = min_idx_lebs;
210
211	/* Take into account that GC reserves one LEB for its own needs */
212	subtract_lebs += 1;
213
214	/*
215	 * The GC journal head LEB is not really accessible. And since
216	 * different write types go to different heads, we may count only on
217	 * one head's space.
218	 */
219	subtract_lebs += c->jhead_cnt - 1;
220
221	/* We also reserve one LEB for deletions, which bypass budgeting */
222	subtract_lebs += 1;
223
224	available -= (long long)subtract_lebs * c->leb_size;
225
226	/* Subtract the dead space which is not available for use */
227	available -= c->lst.total_dead;
228
229	/*
230	 * Subtract dark space, which might or might not be usable - it depends
231	 * on the data which we have on the media and which will be written. If
232	 * this is a lot of uncompressed or not-compressible data, the dark
233	 * space cannot be used.
234	 */
235	available -= c->lst.total_dark;
236
237	/*
238	 * However, there is more dark space. The index may be bigger than
239	 * @min_idx_lebs. Those extra LEBs are assumed to be available, but
240	 * their dark space is not included in total_dark, so it is subtracted
241	 * here.
242	 */
243	if (c->lst.idx_lebs > min_idx_lebs) {
244		subtract_lebs = c->lst.idx_lebs - min_idx_lebs;
245		available -= subtract_lebs * c->dark_wm;
246	}
247
248	/* The calculations are rough and may end up with a negative number */
249	return available > 0 ? available : 0;
250}
251
252/**
253 * can_use_rp - check whether the user is allowed to use reserved pool.
254 * @c: UBIFS file-system description object
255 *
256 * UBIFS has so-called "reserved pool" which is flash space reserved
257 * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock.
258 * This function checks whether current user is allowed to use reserved pool.
259 * Returns %1  current user is allowed to use reserved pool and %0 otherwise.
260 */
261static int can_use_rp(struct ubifs_info *c)
262{
263	if (uid_eq(current_fsuid(), c->rp_uid) || capable(CAP_SYS_RESOURCE) ||
264	    (!gid_eq(c->rp_gid, GLOBAL_ROOT_GID) && in_group_p(c->rp_gid)))
265		return 1;
266	return 0;
267}
268
269/**
270 * do_budget_space - reserve flash space for index and data growth.
271 * @c: UBIFS file-system description object
272 *
273 * This function makes sure UBIFS has enough free LEBs for index growth and
274 * data.
275 *
276 * When budgeting index space, UBIFS reserves thrice as many LEBs as the index
277 * would take if it was consolidated and written to the flash. This guarantees
278 * that the "in-the-gaps" commit method always succeeds and UBIFS will always
279 * be able to commit dirty index. So this function basically adds amount of
280 * budgeted index space to the size of the current index, multiplies this by 3,
281 * and makes sure this does not exceed the amount of free LEBs.
282 *
283 * Notes about @c->bi.min_idx_lebs and @c->lst.idx_lebs variables:
284 * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might
285 *    be large, because UBIFS does not do any index consolidation as long as
286 *    there is free space. IOW, the index may take a lot of LEBs, but the LEBs
287 *    will contain a lot of dirt.
288 * o @c->bi.min_idx_lebs is the number of LEBS the index presumably takes. IOW,
289 *    the index may be consolidated to take up to @c->bi.min_idx_lebs LEBs.
290 *
291 * This function returns zero in case of success, and %-ENOSPC in case of
292 * failure.
293 */
294static int do_budget_space(struct ubifs_info *c)
295{
296	long long outstanding, available;
297	int lebs, rsvd_idx_lebs, min_idx_lebs;
298
299	/* First budget index space */
300	min_idx_lebs = ubifs_calc_min_idx_lebs(c);
301
302	/* Now 'min_idx_lebs' contains number of LEBs to reserve */
303	if (min_idx_lebs > c->lst.idx_lebs)
304		rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs;
305	else
306		rsvd_idx_lebs = 0;
307
308	/*
309	 * The number of LEBs that are available to be used by the index is:
310	 *
311	 *    @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt -
312	 *    @c->lst.taken_empty_lebs
313	 *
314	 * @c->lst.empty_lebs are available because they are empty.
315	 * @c->freeable_cnt are available because they contain only free and
316	 * dirty space, @c->idx_gc_cnt are available because they are index
317	 * LEBs that have been garbage collected and are awaiting the commit
318	 * before they can be used. And the in-the-gaps method will grab these
319	 * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have
320	 * already been allocated for some purpose.
321	 *
322	 * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because
323	 * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they
324	 * are taken until after the commit).
325	 *
326	 * Note, @c->lst.taken_empty_lebs may temporarily be higher by one
327	 * because of the way we serialize LEB allocations and budgeting. See a
328	 * comment in 'ubifs_find_free_space()'.
329	 */
330	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
331	       c->lst.taken_empty_lebs;
332	if (unlikely(rsvd_idx_lebs > lebs)) {
333		dbg_budg("out of indexing space: min_idx_lebs %d (old %d), rsvd_idx_lebs %d",
334			 min_idx_lebs, c->bi.min_idx_lebs, rsvd_idx_lebs);
335		return -ENOSPC;
336	}
337
338	available = ubifs_calc_available(c, min_idx_lebs);
339	outstanding = c->bi.data_growth + c->bi.dd_growth;
340
341	if (unlikely(available < outstanding)) {
342		dbg_budg("out of data space: available %lld, outstanding %lld",
343			 available, outstanding);
344		return -ENOSPC;
345	}
346
347	if (available - outstanding <= c->rp_size && !can_use_rp(c))
348		return -ENOSPC;
349
350	c->bi.min_idx_lebs = min_idx_lebs;
351	return 0;
352}
353
354/**
355 * calc_idx_growth - calculate approximate index growth from budgeting request.
356 * @c: UBIFS file-system description object
357 * @req: budgeting request
358 *
359 * For now we assume each new node adds one znode. But this is rather poor
360 * approximation, though.
361 */
362static int calc_idx_growth(const struct ubifs_info *c,
363			   const struct ubifs_budget_req *req)
364{
365	int znodes;
366
367	znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) +
368		 req->new_dent;
369	return znodes * c->max_idx_node_sz;
370}
371
372/**
373 * calc_data_growth - calculate approximate amount of new data from budgeting
374 * request.
375 * @c: UBIFS file-system description object
376 * @req: budgeting request
377 */
378static int calc_data_growth(const struct ubifs_info *c,
379			    const struct ubifs_budget_req *req)
380{
381	int data_growth;
382
383	data_growth = req->new_ino  ? c->bi.inode_budget : 0;
384	if (req->new_page)
385		data_growth += c->bi.page_budget;
386	if (req->new_dent)
387		data_growth += c->bi.dent_budget;
388	data_growth += req->new_ino_d;
389	return data_growth;
390}
391
392/**
393 * calc_dd_growth - calculate approximate amount of data which makes other data
394 * dirty from budgeting request.
395 * @c: UBIFS file-system description object
396 * @req: budgeting request
397 */
398static int calc_dd_growth(const struct ubifs_info *c,
399			  const struct ubifs_budget_req *req)
400{
401	int dd_growth;
402
403	dd_growth = req->dirtied_page ? c->bi.page_budget : 0;
404
405	if (req->dirtied_ino)
406		dd_growth += c->bi.inode_budget << (req->dirtied_ino - 1);
407	if (req->mod_dent)
408		dd_growth += c->bi.dent_budget;
409	dd_growth += req->dirtied_ino_d;
410	return dd_growth;
411}
412
413/**
414 * ubifs_budget_space - ensure there is enough space to complete an operation.
415 * @c: UBIFS file-system description object
416 * @req: budget request
417 *
418 * This function allocates budget for an operation. It uses pessimistic
419 * approximation of how much flash space the operation needs. The goal of this
420 * function is to make sure UBIFS always has flash space to flush all dirty
421 * pages, dirty inodes, and dirty znodes (liability). This function may force
422 * commit, garbage-collection or write-back. Returns zero in case of success,
423 * %-ENOSPC if there is no free space and other negative error codes in case of
424 * failures.
425 */
426int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req)
427{
 
428	int err, idx_growth, data_growth, dd_growth, retried = 0;
429
430	ubifs_assert(c, req->new_page <= 1);
431	ubifs_assert(c, req->dirtied_page <= 1);
432	ubifs_assert(c, req->new_dent <= 1);
433	ubifs_assert(c, req->mod_dent <= 1);
434	ubifs_assert(c, req->new_ino <= 1);
435	ubifs_assert(c, req->new_ino_d <= UBIFS_MAX_INO_DATA);
436	ubifs_assert(c, req->dirtied_ino <= 4);
437	ubifs_assert(c, req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
438	ubifs_assert(c, !(req->new_ino_d & 7));
439	ubifs_assert(c, !(req->dirtied_ino_d & 7));
440
441	data_growth = calc_data_growth(c, req);
442	dd_growth = calc_dd_growth(c, req);
443	if (!data_growth && !dd_growth)
444		return 0;
445	idx_growth = calc_idx_growth(c, req);
446
447again:
448	spin_lock(&c->space_lock);
449	ubifs_assert(c, c->bi.idx_growth >= 0);
450	ubifs_assert(c, c->bi.data_growth >= 0);
451	ubifs_assert(c, c->bi.dd_growth >= 0);
452
453	if (unlikely(c->bi.nospace) && (c->bi.nospace_rp || !can_use_rp(c))) {
454		dbg_budg("no space");
455		spin_unlock(&c->space_lock);
456		return -ENOSPC;
457	}
458
459	c->bi.idx_growth += idx_growth;
460	c->bi.data_growth += data_growth;
461	c->bi.dd_growth += dd_growth;
462
463	err = do_budget_space(c);
464	if (likely(!err)) {
465		req->idx_growth = idx_growth;
466		req->data_growth = data_growth;
467		req->dd_growth = dd_growth;
468		spin_unlock(&c->space_lock);
469		return 0;
470	}
471
472	/* Restore the old values */
473	c->bi.idx_growth -= idx_growth;
474	c->bi.data_growth -= data_growth;
475	c->bi.dd_growth -= dd_growth;
476	spin_unlock(&c->space_lock);
477
478	if (req->fast) {
479		dbg_budg("no space for fast budgeting");
480		return err;
481	}
482
483	err = make_free_space(c);
484	cond_resched();
485	if (err == -EAGAIN) {
486		dbg_budg("try again");
487		goto again;
488	} else if (err == -ENOSPC) {
489		if (!retried) {
490			retried = 1;
491			dbg_budg("-ENOSPC, but anyway try once again");
492			goto again;
493		}
494		dbg_budg("FS is full, -ENOSPC");
495		c->bi.nospace = 1;
496		if (can_use_rp(c) || c->rp_size == 0)
497			c->bi.nospace_rp = 1;
498		smp_wmb();
499	} else
500		ubifs_err(c, "cannot budget space, error %d", err);
501	return err;
502}
503
504/**
505 * ubifs_release_budget - release budgeted free space.
506 * @c: UBIFS file-system description object
507 * @req: budget request
508 *
509 * This function releases the space budgeted by 'ubifs_budget_space()'. Note,
510 * since the index changes (which were budgeted for in @req->idx_growth) will
511 * only be written to the media on commit, this function moves the index budget
512 * from @c->bi.idx_growth to @c->bi.uncommitted_idx. The latter will be zeroed
513 * by the commit operation.
514 */
515void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req)
516{
517	ubifs_assert(c, req->new_page <= 1);
518	ubifs_assert(c, req->dirtied_page <= 1);
519	ubifs_assert(c, req->new_dent <= 1);
520	ubifs_assert(c, req->mod_dent <= 1);
521	ubifs_assert(c, req->new_ino <= 1);
522	ubifs_assert(c, req->new_ino_d <= UBIFS_MAX_INO_DATA);
523	ubifs_assert(c, req->dirtied_ino <= 4);
524	ubifs_assert(c, req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
525	ubifs_assert(c, !(req->new_ino_d & 7));
526	ubifs_assert(c, !(req->dirtied_ino_d & 7));
527	if (!req->recalculate) {
528		ubifs_assert(c, req->idx_growth >= 0);
529		ubifs_assert(c, req->data_growth >= 0);
530		ubifs_assert(c, req->dd_growth >= 0);
531	}
532
533	if (req->recalculate) {
534		req->data_growth = calc_data_growth(c, req);
535		req->dd_growth = calc_dd_growth(c, req);
536		req->idx_growth = calc_idx_growth(c, req);
537	}
538
539	if (!req->data_growth && !req->dd_growth)
540		return;
541
542	c->bi.nospace = c->bi.nospace_rp = 0;
543	smp_wmb();
544
545	spin_lock(&c->space_lock);
546	c->bi.idx_growth -= req->idx_growth;
547	c->bi.uncommitted_idx += req->idx_growth;
548	c->bi.data_growth -= req->data_growth;
549	c->bi.dd_growth -= req->dd_growth;
550	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
551
552	ubifs_assert(c, c->bi.idx_growth >= 0);
553	ubifs_assert(c, c->bi.data_growth >= 0);
554	ubifs_assert(c, c->bi.dd_growth >= 0);
555	ubifs_assert(c, c->bi.min_idx_lebs < c->main_lebs);
556	ubifs_assert(c, !(c->bi.idx_growth & 7));
557	ubifs_assert(c, !(c->bi.data_growth & 7));
558	ubifs_assert(c, !(c->bi.dd_growth & 7));
559	spin_unlock(&c->space_lock);
560}
561
562/**
563 * ubifs_convert_page_budget - convert budget of a new page.
564 * @c: UBIFS file-system description object
565 *
566 * This function converts budget which was allocated for a new page of data to
567 * the budget of changing an existing page of data. The latter is smaller than
568 * the former, so this function only does simple re-calculation and does not
569 * involve any write-back.
570 */
571void ubifs_convert_page_budget(struct ubifs_info *c)
572{
573	spin_lock(&c->space_lock);
574	/* Release the index growth reservation */
575	c->bi.idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT;
576	/* Release the data growth reservation */
577	c->bi.data_growth -= c->bi.page_budget;
578	/* Increase the dirty data growth reservation instead */
579	c->bi.dd_growth += c->bi.page_budget;
580	/* And re-calculate the indexing space reservation */
581	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
582	spin_unlock(&c->space_lock);
583}
584
585/**
586 * ubifs_release_dirty_inode_budget - release dirty inode budget.
587 * @c: UBIFS file-system description object
588 * @ui: UBIFS inode to release the budget for
589 *
590 * This function releases budget corresponding to a dirty inode. It is usually
591 * called when after the inode has been written to the media and marked as
592 * clean. It also causes the "no space" flags to be cleared.
593 */
594void ubifs_release_dirty_inode_budget(struct ubifs_info *c,
595				      struct ubifs_inode *ui)
596{
597	struct ubifs_budget_req req;
598
599	memset(&req, 0, sizeof(struct ubifs_budget_req));
600	/* The "no space" flags will be cleared because dd_growth is > 0 */
601	req.dd_growth = c->bi.inode_budget + ALIGN(ui->data_len, 8);
602	ubifs_release_budget(c, &req);
603}
604
605/**
606 * ubifs_reported_space - calculate reported free space.
607 * @c: the UBIFS file-system description object
608 * @free: amount of free space
609 *
610 * This function calculates amount of free space which will be reported to
611 * user-space. User-space application tend to expect that if the file-system
612 * (e.g., via the 'statfs()' call) reports that it has N bytes available, they
613 * are able to write a file of size N. UBIFS attaches node headers to each data
614 * node and it has to write indexing nodes as well. This introduces additional
615 * overhead, and UBIFS has to report slightly less free space to meet the above
616 * expectations.
617 *
618 * This function assumes free space is made up of uncompressed data nodes and
619 * full index nodes (one per data node, tripled because we always allow enough
620 * space to write the index thrice).
621 *
622 * Note, the calculation is pessimistic, which means that most of the time
623 * UBIFS reports less space than it actually has.
624 */
625long long ubifs_reported_space(const struct ubifs_info *c, long long free)
626{
627	int divisor, factor, f;
628
629	/*
630	 * Reported space size is @free * X, where X is UBIFS block size
631	 * divided by UBIFS block size + all overhead one data block
632	 * introduces. The overhead is the node header + indexing overhead.
633	 *
634	 * Indexing overhead calculations are based on the following formula:
635	 * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number
636	 * of data nodes, f - fanout. Because effective UBIFS fanout is twice
637	 * as less than maximum fanout, we assume that each data node
638	 * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes.
639	 * Note, the multiplier 3 is because UBIFS reserves thrice as more space
640	 * for the index.
641	 */
642	f = c->fanout > 3 ? c->fanout >> 1 : 2;
643	factor = UBIFS_BLOCK_SIZE;
644	divisor = UBIFS_MAX_DATA_NODE_SZ;
645	divisor += (c->max_idx_node_sz * 3) / (f - 1);
646	free *= factor;
647	return div_u64(free, divisor);
648}
649
650/**
651 * ubifs_get_free_space_nolock - return amount of free space.
652 * @c: UBIFS file-system description object
653 *
654 * This function calculates amount of free space to report to user-space.
655 *
656 * Because UBIFS may introduce substantial overhead (the index, node headers,
657 * alignment, wastage at the end of LEBs, etc), it cannot report real amount of
658 * free flash space it has (well, because not all dirty space is reclaimable,
659 * UBIFS does not actually know the real amount). If UBIFS did so, it would
660 * bread user expectations about what free space is. Users seem to accustomed
661 * to assume that if the file-system reports N bytes of free space, they would
662 * be able to fit a file of N bytes to the FS. This almost works for
663 * traditional file-systems, because they have way less overhead than UBIFS.
664 * So, to keep users happy, UBIFS tries to take the overhead into account.
665 */
666long long ubifs_get_free_space_nolock(struct ubifs_info *c)
667{
668	int rsvd_idx_lebs, lebs;
669	long long available, outstanding, free;
670
671	ubifs_assert(c, c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
672	outstanding = c->bi.data_growth + c->bi.dd_growth;
673	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
674
675	/*
676	 * When reporting free space to user-space, UBIFS guarantees that it is
677	 * possible to write a file of free space size. This means that for
678	 * empty LEBs we may use more precise calculations than
679	 * 'ubifs_calc_available()' is using. Namely, we know that in empty
680	 * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm.
681	 * Thus, amend the available space.
682	 *
683	 * Note, the calculations below are similar to what we have in
684	 * 'do_budget_space()', so refer there for comments.
685	 */
686	if (c->bi.min_idx_lebs > c->lst.idx_lebs)
687		rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs;
688	else
689		rsvd_idx_lebs = 0;
690	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
691	       c->lst.taken_empty_lebs;
692	lebs -= rsvd_idx_lebs;
693	available += lebs * (c->dark_wm - c->leb_overhead);
694
695	if (available > outstanding)
696		free = ubifs_reported_space(c, available - outstanding);
697	else
698		free = 0;
699	return free;
700}
701
702/**
703 * ubifs_get_free_space - return amount of free space.
704 * @c: UBIFS file-system description object
705 *
706 * This function calculates and returns amount of free space to report to
707 * user-space.
708 */
709long long ubifs_get_free_space(struct ubifs_info *c)
710{
711	long long free;
712
713	spin_lock(&c->space_lock);
714	free = ubifs_get_free_space_nolock(c);
715	spin_unlock(&c->space_lock);
716
717	return free;
718}
v3.15
 
  1/*
  2 * This file is part of UBIFS.
  3 *
  4 * Copyright (C) 2006-2008 Nokia Corporation.
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms of the GNU General Public License version 2 as published by
  8 * the Free Software Foundation.
  9 *
 10 * This program is distributed in the hope that it will be useful, but WITHOUT
 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 13 * more details.
 14 *
 15 * You should have received a copy of the GNU General Public License along with
 16 * this program; if not, write to the Free Software Foundation, Inc., 51
 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 18 *
 19 * Authors: Adrian Hunter
 20 *          Artem Bityutskiy (Битюцкий Артём)
 21 */
 22
 23/*
 24 * This file implements the budgeting sub-system which is responsible for UBIFS
 25 * space management.
 26 *
 27 * Factors such as compression, wasted space at the ends of LEBs, space in other
 28 * journal heads, the effect of updates on the index, and so on, make it
 29 * impossible to accurately predict the amount of space needed. Consequently
 30 * approximations are used.
 31 */
 32
 33#include "ubifs.h"
 34#include <linux/writeback.h>
 35#include <linux/math64.h>
 36
 37/*
 38 * When pessimistic budget calculations say that there is no enough space,
 39 * UBIFS starts writing back dirty inodes and pages, doing garbage collection,
 40 * or committing. The below constant defines maximum number of times UBIFS
 41 * repeats the operations.
 42 */
 43#define MAX_MKSPC_RETRIES 3
 44
 45/*
 46 * The below constant defines amount of dirty pages which should be written
 47 * back at when trying to shrink the liability.
 48 */
 49#define NR_TO_WRITE 16
 50
 51/**
 52 * shrink_liability - write-back some dirty pages/inodes.
 53 * @c: UBIFS file-system description object
 54 * @nr_to_write: how many dirty pages to write-back
 55 *
 56 * This function shrinks UBIFS liability by means of writing back some amount
 57 * of dirty inodes and their pages.
 58 *
 59 * Note, this function synchronizes even VFS inodes which are locked
 60 * (@i_mutex) by the caller of the budgeting function, because write-back does
 61 * not touch @i_mutex.
 62 */
 63static void shrink_liability(struct ubifs_info *c, int nr_to_write)
 64{
 65	down_read(&c->vfs_sb->s_umount);
 66	writeback_inodes_sb(c->vfs_sb, WB_REASON_FS_FREE_SPACE);
 67	up_read(&c->vfs_sb->s_umount);
 68}
 69
 70/**
 71 * run_gc - run garbage collector.
 72 * @c: UBIFS file-system description object
 73 *
 74 * This function runs garbage collector to make some more free space. Returns
 75 * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a
 76 * negative error code in case of failure.
 77 */
 78static int run_gc(struct ubifs_info *c)
 79{
 80	int err, lnum;
 81
 82	/* Make some free space by garbage-collecting dirty space */
 83	down_read(&c->commit_sem);
 84	lnum = ubifs_garbage_collect(c, 1);
 85	up_read(&c->commit_sem);
 86	if (lnum < 0)
 87		return lnum;
 88
 89	/* GC freed one LEB, return it to lprops */
 90	dbg_budg("GC freed LEB %d", lnum);
 91	err = ubifs_return_leb(c, lnum);
 92	if (err)
 93		return err;
 94	return 0;
 95}
 96
 97/**
 98 * get_liability - calculate current liability.
 99 * @c: UBIFS file-system description object
100 *
101 * This function calculates and returns current UBIFS liability, i.e. the
102 * amount of bytes UBIFS has "promised" to write to the media.
103 */
104static long long get_liability(struct ubifs_info *c)
105{
106	long long liab;
107
108	spin_lock(&c->space_lock);
109	liab = c->bi.idx_growth + c->bi.data_growth + c->bi.dd_growth;
110	spin_unlock(&c->space_lock);
111	return liab;
112}
113
114/**
115 * make_free_space - make more free space on the file-system.
116 * @c: UBIFS file-system description object
117 *
118 * This function is called when an operation cannot be budgeted because there
119 * is supposedly no free space. But in most cases there is some free space:
120 *   o budgeting is pessimistic, so it always budgets more than it is actually
121 *     needed, so shrinking the liability is one way to make free space - the
122 *     cached data will take less space then it was budgeted for;
123 *   o GC may turn some dark space into free space (budgeting treats dark space
124 *     as not available);
125 *   o commit may free some LEB, i.e., turn freeable LEBs into free LEBs.
126 *
127 * So this function tries to do the above. Returns %-EAGAIN if some free space
128 * was presumably made and the caller has to re-try budgeting the operation.
129 * Returns %-ENOSPC if it couldn't do more free space, and other negative error
130 * codes on failures.
131 */
132static int make_free_space(struct ubifs_info *c)
133{
134	int err, retries = 0;
135	long long liab1, liab2;
136
137	do {
138		liab1 = get_liability(c);
139		/*
140		 * We probably have some dirty pages or inodes (liability), try
141		 * to write them back.
142		 */
143		dbg_budg("liability %lld, run write-back", liab1);
144		shrink_liability(c, NR_TO_WRITE);
145
146		liab2 = get_liability(c);
147		if (liab2 < liab1)
148			return -EAGAIN;
149
150		dbg_budg("new liability %lld (not shrunk)", liab2);
151
152		/* Liability did not shrink again, try GC */
153		dbg_budg("Run GC");
154		err = run_gc(c);
155		if (!err)
156			return -EAGAIN;
157
158		if (err != -EAGAIN && err != -ENOSPC)
159			/* Some real error happened */
160			return err;
161
162		dbg_budg("Run commit (retries %d)", retries);
163		err = ubifs_run_commit(c);
164		if (err)
165			return err;
166	} while (retries++ < MAX_MKSPC_RETRIES);
167
168	return -ENOSPC;
169}
170
171/**
172 * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index.
173 * @c: UBIFS file-system description object
174 *
175 * This function calculates and returns the number of LEBs which should be kept
176 * for index usage.
177 */
178int ubifs_calc_min_idx_lebs(struct ubifs_info *c)
179{
180	int idx_lebs;
181	long long idx_size;
182
183	idx_size = c->bi.old_idx_sz + c->bi.idx_growth + c->bi.uncommitted_idx;
184	/* And make sure we have thrice the index size of space reserved */
185	idx_size += idx_size << 1;
186	/*
187	 * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes'
188	 * pair, nor similarly the two variables for the new index size, so we
189	 * have to do this costly 64-bit division on fast-path.
190	 */
191	idx_lebs = div_u64(idx_size + c->idx_leb_size - 1, c->idx_leb_size);
192	/*
193	 * The index head is not available for the in-the-gaps method, so add an
194	 * extra LEB to compensate.
195	 */
196	idx_lebs += 1;
197	if (idx_lebs < MIN_INDEX_LEBS)
198		idx_lebs = MIN_INDEX_LEBS;
199	return idx_lebs;
200}
201
202/**
203 * ubifs_calc_available - calculate available FS space.
204 * @c: UBIFS file-system description object
205 * @min_idx_lebs: minimum number of LEBs reserved for the index
206 *
207 * This function calculates and returns amount of FS space available for use.
208 */
209long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs)
210{
211	int subtract_lebs;
212	long long available;
213
214	available = c->main_bytes - c->lst.total_used;
215
216	/*
217	 * Now 'available' contains theoretically available flash space
218	 * assuming there is no index, so we have to subtract the space which
219	 * is reserved for the index.
220	 */
221	subtract_lebs = min_idx_lebs;
222
223	/* Take into account that GC reserves one LEB for its own needs */
224	subtract_lebs += 1;
225
226	/*
227	 * The GC journal head LEB is not really accessible. And since
228	 * different write types go to different heads, we may count only on
229	 * one head's space.
230	 */
231	subtract_lebs += c->jhead_cnt - 1;
232
233	/* We also reserve one LEB for deletions, which bypass budgeting */
234	subtract_lebs += 1;
235
236	available -= (long long)subtract_lebs * c->leb_size;
237
238	/* Subtract the dead space which is not available for use */
239	available -= c->lst.total_dead;
240
241	/*
242	 * Subtract dark space, which might or might not be usable - it depends
243	 * on the data which we have on the media and which will be written. If
244	 * this is a lot of uncompressed or not-compressible data, the dark
245	 * space cannot be used.
246	 */
247	available -= c->lst.total_dark;
248
249	/*
250	 * However, there is more dark space. The index may be bigger than
251	 * @min_idx_lebs. Those extra LEBs are assumed to be available, but
252	 * their dark space is not included in total_dark, so it is subtracted
253	 * here.
254	 */
255	if (c->lst.idx_lebs > min_idx_lebs) {
256		subtract_lebs = c->lst.idx_lebs - min_idx_lebs;
257		available -= subtract_lebs * c->dark_wm;
258	}
259
260	/* The calculations are rough and may end up with a negative number */
261	return available > 0 ? available : 0;
262}
263
264/**
265 * can_use_rp - check whether the user is allowed to use reserved pool.
266 * @c: UBIFS file-system description object
267 *
268 * UBIFS has so-called "reserved pool" which is flash space reserved
269 * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock.
270 * This function checks whether current user is allowed to use reserved pool.
271 * Returns %1  current user is allowed to use reserved pool and %0 otherwise.
272 */
273static int can_use_rp(struct ubifs_info *c)
274{
275	if (uid_eq(current_fsuid(), c->rp_uid) || capable(CAP_SYS_RESOURCE) ||
276	    (!gid_eq(c->rp_gid, GLOBAL_ROOT_GID) && in_group_p(c->rp_gid)))
277		return 1;
278	return 0;
279}
280
281/**
282 * do_budget_space - reserve flash space for index and data growth.
283 * @c: UBIFS file-system description object
284 *
285 * This function makes sure UBIFS has enough free LEBs for index growth and
286 * data.
287 *
288 * When budgeting index space, UBIFS reserves thrice as many LEBs as the index
289 * would take if it was consolidated and written to the flash. This guarantees
290 * that the "in-the-gaps" commit method always succeeds and UBIFS will always
291 * be able to commit dirty index. So this function basically adds amount of
292 * budgeted index space to the size of the current index, multiplies this by 3,
293 * and makes sure this does not exceed the amount of free LEBs.
294 *
295 * Notes about @c->bi.min_idx_lebs and @c->lst.idx_lebs variables:
296 * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might
297 *    be large, because UBIFS does not do any index consolidation as long as
298 *    there is free space. IOW, the index may take a lot of LEBs, but the LEBs
299 *    will contain a lot of dirt.
300 * o @c->bi.min_idx_lebs is the number of LEBS the index presumably takes. IOW,
301 *    the index may be consolidated to take up to @c->bi.min_idx_lebs LEBs.
302 *
303 * This function returns zero in case of success, and %-ENOSPC in case of
304 * failure.
305 */
306static int do_budget_space(struct ubifs_info *c)
307{
308	long long outstanding, available;
309	int lebs, rsvd_idx_lebs, min_idx_lebs;
310
311	/* First budget index space */
312	min_idx_lebs = ubifs_calc_min_idx_lebs(c);
313
314	/* Now 'min_idx_lebs' contains number of LEBs to reserve */
315	if (min_idx_lebs > c->lst.idx_lebs)
316		rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs;
317	else
318		rsvd_idx_lebs = 0;
319
320	/*
321	 * The number of LEBs that are available to be used by the index is:
322	 *
323	 *    @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt -
324	 *    @c->lst.taken_empty_lebs
325	 *
326	 * @c->lst.empty_lebs are available because they are empty.
327	 * @c->freeable_cnt are available because they contain only free and
328	 * dirty space, @c->idx_gc_cnt are available because they are index
329	 * LEBs that have been garbage collected and are awaiting the commit
330	 * before they can be used. And the in-the-gaps method will grab these
331	 * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have
332	 * already been allocated for some purpose.
333	 *
334	 * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because
335	 * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they
336	 * are taken until after the commit).
337	 *
338	 * Note, @c->lst.taken_empty_lebs may temporarily be higher by one
339	 * because of the way we serialize LEB allocations and budgeting. See a
340	 * comment in 'ubifs_find_free_space()'.
341	 */
342	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
343	       c->lst.taken_empty_lebs;
344	if (unlikely(rsvd_idx_lebs > lebs)) {
345		dbg_budg("out of indexing space: min_idx_lebs %d (old %d), rsvd_idx_lebs %d",
346			 min_idx_lebs, c->bi.min_idx_lebs, rsvd_idx_lebs);
347		return -ENOSPC;
348	}
349
350	available = ubifs_calc_available(c, min_idx_lebs);
351	outstanding = c->bi.data_growth + c->bi.dd_growth;
352
353	if (unlikely(available < outstanding)) {
354		dbg_budg("out of data space: available %lld, outstanding %lld",
355			 available, outstanding);
356		return -ENOSPC;
357	}
358
359	if (available - outstanding <= c->rp_size && !can_use_rp(c))
360		return -ENOSPC;
361
362	c->bi.min_idx_lebs = min_idx_lebs;
363	return 0;
364}
365
366/**
367 * calc_idx_growth - calculate approximate index growth from budgeting request.
368 * @c: UBIFS file-system description object
369 * @req: budgeting request
370 *
371 * For now we assume each new node adds one znode. But this is rather poor
372 * approximation, though.
373 */
374static int calc_idx_growth(const struct ubifs_info *c,
375			   const struct ubifs_budget_req *req)
376{
377	int znodes;
378
379	znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) +
380		 req->new_dent;
381	return znodes * c->max_idx_node_sz;
382}
383
384/**
385 * calc_data_growth - calculate approximate amount of new data from budgeting
386 * request.
387 * @c: UBIFS file-system description object
388 * @req: budgeting request
389 */
390static int calc_data_growth(const struct ubifs_info *c,
391			    const struct ubifs_budget_req *req)
392{
393	int data_growth;
394
395	data_growth = req->new_ino  ? c->bi.inode_budget : 0;
396	if (req->new_page)
397		data_growth += c->bi.page_budget;
398	if (req->new_dent)
399		data_growth += c->bi.dent_budget;
400	data_growth += req->new_ino_d;
401	return data_growth;
402}
403
404/**
405 * calc_dd_growth - calculate approximate amount of data which makes other data
406 * dirty from budgeting request.
407 * @c: UBIFS file-system description object
408 * @req: budgeting request
409 */
410static int calc_dd_growth(const struct ubifs_info *c,
411			  const struct ubifs_budget_req *req)
412{
413	int dd_growth;
414
415	dd_growth = req->dirtied_page ? c->bi.page_budget : 0;
416
417	if (req->dirtied_ino)
418		dd_growth += c->bi.inode_budget << (req->dirtied_ino - 1);
419	if (req->mod_dent)
420		dd_growth += c->bi.dent_budget;
421	dd_growth += req->dirtied_ino_d;
422	return dd_growth;
423}
424
425/**
426 * ubifs_budget_space - ensure there is enough space to complete an operation.
427 * @c: UBIFS file-system description object
428 * @req: budget request
429 *
430 * This function allocates budget for an operation. It uses pessimistic
431 * approximation of how much flash space the operation needs. The goal of this
432 * function is to make sure UBIFS always has flash space to flush all dirty
433 * pages, dirty inodes, and dirty znodes (liability). This function may force
434 * commit, garbage-collection or write-back. Returns zero in case of success,
435 * %-ENOSPC if there is no free space and other negative error codes in case of
436 * failures.
437 */
438int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req)
439{
440	int uninitialized_var(cmt_retries), uninitialized_var(wb_retries);
441	int err, idx_growth, data_growth, dd_growth, retried = 0;
442
443	ubifs_assert(req->new_page <= 1);
444	ubifs_assert(req->dirtied_page <= 1);
445	ubifs_assert(req->new_dent <= 1);
446	ubifs_assert(req->mod_dent <= 1);
447	ubifs_assert(req->new_ino <= 1);
448	ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA);
449	ubifs_assert(req->dirtied_ino <= 4);
450	ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
451	ubifs_assert(!(req->new_ino_d & 7));
452	ubifs_assert(!(req->dirtied_ino_d & 7));
453
454	data_growth = calc_data_growth(c, req);
455	dd_growth = calc_dd_growth(c, req);
456	if (!data_growth && !dd_growth)
457		return 0;
458	idx_growth = calc_idx_growth(c, req);
459
460again:
461	spin_lock(&c->space_lock);
462	ubifs_assert(c->bi.idx_growth >= 0);
463	ubifs_assert(c->bi.data_growth >= 0);
464	ubifs_assert(c->bi.dd_growth >= 0);
465
466	if (unlikely(c->bi.nospace) && (c->bi.nospace_rp || !can_use_rp(c))) {
467		dbg_budg("no space");
468		spin_unlock(&c->space_lock);
469		return -ENOSPC;
470	}
471
472	c->bi.idx_growth += idx_growth;
473	c->bi.data_growth += data_growth;
474	c->bi.dd_growth += dd_growth;
475
476	err = do_budget_space(c);
477	if (likely(!err)) {
478		req->idx_growth = idx_growth;
479		req->data_growth = data_growth;
480		req->dd_growth = dd_growth;
481		spin_unlock(&c->space_lock);
482		return 0;
483	}
484
485	/* Restore the old values */
486	c->bi.idx_growth -= idx_growth;
487	c->bi.data_growth -= data_growth;
488	c->bi.dd_growth -= dd_growth;
489	spin_unlock(&c->space_lock);
490
491	if (req->fast) {
492		dbg_budg("no space for fast budgeting");
493		return err;
494	}
495
496	err = make_free_space(c);
497	cond_resched();
498	if (err == -EAGAIN) {
499		dbg_budg("try again");
500		goto again;
501	} else if (err == -ENOSPC) {
502		if (!retried) {
503			retried = 1;
504			dbg_budg("-ENOSPC, but anyway try once again");
505			goto again;
506		}
507		dbg_budg("FS is full, -ENOSPC");
508		c->bi.nospace = 1;
509		if (can_use_rp(c) || c->rp_size == 0)
510			c->bi.nospace_rp = 1;
511		smp_wmb();
512	} else
513		ubifs_err("cannot budget space, error %d", err);
514	return err;
515}
516
517/**
518 * ubifs_release_budget - release budgeted free space.
519 * @c: UBIFS file-system description object
520 * @req: budget request
521 *
522 * This function releases the space budgeted by 'ubifs_budget_space()'. Note,
523 * since the index changes (which were budgeted for in @req->idx_growth) will
524 * only be written to the media on commit, this function moves the index budget
525 * from @c->bi.idx_growth to @c->bi.uncommitted_idx. The latter will be zeroed
526 * by the commit operation.
527 */
528void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req)
529{
530	ubifs_assert(req->new_page <= 1);
531	ubifs_assert(req->dirtied_page <= 1);
532	ubifs_assert(req->new_dent <= 1);
533	ubifs_assert(req->mod_dent <= 1);
534	ubifs_assert(req->new_ino <= 1);
535	ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA);
536	ubifs_assert(req->dirtied_ino <= 4);
537	ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
538	ubifs_assert(!(req->new_ino_d & 7));
539	ubifs_assert(!(req->dirtied_ino_d & 7));
540	if (!req->recalculate) {
541		ubifs_assert(req->idx_growth >= 0);
542		ubifs_assert(req->data_growth >= 0);
543		ubifs_assert(req->dd_growth >= 0);
544	}
545
546	if (req->recalculate) {
547		req->data_growth = calc_data_growth(c, req);
548		req->dd_growth = calc_dd_growth(c, req);
549		req->idx_growth = calc_idx_growth(c, req);
550	}
551
552	if (!req->data_growth && !req->dd_growth)
553		return;
554
555	c->bi.nospace = c->bi.nospace_rp = 0;
556	smp_wmb();
557
558	spin_lock(&c->space_lock);
559	c->bi.idx_growth -= req->idx_growth;
560	c->bi.uncommitted_idx += req->idx_growth;
561	c->bi.data_growth -= req->data_growth;
562	c->bi.dd_growth -= req->dd_growth;
563	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
564
565	ubifs_assert(c->bi.idx_growth >= 0);
566	ubifs_assert(c->bi.data_growth >= 0);
567	ubifs_assert(c->bi.dd_growth >= 0);
568	ubifs_assert(c->bi.min_idx_lebs < c->main_lebs);
569	ubifs_assert(!(c->bi.idx_growth & 7));
570	ubifs_assert(!(c->bi.data_growth & 7));
571	ubifs_assert(!(c->bi.dd_growth & 7));
572	spin_unlock(&c->space_lock);
573}
574
575/**
576 * ubifs_convert_page_budget - convert budget of a new page.
577 * @c: UBIFS file-system description object
578 *
579 * This function converts budget which was allocated for a new page of data to
580 * the budget of changing an existing page of data. The latter is smaller than
581 * the former, so this function only does simple re-calculation and does not
582 * involve any write-back.
583 */
584void ubifs_convert_page_budget(struct ubifs_info *c)
585{
586	spin_lock(&c->space_lock);
587	/* Release the index growth reservation */
588	c->bi.idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT;
589	/* Release the data growth reservation */
590	c->bi.data_growth -= c->bi.page_budget;
591	/* Increase the dirty data growth reservation instead */
592	c->bi.dd_growth += c->bi.page_budget;
593	/* And re-calculate the indexing space reservation */
594	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
595	spin_unlock(&c->space_lock);
596}
597
598/**
599 * ubifs_release_dirty_inode_budget - release dirty inode budget.
600 * @c: UBIFS file-system description object
601 * @ui: UBIFS inode to release the budget for
602 *
603 * This function releases budget corresponding to a dirty inode. It is usually
604 * called when after the inode has been written to the media and marked as
605 * clean. It also causes the "no space" flags to be cleared.
606 */
607void ubifs_release_dirty_inode_budget(struct ubifs_info *c,
608				      struct ubifs_inode *ui)
609{
610	struct ubifs_budget_req req;
611
612	memset(&req, 0, sizeof(struct ubifs_budget_req));
613	/* The "no space" flags will be cleared because dd_growth is > 0 */
614	req.dd_growth = c->bi.inode_budget + ALIGN(ui->data_len, 8);
615	ubifs_release_budget(c, &req);
616}
617
618/**
619 * ubifs_reported_space - calculate reported free space.
620 * @c: the UBIFS file-system description object
621 * @free: amount of free space
622 *
623 * This function calculates amount of free space which will be reported to
624 * user-space. User-space application tend to expect that if the file-system
625 * (e.g., via the 'statfs()' call) reports that it has N bytes available, they
626 * are able to write a file of size N. UBIFS attaches node headers to each data
627 * node and it has to write indexing nodes as well. This introduces additional
628 * overhead, and UBIFS has to report slightly less free space to meet the above
629 * expectations.
630 *
631 * This function assumes free space is made up of uncompressed data nodes and
632 * full index nodes (one per data node, tripled because we always allow enough
633 * space to write the index thrice).
634 *
635 * Note, the calculation is pessimistic, which means that most of the time
636 * UBIFS reports less space than it actually has.
637 */
638long long ubifs_reported_space(const struct ubifs_info *c, long long free)
639{
640	int divisor, factor, f;
641
642	/*
643	 * Reported space size is @free * X, where X is UBIFS block size
644	 * divided by UBIFS block size + all overhead one data block
645	 * introduces. The overhead is the node header + indexing overhead.
646	 *
647	 * Indexing overhead calculations are based on the following formula:
648	 * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number
649	 * of data nodes, f - fanout. Because effective UBIFS fanout is twice
650	 * as less than maximum fanout, we assume that each data node
651	 * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes.
652	 * Note, the multiplier 3 is because UBIFS reserves thrice as more space
653	 * for the index.
654	 */
655	f = c->fanout > 3 ? c->fanout >> 1 : 2;
656	factor = UBIFS_BLOCK_SIZE;
657	divisor = UBIFS_MAX_DATA_NODE_SZ;
658	divisor += (c->max_idx_node_sz * 3) / (f - 1);
659	free *= factor;
660	return div_u64(free, divisor);
661}
662
663/**
664 * ubifs_get_free_space_nolock - return amount of free space.
665 * @c: UBIFS file-system description object
666 *
667 * This function calculates amount of free space to report to user-space.
668 *
669 * Because UBIFS may introduce substantial overhead (the index, node headers,
670 * alignment, wastage at the end of LEBs, etc), it cannot report real amount of
671 * free flash space it has (well, because not all dirty space is reclaimable,
672 * UBIFS does not actually know the real amount). If UBIFS did so, it would
673 * bread user expectations about what free space is. Users seem to accustomed
674 * to assume that if the file-system reports N bytes of free space, they would
675 * be able to fit a file of N bytes to the FS. This almost works for
676 * traditional file-systems, because they have way less overhead than UBIFS.
677 * So, to keep users happy, UBIFS tries to take the overhead into account.
678 */
679long long ubifs_get_free_space_nolock(struct ubifs_info *c)
680{
681	int rsvd_idx_lebs, lebs;
682	long long available, outstanding, free;
683
684	ubifs_assert(c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
685	outstanding = c->bi.data_growth + c->bi.dd_growth;
686	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
687
688	/*
689	 * When reporting free space to user-space, UBIFS guarantees that it is
690	 * possible to write a file of free space size. This means that for
691	 * empty LEBs we may use more precise calculations than
692	 * 'ubifs_calc_available()' is using. Namely, we know that in empty
693	 * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm.
694	 * Thus, amend the available space.
695	 *
696	 * Note, the calculations below are similar to what we have in
697	 * 'do_budget_space()', so refer there for comments.
698	 */
699	if (c->bi.min_idx_lebs > c->lst.idx_lebs)
700		rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs;
701	else
702		rsvd_idx_lebs = 0;
703	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
704	       c->lst.taken_empty_lebs;
705	lebs -= rsvd_idx_lebs;
706	available += lebs * (c->dark_wm - c->leb_overhead);
707
708	if (available > outstanding)
709		free = ubifs_reported_space(c, available - outstanding);
710	else
711		free = 0;
712	return free;
713}
714
715/**
716 * ubifs_get_free_space - return amount of free space.
717 * @c: UBIFS file-system description object
718 *
719 * This function calculates and returns amount of free space to report to
720 * user-space.
721 */
722long long ubifs_get_free_space(struct ubifs_info *c)
723{
724	long long free;
725
726	spin_lock(&c->space_lock);
727	free = ubifs_get_free_space_nolock(c);
728	spin_unlock(&c->space_lock);
729
730	return free;
731}