Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *   Copyright (C) International Business Machines Corp., 2000-2004
   4 *   Portions Copyright (C) Tino Reichardt, 2012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/fs.h>
   8#include <linux/slab.h>
   9#include "jfs_incore.h"
  10#include "jfs_superblock.h"
  11#include "jfs_dmap.h"
  12#include "jfs_imap.h"
  13#include "jfs_lock.h"
  14#include "jfs_metapage.h"
  15#include "jfs_debug.h"
  16#include "jfs_discard.h"
  17
  18/*
  19 *	SERIALIZATION of the Block Allocation Map.
  20 *
  21 *	the working state of the block allocation map is accessed in
  22 *	two directions:
  23 *
  24 *	1) allocation and free requests that start at the dmap
  25 *	   level and move up through the dmap control pages (i.e.
  26 *	   the vast majority of requests).
  27 *
  28 *	2) allocation requests that start at dmap control page
  29 *	   level and work down towards the dmaps.
  30 *
  31 *	the serialization scheme used here is as follows.
  32 *
  33 *	requests which start at the bottom are serialized against each
  34 *	other through buffers and each requests holds onto its buffers
  35 *	as it works it way up from a single dmap to the required level
  36 *	of dmap control page.
  37 *	requests that start at the top are serialized against each other
  38 *	and request that start from the bottom by the multiple read/single
  39 *	write inode lock of the bmap inode. requests starting at the top
  40 *	take this lock in write mode while request starting at the bottom
  41 *	take the lock in read mode.  a single top-down request may proceed
  42 *	exclusively while multiple bottoms-up requests may proceed
  43 *	simultaneously (under the protection of busy buffers).
  44 *
  45 *	in addition to information found in dmaps and dmap control pages,
  46 *	the working state of the block allocation map also includes read/
  47 *	write information maintained in the bmap descriptor (i.e. total
  48 *	free block count, allocation group level free block counts).
  49 *	a single exclusive lock (BMAP_LOCK) is used to guard this information
  50 *	in the face of multiple-bottoms up requests.
  51 *	(lock ordering: IREAD_LOCK, BMAP_LOCK);
  52 *
  53 *	accesses to the persistent state of the block allocation map (limited
  54 *	to the persistent bitmaps in dmaps) is guarded by (busy) buffers.
  55 */
  56
  57#define BMAP_LOCK_INIT(bmp)	mutex_init(&bmp->db_bmaplock)
  58#define BMAP_LOCK(bmp)		mutex_lock(&bmp->db_bmaplock)
  59#define BMAP_UNLOCK(bmp)	mutex_unlock(&bmp->db_bmaplock)
  60
  61/*
  62 * forward references
  63 */
  64static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
  65			int nblocks);
  66static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval);
  67static int dbBackSplit(dmtree_t * tp, int leafno);
  68static int dbJoin(dmtree_t * tp, int leafno, int newval);
  69static void dbAdjTree(dmtree_t * tp, int leafno, int newval);
  70static int dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc,
  71		    int level);
  72static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results);
  73static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
  74		       int nblocks);
  75static int dbAllocNear(struct bmap * bmp, struct dmap * dp, s64 blkno,
  76		       int nblocks,
  77		       int l2nb, s64 * results);
  78static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
  79		       int nblocks);
  80static int dbAllocDmapLev(struct bmap * bmp, struct dmap * dp, int nblocks,
  81			  int l2nb,
  82			  s64 * results);
  83static int dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb,
  84		     s64 * results);
  85static int dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno,
  86		      s64 * results);
  87static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks);
  88static int dbFindBits(u32 word, int l2nb);
  89static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno);
  90static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx);
  91static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
  92		      int nblocks);
  93static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
  94		      int nblocks);
  95static int dbMaxBud(u8 * cp);
  96static int blkstol2(s64 nb);
  97
  98static int cntlz(u32 value);
  99static int cnttz(u32 word);
 100
 101static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
 102			 int nblocks);
 103static int dbInitDmap(struct dmap * dp, s64 blkno, int nblocks);
 104static int dbInitDmapTree(struct dmap * dp);
 105static int dbInitTree(struct dmaptree * dtp);
 106static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i);
 107static int dbGetL2AGSize(s64 nblocks);
 108
 109/*
 110 *	buddy table
 111 *
 112 * table used for determining buddy sizes within characters of
 113 * dmap bitmap words.  the characters themselves serve as indexes
 114 * into the table, with the table elements yielding the maximum
 115 * binary buddy of free bits within the character.
 116 */
 117static const s8 budtab[256] = {
 118	3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
 119	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 120	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 121	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 122	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 123	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 124	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 125	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 126	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 127	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 128	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 129	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 130	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 131	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 132	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 133	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1
 134};
 135
 136/*
 137 * NAME:	dbMount()
 138 *
 139 * FUNCTION:	initializate the block allocation map.
 140 *
 141 *		memory is allocated for the in-core bmap descriptor and
 142 *		the in-core descriptor is initialized from disk.
 143 *
 144 * PARAMETERS:
 145 *	ipbmap	- pointer to in-core inode for the block map.
 146 *
 147 * RETURN VALUES:
 148 *	0	- success
 149 *	-ENOMEM	- insufficient memory
 150 *	-EIO	- i/o error
 151 */
 152int dbMount(struct inode *ipbmap)
 153{
 154	struct bmap *bmp;
 155	struct dbmap_disk *dbmp_le;
 156	struct metapage *mp;
 157	int i;
 158
 159	/*
 160	 * allocate/initialize the in-memory bmap descriptor
 161	 */
 162	/* allocate memory for the in-memory bmap descriptor */
 163	bmp = kmalloc(sizeof(struct bmap), GFP_KERNEL);
 164	if (bmp == NULL)
 165		return -ENOMEM;
 166
 167	/* read the on-disk bmap descriptor. */
 168	mp = read_metapage(ipbmap,
 169			   BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
 170			   PSIZE, 0);
 171	if (mp == NULL) {
 172		kfree(bmp);
 173		return -EIO;
 174	}
 175
 176	/* copy the on-disk bmap descriptor to its in-memory version. */
 177	dbmp_le = (struct dbmap_disk *) mp->data;
 178	bmp->db_mapsize = le64_to_cpu(dbmp_le->dn_mapsize);
 179	bmp->db_nfree = le64_to_cpu(dbmp_le->dn_nfree);
 180	bmp->db_l2nbperpage = le32_to_cpu(dbmp_le->dn_l2nbperpage);
 181	bmp->db_numag = le32_to_cpu(dbmp_le->dn_numag);
 182	bmp->db_maxlevel = le32_to_cpu(dbmp_le->dn_maxlevel);
 183	bmp->db_maxag = le32_to_cpu(dbmp_le->dn_maxag);
 184	bmp->db_agpref = le32_to_cpu(dbmp_le->dn_agpref);
 185	bmp->db_aglevel = le32_to_cpu(dbmp_le->dn_aglevel);
 186	bmp->db_agheight = le32_to_cpu(dbmp_le->dn_agheight);
 187	bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
 188	bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
 189	bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
 190	for (i = 0; i < MAXAG; i++)
 191		bmp->db_agfree[i] = le64_to_cpu(dbmp_le->dn_agfree[i]);
 192	bmp->db_agsize = le64_to_cpu(dbmp_le->dn_agsize);
 193	bmp->db_maxfreebud = dbmp_le->dn_maxfreebud;
 194
 195	/* release the buffer. */
 196	release_metapage(mp);
 197
 198	/* bind the bmap inode and the bmap descriptor to each other. */
 199	bmp->db_ipbmap = ipbmap;
 200	JFS_SBI(ipbmap->i_sb)->bmap = bmp;
 201
 202	memset(bmp->db_active, 0, sizeof(bmp->db_active));
 203
 204	/*
 205	 * allocate/initialize the bmap lock
 206	 */
 207	BMAP_LOCK_INIT(bmp);
 208
 209	return (0);
 210}
 211
 212
 213/*
 214 * NAME:	dbUnmount()
 215 *
 216 * FUNCTION:	terminate the block allocation map in preparation for
 217 *		file system unmount.
 218 *
 219 *		the in-core bmap descriptor is written to disk and
 220 *		the memory for this descriptor is freed.
 221 *
 222 * PARAMETERS:
 223 *	ipbmap	- pointer to in-core inode for the block map.
 224 *
 225 * RETURN VALUES:
 226 *	0	- success
 227 *	-EIO	- i/o error
 228 */
 229int dbUnmount(struct inode *ipbmap, int mounterror)
 230{
 231	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
 232
 233	if (!(mounterror || isReadOnly(ipbmap)))
 234		dbSync(ipbmap);
 235
 236	/*
 237	 * Invalidate the page cache buffers
 238	 */
 239	truncate_inode_pages(ipbmap->i_mapping, 0);
 240
 241	/* free the memory for the in-memory bmap. */
 242	kfree(bmp);
 243
 244	return (0);
 245}
 246
 247/*
 248 *	dbSync()
 249 */
 250int dbSync(struct inode *ipbmap)
 251{
 252	struct dbmap_disk *dbmp_le;
 253	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
 254	struct metapage *mp;
 255	int i;
 256
 257	/*
 258	 * write bmap global control page
 259	 */
 260	/* get the buffer for the on-disk bmap descriptor. */
 261	mp = read_metapage(ipbmap,
 262			   BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
 263			   PSIZE, 0);
 264	if (mp == NULL) {
 265		jfs_err("dbSync: read_metapage failed!");
 266		return -EIO;
 267	}
 268	/* copy the in-memory version of the bmap to the on-disk version */
 269	dbmp_le = (struct dbmap_disk *) mp->data;
 270	dbmp_le->dn_mapsize = cpu_to_le64(bmp->db_mapsize);
 271	dbmp_le->dn_nfree = cpu_to_le64(bmp->db_nfree);
 272	dbmp_le->dn_l2nbperpage = cpu_to_le32(bmp->db_l2nbperpage);
 273	dbmp_le->dn_numag = cpu_to_le32(bmp->db_numag);
 274	dbmp_le->dn_maxlevel = cpu_to_le32(bmp->db_maxlevel);
 275	dbmp_le->dn_maxag = cpu_to_le32(bmp->db_maxag);
 276	dbmp_le->dn_agpref = cpu_to_le32(bmp->db_agpref);
 277	dbmp_le->dn_aglevel = cpu_to_le32(bmp->db_aglevel);
 278	dbmp_le->dn_agheight = cpu_to_le32(bmp->db_agheight);
 279	dbmp_le->dn_agwidth = cpu_to_le32(bmp->db_agwidth);
 280	dbmp_le->dn_agstart = cpu_to_le32(bmp->db_agstart);
 281	dbmp_le->dn_agl2size = cpu_to_le32(bmp->db_agl2size);
 282	for (i = 0; i < MAXAG; i++)
 283		dbmp_le->dn_agfree[i] = cpu_to_le64(bmp->db_agfree[i]);
 284	dbmp_le->dn_agsize = cpu_to_le64(bmp->db_agsize);
 285	dbmp_le->dn_maxfreebud = bmp->db_maxfreebud;
 286
 287	/* write the buffer */
 288	write_metapage(mp);
 289
 290	/*
 291	 * write out dirty pages of bmap
 292	 */
 293	filemap_write_and_wait(ipbmap->i_mapping);
 294
 295	diWriteSpecial(ipbmap, 0);
 296
 297	return (0);
 298}
 299
 300/*
 301 * NAME:	dbFree()
 302 *
 303 * FUNCTION:	free the specified block range from the working block
 304 *		allocation map.
 305 *
 306 *		the blocks will be free from the working map one dmap
 307 *		at a time.
 308 *
 309 * PARAMETERS:
 310 *	ip	- pointer to in-core inode;
 311 *	blkno	- starting block number to be freed.
 312 *	nblocks	- number of blocks to be freed.
 313 *
 314 * RETURN VALUES:
 315 *	0	- success
 316 *	-EIO	- i/o error
 317 */
 318int dbFree(struct inode *ip, s64 blkno, s64 nblocks)
 319{
 320	struct metapage *mp;
 321	struct dmap *dp;
 322	int nb, rc;
 323	s64 lblkno, rem;
 324	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
 325	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
 326	struct super_block *sb = ipbmap->i_sb;
 327
 328	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
 329
 330	/* block to be freed better be within the mapsize. */
 331	if (unlikely((blkno == 0) || (blkno + nblocks > bmp->db_mapsize))) {
 332		IREAD_UNLOCK(ipbmap);
 333		printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
 334		       (unsigned long long) blkno,
 335		       (unsigned long long) nblocks);
 336		jfs_error(ip->i_sb, "block to be freed is outside the map\n");
 337		return -EIO;
 338	}
 339
 340	/**
 341	 * TRIM the blocks, when mounted with discard option
 342	 */
 343	if (JFS_SBI(sb)->flag & JFS_DISCARD)
 344		if (JFS_SBI(sb)->minblks_trim <= nblocks)
 345			jfs_issue_discard(ipbmap, blkno, nblocks);
 346
 347	/*
 348	 * free the blocks a dmap at a time.
 349	 */
 350	mp = NULL;
 351	for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
 352		/* release previous dmap if any */
 353		if (mp) {
 354			write_metapage(mp);
 355		}
 356
 357		/* get the buffer for the current dmap. */
 358		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
 359		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
 360		if (mp == NULL) {
 361			IREAD_UNLOCK(ipbmap);
 362			return -EIO;
 363		}
 364		dp = (struct dmap *) mp->data;
 365
 366		/* determine the number of blocks to be freed from
 367		 * this dmap.
 368		 */
 369		nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
 370
 371		/* free the blocks. */
 372		if ((rc = dbFreeDmap(bmp, dp, blkno, nb))) {
 373			jfs_error(ip->i_sb, "error in block map\n");
 374			release_metapage(mp);
 375			IREAD_UNLOCK(ipbmap);
 376			return (rc);
 377		}
 378	}
 379
 380	/* write the last buffer. */
 381	write_metapage(mp);
 382
 383	IREAD_UNLOCK(ipbmap);
 384
 385	return (0);
 386}
 387
 388
 389/*
 390 * NAME:	dbUpdatePMap()
 391 *
 392 * FUNCTION:	update the allocation state (free or allocate) of the
 393 *		specified block range in the persistent block allocation map.
 394 *
 395 *		the blocks will be updated in the persistent map one
 396 *		dmap at a time.
 397 *
 398 * PARAMETERS:
 399 *	ipbmap	- pointer to in-core inode for the block map.
 400 *	free	- 'true' if block range is to be freed from the persistent
 401 *		  map; 'false' if it is to be allocated.
 402 *	blkno	- starting block number of the range.
 403 *	nblocks	- number of contiguous blocks in the range.
 404 *	tblk	- transaction block;
 405 *
 406 * RETURN VALUES:
 407 *	0	- success
 408 *	-EIO	- i/o error
 409 */
 410int
 411dbUpdatePMap(struct inode *ipbmap,
 412	     int free, s64 blkno, s64 nblocks, struct tblock * tblk)
 413{
 414	int nblks, dbitno, wbitno, rbits;
 415	int word, nbits, nwords;
 416	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
 417	s64 lblkno, rem, lastlblkno;
 418	u32 mask;
 419	struct dmap *dp;
 420	struct metapage *mp;
 421	struct jfs_log *log;
 422	int lsn, difft, diffp;
 423	unsigned long flags;
 424
 425	/* the blocks better be within the mapsize. */
 426	if (blkno + nblocks > bmp->db_mapsize) {
 427		printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
 428		       (unsigned long long) blkno,
 429		       (unsigned long long) nblocks);
 430		jfs_error(ipbmap->i_sb, "blocks are outside the map\n");
 431		return -EIO;
 432	}
 433
 434	/* compute delta of transaction lsn from log syncpt */
 435	lsn = tblk->lsn;
 436	log = (struct jfs_log *) JFS_SBI(tblk->sb)->log;
 437	logdiff(difft, lsn, log);
 438
 439	/*
 440	 * update the block state a dmap at a time.
 441	 */
 442	mp = NULL;
 443	lastlblkno = 0;
 444	for (rem = nblocks; rem > 0; rem -= nblks, blkno += nblks) {
 445		/* get the buffer for the current dmap. */
 446		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
 447		if (lblkno != lastlblkno) {
 448			if (mp) {
 449				write_metapage(mp);
 450			}
 451
 452			mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE,
 453					   0);
 454			if (mp == NULL)
 455				return -EIO;
 456			metapage_wait_for_io(mp);
 457		}
 458		dp = (struct dmap *) mp->data;
 459
 460		/* determine the bit number and word within the dmap of
 461		 * the starting block.  also determine how many blocks
 462		 * are to be updated within this dmap.
 463		 */
 464		dbitno = blkno & (BPERDMAP - 1);
 465		word = dbitno >> L2DBWORD;
 466		nblks = min(rem, (s64)BPERDMAP - dbitno);
 467
 468		/* update the bits of the dmap words. the first and last
 469		 * words may only have a subset of their bits updated. if
 470		 * this is the case, we'll work against that word (i.e.
 471		 * partial first and/or last) only in a single pass.  a
 472		 * single pass will also be used to update all words that
 473		 * are to have all their bits updated.
 474		 */
 475		for (rbits = nblks; rbits > 0;
 476		     rbits -= nbits, dbitno += nbits) {
 477			/* determine the bit number within the word and
 478			 * the number of bits within the word.
 479			 */
 480			wbitno = dbitno & (DBWORD - 1);
 481			nbits = min(rbits, DBWORD - wbitno);
 482
 483			/* check if only part of the word is to be updated. */
 484			if (nbits < DBWORD) {
 485				/* update (free or allocate) the bits
 486				 * in this word.
 487				 */
 488				mask =
 489				    (ONES << (DBWORD - nbits) >> wbitno);
 490				if (free)
 491					dp->pmap[word] &=
 492					    cpu_to_le32(~mask);
 493				else
 494					dp->pmap[word] |=
 495					    cpu_to_le32(mask);
 496
 497				word += 1;
 498			} else {
 499				/* one or more words are to have all
 500				 * their bits updated.  determine how
 501				 * many words and how many bits.
 502				 */
 503				nwords = rbits >> L2DBWORD;
 504				nbits = nwords << L2DBWORD;
 505
 506				/* update (free or allocate) the bits
 507				 * in these words.
 508				 */
 509				if (free)
 510					memset(&dp->pmap[word], 0,
 511					       nwords * 4);
 512				else
 513					memset(&dp->pmap[word], (int) ONES,
 514					       nwords * 4);
 515
 516				word += nwords;
 517			}
 518		}
 519
 520		/*
 521		 * update dmap lsn
 522		 */
 523		if (lblkno == lastlblkno)
 524			continue;
 525
 526		lastlblkno = lblkno;
 527
 528		LOGSYNC_LOCK(log, flags);
 529		if (mp->lsn != 0) {
 530			/* inherit older/smaller lsn */
 531			logdiff(diffp, mp->lsn, log);
 532			if (difft < diffp) {
 533				mp->lsn = lsn;
 534
 535				/* move bp after tblock in logsync list */
 536				list_move(&mp->synclist, &tblk->synclist);
 537			}
 538
 539			/* inherit younger/larger clsn */
 540			logdiff(difft, tblk->clsn, log);
 541			logdiff(diffp, mp->clsn, log);
 542			if (difft > diffp)
 543				mp->clsn = tblk->clsn;
 544		} else {
 545			mp->log = log;
 546			mp->lsn = lsn;
 547
 548			/* insert bp after tblock in logsync list */
 549			log->count++;
 550			list_add(&mp->synclist, &tblk->synclist);
 551
 552			mp->clsn = tblk->clsn;
 553		}
 554		LOGSYNC_UNLOCK(log, flags);
 555	}
 556
 557	/* write the last buffer. */
 558	if (mp) {
 559		write_metapage(mp);
 560	}
 561
 562	return (0);
 563}
 564
 565
 566/*
 567 * NAME:	dbNextAG()
 568 *
 569 * FUNCTION:	find the preferred allocation group for new allocations.
 570 *
 571 *		Within the allocation groups, we maintain a preferred
 572 *		allocation group which consists of a group with at least
 573 *		average free space.  It is the preferred group that we target
 574 *		new inode allocation towards.  The tie-in between inode
 575 *		allocation and block allocation occurs as we allocate the
 576 *		first (data) block of an inode and specify the inode (block)
 577 *		as the allocation hint for this block.
 578 *
 579 *		We try to avoid having more than one open file growing in
 580 *		an allocation group, as this will lead to fragmentation.
 581 *		This differs from the old OS/2 method of trying to keep
 582 *		empty ags around for large allocations.
 583 *
 584 * PARAMETERS:
 585 *	ipbmap	- pointer to in-core inode for the block map.
 586 *
 587 * RETURN VALUES:
 588 *	the preferred allocation group number.
 589 */
 590int dbNextAG(struct inode *ipbmap)
 591{
 592	s64 avgfree;
 593	int agpref;
 594	s64 hwm = 0;
 595	int i;
 596	int next_best = -1;
 597	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
 598
 599	BMAP_LOCK(bmp);
 600
 601	/* determine the average number of free blocks within the ags. */
 602	avgfree = (u32)bmp->db_nfree / bmp->db_numag;
 603
 604	/*
 605	 * if the current preferred ag does not have an active allocator
 606	 * and has at least average freespace, return it
 607	 */
 608	agpref = bmp->db_agpref;
 609	if ((atomic_read(&bmp->db_active[agpref]) == 0) &&
 610	    (bmp->db_agfree[agpref] >= avgfree))
 611		goto unlock;
 612
 613	/* From the last preferred ag, find the next one with at least
 614	 * average free space.
 615	 */
 616	for (i = 0 ; i < bmp->db_numag; i++, agpref++) {
 617		if (agpref == bmp->db_numag)
 618			agpref = 0;
 619
 620		if (atomic_read(&bmp->db_active[agpref]))
 621			/* open file is currently growing in this ag */
 622			continue;
 623		if (bmp->db_agfree[agpref] >= avgfree) {
 624			/* Return this one */
 625			bmp->db_agpref = agpref;
 626			goto unlock;
 627		} else if (bmp->db_agfree[agpref] > hwm) {
 628			/* Less than avg. freespace, but best so far */
 629			hwm = bmp->db_agfree[agpref];
 630			next_best = agpref;
 631		}
 632	}
 633
 634	/*
 635	 * If no inactive ag was found with average freespace, use the
 636	 * next best
 637	 */
 638	if (next_best != -1)
 639		bmp->db_agpref = next_best;
 640	/* else leave db_agpref unchanged */
 641unlock:
 642	BMAP_UNLOCK(bmp);
 643
 644	/* return the preferred group.
 645	 */
 646	return (bmp->db_agpref);
 647}
 648
 649/*
 650 * NAME:	dbAlloc()
 651 *
 652 * FUNCTION:	attempt to allocate a specified number of contiguous free
 653 *		blocks from the working allocation block map.
 654 *
 655 *		the block allocation policy uses hints and a multi-step
 656 *		approach.
 657 *
 658 *		for allocation requests smaller than the number of blocks
 659 *		per dmap, we first try to allocate the new blocks
 660 *		immediately following the hint.  if these blocks are not
 661 *		available, we try to allocate blocks near the hint.  if
 662 *		no blocks near the hint are available, we next try to
 663 *		allocate within the same dmap as contains the hint.
 664 *
 665 *		if no blocks are available in the dmap or the allocation
 666 *		request is larger than the dmap size, we try to allocate
 667 *		within the same allocation group as contains the hint. if
 668 *		this does not succeed, we finally try to allocate anywhere
 669 *		within the aggregate.
 670 *
 671 *		we also try to allocate anywhere within the aggregate for
 672 *		for allocation requests larger than the allocation group
 673 *		size or requests that specify no hint value.
 674 *
 675 * PARAMETERS:
 676 *	ip	- pointer to in-core inode;
 677 *	hint	- allocation hint.
 678 *	nblocks	- number of contiguous blocks in the range.
 679 *	results	- on successful return, set to the starting block number
 680 *		  of the newly allocated contiguous range.
 681 *
 682 * RETURN VALUES:
 683 *	0	- success
 684 *	-ENOSPC	- insufficient disk resources
 685 *	-EIO	- i/o error
 686 */
 687int dbAlloc(struct inode *ip, s64 hint, s64 nblocks, s64 * results)
 688{
 689	int rc, agno;
 690	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
 691	struct bmap *bmp;
 692	struct metapage *mp;
 693	s64 lblkno, blkno;
 694	struct dmap *dp;
 695	int l2nb;
 696	s64 mapSize;
 697	int writers;
 698
 699	/* assert that nblocks is valid */
 700	assert(nblocks > 0);
 701
 702	/* get the log2 number of blocks to be allocated.
 703	 * if the number of blocks is not a log2 multiple,
 704	 * it will be rounded up to the next log2 multiple.
 705	 */
 706	l2nb = BLKSTOL2(nblocks);
 707
 708	bmp = JFS_SBI(ip->i_sb)->bmap;
 709
 710	mapSize = bmp->db_mapsize;
 711
 712	/* the hint should be within the map */
 713	if (hint >= mapSize) {
 714		jfs_error(ip->i_sb, "the hint is outside the map\n");
 715		return -EIO;
 716	}
 717
 718	/* if the number of blocks to be allocated is greater than the
 719	 * allocation group size, try to allocate anywhere.
 720	 */
 721	if (l2nb > bmp->db_agl2size) {
 722		IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
 723
 724		rc = dbAllocAny(bmp, nblocks, l2nb, results);
 725
 726		goto write_unlock;
 727	}
 728
 729	/*
 730	 * If no hint, let dbNextAG recommend an allocation group
 731	 */
 732	if (hint == 0)
 733		goto pref_ag;
 734
 735	/* we would like to allocate close to the hint.  adjust the
 736	 * hint to the block following the hint since the allocators
 737	 * will start looking for free space starting at this point.
 738	 */
 739	blkno = hint + 1;
 740
 741	if (blkno >= bmp->db_mapsize)
 742		goto pref_ag;
 743
 744	agno = blkno >> bmp->db_agl2size;
 745
 746	/* check if blkno crosses over into a new allocation group.
 747	 * if so, check if we should allow allocations within this
 748	 * allocation group.
 749	 */
 750	if ((blkno & (bmp->db_agsize - 1)) == 0)
 751		/* check if the AG is currently being written to.
 752		 * if so, call dbNextAG() to find a non-busy
 753		 * AG with sufficient free space.
 754		 */
 755		if (atomic_read(&bmp->db_active[agno]))
 756			goto pref_ag;
 757
 758	/* check if the allocation request size can be satisfied from a
 759	 * single dmap.  if so, try to allocate from the dmap containing
 760	 * the hint using a tiered strategy.
 761	 */
 762	if (nblocks <= BPERDMAP) {
 763		IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
 764
 765		/* get the buffer for the dmap containing the hint.
 766		 */
 767		rc = -EIO;
 768		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
 769		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
 770		if (mp == NULL)
 771			goto read_unlock;
 772
 773		dp = (struct dmap *) mp->data;
 774
 775		/* first, try to satisfy the allocation request with the
 776		 * blocks beginning at the hint.
 777		 */
 778		if ((rc = dbAllocNext(bmp, dp, blkno, (int) nblocks))
 779		    != -ENOSPC) {
 780			if (rc == 0) {
 781				*results = blkno;
 782				mark_metapage_dirty(mp);
 783			}
 784
 785			release_metapage(mp);
 786			goto read_unlock;
 787		}
 788
 789		writers = atomic_read(&bmp->db_active[agno]);
 790		if ((writers > 1) ||
 791		    ((writers == 1) && (JFS_IP(ip)->active_ag != agno))) {
 792			/*
 793			 * Someone else is writing in this allocation
 794			 * group.  To avoid fragmenting, try another ag
 795			 */
 796			release_metapage(mp);
 797			IREAD_UNLOCK(ipbmap);
 798			goto pref_ag;
 799		}
 800
 801		/* next, try to satisfy the allocation request with blocks
 802		 * near the hint.
 803		 */
 804		if ((rc =
 805		     dbAllocNear(bmp, dp, blkno, (int) nblocks, l2nb, results))
 806		    != -ENOSPC) {
 807			if (rc == 0)
 808				mark_metapage_dirty(mp);
 809
 810			release_metapage(mp);
 811			goto read_unlock;
 812		}
 813
 814		/* try to satisfy the allocation request with blocks within
 815		 * the same dmap as the hint.
 816		 */
 817		if ((rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results))
 818		    != -ENOSPC) {
 819			if (rc == 0)
 820				mark_metapage_dirty(mp);
 821
 822			release_metapage(mp);
 823			goto read_unlock;
 824		}
 825
 826		release_metapage(mp);
 827		IREAD_UNLOCK(ipbmap);
 828	}
 829
 830	/* try to satisfy the allocation request with blocks within
 831	 * the same allocation group as the hint.
 832	 */
 833	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
 834	if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) != -ENOSPC)
 835		goto write_unlock;
 836
 837	IWRITE_UNLOCK(ipbmap);
 838
 839
 840      pref_ag:
 841	/*
 842	 * Let dbNextAG recommend a preferred allocation group
 843	 */
 844	agno = dbNextAG(ipbmap);
 845	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
 846
 847	/* Try to allocate within this allocation group.  if that fails, try to
 848	 * allocate anywhere in the map.
 849	 */
 850	if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) == -ENOSPC)
 851		rc = dbAllocAny(bmp, nblocks, l2nb, results);
 852
 853      write_unlock:
 854	IWRITE_UNLOCK(ipbmap);
 855
 856	return (rc);
 857
 858      read_unlock:
 859	IREAD_UNLOCK(ipbmap);
 860
 861	return (rc);
 862}
 863
 864#ifdef _NOTYET
 865/*
 866 * NAME:	dbAllocExact()
 867 *
 868 * FUNCTION:	try to allocate the requested extent;
 869 *
 870 * PARAMETERS:
 871 *	ip	- pointer to in-core inode;
 872 *	blkno	- extent address;
 873 *	nblocks	- extent length;
 874 *
 875 * RETURN VALUES:
 876 *	0	- success
 877 *	-ENOSPC	- insufficient disk resources
 878 *	-EIO	- i/o error
 879 */
 880int dbAllocExact(struct inode *ip, s64 blkno, int nblocks)
 881{
 882	int rc;
 883	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
 884	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
 885	struct dmap *dp;
 886	s64 lblkno;
 887	struct metapage *mp;
 888
 889	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
 890
 891	/*
 892	 * validate extent request:
 893	 *
 894	 * note: defragfs policy:
 895	 *  max 64 blocks will be moved.
 896	 *  allocation request size must be satisfied from a single dmap.
 897	 */
 898	if (nblocks <= 0 || nblocks > BPERDMAP || blkno >= bmp->db_mapsize) {
 899		IREAD_UNLOCK(ipbmap);
 900		return -EINVAL;
 901	}
 902
 903	if (nblocks > ((s64) 1 << bmp->db_maxfreebud)) {
 904		/* the free space is no longer available */
 905		IREAD_UNLOCK(ipbmap);
 906		return -ENOSPC;
 907	}
 908
 909	/* read in the dmap covering the extent */
 910	lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
 911	mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
 912	if (mp == NULL) {
 913		IREAD_UNLOCK(ipbmap);
 914		return -EIO;
 915	}
 916	dp = (struct dmap *) mp->data;
 917
 918	/* try to allocate the requested extent */
 919	rc = dbAllocNext(bmp, dp, blkno, nblocks);
 920
 921	IREAD_UNLOCK(ipbmap);
 922
 923	if (rc == 0)
 924		mark_metapage_dirty(mp);
 925
 926	release_metapage(mp);
 927
 928	return (rc);
 929}
 930#endif /* _NOTYET */
 931
 932/*
 933 * NAME:	dbReAlloc()
 934 *
 935 * FUNCTION:	attempt to extend a current allocation by a specified
 936 *		number of blocks.
 937 *
 938 *		this routine attempts to satisfy the allocation request
 939 *		by first trying to extend the existing allocation in
 940 *		place by allocating the additional blocks as the blocks
 941 *		immediately following the current allocation.  if these
 942 *		blocks are not available, this routine will attempt to
 943 *		allocate a new set of contiguous blocks large enough
 944 *		to cover the existing allocation plus the additional
 945 *		number of blocks required.
 946 *
 947 * PARAMETERS:
 948 *	ip	    -  pointer to in-core inode requiring allocation.
 949 *	blkno	    -  starting block of the current allocation.
 950 *	nblocks	    -  number of contiguous blocks within the current
 951 *		       allocation.
 952 *	addnblocks  -  number of blocks to add to the allocation.
 953 *	results	-      on successful return, set to the starting block number
 954 *		       of the existing allocation if the existing allocation
 955 *		       was extended in place or to a newly allocated contiguous
 956 *		       range if the existing allocation could not be extended
 957 *		       in place.
 958 *
 959 * RETURN VALUES:
 960 *	0	- success
 961 *	-ENOSPC	- insufficient disk resources
 962 *	-EIO	- i/o error
 963 */
 964int
 965dbReAlloc(struct inode *ip,
 966	  s64 blkno, s64 nblocks, s64 addnblocks, s64 * results)
 967{
 968	int rc;
 969
 970	/* try to extend the allocation in place.
 971	 */
 972	if ((rc = dbExtend(ip, blkno, nblocks, addnblocks)) == 0) {
 973		*results = blkno;
 974		return (0);
 975	} else {
 976		if (rc != -ENOSPC)
 977			return (rc);
 978	}
 979
 980	/* could not extend the allocation in place, so allocate a
 981	 * new set of blocks for the entire request (i.e. try to get
 982	 * a range of contiguous blocks large enough to cover the
 983	 * existing allocation plus the additional blocks.)
 984	 */
 985	return (dbAlloc
 986		(ip, blkno + nblocks - 1, addnblocks + nblocks, results));
 987}
 988
 989
 990/*
 991 * NAME:	dbExtend()
 992 *
 993 * FUNCTION:	attempt to extend a current allocation by a specified
 994 *		number of blocks.
 995 *
 996 *		this routine attempts to satisfy the allocation request
 997 *		by first trying to extend the existing allocation in
 998 *		place by allocating the additional blocks as the blocks
 999 *		immediately following the current allocation.
1000 *
1001 * PARAMETERS:
1002 *	ip	    -  pointer to in-core inode requiring allocation.
1003 *	blkno	    -  starting block of the current allocation.
1004 *	nblocks	    -  number of contiguous blocks within the current
1005 *		       allocation.
1006 *	addnblocks  -  number of blocks to add to the allocation.
1007 *
1008 * RETURN VALUES:
1009 *	0	- success
1010 *	-ENOSPC	- insufficient disk resources
1011 *	-EIO	- i/o error
1012 */
1013static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks)
1014{
1015	struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
1016	s64 lblkno, lastblkno, extblkno;
1017	uint rel_block;
1018	struct metapage *mp;
1019	struct dmap *dp;
1020	int rc;
1021	struct inode *ipbmap = sbi->ipbmap;
1022	struct bmap *bmp;
1023
1024	/*
1025	 * We don't want a non-aligned extent to cross a page boundary
1026	 */
1027	if (((rel_block = blkno & (sbi->nbperpage - 1))) &&
1028	    (rel_block + nblocks + addnblocks > sbi->nbperpage))
1029		return -ENOSPC;
1030
1031	/* get the last block of the current allocation */
1032	lastblkno = blkno + nblocks - 1;
1033
1034	/* determine the block number of the block following
1035	 * the existing allocation.
1036	 */
1037	extblkno = lastblkno + 1;
1038
1039	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
1040
1041	/* better be within the file system */
1042	bmp = sbi->bmap;
1043	if (lastblkno < 0 || lastblkno >= bmp->db_mapsize) {
1044		IREAD_UNLOCK(ipbmap);
1045		jfs_error(ip->i_sb, "the block is outside the filesystem\n");
1046		return -EIO;
1047	}
1048
1049	/* we'll attempt to extend the current allocation in place by
1050	 * allocating the additional blocks as the blocks immediately
1051	 * following the current allocation.  we only try to extend the
1052	 * current allocation in place if the number of additional blocks
1053	 * can fit into a dmap, the last block of the current allocation
1054	 * is not the last block of the file system, and the start of the
1055	 * inplace extension is not on an allocation group boundary.
1056	 */
1057	if (addnblocks > BPERDMAP || extblkno >= bmp->db_mapsize ||
1058	    (extblkno & (bmp->db_agsize - 1)) == 0) {
1059		IREAD_UNLOCK(ipbmap);
1060		return -ENOSPC;
1061	}
1062
1063	/* get the buffer for the dmap containing the first block
1064	 * of the extension.
1065	 */
1066	lblkno = BLKTODMAP(extblkno, bmp->db_l2nbperpage);
1067	mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
1068	if (mp == NULL) {
1069		IREAD_UNLOCK(ipbmap);
1070		return -EIO;
1071	}
1072
1073	dp = (struct dmap *) mp->data;
1074
1075	/* try to allocate the blocks immediately following the
1076	 * current allocation.
1077	 */
1078	rc = dbAllocNext(bmp, dp, extblkno, (int) addnblocks);
1079
1080	IREAD_UNLOCK(ipbmap);
1081
1082	/* were we successful ? */
1083	if (rc == 0)
1084		write_metapage(mp);
1085	else
1086		/* we were not successful */
1087		release_metapage(mp);
1088
1089	return (rc);
1090}
1091
1092
1093/*
1094 * NAME:	dbAllocNext()
1095 *
1096 * FUNCTION:	attempt to allocate the blocks of the specified block
1097 *		range within a dmap.
1098 *
1099 * PARAMETERS:
1100 *	bmp	-  pointer to bmap descriptor
1101 *	dp	-  pointer to dmap.
1102 *	blkno	-  starting block number of the range.
1103 *	nblocks	-  number of contiguous free blocks of the range.
1104 *
1105 * RETURN VALUES:
1106 *	0	- success
1107 *	-ENOSPC	- insufficient disk resources
1108 *	-EIO	- i/o error
1109 *
1110 * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1111 */
1112static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
1113		       int nblocks)
1114{
1115	int dbitno, word, rembits, nb, nwords, wbitno, nw;
1116	int l2size;
1117	s8 *leaf;
1118	u32 mask;
1119
1120	if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1121		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1122		return -EIO;
1123	}
1124
1125	/* pick up a pointer to the leaves of the dmap tree.
1126	 */
1127	leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1128
1129	/* determine the bit number and word within the dmap of the
1130	 * starting block.
1131	 */
1132	dbitno = blkno & (BPERDMAP - 1);
1133	word = dbitno >> L2DBWORD;
1134
1135	/* check if the specified block range is contained within
1136	 * this dmap.
1137	 */
1138	if (dbitno + nblocks > BPERDMAP)
1139		return -ENOSPC;
1140
1141	/* check if the starting leaf indicates that anything
1142	 * is free.
1143	 */
1144	if (leaf[word] == NOFREE)
1145		return -ENOSPC;
1146
1147	/* check the dmaps words corresponding to block range to see
1148	 * if the block range is free.  not all bits of the first and
1149	 * last words may be contained within the block range.  if this
1150	 * is the case, we'll work against those words (i.e. partial first
1151	 * and/or last) on an individual basis (a single pass) and examine
1152	 * the actual bits to determine if they are free.  a single pass
1153	 * will be used for all dmap words fully contained within the
1154	 * specified range.  within this pass, the leaves of the dmap
1155	 * tree will be examined to determine if the blocks are free. a
1156	 * single leaf may describe the free space of multiple dmap
1157	 * words, so we may visit only a subset of the actual leaves
1158	 * corresponding to the dmap words of the block range.
1159	 */
1160	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
1161		/* determine the bit number within the word and
1162		 * the number of bits within the word.
1163		 */
1164		wbitno = dbitno & (DBWORD - 1);
1165		nb = min(rembits, DBWORD - wbitno);
1166
1167		/* check if only part of the word is to be examined.
1168		 */
1169		if (nb < DBWORD) {
1170			/* check if the bits are free.
1171			 */
1172			mask = (ONES << (DBWORD - nb) >> wbitno);
1173			if ((mask & ~le32_to_cpu(dp->wmap[word])) != mask)
1174				return -ENOSPC;
1175
1176			word += 1;
1177		} else {
1178			/* one or more dmap words are fully contained
1179			 * within the block range.  determine how many
1180			 * words and how many bits.
1181			 */
1182			nwords = rembits >> L2DBWORD;
1183			nb = nwords << L2DBWORD;
1184
1185			/* now examine the appropriate leaves to determine
1186			 * if the blocks are free.
1187			 */
1188			while (nwords > 0) {
1189				/* does the leaf describe any free space ?
1190				 */
1191				if (leaf[word] < BUDMIN)
1192					return -ENOSPC;
1193
1194				/* determine the l2 number of bits provided
1195				 * by this leaf.
1196				 */
1197				l2size =
1198				    min_t(int, leaf[word], NLSTOL2BSZ(nwords));
1199
1200				/* determine how many words were handled.
1201				 */
1202				nw = BUDSIZE(l2size, BUDMIN);
1203
1204				nwords -= nw;
1205				word += nw;
1206			}
1207		}
1208	}
1209
1210	/* allocate the blocks.
1211	 */
1212	return (dbAllocDmap(bmp, dp, blkno, nblocks));
1213}
1214
1215
1216/*
1217 * NAME:	dbAllocNear()
1218 *
1219 * FUNCTION:	attempt to allocate a number of contiguous free blocks near
1220 *		a specified block (hint) within a dmap.
1221 *
1222 *		starting with the dmap leaf that covers the hint, we'll
1223 *		check the next four contiguous leaves for sufficient free
1224 *		space.  if sufficient free space is found, we'll allocate
1225 *		the desired free space.
1226 *
1227 * PARAMETERS:
1228 *	bmp	-  pointer to bmap descriptor
1229 *	dp	-  pointer to dmap.
1230 *	blkno	-  block number to allocate near.
1231 *	nblocks	-  actual number of contiguous free blocks desired.
1232 *	l2nb	-  log2 number of contiguous free blocks desired.
1233 *	results	-  on successful return, set to the starting block number
1234 *		   of the newly allocated range.
1235 *
1236 * RETURN VALUES:
1237 *	0	- success
1238 *	-ENOSPC	- insufficient disk resources
1239 *	-EIO	- i/o error
1240 *
1241 * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1242 */
1243static int
1244dbAllocNear(struct bmap * bmp,
1245	    struct dmap * dp, s64 blkno, int nblocks, int l2nb, s64 * results)
1246{
1247	int word, lword, rc;
1248	s8 *leaf;
1249
1250	if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1251		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1252		return -EIO;
1253	}
1254
1255	leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1256
1257	/* determine the word within the dmap that holds the hint
1258	 * (i.e. blkno).  also, determine the last word in the dmap
1259	 * that we'll include in our examination.
1260	 */
1261	word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
1262	lword = min(word + 4, LPERDMAP);
1263
1264	/* examine the leaves for sufficient free space.
1265	 */
1266	for (; word < lword; word++) {
1267		/* does the leaf describe sufficient free space ?
1268		 */
1269		if (leaf[word] < l2nb)
1270			continue;
1271
1272		/* determine the block number within the file system
1273		 * of the first block described by this dmap word.
1274		 */
1275		blkno = le64_to_cpu(dp->start) + (word << L2DBWORD);
1276
1277		/* if not all bits of the dmap word are free, get the
1278		 * starting bit number within the dmap word of the required
1279		 * string of free bits and adjust the block number with the
1280		 * value.
1281		 */
1282		if (leaf[word] < BUDMIN)
1283			blkno +=
1284			    dbFindBits(le32_to_cpu(dp->wmap[word]), l2nb);
1285
1286		/* allocate the blocks.
1287		 */
1288		if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1289			*results = blkno;
1290
1291		return (rc);
1292	}
1293
1294	return -ENOSPC;
1295}
1296
1297
1298/*
1299 * NAME:	dbAllocAG()
1300 *
1301 * FUNCTION:	attempt to allocate the specified number of contiguous
1302 *		free blocks within the specified allocation group.
1303 *
1304 *		unless the allocation group size is equal to the number
1305 *		of blocks per dmap, the dmap control pages will be used to
1306 *		find the required free space, if available.  we start the
1307 *		search at the highest dmap control page level which
1308 *		distinctly describes the allocation group's free space
1309 *		(i.e. the highest level at which the allocation group's
1310 *		free space is not mixed in with that of any other group).
1311 *		in addition, we start the search within this level at a
1312 *		height of the dmapctl dmtree at which the nodes distinctly
1313 *		describe the allocation group's free space.  at this height,
1314 *		the allocation group's free space may be represented by 1
1315 *		or two sub-trees, depending on the allocation group size.
1316 *		we search the top nodes of these subtrees left to right for
1317 *		sufficient free space.  if sufficient free space is found,
1318 *		the subtree is searched to find the leftmost leaf that
1319 *		has free space.  once we have made it to the leaf, we
1320 *		move the search to the next lower level dmap control page
1321 *		corresponding to this leaf.  we continue down the dmap control
1322 *		pages until we find the dmap that contains or starts the
1323 *		sufficient free space and we allocate at this dmap.
1324 *
1325 *		if the allocation group size is equal to the dmap size,
1326 *		we'll start at the dmap corresponding to the allocation
1327 *		group and attempt the allocation at this level.
1328 *
1329 *		the dmap control page search is also not performed if the
1330 *		allocation group is completely free and we go to the first
1331 *		dmap of the allocation group to do the allocation.  this is
1332 *		done because the allocation group may be part (not the first
1333 *		part) of a larger binary buddy system, causing the dmap
1334 *		control pages to indicate no free space (NOFREE) within
1335 *		the allocation group.
1336 *
1337 * PARAMETERS:
1338 *	bmp	-  pointer to bmap descriptor
1339 *	agno	- allocation group number.
1340 *	nblocks	-  actual number of contiguous free blocks desired.
1341 *	l2nb	-  log2 number of contiguous free blocks desired.
1342 *	results	-  on successful return, set to the starting block number
1343 *		   of the newly allocated range.
1344 *
1345 * RETURN VALUES:
1346 *	0	- success
1347 *	-ENOSPC	- insufficient disk resources
1348 *	-EIO	- i/o error
1349 *
1350 * note: IWRITE_LOCK(ipmap) held on entry/exit;
1351 */
1352static int
1353dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb, s64 * results)
1354{
1355	struct metapage *mp;
1356	struct dmapctl *dcp;
1357	int rc, ti, i, k, m, n, agperlev;
1358	s64 blkno, lblkno;
1359	int budmin;
1360
1361	/* allocation request should not be for more than the
1362	 * allocation group size.
1363	 */
1364	if (l2nb > bmp->db_agl2size) {
1365		jfs_error(bmp->db_ipbmap->i_sb,
1366			  "allocation request is larger than the allocation group size\n");
1367		return -EIO;
1368	}
1369
1370	/* determine the starting block number of the allocation
1371	 * group.
1372	 */
1373	blkno = (s64) agno << bmp->db_agl2size;
1374
1375	/* check if the allocation group size is the minimum allocation
1376	 * group size or if the allocation group is completely free. if
1377	 * the allocation group size is the minimum size of BPERDMAP (i.e.
1378	 * 1 dmap), there is no need to search the dmap control page (below)
1379	 * that fully describes the allocation group since the allocation
1380	 * group is already fully described by a dmap.  in this case, we
1381	 * just call dbAllocCtl() to search the dmap tree and allocate the
1382	 * required space if available.
1383	 *
1384	 * if the allocation group is completely free, dbAllocCtl() is
1385	 * also called to allocate the required space.  this is done for
1386	 * two reasons.  first, it makes no sense searching the dmap control
1387	 * pages for free space when we know that free space exists.  second,
1388	 * the dmap control pages may indicate that the allocation group
1389	 * has no free space if the allocation group is part (not the first
1390	 * part) of a larger binary buddy system.
1391	 */
1392	if (bmp->db_agsize == BPERDMAP
1393	    || bmp->db_agfree[agno] == bmp->db_agsize) {
1394		rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1395		if ((rc == -ENOSPC) &&
1396		    (bmp->db_agfree[agno] == bmp->db_agsize)) {
1397			printk(KERN_ERR "blkno = %Lx, blocks = %Lx\n",
1398			       (unsigned long long) blkno,
1399			       (unsigned long long) nblocks);
1400			jfs_error(bmp->db_ipbmap->i_sb,
1401				  "dbAllocCtl failed in free AG\n");
1402		}
1403		return (rc);
1404	}
1405
1406	/* the buffer for the dmap control page that fully describes the
1407	 * allocation group.
1408	 */
1409	lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, bmp->db_aglevel);
1410	mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1411	if (mp == NULL)
1412		return -EIO;
1413	dcp = (struct dmapctl *) mp->data;
1414	budmin = dcp->budmin;
1415
1416	if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1417		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
1418		release_metapage(mp);
1419		return -EIO;
1420	}
1421
1422	/* search the subtree(s) of the dmap control page that describes
1423	 * the allocation group, looking for sufficient free space.  to begin,
1424	 * determine how many allocation groups are represented in a dmap
1425	 * control page at the control page level (i.e. L0, L1, L2) that
1426	 * fully describes an allocation group. next, determine the starting
1427	 * tree index of this allocation group within the control page.
1428	 */
1429	agperlev =
1430	    (1 << (L2LPERCTL - (bmp->db_agheight << 1))) / bmp->db_agwidth;
1431	ti = bmp->db_agstart + bmp->db_agwidth * (agno & (agperlev - 1));
1432
1433	/* dmap control page trees fan-out by 4 and a single allocation
1434	 * group may be described by 1 or 2 subtrees within the ag level
1435	 * dmap control page, depending upon the ag size. examine the ag's
1436	 * subtrees for sufficient free space, starting with the leftmost
1437	 * subtree.
1438	 */
1439	for (i = 0; i < bmp->db_agwidth; i++, ti++) {
1440		/* is there sufficient free space ?
1441		 */
1442		if (l2nb > dcp->stree[ti])
1443			continue;
1444
1445		/* sufficient free space found in a subtree. now search down
1446		 * the subtree to find the leftmost leaf that describes this
1447		 * free space.
1448		 */
1449		for (k = bmp->db_agheight; k > 0; k--) {
1450			for (n = 0, m = (ti << 2) + 1; n < 4; n++) {
1451				if (l2nb <= dcp->stree[m + n]) {
1452					ti = m + n;
1453					break;
1454				}
1455			}
1456			if (n == 4) {
1457				jfs_error(bmp->db_ipbmap->i_sb,
1458					  "failed descending stree\n");
1459				release_metapage(mp);
1460				return -EIO;
1461			}
1462		}
1463
1464		/* determine the block number within the file system
1465		 * that corresponds to this leaf.
1466		 */
1467		if (bmp->db_aglevel == 2)
1468			blkno = 0;
1469		else if (bmp->db_aglevel == 1)
1470			blkno &= ~(MAXL1SIZE - 1);
1471		else		/* bmp->db_aglevel == 0 */
1472			blkno &= ~(MAXL0SIZE - 1);
1473
1474		blkno +=
1475		    ((s64) (ti - le32_to_cpu(dcp->leafidx))) << budmin;
1476
1477		/* release the buffer in preparation for going down
1478		 * the next level of dmap control pages.
1479		 */
1480		release_metapage(mp);
1481
1482		/* check if we need to continue to search down the lower
1483		 * level dmap control pages.  we need to if the number of
1484		 * blocks required is less than maximum number of blocks
1485		 * described at the next lower level.
1486		 */
1487		if (l2nb < budmin) {
1488
1489			/* search the lower level dmap control pages to get
1490			 * the starting block number of the dmap that
1491			 * contains or starts off the free space.
1492			 */
1493			if ((rc =
1494			     dbFindCtl(bmp, l2nb, bmp->db_aglevel - 1,
1495				       &blkno))) {
1496				if (rc == -ENOSPC) {
1497					jfs_error(bmp->db_ipbmap->i_sb,
1498						  "control page inconsistent\n");
1499					return -EIO;
1500				}
1501				return (rc);
1502			}
1503		}
1504
1505		/* allocate the blocks.
1506		 */
1507		rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1508		if (rc == -ENOSPC) {
1509			jfs_error(bmp->db_ipbmap->i_sb,
1510				  "unable to allocate blocks\n");
1511			rc = -EIO;
1512		}
1513		return (rc);
1514	}
1515
1516	/* no space in the allocation group.  release the buffer and
1517	 * return -ENOSPC.
1518	 */
1519	release_metapage(mp);
1520
1521	return -ENOSPC;
1522}
1523
1524
1525/*
1526 * NAME:	dbAllocAny()
1527 *
1528 * FUNCTION:	attempt to allocate the specified number of contiguous
1529 *		free blocks anywhere in the file system.
1530 *
1531 *		dbAllocAny() attempts to find the sufficient free space by
1532 *		searching down the dmap control pages, starting with the
1533 *		highest level (i.e. L0, L1, L2) control page.  if free space
1534 *		large enough to satisfy the desired free space is found, the
1535 *		desired free space is allocated.
1536 *
1537 * PARAMETERS:
1538 *	bmp	-  pointer to bmap descriptor
1539 *	nblocks	 -  actual number of contiguous free blocks desired.
1540 *	l2nb	 -  log2 number of contiguous free blocks desired.
1541 *	results	-  on successful return, set to the starting block number
1542 *		   of the newly allocated range.
1543 *
1544 * RETURN VALUES:
1545 *	0	- success
1546 *	-ENOSPC	- insufficient disk resources
1547 *	-EIO	- i/o error
1548 *
1549 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1550 */
1551static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results)
1552{
1553	int rc;
1554	s64 blkno = 0;
1555
1556	/* starting with the top level dmap control page, search
1557	 * down the dmap control levels for sufficient free space.
1558	 * if free space is found, dbFindCtl() returns the starting
1559	 * block number of the dmap that contains or starts off the
1560	 * range of free space.
1561	 */
1562	if ((rc = dbFindCtl(bmp, l2nb, bmp->db_maxlevel, &blkno)))
1563		return (rc);
1564
1565	/* allocate the blocks.
1566	 */
1567	rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1568	if (rc == -ENOSPC) {
1569		jfs_error(bmp->db_ipbmap->i_sb, "unable to allocate blocks\n");
1570		return -EIO;
1571	}
1572	return (rc);
1573}
1574
1575
1576/*
1577 * NAME:	dbDiscardAG()
1578 *
1579 * FUNCTION:	attempt to discard (TRIM) all free blocks of specific AG
1580 *
1581 *		algorithm:
1582 *		1) allocate blocks, as large as possible and save them
1583 *		   while holding IWRITE_LOCK on ipbmap
1584 *		2) trim all these saved block/length values
1585 *		3) mark the blocks free again
1586 *
1587 *		benefit:
1588 *		- we work only on one ag at some time, minimizing how long we
1589 *		  need to lock ipbmap
1590 *		- reading / writing the fs is possible most time, even on
1591 *		  trimming
1592 *
1593 *		downside:
1594 *		- we write two times to the dmapctl and dmap pages
1595 *		- but for me, this seems the best way, better ideas?
1596 *		/TR 2012
1597 *
1598 * PARAMETERS:
1599 *	ip	- pointer to in-core inode
1600 *	agno	- ag to trim
1601 *	minlen	- minimum value of contiguous blocks
1602 *
1603 * RETURN VALUES:
1604 *	s64	- actual number of blocks trimmed
1605 */
1606s64 dbDiscardAG(struct inode *ip, int agno, s64 minlen)
1607{
1608	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
1609	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
1610	s64 nblocks, blkno;
1611	u64 trimmed = 0;
1612	int rc, l2nb;
1613	struct super_block *sb = ipbmap->i_sb;
1614
1615	struct range2trim {
1616		u64 blkno;
1617		u64 nblocks;
1618	} *totrim, *tt;
1619
1620	/* max blkno / nblocks pairs to trim */
1621	int count = 0, range_cnt;
1622	u64 max_ranges;
1623
1624	/* prevent others from writing new stuff here, while trimming */
1625	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
1626
1627	nblocks = bmp->db_agfree[agno];
1628	max_ranges = nblocks;
1629	do_div(max_ranges, minlen);
1630	range_cnt = min_t(u64, max_ranges + 1, 32 * 1024);
1631	totrim = kmalloc_array(range_cnt, sizeof(struct range2trim), GFP_NOFS);
1632	if (totrim == NULL) {
1633		jfs_error(bmp->db_ipbmap->i_sb, "no memory for trim array\n");
1634		IWRITE_UNLOCK(ipbmap);
1635		return 0;
1636	}
1637
1638	tt = totrim;
1639	while (nblocks >= minlen) {
1640		l2nb = BLKSTOL2(nblocks);
1641
1642		/* 0 = okay, -EIO = fatal, -ENOSPC -> try smaller block */
1643		rc = dbAllocAG(bmp, agno, nblocks, l2nb, &blkno);
1644		if (rc == 0) {
1645			tt->blkno = blkno;
1646			tt->nblocks = nblocks;
1647			tt++; count++;
1648
1649			/* the whole ag is free, trim now */
1650			if (bmp->db_agfree[agno] == 0)
1651				break;
1652
1653			/* give a hint for the next while */
1654			nblocks = bmp->db_agfree[agno];
1655			continue;
1656		} else if (rc == -ENOSPC) {
1657			/* search for next smaller log2 block */
1658			l2nb = BLKSTOL2(nblocks) - 1;
1659			nblocks = 1 << l2nb;
1660		} else {
1661			/* Trim any already allocated blocks */
1662			jfs_error(bmp->db_ipbmap->i_sb, "-EIO\n");
1663			break;
1664		}
1665
1666		/* check, if our trim array is full */
1667		if (unlikely(count >= range_cnt - 1))
1668			break;
1669	}
1670	IWRITE_UNLOCK(ipbmap);
1671
1672	tt->nblocks = 0; /* mark the current end */
1673	for (tt = totrim; tt->nblocks != 0; tt++) {
1674		/* when mounted with online discard, dbFree() will
1675		 * call jfs_issue_discard() itself */
1676		if (!(JFS_SBI(sb)->flag & JFS_DISCARD))
1677			jfs_issue_discard(ip, tt->blkno, tt->nblocks);
1678		dbFree(ip, tt->blkno, tt->nblocks);
1679		trimmed += tt->nblocks;
1680	}
1681	kfree(totrim);
1682
1683	return trimmed;
1684}
1685
1686/*
1687 * NAME:	dbFindCtl()
1688 *
1689 * FUNCTION:	starting at a specified dmap control page level and block
1690 *		number, search down the dmap control levels for a range of
1691 *		contiguous free blocks large enough to satisfy an allocation
1692 *		request for the specified number of free blocks.
1693 *
1694 *		if sufficient contiguous free blocks are found, this routine
1695 *		returns the starting block number within a dmap page that
1696 *		contains or starts a range of contiqious free blocks that
1697 *		is sufficient in size.
1698 *
1699 * PARAMETERS:
1700 *	bmp	-  pointer to bmap descriptor
1701 *	level	-  starting dmap control page level.
1702 *	l2nb	-  log2 number of contiguous free blocks desired.
1703 *	*blkno	-  on entry, starting block number for conducting the search.
1704 *		   on successful return, the first block within a dmap page
1705 *		   that contains or starts a range of contiguous free blocks.
1706 *
1707 * RETURN VALUES:
1708 *	0	- success
1709 *	-ENOSPC	- insufficient disk resources
1710 *	-EIO	- i/o error
1711 *
1712 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1713 */
1714static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno)
1715{
1716	int rc, leafidx, lev;
1717	s64 b, lblkno;
1718	struct dmapctl *dcp;
1719	int budmin;
1720	struct metapage *mp;
1721
1722	/* starting at the specified dmap control page level and block
1723	 * number, search down the dmap control levels for the starting
1724	 * block number of a dmap page that contains or starts off
1725	 * sufficient free blocks.
1726	 */
1727	for (lev = level, b = *blkno; lev >= 0; lev--) {
1728		/* get the buffer of the dmap control page for the block
1729		 * number and level (i.e. L0, L1, L2).
1730		 */
1731		lblkno = BLKTOCTL(b, bmp->db_l2nbperpage, lev);
1732		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1733		if (mp == NULL)
1734			return -EIO;
1735		dcp = (struct dmapctl *) mp->data;
1736		budmin = dcp->budmin;
1737
1738		if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1739			jfs_error(bmp->db_ipbmap->i_sb,
1740				  "Corrupt dmapctl page\n");
1741			release_metapage(mp);
1742			return -EIO;
1743		}
1744
1745		/* search the tree within the dmap control page for
1746		 * sufficient free space.  if sufficient free space is found,
1747		 * dbFindLeaf() returns the index of the leaf at which
1748		 * free space was found.
1749		 */
1750		rc = dbFindLeaf((dmtree_t *) dcp, l2nb, &leafidx);
1751
1752		/* release the buffer.
1753		 */
1754		release_metapage(mp);
1755
1756		/* space found ?
1757		 */
1758		if (rc) {
1759			if (lev != level) {
1760				jfs_error(bmp->db_ipbmap->i_sb,
1761					  "dmap inconsistent\n");
1762				return -EIO;
1763			}
1764			return -ENOSPC;
1765		}
1766
1767		/* adjust the block number to reflect the location within
1768		 * the dmap control page (i.e. the leaf) at which free
1769		 * space was found.
1770		 */
1771		b += (((s64) leafidx) << budmin);
1772
1773		/* we stop the search at this dmap control page level if
1774		 * the number of blocks required is greater than or equal
1775		 * to the maximum number of blocks described at the next
1776		 * (lower) level.
1777		 */
1778		if (l2nb >= budmin)
1779			break;
1780	}
1781
1782	*blkno = b;
1783	return (0);
1784}
1785
1786
1787/*
1788 * NAME:	dbAllocCtl()
1789 *
1790 * FUNCTION:	attempt to allocate a specified number of contiguous
1791 *		blocks starting within a specific dmap.
1792 *
1793 *		this routine is called by higher level routines that search
1794 *		the dmap control pages above the actual dmaps for contiguous
1795 *		free space.  the result of successful searches by these
1796 *		routines are the starting block numbers within dmaps, with
1797 *		the dmaps themselves containing the desired contiguous free
1798 *		space or starting a contiguous free space of desired size
1799 *		that is made up of the blocks of one or more dmaps. these
1800 *		calls should not fail due to insufficent resources.
1801 *
1802 *		this routine is called in some cases where it is not known
1803 *		whether it will fail due to insufficient resources.  more
1804 *		specifically, this occurs when allocating from an allocation
1805 *		group whose size is equal to the number of blocks per dmap.
1806 *		in this case, the dmap control pages are not examined prior
1807 *		to calling this routine (to save pathlength) and the call
1808 *		might fail.
1809 *
1810 *		for a request size that fits within a dmap, this routine relies
1811 *		upon the dmap's dmtree to find the requested contiguous free
1812 *		space.  for request sizes that are larger than a dmap, the
1813 *		requested free space will start at the first block of the
1814 *		first dmap (i.e. blkno).
1815 *
1816 * PARAMETERS:
1817 *	bmp	-  pointer to bmap descriptor
1818 *	nblocks	 -  actual number of contiguous free blocks to allocate.
1819 *	l2nb	 -  log2 number of contiguous free blocks to allocate.
1820 *	blkno	 -  starting block number of the dmap to start the allocation
1821 *		    from.
1822 *	results	-  on successful return, set to the starting block number
1823 *		   of the newly allocated range.
1824 *
1825 * RETURN VALUES:
1826 *	0	- success
1827 *	-ENOSPC	- insufficient disk resources
1828 *	-EIO	- i/o error
1829 *
1830 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1831 */
1832static int
1833dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno, s64 * results)
1834{
1835	int rc, nb;
1836	s64 b, lblkno, n;
1837	struct metapage *mp;
1838	struct dmap *dp;
1839
1840	/* check if the allocation request is confined to a single dmap.
1841	 */
1842	if (l2nb <= L2BPERDMAP) {
1843		/* get the buffer for the dmap.
1844		 */
1845		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
1846		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1847		if (mp == NULL)
1848			return -EIO;
1849		dp = (struct dmap *) mp->data;
1850
1851		/* try to allocate the blocks.
1852		 */
1853		rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results);
1854		if (rc == 0)
1855			mark_metapage_dirty(mp);
1856
1857		release_metapage(mp);
1858
1859		return (rc);
1860	}
1861
1862	/* allocation request involving multiple dmaps. it must start on
1863	 * a dmap boundary.
1864	 */
1865	assert((blkno & (BPERDMAP - 1)) == 0);
1866
1867	/* allocate the blocks dmap by dmap.
1868	 */
1869	for (n = nblocks, b = blkno; n > 0; n -= nb, b += nb) {
1870		/* get the buffer for the dmap.
1871		 */
1872		lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1873		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1874		if (mp == NULL) {
1875			rc = -EIO;
1876			goto backout;
1877		}
1878		dp = (struct dmap *) mp->data;
1879
1880		/* the dmap better be all free.
1881		 */
1882		if (dp->tree.stree[ROOT] != L2BPERDMAP) {
1883			release_metapage(mp);
1884			jfs_error(bmp->db_ipbmap->i_sb,
1885				  "the dmap is not all free\n");
1886			rc = -EIO;
1887			goto backout;
1888		}
1889
1890		/* determine how many blocks to allocate from this dmap.
1891		 */
1892		nb = min_t(s64, n, BPERDMAP);
1893
1894		/* allocate the blocks from the dmap.
1895		 */
1896		if ((rc = dbAllocDmap(bmp, dp, b, nb))) {
1897			release_metapage(mp);
1898			goto backout;
1899		}
1900
1901		/* write the buffer.
1902		 */
1903		write_metapage(mp);
1904	}
1905
1906	/* set the results (starting block number) and return.
1907	 */
1908	*results = blkno;
1909	return (0);
1910
1911	/* something failed in handling an allocation request involving
1912	 * multiple dmaps.  we'll try to clean up by backing out any
1913	 * allocation that has already happened for this request.  if
1914	 * we fail in backing out the allocation, we'll mark the file
1915	 * system to indicate that blocks have been leaked.
1916	 */
1917      backout:
1918
1919	/* try to backout the allocations dmap by dmap.
1920	 */
1921	for (n = nblocks - n, b = blkno; n > 0;
1922	     n -= BPERDMAP, b += BPERDMAP) {
1923		/* get the buffer for this dmap.
1924		 */
1925		lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1926		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1927		if (mp == NULL) {
1928			/* could not back out.  mark the file system
1929			 * to indicate that we have leaked blocks.
1930			 */
1931			jfs_error(bmp->db_ipbmap->i_sb,
1932				  "I/O Error: Block Leakage\n");
1933			continue;
1934		}
1935		dp = (struct dmap *) mp->data;
1936
1937		/* free the blocks is this dmap.
1938		 */
1939		if (dbFreeDmap(bmp, dp, b, BPERDMAP)) {
1940			/* could not back out.  mark the file system
1941			 * to indicate that we have leaked blocks.
1942			 */
1943			release_metapage(mp);
1944			jfs_error(bmp->db_ipbmap->i_sb, "Block Leakage\n");
1945			continue;
1946		}
1947
1948		/* write the buffer.
1949		 */
1950		write_metapage(mp);
1951	}
1952
1953	return (rc);
1954}
1955
1956
1957/*
1958 * NAME:	dbAllocDmapLev()
1959 *
1960 * FUNCTION:	attempt to allocate a specified number of contiguous blocks
1961 *		from a specified dmap.
1962 *
1963 *		this routine checks if the contiguous blocks are available.
1964 *		if so, nblocks of blocks are allocated; otherwise, ENOSPC is
1965 *		returned.
1966 *
1967 * PARAMETERS:
1968 *	mp	-  pointer to bmap descriptor
1969 *	dp	-  pointer to dmap to attempt to allocate blocks from.
1970 *	l2nb	-  log2 number of contiguous block desired.
1971 *	nblocks	-  actual number of contiguous block desired.
1972 *	results	-  on successful return, set to the starting block number
1973 *		   of the newly allocated range.
1974 *
1975 * RETURN VALUES:
1976 *	0	- success
1977 *	-ENOSPC	- insufficient disk resources
1978 *	-EIO	- i/o error
1979 *
1980 * serialization: IREAD_LOCK(ipbmap), e.g., from dbAlloc(), or
1981 *	IWRITE_LOCK(ipbmap), e.g., dbAllocCtl(), held on entry/exit;
1982 */
1983static int
1984dbAllocDmapLev(struct bmap * bmp,
1985	       struct dmap * dp, int nblocks, int l2nb, s64 * results)
1986{
1987	s64 blkno;
1988	int leafidx, rc;
1989
1990	/* can't be more than a dmaps worth of blocks */
1991	assert(l2nb <= L2BPERDMAP);
1992
1993	/* search the tree within the dmap page for sufficient
1994	 * free space.  if sufficient free space is found, dbFindLeaf()
1995	 * returns the index of the leaf at which free space was found.
1996	 */
1997	if (dbFindLeaf((dmtree_t *) & dp->tree, l2nb, &leafidx))
1998		return -ENOSPC;
1999
2000	/* determine the block number within the file system corresponding
2001	 * to the leaf at which free space was found.
2002	 */
2003	blkno = le64_to_cpu(dp->start) + (leafidx << L2DBWORD);
2004
2005	/* if not all bits of the dmap word are free, get the starting
2006	 * bit number within the dmap word of the required string of free
2007	 * bits and adjust the block number with this value.
2008	 */
2009	if (dp->tree.stree[leafidx + LEAFIND] < BUDMIN)
2010		blkno += dbFindBits(le32_to_cpu(dp->wmap[leafidx]), l2nb);
2011
2012	/* allocate the blocks */
2013	if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
2014		*results = blkno;
2015
2016	return (rc);
2017}
2018
2019
2020/*
2021 * NAME:	dbAllocDmap()
2022 *
2023 * FUNCTION:	adjust the disk allocation map to reflect the allocation
2024 *		of a specified block range within a dmap.
2025 *
2026 *		this routine allocates the specified blocks from the dmap
2027 *		through a call to dbAllocBits(). if the allocation of the
2028 *		block range causes the maximum string of free blocks within
2029 *		the dmap to change (i.e. the value of the root of the dmap's
2030 *		dmtree), this routine will cause this change to be reflected
2031 *		up through the appropriate levels of the dmap control pages
2032 *		by a call to dbAdjCtl() for the L0 dmap control page that
2033 *		covers this dmap.
2034 *
2035 * PARAMETERS:
2036 *	bmp	-  pointer to bmap descriptor
2037 *	dp	-  pointer to dmap to allocate the block range from.
2038 *	blkno	-  starting block number of the block to be allocated.
2039 *	nblocks	-  number of blocks to be allocated.
2040 *
2041 * RETURN VALUES:
2042 *	0	- success
2043 *	-EIO	- i/o error
2044 *
2045 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2046 */
2047static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2048		       int nblocks)
2049{
2050	s8 oldroot;
2051	int rc;
2052
2053	/* save the current value of the root (i.e. maximum free string)
2054	 * of the dmap tree.
2055	 */
2056	oldroot = dp->tree.stree[ROOT];
2057
2058	/* allocate the specified (blocks) bits */
2059	dbAllocBits(bmp, dp, blkno, nblocks);
2060
2061	/* if the root has not changed, done. */
2062	if (dp->tree.stree[ROOT] == oldroot)
2063		return (0);
2064
2065	/* root changed. bubble the change up to the dmap control pages.
2066	 * if the adjustment of the upper level control pages fails,
2067	 * backout the bit allocation (thus making everything consistent).
2068	 */
2069	if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 1, 0)))
2070		dbFreeBits(bmp, dp, blkno, nblocks);
2071
2072	return (rc);
2073}
2074
2075
2076/*
2077 * NAME:	dbFreeDmap()
2078 *
2079 * FUNCTION:	adjust the disk allocation map to reflect the allocation
2080 *		of a specified block range within a dmap.
2081 *
2082 *		this routine frees the specified blocks from the dmap through
2083 *		a call to dbFreeBits(). if the deallocation of the block range
2084 *		causes the maximum string of free blocks within the dmap to
2085 *		change (i.e. the value of the root of the dmap's dmtree), this
2086 *		routine will cause this change to be reflected up through the
2087 *		appropriate levels of the dmap control pages by a call to
2088 *		dbAdjCtl() for the L0 dmap control page that covers this dmap.
2089 *
2090 * PARAMETERS:
2091 *	bmp	-  pointer to bmap descriptor
2092 *	dp	-  pointer to dmap to free the block range from.
2093 *	blkno	-  starting block number of the block to be freed.
2094 *	nblocks	-  number of blocks to be freed.
2095 *
2096 * RETURN VALUES:
2097 *	0	- success
2098 *	-EIO	- i/o error
2099 *
2100 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2101 */
2102static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2103		      int nblocks)
2104{
2105	s8 oldroot;
2106	int rc = 0, word;
2107
2108	/* save the current value of the root (i.e. maximum free string)
2109	 * of the dmap tree.
2110	 */
2111	oldroot = dp->tree.stree[ROOT];
2112
2113	/* free the specified (blocks) bits */
2114	rc = dbFreeBits(bmp, dp, blkno, nblocks);
2115
2116	/* if error or the root has not changed, done. */
2117	if (rc || (dp->tree.stree[ROOT] == oldroot))
2118		return (rc);
2119
2120	/* root changed. bubble the change up to the dmap control pages.
2121	 * if the adjustment of the upper level control pages fails,
2122	 * backout the deallocation.
2123	 */
2124	if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 0, 0))) {
2125		word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
2126
2127		/* as part of backing out the deallocation, we will have
2128		 * to back split the dmap tree if the deallocation caused
2129		 * the freed blocks to become part of a larger binary buddy
2130		 * system.
2131		 */
2132		if (dp->tree.stree[word] == NOFREE)
2133			dbBackSplit((dmtree_t *) & dp->tree, word);
2134
2135		dbAllocBits(bmp, dp, blkno, nblocks);
2136	}
2137
2138	return (rc);
2139}
2140
2141
2142/*
2143 * NAME:	dbAllocBits()
2144 *
2145 * FUNCTION:	allocate a specified block range from a dmap.
2146 *
2147 *		this routine updates the dmap to reflect the working
2148 *		state allocation of the specified block range. it directly
2149 *		updates the bits of the working map and causes the adjustment
2150 *		of the binary buddy system described by the dmap's dmtree
2151 *		leaves to reflect the bits allocated.  it also causes the
2152 *		dmap's dmtree, as a whole, to reflect the allocated range.
2153 *
2154 * PARAMETERS:
2155 *	bmp	-  pointer to bmap descriptor
2156 *	dp	-  pointer to dmap to allocate bits from.
2157 *	blkno	-  starting block number of the bits to be allocated.
2158 *	nblocks	-  number of bits to be allocated.
2159 *
2160 * RETURN VALUES: none
2161 *
2162 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2163 */
2164static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2165			int nblocks)
2166{
2167	int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2168	dmtree_t *tp = (dmtree_t *) & dp->tree;
2169	int size;
2170	s8 *leaf;
2171
2172	/* pick up a pointer to the leaves of the dmap tree */
2173	leaf = dp->tree.stree + LEAFIND;
2174
2175	/* determine the bit number and word within the dmap of the
2176	 * starting block.
2177	 */
2178	dbitno = blkno & (BPERDMAP - 1);
2179	word = dbitno >> L2DBWORD;
2180
2181	/* block range better be within the dmap */
2182	assert(dbitno + nblocks <= BPERDMAP);
2183
2184	/* allocate the bits of the dmap's words corresponding to the block
2185	 * range. not all bits of the first and last words may be contained
2186	 * within the block range.  if this is the case, we'll work against
2187	 * those words (i.e. partial first and/or last) on an individual basis
2188	 * (a single pass), allocating the bits of interest by hand and
2189	 * updating the leaf corresponding to the dmap word. a single pass
2190	 * will be used for all dmap words fully contained within the
2191	 * specified range.  within this pass, the bits of all fully contained
2192	 * dmap words will be marked as free in a single shot and the leaves
2193	 * will be updated. a single leaf may describe the free space of
2194	 * multiple dmap words, so we may update only a subset of the actual
2195	 * leaves corresponding to the dmap words of the block range.
2196	 */
2197	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2198		/* determine the bit number within the word and
2199		 * the number of bits within the word.
2200		 */
2201		wbitno = dbitno & (DBWORD - 1);
2202		nb = min(rembits, DBWORD - wbitno);
2203
2204		/* check if only part of a word is to be allocated.
2205		 */
2206		if (nb < DBWORD) {
2207			/* allocate (set to 1) the appropriate bits within
2208			 * this dmap word.
2209			 */
2210			dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
2211						      >> wbitno);
2212
2213			/* update the leaf for this dmap word. in addition
2214			 * to setting the leaf value to the binary buddy max
2215			 * of the updated dmap word, dbSplit() will split
2216			 * the binary system of the leaves if need be.
2217			 */
2218			dbSplit(tp, word, BUDMIN,
2219				dbMaxBud((u8 *) & dp->wmap[word]));
2220
2221			word += 1;
2222		} else {
2223			/* one or more dmap words are fully contained
2224			 * within the block range.  determine how many
2225			 * words and allocate (set to 1) the bits of these
2226			 * words.
2227			 */
2228			nwords = rembits >> L2DBWORD;
2229			memset(&dp->wmap[word], (int) ONES, nwords * 4);
2230
2231			/* determine how many bits.
2232			 */
2233			nb = nwords << L2DBWORD;
2234
2235			/* now update the appropriate leaves to reflect
2236			 * the allocated words.
2237			 */
2238			for (; nwords > 0; nwords -= nw) {
2239				if (leaf[word] < BUDMIN) {
2240					jfs_error(bmp->db_ipbmap->i_sb,
2241						  "leaf page corrupt\n");
2242					break;
2243				}
2244
2245				/* determine what the leaf value should be
2246				 * updated to as the minimum of the l2 number
2247				 * of bits being allocated and the l2 number
2248				 * of bits currently described by this leaf.
2249				 */
2250				size = min_t(int, leaf[word],
2251					     NLSTOL2BSZ(nwords));
2252
2253				/* update the leaf to reflect the allocation.
2254				 * in addition to setting the leaf value to
2255				 * NOFREE, dbSplit() will split the binary
2256				 * system of the leaves to reflect the current
2257				 * allocation (size).
2258				 */
2259				dbSplit(tp, word, size, NOFREE);
2260
2261				/* get the number of dmap words handled */
2262				nw = BUDSIZE(size, BUDMIN);
2263				word += nw;
2264			}
2265		}
2266	}
2267
2268	/* update the free count for this dmap */
2269	le32_add_cpu(&dp->nfree, -nblocks);
2270
2271	BMAP_LOCK(bmp);
2272
2273	/* if this allocation group is completely free,
2274	 * update the maximum allocation group number if this allocation
2275	 * group is the new max.
2276	 */
2277	agno = blkno >> bmp->db_agl2size;
2278	if (agno > bmp->db_maxag)
2279		bmp->db_maxag = agno;
2280
2281	/* update the free count for the allocation group and map */
2282	bmp->db_agfree[agno] -= nblocks;
2283	bmp->db_nfree -= nblocks;
2284
2285	BMAP_UNLOCK(bmp);
2286}
2287
2288
2289/*
2290 * NAME:	dbFreeBits()
2291 *
2292 * FUNCTION:	free a specified block range from a dmap.
2293 *
2294 *		this routine updates the dmap to reflect the working
2295 *		state allocation of the specified block range. it directly
2296 *		updates the bits of the working map and causes the adjustment
2297 *		of the binary buddy system described by the dmap's dmtree
2298 *		leaves to reflect the bits freed.  it also causes the dmap's
2299 *		dmtree, as a whole, to reflect the deallocated range.
2300 *
2301 * PARAMETERS:
2302 *	bmp	-  pointer to bmap descriptor
2303 *	dp	-  pointer to dmap to free bits from.
2304 *	blkno	-  starting block number of the bits to be freed.
2305 *	nblocks	-  number of bits to be freed.
2306 *
2307 * RETURN VALUES: 0 for success
2308 *
2309 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2310 */
2311static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2312		       int nblocks)
2313{
2314	int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2315	dmtree_t *tp = (dmtree_t *) & dp->tree;
2316	int rc = 0;
2317	int size;
2318
2319	/* determine the bit number and word within the dmap of the
2320	 * starting block.
2321	 */
2322	dbitno = blkno & (BPERDMAP - 1);
2323	word = dbitno >> L2DBWORD;
2324
2325	/* block range better be within the dmap.
2326	 */
2327	assert(dbitno + nblocks <= BPERDMAP);
2328
2329	/* free the bits of the dmaps words corresponding to the block range.
2330	 * not all bits of the first and last words may be contained within
2331	 * the block range.  if this is the case, we'll work against those
2332	 * words (i.e. partial first and/or last) on an individual basis
2333	 * (a single pass), freeing the bits of interest by hand and updating
2334	 * the leaf corresponding to the dmap word. a single pass will be used
2335	 * for all dmap words fully contained within the specified range.
2336	 * within this pass, the bits of all fully contained dmap words will
2337	 * be marked as free in a single shot and the leaves will be updated. a
2338	 * single leaf may describe the free space of multiple dmap words,
2339	 * so we may update only a subset of the actual leaves corresponding
2340	 * to the dmap words of the block range.
2341	 *
2342	 * dbJoin() is used to update leaf values and will join the binary
2343	 * buddy system of the leaves if the new leaf values indicate this
2344	 * should be done.
2345	 */
2346	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2347		/* determine the bit number within the word and
2348		 * the number of bits within the word.
2349		 */
2350		wbitno = dbitno & (DBWORD - 1);
2351		nb = min(rembits, DBWORD - wbitno);
2352
2353		/* check if only part of a word is to be freed.
2354		 */
2355		if (nb < DBWORD) {
2356			/* free (zero) the appropriate bits within this
2357			 * dmap word.
2358			 */
2359			dp->wmap[word] &=
2360			    cpu_to_le32(~(ONES << (DBWORD - nb)
2361					  >> wbitno));
2362
2363			/* update the leaf for this dmap word.
2364			 */
2365			rc = dbJoin(tp, word,
2366				    dbMaxBud((u8 *) & dp->wmap[word]));
2367			if (rc)
2368				return rc;
2369
2370			word += 1;
2371		} else {
2372			/* one or more dmap words are fully contained
2373			 * within the block range.  determine how many
2374			 * words and free (zero) the bits of these words.
2375			 */
2376			nwords = rembits >> L2DBWORD;
2377			memset(&dp->wmap[word], 0, nwords * 4);
2378
2379			/* determine how many bits.
2380			 */
2381			nb = nwords << L2DBWORD;
2382
2383			/* now update the appropriate leaves to reflect
2384			 * the freed words.
2385			 */
2386			for (; nwords > 0; nwords -= nw) {
2387				/* determine what the leaf value should be
2388				 * updated to as the minimum of the l2 number
2389				 * of bits being freed and the l2 (max) number
2390				 * of bits that can be described by this leaf.
2391				 */
2392				size =
2393				    min(LITOL2BSZ
2394					(word, L2LPERDMAP, BUDMIN),
2395					NLSTOL2BSZ(nwords));
2396
2397				/* update the leaf.
2398				 */
2399				rc = dbJoin(tp, word, size);
2400				if (rc)
2401					return rc;
2402
2403				/* get the number of dmap words handled.
2404				 */
2405				nw = BUDSIZE(size, BUDMIN);
2406				word += nw;
2407			}
2408		}
2409	}
2410
2411	/* update the free count for this dmap.
2412	 */
2413	le32_add_cpu(&dp->nfree, nblocks);
2414
2415	BMAP_LOCK(bmp);
2416
2417	/* update the free count for the allocation group and
2418	 * map.
2419	 */
2420	agno = blkno >> bmp->db_agl2size;
2421	bmp->db_nfree += nblocks;
2422	bmp->db_agfree[agno] += nblocks;
2423
2424	/* check if this allocation group is not completely free and
2425	 * if it is currently the maximum (rightmost) allocation group.
2426	 * if so, establish the new maximum allocation group number by
2427	 * searching left for the first allocation group with allocation.
2428	 */
2429	if ((bmp->db_agfree[agno] == bmp->db_agsize && agno == bmp->db_maxag) ||
2430	    (agno == bmp->db_numag - 1 &&
2431	     bmp->db_agfree[agno] == (bmp-> db_mapsize & (BPERDMAP - 1)))) {
2432		while (bmp->db_maxag > 0) {
2433			bmp->db_maxag -= 1;
2434			if (bmp->db_agfree[bmp->db_maxag] !=
2435			    bmp->db_agsize)
2436				break;
2437		}
2438
2439		/* re-establish the allocation group preference if the
2440		 * current preference is right of the maximum allocation
2441		 * group.
2442		 */
2443		if (bmp->db_agpref > bmp->db_maxag)
2444			bmp->db_agpref = bmp->db_maxag;
2445	}
2446
2447	BMAP_UNLOCK(bmp);
2448
2449	return 0;
2450}
2451
2452
2453/*
2454 * NAME:	dbAdjCtl()
2455 *
2456 * FUNCTION:	adjust a dmap control page at a specified level to reflect
2457 *		the change in a lower level dmap or dmap control page's
2458 *		maximum string of free blocks (i.e. a change in the root
2459 *		of the lower level object's dmtree) due to the allocation
2460 *		or deallocation of a range of blocks with a single dmap.
2461 *
2462 *		on entry, this routine is provided with the new value of
2463 *		the lower level dmap or dmap control page root and the
2464 *		starting block number of the block range whose allocation
2465 *		or deallocation resulted in the root change.  this range
2466 *		is respresented by a single leaf of the current dmapctl
2467 *		and the leaf will be updated with this value, possibly
2468 *		causing a binary buddy system within the leaves to be
2469 *		split or joined.  the update may also cause the dmapctl's
2470 *		dmtree to be updated.
2471 *
2472 *		if the adjustment of the dmap control page, itself, causes its
2473 *		root to change, this change will be bubbled up to the next dmap
2474 *		control level by a recursive call to this routine, specifying
2475 *		the new root value and the next dmap control page level to
2476 *		be adjusted.
2477 * PARAMETERS:
2478 *	bmp	-  pointer to bmap descriptor
2479 *	blkno	-  the first block of a block range within a dmap.  it is
2480 *		   the allocation or deallocation of this block range that
2481 *		   requires the dmap control page to be adjusted.
2482 *	newval	-  the new value of the lower level dmap or dmap control
2483 *		   page root.
2484 *	alloc	-  'true' if adjustment is due to an allocation.
2485 *	level	-  current level of dmap control page (i.e. L0, L1, L2) to
2486 *		   be adjusted.
2487 *
2488 * RETURN VALUES:
2489 *	0	- success
2490 *	-EIO	- i/o error
2491 *
2492 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2493 */
2494static int
2495dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc, int level)
2496{
2497	struct metapage *mp;
2498	s8 oldroot;
2499	int oldval;
2500	s64 lblkno;
2501	struct dmapctl *dcp;
2502	int rc, leafno, ti;
2503
2504	/* get the buffer for the dmap control page for the specified
2505	 * block number and control page level.
2506	 */
2507	lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, level);
2508	mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
2509	if (mp == NULL)
2510		return -EIO;
2511	dcp = (struct dmapctl *) mp->data;
2512
2513	if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
2514		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
2515		release_metapage(mp);
2516		return -EIO;
2517	}
2518
2519	/* determine the leaf number corresponding to the block and
2520	 * the index within the dmap control tree.
2521	 */
2522	leafno = BLKTOCTLLEAF(blkno, dcp->budmin);
2523	ti = leafno + le32_to_cpu(dcp->leafidx);
2524
2525	/* save the current leaf value and the current root level (i.e.
2526	 * maximum l2 free string described by this dmapctl).
2527	 */
2528	oldval = dcp->stree[ti];
2529	oldroot = dcp->stree[ROOT];
2530
2531	/* check if this is a control page update for an allocation.
2532	 * if so, update the leaf to reflect the new leaf value using
2533	 * dbSplit(); otherwise (deallocation), use dbJoin() to update
2534	 * the leaf with the new value.  in addition to updating the
2535	 * leaf, dbSplit() will also split the binary buddy system of
2536	 * the leaves, if required, and bubble new values within the
2537	 * dmapctl tree, if required.  similarly, dbJoin() will join
2538	 * the binary buddy system of leaves and bubble new values up
2539	 * the dmapctl tree as required by the new leaf value.
2540	 */
2541	if (alloc) {
2542		/* check if we are in the middle of a binary buddy
2543		 * system.  this happens when we are performing the
2544		 * first allocation out of an allocation group that
2545		 * is part (not the first part) of a larger binary
2546		 * buddy system.  if we are in the middle, back split
2547		 * the system prior to calling dbSplit() which assumes
2548		 * that it is at the front of a binary buddy system.
2549		 */
2550		if (oldval == NOFREE) {
2551			rc = dbBackSplit((dmtree_t *) dcp, leafno);
2552			if (rc)
2553				return rc;
2554			oldval = dcp->stree[ti];
2555		}
2556		dbSplit((dmtree_t *) dcp, leafno, dcp->budmin, newval);
2557	} else {
2558		rc = dbJoin((dmtree_t *) dcp, leafno, newval);
2559		if (rc)
2560			return rc;
2561	}
2562
2563	/* check if the root of the current dmap control page changed due
2564	 * to the update and if the current dmap control page is not at
2565	 * the current top level (i.e. L0, L1, L2) of the map.  if so (i.e.
2566	 * root changed and this is not the top level), call this routine
2567	 * again (recursion) for the next higher level of the mapping to
2568	 * reflect the change in root for the current dmap control page.
2569	 */
2570	if (dcp->stree[ROOT] != oldroot) {
2571		/* are we below the top level of the map.  if so,
2572		 * bubble the root up to the next higher level.
2573		 */
2574		if (level < bmp->db_maxlevel) {
2575			/* bubble up the new root of this dmap control page to
2576			 * the next level.
2577			 */
2578			if ((rc =
2579			     dbAdjCtl(bmp, blkno, dcp->stree[ROOT], alloc,
2580				      level + 1))) {
2581				/* something went wrong in bubbling up the new
2582				 * root value, so backout the changes to the
2583				 * current dmap control page.
2584				 */
2585				if (alloc) {
2586					dbJoin((dmtree_t *) dcp, leafno,
2587					       oldval);
2588				} else {
2589					/* the dbJoin() above might have
2590					 * caused a larger binary buddy system
2591					 * to form and we may now be in the
2592					 * middle of it.  if this is the case,
2593					 * back split the buddies.
2594					 */
2595					if (dcp->stree[ti] == NOFREE)
2596						dbBackSplit((dmtree_t *)
2597							    dcp, leafno);
2598					dbSplit((dmtree_t *) dcp, leafno,
2599						dcp->budmin, oldval);
2600				}
2601
2602				/* release the buffer and return the error.
2603				 */
2604				release_metapage(mp);
2605				return (rc);
2606			}
2607		} else {
2608			/* we're at the top level of the map. update
2609			 * the bmap control page to reflect the size
2610			 * of the maximum free buddy system.
2611			 */
2612			assert(level == bmp->db_maxlevel);
2613			if (bmp->db_maxfreebud != oldroot) {
2614				jfs_error(bmp->db_ipbmap->i_sb,
2615					  "the maximum free buddy is not the old root\n");
2616			}
2617			bmp->db_maxfreebud = dcp->stree[ROOT];
2618		}
2619	}
2620
2621	/* write the buffer.
2622	 */
2623	write_metapage(mp);
2624
2625	return (0);
2626}
2627
2628
2629/*
2630 * NAME:	dbSplit()
2631 *
2632 * FUNCTION:	update the leaf of a dmtree with a new value, splitting
2633 *		the leaf from the binary buddy system of the dmtree's
2634 *		leaves, as required.
2635 *
2636 * PARAMETERS:
2637 *	tp	- pointer to the tree containing the leaf.
2638 *	leafno	- the number of the leaf to be updated.
2639 *	splitsz	- the size the binary buddy system starting at the leaf
2640 *		  must be split to, specified as the log2 number of blocks.
2641 *	newval	- the new value for the leaf.
2642 *
2643 * RETURN VALUES: none
2644 *
2645 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2646 */
2647static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval)
2648{
2649	int budsz;
2650	int cursz;
2651	s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2652
2653	/* check if the leaf needs to be split.
2654	 */
2655	if (leaf[leafno] > tp->dmt_budmin) {
2656		/* the split occurs by cutting the buddy system in half
2657		 * at the specified leaf until we reach the specified
2658		 * size.  pick up the starting split size (current size
2659		 * - 1 in l2) and the corresponding buddy size.
2660		 */
2661		cursz = leaf[leafno] - 1;
2662		budsz = BUDSIZE(cursz, tp->dmt_budmin);
2663
2664		/* split until we reach the specified size.
2665		 */
2666		while (cursz >= splitsz) {
2667			/* update the buddy's leaf with its new value.
2668			 */
2669			dbAdjTree(tp, leafno ^ budsz, cursz);
2670
2671			/* on to the next size and buddy.
2672			 */
2673			cursz -= 1;
2674			budsz >>= 1;
2675		}
2676	}
2677
2678	/* adjust the dmap tree to reflect the specified leaf's new
2679	 * value.
2680	 */
2681	dbAdjTree(tp, leafno, newval);
2682}
2683
2684
2685/*
2686 * NAME:	dbBackSplit()
2687 *
2688 * FUNCTION:	back split the binary buddy system of dmtree leaves
2689 *		that hold a specified leaf until the specified leaf
2690 *		starts its own binary buddy system.
2691 *
2692 *		the allocators typically perform allocations at the start
2693 *		of binary buddy systems and dbSplit() is used to accomplish
2694 *		any required splits.  in some cases, however, allocation
2695 *		may occur in the middle of a binary system and requires a
2696 *		back split, with the split proceeding out from the middle of
2697 *		the system (less efficient) rather than the start of the
2698 *		system (more efficient).  the cases in which a back split
2699 *		is required are rare and are limited to the first allocation
2700 *		within an allocation group which is a part (not first part)
2701 *		of a larger binary buddy system and a few exception cases
2702 *		in which a previous join operation must be backed out.
2703 *
2704 * PARAMETERS:
2705 *	tp	- pointer to the tree containing the leaf.
2706 *	leafno	- the number of the leaf to be updated.
2707 *
2708 * RETURN VALUES: none
2709 *
2710 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2711 */
2712static int dbBackSplit(dmtree_t * tp, int leafno)
2713{
2714	int budsz, bud, w, bsz, size;
2715	int cursz;
2716	s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2717
2718	/* leaf should be part (not first part) of a binary
2719	 * buddy system.
2720	 */
2721	assert(leaf[leafno] == NOFREE);
2722
2723	/* the back split is accomplished by iteratively finding the leaf
2724	 * that starts the buddy system that contains the specified leaf and
2725	 * splitting that system in two.  this iteration continues until
2726	 * the specified leaf becomes the start of a buddy system.
2727	 *
2728	 * determine maximum possible l2 size for the specified leaf.
2729	 */
2730	size =
2731	    LITOL2BSZ(leafno, le32_to_cpu(tp->dmt_l2nleafs),
2732		      tp->dmt_budmin);
2733
2734	/* determine the number of leaves covered by this size.  this
2735	 * is the buddy size that we will start with as we search for
2736	 * the buddy system that contains the specified leaf.
2737	 */
2738	budsz = BUDSIZE(size, tp->dmt_budmin);
2739
2740	/* back split.
2741	 */
2742	while (leaf[leafno] == NOFREE) {
2743		/* find the leftmost buddy leaf.
2744		 */
2745		for (w = leafno, bsz = budsz;; bsz <<= 1,
2746		     w = (w < bud) ? w : bud) {
2747			if (bsz >= le32_to_cpu(tp->dmt_nleafs)) {
2748				jfs_err("JFS: block map error in dbBackSplit");
2749				return -EIO;
2750			}
2751
2752			/* determine the buddy.
2753			 */
2754			bud = w ^ bsz;
2755
2756			/* check if this buddy is the start of the system.
2757			 */
2758			if (leaf[bud] != NOFREE) {
2759				/* split the leaf at the start of the
2760				 * system in two.
2761				 */
2762				cursz = leaf[bud] - 1;
2763				dbSplit(tp, bud, cursz, cursz);
2764				break;
2765			}
2766		}
2767	}
2768
2769	if (leaf[leafno] != size) {
2770		jfs_err("JFS: wrong leaf value in dbBackSplit");
2771		return -EIO;
2772	}
2773	return 0;
2774}
2775
2776
2777/*
2778 * NAME:	dbJoin()
2779 *
2780 * FUNCTION:	update the leaf of a dmtree with a new value, joining
2781 *		the leaf with other leaves of the dmtree into a multi-leaf
2782 *		binary buddy system, as required.
2783 *
2784 * PARAMETERS:
2785 *	tp	- pointer to the tree containing the leaf.
2786 *	leafno	- the number of the leaf to be updated.
2787 *	newval	- the new value for the leaf.
2788 *
2789 * RETURN VALUES: none
2790 */
2791static int dbJoin(dmtree_t * tp, int leafno, int newval)
2792{
2793	int budsz, buddy;
2794	s8 *leaf;
2795
2796	/* can the new leaf value require a join with other leaves ?
2797	 */
2798	if (newval >= tp->dmt_budmin) {
2799		/* pickup a pointer to the leaves of the tree.
2800		 */
2801		leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2802
2803		/* try to join the specified leaf into a large binary
2804		 * buddy system.  the join proceeds by attempting to join
2805		 * the specified leafno with its buddy (leaf) at new value.
2806		 * if the join occurs, we attempt to join the left leaf
2807		 * of the joined buddies with its buddy at new value + 1.
2808		 * we continue to join until we find a buddy that cannot be
2809		 * joined (does not have a value equal to the size of the
2810		 * last join) or until all leaves have been joined into a
2811		 * single system.
2812		 *
2813		 * get the buddy size (number of words covered) of
2814		 * the new value.
2815		 */
2816		budsz = BUDSIZE(newval, tp->dmt_budmin);
2817
2818		/* try to join.
2819		 */
2820		while (budsz < le32_to_cpu(tp->dmt_nleafs)) {
2821			/* get the buddy leaf.
2822			 */
2823			buddy = leafno ^ budsz;
2824
2825			/* if the leaf's new value is greater than its
2826			 * buddy's value, we join no more.
2827			 */
2828			if (newval > leaf[buddy])
2829				break;
2830
2831			/* It shouldn't be less */
2832			if (newval < leaf[buddy])
2833				return -EIO;
2834
2835			/* check which (leafno or buddy) is the left buddy.
2836			 * the left buddy gets to claim the blocks resulting
2837			 * from the join while the right gets to claim none.
2838			 * the left buddy is also eligible to participate in
2839			 * a join at the next higher level while the right
2840			 * is not.
2841			 *
2842			 */
2843			if (leafno < buddy) {
2844				/* leafno is the left buddy.
2845				 */
2846				dbAdjTree(tp, buddy, NOFREE);
2847			} else {
2848				/* buddy is the left buddy and becomes
2849				 * leafno.
2850				 */
2851				dbAdjTree(tp, leafno, NOFREE);
2852				leafno = buddy;
2853			}
2854
2855			/* on to try the next join.
2856			 */
2857			newval += 1;
2858			budsz <<= 1;
2859		}
2860	}
2861
2862	/* update the leaf value.
2863	 */
2864	dbAdjTree(tp, leafno, newval);
2865
2866	return 0;
2867}
2868
2869
2870/*
2871 * NAME:	dbAdjTree()
2872 *
2873 * FUNCTION:	update a leaf of a dmtree with a new value, adjusting
2874 *		the dmtree, as required, to reflect the new leaf value.
2875 *		the combination of any buddies must already be done before
2876 *		this is called.
2877 *
2878 * PARAMETERS:
2879 *	tp	- pointer to the tree to be adjusted.
2880 *	leafno	- the number of the leaf to be updated.
2881 *	newval	- the new value for the leaf.
2882 *
2883 * RETURN VALUES: none
2884 */
2885static void dbAdjTree(dmtree_t * tp, int leafno, int newval)
2886{
2887	int lp, pp, k;
2888	int max;
2889
2890	/* pick up the index of the leaf for this leafno.
2891	 */
2892	lp = leafno + le32_to_cpu(tp->dmt_leafidx);
2893
2894	/* is the current value the same as the old value ?  if so,
2895	 * there is nothing to do.
2896	 */
2897	if (tp->dmt_stree[lp] == newval)
2898		return;
2899
2900	/* set the new value.
2901	 */
2902	tp->dmt_stree[lp] = newval;
2903
2904	/* bubble the new value up the tree as required.
2905	 */
2906	for (k = 0; k < le32_to_cpu(tp->dmt_height); k++) {
2907		/* get the index of the first leaf of the 4 leaf
2908		 * group containing the specified leaf (leafno).
2909		 */
2910		lp = ((lp - 1) & ~0x03) + 1;
2911
2912		/* get the index of the parent of this 4 leaf group.
2913		 */
2914		pp = (lp - 1) >> 2;
2915
2916		/* determine the maximum of the 4 leaves.
2917		 */
2918		max = TREEMAX(&tp->dmt_stree[lp]);
2919
2920		/* if the maximum of the 4 is the same as the
2921		 * parent's value, we're done.
2922		 */
2923		if (tp->dmt_stree[pp] == max)
2924			break;
2925
2926		/* parent gets new value.
2927		 */
2928		tp->dmt_stree[pp] = max;
2929
2930		/* parent becomes leaf for next go-round.
2931		 */
2932		lp = pp;
2933	}
2934}
2935
2936
2937/*
2938 * NAME:	dbFindLeaf()
2939 *
2940 * FUNCTION:	search a dmtree_t for sufficient free blocks, returning
2941 *		the index of a leaf describing the free blocks if
2942 *		sufficient free blocks are found.
2943 *
2944 *		the search starts at the top of the dmtree_t tree and
2945 *		proceeds down the tree to the leftmost leaf with sufficient
2946 *		free space.
2947 *
2948 * PARAMETERS:
2949 *	tp	- pointer to the tree to be searched.
2950 *	l2nb	- log2 number of free blocks to search for.
2951 *	leafidx	- return pointer to be set to the index of the leaf
2952 *		  describing at least l2nb free blocks if sufficient
2953 *		  free blocks are found.
2954 *
2955 * RETURN VALUES:
2956 *	0	- success
2957 *	-ENOSPC	- insufficient free blocks.
2958 */
2959static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx)
2960{
2961	int ti, n = 0, k, x = 0;
2962
2963	/* first check the root of the tree to see if there is
2964	 * sufficient free space.
2965	 */
2966	if (l2nb > tp->dmt_stree[ROOT])
2967		return -ENOSPC;
2968
2969	/* sufficient free space available. now search down the tree
2970	 * starting at the next level for the leftmost leaf that
2971	 * describes sufficient free space.
2972	 */
2973	for (k = le32_to_cpu(tp->dmt_height), ti = 1;
2974	     k > 0; k--, ti = ((ti + n) << 2) + 1) {
2975		/* search the four nodes at this level, starting from
2976		 * the left.
2977		 */
2978		for (x = ti, n = 0; n < 4; n++) {
2979			/* sufficient free space found.  move to the next
2980			 * level (or quit if this is the last level).
2981			 */
2982			if (l2nb <= tp->dmt_stree[x + n])
2983				break;
2984		}
2985
2986		/* better have found something since the higher
2987		 * levels of the tree said it was here.
2988		 */
2989		assert(n < 4);
2990	}
2991
2992	/* set the return to the leftmost leaf describing sufficient
2993	 * free space.
2994	 */
2995	*leafidx = x + n - le32_to_cpu(tp->dmt_leafidx);
2996
2997	return (0);
2998}
2999
3000
3001/*
3002 * NAME:	dbFindBits()
3003 *
3004 * FUNCTION:	find a specified number of binary buddy free bits within a
3005 *		dmap bitmap word value.
3006 *
3007 *		this routine searches the bitmap value for (1 << l2nb) free
3008 *		bits at (1 << l2nb) alignments within the value.
3009 *
3010 * PARAMETERS:
3011 *	word	-  dmap bitmap word value.
3012 *	l2nb	-  number of free bits specified as a log2 number.
3013 *
3014 * RETURN VALUES:
3015 *	starting bit number of free bits.
3016 */
3017static int dbFindBits(u32 word, int l2nb)
3018{
3019	int bitno, nb;
3020	u32 mask;
3021
3022	/* get the number of bits.
3023	 */
3024	nb = 1 << l2nb;
3025	assert(nb <= DBWORD);
3026
3027	/* complement the word so we can use a mask (i.e. 0s represent
3028	 * free bits) and compute the mask.
3029	 */
3030	word = ~word;
3031	mask = ONES << (DBWORD - nb);
3032
3033	/* scan the word for nb free bits at nb alignments.
3034	 */
3035	for (bitno = 0; mask != 0; bitno += nb, mask >>= nb) {
3036		if ((mask & word) == mask)
3037			break;
3038	}
3039
3040	ASSERT(bitno < 32);
3041
3042	/* return the bit number.
3043	 */
3044	return (bitno);
3045}
3046
3047
3048/*
3049 * NAME:	dbMaxBud(u8 *cp)
3050 *
3051 * FUNCTION:	determine the largest binary buddy string of free
3052 *		bits within 32-bits of the map.
3053 *
3054 * PARAMETERS:
3055 *	cp	-  pointer to the 32-bit value.
3056 *
3057 * RETURN VALUES:
3058 *	largest binary buddy of free bits within a dmap word.
3059 */
3060static int dbMaxBud(u8 * cp)
3061{
3062	signed char tmp1, tmp2;
3063
3064	/* check if the wmap word is all free. if so, the
3065	 * free buddy size is BUDMIN.
3066	 */
3067	if (*((uint *) cp) == 0)
3068		return (BUDMIN);
3069
3070	/* check if the wmap word is half free. if so, the
3071	 * free buddy size is BUDMIN-1.
3072	 */
3073	if (*((u16 *) cp) == 0 || *((u16 *) cp + 1) == 0)
3074		return (BUDMIN - 1);
3075
3076	/* not all free or half free. determine the free buddy
3077	 * size thru table lookup using quarters of the wmap word.
3078	 */
3079	tmp1 = max(budtab[cp[2]], budtab[cp[3]]);
3080	tmp2 = max(budtab[cp[0]], budtab[cp[1]]);
3081	return (max(tmp1, tmp2));
3082}
3083
3084
3085/*
3086 * NAME:	cnttz(uint word)
3087 *
3088 * FUNCTION:	determine the number of trailing zeros within a 32-bit
3089 *		value.
3090 *
3091 * PARAMETERS:
3092 *	value	-  32-bit value to be examined.
3093 *
3094 * RETURN VALUES:
3095 *	count of trailing zeros
3096 */
3097static int cnttz(u32 word)
3098{
3099	int n;
3100
3101	for (n = 0; n < 32; n++, word >>= 1) {
3102		if (word & 0x01)
3103			break;
3104	}
3105
3106	return (n);
3107}
3108
3109
3110/*
3111 * NAME:	cntlz(u32 value)
3112 *
3113 * FUNCTION:	determine the number of leading zeros within a 32-bit
3114 *		value.
3115 *
3116 * PARAMETERS:
3117 *	value	-  32-bit value to be examined.
3118 *
3119 * RETURN VALUES:
3120 *	count of leading zeros
3121 */
3122static int cntlz(u32 value)
3123{
3124	int n;
3125
3126	for (n = 0; n < 32; n++, value <<= 1) {
3127		if (value & HIGHORDER)
3128			break;
3129	}
3130	return (n);
3131}
3132
3133
3134/*
3135 * NAME:	blkstol2(s64 nb)
3136 *
3137 * FUNCTION:	convert a block count to its log2 value. if the block
3138 *		count is not a l2 multiple, it is rounded up to the next
3139 *		larger l2 multiple.
3140 *
3141 * PARAMETERS:
3142 *	nb	-  number of blocks
3143 *
3144 * RETURN VALUES:
3145 *	log2 number of blocks
3146 */
3147static int blkstol2(s64 nb)
3148{
3149	int l2nb;
3150	s64 mask;		/* meant to be signed */
3151
3152	mask = (s64) 1 << (64 - 1);
3153
3154	/* count the leading bits.
3155	 */
3156	for (l2nb = 0; l2nb < 64; l2nb++, mask >>= 1) {
3157		/* leading bit found.
3158		 */
3159		if (nb & mask) {
3160			/* determine the l2 value.
3161			 */
3162			l2nb = (64 - 1) - l2nb;
3163
3164			/* check if we need to round up.
3165			 */
3166			if (~mask & nb)
3167				l2nb++;
3168
3169			return (l2nb);
3170		}
3171	}
3172	assert(0);
3173	return 0;		/* fix compiler warning */
3174}
3175
3176
3177/*
3178 * NAME:	dbAllocBottomUp()
3179 *
3180 * FUNCTION:	alloc the specified block range from the working block
3181 *		allocation map.
3182 *
3183 *		the blocks will be alloc from the working map one dmap
3184 *		at a time.
3185 *
3186 * PARAMETERS:
3187 *	ip	-  pointer to in-core inode;
3188 *	blkno	-  starting block number to be freed.
3189 *	nblocks	-  number of blocks to be freed.
3190 *
3191 * RETURN VALUES:
3192 *	0	- success
3193 *	-EIO	- i/o error
3194 */
3195int dbAllocBottomUp(struct inode *ip, s64 blkno, s64 nblocks)
3196{
3197	struct metapage *mp;
3198	struct dmap *dp;
3199	int nb, rc;
3200	s64 lblkno, rem;
3201	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
3202	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
3203
3204	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
3205
3206	/* block to be allocated better be within the mapsize. */
3207	ASSERT(nblocks <= bmp->db_mapsize - blkno);
3208
3209	/*
3210	 * allocate the blocks a dmap at a time.
3211	 */
3212	mp = NULL;
3213	for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
3214		/* release previous dmap if any */
3215		if (mp) {
3216			write_metapage(mp);
3217		}
3218
3219		/* get the buffer for the current dmap. */
3220		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
3221		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
3222		if (mp == NULL) {
3223			IREAD_UNLOCK(ipbmap);
3224			return -EIO;
3225		}
3226		dp = (struct dmap *) mp->data;
3227
3228		/* determine the number of blocks to be allocated from
3229		 * this dmap.
3230		 */
3231		nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
3232
3233		/* allocate the blocks. */
3234		if ((rc = dbAllocDmapBU(bmp, dp, blkno, nb))) {
3235			release_metapage(mp);
3236			IREAD_UNLOCK(ipbmap);
3237			return (rc);
3238		}
3239	}
3240
3241	/* write the last buffer. */
3242	write_metapage(mp);
3243
3244	IREAD_UNLOCK(ipbmap);
3245
3246	return (0);
3247}
3248
3249
3250static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
3251			 int nblocks)
3252{
3253	int rc;
3254	int dbitno, word, rembits, nb, nwords, wbitno, agno;
3255	s8 oldroot;
3256	struct dmaptree *tp = (struct dmaptree *) & dp->tree;
3257
3258	/* save the current value of the root (i.e. maximum free string)
3259	 * of the dmap tree.
3260	 */
3261	oldroot = tp->stree[ROOT];
3262
3263	/* determine the bit number and word within the dmap of the
3264	 * starting block.
3265	 */
3266	dbitno = blkno & (BPERDMAP - 1);
3267	word = dbitno >> L2DBWORD;
3268
3269	/* block range better be within the dmap */
3270	assert(dbitno + nblocks <= BPERDMAP);
3271
3272	/* allocate the bits of the dmap's words corresponding to the block
3273	 * range. not all bits of the first and last words may be contained
3274	 * within the block range.  if this is the case, we'll work against
3275	 * those words (i.e. partial first and/or last) on an individual basis
3276	 * (a single pass), allocating the bits of interest by hand and
3277	 * updating the leaf corresponding to the dmap word. a single pass
3278	 * will be used for all dmap words fully contained within the
3279	 * specified range.  within this pass, the bits of all fully contained
3280	 * dmap words will be marked as free in a single shot and the leaves
3281	 * will be updated. a single leaf may describe the free space of
3282	 * multiple dmap words, so we may update only a subset of the actual
3283	 * leaves corresponding to the dmap words of the block range.
3284	 */
3285	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
3286		/* determine the bit number within the word and
3287		 * the number of bits within the word.
3288		 */
3289		wbitno = dbitno & (DBWORD - 1);
3290		nb = min(rembits, DBWORD - wbitno);
3291
3292		/* check if only part of a word is to be allocated.
3293		 */
3294		if (nb < DBWORD) {
3295			/* allocate (set to 1) the appropriate bits within
3296			 * this dmap word.
3297			 */
3298			dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
3299						      >> wbitno);
3300
3301			word++;
3302		} else {
3303			/* one or more dmap words are fully contained
3304			 * within the block range.  determine how many
3305			 * words and allocate (set to 1) the bits of these
3306			 * words.
3307			 */
3308			nwords = rembits >> L2DBWORD;
3309			memset(&dp->wmap[word], (int) ONES, nwords * 4);
3310
3311			/* determine how many bits */
3312			nb = nwords << L2DBWORD;
3313			word += nwords;
3314		}
3315	}
3316
3317	/* update the free count for this dmap */
3318	le32_add_cpu(&dp->nfree, -nblocks);
3319
3320	/* reconstruct summary tree */
3321	dbInitDmapTree(dp);
3322
3323	BMAP_LOCK(bmp);
3324
3325	/* if this allocation group is completely free,
3326	 * update the highest active allocation group number
3327	 * if this allocation group is the new max.
3328	 */
3329	agno = blkno >> bmp->db_agl2size;
3330	if (agno > bmp->db_maxag)
3331		bmp->db_maxag = agno;
3332
3333	/* update the free count for the allocation group and map */
3334	bmp->db_agfree[agno] -= nblocks;
3335	bmp->db_nfree -= nblocks;
3336
3337	BMAP_UNLOCK(bmp);
3338
3339	/* if the root has not changed, done. */
3340	if (tp->stree[ROOT] == oldroot)
3341		return (0);
3342
3343	/* root changed. bubble the change up to the dmap control pages.
3344	 * if the adjustment of the upper level control pages fails,
3345	 * backout the bit allocation (thus making everything consistent).
3346	 */
3347	if ((rc = dbAdjCtl(bmp, blkno, tp->stree[ROOT], 1, 0)))
3348		dbFreeBits(bmp, dp, blkno, nblocks);
3349
3350	return (rc);
3351}
3352
3353
3354/*
3355 * NAME:	dbExtendFS()
3356 *
3357 * FUNCTION:	extend bmap from blkno for nblocks;
3358 *		dbExtendFS() updates bmap ready for dbAllocBottomUp();
3359 *
3360 * L2
3361 *  |
3362 *   L1---------------------------------L1
3363 *    |					 |
3364 *     L0---------L0---------L0		  L0---------L0---------L0
3365 *      |	   |	      |		   |	      |		 |
3366 *	 d0,...,dn  d0,...,dn  d0,...,dn    d0,...,dn  d0,...,dn  d0,.,dm;
3367 * L2L1L0d0,...,dnL0d0,...,dnL0d0,...,dnL1L0d0,...,dnL0d0,...,dnL0d0,..dm
3368 *
3369 * <---old---><----------------------------extend----------------------->
3370 */
3371int dbExtendFS(struct inode *ipbmap, s64 blkno,	s64 nblocks)
3372{
3373	struct jfs_sb_info *sbi = JFS_SBI(ipbmap->i_sb);
3374	int nbperpage = sbi->nbperpage;
3375	int i, i0 = true, j, j0 = true, k, n;
3376	s64 newsize;
3377	s64 p;
3378	struct metapage *mp, *l2mp, *l1mp = NULL, *l0mp = NULL;
3379	struct dmapctl *l2dcp, *l1dcp, *l0dcp;
3380	struct dmap *dp;
3381	s8 *l0leaf, *l1leaf, *l2leaf;
3382	struct bmap *bmp = sbi->bmap;
3383	int agno, l2agsize, oldl2agsize;
3384	s64 ag_rem;
3385
3386	newsize = blkno + nblocks;
3387
3388	jfs_info("dbExtendFS: blkno:%Ld nblocks:%Ld newsize:%Ld",
3389		 (long long) blkno, (long long) nblocks, (long long) newsize);
3390
3391	/*
3392	 *	initialize bmap control page.
3393	 *
3394	 * all the data in bmap control page should exclude
3395	 * the mkfs hidden dmap page.
3396	 */
3397
3398	/* update mapsize */
3399	bmp->db_mapsize = newsize;
3400	bmp->db_maxlevel = BMAPSZTOLEV(bmp->db_mapsize);
3401
3402	/* compute new AG size */
3403	l2agsize = dbGetL2AGSize(newsize);
3404	oldl2agsize = bmp->db_agl2size;
3405
3406	bmp->db_agl2size = l2agsize;
3407	bmp->db_agsize = 1 << l2agsize;
3408
3409	/* compute new number of AG */
3410	agno = bmp->db_numag;
3411	bmp->db_numag = newsize >> l2agsize;
3412	bmp->db_numag += ((u32) newsize % (u32) bmp->db_agsize) ? 1 : 0;
3413
3414	/*
3415	 *	reconfigure db_agfree[]
3416	 * from old AG configuration to new AG configuration;
3417	 *
3418	 * coalesce contiguous k (newAGSize/oldAGSize) AGs;
3419	 * i.e., (AGi, ..., AGj) where i = k*n and j = k*(n+1) - 1 to AGn;
3420	 * note: new AG size = old AG size * (2**x).
3421	 */
3422	if (l2agsize == oldl2agsize)
3423		goto extend;
3424	k = 1 << (l2agsize - oldl2agsize);
3425	ag_rem = bmp->db_agfree[0];	/* save agfree[0] */
3426	for (i = 0, n = 0; i < agno; n++) {
3427		bmp->db_agfree[n] = 0;	/* init collection point */
3428
3429		/* coalesce contiguous k AGs; */
3430		for (j = 0; j < k && i < agno; j++, i++) {
3431			/* merge AGi to AGn */
3432			bmp->db_agfree[n] += bmp->db_agfree[i];
3433		}
3434	}
3435	bmp->db_agfree[0] += ag_rem;	/* restore agfree[0] */
3436
3437	for (; n < MAXAG; n++)
3438		bmp->db_agfree[n] = 0;
3439
3440	/*
3441	 * update highest active ag number
3442	 */
3443
3444	bmp->db_maxag = bmp->db_maxag / k;
3445
3446	/*
3447	 *	extend bmap
3448	 *
3449	 * update bit maps and corresponding level control pages;
3450	 * global control page db_nfree, db_agfree[agno], db_maxfreebud;
3451	 */
3452      extend:
3453	/* get L2 page */
3454	p = BMAPBLKNO + nbperpage;	/* L2 page */
3455	l2mp = read_metapage(ipbmap, p, PSIZE, 0);
3456	if (!l2mp) {
3457		jfs_error(ipbmap->i_sb, "L2 page could not be read\n");
3458		return -EIO;
3459	}
3460	l2dcp = (struct dmapctl *) l2mp->data;
3461
3462	/* compute start L1 */
3463	k = blkno >> L2MAXL1SIZE;
3464	l2leaf = l2dcp->stree + CTLLEAFIND + k;
3465	p = BLKTOL1(blkno, sbi->l2nbperpage);	/* L1 page */
3466
3467	/*
3468	 * extend each L1 in L2
3469	 */
3470	for (; k < LPERCTL; k++, p += nbperpage) {
3471		/* get L1 page */
3472		if (j0) {
3473			/* read in L1 page: (blkno & (MAXL1SIZE - 1)) */
3474			l1mp = read_metapage(ipbmap, p, PSIZE, 0);
3475			if (l1mp == NULL)
3476				goto errout;
3477			l1dcp = (struct dmapctl *) l1mp->data;
3478
3479			/* compute start L0 */
3480			j = (blkno & (MAXL1SIZE - 1)) >> L2MAXL0SIZE;
3481			l1leaf = l1dcp->stree + CTLLEAFIND + j;
3482			p = BLKTOL0(blkno, sbi->l2nbperpage);
3483			j0 = false;
3484		} else {
3485			/* assign/init L1 page */
3486			l1mp = get_metapage(ipbmap, p, PSIZE, 0);
3487			if (l1mp == NULL)
3488				goto errout;
3489
3490			l1dcp = (struct dmapctl *) l1mp->data;
3491
3492			/* compute start L0 */
3493			j = 0;
3494			l1leaf = l1dcp->stree + CTLLEAFIND;
3495			p += nbperpage;	/* 1st L0 of L1.k */
3496		}
3497
3498		/*
3499		 * extend each L0 in L1
3500		 */
3501		for (; j < LPERCTL; j++) {
3502			/* get L0 page */
3503			if (i0) {
3504				/* read in L0 page: (blkno & (MAXL0SIZE - 1)) */
3505
3506				l0mp = read_metapage(ipbmap, p, PSIZE, 0);
3507				if (l0mp == NULL)
3508					goto errout;
3509				l0dcp = (struct dmapctl *) l0mp->data;
3510
3511				/* compute start dmap */
3512				i = (blkno & (MAXL0SIZE - 1)) >>
3513				    L2BPERDMAP;
3514				l0leaf = l0dcp->stree + CTLLEAFIND + i;
3515				p = BLKTODMAP(blkno,
3516					      sbi->l2nbperpage);
3517				i0 = false;
3518			} else {
3519				/* assign/init L0 page */
3520				l0mp = get_metapage(ipbmap, p, PSIZE, 0);
3521				if (l0mp == NULL)
3522					goto errout;
3523
3524				l0dcp = (struct dmapctl *) l0mp->data;
3525
3526				/* compute start dmap */
3527				i = 0;
3528				l0leaf = l0dcp->stree + CTLLEAFIND;
3529				p += nbperpage;	/* 1st dmap of L0.j */
3530			}
3531
3532			/*
3533			 * extend each dmap in L0
3534			 */
3535			for (; i < LPERCTL; i++) {
3536				/*
3537				 * reconstruct the dmap page, and
3538				 * initialize corresponding parent L0 leaf
3539				 */
3540				if ((n = blkno & (BPERDMAP - 1))) {
3541					/* read in dmap page: */
3542					mp = read_metapage(ipbmap, p,
3543							   PSIZE, 0);
3544					if (mp == NULL)
3545						goto errout;
3546					n = min(nblocks, (s64)BPERDMAP - n);
3547				} else {
3548					/* assign/init dmap page */
3549					mp = read_metapage(ipbmap, p,
3550							   PSIZE, 0);
3551					if (mp == NULL)
3552						goto errout;
3553
3554					n = min_t(s64, nblocks, BPERDMAP);
3555				}
3556
3557				dp = (struct dmap *) mp->data;
3558				*l0leaf = dbInitDmap(dp, blkno, n);
3559
3560				bmp->db_nfree += n;
3561				agno = le64_to_cpu(dp->start) >> l2agsize;
3562				bmp->db_agfree[agno] += n;
3563
3564				write_metapage(mp);
3565
3566				l0leaf++;
3567				p += nbperpage;
3568
3569				blkno += n;
3570				nblocks -= n;
3571				if (nblocks == 0)
3572					break;
3573			}	/* for each dmap in a L0 */
3574
3575			/*
3576			 * build current L0 page from its leaves, and
3577			 * initialize corresponding parent L1 leaf
3578			 */
3579			*l1leaf = dbInitDmapCtl(l0dcp, 0, ++i);
3580			write_metapage(l0mp);
3581			l0mp = NULL;
3582
3583			if (nblocks)
3584				l1leaf++;	/* continue for next L0 */
3585			else {
3586				/* more than 1 L0 ? */
3587				if (j > 0)
3588					break;	/* build L1 page */
3589				else {
3590					/* summarize in global bmap page */
3591					bmp->db_maxfreebud = *l1leaf;
3592					release_metapage(l1mp);
3593					release_metapage(l2mp);
3594					goto finalize;
3595				}
3596			}
3597		}		/* for each L0 in a L1 */
3598
3599		/*
3600		 * build current L1 page from its leaves, and
3601		 * initialize corresponding parent L2 leaf
3602		 */
3603		*l2leaf = dbInitDmapCtl(l1dcp, 1, ++j);
3604		write_metapage(l1mp);
3605		l1mp = NULL;
3606
3607		if (nblocks)
3608			l2leaf++;	/* continue for next L1 */
3609		else {
3610			/* more than 1 L1 ? */
3611			if (k > 0)
3612				break;	/* build L2 page */
3613			else {
3614				/* summarize in global bmap page */
3615				bmp->db_maxfreebud = *l2leaf;
3616				release_metapage(l2mp);
3617				goto finalize;
3618			}
3619		}
3620	}			/* for each L1 in a L2 */
3621
3622	jfs_error(ipbmap->i_sb, "function has not returned as expected\n");
3623errout:
3624	if (l0mp)
3625		release_metapage(l0mp);
3626	if (l1mp)
3627		release_metapage(l1mp);
3628	release_metapage(l2mp);
3629	return -EIO;
3630
3631	/*
3632	 *	finalize bmap control page
3633	 */
3634finalize:
3635
3636	return 0;
3637}
3638
3639
3640/*
3641 *	dbFinalizeBmap()
3642 */
3643void dbFinalizeBmap(struct inode *ipbmap)
3644{
3645	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
3646	int actags, inactags, l2nl;
3647	s64 ag_rem, actfree, inactfree, avgfree;
3648	int i, n;
3649
3650	/*
3651	 *	finalize bmap control page
3652	 */
3653//finalize:
3654	/*
3655	 * compute db_agpref: preferred ag to allocate from
3656	 * (the leftmost ag with average free space in it);
3657	 */
3658//agpref:
3659	/* get the number of active ags and inacitve ags */
3660	actags = bmp->db_maxag + 1;
3661	inactags = bmp->db_numag - actags;
3662	ag_rem = bmp->db_mapsize & (bmp->db_agsize - 1);	/* ??? */
3663
3664	/* determine how many blocks are in the inactive allocation
3665	 * groups. in doing this, we must account for the fact that
3666	 * the rightmost group might be a partial group (i.e. file
3667	 * system size is not a multiple of the group size).
3668	 */
3669	inactfree = (inactags && ag_rem) ?
3670	    ((inactags - 1) << bmp->db_agl2size) + ag_rem
3671	    : inactags << bmp->db_agl2size;
3672
3673	/* determine how many free blocks are in the active
3674	 * allocation groups plus the average number of free blocks
3675	 * within the active ags.
3676	 */
3677	actfree = bmp->db_nfree - inactfree;
3678	avgfree = (u32) actfree / (u32) actags;
3679
3680	/* if the preferred allocation group has not average free space.
3681	 * re-establish the preferred group as the leftmost
3682	 * group with average free space.
3683	 */
3684	if (bmp->db_agfree[bmp->db_agpref] < avgfree) {
3685		for (bmp->db_agpref = 0; bmp->db_agpref < actags;
3686		     bmp->db_agpref++) {
3687			if (bmp->db_agfree[bmp->db_agpref] >= avgfree)
3688				break;
3689		}
3690		if (bmp->db_agpref >= bmp->db_numag) {
3691			jfs_error(ipbmap->i_sb,
3692				  "cannot find ag with average freespace\n");
3693		}
3694	}
3695
3696	/*
3697	 * compute db_aglevel, db_agheight, db_width, db_agstart:
3698	 * an ag is covered in aglevel dmapctl summary tree,
3699	 * at agheight level height (from leaf) with agwidth number of nodes
3700	 * each, which starts at agstart index node of the smmary tree node
3701	 * array;
3702	 */
3703	bmp->db_aglevel = BMAPSZTOLEV(bmp->db_agsize);
3704	l2nl =
3705	    bmp->db_agl2size - (L2BPERDMAP + bmp->db_aglevel * L2LPERCTL);
3706	bmp->db_agheight = l2nl >> 1;
3707	bmp->db_agwidth = 1 << (l2nl - (bmp->db_agheight << 1));
3708	for (i = 5 - bmp->db_agheight, bmp->db_agstart = 0, n = 1; i > 0;
3709	     i--) {
3710		bmp->db_agstart += n;
3711		n <<= 2;
3712	}
3713
3714}
3715
3716
3717/*
3718 * NAME:	dbInitDmap()/ujfs_idmap_page()
3719 *
3720 * FUNCTION:	initialize working/persistent bitmap of the dmap page
3721 *		for the specified number of blocks:
3722 *
3723 *		at entry, the bitmaps had been initialized as free (ZEROS);
3724 *		The number of blocks will only account for the actually
3725 *		existing blocks. Blocks which don't actually exist in
3726 *		the aggregate will be marked as allocated (ONES);
3727 *
3728 * PARAMETERS:
3729 *	dp	- pointer to page of map
3730 *	nblocks	- number of blocks this page
3731 *
3732 * RETURNS: NONE
3733 */
3734static int dbInitDmap(struct dmap * dp, s64 Blkno, int nblocks)
3735{
3736	int blkno, w, b, r, nw, nb, i;
3737
3738	/* starting block number within the dmap */
3739	blkno = Blkno & (BPERDMAP - 1);
3740
3741	if (blkno == 0) {
3742		dp->nblocks = dp->nfree = cpu_to_le32(nblocks);
3743		dp->start = cpu_to_le64(Blkno);
3744
3745		if (nblocks == BPERDMAP) {
3746			memset(&dp->wmap[0], 0, LPERDMAP * 4);
3747			memset(&dp->pmap[0], 0, LPERDMAP * 4);
3748			goto initTree;
3749		}
3750	} else {
3751		le32_add_cpu(&dp->nblocks, nblocks);
3752		le32_add_cpu(&dp->nfree, nblocks);
3753	}
3754
3755	/* word number containing start block number */
3756	w = blkno >> L2DBWORD;
3757
3758	/*
3759	 * free the bits corresponding to the block range (ZEROS):
3760	 * note: not all bits of the first and last words may be contained
3761	 * within the block range.
3762	 */
3763	for (r = nblocks; r > 0; r -= nb, blkno += nb) {
3764		/* number of bits preceding range to be freed in the word */
3765		b = blkno & (DBWORD - 1);
3766		/* number of bits to free in the word */
3767		nb = min(r, DBWORD - b);
3768
3769		/* is partial word to be freed ? */
3770		if (nb < DBWORD) {
3771			/* free (set to 0) from the bitmap word */
3772			dp->wmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3773						     >> b));
3774			dp->pmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3775						     >> b));
3776
3777			/* skip the word freed */
3778			w++;
3779		} else {
3780			/* free (set to 0) contiguous bitmap words */
3781			nw = r >> L2DBWORD;
3782			memset(&dp->wmap[w], 0, nw * 4);
3783			memset(&dp->pmap[w], 0, nw * 4);
3784
3785			/* skip the words freed */
3786			nb = nw << L2DBWORD;
3787			w += nw;
3788		}
3789	}
3790
3791	/*
3792	 * mark bits following the range to be freed (non-existing
3793	 * blocks) as allocated (ONES)
3794	 */
3795
3796	if (blkno == BPERDMAP)
3797		goto initTree;
3798
3799	/* the first word beyond the end of existing blocks */
3800	w = blkno >> L2DBWORD;
3801
3802	/* does nblocks fall on a 32-bit boundary ? */
3803	b = blkno & (DBWORD - 1);
3804	if (b) {
3805		/* mark a partial word allocated */
3806		dp->wmap[w] = dp->pmap[w] = cpu_to_le32(ONES >> b);
3807		w++;
3808	}
3809
3810	/* set the rest of the words in the page to allocated (ONES) */
3811	for (i = w; i < LPERDMAP; i++)
3812		dp->pmap[i] = dp->wmap[i] = cpu_to_le32(ONES);
3813
3814	/*
3815	 * init tree
3816	 */
3817      initTree:
3818	return (dbInitDmapTree(dp));
3819}
3820
3821
3822/*
3823 * NAME:	dbInitDmapTree()/ujfs_complete_dmap()
3824 *
3825 * FUNCTION:	initialize summary tree of the specified dmap:
3826 *
3827 *		at entry, bitmap of the dmap has been initialized;
3828 *
3829 * PARAMETERS:
3830 *	dp	- dmap to complete
3831 *	blkno	- starting block number for this dmap
3832 *	treemax	- will be filled in with max free for this dmap
3833 *
3834 * RETURNS:	max free string at the root of the tree
3835 */
3836static int dbInitDmapTree(struct dmap * dp)
3837{
3838	struct dmaptree *tp;
3839	s8 *cp;
3840	int i;
3841
3842	/* init fixed info of tree */
3843	tp = &dp->tree;
3844	tp->nleafs = cpu_to_le32(LPERDMAP);
3845	tp->l2nleafs = cpu_to_le32(L2LPERDMAP);
3846	tp->leafidx = cpu_to_le32(LEAFIND);
3847	tp->height = cpu_to_le32(4);
3848	tp->budmin = BUDMIN;
3849
3850	/* init each leaf from corresponding wmap word:
3851	 * note: leaf is set to NOFREE(-1) if all blocks of corresponding
3852	 * bitmap word are allocated.
3853	 */
3854	cp = tp->stree + le32_to_cpu(tp->leafidx);
3855	for (i = 0; i < LPERDMAP; i++)
3856		*cp++ = dbMaxBud((u8 *) & dp->wmap[i]);
3857
3858	/* build the dmap's binary buddy summary tree */
3859	return (dbInitTree(tp));
3860}
3861
3862
3863/*
3864 * NAME:	dbInitTree()/ujfs_adjtree()
3865 *
3866 * FUNCTION:	initialize binary buddy summary tree of a dmap or dmapctl.
3867 *
3868 *		at entry, the leaves of the tree has been initialized
3869 *		from corresponding bitmap word or root of summary tree
3870 *		of the child control page;
3871 *		configure binary buddy system at the leaf level, then
3872 *		bubble up the values of the leaf nodes up the tree.
3873 *
3874 * PARAMETERS:
3875 *	cp	- Pointer to the root of the tree
3876 *	l2leaves- Number of leaf nodes as a power of 2
3877 *	l2min	- Number of blocks that can be covered by a leaf
3878 *		  as a power of 2
3879 *
3880 * RETURNS: max free string at the root of the tree
3881 */
3882static int dbInitTree(struct dmaptree * dtp)
3883{
3884	int l2max, l2free, bsize, nextb, i;
3885	int child, parent, nparent;
3886	s8 *tp, *cp, *cp1;
3887
3888	tp = dtp->stree;
3889
3890	/* Determine the maximum free string possible for the leaves */
3891	l2max = le32_to_cpu(dtp->l2nleafs) + dtp->budmin;
3892
3893	/*
3894	 * configure the leaf levevl into binary buddy system
3895	 *
3896	 * Try to combine buddies starting with a buddy size of 1
3897	 * (i.e. two leaves). At a buddy size of 1 two buddy leaves
3898	 * can be combined if both buddies have a maximum free of l2min;
3899	 * the combination will result in the left-most buddy leaf having
3900	 * a maximum free of l2min+1.
3901	 * After processing all buddies for a given size, process buddies
3902	 * at the next higher buddy size (i.e. current size * 2) and
3903	 * the next maximum free (current free + 1).
3904	 * This continues until the maximum possible buddy combination
3905	 * yields maximum free.
3906	 */
3907	for (l2free = dtp->budmin, bsize = 1; l2free < l2max;
3908	     l2free++, bsize = nextb) {
3909		/* get next buddy size == current buddy pair size */
3910		nextb = bsize << 1;
3911
3912		/* scan each adjacent buddy pair at current buddy size */
3913		for (i = 0, cp = tp + le32_to_cpu(dtp->leafidx);
3914		     i < le32_to_cpu(dtp->nleafs);
3915		     i += nextb, cp += nextb) {
3916			/* coalesce if both adjacent buddies are max free */
3917			if (*cp == l2free && *(cp + bsize) == l2free) {
3918				*cp = l2free + 1;	/* left take right */
3919				*(cp + bsize) = -1;	/* right give left */
3920			}
3921		}
3922	}
3923
3924	/*
3925	 * bubble summary information of leaves up the tree.
3926	 *
3927	 * Starting at the leaf node level, the four nodes described by
3928	 * the higher level parent node are compared for a maximum free and
3929	 * this maximum becomes the value of the parent node.
3930	 * when all lower level nodes are processed in this fashion then
3931	 * move up to the next level (parent becomes a lower level node) and
3932	 * continue the process for that level.
3933	 */
3934	for (child = le32_to_cpu(dtp->leafidx),
3935	     nparent = le32_to_cpu(dtp->nleafs) >> 2;
3936	     nparent > 0; nparent >>= 2, child = parent) {
3937		/* get index of 1st node of parent level */
3938		parent = (child - 1) >> 2;
3939
3940		/* set the value of the parent node as the maximum
3941		 * of the four nodes of the current level.
3942		 */
3943		for (i = 0, cp = tp + child, cp1 = tp + parent;
3944		     i < nparent; i++, cp += 4, cp1++)
3945			*cp1 = TREEMAX(cp);
3946	}
3947
3948	return (*tp);
3949}
3950
3951
3952/*
3953 *	dbInitDmapCtl()
3954 *
3955 * function: initialize dmapctl page
3956 */
3957static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i)
3958{				/* start leaf index not covered by range */
3959	s8 *cp;
3960
3961	dcp->nleafs = cpu_to_le32(LPERCTL);
3962	dcp->l2nleafs = cpu_to_le32(L2LPERCTL);
3963	dcp->leafidx = cpu_to_le32(CTLLEAFIND);
3964	dcp->height = cpu_to_le32(5);
3965	dcp->budmin = L2BPERDMAP + L2LPERCTL * level;
3966
3967	/*
3968	 * initialize the leaves of current level that were not covered
3969	 * by the specified input block range (i.e. the leaves have no
3970	 * low level dmapctl or dmap).
3971	 */
3972	cp = &dcp->stree[CTLLEAFIND + i];
3973	for (; i < LPERCTL; i++)
3974		*cp++ = NOFREE;
3975
3976	/* build the dmap's binary buddy summary tree */
3977	return (dbInitTree((struct dmaptree *) dcp));
3978}
3979
3980
3981/*
3982 * NAME:	dbGetL2AGSize()/ujfs_getagl2size()
3983 *
3984 * FUNCTION:	Determine log2(allocation group size) from aggregate size
3985 *
3986 * PARAMETERS:
3987 *	nblocks	- Number of blocks in aggregate
3988 *
3989 * RETURNS: log2(allocation group size) in aggregate blocks
3990 */
3991static int dbGetL2AGSize(s64 nblocks)
3992{
3993	s64 sz;
3994	s64 m;
3995	int l2sz;
3996
3997	if (nblocks < BPERDMAP * MAXAG)
3998		return (L2BPERDMAP);
3999
4000	/* round up aggregate size to power of 2 */
4001	m = ((u64) 1 << (64 - 1));
4002	for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
4003		if (m & nblocks)
4004			break;
4005	}
4006
4007	sz = (s64) 1 << l2sz;
4008	if (sz < nblocks)
4009		l2sz += 1;
4010
4011	/* agsize = roundupSize/max_number_of_ag */
4012	return (l2sz - L2MAXAG);
4013}
4014
4015
4016/*
4017 * NAME:	dbMapFileSizeToMapSize()
4018 *
4019 * FUNCTION:	compute number of blocks the block allocation map file
4020 *		can cover from the map file size;
4021 *
4022 * RETURNS:	Number of blocks which can be covered by this block map file;
4023 */
4024
4025/*
4026 * maximum number of map pages at each level including control pages
4027 */
4028#define MAXL0PAGES	(1 + LPERCTL)
4029#define MAXL1PAGES	(1 + LPERCTL * MAXL0PAGES)
4030#define MAXL2PAGES	(1 + LPERCTL * MAXL1PAGES)
4031
4032/*
4033 * convert number of map pages to the zero origin top dmapctl level
4034 */
4035#define BMAPPGTOLEV(npages)	\
4036	(((npages) <= 3 + MAXL0PAGES) ? 0 : \
4037	 ((npages) <= 2 + MAXL1PAGES) ? 1 : 2)
4038
4039s64 dbMapFileSizeToMapSize(struct inode * ipbmap)
4040{
4041	struct super_block *sb = ipbmap->i_sb;
4042	s64 nblocks;
4043	s64 npages, ndmaps;
4044	int level, i;
4045	int complete, factor;
4046
4047	nblocks = ipbmap->i_size >> JFS_SBI(sb)->l2bsize;
4048	npages = nblocks >> JFS_SBI(sb)->l2nbperpage;
4049	level = BMAPPGTOLEV(npages);
4050
4051	/* At each level, accumulate the number of dmap pages covered by
4052	 * the number of full child levels below it;
4053	 * repeat for the last incomplete child level.
4054	 */
4055	ndmaps = 0;
4056	npages--;		/* skip the first global control page */
4057	/* skip higher level control pages above top level covered by map */
4058	npages -= (2 - level);
4059	npages--;		/* skip top level's control page */
4060	for (i = level; i >= 0; i--) {
4061		factor =
4062		    (i == 2) ? MAXL1PAGES : ((i == 1) ? MAXL0PAGES : 1);
4063		complete = (u32) npages / factor;
4064		ndmaps += complete * ((i == 2) ? LPERCTL * LPERCTL :
4065				      ((i == 1) ? LPERCTL : 1));
4066
4067		/* pages in last/incomplete child */
4068		npages = (u32) npages % factor;
4069		/* skip incomplete child's level control page */
4070		npages--;
4071	}
4072
4073	/* convert the number of dmaps into the number of blocks
4074	 * which can be covered by the dmaps;
4075	 */
4076	nblocks = ndmaps << L2BPERDMAP;
4077
4078	return (nblocks);
4079}
v3.15
 
   1/*
   2 *   Copyright (C) International Business Machines Corp., 2000-2004
   3 *   Portions Copyright (C) Tino Reichardt, 2012
   4 *
   5 *   This program is free software;  you can redistribute it and/or modify
   6 *   it under the terms of the GNU General Public License as published by
   7 *   the Free Software Foundation; either version 2 of the License, or
   8 *   (at your option) any later version.
   9 *
  10 *   This program is distributed in the hope that it will be useful,
  11 *   but WITHOUT ANY WARRANTY;  without even the implied warranty of
  12 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
  13 *   the GNU General Public License for more details.
  14 *
  15 *   You should have received a copy of the GNU General Public License
  16 *   along with this program;  if not, write to the Free Software
  17 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18 */
  19
  20#include <linux/fs.h>
  21#include <linux/slab.h>
  22#include "jfs_incore.h"
  23#include "jfs_superblock.h"
  24#include "jfs_dmap.h"
  25#include "jfs_imap.h"
  26#include "jfs_lock.h"
  27#include "jfs_metapage.h"
  28#include "jfs_debug.h"
  29#include "jfs_discard.h"
  30
  31/*
  32 *	SERIALIZATION of the Block Allocation Map.
  33 *
  34 *	the working state of the block allocation map is accessed in
  35 *	two directions:
  36 *
  37 *	1) allocation and free requests that start at the dmap
  38 *	   level and move up through the dmap control pages (i.e.
  39 *	   the vast majority of requests).
  40 *
  41 *	2) allocation requests that start at dmap control page
  42 *	   level and work down towards the dmaps.
  43 *
  44 *	the serialization scheme used here is as follows.
  45 *
  46 *	requests which start at the bottom are serialized against each
  47 *	other through buffers and each requests holds onto its buffers
  48 *	as it works it way up from a single dmap to the required level
  49 *	of dmap control page.
  50 *	requests that start at the top are serialized against each other
  51 *	and request that start from the bottom by the multiple read/single
  52 *	write inode lock of the bmap inode. requests starting at the top
  53 *	take this lock in write mode while request starting at the bottom
  54 *	take the lock in read mode.  a single top-down request may proceed
  55 *	exclusively while multiple bottoms-up requests may proceed
  56 *	simultaneously (under the protection of busy buffers).
  57 *
  58 *	in addition to information found in dmaps and dmap control pages,
  59 *	the working state of the block allocation map also includes read/
  60 *	write information maintained in the bmap descriptor (i.e. total
  61 *	free block count, allocation group level free block counts).
  62 *	a single exclusive lock (BMAP_LOCK) is used to guard this information
  63 *	in the face of multiple-bottoms up requests.
  64 *	(lock ordering: IREAD_LOCK, BMAP_LOCK);
  65 *
  66 *	accesses to the persistent state of the block allocation map (limited
  67 *	to the persistent bitmaps in dmaps) is guarded by (busy) buffers.
  68 */
  69
  70#define BMAP_LOCK_INIT(bmp)	mutex_init(&bmp->db_bmaplock)
  71#define BMAP_LOCK(bmp)		mutex_lock(&bmp->db_bmaplock)
  72#define BMAP_UNLOCK(bmp)	mutex_unlock(&bmp->db_bmaplock)
  73
  74/*
  75 * forward references
  76 */
  77static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
  78			int nblocks);
  79static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval);
  80static int dbBackSplit(dmtree_t * tp, int leafno);
  81static int dbJoin(dmtree_t * tp, int leafno, int newval);
  82static void dbAdjTree(dmtree_t * tp, int leafno, int newval);
  83static int dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc,
  84		    int level);
  85static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results);
  86static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
  87		       int nblocks);
  88static int dbAllocNear(struct bmap * bmp, struct dmap * dp, s64 blkno,
  89		       int nblocks,
  90		       int l2nb, s64 * results);
  91static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
  92		       int nblocks);
  93static int dbAllocDmapLev(struct bmap * bmp, struct dmap * dp, int nblocks,
  94			  int l2nb,
  95			  s64 * results);
  96static int dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb,
  97		     s64 * results);
  98static int dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno,
  99		      s64 * results);
 100static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks);
 101static int dbFindBits(u32 word, int l2nb);
 102static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno);
 103static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx);
 104static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
 105		      int nblocks);
 106static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
 107		      int nblocks);
 108static int dbMaxBud(u8 * cp);
 109static int blkstol2(s64 nb);
 110
 111static int cntlz(u32 value);
 112static int cnttz(u32 word);
 113
 114static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
 115			 int nblocks);
 116static int dbInitDmap(struct dmap * dp, s64 blkno, int nblocks);
 117static int dbInitDmapTree(struct dmap * dp);
 118static int dbInitTree(struct dmaptree * dtp);
 119static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i);
 120static int dbGetL2AGSize(s64 nblocks);
 121
 122/*
 123 *	buddy table
 124 *
 125 * table used for determining buddy sizes within characters of
 126 * dmap bitmap words.  the characters themselves serve as indexes
 127 * into the table, with the table elements yielding the maximum
 128 * binary buddy of free bits within the character.
 129 */
 130static const s8 budtab[256] = {
 131	3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
 132	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 133	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 134	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 135	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 136	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 137	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 138	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 139	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 140	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 141	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 142	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 143	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 144	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 145	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
 146	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1
 147};
 148
 149/*
 150 * NAME:	dbMount()
 151 *
 152 * FUNCTION:	initializate the block allocation map.
 153 *
 154 *		memory is allocated for the in-core bmap descriptor and
 155 *		the in-core descriptor is initialized from disk.
 156 *
 157 * PARAMETERS:
 158 *	ipbmap	- pointer to in-core inode for the block map.
 159 *
 160 * RETURN VALUES:
 161 *	0	- success
 162 *	-ENOMEM	- insufficient memory
 163 *	-EIO	- i/o error
 164 */
 165int dbMount(struct inode *ipbmap)
 166{
 167	struct bmap *bmp;
 168	struct dbmap_disk *dbmp_le;
 169	struct metapage *mp;
 170	int i;
 171
 172	/*
 173	 * allocate/initialize the in-memory bmap descriptor
 174	 */
 175	/* allocate memory for the in-memory bmap descriptor */
 176	bmp = kmalloc(sizeof(struct bmap), GFP_KERNEL);
 177	if (bmp == NULL)
 178		return -ENOMEM;
 179
 180	/* read the on-disk bmap descriptor. */
 181	mp = read_metapage(ipbmap,
 182			   BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
 183			   PSIZE, 0);
 184	if (mp == NULL) {
 185		kfree(bmp);
 186		return -EIO;
 187	}
 188
 189	/* copy the on-disk bmap descriptor to its in-memory version. */
 190	dbmp_le = (struct dbmap_disk *) mp->data;
 191	bmp->db_mapsize = le64_to_cpu(dbmp_le->dn_mapsize);
 192	bmp->db_nfree = le64_to_cpu(dbmp_le->dn_nfree);
 193	bmp->db_l2nbperpage = le32_to_cpu(dbmp_le->dn_l2nbperpage);
 194	bmp->db_numag = le32_to_cpu(dbmp_le->dn_numag);
 195	bmp->db_maxlevel = le32_to_cpu(dbmp_le->dn_maxlevel);
 196	bmp->db_maxag = le32_to_cpu(dbmp_le->dn_maxag);
 197	bmp->db_agpref = le32_to_cpu(dbmp_le->dn_agpref);
 198	bmp->db_aglevel = le32_to_cpu(dbmp_le->dn_aglevel);
 199	bmp->db_agheight = le32_to_cpu(dbmp_le->dn_agheight);
 200	bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
 201	bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
 202	bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
 203	for (i = 0; i < MAXAG; i++)
 204		bmp->db_agfree[i] = le64_to_cpu(dbmp_le->dn_agfree[i]);
 205	bmp->db_agsize = le64_to_cpu(dbmp_le->dn_agsize);
 206	bmp->db_maxfreebud = dbmp_le->dn_maxfreebud;
 207
 208	/* release the buffer. */
 209	release_metapage(mp);
 210
 211	/* bind the bmap inode and the bmap descriptor to each other. */
 212	bmp->db_ipbmap = ipbmap;
 213	JFS_SBI(ipbmap->i_sb)->bmap = bmp;
 214
 215	memset(bmp->db_active, 0, sizeof(bmp->db_active));
 216
 217	/*
 218	 * allocate/initialize the bmap lock
 219	 */
 220	BMAP_LOCK_INIT(bmp);
 221
 222	return (0);
 223}
 224
 225
 226/*
 227 * NAME:	dbUnmount()
 228 *
 229 * FUNCTION:	terminate the block allocation map in preparation for
 230 *		file system unmount.
 231 *
 232 *		the in-core bmap descriptor is written to disk and
 233 *		the memory for this descriptor is freed.
 234 *
 235 * PARAMETERS:
 236 *	ipbmap	- pointer to in-core inode for the block map.
 237 *
 238 * RETURN VALUES:
 239 *	0	- success
 240 *	-EIO	- i/o error
 241 */
 242int dbUnmount(struct inode *ipbmap, int mounterror)
 243{
 244	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
 245
 246	if (!(mounterror || isReadOnly(ipbmap)))
 247		dbSync(ipbmap);
 248
 249	/*
 250	 * Invalidate the page cache buffers
 251	 */
 252	truncate_inode_pages(ipbmap->i_mapping, 0);
 253
 254	/* free the memory for the in-memory bmap. */
 255	kfree(bmp);
 256
 257	return (0);
 258}
 259
 260/*
 261 *	dbSync()
 262 */
 263int dbSync(struct inode *ipbmap)
 264{
 265	struct dbmap_disk *dbmp_le;
 266	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
 267	struct metapage *mp;
 268	int i;
 269
 270	/*
 271	 * write bmap global control page
 272	 */
 273	/* get the buffer for the on-disk bmap descriptor. */
 274	mp = read_metapage(ipbmap,
 275			   BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
 276			   PSIZE, 0);
 277	if (mp == NULL) {
 278		jfs_err("dbSync: read_metapage failed!");
 279		return -EIO;
 280	}
 281	/* copy the in-memory version of the bmap to the on-disk version */
 282	dbmp_le = (struct dbmap_disk *) mp->data;
 283	dbmp_le->dn_mapsize = cpu_to_le64(bmp->db_mapsize);
 284	dbmp_le->dn_nfree = cpu_to_le64(bmp->db_nfree);
 285	dbmp_le->dn_l2nbperpage = cpu_to_le32(bmp->db_l2nbperpage);
 286	dbmp_le->dn_numag = cpu_to_le32(bmp->db_numag);
 287	dbmp_le->dn_maxlevel = cpu_to_le32(bmp->db_maxlevel);
 288	dbmp_le->dn_maxag = cpu_to_le32(bmp->db_maxag);
 289	dbmp_le->dn_agpref = cpu_to_le32(bmp->db_agpref);
 290	dbmp_le->dn_aglevel = cpu_to_le32(bmp->db_aglevel);
 291	dbmp_le->dn_agheight = cpu_to_le32(bmp->db_agheight);
 292	dbmp_le->dn_agwidth = cpu_to_le32(bmp->db_agwidth);
 293	dbmp_le->dn_agstart = cpu_to_le32(bmp->db_agstart);
 294	dbmp_le->dn_agl2size = cpu_to_le32(bmp->db_agl2size);
 295	for (i = 0; i < MAXAG; i++)
 296		dbmp_le->dn_agfree[i] = cpu_to_le64(bmp->db_agfree[i]);
 297	dbmp_le->dn_agsize = cpu_to_le64(bmp->db_agsize);
 298	dbmp_le->dn_maxfreebud = bmp->db_maxfreebud;
 299
 300	/* write the buffer */
 301	write_metapage(mp);
 302
 303	/*
 304	 * write out dirty pages of bmap
 305	 */
 306	filemap_write_and_wait(ipbmap->i_mapping);
 307
 308	diWriteSpecial(ipbmap, 0);
 309
 310	return (0);
 311}
 312
 313/*
 314 * NAME:	dbFree()
 315 *
 316 * FUNCTION:	free the specified block range from the working block
 317 *		allocation map.
 318 *
 319 *		the blocks will be free from the working map one dmap
 320 *		at a time.
 321 *
 322 * PARAMETERS:
 323 *	ip	- pointer to in-core inode;
 324 *	blkno	- starting block number to be freed.
 325 *	nblocks	- number of blocks to be freed.
 326 *
 327 * RETURN VALUES:
 328 *	0	- success
 329 *	-EIO	- i/o error
 330 */
 331int dbFree(struct inode *ip, s64 blkno, s64 nblocks)
 332{
 333	struct metapage *mp;
 334	struct dmap *dp;
 335	int nb, rc;
 336	s64 lblkno, rem;
 337	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
 338	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
 339	struct super_block *sb = ipbmap->i_sb;
 340
 341	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
 342
 343	/* block to be freed better be within the mapsize. */
 344	if (unlikely((blkno == 0) || (blkno + nblocks > bmp->db_mapsize))) {
 345		IREAD_UNLOCK(ipbmap);
 346		printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
 347		       (unsigned long long) blkno,
 348		       (unsigned long long) nblocks);
 349		jfs_error(ip->i_sb, "block to be freed is outside the map\n");
 350		return -EIO;
 351	}
 352
 353	/**
 354	 * TRIM the blocks, when mounted with discard option
 355	 */
 356	if (JFS_SBI(sb)->flag & JFS_DISCARD)
 357		if (JFS_SBI(sb)->minblks_trim <= nblocks)
 358			jfs_issue_discard(ipbmap, blkno, nblocks);
 359
 360	/*
 361	 * free the blocks a dmap at a time.
 362	 */
 363	mp = NULL;
 364	for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
 365		/* release previous dmap if any */
 366		if (mp) {
 367			write_metapage(mp);
 368		}
 369
 370		/* get the buffer for the current dmap. */
 371		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
 372		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
 373		if (mp == NULL) {
 374			IREAD_UNLOCK(ipbmap);
 375			return -EIO;
 376		}
 377		dp = (struct dmap *) mp->data;
 378
 379		/* determine the number of blocks to be freed from
 380		 * this dmap.
 381		 */
 382		nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
 383
 384		/* free the blocks. */
 385		if ((rc = dbFreeDmap(bmp, dp, blkno, nb))) {
 386			jfs_error(ip->i_sb, "error in block map\n");
 387			release_metapage(mp);
 388			IREAD_UNLOCK(ipbmap);
 389			return (rc);
 390		}
 391	}
 392
 393	/* write the last buffer. */
 394	write_metapage(mp);
 395
 396	IREAD_UNLOCK(ipbmap);
 397
 398	return (0);
 399}
 400
 401
 402/*
 403 * NAME:	dbUpdatePMap()
 404 *
 405 * FUNCTION:	update the allocation state (free or allocate) of the
 406 *		specified block range in the persistent block allocation map.
 407 *
 408 *		the blocks will be updated in the persistent map one
 409 *		dmap at a time.
 410 *
 411 * PARAMETERS:
 412 *	ipbmap	- pointer to in-core inode for the block map.
 413 *	free	- 'true' if block range is to be freed from the persistent
 414 *		  map; 'false' if it is to be allocated.
 415 *	blkno	- starting block number of the range.
 416 *	nblocks	- number of contiguous blocks in the range.
 417 *	tblk	- transaction block;
 418 *
 419 * RETURN VALUES:
 420 *	0	- success
 421 *	-EIO	- i/o error
 422 */
 423int
 424dbUpdatePMap(struct inode *ipbmap,
 425	     int free, s64 blkno, s64 nblocks, struct tblock * tblk)
 426{
 427	int nblks, dbitno, wbitno, rbits;
 428	int word, nbits, nwords;
 429	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
 430	s64 lblkno, rem, lastlblkno;
 431	u32 mask;
 432	struct dmap *dp;
 433	struct metapage *mp;
 434	struct jfs_log *log;
 435	int lsn, difft, diffp;
 436	unsigned long flags;
 437
 438	/* the blocks better be within the mapsize. */
 439	if (blkno + nblocks > bmp->db_mapsize) {
 440		printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
 441		       (unsigned long long) blkno,
 442		       (unsigned long long) nblocks);
 443		jfs_error(ipbmap->i_sb, "blocks are outside the map\n");
 444		return -EIO;
 445	}
 446
 447	/* compute delta of transaction lsn from log syncpt */
 448	lsn = tblk->lsn;
 449	log = (struct jfs_log *) JFS_SBI(tblk->sb)->log;
 450	logdiff(difft, lsn, log);
 451
 452	/*
 453	 * update the block state a dmap at a time.
 454	 */
 455	mp = NULL;
 456	lastlblkno = 0;
 457	for (rem = nblocks; rem > 0; rem -= nblks, blkno += nblks) {
 458		/* get the buffer for the current dmap. */
 459		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
 460		if (lblkno != lastlblkno) {
 461			if (mp) {
 462				write_metapage(mp);
 463			}
 464
 465			mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE,
 466					   0);
 467			if (mp == NULL)
 468				return -EIO;
 469			metapage_wait_for_io(mp);
 470		}
 471		dp = (struct dmap *) mp->data;
 472
 473		/* determine the bit number and word within the dmap of
 474		 * the starting block.  also determine how many blocks
 475		 * are to be updated within this dmap.
 476		 */
 477		dbitno = blkno & (BPERDMAP - 1);
 478		word = dbitno >> L2DBWORD;
 479		nblks = min(rem, (s64)BPERDMAP - dbitno);
 480
 481		/* update the bits of the dmap words. the first and last
 482		 * words may only have a subset of their bits updated. if
 483		 * this is the case, we'll work against that word (i.e.
 484		 * partial first and/or last) only in a single pass.  a
 485		 * single pass will also be used to update all words that
 486		 * are to have all their bits updated.
 487		 */
 488		for (rbits = nblks; rbits > 0;
 489		     rbits -= nbits, dbitno += nbits) {
 490			/* determine the bit number within the word and
 491			 * the number of bits within the word.
 492			 */
 493			wbitno = dbitno & (DBWORD - 1);
 494			nbits = min(rbits, DBWORD - wbitno);
 495
 496			/* check if only part of the word is to be updated. */
 497			if (nbits < DBWORD) {
 498				/* update (free or allocate) the bits
 499				 * in this word.
 500				 */
 501				mask =
 502				    (ONES << (DBWORD - nbits) >> wbitno);
 503				if (free)
 504					dp->pmap[word] &=
 505					    cpu_to_le32(~mask);
 506				else
 507					dp->pmap[word] |=
 508					    cpu_to_le32(mask);
 509
 510				word += 1;
 511			} else {
 512				/* one or more words are to have all
 513				 * their bits updated.  determine how
 514				 * many words and how many bits.
 515				 */
 516				nwords = rbits >> L2DBWORD;
 517				nbits = nwords << L2DBWORD;
 518
 519				/* update (free or allocate) the bits
 520				 * in these words.
 521				 */
 522				if (free)
 523					memset(&dp->pmap[word], 0,
 524					       nwords * 4);
 525				else
 526					memset(&dp->pmap[word], (int) ONES,
 527					       nwords * 4);
 528
 529				word += nwords;
 530			}
 531		}
 532
 533		/*
 534		 * update dmap lsn
 535		 */
 536		if (lblkno == lastlblkno)
 537			continue;
 538
 539		lastlblkno = lblkno;
 540
 541		LOGSYNC_LOCK(log, flags);
 542		if (mp->lsn != 0) {
 543			/* inherit older/smaller lsn */
 544			logdiff(diffp, mp->lsn, log);
 545			if (difft < diffp) {
 546				mp->lsn = lsn;
 547
 548				/* move bp after tblock in logsync list */
 549				list_move(&mp->synclist, &tblk->synclist);
 550			}
 551
 552			/* inherit younger/larger clsn */
 553			logdiff(difft, tblk->clsn, log);
 554			logdiff(diffp, mp->clsn, log);
 555			if (difft > diffp)
 556				mp->clsn = tblk->clsn;
 557		} else {
 558			mp->log = log;
 559			mp->lsn = lsn;
 560
 561			/* insert bp after tblock in logsync list */
 562			log->count++;
 563			list_add(&mp->synclist, &tblk->synclist);
 564
 565			mp->clsn = tblk->clsn;
 566		}
 567		LOGSYNC_UNLOCK(log, flags);
 568	}
 569
 570	/* write the last buffer. */
 571	if (mp) {
 572		write_metapage(mp);
 573	}
 574
 575	return (0);
 576}
 577
 578
 579/*
 580 * NAME:	dbNextAG()
 581 *
 582 * FUNCTION:	find the preferred allocation group for new allocations.
 583 *
 584 *		Within the allocation groups, we maintain a preferred
 585 *		allocation group which consists of a group with at least
 586 *		average free space.  It is the preferred group that we target
 587 *		new inode allocation towards.  The tie-in between inode
 588 *		allocation and block allocation occurs as we allocate the
 589 *		first (data) block of an inode and specify the inode (block)
 590 *		as the allocation hint for this block.
 591 *
 592 *		We try to avoid having more than one open file growing in
 593 *		an allocation group, as this will lead to fragmentation.
 594 *		This differs from the old OS/2 method of trying to keep
 595 *		empty ags around for large allocations.
 596 *
 597 * PARAMETERS:
 598 *	ipbmap	- pointer to in-core inode for the block map.
 599 *
 600 * RETURN VALUES:
 601 *	the preferred allocation group number.
 602 */
 603int dbNextAG(struct inode *ipbmap)
 604{
 605	s64 avgfree;
 606	int agpref;
 607	s64 hwm = 0;
 608	int i;
 609	int next_best = -1;
 610	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
 611
 612	BMAP_LOCK(bmp);
 613
 614	/* determine the average number of free blocks within the ags. */
 615	avgfree = (u32)bmp->db_nfree / bmp->db_numag;
 616
 617	/*
 618	 * if the current preferred ag does not have an active allocator
 619	 * and has at least average freespace, return it
 620	 */
 621	agpref = bmp->db_agpref;
 622	if ((atomic_read(&bmp->db_active[agpref]) == 0) &&
 623	    (bmp->db_agfree[agpref] >= avgfree))
 624		goto unlock;
 625
 626	/* From the last preferred ag, find the next one with at least
 627	 * average free space.
 628	 */
 629	for (i = 0 ; i < bmp->db_numag; i++, agpref++) {
 630		if (agpref == bmp->db_numag)
 631			agpref = 0;
 632
 633		if (atomic_read(&bmp->db_active[agpref]))
 634			/* open file is currently growing in this ag */
 635			continue;
 636		if (bmp->db_agfree[agpref] >= avgfree) {
 637			/* Return this one */
 638			bmp->db_agpref = agpref;
 639			goto unlock;
 640		} else if (bmp->db_agfree[agpref] > hwm) {
 641			/* Less than avg. freespace, but best so far */
 642			hwm = bmp->db_agfree[agpref];
 643			next_best = agpref;
 644		}
 645	}
 646
 647	/*
 648	 * If no inactive ag was found with average freespace, use the
 649	 * next best
 650	 */
 651	if (next_best != -1)
 652		bmp->db_agpref = next_best;
 653	/* else leave db_agpref unchanged */
 654unlock:
 655	BMAP_UNLOCK(bmp);
 656
 657	/* return the preferred group.
 658	 */
 659	return (bmp->db_agpref);
 660}
 661
 662/*
 663 * NAME:	dbAlloc()
 664 *
 665 * FUNCTION:	attempt to allocate a specified number of contiguous free
 666 *		blocks from the working allocation block map.
 667 *
 668 *		the block allocation policy uses hints and a multi-step
 669 *		approach.
 670 *
 671 *		for allocation requests smaller than the number of blocks
 672 *		per dmap, we first try to allocate the new blocks
 673 *		immediately following the hint.  if these blocks are not
 674 *		available, we try to allocate blocks near the hint.  if
 675 *		no blocks near the hint are available, we next try to
 676 *		allocate within the same dmap as contains the hint.
 677 *
 678 *		if no blocks are available in the dmap or the allocation
 679 *		request is larger than the dmap size, we try to allocate
 680 *		within the same allocation group as contains the hint. if
 681 *		this does not succeed, we finally try to allocate anywhere
 682 *		within the aggregate.
 683 *
 684 *		we also try to allocate anywhere within the aggregate for
 685 *		for allocation requests larger than the allocation group
 686 *		size or requests that specify no hint value.
 687 *
 688 * PARAMETERS:
 689 *	ip	- pointer to in-core inode;
 690 *	hint	- allocation hint.
 691 *	nblocks	- number of contiguous blocks in the range.
 692 *	results	- on successful return, set to the starting block number
 693 *		  of the newly allocated contiguous range.
 694 *
 695 * RETURN VALUES:
 696 *	0	- success
 697 *	-ENOSPC	- insufficient disk resources
 698 *	-EIO	- i/o error
 699 */
 700int dbAlloc(struct inode *ip, s64 hint, s64 nblocks, s64 * results)
 701{
 702	int rc, agno;
 703	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
 704	struct bmap *bmp;
 705	struct metapage *mp;
 706	s64 lblkno, blkno;
 707	struct dmap *dp;
 708	int l2nb;
 709	s64 mapSize;
 710	int writers;
 711
 712	/* assert that nblocks is valid */
 713	assert(nblocks > 0);
 714
 715	/* get the log2 number of blocks to be allocated.
 716	 * if the number of blocks is not a log2 multiple,
 717	 * it will be rounded up to the next log2 multiple.
 718	 */
 719	l2nb = BLKSTOL2(nblocks);
 720
 721	bmp = JFS_SBI(ip->i_sb)->bmap;
 722
 723	mapSize = bmp->db_mapsize;
 724
 725	/* the hint should be within the map */
 726	if (hint >= mapSize) {
 727		jfs_error(ip->i_sb, "the hint is outside the map\n");
 728		return -EIO;
 729	}
 730
 731	/* if the number of blocks to be allocated is greater than the
 732	 * allocation group size, try to allocate anywhere.
 733	 */
 734	if (l2nb > bmp->db_agl2size) {
 735		IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
 736
 737		rc = dbAllocAny(bmp, nblocks, l2nb, results);
 738
 739		goto write_unlock;
 740	}
 741
 742	/*
 743	 * If no hint, let dbNextAG recommend an allocation group
 744	 */
 745	if (hint == 0)
 746		goto pref_ag;
 747
 748	/* we would like to allocate close to the hint.  adjust the
 749	 * hint to the block following the hint since the allocators
 750	 * will start looking for free space starting at this point.
 751	 */
 752	blkno = hint + 1;
 753
 754	if (blkno >= bmp->db_mapsize)
 755		goto pref_ag;
 756
 757	agno = blkno >> bmp->db_agl2size;
 758
 759	/* check if blkno crosses over into a new allocation group.
 760	 * if so, check if we should allow allocations within this
 761	 * allocation group.
 762	 */
 763	if ((blkno & (bmp->db_agsize - 1)) == 0)
 764		/* check if the AG is currently being written to.
 765		 * if so, call dbNextAG() to find a non-busy
 766		 * AG with sufficient free space.
 767		 */
 768		if (atomic_read(&bmp->db_active[agno]))
 769			goto pref_ag;
 770
 771	/* check if the allocation request size can be satisfied from a
 772	 * single dmap.  if so, try to allocate from the dmap containing
 773	 * the hint using a tiered strategy.
 774	 */
 775	if (nblocks <= BPERDMAP) {
 776		IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
 777
 778		/* get the buffer for the dmap containing the hint.
 779		 */
 780		rc = -EIO;
 781		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
 782		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
 783		if (mp == NULL)
 784			goto read_unlock;
 785
 786		dp = (struct dmap *) mp->data;
 787
 788		/* first, try to satisfy the allocation request with the
 789		 * blocks beginning at the hint.
 790		 */
 791		if ((rc = dbAllocNext(bmp, dp, blkno, (int) nblocks))
 792		    != -ENOSPC) {
 793			if (rc == 0) {
 794				*results = blkno;
 795				mark_metapage_dirty(mp);
 796			}
 797
 798			release_metapage(mp);
 799			goto read_unlock;
 800		}
 801
 802		writers = atomic_read(&bmp->db_active[agno]);
 803		if ((writers > 1) ||
 804		    ((writers == 1) && (JFS_IP(ip)->active_ag != agno))) {
 805			/*
 806			 * Someone else is writing in this allocation
 807			 * group.  To avoid fragmenting, try another ag
 808			 */
 809			release_metapage(mp);
 810			IREAD_UNLOCK(ipbmap);
 811			goto pref_ag;
 812		}
 813
 814		/* next, try to satisfy the allocation request with blocks
 815		 * near the hint.
 816		 */
 817		if ((rc =
 818		     dbAllocNear(bmp, dp, blkno, (int) nblocks, l2nb, results))
 819		    != -ENOSPC) {
 820			if (rc == 0)
 821				mark_metapage_dirty(mp);
 822
 823			release_metapage(mp);
 824			goto read_unlock;
 825		}
 826
 827		/* try to satisfy the allocation request with blocks within
 828		 * the same dmap as the hint.
 829		 */
 830		if ((rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results))
 831		    != -ENOSPC) {
 832			if (rc == 0)
 833				mark_metapage_dirty(mp);
 834
 835			release_metapage(mp);
 836			goto read_unlock;
 837		}
 838
 839		release_metapage(mp);
 840		IREAD_UNLOCK(ipbmap);
 841	}
 842
 843	/* try to satisfy the allocation request with blocks within
 844	 * the same allocation group as the hint.
 845	 */
 846	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
 847	if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) != -ENOSPC)
 848		goto write_unlock;
 849
 850	IWRITE_UNLOCK(ipbmap);
 851
 852
 853      pref_ag:
 854	/*
 855	 * Let dbNextAG recommend a preferred allocation group
 856	 */
 857	agno = dbNextAG(ipbmap);
 858	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
 859
 860	/* Try to allocate within this allocation group.  if that fails, try to
 861	 * allocate anywhere in the map.
 862	 */
 863	if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) == -ENOSPC)
 864		rc = dbAllocAny(bmp, nblocks, l2nb, results);
 865
 866      write_unlock:
 867	IWRITE_UNLOCK(ipbmap);
 868
 869	return (rc);
 870
 871      read_unlock:
 872	IREAD_UNLOCK(ipbmap);
 873
 874	return (rc);
 875}
 876
 877#ifdef _NOTYET
 878/*
 879 * NAME:	dbAllocExact()
 880 *
 881 * FUNCTION:	try to allocate the requested extent;
 882 *
 883 * PARAMETERS:
 884 *	ip	- pointer to in-core inode;
 885 *	blkno	- extent address;
 886 *	nblocks	- extent length;
 887 *
 888 * RETURN VALUES:
 889 *	0	- success
 890 *	-ENOSPC	- insufficient disk resources
 891 *	-EIO	- i/o error
 892 */
 893int dbAllocExact(struct inode *ip, s64 blkno, int nblocks)
 894{
 895	int rc;
 896	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
 897	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
 898	struct dmap *dp;
 899	s64 lblkno;
 900	struct metapage *mp;
 901
 902	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
 903
 904	/*
 905	 * validate extent request:
 906	 *
 907	 * note: defragfs policy:
 908	 *  max 64 blocks will be moved.
 909	 *  allocation request size must be satisfied from a single dmap.
 910	 */
 911	if (nblocks <= 0 || nblocks > BPERDMAP || blkno >= bmp->db_mapsize) {
 912		IREAD_UNLOCK(ipbmap);
 913		return -EINVAL;
 914	}
 915
 916	if (nblocks > ((s64) 1 << bmp->db_maxfreebud)) {
 917		/* the free space is no longer available */
 918		IREAD_UNLOCK(ipbmap);
 919		return -ENOSPC;
 920	}
 921
 922	/* read in the dmap covering the extent */
 923	lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
 924	mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
 925	if (mp == NULL) {
 926		IREAD_UNLOCK(ipbmap);
 927		return -EIO;
 928	}
 929	dp = (struct dmap *) mp->data;
 930
 931	/* try to allocate the requested extent */
 932	rc = dbAllocNext(bmp, dp, blkno, nblocks);
 933
 934	IREAD_UNLOCK(ipbmap);
 935
 936	if (rc == 0)
 937		mark_metapage_dirty(mp);
 938
 939	release_metapage(mp);
 940
 941	return (rc);
 942}
 943#endif /* _NOTYET */
 944
 945/*
 946 * NAME:	dbReAlloc()
 947 *
 948 * FUNCTION:	attempt to extend a current allocation by a specified
 949 *		number of blocks.
 950 *
 951 *		this routine attempts to satisfy the allocation request
 952 *		by first trying to extend the existing allocation in
 953 *		place by allocating the additional blocks as the blocks
 954 *		immediately following the current allocation.  if these
 955 *		blocks are not available, this routine will attempt to
 956 *		allocate a new set of contiguous blocks large enough
 957 *		to cover the existing allocation plus the additional
 958 *		number of blocks required.
 959 *
 960 * PARAMETERS:
 961 *	ip	    -  pointer to in-core inode requiring allocation.
 962 *	blkno	    -  starting block of the current allocation.
 963 *	nblocks	    -  number of contiguous blocks within the current
 964 *		       allocation.
 965 *	addnblocks  -  number of blocks to add to the allocation.
 966 *	results	-      on successful return, set to the starting block number
 967 *		       of the existing allocation if the existing allocation
 968 *		       was extended in place or to a newly allocated contiguous
 969 *		       range if the existing allocation could not be extended
 970 *		       in place.
 971 *
 972 * RETURN VALUES:
 973 *	0	- success
 974 *	-ENOSPC	- insufficient disk resources
 975 *	-EIO	- i/o error
 976 */
 977int
 978dbReAlloc(struct inode *ip,
 979	  s64 blkno, s64 nblocks, s64 addnblocks, s64 * results)
 980{
 981	int rc;
 982
 983	/* try to extend the allocation in place.
 984	 */
 985	if ((rc = dbExtend(ip, blkno, nblocks, addnblocks)) == 0) {
 986		*results = blkno;
 987		return (0);
 988	} else {
 989		if (rc != -ENOSPC)
 990			return (rc);
 991	}
 992
 993	/* could not extend the allocation in place, so allocate a
 994	 * new set of blocks for the entire request (i.e. try to get
 995	 * a range of contiguous blocks large enough to cover the
 996	 * existing allocation plus the additional blocks.)
 997	 */
 998	return (dbAlloc
 999		(ip, blkno + nblocks - 1, addnblocks + nblocks, results));
1000}
1001
1002
1003/*
1004 * NAME:	dbExtend()
1005 *
1006 * FUNCTION:	attempt to extend a current allocation by a specified
1007 *		number of blocks.
1008 *
1009 *		this routine attempts to satisfy the allocation request
1010 *		by first trying to extend the existing allocation in
1011 *		place by allocating the additional blocks as the blocks
1012 *		immediately following the current allocation.
1013 *
1014 * PARAMETERS:
1015 *	ip	    -  pointer to in-core inode requiring allocation.
1016 *	blkno	    -  starting block of the current allocation.
1017 *	nblocks	    -  number of contiguous blocks within the current
1018 *		       allocation.
1019 *	addnblocks  -  number of blocks to add to the allocation.
1020 *
1021 * RETURN VALUES:
1022 *	0	- success
1023 *	-ENOSPC	- insufficient disk resources
1024 *	-EIO	- i/o error
1025 */
1026static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks)
1027{
1028	struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
1029	s64 lblkno, lastblkno, extblkno;
1030	uint rel_block;
1031	struct metapage *mp;
1032	struct dmap *dp;
1033	int rc;
1034	struct inode *ipbmap = sbi->ipbmap;
1035	struct bmap *bmp;
1036
1037	/*
1038	 * We don't want a non-aligned extent to cross a page boundary
1039	 */
1040	if (((rel_block = blkno & (sbi->nbperpage - 1))) &&
1041	    (rel_block + nblocks + addnblocks > sbi->nbperpage))
1042		return -ENOSPC;
1043
1044	/* get the last block of the current allocation */
1045	lastblkno = blkno + nblocks - 1;
1046
1047	/* determine the block number of the block following
1048	 * the existing allocation.
1049	 */
1050	extblkno = lastblkno + 1;
1051
1052	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
1053
1054	/* better be within the file system */
1055	bmp = sbi->bmap;
1056	if (lastblkno < 0 || lastblkno >= bmp->db_mapsize) {
1057		IREAD_UNLOCK(ipbmap);
1058		jfs_error(ip->i_sb, "the block is outside the filesystem\n");
1059		return -EIO;
1060	}
1061
1062	/* we'll attempt to extend the current allocation in place by
1063	 * allocating the additional blocks as the blocks immediately
1064	 * following the current allocation.  we only try to extend the
1065	 * current allocation in place if the number of additional blocks
1066	 * can fit into a dmap, the last block of the current allocation
1067	 * is not the last block of the file system, and the start of the
1068	 * inplace extension is not on an allocation group boundary.
1069	 */
1070	if (addnblocks > BPERDMAP || extblkno >= bmp->db_mapsize ||
1071	    (extblkno & (bmp->db_agsize - 1)) == 0) {
1072		IREAD_UNLOCK(ipbmap);
1073		return -ENOSPC;
1074	}
1075
1076	/* get the buffer for the dmap containing the first block
1077	 * of the extension.
1078	 */
1079	lblkno = BLKTODMAP(extblkno, bmp->db_l2nbperpage);
1080	mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
1081	if (mp == NULL) {
1082		IREAD_UNLOCK(ipbmap);
1083		return -EIO;
1084	}
1085
1086	dp = (struct dmap *) mp->data;
1087
1088	/* try to allocate the blocks immediately following the
1089	 * current allocation.
1090	 */
1091	rc = dbAllocNext(bmp, dp, extblkno, (int) addnblocks);
1092
1093	IREAD_UNLOCK(ipbmap);
1094
1095	/* were we successful ? */
1096	if (rc == 0)
1097		write_metapage(mp);
1098	else
1099		/* we were not successful */
1100		release_metapage(mp);
1101
1102	return (rc);
1103}
1104
1105
1106/*
1107 * NAME:	dbAllocNext()
1108 *
1109 * FUNCTION:	attempt to allocate the blocks of the specified block
1110 *		range within a dmap.
1111 *
1112 * PARAMETERS:
1113 *	bmp	-  pointer to bmap descriptor
1114 *	dp	-  pointer to dmap.
1115 *	blkno	-  starting block number of the range.
1116 *	nblocks	-  number of contiguous free blocks of the range.
1117 *
1118 * RETURN VALUES:
1119 *	0	- success
1120 *	-ENOSPC	- insufficient disk resources
1121 *	-EIO	- i/o error
1122 *
1123 * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1124 */
1125static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
1126		       int nblocks)
1127{
1128	int dbitno, word, rembits, nb, nwords, wbitno, nw;
1129	int l2size;
1130	s8 *leaf;
1131	u32 mask;
1132
1133	if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1134		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1135		return -EIO;
1136	}
1137
1138	/* pick up a pointer to the leaves of the dmap tree.
1139	 */
1140	leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1141
1142	/* determine the bit number and word within the dmap of the
1143	 * starting block.
1144	 */
1145	dbitno = blkno & (BPERDMAP - 1);
1146	word = dbitno >> L2DBWORD;
1147
1148	/* check if the specified block range is contained within
1149	 * this dmap.
1150	 */
1151	if (dbitno + nblocks > BPERDMAP)
1152		return -ENOSPC;
1153
1154	/* check if the starting leaf indicates that anything
1155	 * is free.
1156	 */
1157	if (leaf[word] == NOFREE)
1158		return -ENOSPC;
1159
1160	/* check the dmaps words corresponding to block range to see
1161	 * if the block range is free.  not all bits of the first and
1162	 * last words may be contained within the block range.  if this
1163	 * is the case, we'll work against those words (i.e. partial first
1164	 * and/or last) on an individual basis (a single pass) and examine
1165	 * the actual bits to determine if they are free.  a single pass
1166	 * will be used for all dmap words fully contained within the
1167	 * specified range.  within this pass, the leaves of the dmap
1168	 * tree will be examined to determine if the blocks are free. a
1169	 * single leaf may describe the free space of multiple dmap
1170	 * words, so we may visit only a subset of the actual leaves
1171	 * corresponding to the dmap words of the block range.
1172	 */
1173	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
1174		/* determine the bit number within the word and
1175		 * the number of bits within the word.
1176		 */
1177		wbitno = dbitno & (DBWORD - 1);
1178		nb = min(rembits, DBWORD - wbitno);
1179
1180		/* check if only part of the word is to be examined.
1181		 */
1182		if (nb < DBWORD) {
1183			/* check if the bits are free.
1184			 */
1185			mask = (ONES << (DBWORD - nb) >> wbitno);
1186			if ((mask & ~le32_to_cpu(dp->wmap[word])) != mask)
1187				return -ENOSPC;
1188
1189			word += 1;
1190		} else {
1191			/* one or more dmap words are fully contained
1192			 * within the block range.  determine how many
1193			 * words and how many bits.
1194			 */
1195			nwords = rembits >> L2DBWORD;
1196			nb = nwords << L2DBWORD;
1197
1198			/* now examine the appropriate leaves to determine
1199			 * if the blocks are free.
1200			 */
1201			while (nwords > 0) {
1202				/* does the leaf describe any free space ?
1203				 */
1204				if (leaf[word] < BUDMIN)
1205					return -ENOSPC;
1206
1207				/* determine the l2 number of bits provided
1208				 * by this leaf.
1209				 */
1210				l2size =
1211				    min((int)leaf[word], NLSTOL2BSZ(nwords));
1212
1213				/* determine how many words were handled.
1214				 */
1215				nw = BUDSIZE(l2size, BUDMIN);
1216
1217				nwords -= nw;
1218				word += nw;
1219			}
1220		}
1221	}
1222
1223	/* allocate the blocks.
1224	 */
1225	return (dbAllocDmap(bmp, dp, blkno, nblocks));
1226}
1227
1228
1229/*
1230 * NAME:	dbAllocNear()
1231 *
1232 * FUNCTION:	attempt to allocate a number of contiguous free blocks near
1233 *		a specified block (hint) within a dmap.
1234 *
1235 *		starting with the dmap leaf that covers the hint, we'll
1236 *		check the next four contiguous leaves for sufficient free
1237 *		space.  if sufficient free space is found, we'll allocate
1238 *		the desired free space.
1239 *
1240 * PARAMETERS:
1241 *	bmp	-  pointer to bmap descriptor
1242 *	dp	-  pointer to dmap.
1243 *	blkno	-  block number to allocate near.
1244 *	nblocks	-  actual number of contiguous free blocks desired.
1245 *	l2nb	-  log2 number of contiguous free blocks desired.
1246 *	results	-  on successful return, set to the starting block number
1247 *		   of the newly allocated range.
1248 *
1249 * RETURN VALUES:
1250 *	0	- success
1251 *	-ENOSPC	- insufficient disk resources
1252 *	-EIO	- i/o error
1253 *
1254 * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1255 */
1256static int
1257dbAllocNear(struct bmap * bmp,
1258	    struct dmap * dp, s64 blkno, int nblocks, int l2nb, s64 * results)
1259{
1260	int word, lword, rc;
1261	s8 *leaf;
1262
1263	if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1264		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1265		return -EIO;
1266	}
1267
1268	leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1269
1270	/* determine the word within the dmap that holds the hint
1271	 * (i.e. blkno).  also, determine the last word in the dmap
1272	 * that we'll include in our examination.
1273	 */
1274	word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
1275	lword = min(word + 4, LPERDMAP);
1276
1277	/* examine the leaves for sufficient free space.
1278	 */
1279	for (; word < lword; word++) {
1280		/* does the leaf describe sufficient free space ?
1281		 */
1282		if (leaf[word] < l2nb)
1283			continue;
1284
1285		/* determine the block number within the file system
1286		 * of the first block described by this dmap word.
1287		 */
1288		blkno = le64_to_cpu(dp->start) + (word << L2DBWORD);
1289
1290		/* if not all bits of the dmap word are free, get the
1291		 * starting bit number within the dmap word of the required
1292		 * string of free bits and adjust the block number with the
1293		 * value.
1294		 */
1295		if (leaf[word] < BUDMIN)
1296			blkno +=
1297			    dbFindBits(le32_to_cpu(dp->wmap[word]), l2nb);
1298
1299		/* allocate the blocks.
1300		 */
1301		if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1302			*results = blkno;
1303
1304		return (rc);
1305	}
1306
1307	return -ENOSPC;
1308}
1309
1310
1311/*
1312 * NAME:	dbAllocAG()
1313 *
1314 * FUNCTION:	attempt to allocate the specified number of contiguous
1315 *		free blocks within the specified allocation group.
1316 *
1317 *		unless the allocation group size is equal to the number
1318 *		of blocks per dmap, the dmap control pages will be used to
1319 *		find the required free space, if available.  we start the
1320 *		search at the highest dmap control page level which
1321 *		distinctly describes the allocation group's free space
1322 *		(i.e. the highest level at which the allocation group's
1323 *		free space is not mixed in with that of any other group).
1324 *		in addition, we start the search within this level at a
1325 *		height of the dmapctl dmtree at which the nodes distinctly
1326 *		describe the allocation group's free space.  at this height,
1327 *		the allocation group's free space may be represented by 1
1328 *		or two sub-trees, depending on the allocation group size.
1329 *		we search the top nodes of these subtrees left to right for
1330 *		sufficient free space.  if sufficient free space is found,
1331 *		the subtree is searched to find the leftmost leaf that
1332 *		has free space.  once we have made it to the leaf, we
1333 *		move the search to the next lower level dmap control page
1334 *		corresponding to this leaf.  we continue down the dmap control
1335 *		pages until we find the dmap that contains or starts the
1336 *		sufficient free space and we allocate at this dmap.
1337 *
1338 *		if the allocation group size is equal to the dmap size,
1339 *		we'll start at the dmap corresponding to the allocation
1340 *		group and attempt the allocation at this level.
1341 *
1342 *		the dmap control page search is also not performed if the
1343 *		allocation group is completely free and we go to the first
1344 *		dmap of the allocation group to do the allocation.  this is
1345 *		done because the allocation group may be part (not the first
1346 *		part) of a larger binary buddy system, causing the dmap
1347 *		control pages to indicate no free space (NOFREE) within
1348 *		the allocation group.
1349 *
1350 * PARAMETERS:
1351 *	bmp	-  pointer to bmap descriptor
1352 *	agno	- allocation group number.
1353 *	nblocks	-  actual number of contiguous free blocks desired.
1354 *	l2nb	-  log2 number of contiguous free blocks desired.
1355 *	results	-  on successful return, set to the starting block number
1356 *		   of the newly allocated range.
1357 *
1358 * RETURN VALUES:
1359 *	0	- success
1360 *	-ENOSPC	- insufficient disk resources
1361 *	-EIO	- i/o error
1362 *
1363 * note: IWRITE_LOCK(ipmap) held on entry/exit;
1364 */
1365static int
1366dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb, s64 * results)
1367{
1368	struct metapage *mp;
1369	struct dmapctl *dcp;
1370	int rc, ti, i, k, m, n, agperlev;
1371	s64 blkno, lblkno;
1372	int budmin;
1373
1374	/* allocation request should not be for more than the
1375	 * allocation group size.
1376	 */
1377	if (l2nb > bmp->db_agl2size) {
1378		jfs_error(bmp->db_ipbmap->i_sb,
1379			  "allocation request is larger than the allocation group size\n");
1380		return -EIO;
1381	}
1382
1383	/* determine the starting block number of the allocation
1384	 * group.
1385	 */
1386	blkno = (s64) agno << bmp->db_agl2size;
1387
1388	/* check if the allocation group size is the minimum allocation
1389	 * group size or if the allocation group is completely free. if
1390	 * the allocation group size is the minimum size of BPERDMAP (i.e.
1391	 * 1 dmap), there is no need to search the dmap control page (below)
1392	 * that fully describes the allocation group since the allocation
1393	 * group is already fully described by a dmap.  in this case, we
1394	 * just call dbAllocCtl() to search the dmap tree and allocate the
1395	 * required space if available.
1396	 *
1397	 * if the allocation group is completely free, dbAllocCtl() is
1398	 * also called to allocate the required space.  this is done for
1399	 * two reasons.  first, it makes no sense searching the dmap control
1400	 * pages for free space when we know that free space exists.  second,
1401	 * the dmap control pages may indicate that the allocation group
1402	 * has no free space if the allocation group is part (not the first
1403	 * part) of a larger binary buddy system.
1404	 */
1405	if (bmp->db_agsize == BPERDMAP
1406	    || bmp->db_agfree[agno] == bmp->db_agsize) {
1407		rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1408		if ((rc == -ENOSPC) &&
1409		    (bmp->db_agfree[agno] == bmp->db_agsize)) {
1410			printk(KERN_ERR "blkno = %Lx, blocks = %Lx\n",
1411			       (unsigned long long) blkno,
1412			       (unsigned long long) nblocks);
1413			jfs_error(bmp->db_ipbmap->i_sb,
1414				  "dbAllocCtl failed in free AG\n");
1415		}
1416		return (rc);
1417	}
1418
1419	/* the buffer for the dmap control page that fully describes the
1420	 * allocation group.
1421	 */
1422	lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, bmp->db_aglevel);
1423	mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1424	if (mp == NULL)
1425		return -EIO;
1426	dcp = (struct dmapctl *) mp->data;
1427	budmin = dcp->budmin;
1428
1429	if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1430		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
1431		release_metapage(mp);
1432		return -EIO;
1433	}
1434
1435	/* search the subtree(s) of the dmap control page that describes
1436	 * the allocation group, looking for sufficient free space.  to begin,
1437	 * determine how many allocation groups are represented in a dmap
1438	 * control page at the control page level (i.e. L0, L1, L2) that
1439	 * fully describes an allocation group. next, determine the starting
1440	 * tree index of this allocation group within the control page.
1441	 */
1442	agperlev =
1443	    (1 << (L2LPERCTL - (bmp->db_agheight << 1))) / bmp->db_agwidth;
1444	ti = bmp->db_agstart + bmp->db_agwidth * (agno & (agperlev - 1));
1445
1446	/* dmap control page trees fan-out by 4 and a single allocation
1447	 * group may be described by 1 or 2 subtrees within the ag level
1448	 * dmap control page, depending upon the ag size. examine the ag's
1449	 * subtrees for sufficient free space, starting with the leftmost
1450	 * subtree.
1451	 */
1452	for (i = 0; i < bmp->db_agwidth; i++, ti++) {
1453		/* is there sufficient free space ?
1454		 */
1455		if (l2nb > dcp->stree[ti])
1456			continue;
1457
1458		/* sufficient free space found in a subtree. now search down
1459		 * the subtree to find the leftmost leaf that describes this
1460		 * free space.
1461		 */
1462		for (k = bmp->db_agheight; k > 0; k--) {
1463			for (n = 0, m = (ti << 2) + 1; n < 4; n++) {
1464				if (l2nb <= dcp->stree[m + n]) {
1465					ti = m + n;
1466					break;
1467				}
1468			}
1469			if (n == 4) {
1470				jfs_error(bmp->db_ipbmap->i_sb,
1471					  "failed descending stree\n");
1472				release_metapage(mp);
1473				return -EIO;
1474			}
1475		}
1476
1477		/* determine the block number within the file system
1478		 * that corresponds to this leaf.
1479		 */
1480		if (bmp->db_aglevel == 2)
1481			blkno = 0;
1482		else if (bmp->db_aglevel == 1)
1483			blkno &= ~(MAXL1SIZE - 1);
1484		else		/* bmp->db_aglevel == 0 */
1485			blkno &= ~(MAXL0SIZE - 1);
1486
1487		blkno +=
1488		    ((s64) (ti - le32_to_cpu(dcp->leafidx))) << budmin;
1489
1490		/* release the buffer in preparation for going down
1491		 * the next level of dmap control pages.
1492		 */
1493		release_metapage(mp);
1494
1495		/* check if we need to continue to search down the lower
1496		 * level dmap control pages.  we need to if the number of
1497		 * blocks required is less than maximum number of blocks
1498		 * described at the next lower level.
1499		 */
1500		if (l2nb < budmin) {
1501
1502			/* search the lower level dmap control pages to get
1503			 * the starting block number of the dmap that
1504			 * contains or starts off the free space.
1505			 */
1506			if ((rc =
1507			     dbFindCtl(bmp, l2nb, bmp->db_aglevel - 1,
1508				       &blkno))) {
1509				if (rc == -ENOSPC) {
1510					jfs_error(bmp->db_ipbmap->i_sb,
1511						  "control page inconsistent\n");
1512					return -EIO;
1513				}
1514				return (rc);
1515			}
1516		}
1517
1518		/* allocate the blocks.
1519		 */
1520		rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1521		if (rc == -ENOSPC) {
1522			jfs_error(bmp->db_ipbmap->i_sb,
1523				  "unable to allocate blocks\n");
1524			rc = -EIO;
1525		}
1526		return (rc);
1527	}
1528
1529	/* no space in the allocation group.  release the buffer and
1530	 * return -ENOSPC.
1531	 */
1532	release_metapage(mp);
1533
1534	return -ENOSPC;
1535}
1536
1537
1538/*
1539 * NAME:	dbAllocAny()
1540 *
1541 * FUNCTION:	attempt to allocate the specified number of contiguous
1542 *		free blocks anywhere in the file system.
1543 *
1544 *		dbAllocAny() attempts to find the sufficient free space by
1545 *		searching down the dmap control pages, starting with the
1546 *		highest level (i.e. L0, L1, L2) control page.  if free space
1547 *		large enough to satisfy the desired free space is found, the
1548 *		desired free space is allocated.
1549 *
1550 * PARAMETERS:
1551 *	bmp	-  pointer to bmap descriptor
1552 *	nblocks	 -  actual number of contiguous free blocks desired.
1553 *	l2nb	 -  log2 number of contiguous free blocks desired.
1554 *	results	-  on successful return, set to the starting block number
1555 *		   of the newly allocated range.
1556 *
1557 * RETURN VALUES:
1558 *	0	- success
1559 *	-ENOSPC	- insufficient disk resources
1560 *	-EIO	- i/o error
1561 *
1562 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1563 */
1564static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results)
1565{
1566	int rc;
1567	s64 blkno = 0;
1568
1569	/* starting with the top level dmap control page, search
1570	 * down the dmap control levels for sufficient free space.
1571	 * if free space is found, dbFindCtl() returns the starting
1572	 * block number of the dmap that contains or starts off the
1573	 * range of free space.
1574	 */
1575	if ((rc = dbFindCtl(bmp, l2nb, bmp->db_maxlevel, &blkno)))
1576		return (rc);
1577
1578	/* allocate the blocks.
1579	 */
1580	rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1581	if (rc == -ENOSPC) {
1582		jfs_error(bmp->db_ipbmap->i_sb, "unable to allocate blocks\n");
1583		return -EIO;
1584	}
1585	return (rc);
1586}
1587
1588
1589/*
1590 * NAME:	dbDiscardAG()
1591 *
1592 * FUNCTION:	attempt to discard (TRIM) all free blocks of specific AG
1593 *
1594 *		algorithm:
1595 *		1) allocate blocks, as large as possible and save them
1596 *		   while holding IWRITE_LOCK on ipbmap
1597 *		2) trim all these saved block/length values
1598 *		3) mark the blocks free again
1599 *
1600 *		benefit:
1601 *		- we work only on one ag at some time, minimizing how long we
1602 *		  need to lock ipbmap
1603 *		- reading / writing the fs is possible most time, even on
1604 *		  trimming
1605 *
1606 *		downside:
1607 *		- we write two times to the dmapctl and dmap pages
1608 *		- but for me, this seems the best way, better ideas?
1609 *		/TR 2012
1610 *
1611 * PARAMETERS:
1612 *	ip	- pointer to in-core inode
1613 *	agno	- ag to trim
1614 *	minlen	- minimum value of contiguous blocks
1615 *
1616 * RETURN VALUES:
1617 *	s64	- actual number of blocks trimmed
1618 */
1619s64 dbDiscardAG(struct inode *ip, int agno, s64 minlen)
1620{
1621	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
1622	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
1623	s64 nblocks, blkno;
1624	u64 trimmed = 0;
1625	int rc, l2nb;
1626	struct super_block *sb = ipbmap->i_sb;
1627
1628	struct range2trim {
1629		u64 blkno;
1630		u64 nblocks;
1631	} *totrim, *tt;
1632
1633	/* max blkno / nblocks pairs to trim */
1634	int count = 0, range_cnt;
1635	u64 max_ranges;
1636
1637	/* prevent others from writing new stuff here, while trimming */
1638	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
1639
1640	nblocks = bmp->db_agfree[agno];
1641	max_ranges = nblocks;
1642	do_div(max_ranges, minlen);
1643	range_cnt = min_t(u64, max_ranges + 1, 32 * 1024);
1644	totrim = kmalloc(sizeof(struct range2trim) * range_cnt, GFP_NOFS);
1645	if (totrim == NULL) {
1646		jfs_error(bmp->db_ipbmap->i_sb, "no memory for trim array\n");
1647		IWRITE_UNLOCK(ipbmap);
1648		return 0;
1649	}
1650
1651	tt = totrim;
1652	while (nblocks >= minlen) {
1653		l2nb = BLKSTOL2(nblocks);
1654
1655		/* 0 = okay, -EIO = fatal, -ENOSPC -> try smaller block */
1656		rc = dbAllocAG(bmp, agno, nblocks, l2nb, &blkno);
1657		if (rc == 0) {
1658			tt->blkno = blkno;
1659			tt->nblocks = nblocks;
1660			tt++; count++;
1661
1662			/* the whole ag is free, trim now */
1663			if (bmp->db_agfree[agno] == 0)
1664				break;
1665
1666			/* give a hint for the next while */
1667			nblocks = bmp->db_agfree[agno];
1668			continue;
1669		} else if (rc == -ENOSPC) {
1670			/* search for next smaller log2 block */
1671			l2nb = BLKSTOL2(nblocks) - 1;
1672			nblocks = 1 << l2nb;
1673		} else {
1674			/* Trim any already allocated blocks */
1675			jfs_error(bmp->db_ipbmap->i_sb, "-EIO\n");
1676			break;
1677		}
1678
1679		/* check, if our trim array is full */
1680		if (unlikely(count >= range_cnt - 1))
1681			break;
1682	}
1683	IWRITE_UNLOCK(ipbmap);
1684
1685	tt->nblocks = 0; /* mark the current end */
1686	for (tt = totrim; tt->nblocks != 0; tt++) {
1687		/* when mounted with online discard, dbFree() will
1688		 * call jfs_issue_discard() itself */
1689		if (!(JFS_SBI(sb)->flag & JFS_DISCARD))
1690			jfs_issue_discard(ip, tt->blkno, tt->nblocks);
1691		dbFree(ip, tt->blkno, tt->nblocks);
1692		trimmed += tt->nblocks;
1693	}
1694	kfree(totrim);
1695
1696	return trimmed;
1697}
1698
1699/*
1700 * NAME:	dbFindCtl()
1701 *
1702 * FUNCTION:	starting at a specified dmap control page level and block
1703 *		number, search down the dmap control levels for a range of
1704 *		contiguous free blocks large enough to satisfy an allocation
1705 *		request for the specified number of free blocks.
1706 *
1707 *		if sufficient contiguous free blocks are found, this routine
1708 *		returns the starting block number within a dmap page that
1709 *		contains or starts a range of contiqious free blocks that
1710 *		is sufficient in size.
1711 *
1712 * PARAMETERS:
1713 *	bmp	-  pointer to bmap descriptor
1714 *	level	-  starting dmap control page level.
1715 *	l2nb	-  log2 number of contiguous free blocks desired.
1716 *	*blkno	-  on entry, starting block number for conducting the search.
1717 *		   on successful return, the first block within a dmap page
1718 *		   that contains or starts a range of contiguous free blocks.
1719 *
1720 * RETURN VALUES:
1721 *	0	- success
1722 *	-ENOSPC	- insufficient disk resources
1723 *	-EIO	- i/o error
1724 *
1725 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1726 */
1727static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno)
1728{
1729	int rc, leafidx, lev;
1730	s64 b, lblkno;
1731	struct dmapctl *dcp;
1732	int budmin;
1733	struct metapage *mp;
1734
1735	/* starting at the specified dmap control page level and block
1736	 * number, search down the dmap control levels for the starting
1737	 * block number of a dmap page that contains or starts off
1738	 * sufficient free blocks.
1739	 */
1740	for (lev = level, b = *blkno; lev >= 0; lev--) {
1741		/* get the buffer of the dmap control page for the block
1742		 * number and level (i.e. L0, L1, L2).
1743		 */
1744		lblkno = BLKTOCTL(b, bmp->db_l2nbperpage, lev);
1745		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1746		if (mp == NULL)
1747			return -EIO;
1748		dcp = (struct dmapctl *) mp->data;
1749		budmin = dcp->budmin;
1750
1751		if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1752			jfs_error(bmp->db_ipbmap->i_sb,
1753				  "Corrupt dmapctl page\n");
1754			release_metapage(mp);
1755			return -EIO;
1756		}
1757
1758		/* search the tree within the dmap control page for
1759		 * sufficient free space.  if sufficient free space is found,
1760		 * dbFindLeaf() returns the index of the leaf at which
1761		 * free space was found.
1762		 */
1763		rc = dbFindLeaf((dmtree_t *) dcp, l2nb, &leafidx);
1764
1765		/* release the buffer.
1766		 */
1767		release_metapage(mp);
1768
1769		/* space found ?
1770		 */
1771		if (rc) {
1772			if (lev != level) {
1773				jfs_error(bmp->db_ipbmap->i_sb,
1774					  "dmap inconsistent\n");
1775				return -EIO;
1776			}
1777			return -ENOSPC;
1778		}
1779
1780		/* adjust the block number to reflect the location within
1781		 * the dmap control page (i.e. the leaf) at which free
1782		 * space was found.
1783		 */
1784		b += (((s64) leafidx) << budmin);
1785
1786		/* we stop the search at this dmap control page level if
1787		 * the number of blocks required is greater than or equal
1788		 * to the maximum number of blocks described at the next
1789		 * (lower) level.
1790		 */
1791		if (l2nb >= budmin)
1792			break;
1793	}
1794
1795	*blkno = b;
1796	return (0);
1797}
1798
1799
1800/*
1801 * NAME:	dbAllocCtl()
1802 *
1803 * FUNCTION:	attempt to allocate a specified number of contiguous
1804 *		blocks starting within a specific dmap.
1805 *
1806 *		this routine is called by higher level routines that search
1807 *		the dmap control pages above the actual dmaps for contiguous
1808 *		free space.  the result of successful searches by these
1809 *		routines are the starting block numbers within dmaps, with
1810 *		the dmaps themselves containing the desired contiguous free
1811 *		space or starting a contiguous free space of desired size
1812 *		that is made up of the blocks of one or more dmaps. these
1813 *		calls should not fail due to insufficent resources.
1814 *
1815 *		this routine is called in some cases where it is not known
1816 *		whether it will fail due to insufficient resources.  more
1817 *		specifically, this occurs when allocating from an allocation
1818 *		group whose size is equal to the number of blocks per dmap.
1819 *		in this case, the dmap control pages are not examined prior
1820 *		to calling this routine (to save pathlength) and the call
1821 *		might fail.
1822 *
1823 *		for a request size that fits within a dmap, this routine relies
1824 *		upon the dmap's dmtree to find the requested contiguous free
1825 *		space.  for request sizes that are larger than a dmap, the
1826 *		requested free space will start at the first block of the
1827 *		first dmap (i.e. blkno).
1828 *
1829 * PARAMETERS:
1830 *	bmp	-  pointer to bmap descriptor
1831 *	nblocks	 -  actual number of contiguous free blocks to allocate.
1832 *	l2nb	 -  log2 number of contiguous free blocks to allocate.
1833 *	blkno	 -  starting block number of the dmap to start the allocation
1834 *		    from.
1835 *	results	-  on successful return, set to the starting block number
1836 *		   of the newly allocated range.
1837 *
1838 * RETURN VALUES:
1839 *	0	- success
1840 *	-ENOSPC	- insufficient disk resources
1841 *	-EIO	- i/o error
1842 *
1843 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1844 */
1845static int
1846dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno, s64 * results)
1847{
1848	int rc, nb;
1849	s64 b, lblkno, n;
1850	struct metapage *mp;
1851	struct dmap *dp;
1852
1853	/* check if the allocation request is confined to a single dmap.
1854	 */
1855	if (l2nb <= L2BPERDMAP) {
1856		/* get the buffer for the dmap.
1857		 */
1858		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
1859		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1860		if (mp == NULL)
1861			return -EIO;
1862		dp = (struct dmap *) mp->data;
1863
1864		/* try to allocate the blocks.
1865		 */
1866		rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results);
1867		if (rc == 0)
1868			mark_metapage_dirty(mp);
1869
1870		release_metapage(mp);
1871
1872		return (rc);
1873	}
1874
1875	/* allocation request involving multiple dmaps. it must start on
1876	 * a dmap boundary.
1877	 */
1878	assert((blkno & (BPERDMAP - 1)) == 0);
1879
1880	/* allocate the blocks dmap by dmap.
1881	 */
1882	for (n = nblocks, b = blkno; n > 0; n -= nb, b += nb) {
1883		/* get the buffer for the dmap.
1884		 */
1885		lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1886		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1887		if (mp == NULL) {
1888			rc = -EIO;
1889			goto backout;
1890		}
1891		dp = (struct dmap *) mp->data;
1892
1893		/* the dmap better be all free.
1894		 */
1895		if (dp->tree.stree[ROOT] != L2BPERDMAP) {
1896			release_metapage(mp);
1897			jfs_error(bmp->db_ipbmap->i_sb,
1898				  "the dmap is not all free\n");
1899			rc = -EIO;
1900			goto backout;
1901		}
1902
1903		/* determine how many blocks to allocate from this dmap.
1904		 */
1905		nb = min(n, (s64)BPERDMAP);
1906
1907		/* allocate the blocks from the dmap.
1908		 */
1909		if ((rc = dbAllocDmap(bmp, dp, b, nb))) {
1910			release_metapage(mp);
1911			goto backout;
1912		}
1913
1914		/* write the buffer.
1915		 */
1916		write_metapage(mp);
1917	}
1918
1919	/* set the results (starting block number) and return.
1920	 */
1921	*results = blkno;
1922	return (0);
1923
1924	/* something failed in handling an allocation request involving
1925	 * multiple dmaps.  we'll try to clean up by backing out any
1926	 * allocation that has already happened for this request.  if
1927	 * we fail in backing out the allocation, we'll mark the file
1928	 * system to indicate that blocks have been leaked.
1929	 */
1930      backout:
1931
1932	/* try to backout the allocations dmap by dmap.
1933	 */
1934	for (n = nblocks - n, b = blkno; n > 0;
1935	     n -= BPERDMAP, b += BPERDMAP) {
1936		/* get the buffer for this dmap.
1937		 */
1938		lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1939		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1940		if (mp == NULL) {
1941			/* could not back out.  mark the file system
1942			 * to indicate that we have leaked blocks.
1943			 */
1944			jfs_error(bmp->db_ipbmap->i_sb,
1945				  "I/O Error: Block Leakage\n");
1946			continue;
1947		}
1948		dp = (struct dmap *) mp->data;
1949
1950		/* free the blocks is this dmap.
1951		 */
1952		if (dbFreeDmap(bmp, dp, b, BPERDMAP)) {
1953			/* could not back out.  mark the file system
1954			 * to indicate that we have leaked blocks.
1955			 */
1956			release_metapage(mp);
1957			jfs_error(bmp->db_ipbmap->i_sb, "Block Leakage\n");
1958			continue;
1959		}
1960
1961		/* write the buffer.
1962		 */
1963		write_metapage(mp);
1964	}
1965
1966	return (rc);
1967}
1968
1969
1970/*
1971 * NAME:	dbAllocDmapLev()
1972 *
1973 * FUNCTION:	attempt to allocate a specified number of contiguous blocks
1974 *		from a specified dmap.
1975 *
1976 *		this routine checks if the contiguous blocks are available.
1977 *		if so, nblocks of blocks are allocated; otherwise, ENOSPC is
1978 *		returned.
1979 *
1980 * PARAMETERS:
1981 *	mp	-  pointer to bmap descriptor
1982 *	dp	-  pointer to dmap to attempt to allocate blocks from.
1983 *	l2nb	-  log2 number of contiguous block desired.
1984 *	nblocks	-  actual number of contiguous block desired.
1985 *	results	-  on successful return, set to the starting block number
1986 *		   of the newly allocated range.
1987 *
1988 * RETURN VALUES:
1989 *	0	- success
1990 *	-ENOSPC	- insufficient disk resources
1991 *	-EIO	- i/o error
1992 *
1993 * serialization: IREAD_LOCK(ipbmap), e.g., from dbAlloc(), or
1994 *	IWRITE_LOCK(ipbmap), e.g., dbAllocCtl(), held on entry/exit;
1995 */
1996static int
1997dbAllocDmapLev(struct bmap * bmp,
1998	       struct dmap * dp, int nblocks, int l2nb, s64 * results)
1999{
2000	s64 blkno;
2001	int leafidx, rc;
2002
2003	/* can't be more than a dmaps worth of blocks */
2004	assert(l2nb <= L2BPERDMAP);
2005
2006	/* search the tree within the dmap page for sufficient
2007	 * free space.  if sufficient free space is found, dbFindLeaf()
2008	 * returns the index of the leaf at which free space was found.
2009	 */
2010	if (dbFindLeaf((dmtree_t *) & dp->tree, l2nb, &leafidx))
2011		return -ENOSPC;
2012
2013	/* determine the block number within the file system corresponding
2014	 * to the leaf at which free space was found.
2015	 */
2016	blkno = le64_to_cpu(dp->start) + (leafidx << L2DBWORD);
2017
2018	/* if not all bits of the dmap word are free, get the starting
2019	 * bit number within the dmap word of the required string of free
2020	 * bits and adjust the block number with this value.
2021	 */
2022	if (dp->tree.stree[leafidx + LEAFIND] < BUDMIN)
2023		blkno += dbFindBits(le32_to_cpu(dp->wmap[leafidx]), l2nb);
2024
2025	/* allocate the blocks */
2026	if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
2027		*results = blkno;
2028
2029	return (rc);
2030}
2031
2032
2033/*
2034 * NAME:	dbAllocDmap()
2035 *
2036 * FUNCTION:	adjust the disk allocation map to reflect the allocation
2037 *		of a specified block range within a dmap.
2038 *
2039 *		this routine allocates the specified blocks from the dmap
2040 *		through a call to dbAllocBits(). if the allocation of the
2041 *		block range causes the maximum string of free blocks within
2042 *		the dmap to change (i.e. the value of the root of the dmap's
2043 *		dmtree), this routine will cause this change to be reflected
2044 *		up through the appropriate levels of the dmap control pages
2045 *		by a call to dbAdjCtl() for the L0 dmap control page that
2046 *		covers this dmap.
2047 *
2048 * PARAMETERS:
2049 *	bmp	-  pointer to bmap descriptor
2050 *	dp	-  pointer to dmap to allocate the block range from.
2051 *	blkno	-  starting block number of the block to be allocated.
2052 *	nblocks	-  number of blocks to be allocated.
2053 *
2054 * RETURN VALUES:
2055 *	0	- success
2056 *	-EIO	- i/o error
2057 *
2058 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2059 */
2060static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2061		       int nblocks)
2062{
2063	s8 oldroot;
2064	int rc;
2065
2066	/* save the current value of the root (i.e. maximum free string)
2067	 * of the dmap tree.
2068	 */
2069	oldroot = dp->tree.stree[ROOT];
2070
2071	/* allocate the specified (blocks) bits */
2072	dbAllocBits(bmp, dp, blkno, nblocks);
2073
2074	/* if the root has not changed, done. */
2075	if (dp->tree.stree[ROOT] == oldroot)
2076		return (0);
2077
2078	/* root changed. bubble the change up to the dmap control pages.
2079	 * if the adjustment of the upper level control pages fails,
2080	 * backout the bit allocation (thus making everything consistent).
2081	 */
2082	if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 1, 0)))
2083		dbFreeBits(bmp, dp, blkno, nblocks);
2084
2085	return (rc);
2086}
2087
2088
2089/*
2090 * NAME:	dbFreeDmap()
2091 *
2092 * FUNCTION:	adjust the disk allocation map to reflect the allocation
2093 *		of a specified block range within a dmap.
2094 *
2095 *		this routine frees the specified blocks from the dmap through
2096 *		a call to dbFreeBits(). if the deallocation of the block range
2097 *		causes the maximum string of free blocks within the dmap to
2098 *		change (i.e. the value of the root of the dmap's dmtree), this
2099 *		routine will cause this change to be reflected up through the
2100 *		appropriate levels of the dmap control pages by a call to
2101 *		dbAdjCtl() for the L0 dmap control page that covers this dmap.
2102 *
2103 * PARAMETERS:
2104 *	bmp	-  pointer to bmap descriptor
2105 *	dp	-  pointer to dmap to free the block range from.
2106 *	blkno	-  starting block number of the block to be freed.
2107 *	nblocks	-  number of blocks to be freed.
2108 *
2109 * RETURN VALUES:
2110 *	0	- success
2111 *	-EIO	- i/o error
2112 *
2113 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2114 */
2115static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2116		      int nblocks)
2117{
2118	s8 oldroot;
2119	int rc = 0, word;
2120
2121	/* save the current value of the root (i.e. maximum free string)
2122	 * of the dmap tree.
2123	 */
2124	oldroot = dp->tree.stree[ROOT];
2125
2126	/* free the specified (blocks) bits */
2127	rc = dbFreeBits(bmp, dp, blkno, nblocks);
2128
2129	/* if error or the root has not changed, done. */
2130	if (rc || (dp->tree.stree[ROOT] == oldroot))
2131		return (rc);
2132
2133	/* root changed. bubble the change up to the dmap control pages.
2134	 * if the adjustment of the upper level control pages fails,
2135	 * backout the deallocation.
2136	 */
2137	if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 0, 0))) {
2138		word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
2139
2140		/* as part of backing out the deallocation, we will have
2141		 * to back split the dmap tree if the deallocation caused
2142		 * the freed blocks to become part of a larger binary buddy
2143		 * system.
2144		 */
2145		if (dp->tree.stree[word] == NOFREE)
2146			dbBackSplit((dmtree_t *) & dp->tree, word);
2147
2148		dbAllocBits(bmp, dp, blkno, nblocks);
2149	}
2150
2151	return (rc);
2152}
2153
2154
2155/*
2156 * NAME:	dbAllocBits()
2157 *
2158 * FUNCTION:	allocate a specified block range from a dmap.
2159 *
2160 *		this routine updates the dmap to reflect the working
2161 *		state allocation of the specified block range. it directly
2162 *		updates the bits of the working map and causes the adjustment
2163 *		of the binary buddy system described by the dmap's dmtree
2164 *		leaves to reflect the bits allocated.  it also causes the
2165 *		dmap's dmtree, as a whole, to reflect the allocated range.
2166 *
2167 * PARAMETERS:
2168 *	bmp	-  pointer to bmap descriptor
2169 *	dp	-  pointer to dmap to allocate bits from.
2170 *	blkno	-  starting block number of the bits to be allocated.
2171 *	nblocks	-  number of bits to be allocated.
2172 *
2173 * RETURN VALUES: none
2174 *
2175 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2176 */
2177static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2178			int nblocks)
2179{
2180	int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2181	dmtree_t *tp = (dmtree_t *) & dp->tree;
2182	int size;
2183	s8 *leaf;
2184
2185	/* pick up a pointer to the leaves of the dmap tree */
2186	leaf = dp->tree.stree + LEAFIND;
2187
2188	/* determine the bit number and word within the dmap of the
2189	 * starting block.
2190	 */
2191	dbitno = blkno & (BPERDMAP - 1);
2192	word = dbitno >> L2DBWORD;
2193
2194	/* block range better be within the dmap */
2195	assert(dbitno + nblocks <= BPERDMAP);
2196
2197	/* allocate the bits of the dmap's words corresponding to the block
2198	 * range. not all bits of the first and last words may be contained
2199	 * within the block range.  if this is the case, we'll work against
2200	 * those words (i.e. partial first and/or last) on an individual basis
2201	 * (a single pass), allocating the bits of interest by hand and
2202	 * updating the leaf corresponding to the dmap word. a single pass
2203	 * will be used for all dmap words fully contained within the
2204	 * specified range.  within this pass, the bits of all fully contained
2205	 * dmap words will be marked as free in a single shot and the leaves
2206	 * will be updated. a single leaf may describe the free space of
2207	 * multiple dmap words, so we may update only a subset of the actual
2208	 * leaves corresponding to the dmap words of the block range.
2209	 */
2210	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2211		/* determine the bit number within the word and
2212		 * the number of bits within the word.
2213		 */
2214		wbitno = dbitno & (DBWORD - 1);
2215		nb = min(rembits, DBWORD - wbitno);
2216
2217		/* check if only part of a word is to be allocated.
2218		 */
2219		if (nb < DBWORD) {
2220			/* allocate (set to 1) the appropriate bits within
2221			 * this dmap word.
2222			 */
2223			dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
2224						      >> wbitno);
2225
2226			/* update the leaf for this dmap word. in addition
2227			 * to setting the leaf value to the binary buddy max
2228			 * of the updated dmap word, dbSplit() will split
2229			 * the binary system of the leaves if need be.
2230			 */
2231			dbSplit(tp, word, BUDMIN,
2232				dbMaxBud((u8 *) & dp->wmap[word]));
2233
2234			word += 1;
2235		} else {
2236			/* one or more dmap words are fully contained
2237			 * within the block range.  determine how many
2238			 * words and allocate (set to 1) the bits of these
2239			 * words.
2240			 */
2241			nwords = rembits >> L2DBWORD;
2242			memset(&dp->wmap[word], (int) ONES, nwords * 4);
2243
2244			/* determine how many bits.
2245			 */
2246			nb = nwords << L2DBWORD;
2247
2248			/* now update the appropriate leaves to reflect
2249			 * the allocated words.
2250			 */
2251			for (; nwords > 0; nwords -= nw) {
2252				if (leaf[word] < BUDMIN) {
2253					jfs_error(bmp->db_ipbmap->i_sb,
2254						  "leaf page corrupt\n");
2255					break;
2256				}
2257
2258				/* determine what the leaf value should be
2259				 * updated to as the minimum of the l2 number
2260				 * of bits being allocated and the l2 number
2261				 * of bits currently described by this leaf.
2262				 */
2263				size = min((int)leaf[word], NLSTOL2BSZ(nwords));
 
2264
2265				/* update the leaf to reflect the allocation.
2266				 * in addition to setting the leaf value to
2267				 * NOFREE, dbSplit() will split the binary
2268				 * system of the leaves to reflect the current
2269				 * allocation (size).
2270				 */
2271				dbSplit(tp, word, size, NOFREE);
2272
2273				/* get the number of dmap words handled */
2274				nw = BUDSIZE(size, BUDMIN);
2275				word += nw;
2276			}
2277		}
2278	}
2279
2280	/* update the free count for this dmap */
2281	le32_add_cpu(&dp->nfree, -nblocks);
2282
2283	BMAP_LOCK(bmp);
2284
2285	/* if this allocation group is completely free,
2286	 * update the maximum allocation group number if this allocation
2287	 * group is the new max.
2288	 */
2289	agno = blkno >> bmp->db_agl2size;
2290	if (agno > bmp->db_maxag)
2291		bmp->db_maxag = agno;
2292
2293	/* update the free count for the allocation group and map */
2294	bmp->db_agfree[agno] -= nblocks;
2295	bmp->db_nfree -= nblocks;
2296
2297	BMAP_UNLOCK(bmp);
2298}
2299
2300
2301/*
2302 * NAME:	dbFreeBits()
2303 *
2304 * FUNCTION:	free a specified block range from a dmap.
2305 *
2306 *		this routine updates the dmap to reflect the working
2307 *		state allocation of the specified block range. it directly
2308 *		updates the bits of the working map and causes the adjustment
2309 *		of the binary buddy system described by the dmap's dmtree
2310 *		leaves to reflect the bits freed.  it also causes the dmap's
2311 *		dmtree, as a whole, to reflect the deallocated range.
2312 *
2313 * PARAMETERS:
2314 *	bmp	-  pointer to bmap descriptor
2315 *	dp	-  pointer to dmap to free bits from.
2316 *	blkno	-  starting block number of the bits to be freed.
2317 *	nblocks	-  number of bits to be freed.
2318 *
2319 * RETURN VALUES: 0 for success
2320 *
2321 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2322 */
2323static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2324		       int nblocks)
2325{
2326	int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2327	dmtree_t *tp = (dmtree_t *) & dp->tree;
2328	int rc = 0;
2329	int size;
2330
2331	/* determine the bit number and word within the dmap of the
2332	 * starting block.
2333	 */
2334	dbitno = blkno & (BPERDMAP - 1);
2335	word = dbitno >> L2DBWORD;
2336
2337	/* block range better be within the dmap.
2338	 */
2339	assert(dbitno + nblocks <= BPERDMAP);
2340
2341	/* free the bits of the dmaps words corresponding to the block range.
2342	 * not all bits of the first and last words may be contained within
2343	 * the block range.  if this is the case, we'll work against those
2344	 * words (i.e. partial first and/or last) on an individual basis
2345	 * (a single pass), freeing the bits of interest by hand and updating
2346	 * the leaf corresponding to the dmap word. a single pass will be used
2347	 * for all dmap words fully contained within the specified range.
2348	 * within this pass, the bits of all fully contained dmap words will
2349	 * be marked as free in a single shot and the leaves will be updated. a
2350	 * single leaf may describe the free space of multiple dmap words,
2351	 * so we may update only a subset of the actual leaves corresponding
2352	 * to the dmap words of the block range.
2353	 *
2354	 * dbJoin() is used to update leaf values and will join the binary
2355	 * buddy system of the leaves if the new leaf values indicate this
2356	 * should be done.
2357	 */
2358	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2359		/* determine the bit number within the word and
2360		 * the number of bits within the word.
2361		 */
2362		wbitno = dbitno & (DBWORD - 1);
2363		nb = min(rembits, DBWORD - wbitno);
2364
2365		/* check if only part of a word is to be freed.
2366		 */
2367		if (nb < DBWORD) {
2368			/* free (zero) the appropriate bits within this
2369			 * dmap word.
2370			 */
2371			dp->wmap[word] &=
2372			    cpu_to_le32(~(ONES << (DBWORD - nb)
2373					  >> wbitno));
2374
2375			/* update the leaf for this dmap word.
2376			 */
2377			rc = dbJoin(tp, word,
2378				    dbMaxBud((u8 *) & dp->wmap[word]));
2379			if (rc)
2380				return rc;
2381
2382			word += 1;
2383		} else {
2384			/* one or more dmap words are fully contained
2385			 * within the block range.  determine how many
2386			 * words and free (zero) the bits of these words.
2387			 */
2388			nwords = rembits >> L2DBWORD;
2389			memset(&dp->wmap[word], 0, nwords * 4);
2390
2391			/* determine how many bits.
2392			 */
2393			nb = nwords << L2DBWORD;
2394
2395			/* now update the appropriate leaves to reflect
2396			 * the freed words.
2397			 */
2398			for (; nwords > 0; nwords -= nw) {
2399				/* determine what the leaf value should be
2400				 * updated to as the minimum of the l2 number
2401				 * of bits being freed and the l2 (max) number
2402				 * of bits that can be described by this leaf.
2403				 */
2404				size =
2405				    min(LITOL2BSZ
2406					(word, L2LPERDMAP, BUDMIN),
2407					NLSTOL2BSZ(nwords));
2408
2409				/* update the leaf.
2410				 */
2411				rc = dbJoin(tp, word, size);
2412				if (rc)
2413					return rc;
2414
2415				/* get the number of dmap words handled.
2416				 */
2417				nw = BUDSIZE(size, BUDMIN);
2418				word += nw;
2419			}
2420		}
2421	}
2422
2423	/* update the free count for this dmap.
2424	 */
2425	le32_add_cpu(&dp->nfree, nblocks);
2426
2427	BMAP_LOCK(bmp);
2428
2429	/* update the free count for the allocation group and
2430	 * map.
2431	 */
2432	agno = blkno >> bmp->db_agl2size;
2433	bmp->db_nfree += nblocks;
2434	bmp->db_agfree[agno] += nblocks;
2435
2436	/* check if this allocation group is not completely free and
2437	 * if it is currently the maximum (rightmost) allocation group.
2438	 * if so, establish the new maximum allocation group number by
2439	 * searching left for the first allocation group with allocation.
2440	 */
2441	if ((bmp->db_agfree[agno] == bmp->db_agsize && agno == bmp->db_maxag) ||
2442	    (agno == bmp->db_numag - 1 &&
2443	     bmp->db_agfree[agno] == (bmp-> db_mapsize & (BPERDMAP - 1)))) {
2444		while (bmp->db_maxag > 0) {
2445			bmp->db_maxag -= 1;
2446			if (bmp->db_agfree[bmp->db_maxag] !=
2447			    bmp->db_agsize)
2448				break;
2449		}
2450
2451		/* re-establish the allocation group preference if the
2452		 * current preference is right of the maximum allocation
2453		 * group.
2454		 */
2455		if (bmp->db_agpref > bmp->db_maxag)
2456			bmp->db_agpref = bmp->db_maxag;
2457	}
2458
2459	BMAP_UNLOCK(bmp);
2460
2461	return 0;
2462}
2463
2464
2465/*
2466 * NAME:	dbAdjCtl()
2467 *
2468 * FUNCTION:	adjust a dmap control page at a specified level to reflect
2469 *		the change in a lower level dmap or dmap control page's
2470 *		maximum string of free blocks (i.e. a change in the root
2471 *		of the lower level object's dmtree) due to the allocation
2472 *		or deallocation of a range of blocks with a single dmap.
2473 *
2474 *		on entry, this routine is provided with the new value of
2475 *		the lower level dmap or dmap control page root and the
2476 *		starting block number of the block range whose allocation
2477 *		or deallocation resulted in the root change.  this range
2478 *		is respresented by a single leaf of the current dmapctl
2479 *		and the leaf will be updated with this value, possibly
2480 *		causing a binary buddy system within the leaves to be
2481 *		split or joined.  the update may also cause the dmapctl's
2482 *		dmtree to be updated.
2483 *
2484 *		if the adjustment of the dmap control page, itself, causes its
2485 *		root to change, this change will be bubbled up to the next dmap
2486 *		control level by a recursive call to this routine, specifying
2487 *		the new root value and the next dmap control page level to
2488 *		be adjusted.
2489 * PARAMETERS:
2490 *	bmp	-  pointer to bmap descriptor
2491 *	blkno	-  the first block of a block range within a dmap.  it is
2492 *		   the allocation or deallocation of this block range that
2493 *		   requires the dmap control page to be adjusted.
2494 *	newval	-  the new value of the lower level dmap or dmap control
2495 *		   page root.
2496 *	alloc	-  'true' if adjustment is due to an allocation.
2497 *	level	-  current level of dmap control page (i.e. L0, L1, L2) to
2498 *		   be adjusted.
2499 *
2500 * RETURN VALUES:
2501 *	0	- success
2502 *	-EIO	- i/o error
2503 *
2504 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2505 */
2506static int
2507dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc, int level)
2508{
2509	struct metapage *mp;
2510	s8 oldroot;
2511	int oldval;
2512	s64 lblkno;
2513	struct dmapctl *dcp;
2514	int rc, leafno, ti;
2515
2516	/* get the buffer for the dmap control page for the specified
2517	 * block number and control page level.
2518	 */
2519	lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, level);
2520	mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
2521	if (mp == NULL)
2522		return -EIO;
2523	dcp = (struct dmapctl *) mp->data;
2524
2525	if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
2526		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
2527		release_metapage(mp);
2528		return -EIO;
2529	}
2530
2531	/* determine the leaf number corresponding to the block and
2532	 * the index within the dmap control tree.
2533	 */
2534	leafno = BLKTOCTLLEAF(blkno, dcp->budmin);
2535	ti = leafno + le32_to_cpu(dcp->leafidx);
2536
2537	/* save the current leaf value and the current root level (i.e.
2538	 * maximum l2 free string described by this dmapctl).
2539	 */
2540	oldval = dcp->stree[ti];
2541	oldroot = dcp->stree[ROOT];
2542
2543	/* check if this is a control page update for an allocation.
2544	 * if so, update the leaf to reflect the new leaf value using
2545	 * dbSplit(); otherwise (deallocation), use dbJoin() to update
2546	 * the leaf with the new value.  in addition to updating the
2547	 * leaf, dbSplit() will also split the binary buddy system of
2548	 * the leaves, if required, and bubble new values within the
2549	 * dmapctl tree, if required.  similarly, dbJoin() will join
2550	 * the binary buddy system of leaves and bubble new values up
2551	 * the dmapctl tree as required by the new leaf value.
2552	 */
2553	if (alloc) {
2554		/* check if we are in the middle of a binary buddy
2555		 * system.  this happens when we are performing the
2556		 * first allocation out of an allocation group that
2557		 * is part (not the first part) of a larger binary
2558		 * buddy system.  if we are in the middle, back split
2559		 * the system prior to calling dbSplit() which assumes
2560		 * that it is at the front of a binary buddy system.
2561		 */
2562		if (oldval == NOFREE) {
2563			rc = dbBackSplit((dmtree_t *) dcp, leafno);
2564			if (rc)
2565				return rc;
2566			oldval = dcp->stree[ti];
2567		}
2568		dbSplit((dmtree_t *) dcp, leafno, dcp->budmin, newval);
2569	} else {
2570		rc = dbJoin((dmtree_t *) dcp, leafno, newval);
2571		if (rc)
2572			return rc;
2573	}
2574
2575	/* check if the root of the current dmap control page changed due
2576	 * to the update and if the current dmap control page is not at
2577	 * the current top level (i.e. L0, L1, L2) of the map.  if so (i.e.
2578	 * root changed and this is not the top level), call this routine
2579	 * again (recursion) for the next higher level of the mapping to
2580	 * reflect the change in root for the current dmap control page.
2581	 */
2582	if (dcp->stree[ROOT] != oldroot) {
2583		/* are we below the top level of the map.  if so,
2584		 * bubble the root up to the next higher level.
2585		 */
2586		if (level < bmp->db_maxlevel) {
2587			/* bubble up the new root of this dmap control page to
2588			 * the next level.
2589			 */
2590			if ((rc =
2591			     dbAdjCtl(bmp, blkno, dcp->stree[ROOT], alloc,
2592				      level + 1))) {
2593				/* something went wrong in bubbling up the new
2594				 * root value, so backout the changes to the
2595				 * current dmap control page.
2596				 */
2597				if (alloc) {
2598					dbJoin((dmtree_t *) dcp, leafno,
2599					       oldval);
2600				} else {
2601					/* the dbJoin() above might have
2602					 * caused a larger binary buddy system
2603					 * to form and we may now be in the
2604					 * middle of it.  if this is the case,
2605					 * back split the buddies.
2606					 */
2607					if (dcp->stree[ti] == NOFREE)
2608						dbBackSplit((dmtree_t *)
2609							    dcp, leafno);
2610					dbSplit((dmtree_t *) dcp, leafno,
2611						dcp->budmin, oldval);
2612				}
2613
2614				/* release the buffer and return the error.
2615				 */
2616				release_metapage(mp);
2617				return (rc);
2618			}
2619		} else {
2620			/* we're at the top level of the map. update
2621			 * the bmap control page to reflect the size
2622			 * of the maximum free buddy system.
2623			 */
2624			assert(level == bmp->db_maxlevel);
2625			if (bmp->db_maxfreebud != oldroot) {
2626				jfs_error(bmp->db_ipbmap->i_sb,
2627					  "the maximum free buddy is not the old root\n");
2628			}
2629			bmp->db_maxfreebud = dcp->stree[ROOT];
2630		}
2631	}
2632
2633	/* write the buffer.
2634	 */
2635	write_metapage(mp);
2636
2637	return (0);
2638}
2639
2640
2641/*
2642 * NAME:	dbSplit()
2643 *
2644 * FUNCTION:	update the leaf of a dmtree with a new value, splitting
2645 *		the leaf from the binary buddy system of the dmtree's
2646 *		leaves, as required.
2647 *
2648 * PARAMETERS:
2649 *	tp	- pointer to the tree containing the leaf.
2650 *	leafno	- the number of the leaf to be updated.
2651 *	splitsz	- the size the binary buddy system starting at the leaf
2652 *		  must be split to, specified as the log2 number of blocks.
2653 *	newval	- the new value for the leaf.
2654 *
2655 * RETURN VALUES: none
2656 *
2657 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2658 */
2659static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval)
2660{
2661	int budsz;
2662	int cursz;
2663	s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2664
2665	/* check if the leaf needs to be split.
2666	 */
2667	if (leaf[leafno] > tp->dmt_budmin) {
2668		/* the split occurs by cutting the buddy system in half
2669		 * at the specified leaf until we reach the specified
2670		 * size.  pick up the starting split size (current size
2671		 * - 1 in l2) and the corresponding buddy size.
2672		 */
2673		cursz = leaf[leafno] - 1;
2674		budsz = BUDSIZE(cursz, tp->dmt_budmin);
2675
2676		/* split until we reach the specified size.
2677		 */
2678		while (cursz >= splitsz) {
2679			/* update the buddy's leaf with its new value.
2680			 */
2681			dbAdjTree(tp, leafno ^ budsz, cursz);
2682
2683			/* on to the next size and buddy.
2684			 */
2685			cursz -= 1;
2686			budsz >>= 1;
2687		}
2688	}
2689
2690	/* adjust the dmap tree to reflect the specified leaf's new
2691	 * value.
2692	 */
2693	dbAdjTree(tp, leafno, newval);
2694}
2695
2696
2697/*
2698 * NAME:	dbBackSplit()
2699 *
2700 * FUNCTION:	back split the binary buddy system of dmtree leaves
2701 *		that hold a specified leaf until the specified leaf
2702 *		starts its own binary buddy system.
2703 *
2704 *		the allocators typically perform allocations at the start
2705 *		of binary buddy systems and dbSplit() is used to accomplish
2706 *		any required splits.  in some cases, however, allocation
2707 *		may occur in the middle of a binary system and requires a
2708 *		back split, with the split proceeding out from the middle of
2709 *		the system (less efficient) rather than the start of the
2710 *		system (more efficient).  the cases in which a back split
2711 *		is required are rare and are limited to the first allocation
2712 *		within an allocation group which is a part (not first part)
2713 *		of a larger binary buddy system and a few exception cases
2714 *		in which a previous join operation must be backed out.
2715 *
2716 * PARAMETERS:
2717 *	tp	- pointer to the tree containing the leaf.
2718 *	leafno	- the number of the leaf to be updated.
2719 *
2720 * RETURN VALUES: none
2721 *
2722 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2723 */
2724static int dbBackSplit(dmtree_t * tp, int leafno)
2725{
2726	int budsz, bud, w, bsz, size;
2727	int cursz;
2728	s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2729
2730	/* leaf should be part (not first part) of a binary
2731	 * buddy system.
2732	 */
2733	assert(leaf[leafno] == NOFREE);
2734
2735	/* the back split is accomplished by iteratively finding the leaf
2736	 * that starts the buddy system that contains the specified leaf and
2737	 * splitting that system in two.  this iteration continues until
2738	 * the specified leaf becomes the start of a buddy system.
2739	 *
2740	 * determine maximum possible l2 size for the specified leaf.
2741	 */
2742	size =
2743	    LITOL2BSZ(leafno, le32_to_cpu(tp->dmt_l2nleafs),
2744		      tp->dmt_budmin);
2745
2746	/* determine the number of leaves covered by this size.  this
2747	 * is the buddy size that we will start with as we search for
2748	 * the buddy system that contains the specified leaf.
2749	 */
2750	budsz = BUDSIZE(size, tp->dmt_budmin);
2751
2752	/* back split.
2753	 */
2754	while (leaf[leafno] == NOFREE) {
2755		/* find the leftmost buddy leaf.
2756		 */
2757		for (w = leafno, bsz = budsz;; bsz <<= 1,
2758		     w = (w < bud) ? w : bud) {
2759			if (bsz >= le32_to_cpu(tp->dmt_nleafs)) {
2760				jfs_err("JFS: block map error in dbBackSplit");
2761				return -EIO;
2762			}
2763
2764			/* determine the buddy.
2765			 */
2766			bud = w ^ bsz;
2767
2768			/* check if this buddy is the start of the system.
2769			 */
2770			if (leaf[bud] != NOFREE) {
2771				/* split the leaf at the start of the
2772				 * system in two.
2773				 */
2774				cursz = leaf[bud] - 1;
2775				dbSplit(tp, bud, cursz, cursz);
2776				break;
2777			}
2778		}
2779	}
2780
2781	if (leaf[leafno] != size) {
2782		jfs_err("JFS: wrong leaf value in dbBackSplit");
2783		return -EIO;
2784	}
2785	return 0;
2786}
2787
2788
2789/*
2790 * NAME:	dbJoin()
2791 *
2792 * FUNCTION:	update the leaf of a dmtree with a new value, joining
2793 *		the leaf with other leaves of the dmtree into a multi-leaf
2794 *		binary buddy system, as required.
2795 *
2796 * PARAMETERS:
2797 *	tp	- pointer to the tree containing the leaf.
2798 *	leafno	- the number of the leaf to be updated.
2799 *	newval	- the new value for the leaf.
2800 *
2801 * RETURN VALUES: none
2802 */
2803static int dbJoin(dmtree_t * tp, int leafno, int newval)
2804{
2805	int budsz, buddy;
2806	s8 *leaf;
2807
2808	/* can the new leaf value require a join with other leaves ?
2809	 */
2810	if (newval >= tp->dmt_budmin) {
2811		/* pickup a pointer to the leaves of the tree.
2812		 */
2813		leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2814
2815		/* try to join the specified leaf into a large binary
2816		 * buddy system.  the join proceeds by attempting to join
2817		 * the specified leafno with its buddy (leaf) at new value.
2818		 * if the join occurs, we attempt to join the left leaf
2819		 * of the joined buddies with its buddy at new value + 1.
2820		 * we continue to join until we find a buddy that cannot be
2821		 * joined (does not have a value equal to the size of the
2822		 * last join) or until all leaves have been joined into a
2823		 * single system.
2824		 *
2825		 * get the buddy size (number of words covered) of
2826		 * the new value.
2827		 */
2828		budsz = BUDSIZE(newval, tp->dmt_budmin);
2829
2830		/* try to join.
2831		 */
2832		while (budsz < le32_to_cpu(tp->dmt_nleafs)) {
2833			/* get the buddy leaf.
2834			 */
2835			buddy = leafno ^ budsz;
2836
2837			/* if the leaf's new value is greater than its
2838			 * buddy's value, we join no more.
2839			 */
2840			if (newval > leaf[buddy])
2841				break;
2842
2843			/* It shouldn't be less */
2844			if (newval < leaf[buddy])
2845				return -EIO;
2846
2847			/* check which (leafno or buddy) is the left buddy.
2848			 * the left buddy gets to claim the blocks resulting
2849			 * from the join while the right gets to claim none.
2850			 * the left buddy is also eligible to participate in
2851			 * a join at the next higher level while the right
2852			 * is not.
2853			 *
2854			 */
2855			if (leafno < buddy) {
2856				/* leafno is the left buddy.
2857				 */
2858				dbAdjTree(tp, buddy, NOFREE);
2859			} else {
2860				/* buddy is the left buddy and becomes
2861				 * leafno.
2862				 */
2863				dbAdjTree(tp, leafno, NOFREE);
2864				leafno = buddy;
2865			}
2866
2867			/* on to try the next join.
2868			 */
2869			newval += 1;
2870			budsz <<= 1;
2871		}
2872	}
2873
2874	/* update the leaf value.
2875	 */
2876	dbAdjTree(tp, leafno, newval);
2877
2878	return 0;
2879}
2880
2881
2882/*
2883 * NAME:	dbAdjTree()
2884 *
2885 * FUNCTION:	update a leaf of a dmtree with a new value, adjusting
2886 *		the dmtree, as required, to reflect the new leaf value.
2887 *		the combination of any buddies must already be done before
2888 *		this is called.
2889 *
2890 * PARAMETERS:
2891 *	tp	- pointer to the tree to be adjusted.
2892 *	leafno	- the number of the leaf to be updated.
2893 *	newval	- the new value for the leaf.
2894 *
2895 * RETURN VALUES: none
2896 */
2897static void dbAdjTree(dmtree_t * tp, int leafno, int newval)
2898{
2899	int lp, pp, k;
2900	int max;
2901
2902	/* pick up the index of the leaf for this leafno.
2903	 */
2904	lp = leafno + le32_to_cpu(tp->dmt_leafidx);
2905
2906	/* is the current value the same as the old value ?  if so,
2907	 * there is nothing to do.
2908	 */
2909	if (tp->dmt_stree[lp] == newval)
2910		return;
2911
2912	/* set the new value.
2913	 */
2914	tp->dmt_stree[lp] = newval;
2915
2916	/* bubble the new value up the tree as required.
2917	 */
2918	for (k = 0; k < le32_to_cpu(tp->dmt_height); k++) {
2919		/* get the index of the first leaf of the 4 leaf
2920		 * group containing the specified leaf (leafno).
2921		 */
2922		lp = ((lp - 1) & ~0x03) + 1;
2923
2924		/* get the index of the parent of this 4 leaf group.
2925		 */
2926		pp = (lp - 1) >> 2;
2927
2928		/* determine the maximum of the 4 leaves.
2929		 */
2930		max = TREEMAX(&tp->dmt_stree[lp]);
2931
2932		/* if the maximum of the 4 is the same as the
2933		 * parent's value, we're done.
2934		 */
2935		if (tp->dmt_stree[pp] == max)
2936			break;
2937
2938		/* parent gets new value.
2939		 */
2940		tp->dmt_stree[pp] = max;
2941
2942		/* parent becomes leaf for next go-round.
2943		 */
2944		lp = pp;
2945	}
2946}
2947
2948
2949/*
2950 * NAME:	dbFindLeaf()
2951 *
2952 * FUNCTION:	search a dmtree_t for sufficient free blocks, returning
2953 *		the index of a leaf describing the free blocks if
2954 *		sufficient free blocks are found.
2955 *
2956 *		the search starts at the top of the dmtree_t tree and
2957 *		proceeds down the tree to the leftmost leaf with sufficient
2958 *		free space.
2959 *
2960 * PARAMETERS:
2961 *	tp	- pointer to the tree to be searched.
2962 *	l2nb	- log2 number of free blocks to search for.
2963 *	leafidx	- return pointer to be set to the index of the leaf
2964 *		  describing at least l2nb free blocks if sufficient
2965 *		  free blocks are found.
2966 *
2967 * RETURN VALUES:
2968 *	0	- success
2969 *	-ENOSPC	- insufficient free blocks.
2970 */
2971static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx)
2972{
2973	int ti, n = 0, k, x = 0;
2974
2975	/* first check the root of the tree to see if there is
2976	 * sufficient free space.
2977	 */
2978	if (l2nb > tp->dmt_stree[ROOT])
2979		return -ENOSPC;
2980
2981	/* sufficient free space available. now search down the tree
2982	 * starting at the next level for the leftmost leaf that
2983	 * describes sufficient free space.
2984	 */
2985	for (k = le32_to_cpu(tp->dmt_height), ti = 1;
2986	     k > 0; k--, ti = ((ti + n) << 2) + 1) {
2987		/* search the four nodes at this level, starting from
2988		 * the left.
2989		 */
2990		for (x = ti, n = 0; n < 4; n++) {
2991			/* sufficient free space found.  move to the next
2992			 * level (or quit if this is the last level).
2993			 */
2994			if (l2nb <= tp->dmt_stree[x + n])
2995				break;
2996		}
2997
2998		/* better have found something since the higher
2999		 * levels of the tree said it was here.
3000		 */
3001		assert(n < 4);
3002	}
3003
3004	/* set the return to the leftmost leaf describing sufficient
3005	 * free space.
3006	 */
3007	*leafidx = x + n - le32_to_cpu(tp->dmt_leafidx);
3008
3009	return (0);
3010}
3011
3012
3013/*
3014 * NAME:	dbFindBits()
3015 *
3016 * FUNCTION:	find a specified number of binary buddy free bits within a
3017 *		dmap bitmap word value.
3018 *
3019 *		this routine searches the bitmap value for (1 << l2nb) free
3020 *		bits at (1 << l2nb) alignments within the value.
3021 *
3022 * PARAMETERS:
3023 *	word	-  dmap bitmap word value.
3024 *	l2nb	-  number of free bits specified as a log2 number.
3025 *
3026 * RETURN VALUES:
3027 *	starting bit number of free bits.
3028 */
3029static int dbFindBits(u32 word, int l2nb)
3030{
3031	int bitno, nb;
3032	u32 mask;
3033
3034	/* get the number of bits.
3035	 */
3036	nb = 1 << l2nb;
3037	assert(nb <= DBWORD);
3038
3039	/* complement the word so we can use a mask (i.e. 0s represent
3040	 * free bits) and compute the mask.
3041	 */
3042	word = ~word;
3043	mask = ONES << (DBWORD - nb);
3044
3045	/* scan the word for nb free bits at nb alignments.
3046	 */
3047	for (bitno = 0; mask != 0; bitno += nb, mask >>= nb) {
3048		if ((mask & word) == mask)
3049			break;
3050	}
3051
3052	ASSERT(bitno < 32);
3053
3054	/* return the bit number.
3055	 */
3056	return (bitno);
3057}
3058
3059
3060/*
3061 * NAME:	dbMaxBud(u8 *cp)
3062 *
3063 * FUNCTION:	determine the largest binary buddy string of free
3064 *		bits within 32-bits of the map.
3065 *
3066 * PARAMETERS:
3067 *	cp	-  pointer to the 32-bit value.
3068 *
3069 * RETURN VALUES:
3070 *	largest binary buddy of free bits within a dmap word.
3071 */
3072static int dbMaxBud(u8 * cp)
3073{
3074	signed char tmp1, tmp2;
3075
3076	/* check if the wmap word is all free. if so, the
3077	 * free buddy size is BUDMIN.
3078	 */
3079	if (*((uint *) cp) == 0)
3080		return (BUDMIN);
3081
3082	/* check if the wmap word is half free. if so, the
3083	 * free buddy size is BUDMIN-1.
3084	 */
3085	if (*((u16 *) cp) == 0 || *((u16 *) cp + 1) == 0)
3086		return (BUDMIN - 1);
3087
3088	/* not all free or half free. determine the free buddy
3089	 * size thru table lookup using quarters of the wmap word.
3090	 */
3091	tmp1 = max(budtab[cp[2]], budtab[cp[3]]);
3092	tmp2 = max(budtab[cp[0]], budtab[cp[1]]);
3093	return (max(tmp1, tmp2));
3094}
3095
3096
3097/*
3098 * NAME:	cnttz(uint word)
3099 *
3100 * FUNCTION:	determine the number of trailing zeros within a 32-bit
3101 *		value.
3102 *
3103 * PARAMETERS:
3104 *	value	-  32-bit value to be examined.
3105 *
3106 * RETURN VALUES:
3107 *	count of trailing zeros
3108 */
3109static int cnttz(u32 word)
3110{
3111	int n;
3112
3113	for (n = 0; n < 32; n++, word >>= 1) {
3114		if (word & 0x01)
3115			break;
3116	}
3117
3118	return (n);
3119}
3120
3121
3122/*
3123 * NAME:	cntlz(u32 value)
3124 *
3125 * FUNCTION:	determine the number of leading zeros within a 32-bit
3126 *		value.
3127 *
3128 * PARAMETERS:
3129 *	value	-  32-bit value to be examined.
3130 *
3131 * RETURN VALUES:
3132 *	count of leading zeros
3133 */
3134static int cntlz(u32 value)
3135{
3136	int n;
3137
3138	for (n = 0; n < 32; n++, value <<= 1) {
3139		if (value & HIGHORDER)
3140			break;
3141	}
3142	return (n);
3143}
3144
3145
3146/*
3147 * NAME:	blkstol2(s64 nb)
3148 *
3149 * FUNCTION:	convert a block count to its log2 value. if the block
3150 *		count is not a l2 multiple, it is rounded up to the next
3151 *		larger l2 multiple.
3152 *
3153 * PARAMETERS:
3154 *	nb	-  number of blocks
3155 *
3156 * RETURN VALUES:
3157 *	log2 number of blocks
3158 */
3159static int blkstol2(s64 nb)
3160{
3161	int l2nb;
3162	s64 mask;		/* meant to be signed */
3163
3164	mask = (s64) 1 << (64 - 1);
3165
3166	/* count the leading bits.
3167	 */
3168	for (l2nb = 0; l2nb < 64; l2nb++, mask >>= 1) {
3169		/* leading bit found.
3170		 */
3171		if (nb & mask) {
3172			/* determine the l2 value.
3173			 */
3174			l2nb = (64 - 1) - l2nb;
3175
3176			/* check if we need to round up.
3177			 */
3178			if (~mask & nb)
3179				l2nb++;
3180
3181			return (l2nb);
3182		}
3183	}
3184	assert(0);
3185	return 0;		/* fix compiler warning */
3186}
3187
3188
3189/*
3190 * NAME:	dbAllocBottomUp()
3191 *
3192 * FUNCTION:	alloc the specified block range from the working block
3193 *		allocation map.
3194 *
3195 *		the blocks will be alloc from the working map one dmap
3196 *		at a time.
3197 *
3198 * PARAMETERS:
3199 *	ip	-  pointer to in-core inode;
3200 *	blkno	-  starting block number to be freed.
3201 *	nblocks	-  number of blocks to be freed.
3202 *
3203 * RETURN VALUES:
3204 *	0	- success
3205 *	-EIO	- i/o error
3206 */
3207int dbAllocBottomUp(struct inode *ip, s64 blkno, s64 nblocks)
3208{
3209	struct metapage *mp;
3210	struct dmap *dp;
3211	int nb, rc;
3212	s64 lblkno, rem;
3213	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
3214	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
3215
3216	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
3217
3218	/* block to be allocated better be within the mapsize. */
3219	ASSERT(nblocks <= bmp->db_mapsize - blkno);
3220
3221	/*
3222	 * allocate the blocks a dmap at a time.
3223	 */
3224	mp = NULL;
3225	for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
3226		/* release previous dmap if any */
3227		if (mp) {
3228			write_metapage(mp);
3229		}
3230
3231		/* get the buffer for the current dmap. */
3232		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
3233		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
3234		if (mp == NULL) {
3235			IREAD_UNLOCK(ipbmap);
3236			return -EIO;
3237		}
3238		dp = (struct dmap *) mp->data;
3239
3240		/* determine the number of blocks to be allocated from
3241		 * this dmap.
3242		 */
3243		nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
3244
3245		/* allocate the blocks. */
3246		if ((rc = dbAllocDmapBU(bmp, dp, blkno, nb))) {
3247			release_metapage(mp);
3248			IREAD_UNLOCK(ipbmap);
3249			return (rc);
3250		}
3251	}
3252
3253	/* write the last buffer. */
3254	write_metapage(mp);
3255
3256	IREAD_UNLOCK(ipbmap);
3257
3258	return (0);
3259}
3260
3261
3262static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
3263			 int nblocks)
3264{
3265	int rc;
3266	int dbitno, word, rembits, nb, nwords, wbitno, agno;
3267	s8 oldroot;
3268	struct dmaptree *tp = (struct dmaptree *) & dp->tree;
3269
3270	/* save the current value of the root (i.e. maximum free string)
3271	 * of the dmap tree.
3272	 */
3273	oldroot = tp->stree[ROOT];
3274
3275	/* determine the bit number and word within the dmap of the
3276	 * starting block.
3277	 */
3278	dbitno = blkno & (BPERDMAP - 1);
3279	word = dbitno >> L2DBWORD;
3280
3281	/* block range better be within the dmap */
3282	assert(dbitno + nblocks <= BPERDMAP);
3283
3284	/* allocate the bits of the dmap's words corresponding to the block
3285	 * range. not all bits of the first and last words may be contained
3286	 * within the block range.  if this is the case, we'll work against
3287	 * those words (i.e. partial first and/or last) on an individual basis
3288	 * (a single pass), allocating the bits of interest by hand and
3289	 * updating the leaf corresponding to the dmap word. a single pass
3290	 * will be used for all dmap words fully contained within the
3291	 * specified range.  within this pass, the bits of all fully contained
3292	 * dmap words will be marked as free in a single shot and the leaves
3293	 * will be updated. a single leaf may describe the free space of
3294	 * multiple dmap words, so we may update only a subset of the actual
3295	 * leaves corresponding to the dmap words of the block range.
3296	 */
3297	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
3298		/* determine the bit number within the word and
3299		 * the number of bits within the word.
3300		 */
3301		wbitno = dbitno & (DBWORD - 1);
3302		nb = min(rembits, DBWORD - wbitno);
3303
3304		/* check if only part of a word is to be allocated.
3305		 */
3306		if (nb < DBWORD) {
3307			/* allocate (set to 1) the appropriate bits within
3308			 * this dmap word.
3309			 */
3310			dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
3311						      >> wbitno);
3312
3313			word++;
3314		} else {
3315			/* one or more dmap words are fully contained
3316			 * within the block range.  determine how many
3317			 * words and allocate (set to 1) the bits of these
3318			 * words.
3319			 */
3320			nwords = rembits >> L2DBWORD;
3321			memset(&dp->wmap[word], (int) ONES, nwords * 4);
3322
3323			/* determine how many bits */
3324			nb = nwords << L2DBWORD;
3325			word += nwords;
3326		}
3327	}
3328
3329	/* update the free count for this dmap */
3330	le32_add_cpu(&dp->nfree, -nblocks);
3331
3332	/* reconstruct summary tree */
3333	dbInitDmapTree(dp);
3334
3335	BMAP_LOCK(bmp);
3336
3337	/* if this allocation group is completely free,
3338	 * update the highest active allocation group number
3339	 * if this allocation group is the new max.
3340	 */
3341	agno = blkno >> bmp->db_agl2size;
3342	if (agno > bmp->db_maxag)
3343		bmp->db_maxag = agno;
3344
3345	/* update the free count for the allocation group and map */
3346	bmp->db_agfree[agno] -= nblocks;
3347	bmp->db_nfree -= nblocks;
3348
3349	BMAP_UNLOCK(bmp);
3350
3351	/* if the root has not changed, done. */
3352	if (tp->stree[ROOT] == oldroot)
3353		return (0);
3354
3355	/* root changed. bubble the change up to the dmap control pages.
3356	 * if the adjustment of the upper level control pages fails,
3357	 * backout the bit allocation (thus making everything consistent).
3358	 */
3359	if ((rc = dbAdjCtl(bmp, blkno, tp->stree[ROOT], 1, 0)))
3360		dbFreeBits(bmp, dp, blkno, nblocks);
3361
3362	return (rc);
3363}
3364
3365
3366/*
3367 * NAME:	dbExtendFS()
3368 *
3369 * FUNCTION:	extend bmap from blkno for nblocks;
3370 *		dbExtendFS() updates bmap ready for dbAllocBottomUp();
3371 *
3372 * L2
3373 *  |
3374 *   L1---------------------------------L1
3375 *    |					 |
3376 *     L0---------L0---------L0		  L0---------L0---------L0
3377 *      |	   |	      |		   |	      |		 |
3378 *	 d0,...,dn  d0,...,dn  d0,...,dn    d0,...,dn  d0,...,dn  d0,.,dm;
3379 * L2L1L0d0,...,dnL0d0,...,dnL0d0,...,dnL1L0d0,...,dnL0d0,...,dnL0d0,..dm
3380 *
3381 * <---old---><----------------------------extend----------------------->
3382 */
3383int dbExtendFS(struct inode *ipbmap, s64 blkno,	s64 nblocks)
3384{
3385	struct jfs_sb_info *sbi = JFS_SBI(ipbmap->i_sb);
3386	int nbperpage = sbi->nbperpage;
3387	int i, i0 = true, j, j0 = true, k, n;
3388	s64 newsize;
3389	s64 p;
3390	struct metapage *mp, *l2mp, *l1mp = NULL, *l0mp = NULL;
3391	struct dmapctl *l2dcp, *l1dcp, *l0dcp;
3392	struct dmap *dp;
3393	s8 *l0leaf, *l1leaf, *l2leaf;
3394	struct bmap *bmp = sbi->bmap;
3395	int agno, l2agsize, oldl2agsize;
3396	s64 ag_rem;
3397
3398	newsize = blkno + nblocks;
3399
3400	jfs_info("dbExtendFS: blkno:%Ld nblocks:%Ld newsize:%Ld",
3401		 (long long) blkno, (long long) nblocks, (long long) newsize);
3402
3403	/*
3404	 *	initialize bmap control page.
3405	 *
3406	 * all the data in bmap control page should exclude
3407	 * the mkfs hidden dmap page.
3408	 */
3409
3410	/* update mapsize */
3411	bmp->db_mapsize = newsize;
3412	bmp->db_maxlevel = BMAPSZTOLEV(bmp->db_mapsize);
3413
3414	/* compute new AG size */
3415	l2agsize = dbGetL2AGSize(newsize);
3416	oldl2agsize = bmp->db_agl2size;
3417
3418	bmp->db_agl2size = l2agsize;
3419	bmp->db_agsize = 1 << l2agsize;
3420
3421	/* compute new number of AG */
3422	agno = bmp->db_numag;
3423	bmp->db_numag = newsize >> l2agsize;
3424	bmp->db_numag += ((u32) newsize % (u32) bmp->db_agsize) ? 1 : 0;
3425
3426	/*
3427	 *	reconfigure db_agfree[]
3428	 * from old AG configuration to new AG configuration;
3429	 *
3430	 * coalesce contiguous k (newAGSize/oldAGSize) AGs;
3431	 * i.e., (AGi, ..., AGj) where i = k*n and j = k*(n+1) - 1 to AGn;
3432	 * note: new AG size = old AG size * (2**x).
3433	 */
3434	if (l2agsize == oldl2agsize)
3435		goto extend;
3436	k = 1 << (l2agsize - oldl2agsize);
3437	ag_rem = bmp->db_agfree[0];	/* save agfree[0] */
3438	for (i = 0, n = 0; i < agno; n++) {
3439		bmp->db_agfree[n] = 0;	/* init collection point */
3440
3441		/* coalesce contiguous k AGs; */
3442		for (j = 0; j < k && i < agno; j++, i++) {
3443			/* merge AGi to AGn */
3444			bmp->db_agfree[n] += bmp->db_agfree[i];
3445		}
3446	}
3447	bmp->db_agfree[0] += ag_rem;	/* restore agfree[0] */
3448
3449	for (; n < MAXAG; n++)
3450		bmp->db_agfree[n] = 0;
3451
3452	/*
3453	 * update highest active ag number
3454	 */
3455
3456	bmp->db_maxag = bmp->db_maxag / k;
3457
3458	/*
3459	 *	extend bmap
3460	 *
3461	 * update bit maps and corresponding level control pages;
3462	 * global control page db_nfree, db_agfree[agno], db_maxfreebud;
3463	 */
3464      extend:
3465	/* get L2 page */
3466	p = BMAPBLKNO + nbperpage;	/* L2 page */
3467	l2mp = read_metapage(ipbmap, p, PSIZE, 0);
3468	if (!l2mp) {
3469		jfs_error(ipbmap->i_sb, "L2 page could not be read\n");
3470		return -EIO;
3471	}
3472	l2dcp = (struct dmapctl *) l2mp->data;
3473
3474	/* compute start L1 */
3475	k = blkno >> L2MAXL1SIZE;
3476	l2leaf = l2dcp->stree + CTLLEAFIND + k;
3477	p = BLKTOL1(blkno, sbi->l2nbperpage);	/* L1 page */
3478
3479	/*
3480	 * extend each L1 in L2
3481	 */
3482	for (; k < LPERCTL; k++, p += nbperpage) {
3483		/* get L1 page */
3484		if (j0) {
3485			/* read in L1 page: (blkno & (MAXL1SIZE - 1)) */
3486			l1mp = read_metapage(ipbmap, p, PSIZE, 0);
3487			if (l1mp == NULL)
3488				goto errout;
3489			l1dcp = (struct dmapctl *) l1mp->data;
3490
3491			/* compute start L0 */
3492			j = (blkno & (MAXL1SIZE - 1)) >> L2MAXL0SIZE;
3493			l1leaf = l1dcp->stree + CTLLEAFIND + j;
3494			p = BLKTOL0(blkno, sbi->l2nbperpage);
3495			j0 = false;
3496		} else {
3497			/* assign/init L1 page */
3498			l1mp = get_metapage(ipbmap, p, PSIZE, 0);
3499			if (l1mp == NULL)
3500				goto errout;
3501
3502			l1dcp = (struct dmapctl *) l1mp->data;
3503
3504			/* compute start L0 */
3505			j = 0;
3506			l1leaf = l1dcp->stree + CTLLEAFIND;
3507			p += nbperpage;	/* 1st L0 of L1.k */
3508		}
3509
3510		/*
3511		 * extend each L0 in L1
3512		 */
3513		for (; j < LPERCTL; j++) {
3514			/* get L0 page */
3515			if (i0) {
3516				/* read in L0 page: (blkno & (MAXL0SIZE - 1)) */
3517
3518				l0mp = read_metapage(ipbmap, p, PSIZE, 0);
3519				if (l0mp == NULL)
3520					goto errout;
3521				l0dcp = (struct dmapctl *) l0mp->data;
3522
3523				/* compute start dmap */
3524				i = (blkno & (MAXL0SIZE - 1)) >>
3525				    L2BPERDMAP;
3526				l0leaf = l0dcp->stree + CTLLEAFIND + i;
3527				p = BLKTODMAP(blkno,
3528					      sbi->l2nbperpage);
3529				i0 = false;
3530			} else {
3531				/* assign/init L0 page */
3532				l0mp = get_metapage(ipbmap, p, PSIZE, 0);
3533				if (l0mp == NULL)
3534					goto errout;
3535
3536				l0dcp = (struct dmapctl *) l0mp->data;
3537
3538				/* compute start dmap */
3539				i = 0;
3540				l0leaf = l0dcp->stree + CTLLEAFIND;
3541				p += nbperpage;	/* 1st dmap of L0.j */
3542			}
3543
3544			/*
3545			 * extend each dmap in L0
3546			 */
3547			for (; i < LPERCTL; i++) {
3548				/*
3549				 * reconstruct the dmap page, and
3550				 * initialize corresponding parent L0 leaf
3551				 */
3552				if ((n = blkno & (BPERDMAP - 1))) {
3553					/* read in dmap page: */
3554					mp = read_metapage(ipbmap, p,
3555							   PSIZE, 0);
3556					if (mp == NULL)
3557						goto errout;
3558					n = min(nblocks, (s64)BPERDMAP - n);
3559				} else {
3560					/* assign/init dmap page */
3561					mp = read_metapage(ipbmap, p,
3562							   PSIZE, 0);
3563					if (mp == NULL)
3564						goto errout;
3565
3566					n = min(nblocks, (s64)BPERDMAP);
3567				}
3568
3569				dp = (struct dmap *) mp->data;
3570				*l0leaf = dbInitDmap(dp, blkno, n);
3571
3572				bmp->db_nfree += n;
3573				agno = le64_to_cpu(dp->start) >> l2agsize;
3574				bmp->db_agfree[agno] += n;
3575
3576				write_metapage(mp);
3577
3578				l0leaf++;
3579				p += nbperpage;
3580
3581				blkno += n;
3582				nblocks -= n;
3583				if (nblocks == 0)
3584					break;
3585			}	/* for each dmap in a L0 */
3586
3587			/*
3588			 * build current L0 page from its leaves, and
3589			 * initialize corresponding parent L1 leaf
3590			 */
3591			*l1leaf = dbInitDmapCtl(l0dcp, 0, ++i);
3592			write_metapage(l0mp);
3593			l0mp = NULL;
3594
3595			if (nblocks)
3596				l1leaf++;	/* continue for next L0 */
3597			else {
3598				/* more than 1 L0 ? */
3599				if (j > 0)
3600					break;	/* build L1 page */
3601				else {
3602					/* summarize in global bmap page */
3603					bmp->db_maxfreebud = *l1leaf;
3604					release_metapage(l1mp);
3605					release_metapage(l2mp);
3606					goto finalize;
3607				}
3608			}
3609		}		/* for each L0 in a L1 */
3610
3611		/*
3612		 * build current L1 page from its leaves, and
3613		 * initialize corresponding parent L2 leaf
3614		 */
3615		*l2leaf = dbInitDmapCtl(l1dcp, 1, ++j);
3616		write_metapage(l1mp);
3617		l1mp = NULL;
3618
3619		if (nblocks)
3620			l2leaf++;	/* continue for next L1 */
3621		else {
3622			/* more than 1 L1 ? */
3623			if (k > 0)
3624				break;	/* build L2 page */
3625			else {
3626				/* summarize in global bmap page */
3627				bmp->db_maxfreebud = *l2leaf;
3628				release_metapage(l2mp);
3629				goto finalize;
3630			}
3631		}
3632	}			/* for each L1 in a L2 */
3633
3634	jfs_error(ipbmap->i_sb, "function has not returned as expected\n");
3635errout:
3636	if (l0mp)
3637		release_metapage(l0mp);
3638	if (l1mp)
3639		release_metapage(l1mp);
3640	release_metapage(l2mp);
3641	return -EIO;
3642
3643	/*
3644	 *	finalize bmap control page
3645	 */
3646finalize:
3647
3648	return 0;
3649}
3650
3651
3652/*
3653 *	dbFinalizeBmap()
3654 */
3655void dbFinalizeBmap(struct inode *ipbmap)
3656{
3657	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
3658	int actags, inactags, l2nl;
3659	s64 ag_rem, actfree, inactfree, avgfree;
3660	int i, n;
3661
3662	/*
3663	 *	finalize bmap control page
3664	 */
3665//finalize:
3666	/*
3667	 * compute db_agpref: preferred ag to allocate from
3668	 * (the leftmost ag with average free space in it);
3669	 */
3670//agpref:
3671	/* get the number of active ags and inacitve ags */
3672	actags = bmp->db_maxag + 1;
3673	inactags = bmp->db_numag - actags;
3674	ag_rem = bmp->db_mapsize & (bmp->db_agsize - 1);	/* ??? */
3675
3676	/* determine how many blocks are in the inactive allocation
3677	 * groups. in doing this, we must account for the fact that
3678	 * the rightmost group might be a partial group (i.e. file
3679	 * system size is not a multiple of the group size).
3680	 */
3681	inactfree = (inactags && ag_rem) ?
3682	    ((inactags - 1) << bmp->db_agl2size) + ag_rem
3683	    : inactags << bmp->db_agl2size;
3684
3685	/* determine how many free blocks are in the active
3686	 * allocation groups plus the average number of free blocks
3687	 * within the active ags.
3688	 */
3689	actfree = bmp->db_nfree - inactfree;
3690	avgfree = (u32) actfree / (u32) actags;
3691
3692	/* if the preferred allocation group has not average free space.
3693	 * re-establish the preferred group as the leftmost
3694	 * group with average free space.
3695	 */
3696	if (bmp->db_agfree[bmp->db_agpref] < avgfree) {
3697		for (bmp->db_agpref = 0; bmp->db_agpref < actags;
3698		     bmp->db_agpref++) {
3699			if (bmp->db_agfree[bmp->db_agpref] >= avgfree)
3700				break;
3701		}
3702		if (bmp->db_agpref >= bmp->db_numag) {
3703			jfs_error(ipbmap->i_sb,
3704				  "cannot find ag with average freespace\n");
3705		}
3706	}
3707
3708	/*
3709	 * compute db_aglevel, db_agheight, db_width, db_agstart:
3710	 * an ag is covered in aglevel dmapctl summary tree,
3711	 * at agheight level height (from leaf) with agwidth number of nodes
3712	 * each, which starts at agstart index node of the smmary tree node
3713	 * array;
3714	 */
3715	bmp->db_aglevel = BMAPSZTOLEV(bmp->db_agsize);
3716	l2nl =
3717	    bmp->db_agl2size - (L2BPERDMAP + bmp->db_aglevel * L2LPERCTL);
3718	bmp->db_agheight = l2nl >> 1;
3719	bmp->db_agwidth = 1 << (l2nl - (bmp->db_agheight << 1));
3720	for (i = 5 - bmp->db_agheight, bmp->db_agstart = 0, n = 1; i > 0;
3721	     i--) {
3722		bmp->db_agstart += n;
3723		n <<= 2;
3724	}
3725
3726}
3727
3728
3729/*
3730 * NAME:	dbInitDmap()/ujfs_idmap_page()
3731 *
3732 * FUNCTION:	initialize working/persistent bitmap of the dmap page
3733 *		for the specified number of blocks:
3734 *
3735 *		at entry, the bitmaps had been initialized as free (ZEROS);
3736 *		The number of blocks will only account for the actually
3737 *		existing blocks. Blocks which don't actually exist in
3738 *		the aggregate will be marked as allocated (ONES);
3739 *
3740 * PARAMETERS:
3741 *	dp	- pointer to page of map
3742 *	nblocks	- number of blocks this page
3743 *
3744 * RETURNS: NONE
3745 */
3746static int dbInitDmap(struct dmap * dp, s64 Blkno, int nblocks)
3747{
3748	int blkno, w, b, r, nw, nb, i;
3749
3750	/* starting block number within the dmap */
3751	blkno = Blkno & (BPERDMAP - 1);
3752
3753	if (blkno == 0) {
3754		dp->nblocks = dp->nfree = cpu_to_le32(nblocks);
3755		dp->start = cpu_to_le64(Blkno);
3756
3757		if (nblocks == BPERDMAP) {
3758			memset(&dp->wmap[0], 0, LPERDMAP * 4);
3759			memset(&dp->pmap[0], 0, LPERDMAP * 4);
3760			goto initTree;
3761		}
3762	} else {
3763		le32_add_cpu(&dp->nblocks, nblocks);
3764		le32_add_cpu(&dp->nfree, nblocks);
3765	}
3766
3767	/* word number containing start block number */
3768	w = blkno >> L2DBWORD;
3769
3770	/*
3771	 * free the bits corresponding to the block range (ZEROS):
3772	 * note: not all bits of the first and last words may be contained
3773	 * within the block range.
3774	 */
3775	for (r = nblocks; r > 0; r -= nb, blkno += nb) {
3776		/* number of bits preceding range to be freed in the word */
3777		b = blkno & (DBWORD - 1);
3778		/* number of bits to free in the word */
3779		nb = min(r, DBWORD - b);
3780
3781		/* is partial word to be freed ? */
3782		if (nb < DBWORD) {
3783			/* free (set to 0) from the bitmap word */
3784			dp->wmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3785						     >> b));
3786			dp->pmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3787						     >> b));
3788
3789			/* skip the word freed */
3790			w++;
3791		} else {
3792			/* free (set to 0) contiguous bitmap words */
3793			nw = r >> L2DBWORD;
3794			memset(&dp->wmap[w], 0, nw * 4);
3795			memset(&dp->pmap[w], 0, nw * 4);
3796
3797			/* skip the words freed */
3798			nb = nw << L2DBWORD;
3799			w += nw;
3800		}
3801	}
3802
3803	/*
3804	 * mark bits following the range to be freed (non-existing
3805	 * blocks) as allocated (ONES)
3806	 */
3807
3808	if (blkno == BPERDMAP)
3809		goto initTree;
3810
3811	/* the first word beyond the end of existing blocks */
3812	w = blkno >> L2DBWORD;
3813
3814	/* does nblocks fall on a 32-bit boundary ? */
3815	b = blkno & (DBWORD - 1);
3816	if (b) {
3817		/* mark a partial word allocated */
3818		dp->wmap[w] = dp->pmap[w] = cpu_to_le32(ONES >> b);
3819		w++;
3820	}
3821
3822	/* set the rest of the words in the page to allocated (ONES) */
3823	for (i = w; i < LPERDMAP; i++)
3824		dp->pmap[i] = dp->wmap[i] = cpu_to_le32(ONES);
3825
3826	/*
3827	 * init tree
3828	 */
3829      initTree:
3830	return (dbInitDmapTree(dp));
3831}
3832
3833
3834/*
3835 * NAME:	dbInitDmapTree()/ujfs_complete_dmap()
3836 *
3837 * FUNCTION:	initialize summary tree of the specified dmap:
3838 *
3839 *		at entry, bitmap of the dmap has been initialized;
3840 *
3841 * PARAMETERS:
3842 *	dp	- dmap to complete
3843 *	blkno	- starting block number for this dmap
3844 *	treemax	- will be filled in with max free for this dmap
3845 *
3846 * RETURNS:	max free string at the root of the tree
3847 */
3848static int dbInitDmapTree(struct dmap * dp)
3849{
3850	struct dmaptree *tp;
3851	s8 *cp;
3852	int i;
3853
3854	/* init fixed info of tree */
3855	tp = &dp->tree;
3856	tp->nleafs = cpu_to_le32(LPERDMAP);
3857	tp->l2nleafs = cpu_to_le32(L2LPERDMAP);
3858	tp->leafidx = cpu_to_le32(LEAFIND);
3859	tp->height = cpu_to_le32(4);
3860	tp->budmin = BUDMIN;
3861
3862	/* init each leaf from corresponding wmap word:
3863	 * note: leaf is set to NOFREE(-1) if all blocks of corresponding
3864	 * bitmap word are allocated.
3865	 */
3866	cp = tp->stree + le32_to_cpu(tp->leafidx);
3867	for (i = 0; i < LPERDMAP; i++)
3868		*cp++ = dbMaxBud((u8 *) & dp->wmap[i]);
3869
3870	/* build the dmap's binary buddy summary tree */
3871	return (dbInitTree(tp));
3872}
3873
3874
3875/*
3876 * NAME:	dbInitTree()/ujfs_adjtree()
3877 *
3878 * FUNCTION:	initialize binary buddy summary tree of a dmap or dmapctl.
3879 *
3880 *		at entry, the leaves of the tree has been initialized
3881 *		from corresponding bitmap word or root of summary tree
3882 *		of the child control page;
3883 *		configure binary buddy system at the leaf level, then
3884 *		bubble up the values of the leaf nodes up the tree.
3885 *
3886 * PARAMETERS:
3887 *	cp	- Pointer to the root of the tree
3888 *	l2leaves- Number of leaf nodes as a power of 2
3889 *	l2min	- Number of blocks that can be covered by a leaf
3890 *		  as a power of 2
3891 *
3892 * RETURNS: max free string at the root of the tree
3893 */
3894static int dbInitTree(struct dmaptree * dtp)
3895{
3896	int l2max, l2free, bsize, nextb, i;
3897	int child, parent, nparent;
3898	s8 *tp, *cp, *cp1;
3899
3900	tp = dtp->stree;
3901
3902	/* Determine the maximum free string possible for the leaves */
3903	l2max = le32_to_cpu(dtp->l2nleafs) + dtp->budmin;
3904
3905	/*
3906	 * configure the leaf levevl into binary buddy system
3907	 *
3908	 * Try to combine buddies starting with a buddy size of 1
3909	 * (i.e. two leaves). At a buddy size of 1 two buddy leaves
3910	 * can be combined if both buddies have a maximum free of l2min;
3911	 * the combination will result in the left-most buddy leaf having
3912	 * a maximum free of l2min+1.
3913	 * After processing all buddies for a given size, process buddies
3914	 * at the next higher buddy size (i.e. current size * 2) and
3915	 * the next maximum free (current free + 1).
3916	 * This continues until the maximum possible buddy combination
3917	 * yields maximum free.
3918	 */
3919	for (l2free = dtp->budmin, bsize = 1; l2free < l2max;
3920	     l2free++, bsize = nextb) {
3921		/* get next buddy size == current buddy pair size */
3922		nextb = bsize << 1;
3923
3924		/* scan each adjacent buddy pair at current buddy size */
3925		for (i = 0, cp = tp + le32_to_cpu(dtp->leafidx);
3926		     i < le32_to_cpu(dtp->nleafs);
3927		     i += nextb, cp += nextb) {
3928			/* coalesce if both adjacent buddies are max free */
3929			if (*cp == l2free && *(cp + bsize) == l2free) {
3930				*cp = l2free + 1;	/* left take right */
3931				*(cp + bsize) = -1;	/* right give left */
3932			}
3933		}
3934	}
3935
3936	/*
3937	 * bubble summary information of leaves up the tree.
3938	 *
3939	 * Starting at the leaf node level, the four nodes described by
3940	 * the higher level parent node are compared for a maximum free and
3941	 * this maximum becomes the value of the parent node.
3942	 * when all lower level nodes are processed in this fashion then
3943	 * move up to the next level (parent becomes a lower level node) and
3944	 * continue the process for that level.
3945	 */
3946	for (child = le32_to_cpu(dtp->leafidx),
3947	     nparent = le32_to_cpu(dtp->nleafs) >> 2;
3948	     nparent > 0; nparent >>= 2, child = parent) {
3949		/* get index of 1st node of parent level */
3950		parent = (child - 1) >> 2;
3951
3952		/* set the value of the parent node as the maximum
3953		 * of the four nodes of the current level.
3954		 */
3955		for (i = 0, cp = tp + child, cp1 = tp + parent;
3956		     i < nparent; i++, cp += 4, cp1++)
3957			*cp1 = TREEMAX(cp);
3958	}
3959
3960	return (*tp);
3961}
3962
3963
3964/*
3965 *	dbInitDmapCtl()
3966 *
3967 * function: initialize dmapctl page
3968 */
3969static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i)
3970{				/* start leaf index not covered by range */
3971	s8 *cp;
3972
3973	dcp->nleafs = cpu_to_le32(LPERCTL);
3974	dcp->l2nleafs = cpu_to_le32(L2LPERCTL);
3975	dcp->leafidx = cpu_to_le32(CTLLEAFIND);
3976	dcp->height = cpu_to_le32(5);
3977	dcp->budmin = L2BPERDMAP + L2LPERCTL * level;
3978
3979	/*
3980	 * initialize the leaves of current level that were not covered
3981	 * by the specified input block range (i.e. the leaves have no
3982	 * low level dmapctl or dmap).
3983	 */
3984	cp = &dcp->stree[CTLLEAFIND + i];
3985	for (; i < LPERCTL; i++)
3986		*cp++ = NOFREE;
3987
3988	/* build the dmap's binary buddy summary tree */
3989	return (dbInitTree((struct dmaptree *) dcp));
3990}
3991
3992
3993/*
3994 * NAME:	dbGetL2AGSize()/ujfs_getagl2size()
3995 *
3996 * FUNCTION:	Determine log2(allocation group size) from aggregate size
3997 *
3998 * PARAMETERS:
3999 *	nblocks	- Number of blocks in aggregate
4000 *
4001 * RETURNS: log2(allocation group size) in aggregate blocks
4002 */
4003static int dbGetL2AGSize(s64 nblocks)
4004{
4005	s64 sz;
4006	s64 m;
4007	int l2sz;
4008
4009	if (nblocks < BPERDMAP * MAXAG)
4010		return (L2BPERDMAP);
4011
4012	/* round up aggregate size to power of 2 */
4013	m = ((u64) 1 << (64 - 1));
4014	for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
4015		if (m & nblocks)
4016			break;
4017	}
4018
4019	sz = (s64) 1 << l2sz;
4020	if (sz < nblocks)
4021		l2sz += 1;
4022
4023	/* agsize = roundupSize/max_number_of_ag */
4024	return (l2sz - L2MAXAG);
4025}
4026
4027
4028/*
4029 * NAME:	dbMapFileSizeToMapSize()
4030 *
4031 * FUNCTION:	compute number of blocks the block allocation map file
4032 *		can cover from the map file size;
4033 *
4034 * RETURNS:	Number of blocks which can be covered by this block map file;
4035 */
4036
4037/*
4038 * maximum number of map pages at each level including control pages
4039 */
4040#define MAXL0PAGES	(1 + LPERCTL)
4041#define MAXL1PAGES	(1 + LPERCTL * MAXL0PAGES)
4042#define MAXL2PAGES	(1 + LPERCTL * MAXL1PAGES)
4043
4044/*
4045 * convert number of map pages to the zero origin top dmapctl level
4046 */
4047#define BMAPPGTOLEV(npages)	\
4048	(((npages) <= 3 + MAXL0PAGES) ? 0 : \
4049	 ((npages) <= 2 + MAXL1PAGES) ? 1 : 2)
4050
4051s64 dbMapFileSizeToMapSize(struct inode * ipbmap)
4052{
4053	struct super_block *sb = ipbmap->i_sb;
4054	s64 nblocks;
4055	s64 npages, ndmaps;
4056	int level, i;
4057	int complete, factor;
4058
4059	nblocks = ipbmap->i_size >> JFS_SBI(sb)->l2bsize;
4060	npages = nblocks >> JFS_SBI(sb)->l2nbperpage;
4061	level = BMAPPGTOLEV(npages);
4062
4063	/* At each level, accumulate the number of dmap pages covered by
4064	 * the number of full child levels below it;
4065	 * repeat for the last incomplete child level.
4066	 */
4067	ndmaps = 0;
4068	npages--;		/* skip the first global control page */
4069	/* skip higher level control pages above top level covered by map */
4070	npages -= (2 - level);
4071	npages--;		/* skip top level's control page */
4072	for (i = level; i >= 0; i--) {
4073		factor =
4074		    (i == 2) ? MAXL1PAGES : ((i == 1) ? MAXL0PAGES : 1);
4075		complete = (u32) npages / factor;
4076		ndmaps += complete * ((i == 2) ? LPERCTL * LPERCTL :
4077				      ((i == 1) ? LPERCTL : 1));
4078
4079		/* pages in last/incomplete child */
4080		npages = (u32) npages % factor;
4081		/* skip incomplete child's level control page */
4082		npages--;
4083	}
4084
4085	/* convert the number of dmaps into the number of blocks
4086	 * which can be covered by the dmaps;
4087	 */
4088	nblocks = ndmaps << L2BPERDMAP;
4089
4090	return (nblocks);
4091}