Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6#include <linux/export.h>
7#include <linux/fs.h>
8#include <linux/mm.h>
9#include <linux/backing-dev.h>
10#include <linux/hash.h>
11#include <linux/swap.h>
12#include <linux/security.h>
13#include <linux/cdev.h>
14#include <linux/memblock.h>
15#include <linux/fsnotify.h>
16#include <linux/mount.h>
17#include <linux/posix_acl.h>
18#include <linux/prefetch.h>
19#include <linux/buffer_head.h> /* for inode_has_buffers */
20#include <linux/ratelimit.h>
21#include <linux/list_lru.h>
22#include <linux/iversion.h>
23#include <trace/events/writeback.h>
24#include "internal.h"
25
26/*
27 * Inode locking rules:
28 *
29 * inode->i_lock protects:
30 * inode->i_state, inode->i_hash, __iget()
31 * Inode LRU list locks protect:
32 * inode->i_sb->s_inode_lru, inode->i_lru
33 * inode->i_sb->s_inode_list_lock protects:
34 * inode->i_sb->s_inodes, inode->i_sb_list
35 * bdi->wb.list_lock protects:
36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37 * inode_hash_lock protects:
38 * inode_hashtable, inode->i_hash
39 *
40 * Lock ordering:
41 *
42 * inode->i_sb->s_inode_list_lock
43 * inode->i_lock
44 * Inode LRU list locks
45 *
46 * bdi->wb.list_lock
47 * inode->i_lock
48 *
49 * inode_hash_lock
50 * inode->i_sb->s_inode_list_lock
51 * inode->i_lock
52 *
53 * iunique_lock
54 * inode_hash_lock
55 */
56
57static unsigned int i_hash_mask __read_mostly;
58static unsigned int i_hash_shift __read_mostly;
59static struct hlist_head *inode_hashtable __read_mostly;
60static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61
62/*
63 * Empty aops. Can be used for the cases where the user does not
64 * define any of the address_space operations.
65 */
66const struct address_space_operations empty_aops = {
67};
68EXPORT_SYMBOL(empty_aops);
69
70/*
71 * Statistics gathering..
72 */
73struct inodes_stat_t inodes_stat;
74
75static DEFINE_PER_CPU(unsigned long, nr_inodes);
76static DEFINE_PER_CPU(unsigned long, nr_unused);
77
78static struct kmem_cache *inode_cachep __read_mostly;
79
80static long get_nr_inodes(void)
81{
82 int i;
83 long sum = 0;
84 for_each_possible_cpu(i)
85 sum += per_cpu(nr_inodes, i);
86 return sum < 0 ? 0 : sum;
87}
88
89static inline long get_nr_inodes_unused(void)
90{
91 int i;
92 long sum = 0;
93 for_each_possible_cpu(i)
94 sum += per_cpu(nr_unused, i);
95 return sum < 0 ? 0 : sum;
96}
97
98long get_nr_dirty_inodes(void)
99{
100 /* not actually dirty inodes, but a wild approximation */
101 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 return nr_dirty > 0 ? nr_dirty : 0;
103}
104
105/*
106 * Handle nr_inode sysctl
107 */
108#ifdef CONFIG_SYSCTL
109int proc_nr_inodes(struct ctl_table *table, int write,
110 void __user *buffer, size_t *lenp, loff_t *ppos)
111{
112 inodes_stat.nr_inodes = get_nr_inodes();
113 inodes_stat.nr_unused = get_nr_inodes_unused();
114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115}
116#endif
117
118static int no_open(struct inode *inode, struct file *file)
119{
120 return -ENXIO;
121}
122
123/**
124 * inode_init_always - perform inode structure initialisation
125 * @sb: superblock inode belongs to
126 * @inode: inode to initialise
127 *
128 * These are initializations that need to be done on every inode
129 * allocation as the fields are not initialised by slab allocation.
130 */
131int inode_init_always(struct super_block *sb, struct inode *inode)
132{
133 static const struct inode_operations empty_iops;
134 static const struct file_operations no_open_fops = {.open = no_open};
135 struct address_space *const mapping = &inode->i_data;
136
137 inode->i_sb = sb;
138 inode->i_blkbits = sb->s_blocksize_bits;
139 inode->i_flags = 0;
140 atomic_set(&inode->i_count, 1);
141 inode->i_op = &empty_iops;
142 inode->i_fop = &no_open_fops;
143 inode->__i_nlink = 1;
144 inode->i_opflags = 0;
145 if (sb->s_xattr)
146 inode->i_opflags |= IOP_XATTR;
147 i_uid_write(inode, 0);
148 i_gid_write(inode, 0);
149 atomic_set(&inode->i_writecount, 0);
150 inode->i_size = 0;
151 inode->i_write_hint = WRITE_LIFE_NOT_SET;
152 inode->i_blocks = 0;
153 inode->i_bytes = 0;
154 inode->i_generation = 0;
155 inode->i_pipe = NULL;
156 inode->i_bdev = NULL;
157 inode->i_cdev = NULL;
158 inode->i_link = NULL;
159 inode->i_dir_seq = 0;
160 inode->i_rdev = 0;
161 inode->dirtied_when = 0;
162
163#ifdef CONFIG_CGROUP_WRITEBACK
164 inode->i_wb_frn_winner = 0;
165 inode->i_wb_frn_avg_time = 0;
166 inode->i_wb_frn_history = 0;
167#endif
168
169 if (security_inode_alloc(inode))
170 goto out;
171 spin_lock_init(&inode->i_lock);
172 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
173
174 init_rwsem(&inode->i_rwsem);
175 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
176
177 atomic_set(&inode->i_dio_count, 0);
178
179 mapping->a_ops = &empty_aops;
180 mapping->host = inode;
181 mapping->flags = 0;
182 mapping->wb_err = 0;
183 atomic_set(&mapping->i_mmap_writable, 0);
184#ifdef CONFIG_READ_ONLY_THP_FOR_FS
185 atomic_set(&mapping->nr_thps, 0);
186#endif
187 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
188 mapping->private_data = NULL;
189 mapping->writeback_index = 0;
190 inode->i_private = NULL;
191 inode->i_mapping = mapping;
192 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
193#ifdef CONFIG_FS_POSIX_ACL
194 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
195#endif
196
197#ifdef CONFIG_FSNOTIFY
198 inode->i_fsnotify_mask = 0;
199#endif
200 inode->i_flctx = NULL;
201 this_cpu_inc(nr_inodes);
202
203 return 0;
204out:
205 return -ENOMEM;
206}
207EXPORT_SYMBOL(inode_init_always);
208
209void free_inode_nonrcu(struct inode *inode)
210{
211 kmem_cache_free(inode_cachep, inode);
212}
213EXPORT_SYMBOL(free_inode_nonrcu);
214
215static void i_callback(struct rcu_head *head)
216{
217 struct inode *inode = container_of(head, struct inode, i_rcu);
218 if (inode->free_inode)
219 inode->free_inode(inode);
220 else
221 free_inode_nonrcu(inode);
222}
223
224static struct inode *alloc_inode(struct super_block *sb)
225{
226 const struct super_operations *ops = sb->s_op;
227 struct inode *inode;
228
229 if (ops->alloc_inode)
230 inode = ops->alloc_inode(sb);
231 else
232 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
233
234 if (!inode)
235 return NULL;
236
237 if (unlikely(inode_init_always(sb, inode))) {
238 if (ops->destroy_inode) {
239 ops->destroy_inode(inode);
240 if (!ops->free_inode)
241 return NULL;
242 }
243 inode->free_inode = ops->free_inode;
244 i_callback(&inode->i_rcu);
245 return NULL;
246 }
247
248 return inode;
249}
250
251void __destroy_inode(struct inode *inode)
252{
253 BUG_ON(inode_has_buffers(inode));
254 inode_detach_wb(inode);
255 security_inode_free(inode);
256 fsnotify_inode_delete(inode);
257 locks_free_lock_context(inode);
258 if (!inode->i_nlink) {
259 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
260 atomic_long_dec(&inode->i_sb->s_remove_count);
261 }
262
263#ifdef CONFIG_FS_POSIX_ACL
264 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
265 posix_acl_release(inode->i_acl);
266 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
267 posix_acl_release(inode->i_default_acl);
268#endif
269 this_cpu_dec(nr_inodes);
270}
271EXPORT_SYMBOL(__destroy_inode);
272
273static void destroy_inode(struct inode *inode)
274{
275 const struct super_operations *ops = inode->i_sb->s_op;
276
277 BUG_ON(!list_empty(&inode->i_lru));
278 __destroy_inode(inode);
279 if (ops->destroy_inode) {
280 ops->destroy_inode(inode);
281 if (!ops->free_inode)
282 return;
283 }
284 inode->free_inode = ops->free_inode;
285 call_rcu(&inode->i_rcu, i_callback);
286}
287
288/**
289 * drop_nlink - directly drop an inode's link count
290 * @inode: inode
291 *
292 * This is a low-level filesystem helper to replace any
293 * direct filesystem manipulation of i_nlink. In cases
294 * where we are attempting to track writes to the
295 * filesystem, a decrement to zero means an imminent
296 * write when the file is truncated and actually unlinked
297 * on the filesystem.
298 */
299void drop_nlink(struct inode *inode)
300{
301 WARN_ON(inode->i_nlink == 0);
302 inode->__i_nlink--;
303 if (!inode->i_nlink)
304 atomic_long_inc(&inode->i_sb->s_remove_count);
305}
306EXPORT_SYMBOL(drop_nlink);
307
308/**
309 * clear_nlink - directly zero an inode's link count
310 * @inode: inode
311 *
312 * This is a low-level filesystem helper to replace any
313 * direct filesystem manipulation of i_nlink. See
314 * drop_nlink() for why we care about i_nlink hitting zero.
315 */
316void clear_nlink(struct inode *inode)
317{
318 if (inode->i_nlink) {
319 inode->__i_nlink = 0;
320 atomic_long_inc(&inode->i_sb->s_remove_count);
321 }
322}
323EXPORT_SYMBOL(clear_nlink);
324
325/**
326 * set_nlink - directly set an inode's link count
327 * @inode: inode
328 * @nlink: new nlink (should be non-zero)
329 *
330 * This is a low-level filesystem helper to replace any
331 * direct filesystem manipulation of i_nlink.
332 */
333void set_nlink(struct inode *inode, unsigned int nlink)
334{
335 if (!nlink) {
336 clear_nlink(inode);
337 } else {
338 /* Yes, some filesystems do change nlink from zero to one */
339 if (inode->i_nlink == 0)
340 atomic_long_dec(&inode->i_sb->s_remove_count);
341
342 inode->__i_nlink = nlink;
343 }
344}
345EXPORT_SYMBOL(set_nlink);
346
347/**
348 * inc_nlink - directly increment an inode's link count
349 * @inode: inode
350 *
351 * This is a low-level filesystem helper to replace any
352 * direct filesystem manipulation of i_nlink. Currently,
353 * it is only here for parity with dec_nlink().
354 */
355void inc_nlink(struct inode *inode)
356{
357 if (unlikely(inode->i_nlink == 0)) {
358 WARN_ON(!(inode->i_state & I_LINKABLE));
359 atomic_long_dec(&inode->i_sb->s_remove_count);
360 }
361
362 inode->__i_nlink++;
363}
364EXPORT_SYMBOL(inc_nlink);
365
366static void __address_space_init_once(struct address_space *mapping)
367{
368 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
369 init_rwsem(&mapping->i_mmap_rwsem);
370 INIT_LIST_HEAD(&mapping->private_list);
371 spin_lock_init(&mapping->private_lock);
372 mapping->i_mmap = RB_ROOT_CACHED;
373}
374
375void address_space_init_once(struct address_space *mapping)
376{
377 memset(mapping, 0, sizeof(*mapping));
378 __address_space_init_once(mapping);
379}
380EXPORT_SYMBOL(address_space_init_once);
381
382/*
383 * These are initializations that only need to be done
384 * once, because the fields are idempotent across use
385 * of the inode, so let the slab aware of that.
386 */
387void inode_init_once(struct inode *inode)
388{
389 memset(inode, 0, sizeof(*inode));
390 INIT_HLIST_NODE(&inode->i_hash);
391 INIT_LIST_HEAD(&inode->i_devices);
392 INIT_LIST_HEAD(&inode->i_io_list);
393 INIT_LIST_HEAD(&inode->i_wb_list);
394 INIT_LIST_HEAD(&inode->i_lru);
395 __address_space_init_once(&inode->i_data);
396 i_size_ordered_init(inode);
397}
398EXPORT_SYMBOL(inode_init_once);
399
400static void init_once(void *foo)
401{
402 struct inode *inode = (struct inode *) foo;
403
404 inode_init_once(inode);
405}
406
407/*
408 * inode->i_lock must be held
409 */
410void __iget(struct inode *inode)
411{
412 atomic_inc(&inode->i_count);
413}
414
415/*
416 * get additional reference to inode; caller must already hold one.
417 */
418void ihold(struct inode *inode)
419{
420 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
421}
422EXPORT_SYMBOL(ihold);
423
424static void inode_lru_list_add(struct inode *inode)
425{
426 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
427 this_cpu_inc(nr_unused);
428 else
429 inode->i_state |= I_REFERENCED;
430}
431
432/*
433 * Add inode to LRU if needed (inode is unused and clean).
434 *
435 * Needs inode->i_lock held.
436 */
437void inode_add_lru(struct inode *inode)
438{
439 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
440 I_FREEING | I_WILL_FREE)) &&
441 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
442 inode_lru_list_add(inode);
443}
444
445
446static void inode_lru_list_del(struct inode *inode)
447{
448
449 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
450 this_cpu_dec(nr_unused);
451}
452
453/**
454 * inode_sb_list_add - add inode to the superblock list of inodes
455 * @inode: inode to add
456 */
457void inode_sb_list_add(struct inode *inode)
458{
459 spin_lock(&inode->i_sb->s_inode_list_lock);
460 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
461 spin_unlock(&inode->i_sb->s_inode_list_lock);
462}
463EXPORT_SYMBOL_GPL(inode_sb_list_add);
464
465static inline void inode_sb_list_del(struct inode *inode)
466{
467 if (!list_empty(&inode->i_sb_list)) {
468 spin_lock(&inode->i_sb->s_inode_list_lock);
469 list_del_init(&inode->i_sb_list);
470 spin_unlock(&inode->i_sb->s_inode_list_lock);
471 }
472}
473
474static unsigned long hash(struct super_block *sb, unsigned long hashval)
475{
476 unsigned long tmp;
477
478 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
479 L1_CACHE_BYTES;
480 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
481 return tmp & i_hash_mask;
482}
483
484/**
485 * __insert_inode_hash - hash an inode
486 * @inode: unhashed inode
487 * @hashval: unsigned long value used to locate this object in the
488 * inode_hashtable.
489 *
490 * Add an inode to the inode hash for this superblock.
491 */
492void __insert_inode_hash(struct inode *inode, unsigned long hashval)
493{
494 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
495
496 spin_lock(&inode_hash_lock);
497 spin_lock(&inode->i_lock);
498 hlist_add_head(&inode->i_hash, b);
499 spin_unlock(&inode->i_lock);
500 spin_unlock(&inode_hash_lock);
501}
502EXPORT_SYMBOL(__insert_inode_hash);
503
504/**
505 * __remove_inode_hash - remove an inode from the hash
506 * @inode: inode to unhash
507 *
508 * Remove an inode from the superblock.
509 */
510void __remove_inode_hash(struct inode *inode)
511{
512 spin_lock(&inode_hash_lock);
513 spin_lock(&inode->i_lock);
514 hlist_del_init(&inode->i_hash);
515 spin_unlock(&inode->i_lock);
516 spin_unlock(&inode_hash_lock);
517}
518EXPORT_SYMBOL(__remove_inode_hash);
519
520void clear_inode(struct inode *inode)
521{
522 /*
523 * We have to cycle the i_pages lock here because reclaim can be in the
524 * process of removing the last page (in __delete_from_page_cache())
525 * and we must not free the mapping under it.
526 */
527 xa_lock_irq(&inode->i_data.i_pages);
528 BUG_ON(inode->i_data.nrpages);
529 BUG_ON(inode->i_data.nrexceptional);
530 xa_unlock_irq(&inode->i_data.i_pages);
531 BUG_ON(!list_empty(&inode->i_data.private_list));
532 BUG_ON(!(inode->i_state & I_FREEING));
533 BUG_ON(inode->i_state & I_CLEAR);
534 BUG_ON(!list_empty(&inode->i_wb_list));
535 /* don't need i_lock here, no concurrent mods to i_state */
536 inode->i_state = I_FREEING | I_CLEAR;
537}
538EXPORT_SYMBOL(clear_inode);
539
540/*
541 * Free the inode passed in, removing it from the lists it is still connected
542 * to. We remove any pages still attached to the inode and wait for any IO that
543 * is still in progress before finally destroying the inode.
544 *
545 * An inode must already be marked I_FREEING so that we avoid the inode being
546 * moved back onto lists if we race with other code that manipulates the lists
547 * (e.g. writeback_single_inode). The caller is responsible for setting this.
548 *
549 * An inode must already be removed from the LRU list before being evicted from
550 * the cache. This should occur atomically with setting the I_FREEING state
551 * flag, so no inodes here should ever be on the LRU when being evicted.
552 */
553static void evict(struct inode *inode)
554{
555 const struct super_operations *op = inode->i_sb->s_op;
556
557 BUG_ON(!(inode->i_state & I_FREEING));
558 BUG_ON(!list_empty(&inode->i_lru));
559
560 if (!list_empty(&inode->i_io_list))
561 inode_io_list_del(inode);
562
563 inode_sb_list_del(inode);
564
565 /*
566 * Wait for flusher thread to be done with the inode so that filesystem
567 * does not start destroying it while writeback is still running. Since
568 * the inode has I_FREEING set, flusher thread won't start new work on
569 * the inode. We just have to wait for running writeback to finish.
570 */
571 inode_wait_for_writeback(inode);
572
573 if (op->evict_inode) {
574 op->evict_inode(inode);
575 } else {
576 truncate_inode_pages_final(&inode->i_data);
577 clear_inode(inode);
578 }
579 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
580 bd_forget(inode);
581 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
582 cd_forget(inode);
583
584 remove_inode_hash(inode);
585
586 spin_lock(&inode->i_lock);
587 wake_up_bit(&inode->i_state, __I_NEW);
588 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
589 spin_unlock(&inode->i_lock);
590
591 destroy_inode(inode);
592}
593
594/*
595 * dispose_list - dispose of the contents of a local list
596 * @head: the head of the list to free
597 *
598 * Dispose-list gets a local list with local inodes in it, so it doesn't
599 * need to worry about list corruption and SMP locks.
600 */
601static void dispose_list(struct list_head *head)
602{
603 while (!list_empty(head)) {
604 struct inode *inode;
605
606 inode = list_first_entry(head, struct inode, i_lru);
607 list_del_init(&inode->i_lru);
608
609 evict(inode);
610 cond_resched();
611 }
612}
613
614/**
615 * evict_inodes - evict all evictable inodes for a superblock
616 * @sb: superblock to operate on
617 *
618 * Make sure that no inodes with zero refcount are retained. This is
619 * called by superblock shutdown after having SB_ACTIVE flag removed,
620 * so any inode reaching zero refcount during or after that call will
621 * be immediately evicted.
622 */
623void evict_inodes(struct super_block *sb)
624{
625 struct inode *inode, *next;
626 LIST_HEAD(dispose);
627
628again:
629 spin_lock(&sb->s_inode_list_lock);
630 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
631 if (atomic_read(&inode->i_count))
632 continue;
633
634 spin_lock(&inode->i_lock);
635 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
636 spin_unlock(&inode->i_lock);
637 continue;
638 }
639
640 inode->i_state |= I_FREEING;
641 inode_lru_list_del(inode);
642 spin_unlock(&inode->i_lock);
643 list_add(&inode->i_lru, &dispose);
644
645 /*
646 * We can have a ton of inodes to evict at unmount time given
647 * enough memory, check to see if we need to go to sleep for a
648 * bit so we don't livelock.
649 */
650 if (need_resched()) {
651 spin_unlock(&sb->s_inode_list_lock);
652 cond_resched();
653 dispose_list(&dispose);
654 goto again;
655 }
656 }
657 spin_unlock(&sb->s_inode_list_lock);
658
659 dispose_list(&dispose);
660}
661EXPORT_SYMBOL_GPL(evict_inodes);
662
663/**
664 * invalidate_inodes - attempt to free all inodes on a superblock
665 * @sb: superblock to operate on
666 * @kill_dirty: flag to guide handling of dirty inodes
667 *
668 * Attempts to free all inodes for a given superblock. If there were any
669 * busy inodes return a non-zero value, else zero.
670 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
671 * them as busy.
672 */
673int invalidate_inodes(struct super_block *sb, bool kill_dirty)
674{
675 int busy = 0;
676 struct inode *inode, *next;
677 LIST_HEAD(dispose);
678
679 spin_lock(&sb->s_inode_list_lock);
680 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
681 spin_lock(&inode->i_lock);
682 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
683 spin_unlock(&inode->i_lock);
684 continue;
685 }
686 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
687 spin_unlock(&inode->i_lock);
688 busy = 1;
689 continue;
690 }
691 if (atomic_read(&inode->i_count)) {
692 spin_unlock(&inode->i_lock);
693 busy = 1;
694 continue;
695 }
696
697 inode->i_state |= I_FREEING;
698 inode_lru_list_del(inode);
699 spin_unlock(&inode->i_lock);
700 list_add(&inode->i_lru, &dispose);
701 }
702 spin_unlock(&sb->s_inode_list_lock);
703
704 dispose_list(&dispose);
705
706 return busy;
707}
708
709/*
710 * Isolate the inode from the LRU in preparation for freeing it.
711 *
712 * Any inodes which are pinned purely because of attached pagecache have their
713 * pagecache removed. If the inode has metadata buffers attached to
714 * mapping->private_list then try to remove them.
715 *
716 * If the inode has the I_REFERENCED flag set, then it means that it has been
717 * used recently - the flag is set in iput_final(). When we encounter such an
718 * inode, clear the flag and move it to the back of the LRU so it gets another
719 * pass through the LRU before it gets reclaimed. This is necessary because of
720 * the fact we are doing lazy LRU updates to minimise lock contention so the
721 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
722 * with this flag set because they are the inodes that are out of order.
723 */
724static enum lru_status inode_lru_isolate(struct list_head *item,
725 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
726{
727 struct list_head *freeable = arg;
728 struct inode *inode = container_of(item, struct inode, i_lru);
729
730 /*
731 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
732 * If we fail to get the lock, just skip it.
733 */
734 if (!spin_trylock(&inode->i_lock))
735 return LRU_SKIP;
736
737 /*
738 * Referenced or dirty inodes are still in use. Give them another pass
739 * through the LRU as we canot reclaim them now.
740 */
741 if (atomic_read(&inode->i_count) ||
742 (inode->i_state & ~I_REFERENCED)) {
743 list_lru_isolate(lru, &inode->i_lru);
744 spin_unlock(&inode->i_lock);
745 this_cpu_dec(nr_unused);
746 return LRU_REMOVED;
747 }
748
749 /* recently referenced inodes get one more pass */
750 if (inode->i_state & I_REFERENCED) {
751 inode->i_state &= ~I_REFERENCED;
752 spin_unlock(&inode->i_lock);
753 return LRU_ROTATE;
754 }
755
756 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
757 __iget(inode);
758 spin_unlock(&inode->i_lock);
759 spin_unlock(lru_lock);
760 if (remove_inode_buffers(inode)) {
761 unsigned long reap;
762 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
763 if (current_is_kswapd())
764 __count_vm_events(KSWAPD_INODESTEAL, reap);
765 else
766 __count_vm_events(PGINODESTEAL, reap);
767 if (current->reclaim_state)
768 current->reclaim_state->reclaimed_slab += reap;
769 }
770 iput(inode);
771 spin_lock(lru_lock);
772 return LRU_RETRY;
773 }
774
775 WARN_ON(inode->i_state & I_NEW);
776 inode->i_state |= I_FREEING;
777 list_lru_isolate_move(lru, &inode->i_lru, freeable);
778 spin_unlock(&inode->i_lock);
779
780 this_cpu_dec(nr_unused);
781 return LRU_REMOVED;
782}
783
784/*
785 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
786 * This is called from the superblock shrinker function with a number of inodes
787 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
788 * then are freed outside inode_lock by dispose_list().
789 */
790long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
791{
792 LIST_HEAD(freeable);
793 long freed;
794
795 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
796 inode_lru_isolate, &freeable);
797 dispose_list(&freeable);
798 return freed;
799}
800
801static void __wait_on_freeing_inode(struct inode *inode);
802/*
803 * Called with the inode lock held.
804 */
805static struct inode *find_inode(struct super_block *sb,
806 struct hlist_head *head,
807 int (*test)(struct inode *, void *),
808 void *data)
809{
810 struct inode *inode = NULL;
811
812repeat:
813 hlist_for_each_entry(inode, head, i_hash) {
814 if (inode->i_sb != sb)
815 continue;
816 if (!test(inode, data))
817 continue;
818 spin_lock(&inode->i_lock);
819 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
820 __wait_on_freeing_inode(inode);
821 goto repeat;
822 }
823 if (unlikely(inode->i_state & I_CREATING)) {
824 spin_unlock(&inode->i_lock);
825 return ERR_PTR(-ESTALE);
826 }
827 __iget(inode);
828 spin_unlock(&inode->i_lock);
829 return inode;
830 }
831 return NULL;
832}
833
834/*
835 * find_inode_fast is the fast path version of find_inode, see the comment at
836 * iget_locked for details.
837 */
838static struct inode *find_inode_fast(struct super_block *sb,
839 struct hlist_head *head, unsigned long ino)
840{
841 struct inode *inode = NULL;
842
843repeat:
844 hlist_for_each_entry(inode, head, i_hash) {
845 if (inode->i_ino != ino)
846 continue;
847 if (inode->i_sb != sb)
848 continue;
849 spin_lock(&inode->i_lock);
850 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
851 __wait_on_freeing_inode(inode);
852 goto repeat;
853 }
854 if (unlikely(inode->i_state & I_CREATING)) {
855 spin_unlock(&inode->i_lock);
856 return ERR_PTR(-ESTALE);
857 }
858 __iget(inode);
859 spin_unlock(&inode->i_lock);
860 return inode;
861 }
862 return NULL;
863}
864
865/*
866 * Each cpu owns a range of LAST_INO_BATCH numbers.
867 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
868 * to renew the exhausted range.
869 *
870 * This does not significantly increase overflow rate because every CPU can
871 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
872 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
873 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
874 * overflow rate by 2x, which does not seem too significant.
875 *
876 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
877 * error if st_ino won't fit in target struct field. Use 32bit counter
878 * here to attempt to avoid that.
879 */
880#define LAST_INO_BATCH 1024
881static DEFINE_PER_CPU(unsigned int, last_ino);
882
883unsigned int get_next_ino(void)
884{
885 unsigned int *p = &get_cpu_var(last_ino);
886 unsigned int res = *p;
887
888#ifdef CONFIG_SMP
889 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
890 static atomic_t shared_last_ino;
891 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
892
893 res = next - LAST_INO_BATCH;
894 }
895#endif
896
897 res++;
898 /* get_next_ino should not provide a 0 inode number */
899 if (unlikely(!res))
900 res++;
901 *p = res;
902 put_cpu_var(last_ino);
903 return res;
904}
905EXPORT_SYMBOL(get_next_ino);
906
907/**
908 * new_inode_pseudo - obtain an inode
909 * @sb: superblock
910 *
911 * Allocates a new inode for given superblock.
912 * Inode wont be chained in superblock s_inodes list
913 * This means :
914 * - fs can't be unmount
915 * - quotas, fsnotify, writeback can't work
916 */
917struct inode *new_inode_pseudo(struct super_block *sb)
918{
919 struct inode *inode = alloc_inode(sb);
920
921 if (inode) {
922 spin_lock(&inode->i_lock);
923 inode->i_state = 0;
924 spin_unlock(&inode->i_lock);
925 INIT_LIST_HEAD(&inode->i_sb_list);
926 }
927 return inode;
928}
929
930/**
931 * new_inode - obtain an inode
932 * @sb: superblock
933 *
934 * Allocates a new inode for given superblock. The default gfp_mask
935 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
936 * If HIGHMEM pages are unsuitable or it is known that pages allocated
937 * for the page cache are not reclaimable or migratable,
938 * mapping_set_gfp_mask() must be called with suitable flags on the
939 * newly created inode's mapping
940 *
941 */
942struct inode *new_inode(struct super_block *sb)
943{
944 struct inode *inode;
945
946 spin_lock_prefetch(&sb->s_inode_list_lock);
947
948 inode = new_inode_pseudo(sb);
949 if (inode)
950 inode_sb_list_add(inode);
951 return inode;
952}
953EXPORT_SYMBOL(new_inode);
954
955#ifdef CONFIG_DEBUG_LOCK_ALLOC
956void lockdep_annotate_inode_mutex_key(struct inode *inode)
957{
958 if (S_ISDIR(inode->i_mode)) {
959 struct file_system_type *type = inode->i_sb->s_type;
960
961 /* Set new key only if filesystem hasn't already changed it */
962 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
963 /*
964 * ensure nobody is actually holding i_mutex
965 */
966 // mutex_destroy(&inode->i_mutex);
967 init_rwsem(&inode->i_rwsem);
968 lockdep_set_class(&inode->i_rwsem,
969 &type->i_mutex_dir_key);
970 }
971 }
972}
973EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
974#endif
975
976/**
977 * unlock_new_inode - clear the I_NEW state and wake up any waiters
978 * @inode: new inode to unlock
979 *
980 * Called when the inode is fully initialised to clear the new state of the
981 * inode and wake up anyone waiting for the inode to finish initialisation.
982 */
983void unlock_new_inode(struct inode *inode)
984{
985 lockdep_annotate_inode_mutex_key(inode);
986 spin_lock(&inode->i_lock);
987 WARN_ON(!(inode->i_state & I_NEW));
988 inode->i_state &= ~I_NEW & ~I_CREATING;
989 smp_mb();
990 wake_up_bit(&inode->i_state, __I_NEW);
991 spin_unlock(&inode->i_lock);
992}
993EXPORT_SYMBOL(unlock_new_inode);
994
995void discard_new_inode(struct inode *inode)
996{
997 lockdep_annotate_inode_mutex_key(inode);
998 spin_lock(&inode->i_lock);
999 WARN_ON(!(inode->i_state & I_NEW));
1000 inode->i_state &= ~I_NEW;
1001 smp_mb();
1002 wake_up_bit(&inode->i_state, __I_NEW);
1003 spin_unlock(&inode->i_lock);
1004 iput(inode);
1005}
1006EXPORT_SYMBOL(discard_new_inode);
1007
1008/**
1009 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1010 *
1011 * Lock any non-NULL argument that is not a directory.
1012 * Zero, one or two objects may be locked by this function.
1013 *
1014 * @inode1: first inode to lock
1015 * @inode2: second inode to lock
1016 */
1017void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1018{
1019 if (inode1 > inode2)
1020 swap(inode1, inode2);
1021
1022 if (inode1 && !S_ISDIR(inode1->i_mode))
1023 inode_lock(inode1);
1024 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1025 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1026}
1027EXPORT_SYMBOL(lock_two_nondirectories);
1028
1029/**
1030 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1031 * @inode1: first inode to unlock
1032 * @inode2: second inode to unlock
1033 */
1034void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1035{
1036 if (inode1 && !S_ISDIR(inode1->i_mode))
1037 inode_unlock(inode1);
1038 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1039 inode_unlock(inode2);
1040}
1041EXPORT_SYMBOL(unlock_two_nondirectories);
1042
1043/**
1044 * inode_insert5 - obtain an inode from a mounted file system
1045 * @inode: pre-allocated inode to use for insert to cache
1046 * @hashval: hash value (usually inode number) to get
1047 * @test: callback used for comparisons between inodes
1048 * @set: callback used to initialize a new struct inode
1049 * @data: opaque data pointer to pass to @test and @set
1050 *
1051 * Search for the inode specified by @hashval and @data in the inode cache,
1052 * and if present it is return it with an increased reference count. This is
1053 * a variant of iget5_locked() for callers that don't want to fail on memory
1054 * allocation of inode.
1055 *
1056 * If the inode is not in cache, insert the pre-allocated inode to cache and
1057 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1058 * to fill it in before unlocking it via unlock_new_inode().
1059 *
1060 * Note both @test and @set are called with the inode_hash_lock held, so can't
1061 * sleep.
1062 */
1063struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1064 int (*test)(struct inode *, void *),
1065 int (*set)(struct inode *, void *), void *data)
1066{
1067 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1068 struct inode *old;
1069 bool creating = inode->i_state & I_CREATING;
1070
1071again:
1072 spin_lock(&inode_hash_lock);
1073 old = find_inode(inode->i_sb, head, test, data);
1074 if (unlikely(old)) {
1075 /*
1076 * Uhhuh, somebody else created the same inode under us.
1077 * Use the old inode instead of the preallocated one.
1078 */
1079 spin_unlock(&inode_hash_lock);
1080 if (IS_ERR(old))
1081 return NULL;
1082 wait_on_inode(old);
1083 if (unlikely(inode_unhashed(old))) {
1084 iput(old);
1085 goto again;
1086 }
1087 return old;
1088 }
1089
1090 if (set && unlikely(set(inode, data))) {
1091 inode = NULL;
1092 goto unlock;
1093 }
1094
1095 /*
1096 * Return the locked inode with I_NEW set, the
1097 * caller is responsible for filling in the contents
1098 */
1099 spin_lock(&inode->i_lock);
1100 inode->i_state |= I_NEW;
1101 hlist_add_head(&inode->i_hash, head);
1102 spin_unlock(&inode->i_lock);
1103 if (!creating)
1104 inode_sb_list_add(inode);
1105unlock:
1106 spin_unlock(&inode_hash_lock);
1107
1108 return inode;
1109}
1110EXPORT_SYMBOL(inode_insert5);
1111
1112/**
1113 * iget5_locked - obtain an inode from a mounted file system
1114 * @sb: super block of file system
1115 * @hashval: hash value (usually inode number) to get
1116 * @test: callback used for comparisons between inodes
1117 * @set: callback used to initialize a new struct inode
1118 * @data: opaque data pointer to pass to @test and @set
1119 *
1120 * Search for the inode specified by @hashval and @data in the inode cache,
1121 * and if present it is return it with an increased reference count. This is
1122 * a generalized version of iget_locked() for file systems where the inode
1123 * number is not sufficient for unique identification of an inode.
1124 *
1125 * If the inode is not in cache, allocate a new inode and return it locked,
1126 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1127 * before unlocking it via unlock_new_inode().
1128 *
1129 * Note both @test and @set are called with the inode_hash_lock held, so can't
1130 * sleep.
1131 */
1132struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1133 int (*test)(struct inode *, void *),
1134 int (*set)(struct inode *, void *), void *data)
1135{
1136 struct inode *inode = ilookup5(sb, hashval, test, data);
1137
1138 if (!inode) {
1139 struct inode *new = alloc_inode(sb);
1140
1141 if (new) {
1142 new->i_state = 0;
1143 inode = inode_insert5(new, hashval, test, set, data);
1144 if (unlikely(inode != new))
1145 destroy_inode(new);
1146 }
1147 }
1148 return inode;
1149}
1150EXPORT_SYMBOL(iget5_locked);
1151
1152/**
1153 * iget_locked - obtain an inode from a mounted file system
1154 * @sb: super block of file system
1155 * @ino: inode number to get
1156 *
1157 * Search for the inode specified by @ino in the inode cache and if present
1158 * return it with an increased reference count. This is for file systems
1159 * where the inode number is sufficient for unique identification of an inode.
1160 *
1161 * If the inode is not in cache, allocate a new inode and return it locked,
1162 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1163 * before unlocking it via unlock_new_inode().
1164 */
1165struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1166{
1167 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1168 struct inode *inode;
1169again:
1170 spin_lock(&inode_hash_lock);
1171 inode = find_inode_fast(sb, head, ino);
1172 spin_unlock(&inode_hash_lock);
1173 if (inode) {
1174 if (IS_ERR(inode))
1175 return NULL;
1176 wait_on_inode(inode);
1177 if (unlikely(inode_unhashed(inode))) {
1178 iput(inode);
1179 goto again;
1180 }
1181 return inode;
1182 }
1183
1184 inode = alloc_inode(sb);
1185 if (inode) {
1186 struct inode *old;
1187
1188 spin_lock(&inode_hash_lock);
1189 /* We released the lock, so.. */
1190 old = find_inode_fast(sb, head, ino);
1191 if (!old) {
1192 inode->i_ino = ino;
1193 spin_lock(&inode->i_lock);
1194 inode->i_state = I_NEW;
1195 hlist_add_head(&inode->i_hash, head);
1196 spin_unlock(&inode->i_lock);
1197 inode_sb_list_add(inode);
1198 spin_unlock(&inode_hash_lock);
1199
1200 /* Return the locked inode with I_NEW set, the
1201 * caller is responsible for filling in the contents
1202 */
1203 return inode;
1204 }
1205
1206 /*
1207 * Uhhuh, somebody else created the same inode under
1208 * us. Use the old inode instead of the one we just
1209 * allocated.
1210 */
1211 spin_unlock(&inode_hash_lock);
1212 destroy_inode(inode);
1213 if (IS_ERR(old))
1214 return NULL;
1215 inode = old;
1216 wait_on_inode(inode);
1217 if (unlikely(inode_unhashed(inode))) {
1218 iput(inode);
1219 goto again;
1220 }
1221 }
1222 return inode;
1223}
1224EXPORT_SYMBOL(iget_locked);
1225
1226/*
1227 * search the inode cache for a matching inode number.
1228 * If we find one, then the inode number we are trying to
1229 * allocate is not unique and so we should not use it.
1230 *
1231 * Returns 1 if the inode number is unique, 0 if it is not.
1232 */
1233static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1234{
1235 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1236 struct inode *inode;
1237
1238 spin_lock(&inode_hash_lock);
1239 hlist_for_each_entry(inode, b, i_hash) {
1240 if (inode->i_ino == ino && inode->i_sb == sb) {
1241 spin_unlock(&inode_hash_lock);
1242 return 0;
1243 }
1244 }
1245 spin_unlock(&inode_hash_lock);
1246
1247 return 1;
1248}
1249
1250/**
1251 * iunique - get a unique inode number
1252 * @sb: superblock
1253 * @max_reserved: highest reserved inode number
1254 *
1255 * Obtain an inode number that is unique on the system for a given
1256 * superblock. This is used by file systems that have no natural
1257 * permanent inode numbering system. An inode number is returned that
1258 * is higher than the reserved limit but unique.
1259 *
1260 * BUGS:
1261 * With a large number of inodes live on the file system this function
1262 * currently becomes quite slow.
1263 */
1264ino_t iunique(struct super_block *sb, ino_t max_reserved)
1265{
1266 /*
1267 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1268 * error if st_ino won't fit in target struct field. Use 32bit counter
1269 * here to attempt to avoid that.
1270 */
1271 static DEFINE_SPINLOCK(iunique_lock);
1272 static unsigned int counter;
1273 ino_t res;
1274
1275 spin_lock(&iunique_lock);
1276 do {
1277 if (counter <= max_reserved)
1278 counter = max_reserved + 1;
1279 res = counter++;
1280 } while (!test_inode_iunique(sb, res));
1281 spin_unlock(&iunique_lock);
1282
1283 return res;
1284}
1285EXPORT_SYMBOL(iunique);
1286
1287struct inode *igrab(struct inode *inode)
1288{
1289 spin_lock(&inode->i_lock);
1290 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1291 __iget(inode);
1292 spin_unlock(&inode->i_lock);
1293 } else {
1294 spin_unlock(&inode->i_lock);
1295 /*
1296 * Handle the case where s_op->clear_inode is not been
1297 * called yet, and somebody is calling igrab
1298 * while the inode is getting freed.
1299 */
1300 inode = NULL;
1301 }
1302 return inode;
1303}
1304EXPORT_SYMBOL(igrab);
1305
1306/**
1307 * ilookup5_nowait - search for an inode in the inode cache
1308 * @sb: super block of file system to search
1309 * @hashval: hash value (usually inode number) to search for
1310 * @test: callback used for comparisons between inodes
1311 * @data: opaque data pointer to pass to @test
1312 *
1313 * Search for the inode specified by @hashval and @data in the inode cache.
1314 * If the inode is in the cache, the inode is returned with an incremented
1315 * reference count.
1316 *
1317 * Note: I_NEW is not waited upon so you have to be very careful what you do
1318 * with the returned inode. You probably should be using ilookup5() instead.
1319 *
1320 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1321 */
1322struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1323 int (*test)(struct inode *, void *), void *data)
1324{
1325 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1326 struct inode *inode;
1327
1328 spin_lock(&inode_hash_lock);
1329 inode = find_inode(sb, head, test, data);
1330 spin_unlock(&inode_hash_lock);
1331
1332 return IS_ERR(inode) ? NULL : inode;
1333}
1334EXPORT_SYMBOL(ilookup5_nowait);
1335
1336/**
1337 * ilookup5 - search for an inode in the inode cache
1338 * @sb: super block of file system to search
1339 * @hashval: hash value (usually inode number) to search for
1340 * @test: callback used for comparisons between inodes
1341 * @data: opaque data pointer to pass to @test
1342 *
1343 * Search for the inode specified by @hashval and @data in the inode cache,
1344 * and if the inode is in the cache, return the inode with an incremented
1345 * reference count. Waits on I_NEW before returning the inode.
1346 * returned with an incremented reference count.
1347 *
1348 * This is a generalized version of ilookup() for file systems where the
1349 * inode number is not sufficient for unique identification of an inode.
1350 *
1351 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1352 */
1353struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1354 int (*test)(struct inode *, void *), void *data)
1355{
1356 struct inode *inode;
1357again:
1358 inode = ilookup5_nowait(sb, hashval, test, data);
1359 if (inode) {
1360 wait_on_inode(inode);
1361 if (unlikely(inode_unhashed(inode))) {
1362 iput(inode);
1363 goto again;
1364 }
1365 }
1366 return inode;
1367}
1368EXPORT_SYMBOL(ilookup5);
1369
1370/**
1371 * ilookup - search for an inode in the inode cache
1372 * @sb: super block of file system to search
1373 * @ino: inode number to search for
1374 *
1375 * Search for the inode @ino in the inode cache, and if the inode is in the
1376 * cache, the inode is returned with an incremented reference count.
1377 */
1378struct inode *ilookup(struct super_block *sb, unsigned long ino)
1379{
1380 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1381 struct inode *inode;
1382again:
1383 spin_lock(&inode_hash_lock);
1384 inode = find_inode_fast(sb, head, ino);
1385 spin_unlock(&inode_hash_lock);
1386
1387 if (inode) {
1388 if (IS_ERR(inode))
1389 return NULL;
1390 wait_on_inode(inode);
1391 if (unlikely(inode_unhashed(inode))) {
1392 iput(inode);
1393 goto again;
1394 }
1395 }
1396 return inode;
1397}
1398EXPORT_SYMBOL(ilookup);
1399
1400/**
1401 * find_inode_nowait - find an inode in the inode cache
1402 * @sb: super block of file system to search
1403 * @hashval: hash value (usually inode number) to search for
1404 * @match: callback used for comparisons between inodes
1405 * @data: opaque data pointer to pass to @match
1406 *
1407 * Search for the inode specified by @hashval and @data in the inode
1408 * cache, where the helper function @match will return 0 if the inode
1409 * does not match, 1 if the inode does match, and -1 if the search
1410 * should be stopped. The @match function must be responsible for
1411 * taking the i_lock spin_lock and checking i_state for an inode being
1412 * freed or being initialized, and incrementing the reference count
1413 * before returning 1. It also must not sleep, since it is called with
1414 * the inode_hash_lock spinlock held.
1415 *
1416 * This is a even more generalized version of ilookup5() when the
1417 * function must never block --- find_inode() can block in
1418 * __wait_on_freeing_inode() --- or when the caller can not increment
1419 * the reference count because the resulting iput() might cause an
1420 * inode eviction. The tradeoff is that the @match funtion must be
1421 * very carefully implemented.
1422 */
1423struct inode *find_inode_nowait(struct super_block *sb,
1424 unsigned long hashval,
1425 int (*match)(struct inode *, unsigned long,
1426 void *),
1427 void *data)
1428{
1429 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1430 struct inode *inode, *ret_inode = NULL;
1431 int mval;
1432
1433 spin_lock(&inode_hash_lock);
1434 hlist_for_each_entry(inode, head, i_hash) {
1435 if (inode->i_sb != sb)
1436 continue;
1437 mval = match(inode, hashval, data);
1438 if (mval == 0)
1439 continue;
1440 if (mval == 1)
1441 ret_inode = inode;
1442 goto out;
1443 }
1444out:
1445 spin_unlock(&inode_hash_lock);
1446 return ret_inode;
1447}
1448EXPORT_SYMBOL(find_inode_nowait);
1449
1450int insert_inode_locked(struct inode *inode)
1451{
1452 struct super_block *sb = inode->i_sb;
1453 ino_t ino = inode->i_ino;
1454 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1455
1456 while (1) {
1457 struct inode *old = NULL;
1458 spin_lock(&inode_hash_lock);
1459 hlist_for_each_entry(old, head, i_hash) {
1460 if (old->i_ino != ino)
1461 continue;
1462 if (old->i_sb != sb)
1463 continue;
1464 spin_lock(&old->i_lock);
1465 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1466 spin_unlock(&old->i_lock);
1467 continue;
1468 }
1469 break;
1470 }
1471 if (likely(!old)) {
1472 spin_lock(&inode->i_lock);
1473 inode->i_state |= I_NEW | I_CREATING;
1474 hlist_add_head(&inode->i_hash, head);
1475 spin_unlock(&inode->i_lock);
1476 spin_unlock(&inode_hash_lock);
1477 return 0;
1478 }
1479 if (unlikely(old->i_state & I_CREATING)) {
1480 spin_unlock(&old->i_lock);
1481 spin_unlock(&inode_hash_lock);
1482 return -EBUSY;
1483 }
1484 __iget(old);
1485 spin_unlock(&old->i_lock);
1486 spin_unlock(&inode_hash_lock);
1487 wait_on_inode(old);
1488 if (unlikely(!inode_unhashed(old))) {
1489 iput(old);
1490 return -EBUSY;
1491 }
1492 iput(old);
1493 }
1494}
1495EXPORT_SYMBOL(insert_inode_locked);
1496
1497int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1498 int (*test)(struct inode *, void *), void *data)
1499{
1500 struct inode *old;
1501
1502 inode->i_state |= I_CREATING;
1503 old = inode_insert5(inode, hashval, test, NULL, data);
1504
1505 if (old != inode) {
1506 iput(old);
1507 return -EBUSY;
1508 }
1509 return 0;
1510}
1511EXPORT_SYMBOL(insert_inode_locked4);
1512
1513
1514int generic_delete_inode(struct inode *inode)
1515{
1516 return 1;
1517}
1518EXPORT_SYMBOL(generic_delete_inode);
1519
1520/*
1521 * Called when we're dropping the last reference
1522 * to an inode.
1523 *
1524 * Call the FS "drop_inode()" function, defaulting to
1525 * the legacy UNIX filesystem behaviour. If it tells
1526 * us to evict inode, do so. Otherwise, retain inode
1527 * in cache if fs is alive, sync and evict if fs is
1528 * shutting down.
1529 */
1530static void iput_final(struct inode *inode)
1531{
1532 struct super_block *sb = inode->i_sb;
1533 const struct super_operations *op = inode->i_sb->s_op;
1534 int drop;
1535
1536 WARN_ON(inode->i_state & I_NEW);
1537
1538 if (op->drop_inode)
1539 drop = op->drop_inode(inode);
1540 else
1541 drop = generic_drop_inode(inode);
1542
1543 if (!drop && (sb->s_flags & SB_ACTIVE)) {
1544 inode_add_lru(inode);
1545 spin_unlock(&inode->i_lock);
1546 return;
1547 }
1548
1549 if (!drop) {
1550 inode->i_state |= I_WILL_FREE;
1551 spin_unlock(&inode->i_lock);
1552 write_inode_now(inode, 1);
1553 spin_lock(&inode->i_lock);
1554 WARN_ON(inode->i_state & I_NEW);
1555 inode->i_state &= ~I_WILL_FREE;
1556 }
1557
1558 inode->i_state |= I_FREEING;
1559 if (!list_empty(&inode->i_lru))
1560 inode_lru_list_del(inode);
1561 spin_unlock(&inode->i_lock);
1562
1563 evict(inode);
1564}
1565
1566/**
1567 * iput - put an inode
1568 * @inode: inode to put
1569 *
1570 * Puts an inode, dropping its usage count. If the inode use count hits
1571 * zero, the inode is then freed and may also be destroyed.
1572 *
1573 * Consequently, iput() can sleep.
1574 */
1575void iput(struct inode *inode)
1576{
1577 if (!inode)
1578 return;
1579 BUG_ON(inode->i_state & I_CLEAR);
1580retry:
1581 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1582 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1583 atomic_inc(&inode->i_count);
1584 spin_unlock(&inode->i_lock);
1585 trace_writeback_lazytime_iput(inode);
1586 mark_inode_dirty_sync(inode);
1587 goto retry;
1588 }
1589 iput_final(inode);
1590 }
1591}
1592EXPORT_SYMBOL(iput);
1593
1594/**
1595 * bmap - find a block number in a file
1596 * @inode: inode of file
1597 * @block: block to find
1598 *
1599 * Returns the block number on the device holding the inode that
1600 * is the disk block number for the block of the file requested.
1601 * That is, asked for block 4 of inode 1 the function will return the
1602 * disk block relative to the disk start that holds that block of the
1603 * file.
1604 */
1605sector_t bmap(struct inode *inode, sector_t block)
1606{
1607 sector_t res = 0;
1608 if (inode->i_mapping->a_ops->bmap)
1609 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1610 return res;
1611}
1612EXPORT_SYMBOL(bmap);
1613
1614/*
1615 * With relative atime, only update atime if the previous atime is
1616 * earlier than either the ctime or mtime or if at least a day has
1617 * passed since the last atime update.
1618 */
1619static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1620 struct timespec64 now)
1621{
1622
1623 if (!(mnt->mnt_flags & MNT_RELATIME))
1624 return 1;
1625 /*
1626 * Is mtime younger than atime? If yes, update atime:
1627 */
1628 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1629 return 1;
1630 /*
1631 * Is ctime younger than atime? If yes, update atime:
1632 */
1633 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1634 return 1;
1635
1636 /*
1637 * Is the previous atime value older than a day? If yes,
1638 * update atime:
1639 */
1640 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1641 return 1;
1642 /*
1643 * Good, we can skip the atime update:
1644 */
1645 return 0;
1646}
1647
1648int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1649{
1650 int iflags = I_DIRTY_TIME;
1651 bool dirty = false;
1652
1653 if (flags & S_ATIME)
1654 inode->i_atime = *time;
1655 if (flags & S_VERSION)
1656 dirty = inode_maybe_inc_iversion(inode, false);
1657 if (flags & S_CTIME)
1658 inode->i_ctime = *time;
1659 if (flags & S_MTIME)
1660 inode->i_mtime = *time;
1661 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1662 !(inode->i_sb->s_flags & SB_LAZYTIME))
1663 dirty = true;
1664
1665 if (dirty)
1666 iflags |= I_DIRTY_SYNC;
1667 __mark_inode_dirty(inode, iflags);
1668 return 0;
1669}
1670EXPORT_SYMBOL(generic_update_time);
1671
1672/*
1673 * This does the actual work of updating an inodes time or version. Must have
1674 * had called mnt_want_write() before calling this.
1675 */
1676static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1677{
1678 int (*update_time)(struct inode *, struct timespec64 *, int);
1679
1680 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1681 generic_update_time;
1682
1683 return update_time(inode, time, flags);
1684}
1685
1686/**
1687 * touch_atime - update the access time
1688 * @path: the &struct path to update
1689 * @inode: inode to update
1690 *
1691 * Update the accessed time on an inode and mark it for writeback.
1692 * This function automatically handles read only file systems and media,
1693 * as well as the "noatime" flag and inode specific "noatime" markers.
1694 */
1695bool atime_needs_update(const struct path *path, struct inode *inode)
1696{
1697 struct vfsmount *mnt = path->mnt;
1698 struct timespec64 now;
1699
1700 if (inode->i_flags & S_NOATIME)
1701 return false;
1702
1703 /* Atime updates will likely cause i_uid and i_gid to be written
1704 * back improprely if their true value is unknown to the vfs.
1705 */
1706 if (HAS_UNMAPPED_ID(inode))
1707 return false;
1708
1709 if (IS_NOATIME(inode))
1710 return false;
1711 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1712 return false;
1713
1714 if (mnt->mnt_flags & MNT_NOATIME)
1715 return false;
1716 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1717 return false;
1718
1719 now = current_time(inode);
1720
1721 if (!relatime_need_update(mnt, inode, now))
1722 return false;
1723
1724 if (timespec64_equal(&inode->i_atime, &now))
1725 return false;
1726
1727 return true;
1728}
1729
1730void touch_atime(const struct path *path)
1731{
1732 struct vfsmount *mnt = path->mnt;
1733 struct inode *inode = d_inode(path->dentry);
1734 struct timespec64 now;
1735
1736 if (!atime_needs_update(path, inode))
1737 return;
1738
1739 if (!sb_start_write_trylock(inode->i_sb))
1740 return;
1741
1742 if (__mnt_want_write(mnt) != 0)
1743 goto skip_update;
1744 /*
1745 * File systems can error out when updating inodes if they need to
1746 * allocate new space to modify an inode (such is the case for
1747 * Btrfs), but since we touch atime while walking down the path we
1748 * really don't care if we failed to update the atime of the file,
1749 * so just ignore the return value.
1750 * We may also fail on filesystems that have the ability to make parts
1751 * of the fs read only, e.g. subvolumes in Btrfs.
1752 */
1753 now = current_time(inode);
1754 update_time(inode, &now, S_ATIME);
1755 __mnt_drop_write(mnt);
1756skip_update:
1757 sb_end_write(inode->i_sb);
1758}
1759EXPORT_SYMBOL(touch_atime);
1760
1761/*
1762 * The logic we want is
1763 *
1764 * if suid or (sgid and xgrp)
1765 * remove privs
1766 */
1767int should_remove_suid(struct dentry *dentry)
1768{
1769 umode_t mode = d_inode(dentry)->i_mode;
1770 int kill = 0;
1771
1772 /* suid always must be killed */
1773 if (unlikely(mode & S_ISUID))
1774 kill = ATTR_KILL_SUID;
1775
1776 /*
1777 * sgid without any exec bits is just a mandatory locking mark; leave
1778 * it alone. If some exec bits are set, it's a real sgid; kill it.
1779 */
1780 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1781 kill |= ATTR_KILL_SGID;
1782
1783 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1784 return kill;
1785
1786 return 0;
1787}
1788EXPORT_SYMBOL(should_remove_suid);
1789
1790/*
1791 * Return mask of changes for notify_change() that need to be done as a
1792 * response to write or truncate. Return 0 if nothing has to be changed.
1793 * Negative value on error (change should be denied).
1794 */
1795int dentry_needs_remove_privs(struct dentry *dentry)
1796{
1797 struct inode *inode = d_inode(dentry);
1798 int mask = 0;
1799 int ret;
1800
1801 if (IS_NOSEC(inode))
1802 return 0;
1803
1804 mask = should_remove_suid(dentry);
1805 ret = security_inode_need_killpriv(dentry);
1806 if (ret < 0)
1807 return ret;
1808 if (ret)
1809 mask |= ATTR_KILL_PRIV;
1810 return mask;
1811}
1812
1813static int __remove_privs(struct dentry *dentry, int kill)
1814{
1815 struct iattr newattrs;
1816
1817 newattrs.ia_valid = ATTR_FORCE | kill;
1818 /*
1819 * Note we call this on write, so notify_change will not
1820 * encounter any conflicting delegations:
1821 */
1822 return notify_change(dentry, &newattrs, NULL);
1823}
1824
1825/*
1826 * Remove special file priviledges (suid, capabilities) when file is written
1827 * to or truncated.
1828 */
1829int file_remove_privs(struct file *file)
1830{
1831 struct dentry *dentry = file_dentry(file);
1832 struct inode *inode = file_inode(file);
1833 int kill;
1834 int error = 0;
1835
1836 /*
1837 * Fast path for nothing security related.
1838 * As well for non-regular files, e.g. blkdev inodes.
1839 * For example, blkdev_write_iter() might get here
1840 * trying to remove privs which it is not allowed to.
1841 */
1842 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1843 return 0;
1844
1845 kill = dentry_needs_remove_privs(dentry);
1846 if (kill < 0)
1847 return kill;
1848 if (kill)
1849 error = __remove_privs(dentry, kill);
1850 if (!error)
1851 inode_has_no_xattr(inode);
1852
1853 return error;
1854}
1855EXPORT_SYMBOL(file_remove_privs);
1856
1857/**
1858 * file_update_time - update mtime and ctime time
1859 * @file: file accessed
1860 *
1861 * Update the mtime and ctime members of an inode and mark the inode
1862 * for writeback. Note that this function is meant exclusively for
1863 * usage in the file write path of filesystems, and filesystems may
1864 * choose to explicitly ignore update via this function with the
1865 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1866 * timestamps are handled by the server. This can return an error for
1867 * file systems who need to allocate space in order to update an inode.
1868 */
1869
1870int file_update_time(struct file *file)
1871{
1872 struct inode *inode = file_inode(file);
1873 struct timespec64 now;
1874 int sync_it = 0;
1875 int ret;
1876
1877 /* First try to exhaust all avenues to not sync */
1878 if (IS_NOCMTIME(inode))
1879 return 0;
1880
1881 now = current_time(inode);
1882 if (!timespec64_equal(&inode->i_mtime, &now))
1883 sync_it = S_MTIME;
1884
1885 if (!timespec64_equal(&inode->i_ctime, &now))
1886 sync_it |= S_CTIME;
1887
1888 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1889 sync_it |= S_VERSION;
1890
1891 if (!sync_it)
1892 return 0;
1893
1894 /* Finally allowed to write? Takes lock. */
1895 if (__mnt_want_write_file(file))
1896 return 0;
1897
1898 ret = update_time(inode, &now, sync_it);
1899 __mnt_drop_write_file(file);
1900
1901 return ret;
1902}
1903EXPORT_SYMBOL(file_update_time);
1904
1905/* Caller must hold the file's inode lock */
1906int file_modified(struct file *file)
1907{
1908 int err;
1909
1910 /*
1911 * Clear the security bits if the process is not being run by root.
1912 * This keeps people from modifying setuid and setgid binaries.
1913 */
1914 err = file_remove_privs(file);
1915 if (err)
1916 return err;
1917
1918 if (unlikely(file->f_mode & FMODE_NOCMTIME))
1919 return 0;
1920
1921 return file_update_time(file);
1922}
1923EXPORT_SYMBOL(file_modified);
1924
1925int inode_needs_sync(struct inode *inode)
1926{
1927 if (IS_SYNC(inode))
1928 return 1;
1929 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1930 return 1;
1931 return 0;
1932}
1933EXPORT_SYMBOL(inode_needs_sync);
1934
1935/*
1936 * If we try to find an inode in the inode hash while it is being
1937 * deleted, we have to wait until the filesystem completes its
1938 * deletion before reporting that it isn't found. This function waits
1939 * until the deletion _might_ have completed. Callers are responsible
1940 * to recheck inode state.
1941 *
1942 * It doesn't matter if I_NEW is not set initially, a call to
1943 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1944 * will DTRT.
1945 */
1946static void __wait_on_freeing_inode(struct inode *inode)
1947{
1948 wait_queue_head_t *wq;
1949 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1950 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1951 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1952 spin_unlock(&inode->i_lock);
1953 spin_unlock(&inode_hash_lock);
1954 schedule();
1955 finish_wait(wq, &wait.wq_entry);
1956 spin_lock(&inode_hash_lock);
1957}
1958
1959static __initdata unsigned long ihash_entries;
1960static int __init set_ihash_entries(char *str)
1961{
1962 if (!str)
1963 return 0;
1964 ihash_entries = simple_strtoul(str, &str, 0);
1965 return 1;
1966}
1967__setup("ihash_entries=", set_ihash_entries);
1968
1969/*
1970 * Initialize the waitqueues and inode hash table.
1971 */
1972void __init inode_init_early(void)
1973{
1974 /* If hashes are distributed across NUMA nodes, defer
1975 * hash allocation until vmalloc space is available.
1976 */
1977 if (hashdist)
1978 return;
1979
1980 inode_hashtable =
1981 alloc_large_system_hash("Inode-cache",
1982 sizeof(struct hlist_head),
1983 ihash_entries,
1984 14,
1985 HASH_EARLY | HASH_ZERO,
1986 &i_hash_shift,
1987 &i_hash_mask,
1988 0,
1989 0);
1990}
1991
1992void __init inode_init(void)
1993{
1994 /* inode slab cache */
1995 inode_cachep = kmem_cache_create("inode_cache",
1996 sizeof(struct inode),
1997 0,
1998 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1999 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2000 init_once);
2001
2002 /* Hash may have been set up in inode_init_early */
2003 if (!hashdist)
2004 return;
2005
2006 inode_hashtable =
2007 alloc_large_system_hash("Inode-cache",
2008 sizeof(struct hlist_head),
2009 ihash_entries,
2010 14,
2011 HASH_ZERO,
2012 &i_hash_shift,
2013 &i_hash_mask,
2014 0,
2015 0);
2016}
2017
2018void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2019{
2020 inode->i_mode = mode;
2021 if (S_ISCHR(mode)) {
2022 inode->i_fop = &def_chr_fops;
2023 inode->i_rdev = rdev;
2024 } else if (S_ISBLK(mode)) {
2025 inode->i_fop = &def_blk_fops;
2026 inode->i_rdev = rdev;
2027 } else if (S_ISFIFO(mode))
2028 inode->i_fop = &pipefifo_fops;
2029 else if (S_ISSOCK(mode))
2030 ; /* leave it no_open_fops */
2031 else
2032 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2033 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2034 inode->i_ino);
2035}
2036EXPORT_SYMBOL(init_special_inode);
2037
2038/**
2039 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2040 * @inode: New inode
2041 * @dir: Directory inode
2042 * @mode: mode of the new inode
2043 */
2044void inode_init_owner(struct inode *inode, const struct inode *dir,
2045 umode_t mode)
2046{
2047 inode->i_uid = current_fsuid();
2048 if (dir && dir->i_mode & S_ISGID) {
2049 inode->i_gid = dir->i_gid;
2050
2051 /* Directories are special, and always inherit S_ISGID */
2052 if (S_ISDIR(mode))
2053 mode |= S_ISGID;
2054 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2055 !in_group_p(inode->i_gid) &&
2056 !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2057 mode &= ~S_ISGID;
2058 } else
2059 inode->i_gid = current_fsgid();
2060 inode->i_mode = mode;
2061}
2062EXPORT_SYMBOL(inode_init_owner);
2063
2064/**
2065 * inode_owner_or_capable - check current task permissions to inode
2066 * @inode: inode being checked
2067 *
2068 * Return true if current either has CAP_FOWNER in a namespace with the
2069 * inode owner uid mapped, or owns the file.
2070 */
2071bool inode_owner_or_capable(const struct inode *inode)
2072{
2073 struct user_namespace *ns;
2074
2075 if (uid_eq(current_fsuid(), inode->i_uid))
2076 return true;
2077
2078 ns = current_user_ns();
2079 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2080 return true;
2081 return false;
2082}
2083EXPORT_SYMBOL(inode_owner_or_capable);
2084
2085/*
2086 * Direct i/o helper functions
2087 */
2088static void __inode_dio_wait(struct inode *inode)
2089{
2090 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2091 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2092
2093 do {
2094 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2095 if (atomic_read(&inode->i_dio_count))
2096 schedule();
2097 } while (atomic_read(&inode->i_dio_count));
2098 finish_wait(wq, &q.wq_entry);
2099}
2100
2101/**
2102 * inode_dio_wait - wait for outstanding DIO requests to finish
2103 * @inode: inode to wait for
2104 *
2105 * Waits for all pending direct I/O requests to finish so that we can
2106 * proceed with a truncate or equivalent operation.
2107 *
2108 * Must be called under a lock that serializes taking new references
2109 * to i_dio_count, usually by inode->i_mutex.
2110 */
2111void inode_dio_wait(struct inode *inode)
2112{
2113 if (atomic_read(&inode->i_dio_count))
2114 __inode_dio_wait(inode);
2115}
2116EXPORT_SYMBOL(inode_dio_wait);
2117
2118/*
2119 * inode_set_flags - atomically set some inode flags
2120 *
2121 * Note: the caller should be holding i_mutex, or else be sure that
2122 * they have exclusive access to the inode structure (i.e., while the
2123 * inode is being instantiated). The reason for the cmpxchg() loop
2124 * --- which wouldn't be necessary if all code paths which modify
2125 * i_flags actually followed this rule, is that there is at least one
2126 * code path which doesn't today so we use cmpxchg() out of an abundance
2127 * of caution.
2128 *
2129 * In the long run, i_mutex is overkill, and we should probably look
2130 * at using the i_lock spinlock to protect i_flags, and then make sure
2131 * it is so documented in include/linux/fs.h and that all code follows
2132 * the locking convention!!
2133 */
2134void inode_set_flags(struct inode *inode, unsigned int flags,
2135 unsigned int mask)
2136{
2137 WARN_ON_ONCE(flags & ~mask);
2138 set_mask_bits(&inode->i_flags, mask, flags);
2139}
2140EXPORT_SYMBOL(inode_set_flags);
2141
2142void inode_nohighmem(struct inode *inode)
2143{
2144 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2145}
2146EXPORT_SYMBOL(inode_nohighmem);
2147
2148/**
2149 * timespec64_trunc - Truncate timespec64 to a granularity
2150 * @t: Timespec64
2151 * @gran: Granularity in ns.
2152 *
2153 * Truncate a timespec64 to a granularity. Always rounds down. gran must
2154 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2155 */
2156struct timespec64 timespec64_trunc(struct timespec64 t, unsigned gran)
2157{
2158 /* Avoid division in the common cases 1 ns and 1 s. */
2159 if (gran == 1) {
2160 /* nothing */
2161 } else if (gran == NSEC_PER_SEC) {
2162 t.tv_nsec = 0;
2163 } else if (gran > 1 && gran < NSEC_PER_SEC) {
2164 t.tv_nsec -= t.tv_nsec % gran;
2165 } else {
2166 WARN(1, "illegal file time granularity: %u", gran);
2167 }
2168 return t;
2169}
2170EXPORT_SYMBOL(timespec64_trunc);
2171
2172/**
2173 * timestamp_truncate - Truncate timespec to a granularity
2174 * @t: Timespec
2175 * @inode: inode being updated
2176 *
2177 * Truncate a timespec to the granularity supported by the fs
2178 * containing the inode. Always rounds down. gran must
2179 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2180 */
2181struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2182{
2183 struct super_block *sb = inode->i_sb;
2184 unsigned int gran = sb->s_time_gran;
2185
2186 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2187 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2188 t.tv_nsec = 0;
2189
2190 /* Avoid division in the common cases 1 ns and 1 s. */
2191 if (gran == 1)
2192 ; /* nothing */
2193 else if (gran == NSEC_PER_SEC)
2194 t.tv_nsec = 0;
2195 else if (gran > 1 && gran < NSEC_PER_SEC)
2196 t.tv_nsec -= t.tv_nsec % gran;
2197 else
2198 WARN(1, "invalid file time granularity: %u", gran);
2199 return t;
2200}
2201EXPORT_SYMBOL(timestamp_truncate);
2202
2203/**
2204 * current_time - Return FS time
2205 * @inode: inode.
2206 *
2207 * Return the current time truncated to the time granularity supported by
2208 * the fs.
2209 *
2210 * Note that inode and inode->sb cannot be NULL.
2211 * Otherwise, the function warns and returns time without truncation.
2212 */
2213struct timespec64 current_time(struct inode *inode)
2214{
2215 struct timespec64 now;
2216
2217 ktime_get_coarse_real_ts64(&now);
2218
2219 if (unlikely(!inode->i_sb)) {
2220 WARN(1, "current_time() called with uninitialized super_block in the inode");
2221 return now;
2222 }
2223
2224 return timestamp_truncate(now, inode);
2225}
2226EXPORT_SYMBOL(current_time);
2227
2228/*
2229 * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2230 * configurations.
2231 *
2232 * Note: the caller should be holding i_mutex, or else be sure that they have
2233 * exclusive access to the inode structure.
2234 */
2235int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2236 unsigned int flags)
2237{
2238 /*
2239 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2240 * the relevant capability.
2241 *
2242 * This test looks nicer. Thanks to Pauline Middelink
2243 */
2244 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2245 !capable(CAP_LINUX_IMMUTABLE))
2246 return -EPERM;
2247
2248 return 0;
2249}
2250EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2251
2252/*
2253 * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2254 * configurations.
2255 *
2256 * Note: the caller should be holding i_mutex, or else be sure that they have
2257 * exclusive access to the inode structure.
2258 */
2259int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2260 struct fsxattr *fa)
2261{
2262 /*
2263 * Can't modify an immutable/append-only file unless we have
2264 * appropriate permission.
2265 */
2266 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2267 (FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2268 !capable(CAP_LINUX_IMMUTABLE))
2269 return -EPERM;
2270
2271 /*
2272 * Project Quota ID state is only allowed to change from within the init
2273 * namespace. Enforce that restriction only if we are trying to change
2274 * the quota ID state. Everything else is allowed in user namespaces.
2275 */
2276 if (current_user_ns() != &init_user_ns) {
2277 if (old_fa->fsx_projid != fa->fsx_projid)
2278 return -EINVAL;
2279 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2280 FS_XFLAG_PROJINHERIT)
2281 return -EINVAL;
2282 }
2283
2284 /* Check extent size hints. */
2285 if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2286 return -EINVAL;
2287
2288 if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2289 !S_ISDIR(inode->i_mode))
2290 return -EINVAL;
2291
2292 if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2293 !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2294 return -EINVAL;
2295
2296 /*
2297 * It is only valid to set the DAX flag on regular files and
2298 * directories on filesystems.
2299 */
2300 if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2301 !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2302 return -EINVAL;
2303
2304 /* Extent size hints of zero turn off the flags. */
2305 if (fa->fsx_extsize == 0)
2306 fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2307 if (fa->fsx_cowextsize == 0)
2308 fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2309
2310 return 0;
2311}
2312EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);
1/*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5#include <linux/export.h>
6#include <linux/fs.h>
7#include <linux/mm.h>
8#include <linux/backing-dev.h>
9#include <linux/hash.h>
10#include <linux/swap.h>
11#include <linux/security.h>
12#include <linux/cdev.h>
13#include <linux/bootmem.h>
14#include <linux/fsnotify.h>
15#include <linux/mount.h>
16#include <linux/posix_acl.h>
17#include <linux/prefetch.h>
18#include <linux/buffer_head.h> /* for inode_has_buffers */
19#include <linux/ratelimit.h>
20#include <linux/list_lru.h>
21#include "internal.h"
22
23/*
24 * Inode locking rules:
25 *
26 * inode->i_lock protects:
27 * inode->i_state, inode->i_hash, __iget()
28 * Inode LRU list locks protect:
29 * inode->i_sb->s_inode_lru, inode->i_lru
30 * inode_sb_list_lock protects:
31 * sb->s_inodes, inode->i_sb_list
32 * bdi->wb.list_lock protects:
33 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
34 * inode_hash_lock protects:
35 * inode_hashtable, inode->i_hash
36 *
37 * Lock ordering:
38 *
39 * inode_sb_list_lock
40 * inode->i_lock
41 * Inode LRU list locks
42 *
43 * bdi->wb.list_lock
44 * inode->i_lock
45 *
46 * inode_hash_lock
47 * inode_sb_list_lock
48 * inode->i_lock
49 *
50 * iunique_lock
51 * inode_hash_lock
52 */
53
54static unsigned int i_hash_mask __read_mostly;
55static unsigned int i_hash_shift __read_mostly;
56static struct hlist_head *inode_hashtable __read_mostly;
57static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
58
59__cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
60
61/*
62 * Empty aops. Can be used for the cases where the user does not
63 * define any of the address_space operations.
64 */
65const struct address_space_operations empty_aops = {
66};
67EXPORT_SYMBOL(empty_aops);
68
69/*
70 * Statistics gathering..
71 */
72struct inodes_stat_t inodes_stat;
73
74static DEFINE_PER_CPU(unsigned long, nr_inodes);
75static DEFINE_PER_CPU(unsigned long, nr_unused);
76
77static struct kmem_cache *inode_cachep __read_mostly;
78
79static long get_nr_inodes(void)
80{
81 int i;
82 long sum = 0;
83 for_each_possible_cpu(i)
84 sum += per_cpu(nr_inodes, i);
85 return sum < 0 ? 0 : sum;
86}
87
88static inline long get_nr_inodes_unused(void)
89{
90 int i;
91 long sum = 0;
92 for_each_possible_cpu(i)
93 sum += per_cpu(nr_unused, i);
94 return sum < 0 ? 0 : sum;
95}
96
97long get_nr_dirty_inodes(void)
98{
99 /* not actually dirty inodes, but a wild approximation */
100 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
101 return nr_dirty > 0 ? nr_dirty : 0;
102}
103
104/*
105 * Handle nr_inode sysctl
106 */
107#ifdef CONFIG_SYSCTL
108int proc_nr_inodes(ctl_table *table, int write,
109 void __user *buffer, size_t *lenp, loff_t *ppos)
110{
111 inodes_stat.nr_inodes = get_nr_inodes();
112 inodes_stat.nr_unused = get_nr_inodes_unused();
113 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
114}
115#endif
116
117/**
118 * inode_init_always - perform inode structure intialisation
119 * @sb: superblock inode belongs to
120 * @inode: inode to initialise
121 *
122 * These are initializations that need to be done on every inode
123 * allocation as the fields are not initialised by slab allocation.
124 */
125int inode_init_always(struct super_block *sb, struct inode *inode)
126{
127 static const struct inode_operations empty_iops;
128 static const struct file_operations empty_fops;
129 struct address_space *const mapping = &inode->i_data;
130
131 inode->i_sb = sb;
132 inode->i_blkbits = sb->s_blocksize_bits;
133 inode->i_flags = 0;
134 atomic_set(&inode->i_count, 1);
135 inode->i_op = &empty_iops;
136 inode->i_fop = &empty_fops;
137 inode->__i_nlink = 1;
138 inode->i_opflags = 0;
139 i_uid_write(inode, 0);
140 i_gid_write(inode, 0);
141 atomic_set(&inode->i_writecount, 0);
142 inode->i_size = 0;
143 inode->i_blocks = 0;
144 inode->i_bytes = 0;
145 inode->i_generation = 0;
146#ifdef CONFIG_QUOTA
147 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
148#endif
149 inode->i_pipe = NULL;
150 inode->i_bdev = NULL;
151 inode->i_cdev = NULL;
152 inode->i_rdev = 0;
153 inode->dirtied_when = 0;
154
155 if (security_inode_alloc(inode))
156 goto out;
157 spin_lock_init(&inode->i_lock);
158 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
159
160 mutex_init(&inode->i_mutex);
161 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
162
163 atomic_set(&inode->i_dio_count, 0);
164
165 mapping->a_ops = &empty_aops;
166 mapping->host = inode;
167 mapping->flags = 0;
168 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
169 mapping->private_data = NULL;
170 mapping->backing_dev_info = &default_backing_dev_info;
171 mapping->writeback_index = 0;
172
173 /*
174 * If the block_device provides a backing_dev_info for client
175 * inodes then use that. Otherwise the inode share the bdev's
176 * backing_dev_info.
177 */
178 if (sb->s_bdev) {
179 struct backing_dev_info *bdi;
180
181 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
182 mapping->backing_dev_info = bdi;
183 }
184 inode->i_private = NULL;
185 inode->i_mapping = mapping;
186 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
187#ifdef CONFIG_FS_POSIX_ACL
188 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
189#endif
190
191#ifdef CONFIG_FSNOTIFY
192 inode->i_fsnotify_mask = 0;
193#endif
194
195 this_cpu_inc(nr_inodes);
196
197 return 0;
198out:
199 return -ENOMEM;
200}
201EXPORT_SYMBOL(inode_init_always);
202
203static struct inode *alloc_inode(struct super_block *sb)
204{
205 struct inode *inode;
206
207 if (sb->s_op->alloc_inode)
208 inode = sb->s_op->alloc_inode(sb);
209 else
210 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
211
212 if (!inode)
213 return NULL;
214
215 if (unlikely(inode_init_always(sb, inode))) {
216 if (inode->i_sb->s_op->destroy_inode)
217 inode->i_sb->s_op->destroy_inode(inode);
218 else
219 kmem_cache_free(inode_cachep, inode);
220 return NULL;
221 }
222
223 return inode;
224}
225
226void free_inode_nonrcu(struct inode *inode)
227{
228 kmem_cache_free(inode_cachep, inode);
229}
230EXPORT_SYMBOL(free_inode_nonrcu);
231
232void __destroy_inode(struct inode *inode)
233{
234 BUG_ON(inode_has_buffers(inode));
235 security_inode_free(inode);
236 fsnotify_inode_delete(inode);
237 if (!inode->i_nlink) {
238 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
239 atomic_long_dec(&inode->i_sb->s_remove_count);
240 }
241
242#ifdef CONFIG_FS_POSIX_ACL
243 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
244 posix_acl_release(inode->i_acl);
245 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
246 posix_acl_release(inode->i_default_acl);
247#endif
248 this_cpu_dec(nr_inodes);
249}
250EXPORT_SYMBOL(__destroy_inode);
251
252static void i_callback(struct rcu_head *head)
253{
254 struct inode *inode = container_of(head, struct inode, i_rcu);
255 kmem_cache_free(inode_cachep, inode);
256}
257
258static void destroy_inode(struct inode *inode)
259{
260 BUG_ON(!list_empty(&inode->i_lru));
261 __destroy_inode(inode);
262 if (inode->i_sb->s_op->destroy_inode)
263 inode->i_sb->s_op->destroy_inode(inode);
264 else
265 call_rcu(&inode->i_rcu, i_callback);
266}
267
268/**
269 * drop_nlink - directly drop an inode's link count
270 * @inode: inode
271 *
272 * This is a low-level filesystem helper to replace any
273 * direct filesystem manipulation of i_nlink. In cases
274 * where we are attempting to track writes to the
275 * filesystem, a decrement to zero means an imminent
276 * write when the file is truncated and actually unlinked
277 * on the filesystem.
278 */
279void drop_nlink(struct inode *inode)
280{
281 WARN_ON(inode->i_nlink == 0);
282 inode->__i_nlink--;
283 if (!inode->i_nlink)
284 atomic_long_inc(&inode->i_sb->s_remove_count);
285}
286EXPORT_SYMBOL(drop_nlink);
287
288/**
289 * clear_nlink - directly zero an inode's link count
290 * @inode: inode
291 *
292 * This is a low-level filesystem helper to replace any
293 * direct filesystem manipulation of i_nlink. See
294 * drop_nlink() for why we care about i_nlink hitting zero.
295 */
296void clear_nlink(struct inode *inode)
297{
298 if (inode->i_nlink) {
299 inode->__i_nlink = 0;
300 atomic_long_inc(&inode->i_sb->s_remove_count);
301 }
302}
303EXPORT_SYMBOL(clear_nlink);
304
305/**
306 * set_nlink - directly set an inode's link count
307 * @inode: inode
308 * @nlink: new nlink (should be non-zero)
309 *
310 * This is a low-level filesystem helper to replace any
311 * direct filesystem manipulation of i_nlink.
312 */
313void set_nlink(struct inode *inode, unsigned int nlink)
314{
315 if (!nlink) {
316 clear_nlink(inode);
317 } else {
318 /* Yes, some filesystems do change nlink from zero to one */
319 if (inode->i_nlink == 0)
320 atomic_long_dec(&inode->i_sb->s_remove_count);
321
322 inode->__i_nlink = nlink;
323 }
324}
325EXPORT_SYMBOL(set_nlink);
326
327/**
328 * inc_nlink - directly increment an inode's link count
329 * @inode: inode
330 *
331 * This is a low-level filesystem helper to replace any
332 * direct filesystem manipulation of i_nlink. Currently,
333 * it is only here for parity with dec_nlink().
334 */
335void inc_nlink(struct inode *inode)
336{
337 if (unlikely(inode->i_nlink == 0)) {
338 WARN_ON(!(inode->i_state & I_LINKABLE));
339 atomic_long_dec(&inode->i_sb->s_remove_count);
340 }
341
342 inode->__i_nlink++;
343}
344EXPORT_SYMBOL(inc_nlink);
345
346void address_space_init_once(struct address_space *mapping)
347{
348 memset(mapping, 0, sizeof(*mapping));
349 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
350 spin_lock_init(&mapping->tree_lock);
351 mutex_init(&mapping->i_mmap_mutex);
352 INIT_LIST_HEAD(&mapping->private_list);
353 spin_lock_init(&mapping->private_lock);
354 mapping->i_mmap = RB_ROOT;
355 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
356}
357EXPORT_SYMBOL(address_space_init_once);
358
359/*
360 * These are initializations that only need to be done
361 * once, because the fields are idempotent across use
362 * of the inode, so let the slab aware of that.
363 */
364void inode_init_once(struct inode *inode)
365{
366 memset(inode, 0, sizeof(*inode));
367 INIT_HLIST_NODE(&inode->i_hash);
368 INIT_LIST_HEAD(&inode->i_devices);
369 INIT_LIST_HEAD(&inode->i_wb_list);
370 INIT_LIST_HEAD(&inode->i_lru);
371 address_space_init_once(&inode->i_data);
372 i_size_ordered_init(inode);
373#ifdef CONFIG_FSNOTIFY
374 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
375#endif
376}
377EXPORT_SYMBOL(inode_init_once);
378
379static void init_once(void *foo)
380{
381 struct inode *inode = (struct inode *) foo;
382
383 inode_init_once(inode);
384}
385
386/*
387 * inode->i_lock must be held
388 */
389void __iget(struct inode *inode)
390{
391 atomic_inc(&inode->i_count);
392}
393
394/*
395 * get additional reference to inode; caller must already hold one.
396 */
397void ihold(struct inode *inode)
398{
399 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
400}
401EXPORT_SYMBOL(ihold);
402
403static void inode_lru_list_add(struct inode *inode)
404{
405 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
406 this_cpu_inc(nr_unused);
407}
408
409/*
410 * Add inode to LRU if needed (inode is unused and clean).
411 *
412 * Needs inode->i_lock held.
413 */
414void inode_add_lru(struct inode *inode)
415{
416 if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) &&
417 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
418 inode_lru_list_add(inode);
419}
420
421
422static void inode_lru_list_del(struct inode *inode)
423{
424
425 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
426 this_cpu_dec(nr_unused);
427}
428
429/**
430 * inode_sb_list_add - add inode to the superblock list of inodes
431 * @inode: inode to add
432 */
433void inode_sb_list_add(struct inode *inode)
434{
435 spin_lock(&inode_sb_list_lock);
436 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
437 spin_unlock(&inode_sb_list_lock);
438}
439EXPORT_SYMBOL_GPL(inode_sb_list_add);
440
441static inline void inode_sb_list_del(struct inode *inode)
442{
443 if (!list_empty(&inode->i_sb_list)) {
444 spin_lock(&inode_sb_list_lock);
445 list_del_init(&inode->i_sb_list);
446 spin_unlock(&inode_sb_list_lock);
447 }
448}
449
450static unsigned long hash(struct super_block *sb, unsigned long hashval)
451{
452 unsigned long tmp;
453
454 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
455 L1_CACHE_BYTES;
456 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
457 return tmp & i_hash_mask;
458}
459
460/**
461 * __insert_inode_hash - hash an inode
462 * @inode: unhashed inode
463 * @hashval: unsigned long value used to locate this object in the
464 * inode_hashtable.
465 *
466 * Add an inode to the inode hash for this superblock.
467 */
468void __insert_inode_hash(struct inode *inode, unsigned long hashval)
469{
470 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
471
472 spin_lock(&inode_hash_lock);
473 spin_lock(&inode->i_lock);
474 hlist_add_head(&inode->i_hash, b);
475 spin_unlock(&inode->i_lock);
476 spin_unlock(&inode_hash_lock);
477}
478EXPORT_SYMBOL(__insert_inode_hash);
479
480/**
481 * __remove_inode_hash - remove an inode from the hash
482 * @inode: inode to unhash
483 *
484 * Remove an inode from the superblock.
485 */
486void __remove_inode_hash(struct inode *inode)
487{
488 spin_lock(&inode_hash_lock);
489 spin_lock(&inode->i_lock);
490 hlist_del_init(&inode->i_hash);
491 spin_unlock(&inode->i_lock);
492 spin_unlock(&inode_hash_lock);
493}
494EXPORT_SYMBOL(__remove_inode_hash);
495
496void clear_inode(struct inode *inode)
497{
498 might_sleep();
499 /*
500 * We have to cycle tree_lock here because reclaim can be still in the
501 * process of removing the last page (in __delete_from_page_cache())
502 * and we must not free mapping under it.
503 */
504 spin_lock_irq(&inode->i_data.tree_lock);
505 BUG_ON(inode->i_data.nrpages);
506 BUG_ON(inode->i_data.nrshadows);
507 spin_unlock_irq(&inode->i_data.tree_lock);
508 BUG_ON(!list_empty(&inode->i_data.private_list));
509 BUG_ON(!(inode->i_state & I_FREEING));
510 BUG_ON(inode->i_state & I_CLEAR);
511 /* don't need i_lock here, no concurrent mods to i_state */
512 inode->i_state = I_FREEING | I_CLEAR;
513}
514EXPORT_SYMBOL(clear_inode);
515
516/*
517 * Free the inode passed in, removing it from the lists it is still connected
518 * to. We remove any pages still attached to the inode and wait for any IO that
519 * is still in progress before finally destroying the inode.
520 *
521 * An inode must already be marked I_FREEING so that we avoid the inode being
522 * moved back onto lists if we race with other code that manipulates the lists
523 * (e.g. writeback_single_inode). The caller is responsible for setting this.
524 *
525 * An inode must already be removed from the LRU list before being evicted from
526 * the cache. This should occur atomically with setting the I_FREEING state
527 * flag, so no inodes here should ever be on the LRU when being evicted.
528 */
529static void evict(struct inode *inode)
530{
531 const struct super_operations *op = inode->i_sb->s_op;
532
533 BUG_ON(!(inode->i_state & I_FREEING));
534 BUG_ON(!list_empty(&inode->i_lru));
535
536 if (!list_empty(&inode->i_wb_list))
537 inode_wb_list_del(inode);
538
539 inode_sb_list_del(inode);
540
541 /*
542 * Wait for flusher thread to be done with the inode so that filesystem
543 * does not start destroying it while writeback is still running. Since
544 * the inode has I_FREEING set, flusher thread won't start new work on
545 * the inode. We just have to wait for running writeback to finish.
546 */
547 inode_wait_for_writeback(inode);
548
549 if (op->evict_inode) {
550 op->evict_inode(inode);
551 } else {
552 truncate_inode_pages_final(&inode->i_data);
553 clear_inode(inode);
554 }
555 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
556 bd_forget(inode);
557 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
558 cd_forget(inode);
559
560 remove_inode_hash(inode);
561
562 spin_lock(&inode->i_lock);
563 wake_up_bit(&inode->i_state, __I_NEW);
564 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
565 spin_unlock(&inode->i_lock);
566
567 destroy_inode(inode);
568}
569
570/*
571 * dispose_list - dispose of the contents of a local list
572 * @head: the head of the list to free
573 *
574 * Dispose-list gets a local list with local inodes in it, so it doesn't
575 * need to worry about list corruption and SMP locks.
576 */
577static void dispose_list(struct list_head *head)
578{
579 while (!list_empty(head)) {
580 struct inode *inode;
581
582 inode = list_first_entry(head, struct inode, i_lru);
583 list_del_init(&inode->i_lru);
584
585 evict(inode);
586 }
587}
588
589/**
590 * evict_inodes - evict all evictable inodes for a superblock
591 * @sb: superblock to operate on
592 *
593 * Make sure that no inodes with zero refcount are retained. This is
594 * called by superblock shutdown after having MS_ACTIVE flag removed,
595 * so any inode reaching zero refcount during or after that call will
596 * be immediately evicted.
597 */
598void evict_inodes(struct super_block *sb)
599{
600 struct inode *inode, *next;
601 LIST_HEAD(dispose);
602
603 spin_lock(&inode_sb_list_lock);
604 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
605 if (atomic_read(&inode->i_count))
606 continue;
607
608 spin_lock(&inode->i_lock);
609 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
610 spin_unlock(&inode->i_lock);
611 continue;
612 }
613
614 inode->i_state |= I_FREEING;
615 inode_lru_list_del(inode);
616 spin_unlock(&inode->i_lock);
617 list_add(&inode->i_lru, &dispose);
618 }
619 spin_unlock(&inode_sb_list_lock);
620
621 dispose_list(&dispose);
622}
623
624/**
625 * invalidate_inodes - attempt to free all inodes on a superblock
626 * @sb: superblock to operate on
627 * @kill_dirty: flag to guide handling of dirty inodes
628 *
629 * Attempts to free all inodes for a given superblock. If there were any
630 * busy inodes return a non-zero value, else zero.
631 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
632 * them as busy.
633 */
634int invalidate_inodes(struct super_block *sb, bool kill_dirty)
635{
636 int busy = 0;
637 struct inode *inode, *next;
638 LIST_HEAD(dispose);
639
640 spin_lock(&inode_sb_list_lock);
641 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
642 spin_lock(&inode->i_lock);
643 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
644 spin_unlock(&inode->i_lock);
645 continue;
646 }
647 if (inode->i_state & I_DIRTY && !kill_dirty) {
648 spin_unlock(&inode->i_lock);
649 busy = 1;
650 continue;
651 }
652 if (atomic_read(&inode->i_count)) {
653 spin_unlock(&inode->i_lock);
654 busy = 1;
655 continue;
656 }
657
658 inode->i_state |= I_FREEING;
659 inode_lru_list_del(inode);
660 spin_unlock(&inode->i_lock);
661 list_add(&inode->i_lru, &dispose);
662 }
663 spin_unlock(&inode_sb_list_lock);
664
665 dispose_list(&dispose);
666
667 return busy;
668}
669
670/*
671 * Isolate the inode from the LRU in preparation for freeing it.
672 *
673 * Any inodes which are pinned purely because of attached pagecache have their
674 * pagecache removed. If the inode has metadata buffers attached to
675 * mapping->private_list then try to remove them.
676 *
677 * If the inode has the I_REFERENCED flag set, then it means that it has been
678 * used recently - the flag is set in iput_final(). When we encounter such an
679 * inode, clear the flag and move it to the back of the LRU so it gets another
680 * pass through the LRU before it gets reclaimed. This is necessary because of
681 * the fact we are doing lazy LRU updates to minimise lock contention so the
682 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
683 * with this flag set because they are the inodes that are out of order.
684 */
685static enum lru_status
686inode_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
687{
688 struct list_head *freeable = arg;
689 struct inode *inode = container_of(item, struct inode, i_lru);
690
691 /*
692 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
693 * If we fail to get the lock, just skip it.
694 */
695 if (!spin_trylock(&inode->i_lock))
696 return LRU_SKIP;
697
698 /*
699 * Referenced or dirty inodes are still in use. Give them another pass
700 * through the LRU as we canot reclaim them now.
701 */
702 if (atomic_read(&inode->i_count) ||
703 (inode->i_state & ~I_REFERENCED)) {
704 list_del_init(&inode->i_lru);
705 spin_unlock(&inode->i_lock);
706 this_cpu_dec(nr_unused);
707 return LRU_REMOVED;
708 }
709
710 /* recently referenced inodes get one more pass */
711 if (inode->i_state & I_REFERENCED) {
712 inode->i_state &= ~I_REFERENCED;
713 spin_unlock(&inode->i_lock);
714 return LRU_ROTATE;
715 }
716
717 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
718 __iget(inode);
719 spin_unlock(&inode->i_lock);
720 spin_unlock(lru_lock);
721 if (remove_inode_buffers(inode)) {
722 unsigned long reap;
723 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
724 if (current_is_kswapd())
725 __count_vm_events(KSWAPD_INODESTEAL, reap);
726 else
727 __count_vm_events(PGINODESTEAL, reap);
728 if (current->reclaim_state)
729 current->reclaim_state->reclaimed_slab += reap;
730 }
731 iput(inode);
732 spin_lock(lru_lock);
733 return LRU_RETRY;
734 }
735
736 WARN_ON(inode->i_state & I_NEW);
737 inode->i_state |= I_FREEING;
738 list_move(&inode->i_lru, freeable);
739 spin_unlock(&inode->i_lock);
740
741 this_cpu_dec(nr_unused);
742 return LRU_REMOVED;
743}
744
745/*
746 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
747 * This is called from the superblock shrinker function with a number of inodes
748 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
749 * then are freed outside inode_lock by dispose_list().
750 */
751long prune_icache_sb(struct super_block *sb, unsigned long nr_to_scan,
752 int nid)
753{
754 LIST_HEAD(freeable);
755 long freed;
756
757 freed = list_lru_walk_node(&sb->s_inode_lru, nid, inode_lru_isolate,
758 &freeable, &nr_to_scan);
759 dispose_list(&freeable);
760 return freed;
761}
762
763static void __wait_on_freeing_inode(struct inode *inode);
764/*
765 * Called with the inode lock held.
766 */
767static struct inode *find_inode(struct super_block *sb,
768 struct hlist_head *head,
769 int (*test)(struct inode *, void *),
770 void *data)
771{
772 struct inode *inode = NULL;
773
774repeat:
775 hlist_for_each_entry(inode, head, i_hash) {
776 if (inode->i_sb != sb)
777 continue;
778 if (!test(inode, data))
779 continue;
780 spin_lock(&inode->i_lock);
781 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
782 __wait_on_freeing_inode(inode);
783 goto repeat;
784 }
785 __iget(inode);
786 spin_unlock(&inode->i_lock);
787 return inode;
788 }
789 return NULL;
790}
791
792/*
793 * find_inode_fast is the fast path version of find_inode, see the comment at
794 * iget_locked for details.
795 */
796static struct inode *find_inode_fast(struct super_block *sb,
797 struct hlist_head *head, unsigned long ino)
798{
799 struct inode *inode = NULL;
800
801repeat:
802 hlist_for_each_entry(inode, head, i_hash) {
803 if (inode->i_ino != ino)
804 continue;
805 if (inode->i_sb != sb)
806 continue;
807 spin_lock(&inode->i_lock);
808 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
809 __wait_on_freeing_inode(inode);
810 goto repeat;
811 }
812 __iget(inode);
813 spin_unlock(&inode->i_lock);
814 return inode;
815 }
816 return NULL;
817}
818
819/*
820 * Each cpu owns a range of LAST_INO_BATCH numbers.
821 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
822 * to renew the exhausted range.
823 *
824 * This does not significantly increase overflow rate because every CPU can
825 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
826 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
827 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
828 * overflow rate by 2x, which does not seem too significant.
829 *
830 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
831 * error if st_ino won't fit in target struct field. Use 32bit counter
832 * here to attempt to avoid that.
833 */
834#define LAST_INO_BATCH 1024
835static DEFINE_PER_CPU(unsigned int, last_ino);
836
837unsigned int get_next_ino(void)
838{
839 unsigned int *p = &get_cpu_var(last_ino);
840 unsigned int res = *p;
841
842#ifdef CONFIG_SMP
843 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
844 static atomic_t shared_last_ino;
845 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
846
847 res = next - LAST_INO_BATCH;
848 }
849#endif
850
851 *p = ++res;
852 put_cpu_var(last_ino);
853 return res;
854}
855EXPORT_SYMBOL(get_next_ino);
856
857/**
858 * new_inode_pseudo - obtain an inode
859 * @sb: superblock
860 *
861 * Allocates a new inode for given superblock.
862 * Inode wont be chained in superblock s_inodes list
863 * This means :
864 * - fs can't be unmount
865 * - quotas, fsnotify, writeback can't work
866 */
867struct inode *new_inode_pseudo(struct super_block *sb)
868{
869 struct inode *inode = alloc_inode(sb);
870
871 if (inode) {
872 spin_lock(&inode->i_lock);
873 inode->i_state = 0;
874 spin_unlock(&inode->i_lock);
875 INIT_LIST_HEAD(&inode->i_sb_list);
876 }
877 return inode;
878}
879
880/**
881 * new_inode - obtain an inode
882 * @sb: superblock
883 *
884 * Allocates a new inode for given superblock. The default gfp_mask
885 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
886 * If HIGHMEM pages are unsuitable or it is known that pages allocated
887 * for the page cache are not reclaimable or migratable,
888 * mapping_set_gfp_mask() must be called with suitable flags on the
889 * newly created inode's mapping
890 *
891 */
892struct inode *new_inode(struct super_block *sb)
893{
894 struct inode *inode;
895
896 spin_lock_prefetch(&inode_sb_list_lock);
897
898 inode = new_inode_pseudo(sb);
899 if (inode)
900 inode_sb_list_add(inode);
901 return inode;
902}
903EXPORT_SYMBOL(new_inode);
904
905#ifdef CONFIG_DEBUG_LOCK_ALLOC
906void lockdep_annotate_inode_mutex_key(struct inode *inode)
907{
908 if (S_ISDIR(inode->i_mode)) {
909 struct file_system_type *type = inode->i_sb->s_type;
910
911 /* Set new key only if filesystem hasn't already changed it */
912 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
913 /*
914 * ensure nobody is actually holding i_mutex
915 */
916 mutex_destroy(&inode->i_mutex);
917 mutex_init(&inode->i_mutex);
918 lockdep_set_class(&inode->i_mutex,
919 &type->i_mutex_dir_key);
920 }
921 }
922}
923EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
924#endif
925
926/**
927 * unlock_new_inode - clear the I_NEW state and wake up any waiters
928 * @inode: new inode to unlock
929 *
930 * Called when the inode is fully initialised to clear the new state of the
931 * inode and wake up anyone waiting for the inode to finish initialisation.
932 */
933void unlock_new_inode(struct inode *inode)
934{
935 lockdep_annotate_inode_mutex_key(inode);
936 spin_lock(&inode->i_lock);
937 WARN_ON(!(inode->i_state & I_NEW));
938 inode->i_state &= ~I_NEW;
939 smp_mb();
940 wake_up_bit(&inode->i_state, __I_NEW);
941 spin_unlock(&inode->i_lock);
942}
943EXPORT_SYMBOL(unlock_new_inode);
944
945/**
946 * lock_two_nondirectories - take two i_mutexes on non-directory objects
947 *
948 * Lock any non-NULL argument that is not a directory.
949 * Zero, one or two objects may be locked by this function.
950 *
951 * @inode1: first inode to lock
952 * @inode2: second inode to lock
953 */
954void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
955{
956 if (inode1 > inode2)
957 swap(inode1, inode2);
958
959 if (inode1 && !S_ISDIR(inode1->i_mode))
960 mutex_lock(&inode1->i_mutex);
961 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
962 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2);
963}
964EXPORT_SYMBOL(lock_two_nondirectories);
965
966/**
967 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
968 * @inode1: first inode to unlock
969 * @inode2: second inode to unlock
970 */
971void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
972{
973 if (inode1 && !S_ISDIR(inode1->i_mode))
974 mutex_unlock(&inode1->i_mutex);
975 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
976 mutex_unlock(&inode2->i_mutex);
977}
978EXPORT_SYMBOL(unlock_two_nondirectories);
979
980/**
981 * iget5_locked - obtain an inode from a mounted file system
982 * @sb: super block of file system
983 * @hashval: hash value (usually inode number) to get
984 * @test: callback used for comparisons between inodes
985 * @set: callback used to initialize a new struct inode
986 * @data: opaque data pointer to pass to @test and @set
987 *
988 * Search for the inode specified by @hashval and @data in the inode cache,
989 * and if present it is return it with an increased reference count. This is
990 * a generalized version of iget_locked() for file systems where the inode
991 * number is not sufficient for unique identification of an inode.
992 *
993 * If the inode is not in cache, allocate a new inode and return it locked,
994 * hashed, and with the I_NEW flag set. The file system gets to fill it in
995 * before unlocking it via unlock_new_inode().
996 *
997 * Note both @test and @set are called with the inode_hash_lock held, so can't
998 * sleep.
999 */
1000struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1001 int (*test)(struct inode *, void *),
1002 int (*set)(struct inode *, void *), void *data)
1003{
1004 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1005 struct inode *inode;
1006
1007 spin_lock(&inode_hash_lock);
1008 inode = find_inode(sb, head, test, data);
1009 spin_unlock(&inode_hash_lock);
1010
1011 if (inode) {
1012 wait_on_inode(inode);
1013 return inode;
1014 }
1015
1016 inode = alloc_inode(sb);
1017 if (inode) {
1018 struct inode *old;
1019
1020 spin_lock(&inode_hash_lock);
1021 /* We released the lock, so.. */
1022 old = find_inode(sb, head, test, data);
1023 if (!old) {
1024 if (set(inode, data))
1025 goto set_failed;
1026
1027 spin_lock(&inode->i_lock);
1028 inode->i_state = I_NEW;
1029 hlist_add_head(&inode->i_hash, head);
1030 spin_unlock(&inode->i_lock);
1031 inode_sb_list_add(inode);
1032 spin_unlock(&inode_hash_lock);
1033
1034 /* Return the locked inode with I_NEW set, the
1035 * caller is responsible for filling in the contents
1036 */
1037 return inode;
1038 }
1039
1040 /*
1041 * Uhhuh, somebody else created the same inode under
1042 * us. Use the old inode instead of the one we just
1043 * allocated.
1044 */
1045 spin_unlock(&inode_hash_lock);
1046 destroy_inode(inode);
1047 inode = old;
1048 wait_on_inode(inode);
1049 }
1050 return inode;
1051
1052set_failed:
1053 spin_unlock(&inode_hash_lock);
1054 destroy_inode(inode);
1055 return NULL;
1056}
1057EXPORT_SYMBOL(iget5_locked);
1058
1059/**
1060 * iget_locked - obtain an inode from a mounted file system
1061 * @sb: super block of file system
1062 * @ino: inode number to get
1063 *
1064 * Search for the inode specified by @ino in the inode cache and if present
1065 * return it with an increased reference count. This is for file systems
1066 * where the inode number is sufficient for unique identification of an inode.
1067 *
1068 * If the inode is not in cache, allocate a new inode and return it locked,
1069 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1070 * before unlocking it via unlock_new_inode().
1071 */
1072struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1073{
1074 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1075 struct inode *inode;
1076
1077 spin_lock(&inode_hash_lock);
1078 inode = find_inode_fast(sb, head, ino);
1079 spin_unlock(&inode_hash_lock);
1080 if (inode) {
1081 wait_on_inode(inode);
1082 return inode;
1083 }
1084
1085 inode = alloc_inode(sb);
1086 if (inode) {
1087 struct inode *old;
1088
1089 spin_lock(&inode_hash_lock);
1090 /* We released the lock, so.. */
1091 old = find_inode_fast(sb, head, ino);
1092 if (!old) {
1093 inode->i_ino = ino;
1094 spin_lock(&inode->i_lock);
1095 inode->i_state = I_NEW;
1096 hlist_add_head(&inode->i_hash, head);
1097 spin_unlock(&inode->i_lock);
1098 inode_sb_list_add(inode);
1099 spin_unlock(&inode_hash_lock);
1100
1101 /* Return the locked inode with I_NEW set, the
1102 * caller is responsible for filling in the contents
1103 */
1104 return inode;
1105 }
1106
1107 /*
1108 * Uhhuh, somebody else created the same inode under
1109 * us. Use the old inode instead of the one we just
1110 * allocated.
1111 */
1112 spin_unlock(&inode_hash_lock);
1113 destroy_inode(inode);
1114 inode = old;
1115 wait_on_inode(inode);
1116 }
1117 return inode;
1118}
1119EXPORT_SYMBOL(iget_locked);
1120
1121/*
1122 * search the inode cache for a matching inode number.
1123 * If we find one, then the inode number we are trying to
1124 * allocate is not unique and so we should not use it.
1125 *
1126 * Returns 1 if the inode number is unique, 0 if it is not.
1127 */
1128static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1129{
1130 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1131 struct inode *inode;
1132
1133 spin_lock(&inode_hash_lock);
1134 hlist_for_each_entry(inode, b, i_hash) {
1135 if (inode->i_ino == ino && inode->i_sb == sb) {
1136 spin_unlock(&inode_hash_lock);
1137 return 0;
1138 }
1139 }
1140 spin_unlock(&inode_hash_lock);
1141
1142 return 1;
1143}
1144
1145/**
1146 * iunique - get a unique inode number
1147 * @sb: superblock
1148 * @max_reserved: highest reserved inode number
1149 *
1150 * Obtain an inode number that is unique on the system for a given
1151 * superblock. This is used by file systems that have no natural
1152 * permanent inode numbering system. An inode number is returned that
1153 * is higher than the reserved limit but unique.
1154 *
1155 * BUGS:
1156 * With a large number of inodes live on the file system this function
1157 * currently becomes quite slow.
1158 */
1159ino_t iunique(struct super_block *sb, ino_t max_reserved)
1160{
1161 /*
1162 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1163 * error if st_ino won't fit in target struct field. Use 32bit counter
1164 * here to attempt to avoid that.
1165 */
1166 static DEFINE_SPINLOCK(iunique_lock);
1167 static unsigned int counter;
1168 ino_t res;
1169
1170 spin_lock(&iunique_lock);
1171 do {
1172 if (counter <= max_reserved)
1173 counter = max_reserved + 1;
1174 res = counter++;
1175 } while (!test_inode_iunique(sb, res));
1176 spin_unlock(&iunique_lock);
1177
1178 return res;
1179}
1180EXPORT_SYMBOL(iunique);
1181
1182struct inode *igrab(struct inode *inode)
1183{
1184 spin_lock(&inode->i_lock);
1185 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1186 __iget(inode);
1187 spin_unlock(&inode->i_lock);
1188 } else {
1189 spin_unlock(&inode->i_lock);
1190 /*
1191 * Handle the case where s_op->clear_inode is not been
1192 * called yet, and somebody is calling igrab
1193 * while the inode is getting freed.
1194 */
1195 inode = NULL;
1196 }
1197 return inode;
1198}
1199EXPORT_SYMBOL(igrab);
1200
1201/**
1202 * ilookup5_nowait - search for an inode in the inode cache
1203 * @sb: super block of file system to search
1204 * @hashval: hash value (usually inode number) to search for
1205 * @test: callback used for comparisons between inodes
1206 * @data: opaque data pointer to pass to @test
1207 *
1208 * Search for the inode specified by @hashval and @data in the inode cache.
1209 * If the inode is in the cache, the inode is returned with an incremented
1210 * reference count.
1211 *
1212 * Note: I_NEW is not waited upon so you have to be very careful what you do
1213 * with the returned inode. You probably should be using ilookup5() instead.
1214 *
1215 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1216 */
1217struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1218 int (*test)(struct inode *, void *), void *data)
1219{
1220 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1221 struct inode *inode;
1222
1223 spin_lock(&inode_hash_lock);
1224 inode = find_inode(sb, head, test, data);
1225 spin_unlock(&inode_hash_lock);
1226
1227 return inode;
1228}
1229EXPORT_SYMBOL(ilookup5_nowait);
1230
1231/**
1232 * ilookup5 - search for an inode in the inode cache
1233 * @sb: super block of file system to search
1234 * @hashval: hash value (usually inode number) to search for
1235 * @test: callback used for comparisons between inodes
1236 * @data: opaque data pointer to pass to @test
1237 *
1238 * Search for the inode specified by @hashval and @data in the inode cache,
1239 * and if the inode is in the cache, return the inode with an incremented
1240 * reference count. Waits on I_NEW before returning the inode.
1241 * returned with an incremented reference count.
1242 *
1243 * This is a generalized version of ilookup() for file systems where the
1244 * inode number is not sufficient for unique identification of an inode.
1245 *
1246 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1247 */
1248struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1249 int (*test)(struct inode *, void *), void *data)
1250{
1251 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1252
1253 if (inode)
1254 wait_on_inode(inode);
1255 return inode;
1256}
1257EXPORT_SYMBOL(ilookup5);
1258
1259/**
1260 * ilookup - search for an inode in the inode cache
1261 * @sb: super block of file system to search
1262 * @ino: inode number to search for
1263 *
1264 * Search for the inode @ino in the inode cache, and if the inode is in the
1265 * cache, the inode is returned with an incremented reference count.
1266 */
1267struct inode *ilookup(struct super_block *sb, unsigned long ino)
1268{
1269 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1270 struct inode *inode;
1271
1272 spin_lock(&inode_hash_lock);
1273 inode = find_inode_fast(sb, head, ino);
1274 spin_unlock(&inode_hash_lock);
1275
1276 if (inode)
1277 wait_on_inode(inode);
1278 return inode;
1279}
1280EXPORT_SYMBOL(ilookup);
1281
1282int insert_inode_locked(struct inode *inode)
1283{
1284 struct super_block *sb = inode->i_sb;
1285 ino_t ino = inode->i_ino;
1286 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1287
1288 while (1) {
1289 struct inode *old = NULL;
1290 spin_lock(&inode_hash_lock);
1291 hlist_for_each_entry(old, head, i_hash) {
1292 if (old->i_ino != ino)
1293 continue;
1294 if (old->i_sb != sb)
1295 continue;
1296 spin_lock(&old->i_lock);
1297 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1298 spin_unlock(&old->i_lock);
1299 continue;
1300 }
1301 break;
1302 }
1303 if (likely(!old)) {
1304 spin_lock(&inode->i_lock);
1305 inode->i_state |= I_NEW;
1306 hlist_add_head(&inode->i_hash, head);
1307 spin_unlock(&inode->i_lock);
1308 spin_unlock(&inode_hash_lock);
1309 return 0;
1310 }
1311 __iget(old);
1312 spin_unlock(&old->i_lock);
1313 spin_unlock(&inode_hash_lock);
1314 wait_on_inode(old);
1315 if (unlikely(!inode_unhashed(old))) {
1316 iput(old);
1317 return -EBUSY;
1318 }
1319 iput(old);
1320 }
1321}
1322EXPORT_SYMBOL(insert_inode_locked);
1323
1324int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1325 int (*test)(struct inode *, void *), void *data)
1326{
1327 struct super_block *sb = inode->i_sb;
1328 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1329
1330 while (1) {
1331 struct inode *old = NULL;
1332
1333 spin_lock(&inode_hash_lock);
1334 hlist_for_each_entry(old, head, i_hash) {
1335 if (old->i_sb != sb)
1336 continue;
1337 if (!test(old, data))
1338 continue;
1339 spin_lock(&old->i_lock);
1340 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1341 spin_unlock(&old->i_lock);
1342 continue;
1343 }
1344 break;
1345 }
1346 if (likely(!old)) {
1347 spin_lock(&inode->i_lock);
1348 inode->i_state |= I_NEW;
1349 hlist_add_head(&inode->i_hash, head);
1350 spin_unlock(&inode->i_lock);
1351 spin_unlock(&inode_hash_lock);
1352 return 0;
1353 }
1354 __iget(old);
1355 spin_unlock(&old->i_lock);
1356 spin_unlock(&inode_hash_lock);
1357 wait_on_inode(old);
1358 if (unlikely(!inode_unhashed(old))) {
1359 iput(old);
1360 return -EBUSY;
1361 }
1362 iput(old);
1363 }
1364}
1365EXPORT_SYMBOL(insert_inode_locked4);
1366
1367
1368int generic_delete_inode(struct inode *inode)
1369{
1370 return 1;
1371}
1372EXPORT_SYMBOL(generic_delete_inode);
1373
1374/*
1375 * Called when we're dropping the last reference
1376 * to an inode.
1377 *
1378 * Call the FS "drop_inode()" function, defaulting to
1379 * the legacy UNIX filesystem behaviour. If it tells
1380 * us to evict inode, do so. Otherwise, retain inode
1381 * in cache if fs is alive, sync and evict if fs is
1382 * shutting down.
1383 */
1384static void iput_final(struct inode *inode)
1385{
1386 struct super_block *sb = inode->i_sb;
1387 const struct super_operations *op = inode->i_sb->s_op;
1388 int drop;
1389
1390 WARN_ON(inode->i_state & I_NEW);
1391
1392 if (op->drop_inode)
1393 drop = op->drop_inode(inode);
1394 else
1395 drop = generic_drop_inode(inode);
1396
1397 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1398 inode->i_state |= I_REFERENCED;
1399 inode_add_lru(inode);
1400 spin_unlock(&inode->i_lock);
1401 return;
1402 }
1403
1404 if (!drop) {
1405 inode->i_state |= I_WILL_FREE;
1406 spin_unlock(&inode->i_lock);
1407 write_inode_now(inode, 1);
1408 spin_lock(&inode->i_lock);
1409 WARN_ON(inode->i_state & I_NEW);
1410 inode->i_state &= ~I_WILL_FREE;
1411 }
1412
1413 inode->i_state |= I_FREEING;
1414 if (!list_empty(&inode->i_lru))
1415 inode_lru_list_del(inode);
1416 spin_unlock(&inode->i_lock);
1417
1418 evict(inode);
1419}
1420
1421/**
1422 * iput - put an inode
1423 * @inode: inode to put
1424 *
1425 * Puts an inode, dropping its usage count. If the inode use count hits
1426 * zero, the inode is then freed and may also be destroyed.
1427 *
1428 * Consequently, iput() can sleep.
1429 */
1430void iput(struct inode *inode)
1431{
1432 if (inode) {
1433 BUG_ON(inode->i_state & I_CLEAR);
1434
1435 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1436 iput_final(inode);
1437 }
1438}
1439EXPORT_SYMBOL(iput);
1440
1441/**
1442 * bmap - find a block number in a file
1443 * @inode: inode of file
1444 * @block: block to find
1445 *
1446 * Returns the block number on the device holding the inode that
1447 * is the disk block number for the block of the file requested.
1448 * That is, asked for block 4 of inode 1 the function will return the
1449 * disk block relative to the disk start that holds that block of the
1450 * file.
1451 */
1452sector_t bmap(struct inode *inode, sector_t block)
1453{
1454 sector_t res = 0;
1455 if (inode->i_mapping->a_ops->bmap)
1456 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1457 return res;
1458}
1459EXPORT_SYMBOL(bmap);
1460
1461/*
1462 * With relative atime, only update atime if the previous atime is
1463 * earlier than either the ctime or mtime or if at least a day has
1464 * passed since the last atime update.
1465 */
1466static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1467 struct timespec now)
1468{
1469
1470 if (!(mnt->mnt_flags & MNT_RELATIME))
1471 return 1;
1472 /*
1473 * Is mtime younger than atime? If yes, update atime:
1474 */
1475 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1476 return 1;
1477 /*
1478 * Is ctime younger than atime? If yes, update atime:
1479 */
1480 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1481 return 1;
1482
1483 /*
1484 * Is the previous atime value older than a day? If yes,
1485 * update atime:
1486 */
1487 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1488 return 1;
1489 /*
1490 * Good, we can skip the atime update:
1491 */
1492 return 0;
1493}
1494
1495/*
1496 * This does the actual work of updating an inodes time or version. Must have
1497 * had called mnt_want_write() before calling this.
1498 */
1499static int update_time(struct inode *inode, struct timespec *time, int flags)
1500{
1501 if (inode->i_op->update_time)
1502 return inode->i_op->update_time(inode, time, flags);
1503
1504 if (flags & S_ATIME)
1505 inode->i_atime = *time;
1506 if (flags & S_VERSION)
1507 inode_inc_iversion(inode);
1508 if (flags & S_CTIME)
1509 inode->i_ctime = *time;
1510 if (flags & S_MTIME)
1511 inode->i_mtime = *time;
1512 mark_inode_dirty_sync(inode);
1513 return 0;
1514}
1515
1516/**
1517 * touch_atime - update the access time
1518 * @path: the &struct path to update
1519 *
1520 * Update the accessed time on an inode and mark it for writeback.
1521 * This function automatically handles read only file systems and media,
1522 * as well as the "noatime" flag and inode specific "noatime" markers.
1523 */
1524void touch_atime(const struct path *path)
1525{
1526 struct vfsmount *mnt = path->mnt;
1527 struct inode *inode = path->dentry->d_inode;
1528 struct timespec now;
1529
1530 if (inode->i_flags & S_NOATIME)
1531 return;
1532 if (IS_NOATIME(inode))
1533 return;
1534 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1535 return;
1536
1537 if (mnt->mnt_flags & MNT_NOATIME)
1538 return;
1539 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1540 return;
1541
1542 now = current_fs_time(inode->i_sb);
1543
1544 if (!relatime_need_update(mnt, inode, now))
1545 return;
1546
1547 if (timespec_equal(&inode->i_atime, &now))
1548 return;
1549
1550 if (!sb_start_write_trylock(inode->i_sb))
1551 return;
1552
1553 if (__mnt_want_write(mnt))
1554 goto skip_update;
1555 /*
1556 * File systems can error out when updating inodes if they need to
1557 * allocate new space to modify an inode (such is the case for
1558 * Btrfs), but since we touch atime while walking down the path we
1559 * really don't care if we failed to update the atime of the file,
1560 * so just ignore the return value.
1561 * We may also fail on filesystems that have the ability to make parts
1562 * of the fs read only, e.g. subvolumes in Btrfs.
1563 */
1564 update_time(inode, &now, S_ATIME);
1565 __mnt_drop_write(mnt);
1566skip_update:
1567 sb_end_write(inode->i_sb);
1568}
1569EXPORT_SYMBOL(touch_atime);
1570
1571/*
1572 * The logic we want is
1573 *
1574 * if suid or (sgid and xgrp)
1575 * remove privs
1576 */
1577int should_remove_suid(struct dentry *dentry)
1578{
1579 umode_t mode = dentry->d_inode->i_mode;
1580 int kill = 0;
1581
1582 /* suid always must be killed */
1583 if (unlikely(mode & S_ISUID))
1584 kill = ATTR_KILL_SUID;
1585
1586 /*
1587 * sgid without any exec bits is just a mandatory locking mark; leave
1588 * it alone. If some exec bits are set, it's a real sgid; kill it.
1589 */
1590 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1591 kill |= ATTR_KILL_SGID;
1592
1593 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1594 return kill;
1595
1596 return 0;
1597}
1598EXPORT_SYMBOL(should_remove_suid);
1599
1600static int __remove_suid(struct dentry *dentry, int kill)
1601{
1602 struct iattr newattrs;
1603
1604 newattrs.ia_valid = ATTR_FORCE | kill;
1605 /*
1606 * Note we call this on write, so notify_change will not
1607 * encounter any conflicting delegations:
1608 */
1609 return notify_change(dentry, &newattrs, NULL);
1610}
1611
1612int file_remove_suid(struct file *file)
1613{
1614 struct dentry *dentry = file->f_path.dentry;
1615 struct inode *inode = dentry->d_inode;
1616 int killsuid;
1617 int killpriv;
1618 int error = 0;
1619
1620 /* Fast path for nothing security related */
1621 if (IS_NOSEC(inode))
1622 return 0;
1623
1624 killsuid = should_remove_suid(dentry);
1625 killpriv = security_inode_need_killpriv(dentry);
1626
1627 if (killpriv < 0)
1628 return killpriv;
1629 if (killpriv)
1630 error = security_inode_killpriv(dentry);
1631 if (!error && killsuid)
1632 error = __remove_suid(dentry, killsuid);
1633 if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1634 inode->i_flags |= S_NOSEC;
1635
1636 return error;
1637}
1638EXPORT_SYMBOL(file_remove_suid);
1639
1640/**
1641 * file_update_time - update mtime and ctime time
1642 * @file: file accessed
1643 *
1644 * Update the mtime and ctime members of an inode and mark the inode
1645 * for writeback. Note that this function is meant exclusively for
1646 * usage in the file write path of filesystems, and filesystems may
1647 * choose to explicitly ignore update via this function with the
1648 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1649 * timestamps are handled by the server. This can return an error for
1650 * file systems who need to allocate space in order to update an inode.
1651 */
1652
1653int file_update_time(struct file *file)
1654{
1655 struct inode *inode = file_inode(file);
1656 struct timespec now;
1657 int sync_it = 0;
1658 int ret;
1659
1660 /* First try to exhaust all avenues to not sync */
1661 if (IS_NOCMTIME(inode))
1662 return 0;
1663
1664 now = current_fs_time(inode->i_sb);
1665 if (!timespec_equal(&inode->i_mtime, &now))
1666 sync_it = S_MTIME;
1667
1668 if (!timespec_equal(&inode->i_ctime, &now))
1669 sync_it |= S_CTIME;
1670
1671 if (IS_I_VERSION(inode))
1672 sync_it |= S_VERSION;
1673
1674 if (!sync_it)
1675 return 0;
1676
1677 /* Finally allowed to write? Takes lock. */
1678 if (__mnt_want_write_file(file))
1679 return 0;
1680
1681 ret = update_time(inode, &now, sync_it);
1682 __mnt_drop_write_file(file);
1683
1684 return ret;
1685}
1686EXPORT_SYMBOL(file_update_time);
1687
1688int inode_needs_sync(struct inode *inode)
1689{
1690 if (IS_SYNC(inode))
1691 return 1;
1692 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1693 return 1;
1694 return 0;
1695}
1696EXPORT_SYMBOL(inode_needs_sync);
1697
1698int inode_wait(void *word)
1699{
1700 schedule();
1701 return 0;
1702}
1703EXPORT_SYMBOL(inode_wait);
1704
1705/*
1706 * If we try to find an inode in the inode hash while it is being
1707 * deleted, we have to wait until the filesystem completes its
1708 * deletion before reporting that it isn't found. This function waits
1709 * until the deletion _might_ have completed. Callers are responsible
1710 * to recheck inode state.
1711 *
1712 * It doesn't matter if I_NEW is not set initially, a call to
1713 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1714 * will DTRT.
1715 */
1716static void __wait_on_freeing_inode(struct inode *inode)
1717{
1718 wait_queue_head_t *wq;
1719 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1720 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1721 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1722 spin_unlock(&inode->i_lock);
1723 spin_unlock(&inode_hash_lock);
1724 schedule();
1725 finish_wait(wq, &wait.wait);
1726 spin_lock(&inode_hash_lock);
1727}
1728
1729static __initdata unsigned long ihash_entries;
1730static int __init set_ihash_entries(char *str)
1731{
1732 if (!str)
1733 return 0;
1734 ihash_entries = simple_strtoul(str, &str, 0);
1735 return 1;
1736}
1737__setup("ihash_entries=", set_ihash_entries);
1738
1739/*
1740 * Initialize the waitqueues and inode hash table.
1741 */
1742void __init inode_init_early(void)
1743{
1744 unsigned int loop;
1745
1746 /* If hashes are distributed across NUMA nodes, defer
1747 * hash allocation until vmalloc space is available.
1748 */
1749 if (hashdist)
1750 return;
1751
1752 inode_hashtable =
1753 alloc_large_system_hash("Inode-cache",
1754 sizeof(struct hlist_head),
1755 ihash_entries,
1756 14,
1757 HASH_EARLY,
1758 &i_hash_shift,
1759 &i_hash_mask,
1760 0,
1761 0);
1762
1763 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1764 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1765}
1766
1767void __init inode_init(void)
1768{
1769 unsigned int loop;
1770
1771 /* inode slab cache */
1772 inode_cachep = kmem_cache_create("inode_cache",
1773 sizeof(struct inode),
1774 0,
1775 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1776 SLAB_MEM_SPREAD),
1777 init_once);
1778
1779 /* Hash may have been set up in inode_init_early */
1780 if (!hashdist)
1781 return;
1782
1783 inode_hashtable =
1784 alloc_large_system_hash("Inode-cache",
1785 sizeof(struct hlist_head),
1786 ihash_entries,
1787 14,
1788 0,
1789 &i_hash_shift,
1790 &i_hash_mask,
1791 0,
1792 0);
1793
1794 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1795 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1796}
1797
1798void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1799{
1800 inode->i_mode = mode;
1801 if (S_ISCHR(mode)) {
1802 inode->i_fop = &def_chr_fops;
1803 inode->i_rdev = rdev;
1804 } else if (S_ISBLK(mode)) {
1805 inode->i_fop = &def_blk_fops;
1806 inode->i_rdev = rdev;
1807 } else if (S_ISFIFO(mode))
1808 inode->i_fop = &pipefifo_fops;
1809 else if (S_ISSOCK(mode))
1810 inode->i_fop = &bad_sock_fops;
1811 else
1812 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1813 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1814 inode->i_ino);
1815}
1816EXPORT_SYMBOL(init_special_inode);
1817
1818/**
1819 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1820 * @inode: New inode
1821 * @dir: Directory inode
1822 * @mode: mode of the new inode
1823 */
1824void inode_init_owner(struct inode *inode, const struct inode *dir,
1825 umode_t mode)
1826{
1827 inode->i_uid = current_fsuid();
1828 if (dir && dir->i_mode & S_ISGID) {
1829 inode->i_gid = dir->i_gid;
1830 if (S_ISDIR(mode))
1831 mode |= S_ISGID;
1832 } else
1833 inode->i_gid = current_fsgid();
1834 inode->i_mode = mode;
1835}
1836EXPORT_SYMBOL(inode_init_owner);
1837
1838/**
1839 * inode_owner_or_capable - check current task permissions to inode
1840 * @inode: inode being checked
1841 *
1842 * Return true if current either has CAP_FOWNER to the inode, or
1843 * owns the file.
1844 */
1845bool inode_owner_or_capable(const struct inode *inode)
1846{
1847 if (uid_eq(current_fsuid(), inode->i_uid))
1848 return true;
1849 if (inode_capable(inode, CAP_FOWNER))
1850 return true;
1851 return false;
1852}
1853EXPORT_SYMBOL(inode_owner_or_capable);
1854
1855/*
1856 * Direct i/o helper functions
1857 */
1858static void __inode_dio_wait(struct inode *inode)
1859{
1860 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1861 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1862
1863 do {
1864 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1865 if (atomic_read(&inode->i_dio_count))
1866 schedule();
1867 } while (atomic_read(&inode->i_dio_count));
1868 finish_wait(wq, &q.wait);
1869}
1870
1871/**
1872 * inode_dio_wait - wait for outstanding DIO requests to finish
1873 * @inode: inode to wait for
1874 *
1875 * Waits for all pending direct I/O requests to finish so that we can
1876 * proceed with a truncate or equivalent operation.
1877 *
1878 * Must be called under a lock that serializes taking new references
1879 * to i_dio_count, usually by inode->i_mutex.
1880 */
1881void inode_dio_wait(struct inode *inode)
1882{
1883 if (atomic_read(&inode->i_dio_count))
1884 __inode_dio_wait(inode);
1885}
1886EXPORT_SYMBOL(inode_dio_wait);
1887
1888/*
1889 * inode_dio_done - signal finish of a direct I/O requests
1890 * @inode: inode the direct I/O happens on
1891 *
1892 * This is called once we've finished processing a direct I/O request,
1893 * and is used to wake up callers waiting for direct I/O to be quiesced.
1894 */
1895void inode_dio_done(struct inode *inode)
1896{
1897 if (atomic_dec_and_test(&inode->i_dio_count))
1898 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1899}
1900EXPORT_SYMBOL(inode_dio_done);
1901
1902/*
1903 * inode_set_flags - atomically set some inode flags
1904 *
1905 * Note: the caller should be holding i_mutex, or else be sure that
1906 * they have exclusive access to the inode structure (i.e., while the
1907 * inode is being instantiated). The reason for the cmpxchg() loop
1908 * --- which wouldn't be necessary if all code paths which modify
1909 * i_flags actually followed this rule, is that there is at least one
1910 * code path which doesn't today --- for example,
1911 * __generic_file_aio_write() calls file_remove_suid() without holding
1912 * i_mutex --- so we use cmpxchg() out of an abundance of caution.
1913 *
1914 * In the long run, i_mutex is overkill, and we should probably look
1915 * at using the i_lock spinlock to protect i_flags, and then make sure
1916 * it is so documented in include/linux/fs.h and that all code follows
1917 * the locking convention!!
1918 */
1919void inode_set_flags(struct inode *inode, unsigned int flags,
1920 unsigned int mask)
1921{
1922 unsigned int old_flags, new_flags;
1923
1924 WARN_ON_ONCE(flags & ~mask);
1925 do {
1926 old_flags = ACCESS_ONCE(inode->i_flags);
1927 new_flags = (old_flags & ~mask) | flags;
1928 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
1929 new_flags) != old_flags));
1930}
1931EXPORT_SYMBOL(inode_set_flags);