Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/super.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
 
 
 
 
   7 */
   8#include <linux/module.h>
   9#include <linux/init.h>
  10#include <linux/fs.h>
  11#include <linux/statfs.h>
  12#include <linux/buffer_head.h>
  13#include <linux/backing-dev.h>
  14#include <linux/kthread.h>
  15#include <linux/parser.h>
  16#include <linux/mount.h>
  17#include <linux/seq_file.h>
  18#include <linux/proc_fs.h>
  19#include <linux/random.h>
  20#include <linux/exportfs.h>
  21#include <linux/blkdev.h>
  22#include <linux/quotaops.h>
  23#include <linux/f2fs_fs.h>
  24#include <linux/sysfs.h>
  25#include <linux/quota.h>
  26#include <linux/unicode.h>
  27
  28#include "f2fs.h"
  29#include "node.h"
  30#include "segment.h"
  31#include "xattr.h"
  32#include "gc.h"
  33#include "trace.h"
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/f2fs.h>
  37
 
  38static struct kmem_cache *f2fs_inode_cachep;
  39
  40#ifdef CONFIG_F2FS_FAULT_INJECTION
  41
  42const char *f2fs_fault_name[FAULT_MAX] = {
  43	[FAULT_KMALLOC]		= "kmalloc",
  44	[FAULT_KVMALLOC]	= "kvmalloc",
  45	[FAULT_PAGE_ALLOC]	= "page alloc",
  46	[FAULT_PAGE_GET]	= "page get",
  47	[FAULT_ALLOC_BIO]	= "alloc bio",
  48	[FAULT_ALLOC_NID]	= "alloc nid",
  49	[FAULT_ORPHAN]		= "orphan",
  50	[FAULT_BLOCK]		= "no more block",
  51	[FAULT_DIR_DEPTH]	= "too big dir depth",
  52	[FAULT_EVICT_INODE]	= "evict_inode fail",
  53	[FAULT_TRUNCATE]	= "truncate fail",
  54	[FAULT_READ_IO]		= "read IO error",
  55	[FAULT_CHECKPOINT]	= "checkpoint error",
  56	[FAULT_DISCARD]		= "discard error",
  57	[FAULT_WRITE_IO]	= "write IO error",
  58};
  59
  60void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
  61							unsigned int type)
  62{
  63	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
  64
  65	if (rate) {
  66		atomic_set(&ffi->inject_ops, 0);
  67		ffi->inject_rate = rate;
  68	}
  69
  70	if (type)
  71		ffi->inject_type = type;
  72
  73	if (!rate && !type)
  74		memset(ffi, 0, sizeof(struct f2fs_fault_info));
  75}
  76#endif
  77
  78/* f2fs-wide shrinker description */
  79static struct shrinker f2fs_shrinker_info = {
  80	.scan_objects = f2fs_shrink_scan,
  81	.count_objects = f2fs_shrink_count,
  82	.seeks = DEFAULT_SEEKS,
  83};
  84
  85enum {
  86	Opt_gc_background,
  87	Opt_disable_roll_forward,
  88	Opt_norecovery,
  89	Opt_discard,
  90	Opt_nodiscard,
  91	Opt_noheap,
  92	Opt_heap,
  93	Opt_user_xattr,
  94	Opt_nouser_xattr,
  95	Opt_acl,
  96	Opt_noacl,
  97	Opt_active_logs,
  98	Opt_disable_ext_identify,
  99	Opt_inline_xattr,
 100	Opt_noinline_xattr,
 101	Opt_inline_xattr_size,
 102	Opt_inline_data,
 103	Opt_inline_dentry,
 104	Opt_noinline_dentry,
 105	Opt_flush_merge,
 106	Opt_noflush_merge,
 107	Opt_nobarrier,
 108	Opt_fastboot,
 109	Opt_extent_cache,
 110	Opt_noextent_cache,
 111	Opt_noinline_data,
 112	Opt_data_flush,
 113	Opt_reserve_root,
 114	Opt_resgid,
 115	Opt_resuid,
 116	Opt_mode,
 117	Opt_io_size_bits,
 118	Opt_fault_injection,
 119	Opt_fault_type,
 120	Opt_lazytime,
 121	Opt_nolazytime,
 122	Opt_quota,
 123	Opt_noquota,
 124	Opt_usrquota,
 125	Opt_grpquota,
 126	Opt_prjquota,
 127	Opt_usrjquota,
 128	Opt_grpjquota,
 129	Opt_prjjquota,
 130	Opt_offusrjquota,
 131	Opt_offgrpjquota,
 132	Opt_offprjjquota,
 133	Opt_jqfmt_vfsold,
 134	Opt_jqfmt_vfsv0,
 135	Opt_jqfmt_vfsv1,
 136	Opt_whint,
 137	Opt_alloc,
 138	Opt_fsync,
 139	Opt_test_dummy_encryption,
 140	Opt_checkpoint_disable,
 141	Opt_checkpoint_disable_cap,
 142	Opt_checkpoint_disable_cap_perc,
 143	Opt_checkpoint_enable,
 144	Opt_err,
 145};
 146
 147static match_table_t f2fs_tokens = {
 148	{Opt_gc_background, "background_gc=%s"},
 149	{Opt_disable_roll_forward, "disable_roll_forward"},
 150	{Opt_norecovery, "norecovery"},
 151	{Opt_discard, "discard"},
 152	{Opt_nodiscard, "nodiscard"},
 153	{Opt_noheap, "no_heap"},
 154	{Opt_heap, "heap"},
 155	{Opt_user_xattr, "user_xattr"},
 156	{Opt_nouser_xattr, "nouser_xattr"},
 157	{Opt_acl, "acl"},
 158	{Opt_noacl, "noacl"},
 159	{Opt_active_logs, "active_logs=%u"},
 160	{Opt_disable_ext_identify, "disable_ext_identify"},
 161	{Opt_inline_xattr, "inline_xattr"},
 162	{Opt_noinline_xattr, "noinline_xattr"},
 163	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
 164	{Opt_inline_data, "inline_data"},
 165	{Opt_inline_dentry, "inline_dentry"},
 166	{Opt_noinline_dentry, "noinline_dentry"},
 167	{Opt_flush_merge, "flush_merge"},
 168	{Opt_noflush_merge, "noflush_merge"},
 169	{Opt_nobarrier, "nobarrier"},
 170	{Opt_fastboot, "fastboot"},
 171	{Opt_extent_cache, "extent_cache"},
 172	{Opt_noextent_cache, "noextent_cache"},
 173	{Opt_noinline_data, "noinline_data"},
 174	{Opt_data_flush, "data_flush"},
 175	{Opt_reserve_root, "reserve_root=%u"},
 176	{Opt_resgid, "resgid=%u"},
 177	{Opt_resuid, "resuid=%u"},
 178	{Opt_mode, "mode=%s"},
 179	{Opt_io_size_bits, "io_bits=%u"},
 180	{Opt_fault_injection, "fault_injection=%u"},
 181	{Opt_fault_type, "fault_type=%u"},
 182	{Opt_lazytime, "lazytime"},
 183	{Opt_nolazytime, "nolazytime"},
 184	{Opt_quota, "quota"},
 185	{Opt_noquota, "noquota"},
 186	{Opt_usrquota, "usrquota"},
 187	{Opt_grpquota, "grpquota"},
 188	{Opt_prjquota, "prjquota"},
 189	{Opt_usrjquota, "usrjquota=%s"},
 190	{Opt_grpjquota, "grpjquota=%s"},
 191	{Opt_prjjquota, "prjjquota=%s"},
 192	{Opt_offusrjquota, "usrjquota="},
 193	{Opt_offgrpjquota, "grpjquota="},
 194	{Opt_offprjjquota, "prjjquota="},
 195	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
 196	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
 197	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
 198	{Opt_whint, "whint_mode=%s"},
 199	{Opt_alloc, "alloc_mode=%s"},
 200	{Opt_fsync, "fsync_mode=%s"},
 201	{Opt_test_dummy_encryption, "test_dummy_encryption"},
 202	{Opt_checkpoint_disable, "checkpoint=disable"},
 203	{Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
 204	{Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
 205	{Opt_checkpoint_enable, "checkpoint=enable"},
 206	{Opt_err, NULL},
 207};
 208
 209void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
 210{
 211	struct va_format vaf;
 212	va_list args;
 213	int level;
 214
 215	va_start(args, fmt);
 216
 217	level = printk_get_level(fmt);
 218	vaf.fmt = printk_skip_level(fmt);
 219	vaf.va = &args;
 220	printk("%c%cF2FS-fs (%s): %pV\n",
 221	       KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
 222
 223	va_end(args);
 224}
 225
 226#ifdef CONFIG_UNICODE
 227static const struct f2fs_sb_encodings {
 228	__u16 magic;
 229	char *name;
 230	char *version;
 231} f2fs_sb_encoding_map[] = {
 232	{F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"},
 233};
 234
 235static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb,
 236				 const struct f2fs_sb_encodings **encoding,
 237				 __u16 *flags)
 238{
 239	__u16 magic = le16_to_cpu(sb->s_encoding);
 240	int i;
 
 
 
 
 
 
 
 
 241
 242	for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
 243		if (magic == f2fs_sb_encoding_map[i].magic)
 244			break;
 
 
 245
 246	if (i >= ARRAY_SIZE(f2fs_sb_encoding_map))
 
 247		return -EINVAL;
 248
 249	*encoding = &f2fs_sb_encoding_map[i];
 250	*flags = le16_to_cpu(sb->s_encoding_flags);
 251
 252	return 0;
 253}
 254#endif
 255
 256static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
 
 
 257{
 258	block_t limit = min((sbi->user_block_count << 1) / 1000,
 259			sbi->user_block_count - sbi->reserved_blocks);
 
 
 260
 261	/* limit is 0.2% */
 262	if (test_opt(sbi, RESERVE_ROOT) &&
 263			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
 264		F2FS_OPTION(sbi).root_reserved_blocks = limit;
 265		f2fs_info(sbi, "Reduce reserved blocks for root = %u",
 266			  F2FS_OPTION(sbi).root_reserved_blocks);
 267	}
 268	if (!test_opt(sbi, RESERVE_ROOT) &&
 269		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
 270				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
 271		!gid_eq(F2FS_OPTION(sbi).s_resgid,
 272				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
 273		f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
 274			  from_kuid_munged(&init_user_ns,
 275					   F2FS_OPTION(sbi).s_resuid),
 276			  from_kgid_munged(&init_user_ns,
 277					   F2FS_OPTION(sbi).s_resgid));
 278}
 279
 280static void init_once(void *foo)
 281{
 282	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
 283
 284	inode_init_once(&fi->vfs_inode);
 285}
 286
 287#ifdef CONFIG_QUOTA
 288static const char * const quotatypes[] = INITQFNAMES;
 289#define QTYPE2NAME(t) (quotatypes[t])
 290static int f2fs_set_qf_name(struct super_block *sb, int qtype,
 291							substring_t *args)
 292{
 293	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 294	char *qname;
 295	int ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 296
 297	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
 298		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
 299		return -EINVAL;
 300	}
 301	if (f2fs_sb_has_quota_ino(sbi)) {
 302		f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
 303		return 0;
 304	}
 305
 306	qname = match_strdup(args);
 307	if (!qname) {
 308		f2fs_err(sbi, "Not enough memory for storing quotafile name");
 309		return -ENOMEM;
 310	}
 311	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
 312		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
 313			ret = 0;
 314		else
 315			f2fs_err(sbi, "%s quota file already specified",
 316				 QTYPE2NAME(qtype));
 317		goto errout;
 318	}
 319	if (strchr(qname, '/')) {
 320		f2fs_err(sbi, "quotafile must be on filesystem root");
 321		goto errout;
 322	}
 323	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
 324	set_opt(sbi, QUOTA);
 325	return 0;
 326errout:
 327	kvfree(qname);
 328	return ret;
 329}
 330
 331static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
 332{
 333	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 
 334
 335	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
 336		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
 337		return -EINVAL;
 338	}
 339	kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
 340	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
 341	return 0;
 342}
 343
 344static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
 345{
 346	/*
 347	 * We do the test below only for project quotas. 'usrquota' and
 348	 * 'grpquota' mount options are allowed even without quota feature
 349	 * to support legacy quotas in quota files.
 350	 */
 351	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
 352		f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
 353		return -1;
 354	}
 355	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
 356			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
 357			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
 358		if (test_opt(sbi, USRQUOTA) &&
 359				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
 360			clear_opt(sbi, USRQUOTA);
 361
 362		if (test_opt(sbi, GRPQUOTA) &&
 363				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
 364			clear_opt(sbi, GRPQUOTA);
 365
 366		if (test_opt(sbi, PRJQUOTA) &&
 367				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
 368			clear_opt(sbi, PRJQUOTA);
 369
 370		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
 371				test_opt(sbi, PRJQUOTA)) {
 372			f2fs_err(sbi, "old and new quota format mixing");
 373			return -1;
 374		}
 375
 376		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
 377			f2fs_err(sbi, "journaled quota format not specified");
 378			return -1;
 379		}
 380	}
 381
 382	if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
 383		f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
 384		F2FS_OPTION(sbi).s_jquota_fmt = 0;
 385	}
 386	return 0;
 387}
 388#endif
 389
 390static int parse_options(struct super_block *sb, char *options)
 391{
 392	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 393	substring_t args[MAX_OPT_ARGS];
 394	char *p, *name;
 395	int arg = 0;
 396	kuid_t uid;
 397	kgid_t gid;
 398#ifdef CONFIG_QUOTA
 399	int ret;
 400#endif
 401
 402	if (!options)
 403		return 0;
 404
 405	while ((p = strsep(&options, ",")) != NULL) {
 406		int token;
 407		if (!*p)
 408			continue;
 409		/*
 410		 * Initialize args struct so we know whether arg was
 411		 * found; some options take optional arguments.
 412		 */
 413		args[0].to = args[0].from = NULL;
 414		token = match_token(p, f2fs_tokens, args);
 415
 416		switch (token) {
 417		case Opt_gc_background:
 418			name = match_strdup(&args[0]);
 419
 420			if (!name)
 421				return -ENOMEM;
 422			if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
 423				set_opt(sbi, BG_GC);
 424				clear_opt(sbi, FORCE_FG_GC);
 425			} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
 426				clear_opt(sbi, BG_GC);
 427				clear_opt(sbi, FORCE_FG_GC);
 428			} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
 429				set_opt(sbi, BG_GC);
 430				set_opt(sbi, FORCE_FG_GC);
 431			} else {
 432				kvfree(name);
 433				return -EINVAL;
 434			}
 435			kvfree(name);
 436			break;
 437		case Opt_disable_roll_forward:
 438			set_opt(sbi, DISABLE_ROLL_FORWARD);
 439			break;
 440		case Opt_norecovery:
 441			/* this option mounts f2fs with ro */
 442			set_opt(sbi, DISABLE_ROLL_FORWARD);
 443			if (!f2fs_readonly(sb))
 444				return -EINVAL;
 445			break;
 446		case Opt_discard:
 447			set_opt(sbi, DISCARD);
 448			break;
 449		case Opt_nodiscard:
 450			if (f2fs_sb_has_blkzoned(sbi)) {
 451				f2fs_warn(sbi, "discard is required for zoned block devices");
 452				return -EINVAL;
 453			}
 454			clear_opt(sbi, DISCARD);
 455			break;
 456		case Opt_noheap:
 457			set_opt(sbi, NOHEAP);
 458			break;
 459		case Opt_heap:
 460			clear_opt(sbi, NOHEAP);
 461			break;
 462#ifdef CONFIG_F2FS_FS_XATTR
 463		case Opt_user_xattr:
 464			set_opt(sbi, XATTR_USER);
 465			break;
 466		case Opt_nouser_xattr:
 467			clear_opt(sbi, XATTR_USER);
 468			break;
 469		case Opt_inline_xattr:
 470			set_opt(sbi, INLINE_XATTR);
 471			break;
 472		case Opt_noinline_xattr:
 473			clear_opt(sbi, INLINE_XATTR);
 474			break;
 475		case Opt_inline_xattr_size:
 476			if (args->from && match_int(args, &arg))
 477				return -EINVAL;
 478			set_opt(sbi, INLINE_XATTR_SIZE);
 479			F2FS_OPTION(sbi).inline_xattr_size = arg;
 480			break;
 481#else
 482		case Opt_user_xattr:
 483			f2fs_info(sbi, "user_xattr options not supported");
 
 484			break;
 485		case Opt_nouser_xattr:
 486			f2fs_info(sbi, "nouser_xattr options not supported");
 
 487			break;
 488		case Opt_inline_xattr:
 489			f2fs_info(sbi, "inline_xattr options not supported");
 490			break;
 491		case Opt_noinline_xattr:
 492			f2fs_info(sbi, "noinline_xattr options not supported");
 493			break;
 494#endif
 495#ifdef CONFIG_F2FS_FS_POSIX_ACL
 496		case Opt_acl:
 497			set_opt(sbi, POSIX_ACL);
 498			break;
 499		case Opt_noacl:
 500			clear_opt(sbi, POSIX_ACL);
 501			break;
 502#else
 503		case Opt_acl:
 504			f2fs_info(sbi, "acl options not supported");
 505			break;
 506		case Opt_noacl:
 507			f2fs_info(sbi, "noacl options not supported");
 508			break;
 509#endif
 510		case Opt_active_logs:
 511			if (args->from && match_int(args, &arg))
 512				return -EINVAL;
 513			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
 514				return -EINVAL;
 515			F2FS_OPTION(sbi).active_logs = arg;
 516			break;
 517		case Opt_disable_ext_identify:
 518			set_opt(sbi, DISABLE_EXT_IDENTIFY);
 519			break;
 520		case Opt_inline_data:
 521			set_opt(sbi, INLINE_DATA);
 522			break;
 523		case Opt_inline_dentry:
 524			set_opt(sbi, INLINE_DENTRY);
 525			break;
 526		case Opt_noinline_dentry:
 527			clear_opt(sbi, INLINE_DENTRY);
 528			break;
 529		case Opt_flush_merge:
 530			set_opt(sbi, FLUSH_MERGE);
 531			break;
 532		case Opt_noflush_merge:
 533			clear_opt(sbi, FLUSH_MERGE);
 534			break;
 535		case Opt_nobarrier:
 536			set_opt(sbi, NOBARRIER);
 537			break;
 538		case Opt_fastboot:
 539			set_opt(sbi, FASTBOOT);
 540			break;
 541		case Opt_extent_cache:
 542			set_opt(sbi, EXTENT_CACHE);
 543			break;
 544		case Opt_noextent_cache:
 545			clear_opt(sbi, EXTENT_CACHE);
 546			break;
 547		case Opt_noinline_data:
 548			clear_opt(sbi, INLINE_DATA);
 549			break;
 550		case Opt_data_flush:
 551			set_opt(sbi, DATA_FLUSH);
 552			break;
 553		case Opt_reserve_root:
 554			if (args->from && match_int(args, &arg))
 555				return -EINVAL;
 556			if (test_opt(sbi, RESERVE_ROOT)) {
 557				f2fs_info(sbi, "Preserve previous reserve_root=%u",
 558					  F2FS_OPTION(sbi).root_reserved_blocks);
 559			} else {
 560				F2FS_OPTION(sbi).root_reserved_blocks = arg;
 561				set_opt(sbi, RESERVE_ROOT);
 562			}
 563			break;
 564		case Opt_resuid:
 565			if (args->from && match_int(args, &arg))
 566				return -EINVAL;
 567			uid = make_kuid(current_user_ns(), arg);
 568			if (!uid_valid(uid)) {
 569				f2fs_err(sbi, "Invalid uid value %d", arg);
 570				return -EINVAL;
 571			}
 572			F2FS_OPTION(sbi).s_resuid = uid;
 573			break;
 574		case Opt_resgid:
 575			if (args->from && match_int(args, &arg))
 576				return -EINVAL;
 577			gid = make_kgid(current_user_ns(), arg);
 578			if (!gid_valid(gid)) {
 579				f2fs_err(sbi, "Invalid gid value %d", arg);
 580				return -EINVAL;
 581			}
 582			F2FS_OPTION(sbi).s_resgid = gid;
 583			break;
 584		case Opt_mode:
 585			name = match_strdup(&args[0]);
 586
 587			if (!name)
 588				return -ENOMEM;
 589			if (strlen(name) == 8 &&
 590					!strncmp(name, "adaptive", 8)) {
 591				if (f2fs_sb_has_blkzoned(sbi)) {
 592					f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
 593					kvfree(name);
 594					return -EINVAL;
 595				}
 596				set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
 597			} else if (strlen(name) == 3 &&
 598					!strncmp(name, "lfs", 3)) {
 599				set_opt_mode(sbi, F2FS_MOUNT_LFS);
 600			} else {
 601				kvfree(name);
 602				return -EINVAL;
 603			}
 604			kvfree(name);
 605			break;
 606		case Opt_io_size_bits:
 607			if (args->from && match_int(args, &arg))
 608				return -EINVAL;
 609			if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) {
 610				f2fs_warn(sbi, "Not support %d, larger than %d",
 611					  1 << arg, BIO_MAX_PAGES);
 612				return -EINVAL;
 613			}
 614			F2FS_OPTION(sbi).write_io_size_bits = arg;
 615			break;
 616#ifdef CONFIG_F2FS_FAULT_INJECTION
 617		case Opt_fault_injection:
 618			if (args->from && match_int(args, &arg))
 619				return -EINVAL;
 620			f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
 621			set_opt(sbi, FAULT_INJECTION);
 622			break;
 623
 624		case Opt_fault_type:
 625			if (args->from && match_int(args, &arg))
 626				return -EINVAL;
 627			f2fs_build_fault_attr(sbi, 0, arg);
 628			set_opt(sbi, FAULT_INJECTION);
 629			break;
 630#else
 631		case Opt_fault_injection:
 632			f2fs_info(sbi, "fault_injection options not supported");
 633			break;
 634
 635		case Opt_fault_type:
 636			f2fs_info(sbi, "fault_type options not supported");
 637			break;
 638#endif
 639		case Opt_lazytime:
 640			sb->s_flags |= SB_LAZYTIME;
 641			break;
 642		case Opt_nolazytime:
 643			sb->s_flags &= ~SB_LAZYTIME;
 644			break;
 645#ifdef CONFIG_QUOTA
 646		case Opt_quota:
 647		case Opt_usrquota:
 648			set_opt(sbi, USRQUOTA);
 649			break;
 650		case Opt_grpquota:
 651			set_opt(sbi, GRPQUOTA);
 652			break;
 653		case Opt_prjquota:
 654			set_opt(sbi, PRJQUOTA);
 655			break;
 656		case Opt_usrjquota:
 657			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
 658			if (ret)
 659				return ret;
 660			break;
 661		case Opt_grpjquota:
 662			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
 663			if (ret)
 664				return ret;
 665			break;
 666		case Opt_prjjquota:
 667			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
 668			if (ret)
 669				return ret;
 670			break;
 671		case Opt_offusrjquota:
 672			ret = f2fs_clear_qf_name(sb, USRQUOTA);
 673			if (ret)
 674				return ret;
 675			break;
 676		case Opt_offgrpjquota:
 677			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
 678			if (ret)
 679				return ret;
 680			break;
 681		case Opt_offprjjquota:
 682			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
 683			if (ret)
 684				return ret;
 685			break;
 686		case Opt_jqfmt_vfsold:
 687			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
 688			break;
 689		case Opt_jqfmt_vfsv0:
 690			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
 691			break;
 692		case Opt_jqfmt_vfsv1:
 693			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
 694			break;
 695		case Opt_noquota:
 696			clear_opt(sbi, QUOTA);
 697			clear_opt(sbi, USRQUOTA);
 698			clear_opt(sbi, GRPQUOTA);
 699			clear_opt(sbi, PRJQUOTA);
 700			break;
 701#else
 702		case Opt_quota:
 703		case Opt_usrquota:
 704		case Opt_grpquota:
 705		case Opt_prjquota:
 706		case Opt_usrjquota:
 707		case Opt_grpjquota:
 708		case Opt_prjjquota:
 709		case Opt_offusrjquota:
 710		case Opt_offgrpjquota:
 711		case Opt_offprjjquota:
 712		case Opt_jqfmt_vfsold:
 713		case Opt_jqfmt_vfsv0:
 714		case Opt_jqfmt_vfsv1:
 715		case Opt_noquota:
 716			f2fs_info(sbi, "quota operations not supported");
 717			break;
 718#endif
 719		case Opt_whint:
 720			name = match_strdup(&args[0]);
 721			if (!name)
 722				return -ENOMEM;
 723			if (strlen(name) == 10 &&
 724					!strncmp(name, "user-based", 10)) {
 725				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
 726			} else if (strlen(name) == 3 &&
 727					!strncmp(name, "off", 3)) {
 728				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
 729			} else if (strlen(name) == 8 &&
 730					!strncmp(name, "fs-based", 8)) {
 731				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
 732			} else {
 733				kvfree(name);
 734				return -EINVAL;
 735			}
 736			kvfree(name);
 737			break;
 738		case Opt_alloc:
 739			name = match_strdup(&args[0]);
 740			if (!name)
 741				return -ENOMEM;
 742
 743			if (strlen(name) == 7 &&
 744					!strncmp(name, "default", 7)) {
 745				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
 746			} else if (strlen(name) == 5 &&
 747					!strncmp(name, "reuse", 5)) {
 748				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
 749			} else {
 750				kvfree(name);
 751				return -EINVAL;
 752			}
 753			kvfree(name);
 754			break;
 755		case Opt_fsync:
 756			name = match_strdup(&args[0]);
 757			if (!name)
 758				return -ENOMEM;
 759			if (strlen(name) == 5 &&
 760					!strncmp(name, "posix", 5)) {
 761				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
 762			} else if (strlen(name) == 6 &&
 763					!strncmp(name, "strict", 6)) {
 764				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
 765			} else if (strlen(name) == 9 &&
 766					!strncmp(name, "nobarrier", 9)) {
 767				F2FS_OPTION(sbi).fsync_mode =
 768							FSYNC_MODE_NOBARRIER;
 769			} else {
 770				kvfree(name);
 771				return -EINVAL;
 772			}
 773			kvfree(name);
 774			break;
 775		case Opt_test_dummy_encryption:
 776#ifdef CONFIG_FS_ENCRYPTION
 777			if (!f2fs_sb_has_encrypt(sbi)) {
 778				f2fs_err(sbi, "Encrypt feature is off");
 779				return -EINVAL;
 780			}
 781
 782			F2FS_OPTION(sbi).test_dummy_encryption = true;
 783			f2fs_info(sbi, "Test dummy encryption mode enabled");
 784#else
 785			f2fs_info(sbi, "Test dummy encryption mount option ignored");
 786#endif
 787			break;
 788		case Opt_checkpoint_disable_cap_perc:
 789			if (args->from && match_int(args, &arg))
 790				return -EINVAL;
 791			if (arg < 0 || arg > 100)
 792				return -EINVAL;
 793			if (arg == 100)
 794				F2FS_OPTION(sbi).unusable_cap =
 795					sbi->user_block_count;
 796			else
 797				F2FS_OPTION(sbi).unusable_cap =
 798					(sbi->user_block_count / 100) *	arg;
 799			set_opt(sbi, DISABLE_CHECKPOINT);
 800			break;
 801		case Opt_checkpoint_disable_cap:
 802			if (args->from && match_int(args, &arg))
 803				return -EINVAL;
 804			F2FS_OPTION(sbi).unusable_cap = arg;
 805			set_opt(sbi, DISABLE_CHECKPOINT);
 806			break;
 807		case Opt_checkpoint_disable:
 808			set_opt(sbi, DISABLE_CHECKPOINT);
 809			break;
 810		case Opt_checkpoint_enable:
 811			clear_opt(sbi, DISABLE_CHECKPOINT);
 812			break;
 813		default:
 814			f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
 815				 p);
 816			return -EINVAL;
 817		}
 818	}
 819#ifdef CONFIG_QUOTA
 820	if (f2fs_check_quota_options(sbi))
 821		return -EINVAL;
 822#else
 823	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
 824		f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
 825		return -EINVAL;
 826	}
 827	if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
 828		f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
 829		return -EINVAL;
 830	}
 831#endif
 832#ifndef CONFIG_UNICODE
 833	if (f2fs_sb_has_casefold(sbi)) {
 834		f2fs_err(sbi,
 835			"Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
 836		return -EINVAL;
 837	}
 838#endif
 839
 840	if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
 841		f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
 842			 F2FS_IO_SIZE_KB(sbi));
 843		return -EINVAL;
 844	}
 845
 846	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
 847		int min_size, max_size;
 848
 849		if (!f2fs_sb_has_extra_attr(sbi) ||
 850			!f2fs_sb_has_flexible_inline_xattr(sbi)) {
 851			f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
 852			return -EINVAL;
 853		}
 854		if (!test_opt(sbi, INLINE_XATTR)) {
 855			f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
 856			return -EINVAL;
 857		}
 858
 859		min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
 860		max_size = MAX_INLINE_XATTR_SIZE;
 861
 862		if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
 863				F2FS_OPTION(sbi).inline_xattr_size > max_size) {
 864			f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
 865				 min_size, max_size);
 866			return -EINVAL;
 867		}
 868	}
 869
 870	if (test_opt(sbi, DISABLE_CHECKPOINT) && test_opt(sbi, LFS)) {
 871		f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n");
 872		return -EINVAL;
 873	}
 874
 875	/* Not pass down write hints if the number of active logs is lesser
 876	 * than NR_CURSEG_TYPE.
 877	 */
 878	if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
 879		F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
 880	return 0;
 881}
 882
 883static struct inode *f2fs_alloc_inode(struct super_block *sb)
 884{
 885	struct f2fs_inode_info *fi;
 886
 887	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
 888	if (!fi)
 889		return NULL;
 890
 891	init_once((void *) fi);
 892
 893	/* Initialize f2fs-specific inode info */
 894	atomic_set(&fi->dirty_pages, 0);
 
 
 
 
 895	init_rwsem(&fi->i_sem);
 896	INIT_LIST_HEAD(&fi->dirty_list);
 897	INIT_LIST_HEAD(&fi->gdirty_list);
 898	INIT_LIST_HEAD(&fi->inmem_ilist);
 899	INIT_LIST_HEAD(&fi->inmem_pages);
 900	mutex_init(&fi->inmem_lock);
 901	init_rwsem(&fi->i_gc_rwsem[READ]);
 902	init_rwsem(&fi->i_gc_rwsem[WRITE]);
 903	init_rwsem(&fi->i_mmap_sem);
 904	init_rwsem(&fi->i_xattr_sem);
 905
 906	/* Will be used by directory only */
 907	fi->i_dir_level = F2FS_SB(sb)->dir_level;
 908
 909	return &fi->vfs_inode;
 910}
 911
 912static int f2fs_drop_inode(struct inode *inode)
 913{
 914	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 915	int ret;
 916
 917	/*
 918	 * during filesystem shutdown, if checkpoint is disabled,
 919	 * drop useless meta/node dirty pages.
 920	 */
 921	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
 922		if (inode->i_ino == F2FS_NODE_INO(sbi) ||
 923			inode->i_ino == F2FS_META_INO(sbi)) {
 924			trace_f2fs_drop_inode(inode, 1);
 925			return 1;
 926		}
 927	}
 928
 929	/*
 930	 * This is to avoid a deadlock condition like below.
 931	 * writeback_single_inode(inode)
 932	 *  - f2fs_write_data_page
 933	 *    - f2fs_gc -> iput -> evict
 934	 *       - inode_wait_for_writeback(inode)
 935	 */
 936	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
 937		if (!inode->i_nlink && !is_bad_inode(inode)) {
 938			/* to avoid evict_inode call simultaneously */
 939			atomic_inc(&inode->i_count);
 940			spin_unlock(&inode->i_lock);
 941
 942			/* some remained atomic pages should discarded */
 943			if (f2fs_is_atomic_file(inode))
 944				f2fs_drop_inmem_pages(inode);
 945
 946			/* should remain fi->extent_tree for writepage */
 947			f2fs_destroy_extent_node(inode);
 948
 949			sb_start_intwrite(inode->i_sb);
 950			f2fs_i_size_write(inode, 0);
 951
 952			f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
 953					inode, NULL, 0, DATA);
 954			truncate_inode_pages_final(inode->i_mapping);
 955
 956			if (F2FS_HAS_BLOCKS(inode))
 957				f2fs_truncate(inode);
 958
 959			sb_end_intwrite(inode->i_sb);
 960
 961			spin_lock(&inode->i_lock);
 962			atomic_dec(&inode->i_count);
 963		}
 964		trace_f2fs_drop_inode(inode, 0);
 965		return 0;
 966	}
 967	ret = generic_drop_inode(inode);
 968	if (!ret)
 969		ret = fscrypt_drop_inode(inode);
 970	trace_f2fs_drop_inode(inode, ret);
 971	return ret;
 972}
 973
 974int f2fs_inode_dirtied(struct inode *inode, bool sync)
 975{
 976	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 977	int ret = 0;
 978
 979	spin_lock(&sbi->inode_lock[DIRTY_META]);
 980	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
 981		ret = 1;
 982	} else {
 983		set_inode_flag(inode, FI_DIRTY_INODE);
 984		stat_inc_dirty_inode(sbi, DIRTY_META);
 985	}
 986	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
 987		list_add_tail(&F2FS_I(inode)->gdirty_list,
 988				&sbi->inode_list[DIRTY_META]);
 989		inc_page_count(sbi, F2FS_DIRTY_IMETA);
 990	}
 991	spin_unlock(&sbi->inode_lock[DIRTY_META]);
 992	return ret;
 993}
 994
 995void f2fs_inode_synced(struct inode *inode)
 996{
 997	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 998
 999	spin_lock(&sbi->inode_lock[DIRTY_META]);
1000	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1001		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1002		return;
1003	}
1004	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1005		list_del_init(&F2FS_I(inode)->gdirty_list);
1006		dec_page_count(sbi, F2FS_DIRTY_IMETA);
1007	}
1008	clear_inode_flag(inode, FI_DIRTY_INODE);
1009	clear_inode_flag(inode, FI_AUTO_RECOVER);
1010	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1011	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1012}
1013
1014/*
1015 * f2fs_dirty_inode() is called from __mark_inode_dirty()
1016 *
1017 * We should call set_dirty_inode to write the dirty inode through write_inode.
1018 */
1019static void f2fs_dirty_inode(struct inode *inode, int flags)
1020{
1021	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1022
1023	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1024			inode->i_ino == F2FS_META_INO(sbi))
1025		return;
1026
1027	if (flags == I_DIRTY_TIME)
1028		return;
1029
1030	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1031		clear_inode_flag(inode, FI_AUTO_RECOVER);
1032
1033	f2fs_inode_dirtied(inode, false);
1034}
1035
1036static void f2fs_free_inode(struct inode *inode)
1037{
1038	fscrypt_free_inode(inode);
1039	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1040}
1041
1042static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1043{
1044	percpu_counter_destroy(&sbi->alloc_valid_block_count);
1045	percpu_counter_destroy(&sbi->total_valid_inode_count);
1046}
1047
1048static void destroy_device_list(struct f2fs_sb_info *sbi)
1049{
1050	int i;
1051
1052	for (i = 0; i < sbi->s_ndevs; i++) {
1053		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1054#ifdef CONFIG_BLK_DEV_ZONED
1055		kvfree(FDEV(i).blkz_seq);
1056#endif
1057	}
1058	kvfree(sbi->devs);
1059}
1060
1061static void f2fs_put_super(struct super_block *sb)
1062{
1063	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1064	int i;
1065	bool dropped;
1066
1067	f2fs_quota_off_umount(sb);
1068
1069	/* prevent remaining shrinker jobs */
1070	mutex_lock(&sbi->umount_mutex);
1071
1072	/*
1073	 * We don't need to do checkpoint when superblock is clean.
1074	 * But, the previous checkpoint was not done by umount, it needs to do
1075	 * clean checkpoint again.
1076	 */
1077	if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1078			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1079		struct cp_control cpc = {
1080			.reason = CP_UMOUNT,
1081		};
1082		f2fs_write_checkpoint(sbi, &cpc);
1083	}
1084
1085	/* be sure to wait for any on-going discard commands */
1086	dropped = f2fs_issue_discard_timeout(sbi);
1087
1088	if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1089					!sbi->discard_blks && !dropped) {
1090		struct cp_control cpc = {
1091			.reason = CP_UMOUNT | CP_TRIMMED,
1092		};
1093		f2fs_write_checkpoint(sbi, &cpc);
1094	}
 
1095
1096	/*
1097	 * normally superblock is clean, so we need to release this.
1098	 * In addition, EIO will skip do checkpoint, we need this as well.
1099	 */
1100	f2fs_release_ino_entry(sbi, true);
1101
1102	f2fs_leave_shrinker(sbi);
1103	mutex_unlock(&sbi->umount_mutex);
1104
1105	/* our cp_error case, we can wait for any writeback page */
1106	f2fs_flush_merged_writes(sbi);
1107
1108	f2fs_wait_on_all_pages_writeback(sbi);
1109
1110	f2fs_bug_on(sbi, sbi->fsync_node_num);
 
 
1111
1112	iput(sbi->node_inode);
1113	sbi->node_inode = NULL;
1114
1115	iput(sbi->meta_inode);
1116	sbi->meta_inode = NULL;
1117
1118	/*
1119	 * iput() can update stat information, if f2fs_write_checkpoint()
1120	 * above failed with error.
1121	 */
1122	f2fs_destroy_stats(sbi);
1123
1124	/* destroy f2fs internal modules */
1125	f2fs_destroy_node_manager(sbi);
1126	f2fs_destroy_segment_manager(sbi);
1127
1128	kvfree(sbi->ckpt);
1129
1130	f2fs_unregister_sysfs(sbi);
1131
1132	sb->s_fs_info = NULL;
1133	if (sbi->s_chksum_driver)
1134		crypto_free_shash(sbi->s_chksum_driver);
1135	kvfree(sbi->raw_super);
1136
1137	destroy_device_list(sbi);
1138	mempool_destroy(sbi->write_io_dummy);
1139#ifdef CONFIG_QUOTA
1140	for (i = 0; i < MAXQUOTAS; i++)
1141		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1142#endif
1143	destroy_percpu_info(sbi);
1144	for (i = 0; i < NR_PAGE_TYPE; i++)
1145		kvfree(sbi->write_io[i]);
1146#ifdef CONFIG_UNICODE
1147	utf8_unload(sbi->s_encoding);
1148#endif
1149	kvfree(sbi);
1150}
1151
1152int f2fs_sync_fs(struct super_block *sb, int sync)
1153{
1154	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1155	int err = 0;
1156
1157	if (unlikely(f2fs_cp_error(sbi)))
1158		return 0;
1159	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1160		return 0;
1161
1162	trace_f2fs_sync_fs(sb, sync);
1163
1164	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1165		return -EAGAIN;
1166
1167	if (sync) {
1168		struct cp_control cpc;
1169
1170		cpc.reason = __get_cp_reason(sbi);
1171
1172		mutex_lock(&sbi->gc_mutex);
1173		err = f2fs_write_checkpoint(sbi, &cpc);
1174		mutex_unlock(&sbi->gc_mutex);
 
 
1175	}
1176	f2fs_trace_ios(NULL, 1);
1177
1178	return err;
1179}
1180
1181static int f2fs_freeze(struct super_block *sb)
1182{
 
 
1183	if (f2fs_readonly(sb))
1184		return 0;
1185
1186	/* IO error happened before */
1187	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1188		return -EIO;
1189
1190	/* must be clean, since sync_filesystem() was already called */
1191	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1192		return -EINVAL;
1193	return 0;
1194}
1195
1196static int f2fs_unfreeze(struct super_block *sb)
1197{
1198	return 0;
1199}
1200
1201#ifdef CONFIG_QUOTA
1202static int f2fs_statfs_project(struct super_block *sb,
1203				kprojid_t projid, struct kstatfs *buf)
1204{
1205	struct kqid qid;
1206	struct dquot *dquot;
1207	u64 limit;
1208	u64 curblock;
1209
1210	qid = make_kqid_projid(projid);
1211	dquot = dqget(sb, qid);
1212	if (IS_ERR(dquot))
1213		return PTR_ERR(dquot);
1214	spin_lock(&dquot->dq_dqb_lock);
1215
1216	limit = (dquot->dq_dqb.dqb_bsoftlimit ?
1217		 dquot->dq_dqb.dqb_bsoftlimit :
1218		 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
1219	if (limit && buf->f_blocks > limit) {
1220		curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
1221		buf->f_blocks = limit;
1222		buf->f_bfree = buf->f_bavail =
1223			(buf->f_blocks > curblock) ?
1224			 (buf->f_blocks - curblock) : 0;
1225	}
1226
1227	limit = dquot->dq_dqb.dqb_isoftlimit ?
1228		dquot->dq_dqb.dqb_isoftlimit :
1229		dquot->dq_dqb.dqb_ihardlimit;
1230	if (limit && buf->f_files > limit) {
1231		buf->f_files = limit;
1232		buf->f_ffree =
1233			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1234			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1235	}
1236
1237	spin_unlock(&dquot->dq_dqb_lock);
1238	dqput(dquot);
1239	return 0;
1240}
1241#endif
1242
1243static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1244{
1245	struct super_block *sb = dentry->d_sb;
1246	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1247	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1248	block_t total_count, user_block_count, start_count;
1249	u64 avail_node_count;
1250
1251	total_count = le64_to_cpu(sbi->raw_super->block_count);
1252	user_block_count = sbi->user_block_count;
1253	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
 
1254	buf->f_type = F2FS_SUPER_MAGIC;
1255	buf->f_bsize = sbi->blocksize;
1256
1257	buf->f_blocks = total_count - start_count;
1258	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1259						sbi->current_reserved_blocks;
1260
1261	spin_lock(&sbi->stat_lock);
1262	if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1263		buf->f_bfree = 0;
1264	else
1265		buf->f_bfree -= sbi->unusable_block_count;
1266	spin_unlock(&sbi->stat_lock);
1267
1268	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1269		buf->f_bavail = buf->f_bfree -
1270				F2FS_OPTION(sbi).root_reserved_blocks;
1271	else
1272		buf->f_bavail = 0;
1273
1274	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1275
1276	if (avail_node_count > user_block_count) {
1277		buf->f_files = user_block_count;
1278		buf->f_ffree = buf->f_bavail;
1279	} else {
1280		buf->f_files = avail_node_count;
1281		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1282					buf->f_bavail);
1283	}
1284
1285	buf->f_namelen = F2FS_NAME_LEN;
1286	buf->f_fsid.val[0] = (u32)id;
1287	buf->f_fsid.val[1] = (u32)(id >> 32);
1288
1289#ifdef CONFIG_QUOTA
1290	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1291			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1292		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1293	}
1294#endif
1295	return 0;
1296}
1297
1298static inline void f2fs_show_quota_options(struct seq_file *seq,
1299					   struct super_block *sb)
1300{
1301#ifdef CONFIG_QUOTA
1302	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1303
1304	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1305		char *fmtname = "";
1306
1307		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1308		case QFMT_VFS_OLD:
1309			fmtname = "vfsold";
1310			break;
1311		case QFMT_VFS_V0:
1312			fmtname = "vfsv0";
1313			break;
1314		case QFMT_VFS_V1:
1315			fmtname = "vfsv1";
1316			break;
1317		}
1318		seq_printf(seq, ",jqfmt=%s", fmtname);
1319	}
1320
1321	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1322		seq_show_option(seq, "usrjquota",
1323			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1324
1325	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1326		seq_show_option(seq, "grpjquota",
1327			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1328
1329	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1330		seq_show_option(seq, "prjjquota",
1331			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1332#endif
1333}
1334
1335static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1336{
1337	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1338
1339	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1340		if (test_opt(sbi, FORCE_FG_GC))
1341			seq_printf(seq, ",background_gc=%s", "sync");
1342		else
1343			seq_printf(seq, ",background_gc=%s", "on");
1344	} else {
1345		seq_printf(seq, ",background_gc=%s", "off");
1346	}
1347	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1348		seq_puts(seq, ",disable_roll_forward");
1349	if (test_opt(sbi, DISCARD))
1350		seq_puts(seq, ",discard");
1351	else
1352		seq_puts(seq, ",nodiscard");
1353	if (test_opt(sbi, NOHEAP))
1354		seq_puts(seq, ",no_heap");
1355	else
1356		seq_puts(seq, ",heap");
1357#ifdef CONFIG_F2FS_FS_XATTR
1358	if (test_opt(sbi, XATTR_USER))
1359		seq_puts(seq, ",user_xattr");
1360	else
1361		seq_puts(seq, ",nouser_xattr");
1362	if (test_opt(sbi, INLINE_XATTR))
1363		seq_puts(seq, ",inline_xattr");
1364	else
1365		seq_puts(seq, ",noinline_xattr");
1366	if (test_opt(sbi, INLINE_XATTR_SIZE))
1367		seq_printf(seq, ",inline_xattr_size=%u",
1368					F2FS_OPTION(sbi).inline_xattr_size);
1369#endif
1370#ifdef CONFIG_F2FS_FS_POSIX_ACL
1371	if (test_opt(sbi, POSIX_ACL))
1372		seq_puts(seq, ",acl");
1373	else
1374		seq_puts(seq, ",noacl");
1375#endif
1376	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1377		seq_puts(seq, ",disable_ext_identify");
1378	if (test_opt(sbi, INLINE_DATA))
1379		seq_puts(seq, ",inline_data");
1380	else
1381		seq_puts(seq, ",noinline_data");
1382	if (test_opt(sbi, INLINE_DENTRY))
1383		seq_puts(seq, ",inline_dentry");
1384	else
1385		seq_puts(seq, ",noinline_dentry");
1386	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1387		seq_puts(seq, ",flush_merge");
1388	if (test_opt(sbi, NOBARRIER))
1389		seq_puts(seq, ",nobarrier");
1390	if (test_opt(sbi, FASTBOOT))
1391		seq_puts(seq, ",fastboot");
1392	if (test_opt(sbi, EXTENT_CACHE))
1393		seq_puts(seq, ",extent_cache");
1394	else
1395		seq_puts(seq, ",noextent_cache");
1396	if (test_opt(sbi, DATA_FLUSH))
1397		seq_puts(seq, ",data_flush");
1398
1399	seq_puts(seq, ",mode=");
1400	if (test_opt(sbi, ADAPTIVE))
1401		seq_puts(seq, "adaptive");
1402	else if (test_opt(sbi, LFS))
1403		seq_puts(seq, "lfs");
1404	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1405	if (test_opt(sbi, RESERVE_ROOT))
1406		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1407				F2FS_OPTION(sbi).root_reserved_blocks,
1408				from_kuid_munged(&init_user_ns,
1409					F2FS_OPTION(sbi).s_resuid),
1410				from_kgid_munged(&init_user_ns,
1411					F2FS_OPTION(sbi).s_resgid));
1412	if (F2FS_IO_SIZE_BITS(sbi))
1413		seq_printf(seq, ",io_bits=%u",
1414				F2FS_OPTION(sbi).write_io_size_bits);
1415#ifdef CONFIG_F2FS_FAULT_INJECTION
1416	if (test_opt(sbi, FAULT_INJECTION)) {
1417		seq_printf(seq, ",fault_injection=%u",
1418				F2FS_OPTION(sbi).fault_info.inject_rate);
1419		seq_printf(seq, ",fault_type=%u",
1420				F2FS_OPTION(sbi).fault_info.inject_type);
1421	}
1422#endif
1423#ifdef CONFIG_QUOTA
1424	if (test_opt(sbi, QUOTA))
1425		seq_puts(seq, ",quota");
1426	if (test_opt(sbi, USRQUOTA))
1427		seq_puts(seq, ",usrquota");
1428	if (test_opt(sbi, GRPQUOTA))
1429		seq_puts(seq, ",grpquota");
1430	if (test_opt(sbi, PRJQUOTA))
1431		seq_puts(seq, ",prjquota");
1432#endif
1433	f2fs_show_quota_options(seq, sbi->sb);
1434	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1435		seq_printf(seq, ",whint_mode=%s", "user-based");
1436	else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1437		seq_printf(seq, ",whint_mode=%s", "fs-based");
1438#ifdef CONFIG_FS_ENCRYPTION
1439	if (F2FS_OPTION(sbi).test_dummy_encryption)
1440		seq_puts(seq, ",test_dummy_encryption");
1441#endif
1442
1443	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1444		seq_printf(seq, ",alloc_mode=%s", "default");
1445	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1446		seq_printf(seq, ",alloc_mode=%s", "reuse");
1447
1448	if (test_opt(sbi, DISABLE_CHECKPOINT))
1449		seq_printf(seq, ",checkpoint=disable:%u",
1450				F2FS_OPTION(sbi).unusable_cap);
1451	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1452		seq_printf(seq, ",fsync_mode=%s", "posix");
1453	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1454		seq_printf(seq, ",fsync_mode=%s", "strict");
1455	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1456		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1457	return 0;
1458}
1459
1460static void default_options(struct f2fs_sb_info *sbi)
1461{
1462	/* init some FS parameters */
1463	F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1464	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1465	F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1466	F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1467	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1468	F2FS_OPTION(sbi).test_dummy_encryption = false;
1469	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1470	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1471
1472	set_opt(sbi, BG_GC);
1473	set_opt(sbi, INLINE_XATTR);
1474	set_opt(sbi, INLINE_DATA);
1475	set_opt(sbi, INLINE_DENTRY);
1476	set_opt(sbi, EXTENT_CACHE);
1477	set_opt(sbi, NOHEAP);
1478	clear_opt(sbi, DISABLE_CHECKPOINT);
1479	F2FS_OPTION(sbi).unusable_cap = 0;
1480	sbi->sb->s_flags |= SB_LAZYTIME;
1481	set_opt(sbi, FLUSH_MERGE);
1482	set_opt(sbi, DISCARD);
1483	if (f2fs_sb_has_blkzoned(sbi))
1484		set_opt_mode(sbi, F2FS_MOUNT_LFS);
1485	else
1486		set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1487
1488#ifdef CONFIG_F2FS_FS_XATTR
1489	set_opt(sbi, XATTR_USER);
1490#endif
1491#ifdef CONFIG_F2FS_FS_POSIX_ACL
1492	set_opt(sbi, POSIX_ACL);
1493#endif
1494
1495	f2fs_build_fault_attr(sbi, 0, 0);
1496}
1497
1498#ifdef CONFIG_QUOTA
1499static int f2fs_enable_quotas(struct super_block *sb);
1500#endif
1501
1502static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1503{
1504	unsigned int s_flags = sbi->sb->s_flags;
1505	struct cp_control cpc;
1506	int err = 0;
1507	int ret;
1508	block_t unusable;
1509
1510	if (s_flags & SB_RDONLY) {
1511		f2fs_err(sbi, "checkpoint=disable on readonly fs");
1512		return -EINVAL;
1513	}
1514	sbi->sb->s_flags |= SB_ACTIVE;
1515
1516	f2fs_update_time(sbi, DISABLE_TIME);
1517
1518	while (!f2fs_time_over(sbi, DISABLE_TIME)) {
1519		mutex_lock(&sbi->gc_mutex);
1520		err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1521		if (err == -ENODATA) {
1522			err = 0;
1523			break;
1524		}
1525		if (err && err != -EAGAIN)
1526			break;
1527	}
1528
1529	ret = sync_filesystem(sbi->sb);
1530	if (ret || err) {
1531		err = ret ? ret: err;
1532		goto restore_flag;
1533	}
1534
1535	unusable = f2fs_get_unusable_blocks(sbi);
1536	if (f2fs_disable_cp_again(sbi, unusable)) {
1537		err = -EAGAIN;
1538		goto restore_flag;
1539	}
1540
1541	mutex_lock(&sbi->gc_mutex);
1542	cpc.reason = CP_PAUSE;
1543	set_sbi_flag(sbi, SBI_CP_DISABLED);
1544	err = f2fs_write_checkpoint(sbi, &cpc);
1545	if (err)
1546		goto out_unlock;
1547
1548	spin_lock(&sbi->stat_lock);
1549	sbi->unusable_block_count = unusable;
1550	spin_unlock(&sbi->stat_lock);
1551
1552out_unlock:
1553	mutex_unlock(&sbi->gc_mutex);
1554restore_flag:
1555	sbi->sb->s_flags = s_flags;	/* Restore MS_RDONLY status */
1556	return err;
1557}
1558
1559static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
1560{
1561	mutex_lock(&sbi->gc_mutex);
1562	f2fs_dirty_to_prefree(sbi);
1563
1564	clear_sbi_flag(sbi, SBI_CP_DISABLED);
1565	set_sbi_flag(sbi, SBI_IS_DIRTY);
1566	mutex_unlock(&sbi->gc_mutex);
1567
1568	f2fs_sync_fs(sbi->sb, 1);
1569}
1570
 
 
 
 
 
 
 
 
1571static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1572{
1573	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1574	struct f2fs_mount_info org_mount_opt;
1575	unsigned long old_sb_flags;
1576	int err;
1577	bool need_restart_gc = false;
1578	bool need_stop_gc = false;
1579	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1580	bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
1581	bool no_io_align = !F2FS_IO_ALIGNED(sbi);
1582	bool checkpoint_changed;
1583#ifdef CONFIG_QUOTA
1584	int i, j;
1585#endif
1586
1587	/*
1588	 * Save the old mount options in case we
1589	 * need to restore them.
1590	 */
1591	org_mount_opt = sbi->mount_opt;
1592	old_sb_flags = sb->s_flags;
1593
1594#ifdef CONFIG_QUOTA
1595	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1596	for (i = 0; i < MAXQUOTAS; i++) {
1597		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1598			org_mount_opt.s_qf_names[i] =
1599				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1600				GFP_KERNEL);
1601			if (!org_mount_opt.s_qf_names[i]) {
1602				for (j = 0; j < i; j++)
1603					kvfree(org_mount_opt.s_qf_names[j]);
1604				return -ENOMEM;
1605			}
1606		} else {
1607			org_mount_opt.s_qf_names[i] = NULL;
1608		}
1609	}
1610#endif
1611
1612	/* recover superblocks we couldn't write due to previous RO mount */
1613	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1614		err = f2fs_commit_super(sbi, false);
1615		f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
1616			  err);
1617		if (!err)
1618			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1619	}
1620
1621	default_options(sbi);
1622
1623	/* parse mount options */
1624	err = parse_options(sb, data);
1625	if (err)
1626		goto restore_opts;
1627	checkpoint_changed =
1628			disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
1629
1630	/*
1631	 * Previous and new state of filesystem is RO,
1632	 * so skip checking GC and FLUSH_MERGE conditions.
1633	 */
1634	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1635		goto skip;
1636
1637#ifdef CONFIG_QUOTA
1638	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1639		err = dquot_suspend(sb, -1);
1640		if (err < 0)
1641			goto restore_opts;
1642	} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
1643		/* dquot_resume needs RW */
1644		sb->s_flags &= ~SB_RDONLY;
1645		if (sb_any_quota_suspended(sb)) {
1646			dquot_resume(sb, -1);
1647		} else if (f2fs_sb_has_quota_ino(sbi)) {
1648			err = f2fs_enable_quotas(sb);
1649			if (err)
1650				goto restore_opts;
1651		}
1652	}
1653#endif
1654	/* disallow enable/disable extent_cache dynamically */
1655	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1656		err = -EINVAL;
1657		f2fs_warn(sbi, "switch extent_cache option is not allowed");
1658		goto restore_opts;
1659	}
1660
1661	if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
1662		err = -EINVAL;
1663		f2fs_warn(sbi, "switch io_bits option is not allowed");
1664		goto restore_opts;
1665	}
1666
1667	if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
1668		err = -EINVAL;
1669		f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
1670		goto restore_opts;
1671	}
1672
1673	/*
1674	 * We stop the GC thread if FS is mounted as RO
1675	 * or if background_gc = off is passed in mount
1676	 * option. Also sync the filesystem.
1677	 */
1678	if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) {
1679		if (sbi->gc_thread) {
1680			f2fs_stop_gc_thread(sbi);
1681			need_restart_gc = true;
1682		}
1683	} else if (!sbi->gc_thread) {
1684		err = f2fs_start_gc_thread(sbi);
1685		if (err)
1686			goto restore_opts;
1687		need_stop_gc = true;
1688	}
1689
1690	if (*flags & SB_RDONLY ||
1691		F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1692		writeback_inodes_sb(sb, WB_REASON_SYNC);
1693		sync_inodes_sb(sb);
1694
1695		set_sbi_flag(sbi, SBI_IS_DIRTY);
1696		set_sbi_flag(sbi, SBI_IS_CLOSE);
1697		f2fs_sync_fs(sb, 1);
1698		clear_sbi_flag(sbi, SBI_IS_CLOSE);
1699	}
1700
1701	if (checkpoint_changed) {
1702		if (test_opt(sbi, DISABLE_CHECKPOINT)) {
1703			err = f2fs_disable_checkpoint(sbi);
1704			if (err)
1705				goto restore_gc;
1706		} else {
1707			f2fs_enable_checkpoint(sbi);
1708		}
1709	}
1710
1711	/*
1712	 * We stop issue flush thread if FS is mounted as RO
1713	 * or if flush_merge is not passed in mount option.
1714	 */
1715	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1716		clear_opt(sbi, FLUSH_MERGE);
1717		f2fs_destroy_flush_cmd_control(sbi, false);
1718	} else {
1719		err = f2fs_create_flush_cmd_control(sbi);
1720		if (err)
1721			goto restore_gc;
1722	}
1723skip:
1724#ifdef CONFIG_QUOTA
1725	/* Release old quota file names */
1726	for (i = 0; i < MAXQUOTAS; i++)
1727		kvfree(org_mount_opt.s_qf_names[i]);
1728#endif
1729	/* Update the POSIXACL Flag */
1730	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1731		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1732
1733	limit_reserve_root(sbi);
1734	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
1735	return 0;
1736restore_gc:
1737	if (need_restart_gc) {
1738		if (f2fs_start_gc_thread(sbi))
1739			f2fs_warn(sbi, "background gc thread has stopped");
1740	} else if (need_stop_gc) {
1741		f2fs_stop_gc_thread(sbi);
1742	}
1743restore_opts:
1744#ifdef CONFIG_QUOTA
1745	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1746	for (i = 0; i < MAXQUOTAS; i++) {
1747		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1748		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1749	}
1750#endif
1751	sbi->mount_opt = org_mount_opt;
1752	sb->s_flags = old_sb_flags;
1753	return err;
1754}
1755
1756#ifdef CONFIG_QUOTA
1757/* Read data from quotafile */
1758static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1759			       size_t len, loff_t off)
1760{
1761	struct inode *inode = sb_dqopt(sb)->files[type];
1762	struct address_space *mapping = inode->i_mapping;
1763	block_t blkidx = F2FS_BYTES_TO_BLK(off);
1764	int offset = off & (sb->s_blocksize - 1);
1765	int tocopy;
1766	size_t toread;
1767	loff_t i_size = i_size_read(inode);
1768	struct page *page;
1769	char *kaddr;
1770
1771	if (off > i_size)
1772		return 0;
1773
1774	if (off + len > i_size)
1775		len = i_size - off;
1776	toread = len;
1777	while (toread > 0) {
1778		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1779repeat:
1780		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1781		if (IS_ERR(page)) {
1782			if (PTR_ERR(page) == -ENOMEM) {
1783				congestion_wait(BLK_RW_ASYNC, HZ/50);
1784				goto repeat;
1785			}
1786			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1787			return PTR_ERR(page);
1788		}
1789
1790		lock_page(page);
1791
1792		if (unlikely(page->mapping != mapping)) {
1793			f2fs_put_page(page, 1);
1794			goto repeat;
1795		}
1796		if (unlikely(!PageUptodate(page))) {
1797			f2fs_put_page(page, 1);
1798			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1799			return -EIO;
1800		}
1801
1802		kaddr = kmap_atomic(page);
1803		memcpy(data, kaddr + offset, tocopy);
1804		kunmap_atomic(kaddr);
1805		f2fs_put_page(page, 1);
1806
1807		offset = 0;
1808		toread -= tocopy;
1809		data += tocopy;
1810		blkidx++;
1811	}
1812	return len;
1813}
1814
1815/* Write to quotafile */
1816static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1817				const char *data, size_t len, loff_t off)
1818{
1819	struct inode *inode = sb_dqopt(sb)->files[type];
1820	struct address_space *mapping = inode->i_mapping;
1821	const struct address_space_operations *a_ops = mapping->a_ops;
1822	int offset = off & (sb->s_blocksize - 1);
1823	size_t towrite = len;
1824	struct page *page;
1825	char *kaddr;
1826	int err = 0;
1827	int tocopy;
1828
1829	while (towrite > 0) {
1830		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1831								towrite);
1832retry:
1833		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1834							&page, NULL);
1835		if (unlikely(err)) {
1836			if (err == -ENOMEM) {
1837				congestion_wait(BLK_RW_ASYNC, HZ/50);
1838				goto retry;
1839			}
1840			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1841			break;
1842		}
1843
1844		kaddr = kmap_atomic(page);
1845		memcpy(kaddr + offset, data, tocopy);
1846		kunmap_atomic(kaddr);
1847		flush_dcache_page(page);
1848
1849		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1850						page, NULL);
1851		offset = 0;
1852		towrite -= tocopy;
1853		off += tocopy;
1854		data += tocopy;
1855		cond_resched();
1856	}
1857
1858	if (len == towrite)
1859		return err;
1860	inode->i_mtime = inode->i_ctime = current_time(inode);
1861	f2fs_mark_inode_dirty_sync(inode, false);
1862	return len - towrite;
1863}
1864
1865static struct dquot **f2fs_get_dquots(struct inode *inode)
1866{
1867	return F2FS_I(inode)->i_dquot;
1868}
1869
1870static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1871{
1872	return &F2FS_I(inode)->i_reserved_quota;
1873}
1874
1875static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1876{
1877	if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
1878		f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
1879		return 0;
1880	}
1881
1882	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
1883					F2FS_OPTION(sbi).s_jquota_fmt, type);
1884}
1885
1886int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1887{
1888	int enabled = 0;
1889	int i, err;
1890
1891	if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
1892		err = f2fs_enable_quotas(sbi->sb);
1893		if (err) {
1894			f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
1895			return 0;
1896		}
1897		return 1;
1898	}
1899
1900	for (i = 0; i < MAXQUOTAS; i++) {
1901		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1902			err = f2fs_quota_on_mount(sbi, i);
1903			if (!err) {
1904				enabled = 1;
1905				continue;
1906			}
1907			f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
1908				 err, i);
1909		}
1910	}
1911	return enabled;
1912}
1913
1914static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
1915			     unsigned int flags)
1916{
1917	struct inode *qf_inode;
1918	unsigned long qf_inum;
1919	int err;
1920
1921	BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
1922
1923	qf_inum = f2fs_qf_ino(sb, type);
1924	if (!qf_inum)
1925		return -EPERM;
1926
1927	qf_inode = f2fs_iget(sb, qf_inum);
1928	if (IS_ERR(qf_inode)) {
1929		f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
1930		return PTR_ERR(qf_inode);
1931	}
1932
1933	/* Don't account quota for quota files to avoid recursion */
1934	qf_inode->i_flags |= S_NOQUOTA;
1935	err = dquot_enable(qf_inode, type, format_id, flags);
1936	iput(qf_inode);
1937	return err;
1938}
1939
1940static int f2fs_enable_quotas(struct super_block *sb)
1941{
1942	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1943	int type, err = 0;
1944	unsigned long qf_inum;
1945	bool quota_mopt[MAXQUOTAS] = {
1946		test_opt(sbi, USRQUOTA),
1947		test_opt(sbi, GRPQUOTA),
1948		test_opt(sbi, PRJQUOTA),
1949	};
1950
1951	if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
1952		f2fs_err(sbi, "quota file may be corrupted, skip loading it");
1953		return 0;
1954	}
1955
1956	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
1957
1958	for (type = 0; type < MAXQUOTAS; type++) {
1959		qf_inum = f2fs_qf_ino(sb, type);
1960		if (qf_inum) {
1961			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
1962				DQUOT_USAGE_ENABLED |
1963				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
1964			if (err) {
1965				f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
1966					 type, err);
1967				for (type--; type >= 0; type--)
1968					dquot_quota_off(sb, type);
1969				set_sbi_flag(F2FS_SB(sb),
1970						SBI_QUOTA_NEED_REPAIR);
1971				return err;
1972			}
1973		}
1974	}
1975	return 0;
1976}
1977
1978int f2fs_quota_sync(struct super_block *sb, int type)
1979{
1980	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1981	struct quota_info *dqopt = sb_dqopt(sb);
1982	int cnt;
1983	int ret;
1984
1985	/*
1986	 * do_quotactl
1987	 *  f2fs_quota_sync
1988	 *  down_read(quota_sem)
1989	 *  dquot_writeback_dquots()
1990	 *  f2fs_dquot_commit
1991	 *                            block_operation
1992	 *                            down_read(quota_sem)
1993	 */
1994	f2fs_lock_op(sbi);
1995
1996	down_read(&sbi->quota_sem);
1997	ret = dquot_writeback_dquots(sb, type);
1998	if (ret)
1999		goto out;
2000
2001	/*
2002	 * Now when everything is written we can discard the pagecache so
2003	 * that userspace sees the changes.
2004	 */
2005	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2006		struct address_space *mapping;
2007
2008		if (type != -1 && cnt != type)
2009			continue;
2010		if (!sb_has_quota_active(sb, cnt))
2011			continue;
2012
2013		mapping = dqopt->files[cnt]->i_mapping;
2014
2015		ret = filemap_fdatawrite(mapping);
2016		if (ret)
2017			goto out;
2018
2019		/* if we are using journalled quota */
2020		if (is_journalled_quota(sbi))
2021			continue;
2022
2023		ret = filemap_fdatawait(mapping);
2024		if (ret)
2025			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2026
2027		inode_lock(dqopt->files[cnt]);
2028		truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
2029		inode_unlock(dqopt->files[cnt]);
2030	}
2031out:
2032	if (ret)
2033		set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2034	up_read(&sbi->quota_sem);
2035	f2fs_unlock_op(sbi);
2036	return ret;
2037}
2038
2039static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2040							const struct path *path)
2041{
2042	struct inode *inode;
2043	int err;
2044
2045	/* if quota sysfile exists, deny enabling quota with specific file */
2046	if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2047		f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2048		return -EBUSY;
2049	}
2050
2051	err = f2fs_quota_sync(sb, type);
2052	if (err)
2053		return err;
2054
2055	err = dquot_quota_on(sb, type, format_id, path);
2056	if (err)
2057		return err;
2058
2059	inode = d_inode(path->dentry);
2060
2061	inode_lock(inode);
2062	F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2063	f2fs_set_inode_flags(inode);
2064	inode_unlock(inode);
2065	f2fs_mark_inode_dirty_sync(inode, false);
2066
2067	return 0;
2068}
2069
2070static int __f2fs_quota_off(struct super_block *sb, int type)
2071{
2072	struct inode *inode = sb_dqopt(sb)->files[type];
2073	int err;
2074
2075	if (!inode || !igrab(inode))
2076		return dquot_quota_off(sb, type);
2077
2078	err = f2fs_quota_sync(sb, type);
2079	if (err)
2080		goto out_put;
2081
2082	err = dquot_quota_off(sb, type);
2083	if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2084		goto out_put;
2085
2086	inode_lock(inode);
2087	F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2088	f2fs_set_inode_flags(inode);
2089	inode_unlock(inode);
2090	f2fs_mark_inode_dirty_sync(inode, false);
2091out_put:
2092	iput(inode);
2093	return err;
2094}
2095
2096static int f2fs_quota_off(struct super_block *sb, int type)
2097{
2098	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2099	int err;
2100
2101	err = __f2fs_quota_off(sb, type);
2102
2103	/*
2104	 * quotactl can shutdown journalled quota, result in inconsistence
2105	 * between quota record and fs data by following updates, tag the
2106	 * flag to let fsck be aware of it.
2107	 */
2108	if (is_journalled_quota(sbi))
2109		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2110	return err;
2111}
2112
2113void f2fs_quota_off_umount(struct super_block *sb)
2114{
2115	int type;
2116	int err;
2117
2118	for (type = 0; type < MAXQUOTAS; type++) {
2119		err = __f2fs_quota_off(sb, type);
2120		if (err) {
2121			int ret = dquot_quota_off(sb, type);
2122
2123			f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2124				 type, err, ret);
2125			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2126		}
2127	}
2128	/*
2129	 * In case of checkpoint=disable, we must flush quota blocks.
2130	 * This can cause NULL exception for node_inode in end_io, since
2131	 * put_super already dropped it.
2132	 */
2133	sync_filesystem(sb);
2134}
2135
2136static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2137{
2138	struct quota_info *dqopt = sb_dqopt(sb);
2139	int type;
2140
2141	for (type = 0; type < MAXQUOTAS; type++) {
2142		if (!dqopt->files[type])
2143			continue;
2144		f2fs_inode_synced(dqopt->files[type]);
2145	}
2146}
2147
2148static int f2fs_dquot_commit(struct dquot *dquot)
2149{
2150	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2151	int ret;
2152
2153	down_read(&sbi->quota_sem);
2154	ret = dquot_commit(dquot);
2155	if (ret < 0)
2156		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2157	up_read(&sbi->quota_sem);
2158	return ret;
2159}
2160
2161static int f2fs_dquot_acquire(struct dquot *dquot)
2162{
2163	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2164	int ret;
2165
2166	down_read(&sbi->quota_sem);
2167	ret = dquot_acquire(dquot);
2168	if (ret < 0)
2169		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2170	up_read(&sbi->quota_sem);
2171	return ret;
2172}
2173
2174static int f2fs_dquot_release(struct dquot *dquot)
2175{
2176	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2177	int ret;
2178
2179	down_read(&sbi->quota_sem);
2180	ret = dquot_release(dquot);
2181	if (ret < 0)
2182		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2183	up_read(&sbi->quota_sem);
2184	return ret;
2185}
2186
2187static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2188{
2189	struct super_block *sb = dquot->dq_sb;
2190	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2191	int ret;
2192
2193	down_read(&sbi->quota_sem);
2194	ret = dquot_mark_dquot_dirty(dquot);
2195
2196	/* if we are using journalled quota */
2197	if (is_journalled_quota(sbi))
2198		set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2199
2200	up_read(&sbi->quota_sem);
2201	return ret;
2202}
2203
2204static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2205{
2206	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2207	int ret;
2208
2209	down_read(&sbi->quota_sem);
2210	ret = dquot_commit_info(sb, type);
2211	if (ret < 0)
2212		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2213	up_read(&sbi->quota_sem);
2214	return ret;
2215}
2216
2217static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2218{
2219	*projid = F2FS_I(inode)->i_projid;
2220	return 0;
2221}
2222
2223static const struct dquot_operations f2fs_quota_operations = {
2224	.get_reserved_space = f2fs_get_reserved_space,
2225	.write_dquot	= f2fs_dquot_commit,
2226	.acquire_dquot	= f2fs_dquot_acquire,
2227	.release_dquot	= f2fs_dquot_release,
2228	.mark_dirty	= f2fs_dquot_mark_dquot_dirty,
2229	.write_info	= f2fs_dquot_commit_info,
2230	.alloc_dquot	= dquot_alloc,
2231	.destroy_dquot	= dquot_destroy,
2232	.get_projid	= f2fs_get_projid,
2233	.get_next_id	= dquot_get_next_id,
2234};
2235
2236static const struct quotactl_ops f2fs_quotactl_ops = {
2237	.quota_on	= f2fs_quota_on,
2238	.quota_off	= f2fs_quota_off,
2239	.quota_sync	= f2fs_quota_sync,
2240	.get_state	= dquot_get_state,
2241	.set_info	= dquot_set_dqinfo,
2242	.get_dqblk	= dquot_get_dqblk,
2243	.set_dqblk	= dquot_set_dqblk,
2244	.get_nextdqblk	= dquot_get_next_dqblk,
2245};
2246#else
2247int f2fs_quota_sync(struct super_block *sb, int type)
2248{
2249	return 0;
2250}
2251
2252void f2fs_quota_off_umount(struct super_block *sb)
2253{
2254}
2255#endif
2256
2257static const struct super_operations f2fs_sops = {
2258	.alloc_inode	= f2fs_alloc_inode,
2259	.free_inode	= f2fs_free_inode,
2260	.drop_inode	= f2fs_drop_inode,
 
2261	.write_inode	= f2fs_write_inode,
2262	.dirty_inode	= f2fs_dirty_inode,
2263	.show_options	= f2fs_show_options,
2264#ifdef CONFIG_QUOTA
2265	.quota_read	= f2fs_quota_read,
2266	.quota_write	= f2fs_quota_write,
2267	.get_dquots	= f2fs_get_dquots,
2268#endif
2269	.evict_inode	= f2fs_evict_inode,
2270	.put_super	= f2fs_put_super,
2271	.sync_fs	= f2fs_sync_fs,
2272	.freeze_fs	= f2fs_freeze,
2273	.unfreeze_fs	= f2fs_unfreeze,
2274	.statfs		= f2fs_statfs,
2275	.remount_fs	= f2fs_remount,
2276};
2277
2278#ifdef CONFIG_FS_ENCRYPTION
2279static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2280{
2281	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2282				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2283				ctx, len, NULL);
2284}
2285
2286static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2287							void *fs_data)
2288{
2289	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2290
2291	/*
2292	 * Encrypting the root directory is not allowed because fsck
2293	 * expects lost+found directory to exist and remain unencrypted
2294	 * if LOST_FOUND feature is enabled.
2295	 *
2296	 */
2297	if (f2fs_sb_has_lost_found(sbi) &&
2298			inode->i_ino == F2FS_ROOT_INO(sbi))
2299		return -EPERM;
2300
2301	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2302				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2303				ctx, len, fs_data, XATTR_CREATE);
2304}
2305
2306static bool f2fs_dummy_context(struct inode *inode)
2307{
2308	return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode));
2309}
2310
2311static const struct fscrypt_operations f2fs_cryptops = {
2312	.key_prefix	= "f2fs:",
2313	.get_context	= f2fs_get_context,
2314	.set_context	= f2fs_set_context,
2315	.dummy_context	= f2fs_dummy_context,
2316	.empty_dir	= f2fs_empty_dir,
2317	.max_namelen	= F2FS_NAME_LEN,
2318};
2319#endif
2320
2321static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2322		u64 ino, u32 generation)
2323{
2324	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2325	struct inode *inode;
2326
2327	if (f2fs_check_nid_range(sbi, ino))
 
 
2328		return ERR_PTR(-ESTALE);
2329
2330	/*
2331	 * f2fs_iget isn't quite right if the inode is currently unallocated!
2332	 * However f2fs_iget currently does appropriate checks to handle stale
2333	 * inodes so everything is OK.
2334	 */
2335	inode = f2fs_iget(sb, ino);
2336	if (IS_ERR(inode))
2337		return ERR_CAST(inode);
2338	if (unlikely(generation && inode->i_generation != generation)) {
2339		/* we didn't find the right inode.. */
2340		iput(inode);
2341		return ERR_PTR(-ESTALE);
2342	}
2343	return inode;
2344}
2345
2346static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2347		int fh_len, int fh_type)
2348{
2349	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2350				    f2fs_nfs_get_inode);
2351}
2352
2353static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2354		int fh_len, int fh_type)
2355{
2356	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2357				    f2fs_nfs_get_inode);
2358}
2359
2360static const struct export_operations f2fs_export_ops = {
2361	.fh_to_dentry = f2fs_fh_to_dentry,
2362	.fh_to_parent = f2fs_fh_to_parent,
2363	.get_parent = f2fs_get_parent,
2364};
2365
2366static loff_t max_file_blocks(void)
2367{
2368	loff_t result = 0;
2369	loff_t leaf_count = DEF_ADDRS_PER_BLOCK;
2370
2371	/*
2372	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2373	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2374	 * space in inode.i_addr, it will be more safe to reassign
2375	 * result as zero.
2376	 */
2377
2378	/* two direct node blocks */
2379	result += (leaf_count * 2);
2380
2381	/* two indirect node blocks */
2382	leaf_count *= NIDS_PER_BLOCK;
2383	result += (leaf_count * 2);
2384
2385	/* one double indirect node block */
2386	leaf_count *= NIDS_PER_BLOCK;
2387	result += leaf_count;
2388
 
2389	return result;
2390}
2391
2392static int __f2fs_commit_super(struct buffer_head *bh,
2393			struct f2fs_super_block *super)
2394{
2395	lock_buffer(bh);
2396	if (super)
2397		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2398	set_buffer_dirty(bh);
2399	unlock_buffer(bh);
2400
2401	/* it's rare case, we can do fua all the time */
2402	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2403}
2404
2405static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2406					struct buffer_head *bh)
2407{
2408	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2409					(bh->b_data + F2FS_SUPER_OFFSET);
2410	struct super_block *sb = sbi->sb;
2411	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2412	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2413	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2414	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2415	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2416	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2417	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2418	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2419	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2420	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2421	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2422	u32 segment_count = le32_to_cpu(raw_super->segment_count);
2423	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2424	u64 main_end_blkaddr = main_blkaddr +
2425				(segment_count_main << log_blocks_per_seg);
2426	u64 seg_end_blkaddr = segment0_blkaddr +
2427				(segment_count << log_blocks_per_seg);
2428
2429	if (segment0_blkaddr != cp_blkaddr) {
2430		f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2431			  segment0_blkaddr, cp_blkaddr);
2432		return true;
2433	}
2434
2435	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2436							sit_blkaddr) {
2437		f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2438			  cp_blkaddr, sit_blkaddr,
2439			  segment_count_ckpt << log_blocks_per_seg);
2440		return true;
2441	}
2442
2443	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2444							nat_blkaddr) {
2445		f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2446			  sit_blkaddr, nat_blkaddr,
2447			  segment_count_sit << log_blocks_per_seg);
2448		return true;
2449	}
2450
2451	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2452							ssa_blkaddr) {
2453		f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2454			  nat_blkaddr, ssa_blkaddr,
2455			  segment_count_nat << log_blocks_per_seg);
2456		return true;
2457	}
2458
2459	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2460							main_blkaddr) {
2461		f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2462			  ssa_blkaddr, main_blkaddr,
2463			  segment_count_ssa << log_blocks_per_seg);
2464		return true;
2465	}
2466
2467	if (main_end_blkaddr > seg_end_blkaddr) {
2468		f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2469			  main_blkaddr,
2470			  segment0_blkaddr +
2471			  (segment_count << log_blocks_per_seg),
2472			  segment_count_main << log_blocks_per_seg);
2473		return true;
2474	} else if (main_end_blkaddr < seg_end_blkaddr) {
2475		int err = 0;
2476		char *res;
2477
2478		/* fix in-memory information all the time */
2479		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2480				segment0_blkaddr) >> log_blocks_per_seg);
2481
2482		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2483			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2484			res = "internally";
2485		} else {
2486			err = __f2fs_commit_super(bh, NULL);
2487			res = err ? "failed" : "done";
2488		}
2489		f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%u) block(%u)",
2490			  res, main_blkaddr,
2491			  segment0_blkaddr +
2492			  (segment_count << log_blocks_per_seg),
2493			  segment_count_main << log_blocks_per_seg);
2494		if (err)
2495			return true;
2496	}
2497	return false;
2498}
2499
2500static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2501				struct buffer_head *bh)
2502{
2503	block_t segment_count, segs_per_sec, secs_per_zone;
2504	block_t total_sections, blocks_per_seg;
2505	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2506					(bh->b_data + F2FS_SUPER_OFFSET);
2507	unsigned int blocksize;
2508	size_t crc_offset = 0;
2509	__u32 crc = 0;
2510
2511	if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
2512		f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
2513			  F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2514		return -EINVAL;
2515	}
2516
2517	/* Check checksum_offset and crc in superblock */
2518	if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
2519		crc_offset = le32_to_cpu(raw_super->checksum_offset);
2520		if (crc_offset !=
2521			offsetof(struct f2fs_super_block, crc)) {
2522			f2fs_info(sbi, "Invalid SB checksum offset: %zu",
2523				  crc_offset);
2524			return -EFSCORRUPTED;
2525		}
2526		crc = le32_to_cpu(raw_super->crc);
2527		if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
2528			f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
2529			return -EFSCORRUPTED;
2530		}
2531	}
2532
2533	/* Currently, support only 4KB page cache size */
2534	if (F2FS_BLKSIZE != PAGE_SIZE) {
2535		f2fs_info(sbi, "Invalid page_cache_size (%lu), supports only 4KB",
2536			  PAGE_SIZE);
2537		return -EFSCORRUPTED;
 
2538	}
2539
2540	/* Currently, support only 4KB block size */
2541	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2542	if (blocksize != F2FS_BLKSIZE) {
2543		f2fs_info(sbi, "Invalid blocksize (%u), supports only 4KB",
2544			  blocksize);
2545		return -EFSCORRUPTED;
2546	}
2547
2548	/* check log blocks per segment */
2549	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2550		f2fs_info(sbi, "Invalid log blocks per segment (%u)",
2551			  le32_to_cpu(raw_super->log_blocks_per_seg));
2552		return -EFSCORRUPTED;
2553	}
2554
2555	/* Currently, support 512/1024/2048/4096 bytes sector size */
2556	if (le32_to_cpu(raw_super->log_sectorsize) >
2557				F2FS_MAX_LOG_SECTOR_SIZE ||
2558		le32_to_cpu(raw_super->log_sectorsize) <
2559				F2FS_MIN_LOG_SECTOR_SIZE) {
2560		f2fs_info(sbi, "Invalid log sectorsize (%u)",
2561			  le32_to_cpu(raw_super->log_sectorsize));
2562		return -EFSCORRUPTED;
2563	}
2564	if (le32_to_cpu(raw_super->log_sectors_per_block) +
2565		le32_to_cpu(raw_super->log_sectorsize) !=
2566			F2FS_MAX_LOG_SECTOR_SIZE) {
2567		f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
2568			  le32_to_cpu(raw_super->log_sectors_per_block),
2569			  le32_to_cpu(raw_super->log_sectorsize));
2570		return -EFSCORRUPTED;
2571	}
2572
2573	segment_count = le32_to_cpu(raw_super->segment_count);
2574	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2575	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2576	total_sections = le32_to_cpu(raw_super->section_count);
2577
2578	/* blocks_per_seg should be 512, given the above check */
2579	blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2580
2581	if (segment_count > F2FS_MAX_SEGMENT ||
2582				segment_count < F2FS_MIN_SEGMENTS) {
2583		f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
2584		return -EFSCORRUPTED;
2585	}
2586
2587	if (total_sections > segment_count ||
2588			total_sections < F2FS_MIN_SEGMENTS ||
2589			segs_per_sec > segment_count || !segs_per_sec) {
2590		f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
2591			  segment_count, total_sections, segs_per_sec);
2592		return -EFSCORRUPTED;
2593	}
2594
2595	if ((segment_count / segs_per_sec) < total_sections) {
2596		f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
2597			  segment_count, segs_per_sec, total_sections);
2598		return -EFSCORRUPTED;
2599	}
2600
2601	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
2602		f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
2603			  segment_count, le64_to_cpu(raw_super->block_count));
2604		return -EFSCORRUPTED;
2605	}
2606
2607	if (secs_per_zone > total_sections || !secs_per_zone) {
2608		f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
2609			  secs_per_zone, total_sections);
2610		return -EFSCORRUPTED;
2611	}
2612	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2613			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2614			(le32_to_cpu(raw_super->extension_count) +
2615			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2616		f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
2617			  le32_to_cpu(raw_super->extension_count),
2618			  raw_super->hot_ext_count,
2619			  F2FS_MAX_EXTENSION);
2620		return -EFSCORRUPTED;
2621	}
2622
2623	if (le32_to_cpu(raw_super->cp_payload) >
2624				(blocks_per_seg - F2FS_CP_PACKS)) {
2625		f2fs_info(sbi, "Insane cp_payload (%u > %u)",
2626			  le32_to_cpu(raw_super->cp_payload),
2627			  blocks_per_seg - F2FS_CP_PACKS);
2628		return -EFSCORRUPTED;
2629	}
2630
2631	/* check reserved ino info */
2632	if (le32_to_cpu(raw_super->node_ino) != 1 ||
2633		le32_to_cpu(raw_super->meta_ino) != 2 ||
2634		le32_to_cpu(raw_super->root_ino) != 3) {
2635		f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2636			  le32_to_cpu(raw_super->node_ino),
2637			  le32_to_cpu(raw_super->meta_ino),
2638			  le32_to_cpu(raw_super->root_ino));
2639		return -EFSCORRUPTED;
2640	}
2641
2642	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2643	if (sanity_check_area_boundary(sbi, bh))
2644		return -EFSCORRUPTED;
2645
 
 
 
 
 
 
 
 
 
 
2646	return 0;
2647}
2648
2649int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2650{
2651	unsigned int total, fsmeta;
2652	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2653	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2654	unsigned int ovp_segments, reserved_segments;
2655	unsigned int main_segs, blocks_per_seg;
2656	unsigned int sit_segs, nat_segs;
2657	unsigned int sit_bitmap_size, nat_bitmap_size;
2658	unsigned int log_blocks_per_seg;
2659	unsigned int segment_count_main;
2660	unsigned int cp_pack_start_sum, cp_payload;
2661	block_t user_block_count, valid_user_blocks;
2662	block_t avail_node_count, valid_node_count;
2663	int i, j;
2664
2665	total = le32_to_cpu(raw_super->segment_count);
2666	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2667	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2668	fsmeta += sit_segs;
2669	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2670	fsmeta += nat_segs;
2671	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2672	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2673
2674	if (unlikely(fsmeta >= total))
2675		return 1;
2676
2677	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2678	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2679
2680	if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2681			ovp_segments == 0 || reserved_segments == 0)) {
2682		f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
2683		return 1;
2684	}
2685
2686	user_block_count = le64_to_cpu(ckpt->user_block_count);
2687	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2688	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2689	if (!user_block_count || user_block_count >=
2690			segment_count_main << log_blocks_per_seg) {
2691		f2fs_err(sbi, "Wrong user_block_count: %u",
2692			 user_block_count);
2693		return 1;
2694	}
2695
2696	valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
2697	if (valid_user_blocks > user_block_count) {
2698		f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
2699			 valid_user_blocks, user_block_count);
2700		return 1;
2701	}
2702
2703	valid_node_count = le32_to_cpu(ckpt->valid_node_count);
2704	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
2705	if (valid_node_count > avail_node_count) {
2706		f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
2707			 valid_node_count, avail_node_count);
2708		return 1;
2709	}
2710
2711	main_segs = le32_to_cpu(raw_super->segment_count_main);
2712	blocks_per_seg = sbi->blocks_per_seg;
2713
2714	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2715		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2716			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2717			return 1;
2718		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
2719			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2720				le32_to_cpu(ckpt->cur_node_segno[j])) {
2721				f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
2722					 i, j,
2723					 le32_to_cpu(ckpt->cur_node_segno[i]));
2724				return 1;
2725			}
2726		}
2727	}
2728	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2729		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2730			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2731			return 1;
2732		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
2733			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
2734				le32_to_cpu(ckpt->cur_data_segno[j])) {
2735				f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
2736					 i, j,
2737					 le32_to_cpu(ckpt->cur_data_segno[i]));
2738				return 1;
2739			}
2740		}
2741	}
2742	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2743		for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
2744			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2745				le32_to_cpu(ckpt->cur_data_segno[j])) {
2746				f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
2747					 i, j,
2748					 le32_to_cpu(ckpt->cur_node_segno[i]));
2749				return 1;
2750			}
2751		}
2752	}
2753
2754	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2755	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2756
2757	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
2758		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
2759		f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
2760			 sit_bitmap_size, nat_bitmap_size);
2761		return 1;
2762	}
2763
2764	cp_pack_start_sum = __start_sum_addr(sbi);
2765	cp_payload = __cp_payload(sbi);
2766	if (cp_pack_start_sum < cp_payload + 1 ||
2767		cp_pack_start_sum > blocks_per_seg - 1 -
2768			NR_CURSEG_TYPE) {
2769		f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
2770			 cp_pack_start_sum);
2771		return 1;
2772	}
2773
2774	if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
2775		le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
2776		f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
2777			  "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
2778			  "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
2779			  le32_to_cpu(ckpt->checksum_offset));
2780		return 1;
2781	}
2782
2783	if (unlikely(f2fs_cp_error(sbi))) {
2784		f2fs_err(sbi, "A bug case: need to run fsck");
2785		return 1;
2786	}
2787	return 0;
2788}
2789
2790static void init_sb_info(struct f2fs_sb_info *sbi)
2791{
2792	struct f2fs_super_block *raw_super = sbi->raw_super;
2793	int i;
2794
2795	sbi->log_sectors_per_block =
2796		le32_to_cpu(raw_super->log_sectors_per_block);
2797	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2798	sbi->blocksize = 1 << sbi->log_blocksize;
2799	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2800	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2801	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2802	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2803	sbi->total_sections = le32_to_cpu(raw_super->section_count);
2804	sbi->total_node_count =
2805		(le32_to_cpu(raw_super->segment_count_nat) / 2)
2806			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2807	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2808	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2809	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2810	sbi->cur_victim_sec = NULL_SECNO;
2811	sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
2812	sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
2813	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2814	sbi->migration_granularity = sbi->segs_per_sec;
2815
2816	sbi->dir_level = DEF_DIR_LEVEL;
2817	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2818	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2819	sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
2820	sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
2821	sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
2822	sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
2823				DEF_UMOUNT_DISCARD_TIMEOUT;
2824	clear_sbi_flag(sbi, SBI_NEED_FSCK);
2825
2826	for (i = 0; i < NR_COUNT_TYPE; i++)
2827		atomic_set(&sbi->nr_pages[i], 0);
2828
2829	for (i = 0; i < META; i++)
2830		atomic_set(&sbi->wb_sync_req[i], 0);
2831
2832	INIT_LIST_HEAD(&sbi->s_list);
2833	mutex_init(&sbi->umount_mutex);
2834	init_rwsem(&sbi->io_order_lock);
2835	spin_lock_init(&sbi->cp_lock);
2836
2837	sbi->dirty_device = 0;
2838	spin_lock_init(&sbi->dev_lock);
2839
2840	init_rwsem(&sbi->sb_lock);
2841}
2842
2843static int init_percpu_info(struct f2fs_sb_info *sbi)
2844{
2845	int err;
2846
2847	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2848	if (err)
2849		return err;
2850
2851	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
2852								GFP_KERNEL);
2853	if (err)
2854		percpu_counter_destroy(&sbi->alloc_valid_block_count);
2855
2856	return err;
2857}
2858
2859#ifdef CONFIG_BLK_DEV_ZONED
2860static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2861{
2862	struct block_device *bdev = FDEV(devi).bdev;
2863	sector_t nr_sectors = bdev->bd_part->nr_sects;
2864	sector_t sector = 0;
2865	struct blk_zone *zones;
2866	unsigned int i, nr_zones;
2867	unsigned int n = 0;
2868	int err = -EIO;
2869
2870	if (!f2fs_sb_has_blkzoned(sbi))
2871		return 0;
2872
2873	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
2874				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
2875		return -EINVAL;
2876	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2877	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2878				__ilog2_u32(sbi->blocks_per_blkz))
2879		return -EINVAL;
2880	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2881	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2882					sbi->log_blocks_per_blkz;
2883	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2884		FDEV(devi).nr_blkz++;
2885
2886	FDEV(devi).blkz_seq = f2fs_kzalloc(sbi,
2887					BITS_TO_LONGS(FDEV(devi).nr_blkz)
2888					* sizeof(unsigned long),
2889					GFP_KERNEL);
2890	if (!FDEV(devi).blkz_seq)
2891		return -ENOMEM;
2892
2893#define F2FS_REPORT_NR_ZONES   4096
2894
2895	zones = f2fs_kzalloc(sbi,
2896			     array_size(F2FS_REPORT_NR_ZONES,
2897					sizeof(struct blk_zone)),
2898			     GFP_KERNEL);
2899	if (!zones)
2900		return -ENOMEM;
2901
2902	/* Get block zones type */
2903	while (zones && sector < nr_sectors) {
2904
2905		nr_zones = F2FS_REPORT_NR_ZONES;
2906		err = blkdev_report_zones(bdev, sector, zones, &nr_zones);
2907		if (err)
2908			break;
2909		if (!nr_zones) {
2910			err = -EIO;
2911			break;
2912		}
2913
2914		for (i = 0; i < nr_zones; i++) {
2915			if (zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL)
2916				set_bit(n, FDEV(devi).blkz_seq);
2917			sector += zones[i].len;
2918			n++;
2919		}
2920	}
2921
2922	kvfree(zones);
2923
2924	return err;
2925}
2926#endif
2927
2928/*
2929 * Read f2fs raw super block.
2930 * Because we have two copies of super block, so read both of them
2931 * to get the first valid one. If any one of them is broken, we pass
2932 * them recovery flag back to the caller.
2933 */
2934static int read_raw_super_block(struct f2fs_sb_info *sbi,
2935			struct f2fs_super_block **raw_super,
2936			int *valid_super_block, int *recovery)
2937{
2938	struct super_block *sb = sbi->sb;
2939	int block;
2940	struct buffer_head *bh;
2941	struct f2fs_super_block *super;
2942	int err = 0;
2943
2944	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2945	if (!super)
2946		return -ENOMEM;
2947
2948	for (block = 0; block < 2; block++) {
2949		bh = sb_bread(sb, block);
2950		if (!bh) {
2951			f2fs_err(sbi, "Unable to read %dth superblock",
2952				 block + 1);
2953			err = -EIO;
2954			continue;
2955		}
2956
2957		/* sanity checking of raw super */
2958		err = sanity_check_raw_super(sbi, bh);
2959		if (err) {
2960			f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
2961				 block + 1);
2962			brelse(bh);
2963			continue;
2964		}
2965
2966		if (!*raw_super) {
2967			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2968							sizeof(*super));
2969			*valid_super_block = block;
2970			*raw_super = super;
 
 
 
 
 
2971		}
2972		brelse(bh);
2973	}
2974
2975	/* Fail to read any one of the superblocks*/
2976	if (err < 0)
2977		*recovery = 1;
2978
2979	/* No valid superblock */
2980	if (!*raw_super)
2981		kvfree(super);
2982	else
2983		err = 0;
2984
2985	return err;
2986}
2987
2988int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2989{
2990	struct buffer_head *bh;
2991	__u32 crc = 0;
2992	int err;
2993
2994	if ((recover && f2fs_readonly(sbi->sb)) ||
2995				bdev_read_only(sbi->sb->s_bdev)) {
2996		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2997		return -EROFS;
2998	}
2999
3000	/* we should update superblock crc here */
3001	if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3002		crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3003				offsetof(struct f2fs_super_block, crc));
3004		F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3005	}
3006
3007	/* write back-up superblock first */
3008	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3009	if (!bh)
3010		return -EIO;
3011	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3012	brelse(bh);
3013
3014	/* if we are in recovery path, skip writing valid superblock */
3015	if (recover || err)
3016		return err;
3017
3018	/* write current valid superblock */
3019	bh = sb_bread(sbi->sb, sbi->valid_super_block);
3020	if (!bh)
3021		return -EIO;
3022	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3023	brelse(bh);
3024	return err;
3025}
3026
3027static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3028{
3029	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3030	unsigned int max_devices = MAX_DEVICES;
3031	int i;
3032
3033	/* Initialize single device information */
3034	if (!RDEV(0).path[0]) {
3035		if (!bdev_is_zoned(sbi->sb->s_bdev))
3036			return 0;
3037		max_devices = 1;
3038	}
3039
3040	/*
3041	 * Initialize multiple devices information, or single
3042	 * zoned block device information.
3043	 */
3044	sbi->devs = f2fs_kzalloc(sbi,
3045				 array_size(max_devices,
3046					    sizeof(struct f2fs_dev_info)),
3047				 GFP_KERNEL);
3048	if (!sbi->devs)
3049		return -ENOMEM;
3050
3051	for (i = 0; i < max_devices; i++) {
3052
3053		if (i > 0 && !RDEV(i).path[0])
3054			break;
3055
3056		if (max_devices == 1) {
3057			/* Single zoned block device mount */
3058			FDEV(0).bdev =
3059				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3060					sbi->sb->s_mode, sbi->sb->s_type);
3061		} else {
3062			/* Multi-device mount */
3063			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3064			FDEV(i).total_segments =
3065				le32_to_cpu(RDEV(i).total_segments);
3066			if (i == 0) {
3067				FDEV(i).start_blk = 0;
3068				FDEV(i).end_blk = FDEV(i).start_blk +
3069				    (FDEV(i).total_segments <<
3070				    sbi->log_blocks_per_seg) - 1 +
3071				    le32_to_cpu(raw_super->segment0_blkaddr);
3072			} else {
3073				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3074				FDEV(i).end_blk = FDEV(i).start_blk +
3075					(FDEV(i).total_segments <<
3076					sbi->log_blocks_per_seg) - 1;
3077			}
3078			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3079					sbi->sb->s_mode, sbi->sb->s_type);
3080		}
3081		if (IS_ERR(FDEV(i).bdev))
3082			return PTR_ERR(FDEV(i).bdev);
3083
3084		/* to release errored devices */
3085		sbi->s_ndevs = i + 1;
3086
3087#ifdef CONFIG_BLK_DEV_ZONED
3088		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3089				!f2fs_sb_has_blkzoned(sbi)) {
3090			f2fs_err(sbi, "Zoned block device feature not enabled\n");
3091			return -EINVAL;
3092		}
3093		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3094			if (init_blkz_info(sbi, i)) {
3095				f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3096				return -EINVAL;
3097			}
3098			if (max_devices == 1)
3099				break;
3100			f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3101				  i, FDEV(i).path,
3102				  FDEV(i).total_segments,
3103				  FDEV(i).start_blk, FDEV(i).end_blk,
3104				  bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3105				  "Host-aware" : "Host-managed");
3106			continue;
3107		}
3108#endif
3109		f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3110			  i, FDEV(i).path,
3111			  FDEV(i).total_segments,
3112			  FDEV(i).start_blk, FDEV(i).end_blk);
3113	}
3114	f2fs_info(sbi,
3115		  "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3116	return 0;
3117}
3118
3119static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
3120{
3121#ifdef CONFIG_UNICODE
3122	if (f2fs_sb_has_casefold(sbi) && !sbi->s_encoding) {
3123		const struct f2fs_sb_encodings *encoding_info;
3124		struct unicode_map *encoding;
3125		__u16 encoding_flags;
3126
3127		if (f2fs_sb_has_encrypt(sbi)) {
3128			f2fs_err(sbi,
3129				"Can't mount with encoding and encryption");
3130			return -EINVAL;
3131		}
3132
3133		if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info,
3134					  &encoding_flags)) {
3135			f2fs_err(sbi,
3136				 "Encoding requested by superblock is unknown");
3137			return -EINVAL;
3138		}
3139
3140		encoding = utf8_load(encoding_info->version);
3141		if (IS_ERR(encoding)) {
3142			f2fs_err(sbi,
3143				 "can't mount with superblock charset: %s-%s "
3144				 "not supported by the kernel. flags: 0x%x.",
3145				 encoding_info->name, encoding_info->version,
3146				 encoding_flags);
3147			return PTR_ERR(encoding);
3148		}
3149		f2fs_info(sbi, "Using encoding defined by superblock: "
3150			 "%s-%s with flags 0x%hx", encoding_info->name,
3151			 encoding_info->version?:"\b", encoding_flags);
3152
3153		sbi->s_encoding = encoding;
3154		sbi->s_encoding_flags = encoding_flags;
3155		sbi->sb->s_d_op = &f2fs_dentry_ops;
3156	}
3157#else
3158	if (f2fs_sb_has_casefold(sbi)) {
3159		f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
3160		return -EINVAL;
3161	}
3162#endif
3163	return 0;
3164}
3165
3166static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3167{
3168	struct f2fs_sm_info *sm_i = SM_I(sbi);
3169
3170	/* adjust parameters according to the volume size */
3171	if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3172		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3173		sm_i->dcc_info->discard_granularity = 1;
3174		sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3175	}
3176
3177	sbi->readdir_ra = 1;
3178}
3179
3180static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3181{
3182	struct f2fs_sb_info *sbi;
3183	struct f2fs_super_block *raw_super;
 
3184	struct inode *root;
3185	int err;
3186	bool skip_recovery = false, need_fsck = false;
3187	char *options = NULL;
3188	int recovery, i, valid_super_block;
3189	struct curseg_info *seg_i;
3190	int retry_cnt = 1;
3191
3192try_onemore:
3193	err = -EINVAL;
3194	raw_super = NULL;
3195	valid_super_block = -1;
3196	recovery = 0;
3197
3198	/* allocate memory for f2fs-specific super block info */
3199	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3200	if (!sbi)
3201		return -ENOMEM;
3202
3203	sbi->sb = sb;
3204
3205	/* Load the checksum driver */
3206	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3207	if (IS_ERR(sbi->s_chksum_driver)) {
3208		f2fs_err(sbi, "Cannot load crc32 driver.");
3209		err = PTR_ERR(sbi->s_chksum_driver);
3210		sbi->s_chksum_driver = NULL;
3211		goto free_sbi;
3212	}
3213
3214	/* set a block size */
3215	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3216		f2fs_err(sbi, "unable to set blocksize");
3217		goto free_sbi;
3218	}
3219
3220	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3221								&recovery);
3222	if (err)
3223		goto free_sbi;
3224
3225	sb->s_fs_info = sbi;
3226	sbi->raw_super = raw_super;
 
3227
3228	/* precompute checksum seed for metadata */
3229	if (f2fs_sb_has_inode_chksum(sbi))
3230		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3231						sizeof(raw_super->uuid));
3232
3233	/*
3234	 * The BLKZONED feature indicates that the drive was formatted with
3235	 * zone alignment optimization. This is optional for host-aware
3236	 * devices, but mandatory for host-managed zoned block devices.
3237	 */
3238#ifndef CONFIG_BLK_DEV_ZONED
3239	if (f2fs_sb_has_blkzoned(sbi)) {
3240		f2fs_err(sbi, "Zoned block device support is not enabled");
3241		err = -EOPNOTSUPP;
3242		goto free_sb_buf;
3243	}
3244#endif
3245	default_options(sbi);
3246	/* parse mount options */
3247	options = kstrdup((const char *)data, GFP_KERNEL);
3248	if (data && !options) {
3249		err = -ENOMEM;
3250		goto free_sb_buf;
3251	}
3252
3253	err = parse_options(sb, options);
3254	if (err)
3255		goto free_options;
3256
3257	sbi->max_file_blocks = max_file_blocks();
3258	sb->s_maxbytes = sbi->max_file_blocks <<
3259				le32_to_cpu(raw_super->log_blocksize);
3260	sb->s_max_links = F2FS_LINK_MAX;
3261
3262	err = f2fs_setup_casefold(sbi);
3263	if (err)
3264		goto free_options;
3265
3266#ifdef CONFIG_QUOTA
3267	sb->dq_op = &f2fs_quota_operations;
3268	sb->s_qcop = &f2fs_quotactl_ops;
3269	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3270
3271	if (f2fs_sb_has_quota_ino(sbi)) {
3272		for (i = 0; i < MAXQUOTAS; i++) {
3273			if (f2fs_qf_ino(sbi->sb, i))
3274				sbi->nquota_files++;
3275		}
3276	}
3277#endif
3278
3279	sb->s_op = &f2fs_sops;
3280#ifdef CONFIG_FS_ENCRYPTION
3281	sb->s_cop = &f2fs_cryptops;
3282#endif
3283#ifdef CONFIG_FS_VERITY
3284	sb->s_vop = &f2fs_verityops;
3285#endif
3286	sb->s_xattr = f2fs_xattr_handlers;
3287	sb->s_export_op = &f2fs_export_ops;
3288	sb->s_magic = F2FS_SUPER_MAGIC;
3289	sb->s_time_gran = 1;
3290	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3291		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3292	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3293	sb->s_iflags |= SB_I_CGROUPWB;
3294
3295	/* init f2fs-specific super block info */
3296	sbi->valid_super_block = valid_super_block;
 
 
3297	mutex_init(&sbi->gc_mutex);
3298	mutex_init(&sbi->writepages);
3299	mutex_init(&sbi->cp_mutex);
3300	mutex_init(&sbi->resize_mutex);
3301	init_rwsem(&sbi->node_write);
3302	init_rwsem(&sbi->node_change);
3303
3304	/* disallow all the data/node/meta page writes */
3305	set_sbi_flag(sbi, SBI_POR_DOING);
3306	spin_lock_init(&sbi->stat_lock);
3307
3308	/* init iostat info */
3309	spin_lock_init(&sbi->iostat_lock);
3310	sbi->iostat_enable = false;
3311
3312	for (i = 0; i < NR_PAGE_TYPE; i++) {
3313		int n = (i == META) ? 1: NR_TEMP_TYPE;
3314		int j;
3315
3316		sbi->write_io[i] =
3317			f2fs_kmalloc(sbi,
3318				     array_size(n,
3319						sizeof(struct f2fs_bio_info)),
3320				     GFP_KERNEL);
3321		if (!sbi->write_io[i]) {
3322			err = -ENOMEM;
3323			goto free_bio_info;
3324		}
3325
3326		for (j = HOT; j < n; j++) {
3327			init_rwsem(&sbi->write_io[i][j].io_rwsem);
3328			sbi->write_io[i][j].sbi = sbi;
3329			sbi->write_io[i][j].bio = NULL;
3330			spin_lock_init(&sbi->write_io[i][j].io_lock);
3331			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3332		}
3333	}
3334
3335	init_rwsem(&sbi->cp_rwsem);
3336	init_rwsem(&sbi->quota_sem);
3337	init_waitqueue_head(&sbi->cp_wait);
3338	init_sb_info(sbi);
3339
3340	err = init_percpu_info(sbi);
3341	if (err)
3342		goto free_bio_info;
3343
3344	if (F2FS_IO_ALIGNED(sbi)) {
3345		sbi->write_io_dummy =
3346			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
3347		if (!sbi->write_io_dummy) {
3348			err = -ENOMEM;
3349			goto free_percpu;
3350		}
3351	}
3352
3353	/* get an inode for meta space */
3354	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
3355	if (IS_ERR(sbi->meta_inode)) {
3356		f2fs_err(sbi, "Failed to read F2FS meta data inode");
3357		err = PTR_ERR(sbi->meta_inode);
3358		goto free_io_dummy;
3359	}
3360
3361	err = f2fs_get_valid_checkpoint(sbi);
3362	if (err) {
3363		f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
3364		goto free_meta_inode;
3365	}
3366
3367	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
3368		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3369	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
3370		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3371		sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
3372	}
3373
3374	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
3375		set_sbi_flag(sbi, SBI_NEED_FSCK);
3376
3377	/* Initialize device list */
3378	err = f2fs_scan_devices(sbi);
3379	if (err) {
3380		f2fs_err(sbi, "Failed to find devices");
3381		goto free_devices;
3382	}
3383
3384	sbi->total_valid_node_count =
3385				le32_to_cpu(sbi->ckpt->valid_node_count);
3386	percpu_counter_set(&sbi->total_valid_inode_count,
3387				le32_to_cpu(sbi->ckpt->valid_inode_count));
3388	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
3389	sbi->total_valid_block_count =
3390				le64_to_cpu(sbi->ckpt->valid_block_count);
3391	sbi->last_valid_block_count = sbi->total_valid_block_count;
3392	sbi->reserved_blocks = 0;
3393	sbi->current_reserved_blocks = 0;
3394	limit_reserve_root(sbi);
3395
3396	for (i = 0; i < NR_INODE_TYPE; i++) {
3397		INIT_LIST_HEAD(&sbi->inode_list[i]);
3398		spin_lock_init(&sbi->inode_lock[i]);
3399	}
3400	mutex_init(&sbi->flush_lock);
3401
3402	f2fs_init_extent_cache_info(sbi);
3403
3404	f2fs_init_ino_entry_info(sbi);
3405
3406	f2fs_init_fsync_node_info(sbi);
3407
3408	/* setup f2fs internal modules */
3409	err = f2fs_build_segment_manager(sbi);
3410	if (err) {
3411		f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
3412			 err);
3413		goto free_sm;
3414	}
3415	err = f2fs_build_node_manager(sbi);
3416	if (err) {
3417		f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
3418			 err);
3419		goto free_nm;
3420	}
3421
3422	/* For write statistics */
3423	if (sb->s_bdev->bd_part)
3424		sbi->sectors_written_start =
3425			(u64)part_stat_read(sb->s_bdev->bd_part,
3426					    sectors[STAT_WRITE]);
3427
3428	/* Read accumulated write IO statistics if exists */
3429	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
3430	if (__exist_node_summaries(sbi))
3431		sbi->kbytes_written =
3432			le64_to_cpu(seg_i->journal->info.kbytes_written);
3433
3434	f2fs_build_gc_manager(sbi);
3435
3436	err = f2fs_build_stats(sbi);
3437	if (err)
3438		goto free_nm;
3439
3440	/* get an inode for node space */
3441	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
3442	if (IS_ERR(sbi->node_inode)) {
3443		f2fs_err(sbi, "Failed to read node inode");
3444		err = PTR_ERR(sbi->node_inode);
3445		goto free_stats;
3446	}
3447
 
 
 
3448	/* read root inode and dentry */
3449	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3450	if (IS_ERR(root)) {
3451		f2fs_err(sbi, "Failed to read root inode");
3452		err = PTR_ERR(root);
3453		goto free_node_inode;
3454	}
3455	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
3456			!root->i_size || !root->i_nlink) {
3457		iput(root);
3458		err = -EINVAL;
3459		goto free_node_inode;
3460	}
3461
3462	sb->s_root = d_make_root(root); /* allocate root dentry */
3463	if (!sb->s_root) {
3464		err = -ENOMEM;
3465		goto free_node_inode;
3466	}
3467
3468	err = f2fs_register_sysfs(sbi);
3469	if (err)
3470		goto free_root_inode;
3471
3472#ifdef CONFIG_QUOTA
3473	/* Enable quota usage during mount */
3474	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
3475		err = f2fs_enable_quotas(sb);
3476		if (err)
3477			f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
3478	}
3479#endif
3480	/* if there are nt orphan nodes free them */
3481	err = f2fs_recover_orphan_inodes(sbi);
3482	if (err)
3483		goto free_meta;
3484
3485	if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
3486		goto reset_checkpoint;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3487
3488	/* recover fsynced data */
3489	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
3490		/*
3491		 * mount should be failed, when device has readonly mode, and
3492		 * previous checkpoint was not done by clean system shutdown.
3493		 */
3494		if (f2fs_hw_is_readonly(sbi)) {
3495			if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3496				err = -EROFS;
3497				f2fs_err(sbi, "Need to recover fsync data, but write access unavailable");
3498				goto free_meta;
3499			}
3500			f2fs_info(sbi, "write access unavailable, skipping recovery");
3501			goto reset_checkpoint;
3502		}
3503
3504		if (need_fsck)
3505			set_sbi_flag(sbi, SBI_NEED_FSCK);
3506
3507		if (skip_recovery)
3508			goto reset_checkpoint;
3509
3510		err = f2fs_recover_fsync_data(sbi, false);
3511		if (err < 0) {
3512			if (err != -ENOMEM)
3513				skip_recovery = true;
3514			need_fsck = true;
3515			f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
3516				 err);
3517			goto free_meta;
3518		}
3519	} else {
3520		err = f2fs_recover_fsync_data(sbi, true);
3521
3522		if (!f2fs_readonly(sb) && err > 0) {
3523			err = -EINVAL;
3524			f2fs_err(sbi, "Need to recover fsync data");
3525			goto free_meta;
3526		}
3527	}
3528reset_checkpoint:
3529	/* f2fs_recover_fsync_data() cleared this already */
3530	clear_sbi_flag(sbi, SBI_POR_DOING);
3531
3532	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
3533		err = f2fs_disable_checkpoint(sbi);
3534		if (err)
3535			goto sync_free_meta;
3536	} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
3537		f2fs_enable_checkpoint(sbi);
3538	}
3539
3540	/*
3541	 * If filesystem is not mounted as read-only then
3542	 * do start the gc_thread.
3543	 */
3544	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
3545		/* After POR, we can run background GC thread.*/
3546		err = f2fs_start_gc_thread(sbi);
3547		if (err)
3548			goto sync_free_meta;
3549	}
3550	kvfree(options);
3551
3552	/* recover broken superblock */
3553	if (recovery) {
3554		err = f2fs_commit_super(sbi, true);
3555		f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
3556			  sbi->valid_super_block ? 1 : 2, err);
3557	}
3558
3559	f2fs_join_shrinker(sbi);
3560
3561	f2fs_tuning_parameters(sbi);
3562
3563	f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
3564		    cur_cp_version(F2FS_CKPT(sbi)));
3565	f2fs_update_time(sbi, CP_TIME);
3566	f2fs_update_time(sbi, REQ_TIME);
3567	clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3568	return 0;
3569
3570sync_free_meta:
3571	/* safe to flush all the data */
3572	sync_filesystem(sbi->sb);
3573	retry_cnt = 0;
3574
3575free_meta:
3576#ifdef CONFIG_QUOTA
3577	f2fs_truncate_quota_inode_pages(sb);
3578	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
3579		f2fs_quota_off_umount(sbi->sb);
3580#endif
3581	/*
3582	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3583	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3584	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3585	 * falls into an infinite loop in f2fs_sync_meta_pages().
3586	 */
3587	truncate_inode_pages_final(META_MAPPING(sbi));
3588	/* evict some inodes being cached by GC */
3589	evict_inodes(sb);
3590	f2fs_unregister_sysfs(sbi);
3591free_root_inode:
3592	dput(sb->s_root);
3593	sb->s_root = NULL;
3594free_node_inode:
3595	f2fs_release_ino_entry(sbi, true);
3596	truncate_inode_pages_final(NODE_MAPPING(sbi));
3597	iput(sbi->node_inode);
3598	sbi->node_inode = NULL;
3599free_stats:
3600	f2fs_destroy_stats(sbi);
3601free_nm:
3602	f2fs_destroy_node_manager(sbi);
3603free_sm:
3604	f2fs_destroy_segment_manager(sbi);
3605free_devices:
3606	destroy_device_list(sbi);
3607	kvfree(sbi->ckpt);
3608free_meta_inode:
3609	make_bad_inode(sbi->meta_inode);
3610	iput(sbi->meta_inode);
3611	sbi->meta_inode = NULL;
3612free_io_dummy:
3613	mempool_destroy(sbi->write_io_dummy);
3614free_percpu:
3615	destroy_percpu_info(sbi);
3616free_bio_info:
3617	for (i = 0; i < NR_PAGE_TYPE; i++)
3618		kvfree(sbi->write_io[i]);
3619
3620#ifdef CONFIG_UNICODE
3621	utf8_unload(sbi->s_encoding);
3622#endif
3623free_options:
3624#ifdef CONFIG_QUOTA
3625	for (i = 0; i < MAXQUOTAS; i++)
3626		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
3627#endif
3628	kvfree(options);
3629free_sb_buf:
3630	kvfree(raw_super);
3631free_sbi:
3632	if (sbi->s_chksum_driver)
3633		crypto_free_shash(sbi->s_chksum_driver);
3634	kvfree(sbi);
3635
3636	/* give only one another chance */
3637	if (retry_cnt > 0 && skip_recovery) {
3638		retry_cnt--;
3639		shrink_dcache_sb(sb);
3640		goto try_onemore;
3641	}
3642	return err;
3643}
3644
3645static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3646			const char *dev_name, void *data)
3647{
3648	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3649}
3650
3651static void kill_f2fs_super(struct super_block *sb)
3652{
3653	if (sb->s_root) {
3654		struct f2fs_sb_info *sbi = F2FS_SB(sb);
3655
3656		set_sbi_flag(sbi, SBI_IS_CLOSE);
3657		f2fs_stop_gc_thread(sbi);
3658		f2fs_stop_discard_thread(sbi);
3659
3660		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
3661				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3662			struct cp_control cpc = {
3663				.reason = CP_UMOUNT,
3664			};
3665			f2fs_write_checkpoint(sbi, &cpc);
3666		}
3667
3668		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
3669			sb->s_flags &= ~SB_RDONLY;
3670	}
3671	kill_block_super(sb);
3672}
3673
3674static struct file_system_type f2fs_fs_type = {
3675	.owner		= THIS_MODULE,
3676	.name		= "f2fs",
3677	.mount		= f2fs_mount,
3678	.kill_sb	= kill_f2fs_super,
3679	.fs_flags	= FS_REQUIRES_DEV,
3680};
3681MODULE_ALIAS_FS("f2fs");
3682
3683static int __init init_inodecache(void)
3684{
3685	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3686			sizeof(struct f2fs_inode_info), 0,
3687			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3688	if (!f2fs_inode_cachep)
3689		return -ENOMEM;
3690	return 0;
3691}
3692
3693static void destroy_inodecache(void)
3694{
3695	/*
3696	 * Make sure all delayed rcu free inodes are flushed before we
3697	 * destroy cache.
3698	 */
3699	rcu_barrier();
3700	kmem_cache_destroy(f2fs_inode_cachep);
3701}
3702
3703static int __init init_f2fs_fs(void)
3704{
3705	int err;
3706
3707	if (PAGE_SIZE != F2FS_BLKSIZE) {
3708		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
3709				PAGE_SIZE, F2FS_BLKSIZE);
3710		return -EINVAL;
3711	}
3712
3713	f2fs_build_trace_ios();
3714
3715	err = init_inodecache();
3716	if (err)
3717		goto fail;
3718	err = f2fs_create_node_manager_caches();
3719	if (err)
3720		goto free_inodecache;
3721	err = f2fs_create_segment_manager_caches();
3722	if (err)
3723		goto free_node_manager_caches;
3724	err = f2fs_create_checkpoint_caches();
3725	if (err)
3726		goto free_segment_manager_caches;
3727	err = f2fs_create_extent_cache();
3728	if (err)
 
 
 
 
3729		goto free_checkpoint_caches;
3730	err = f2fs_init_sysfs();
3731	if (err)
3732		goto free_extent_cache;
3733	err = register_shrinker(&f2fs_shrinker_info);
3734	if (err)
3735		goto free_sysfs;
3736	err = register_filesystem(&f2fs_fs_type);
3737	if (err)
3738		goto free_shrinker;
3739	f2fs_create_root_stats();
3740	err = f2fs_init_post_read_processing();
3741	if (err)
3742		goto free_root_stats;
3743	return 0;
3744
3745free_root_stats:
3746	f2fs_destroy_root_stats();
3747	unregister_filesystem(&f2fs_fs_type);
3748free_shrinker:
3749	unregister_shrinker(&f2fs_shrinker_info);
3750free_sysfs:
3751	f2fs_exit_sysfs();
3752free_extent_cache:
3753	f2fs_destroy_extent_cache();
3754free_checkpoint_caches:
3755	f2fs_destroy_checkpoint_caches();
 
 
3756free_segment_manager_caches:
3757	f2fs_destroy_segment_manager_caches();
3758free_node_manager_caches:
3759	f2fs_destroy_node_manager_caches();
3760free_inodecache:
3761	destroy_inodecache();
3762fail:
3763	return err;
3764}
3765
3766static void __exit exit_f2fs_fs(void)
3767{
3768	f2fs_destroy_post_read_processing();
3769	f2fs_destroy_root_stats();
3770	unregister_filesystem(&f2fs_fs_type);
3771	unregister_shrinker(&f2fs_shrinker_info);
3772	f2fs_exit_sysfs();
3773	f2fs_destroy_extent_cache();
3774	f2fs_destroy_checkpoint_caches();
3775	f2fs_destroy_segment_manager_caches();
3776	f2fs_destroy_node_manager_caches();
3777	destroy_inodecache();
3778	f2fs_destroy_trace_ios();
3779}
3780
3781module_init(init_f2fs_fs)
3782module_exit(exit_f2fs_fs)
3783
3784MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3785MODULE_DESCRIPTION("Flash Friendly File System");
3786MODULE_LICENSE("GPL");
3787
v3.15
 
   1/*
   2 * fs/f2fs/super.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/init.h>
  13#include <linux/fs.h>
  14#include <linux/statfs.h>
  15#include <linux/buffer_head.h>
  16#include <linux/backing-dev.h>
  17#include <linux/kthread.h>
  18#include <linux/parser.h>
  19#include <linux/mount.h>
  20#include <linux/seq_file.h>
  21#include <linux/proc_fs.h>
  22#include <linux/random.h>
  23#include <linux/exportfs.h>
  24#include <linux/blkdev.h>
 
  25#include <linux/f2fs_fs.h>
  26#include <linux/sysfs.h>
 
 
  27
  28#include "f2fs.h"
  29#include "node.h"
  30#include "segment.h"
  31#include "xattr.h"
  32#include "gc.h"
 
  33
  34#define CREATE_TRACE_POINTS
  35#include <trace/events/f2fs.h>
  36
  37static struct proc_dir_entry *f2fs_proc_root;
  38static struct kmem_cache *f2fs_inode_cachep;
  39static struct kset *f2fs_kset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  40
  41enum {
  42	Opt_gc_background,
  43	Opt_disable_roll_forward,
 
  44	Opt_discard,
 
  45	Opt_noheap,
 
  46	Opt_user_xattr,
  47	Opt_nouser_xattr,
  48	Opt_acl,
  49	Opt_noacl,
  50	Opt_active_logs,
  51	Opt_disable_ext_identify,
  52	Opt_inline_xattr,
 
 
  53	Opt_inline_data,
 
 
  54	Opt_flush_merge,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  55	Opt_err,
  56};
  57
  58static match_table_t f2fs_tokens = {
  59	{Opt_gc_background, "background_gc=%s"},
  60	{Opt_disable_roll_forward, "disable_roll_forward"},
 
  61	{Opt_discard, "discard"},
 
  62	{Opt_noheap, "no_heap"},
 
  63	{Opt_user_xattr, "user_xattr"},
  64	{Opt_nouser_xattr, "nouser_xattr"},
  65	{Opt_acl, "acl"},
  66	{Opt_noacl, "noacl"},
  67	{Opt_active_logs, "active_logs=%u"},
  68	{Opt_disable_ext_identify, "disable_ext_identify"},
  69	{Opt_inline_xattr, "inline_xattr"},
 
 
  70	{Opt_inline_data, "inline_data"},
 
 
  71	{Opt_flush_merge, "flush_merge"},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  72	{Opt_err, NULL},
  73};
  74
  75/* Sysfs support for f2fs */
  76enum {
  77	GC_THREAD,	/* struct f2fs_gc_thread */
  78	SM_INFO,	/* struct f2fs_sm_info */
  79	NM_INFO,	/* struct f2fs_nm_info */
  80	F2FS_SBI,	/* struct f2fs_sb_info */
  81};
 
 
 
 
 
 
 
 
 
  82
  83struct f2fs_attr {
  84	struct attribute attr;
  85	ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
  86	ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
  87			 const char *, size_t);
  88	int struct_type;
  89	int offset;
  90};
  91
  92static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
 
 
  93{
  94	if (struct_type == GC_THREAD)
  95		return (unsigned char *)sbi->gc_thread;
  96	else if (struct_type == SM_INFO)
  97		return (unsigned char *)SM_I(sbi);
  98	else if (struct_type == NM_INFO)
  99		return (unsigned char *)NM_I(sbi);
 100	else if (struct_type == F2FS_SBI)
 101		return (unsigned char *)sbi;
 102	return NULL;
 103}
 104
 105static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
 106			struct f2fs_sb_info *sbi, char *buf)
 107{
 108	unsigned char *ptr = NULL;
 109	unsigned int *ui;
 110
 111	ptr = __struct_ptr(sbi, a->struct_type);
 112	if (!ptr)
 113		return -EINVAL;
 114
 115	ui = (unsigned int *)(ptr + a->offset);
 
 116
 117	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
 118}
 
 119
 120static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
 121			struct f2fs_sb_info *sbi,
 122			const char *buf, size_t count)
 123{
 124	unsigned char *ptr;
 125	unsigned long t;
 126	unsigned int *ui;
 127	ssize_t ret;
 128
 129	ptr = __struct_ptr(sbi, a->struct_type);
 130	if (!ptr)
 131		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132
 133	ui = (unsigned int *)(ptr + a->offset);
 
 134
 135	ret = kstrtoul(skip_spaces(buf), 0, &t);
 136	if (ret < 0)
 137		return ret;
 138	*ui = t;
 139	return count;
 140}
 141
 142static ssize_t f2fs_attr_show(struct kobject *kobj,
 143				struct attribute *attr, char *buf)
 144{
 145	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
 146								s_kobj);
 147	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
 148
 149	return a->show ? a->show(a, sbi, buf) : 0;
 150}
 151
 152static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
 153						const char *buf, size_t len)
 154{
 155	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
 156									s_kobj);
 157	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
 158
 159	return a->store ? a->store(a, sbi, buf, len) : 0;
 160}
 161
 162static void f2fs_sb_release(struct kobject *kobj)
 163{
 164	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
 165								s_kobj);
 166	complete(&sbi->s_kobj_unregister);
 167}
 168
 169#define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
 170static struct f2fs_attr f2fs_attr_##_name = {			\
 171	.attr = {.name = __stringify(_name), .mode = _mode },	\
 172	.show	= _show,					\
 173	.store	= _store,					\
 174	.struct_type = _struct_type,				\
 175	.offset = _offset					\
 176}
 177
 178#define F2FS_RW_ATTR(struct_type, struct_name, name, elname)	\
 179	F2FS_ATTR_OFFSET(struct_type, name, 0644,		\
 180		f2fs_sbi_show, f2fs_sbi_store,			\
 181		offsetof(struct struct_name, elname))
 182
 183F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
 184F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
 185F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
 186F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
 187F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
 188F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
 189F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
 190F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
 191F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
 192F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
 193F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
 194
 195#define ATTR_LIST(name) (&f2fs_attr_##name.attr)
 196static struct attribute *f2fs_attrs[] = {
 197	ATTR_LIST(gc_min_sleep_time),
 198	ATTR_LIST(gc_max_sleep_time),
 199	ATTR_LIST(gc_no_gc_sleep_time),
 200	ATTR_LIST(gc_idle),
 201	ATTR_LIST(reclaim_segments),
 202	ATTR_LIST(max_small_discards),
 203	ATTR_LIST(ipu_policy),
 204	ATTR_LIST(min_ipu_util),
 205	ATTR_LIST(max_victim_search),
 206	ATTR_LIST(dir_level),
 207	ATTR_LIST(ram_thresh),
 208	NULL,
 209};
 210
 211static const struct sysfs_ops f2fs_attr_ops = {
 212	.show	= f2fs_attr_show,
 213	.store	= f2fs_attr_store,
 214};
 
 
 
 
 215
 216static struct kobj_type f2fs_ktype = {
 217	.default_attrs	= f2fs_attrs,
 218	.sysfs_ops	= &f2fs_attr_ops,
 219	.release	= f2fs_sb_release,
 220};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 221
 222void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
 223{
 224	struct va_format vaf;
 225	va_list args;
 226
 227	va_start(args, fmt);
 228	vaf.fmt = fmt;
 229	vaf.va = &args;
 230	printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
 231	va_end(args);
 
 
 232}
 233
 234static void init_once(void *foo)
 235{
 236	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 237
 238	inode_init_once(&fi->vfs_inode);
 
 
 
 
 239}
 
 240
 241static int parse_options(struct super_block *sb, char *options)
 242{
 243	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 244	substring_t args[MAX_OPT_ARGS];
 245	char *p, *name;
 246	int arg = 0;
 
 
 
 
 
 247
 248	if (!options)
 249		return 0;
 250
 251	while ((p = strsep(&options, ",")) != NULL) {
 252		int token;
 253		if (!*p)
 254			continue;
 255		/*
 256		 * Initialize args struct so we know whether arg was
 257		 * found; some options take optional arguments.
 258		 */
 259		args[0].to = args[0].from = NULL;
 260		token = match_token(p, f2fs_tokens, args);
 261
 262		switch (token) {
 263		case Opt_gc_background:
 264			name = match_strdup(&args[0]);
 265
 266			if (!name)
 267				return -ENOMEM;
 268			if (strlen(name) == 2 && !strncmp(name, "on", 2))
 269				set_opt(sbi, BG_GC);
 270			else if (strlen(name) == 3 && !strncmp(name, "off", 3))
 
 271				clear_opt(sbi, BG_GC);
 272			else {
 273				kfree(name);
 
 
 
 
 274				return -EINVAL;
 275			}
 276			kfree(name);
 277			break;
 278		case Opt_disable_roll_forward:
 279			set_opt(sbi, DISABLE_ROLL_FORWARD);
 280			break;
 
 
 
 
 
 
 281		case Opt_discard:
 282			set_opt(sbi, DISCARD);
 283			break;
 
 
 
 
 
 
 
 284		case Opt_noheap:
 285			set_opt(sbi, NOHEAP);
 286			break;
 
 
 
 287#ifdef CONFIG_F2FS_FS_XATTR
 288		case Opt_user_xattr:
 289			set_opt(sbi, XATTR_USER);
 290			break;
 291		case Opt_nouser_xattr:
 292			clear_opt(sbi, XATTR_USER);
 293			break;
 294		case Opt_inline_xattr:
 295			set_opt(sbi, INLINE_XATTR);
 296			break;
 
 
 
 
 
 
 
 
 
 297#else
 298		case Opt_user_xattr:
 299			f2fs_msg(sb, KERN_INFO,
 300				"user_xattr options not supported");
 301			break;
 302		case Opt_nouser_xattr:
 303			f2fs_msg(sb, KERN_INFO,
 304				"nouser_xattr options not supported");
 305			break;
 306		case Opt_inline_xattr:
 307			f2fs_msg(sb, KERN_INFO,
 308				"inline_xattr options not supported");
 
 
 309			break;
 310#endif
 311#ifdef CONFIG_F2FS_FS_POSIX_ACL
 312		case Opt_acl:
 313			set_opt(sbi, POSIX_ACL);
 314			break;
 315		case Opt_noacl:
 316			clear_opt(sbi, POSIX_ACL);
 317			break;
 318#else
 319		case Opt_acl:
 320			f2fs_msg(sb, KERN_INFO, "acl options not supported");
 321			break;
 322		case Opt_noacl:
 323			f2fs_msg(sb, KERN_INFO, "noacl options not supported");
 324			break;
 325#endif
 326		case Opt_active_logs:
 327			if (args->from && match_int(args, &arg))
 328				return -EINVAL;
 329			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
 330				return -EINVAL;
 331			sbi->active_logs = arg;
 332			break;
 333		case Opt_disable_ext_identify:
 334			set_opt(sbi, DISABLE_EXT_IDENTIFY);
 335			break;
 336		case Opt_inline_data:
 337			set_opt(sbi, INLINE_DATA);
 338			break;
 
 
 
 
 
 
 339		case Opt_flush_merge:
 340			set_opt(sbi, FLUSH_MERGE);
 341			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 342		default:
 343			f2fs_msg(sb, KERN_ERR,
 344				"Unrecognized mount option \"%s\" or missing value",
 345				p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 346			return -EINVAL;
 347		}
 348	}
 
 
 
 
 
 
 
 
 
 
 
 349	return 0;
 350}
 351
 352static struct inode *f2fs_alloc_inode(struct super_block *sb)
 353{
 354	struct f2fs_inode_info *fi;
 355
 356	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
 357	if (!fi)
 358		return NULL;
 359
 360	init_once((void *) fi);
 361
 362	/* Initialize f2fs-specific inode info */
 363	fi->vfs_inode.i_version = 1;
 364	atomic_set(&fi->dirty_dents, 0);
 365	fi->i_current_depth = 1;
 366	fi->i_advise = 0;
 367	rwlock_init(&fi->ext.ext_lock);
 368	init_rwsem(&fi->i_sem);
 369
 370	set_inode_flag(fi, FI_NEW_INODE);
 371
 372	if (test_opt(F2FS_SB(sb), INLINE_XATTR))
 373		set_inode_flag(fi, FI_INLINE_XATTR);
 
 
 
 
 374
 375	/* Will be used by directory only */
 376	fi->i_dir_level = F2FS_SB(sb)->dir_level;
 377
 378	return &fi->vfs_inode;
 379}
 380
 381static int f2fs_drop_inode(struct inode *inode)
 382{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 383	/*
 384	 * This is to avoid a deadlock condition like below.
 385	 * writeback_single_inode(inode)
 386	 *  - f2fs_write_data_page
 387	 *    - f2fs_gc -> iput -> evict
 388	 *       - inode_wait_for_writeback(inode)
 389	 */
 390	if (!inode_unhashed(inode) && inode->i_state & I_SYNC)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 391		return 0;
 392	return generic_drop_inode(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 393}
 394
 395/*
 396 * f2fs_dirty_inode() is called from __mark_inode_dirty()
 397 *
 398 * We should call set_dirty_inode to write the dirty inode through write_inode.
 399 */
 400static void f2fs_dirty_inode(struct inode *inode, int flags)
 401{
 402	set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
 
 
 
 
 
 
 
 
 
 
 
 
 403}
 404
 405static void f2fs_i_callback(struct rcu_head *head)
 406{
 407	struct inode *inode = container_of(head, struct inode, i_rcu);
 408	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
 409}
 410
 411static void f2fs_destroy_inode(struct inode *inode)
 412{
 413	call_rcu(&inode->i_rcu, f2fs_i_callback);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 414}
 415
 416static void f2fs_put_super(struct super_block *sb)
 417{
 418	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 
 
 
 
 419
 420	if (sbi->s_proc) {
 421		remove_proc_entry("segment_info", sbi->s_proc);
 422		remove_proc_entry(sb->s_id, f2fs_proc_root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 423	}
 424	kobject_del(&sbi->s_kobj);
 425
 426	f2fs_destroy_stats(sbi);
 427	stop_gc_thread(sbi);
 
 
 
 
 
 
 
 
 
 
 
 428
 429	/* We don't need to do checkpoint when it's clean */
 430	if (sbi->s_dirty && get_pages(sbi, F2FS_DIRTY_NODES))
 431		write_checkpoint(sbi, true);
 432
 433	iput(sbi->node_inode);
 
 
 434	iput(sbi->meta_inode);
 
 
 
 
 
 
 
 435
 436	/* destroy f2fs internal modules */
 437	destroy_node_manager(sbi);
 438	destroy_segment_manager(sbi);
 439
 440	kfree(sbi->ckpt);
 441	kobject_put(&sbi->s_kobj);
 442	wait_for_completion(&sbi->s_kobj_unregister);
 443
 444	sb->s_fs_info = NULL;
 445	brelse(sbi->raw_super_buf);
 446	kfree(sbi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 447}
 448
 449int f2fs_sync_fs(struct super_block *sb, int sync)
 450{
 451	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 
 
 
 
 
 
 452
 453	trace_f2fs_sync_fs(sb, sync);
 454
 455	if (!sbi->s_dirty && !get_pages(sbi, F2FS_DIRTY_NODES))
 456		return 0;
 457
 458	if (sync) {
 
 
 
 
 459		mutex_lock(&sbi->gc_mutex);
 460		write_checkpoint(sbi, false);
 461		mutex_unlock(&sbi->gc_mutex);
 462	} else {
 463		f2fs_balance_fs(sbi);
 464	}
 
 465
 466	return 0;
 467}
 468
 469static int f2fs_freeze(struct super_block *sb)
 470{
 471	int err;
 472
 473	if (f2fs_readonly(sb))
 474		return 0;
 475
 476	err = f2fs_sync_fs(sb, 1);
 477	return err;
 
 
 
 
 
 
 478}
 479
 480static int f2fs_unfreeze(struct super_block *sb)
 481{
 482	return 0;
 483}
 484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 485static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
 486{
 487	struct super_block *sb = dentry->d_sb;
 488	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 489	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 490	block_t total_count, user_block_count, start_count, ovp_count;
 
 491
 492	total_count = le64_to_cpu(sbi->raw_super->block_count);
 493	user_block_count = sbi->user_block_count;
 494	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
 495	ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
 496	buf->f_type = F2FS_SUPER_MAGIC;
 497	buf->f_bsize = sbi->blocksize;
 498
 499	buf->f_blocks = total_count - start_count;
 500	buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
 501	buf->f_bavail = user_block_count - valid_user_blocks(sbi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 502
 503	buf->f_files = sbi->total_node_count;
 504	buf->f_ffree = sbi->total_node_count - valid_inode_count(sbi);
 
 
 
 
 
 
 
 
 505
 506	buf->f_namelen = F2FS_NAME_LEN;
 507	buf->f_fsid.val[0] = (u32)id;
 508	buf->f_fsid.val[1] = (u32)(id >> 32);
 509
 
 
 
 
 
 
 510	return 0;
 511}
 512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 513static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
 514{
 515	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
 516
 517	if (!(root->d_sb->s_flags & MS_RDONLY) && test_opt(sbi, BG_GC))
 518		seq_printf(seq, ",background_gc=%s", "on");
 519	else
 
 
 
 520		seq_printf(seq, ",background_gc=%s", "off");
 
 521	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
 522		seq_puts(seq, ",disable_roll_forward");
 523	if (test_opt(sbi, DISCARD))
 524		seq_puts(seq, ",discard");
 
 
 525	if (test_opt(sbi, NOHEAP))
 526		seq_puts(seq, ",no_heap_alloc");
 
 
 527#ifdef CONFIG_F2FS_FS_XATTR
 528	if (test_opt(sbi, XATTR_USER))
 529		seq_puts(seq, ",user_xattr");
 530	else
 531		seq_puts(seq, ",nouser_xattr");
 532	if (test_opt(sbi, INLINE_XATTR))
 533		seq_puts(seq, ",inline_xattr");
 
 
 
 
 
 534#endif
 535#ifdef CONFIG_F2FS_FS_POSIX_ACL
 536	if (test_opt(sbi, POSIX_ACL))
 537		seq_puts(seq, ",acl");
 538	else
 539		seq_puts(seq, ",noacl");
 540#endif
 541	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
 542		seq_puts(seq, ",disable_ext_identify");
 543	if (test_opt(sbi, INLINE_DATA))
 544		seq_puts(seq, ",inline_data");
 545	if (test_opt(sbi, FLUSH_MERGE))
 
 
 
 
 
 
 546		seq_puts(seq, ",flush_merge");
 547	seq_printf(seq, ",active_logs=%u", sbi->active_logs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 549	return 0;
 550}
 551
 552static int segment_info_seq_show(struct seq_file *seq, void *offset)
 553{
 554	struct super_block *sb = seq->private;
 555	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 556	unsigned int total_segs =
 557			le32_to_cpu(sbi->raw_super->segment_count_main);
 558	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 559
 560	seq_puts(seq, "format: segment_type|valid_blocks\n"
 561		"segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
 
 
 
 
 
 562
 563	for (i = 0; i < total_segs; i++) {
 564		struct seg_entry *se = get_seg_entry(sbi, i);
 
 
 
 
 
 565
 566		if ((i % 10) == 0)
 567			seq_printf(seq, "%-5d", i);
 568		seq_printf(seq, "%d|%-3u", se->type,
 569					get_valid_blocks(sbi, i, 1));
 570		if ((i % 10) == 9 || i == (total_segs - 1))
 571			seq_putc(seq, '\n');
 572		else
 573			seq_putc(seq, ' ');
 
 574	}
 575
 576	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 577}
 578
 579static int segment_info_open_fs(struct inode *inode, struct file *file)
 580{
 581	return single_open(file, segment_info_seq_show, PDE_DATA(inode));
 
 
 
 
 
 
 
 582}
 583
 584static const struct file_operations f2fs_seq_segment_info_fops = {
 585	.owner = THIS_MODULE,
 586	.open = segment_info_open_fs,
 587	.read = seq_read,
 588	.llseek = seq_lseek,
 589	.release = single_release,
 590};
 591
 592static int f2fs_remount(struct super_block *sb, int *flags, char *data)
 593{
 594	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 595	struct f2fs_mount_info org_mount_opt;
 596	int err, active_logs;
 597
 598	sync_filesystem(sb);
 
 
 
 
 
 
 
 
 599
 600	/*
 601	 * Save the old mount options in case we
 602	 * need to restore them.
 603	 */
 604	org_mount_opt = sbi->mount_opt;
 605	active_logs = sbi->active_logs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 606
 607	/* parse mount options */
 608	err = parse_options(sb, data);
 609	if (err)
 610		goto restore_opts;
 
 
 611
 612	/*
 613	 * Previous and new state of filesystem is RO,
 614	 * so no point in checking GC conditions.
 615	 */
 616	if ((sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY))
 617		goto skip;
 618
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619	/*
 620	 * We stop the GC thread if FS is mounted as RO
 621	 * or if background_gc = off is passed in mount
 622	 * option. Also sync the filesystem.
 623	 */
 624	if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
 625		if (sbi->gc_thread) {
 626			stop_gc_thread(sbi);
 627			f2fs_sync_fs(sb, 1);
 628		}
 629	} else if (test_opt(sbi, BG_GC) && !sbi->gc_thread) {
 630		err = start_gc_thread(sbi);
 631		if (err)
 632			goto restore_opts;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 633	}
 634skip:
 
 
 
 
 
 635	/* Update the POSIXACL Flag */
 636	 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
 637		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
 
 
 
 638	return 0;
 639
 
 
 
 
 
 
 640restore_opts:
 
 
 
 
 
 
 
 641	sbi->mount_opt = org_mount_opt;
 642	sbi->active_logs = active_logs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 643	return err;
 644}
 645
 646static struct super_operations f2fs_sops = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 647	.alloc_inode	= f2fs_alloc_inode,
 
 648	.drop_inode	= f2fs_drop_inode,
 649	.destroy_inode	= f2fs_destroy_inode,
 650	.write_inode	= f2fs_write_inode,
 651	.dirty_inode	= f2fs_dirty_inode,
 652	.show_options	= f2fs_show_options,
 
 
 
 
 
 653	.evict_inode	= f2fs_evict_inode,
 654	.put_super	= f2fs_put_super,
 655	.sync_fs	= f2fs_sync_fs,
 656	.freeze_fs	= f2fs_freeze,
 657	.unfreeze_fs	= f2fs_unfreeze,
 658	.statfs		= f2fs_statfs,
 659	.remount_fs	= f2fs_remount,
 660};
 661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 662static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
 663		u64 ino, u32 generation)
 664{
 665	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 666	struct inode *inode;
 667
 668	if (unlikely(ino < F2FS_ROOT_INO(sbi)))
 669		return ERR_PTR(-ESTALE);
 670	if (unlikely(ino >= NM_I(sbi)->max_nid))
 671		return ERR_PTR(-ESTALE);
 672
 673	/*
 674	 * f2fs_iget isn't quite right if the inode is currently unallocated!
 675	 * However f2fs_iget currently does appropriate checks to handle stale
 676	 * inodes so everything is OK.
 677	 */
 678	inode = f2fs_iget(sb, ino);
 679	if (IS_ERR(inode))
 680		return ERR_CAST(inode);
 681	if (unlikely(generation && inode->i_generation != generation)) {
 682		/* we didn't find the right inode.. */
 683		iput(inode);
 684		return ERR_PTR(-ESTALE);
 685	}
 686	return inode;
 687}
 688
 689static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
 690		int fh_len, int fh_type)
 691{
 692	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
 693				    f2fs_nfs_get_inode);
 694}
 695
 696static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
 697		int fh_len, int fh_type)
 698{
 699	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
 700				    f2fs_nfs_get_inode);
 701}
 702
 703static const struct export_operations f2fs_export_ops = {
 704	.fh_to_dentry = f2fs_fh_to_dentry,
 705	.fh_to_parent = f2fs_fh_to_parent,
 706	.get_parent = f2fs_get_parent,
 707};
 708
 709static loff_t max_file_size(unsigned bits)
 710{
 711	loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
 712	loff_t leaf_count = ADDRS_PER_BLOCK;
 
 
 
 
 
 
 
 713
 714	/* two direct node blocks */
 715	result += (leaf_count * 2);
 716
 717	/* two indirect node blocks */
 718	leaf_count *= NIDS_PER_BLOCK;
 719	result += (leaf_count * 2);
 720
 721	/* one double indirect node block */
 722	leaf_count *= NIDS_PER_BLOCK;
 723	result += leaf_count;
 724
 725	result <<= bits;
 726	return result;
 727}
 728
 729static int sanity_check_raw_super(struct super_block *sb,
 730			struct f2fs_super_block *raw_super)
 731{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 732	unsigned int blocksize;
 
 
 
 
 
 
 
 
 733
 734	if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
 735		f2fs_msg(sb, KERN_INFO,
 736			"Magic Mismatch, valid(0x%x) - read(0x%x)",
 737			F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
 738		return 1;
 
 
 
 
 
 
 
 
 
 739	}
 740
 741	/* Currently, support only 4KB page cache size */
 742	if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
 743		f2fs_msg(sb, KERN_INFO,
 744			"Invalid page_cache_size (%lu), supports only 4KB\n",
 745			PAGE_CACHE_SIZE);
 746		return 1;
 747	}
 748
 749	/* Currently, support only 4KB block size */
 750	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
 751	if (blocksize != F2FS_BLKSIZE) {
 752		f2fs_msg(sb, KERN_INFO,
 753			"Invalid blocksize (%u), supports only 4KB\n",
 754			blocksize);
 755		return 1;
 756	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 757
 758	if (le32_to_cpu(raw_super->log_sectorsize) !=
 759					F2FS_LOG_SECTOR_SIZE) {
 760		f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize");
 761		return 1;
 762	}
 763	if (le32_to_cpu(raw_super->log_sectors_per_block) !=
 764					F2FS_LOG_SECTORS_PER_BLOCK) {
 765		f2fs_msg(sb, KERN_INFO, "Invalid log sectors per block");
 766		return 1;
 767	}
 768	return 0;
 769}
 770
 771static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
 772{
 773	unsigned int total, fsmeta;
 774	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
 775	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 
 
 
 
 
 
 
 
 
 
 776
 777	total = le32_to_cpu(raw_super->segment_count);
 778	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
 779	fsmeta += le32_to_cpu(raw_super->segment_count_sit);
 780	fsmeta += le32_to_cpu(raw_super->segment_count_nat);
 
 
 781	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
 782	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
 783
 784	if (unlikely(fsmeta >= total))
 785		return 1;
 786
 787	if (unlikely(is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
 788		f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 789		return 1;
 790	}
 791	return 0;
 792}
 793
 794static void init_sb_info(struct f2fs_sb_info *sbi)
 795{
 796	struct f2fs_super_block *raw_super = sbi->raw_super;
 797	int i;
 798
 799	sbi->log_sectors_per_block =
 800		le32_to_cpu(raw_super->log_sectors_per_block);
 801	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
 802	sbi->blocksize = 1 << sbi->log_blocksize;
 803	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
 804	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
 805	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
 806	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
 807	sbi->total_sections = le32_to_cpu(raw_super->section_count);
 808	sbi->total_node_count =
 809		(le32_to_cpu(raw_super->segment_count_nat) / 2)
 810			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
 811	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
 812	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
 813	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
 814	sbi->cur_victim_sec = NULL_SECNO;
 
 
 815	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
 
 
 
 
 
 
 
 
 
 
 
 816
 817	for (i = 0; i < NR_COUNT_TYPE; i++)
 818		atomic_set(&sbi->nr_pages[i], 0);
 819
 820	sbi->dir_level = DEF_DIR_LEVEL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 821}
 
 822
 823/*
 824 * Read f2fs raw super block.
 825 * Because we have two copies of super block, so read the first one at first,
 826 * if the first one is invalid, move to read the second one.
 
 827 */
 828static int read_raw_super_block(struct super_block *sb,
 829			struct f2fs_super_block **raw_super,
 830			struct buffer_head **raw_super_buf)
 831{
 832	int block = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 833
 834retry:
 835	*raw_super_buf = sb_bread(sb, block);
 836	if (!*raw_super_buf) {
 837		f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
 838				block + 1);
 839		if (block == 0) {
 840			block++;
 841			goto retry;
 842		} else {
 843			return -EIO;
 844		}
 
 845	}
 846
 847	*raw_super = (struct f2fs_super_block *)
 848		((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET);
 
 
 
 
 
 
 
 
 
 
 849
 850	/* sanity checking of raw super */
 851	if (sanity_check_raw_super(sb, *raw_super)) {
 852		brelse(*raw_super_buf);
 853		f2fs_msg(sb, KERN_ERR,
 854			"Can't find valid F2FS filesystem in %dth superblock",
 855								block + 1);
 856		if (block == 0) {
 857			block++;
 858			goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 859		} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 860			return -EINVAL;
 861		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 862	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 864	return 0;
 865}
 866
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
 868{
 869	struct f2fs_sb_info *sbi;
 870	struct f2fs_super_block *raw_super;
 871	struct buffer_head *raw_super_buf;
 872	struct inode *root;
 873	long err = -EINVAL;
 874	int i;
 
 
 
 
 
 
 
 
 
 
 875
 876	/* allocate memory for f2fs-specific super block info */
 877	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
 878	if (!sbi)
 879		return -ENOMEM;
 880
 
 
 
 
 
 
 
 
 
 
 
 881	/* set a block size */
 882	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
 883		f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
 884		goto free_sbi;
 885	}
 886
 887	err = read_raw_super_block(sb, &raw_super, &raw_super_buf);
 
 888	if (err)
 889		goto free_sbi;
 890
 891	sb->s_fs_info = sbi;
 892	/* init some FS parameters */
 893	sbi->active_logs = NR_CURSEG_TYPE;
 894
 895	set_opt(sbi, BG_GC);
 
 
 
 896
 897#ifdef CONFIG_F2FS_FS_XATTR
 898	set_opt(sbi, XATTR_USER);
 899#endif
 900#ifdef CONFIG_F2FS_FS_POSIX_ACL
 901	set_opt(sbi, POSIX_ACL);
 
 
 
 
 
 
 902#endif
 
 903	/* parse mount options */
 904	err = parse_options(sb, (char *)data);
 
 
 
 
 
 
 905	if (err)
 906		goto free_sb_buf;
 907
 908	sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
 
 
 909	sb->s_max_links = F2FS_LINK_MAX;
 910	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 911
 912	sb->s_op = &f2fs_sops;
 
 
 
 
 
 
 913	sb->s_xattr = f2fs_xattr_handlers;
 914	sb->s_export_op = &f2fs_export_ops;
 915	sb->s_magic = F2FS_SUPER_MAGIC;
 916	sb->s_time_gran = 1;
 917	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
 918		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
 919	memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
 
 920
 921	/* init f2fs-specific super block info */
 922	sbi->sb = sb;
 923	sbi->raw_super = raw_super;
 924	sbi->raw_super_buf = raw_super_buf;
 925	mutex_init(&sbi->gc_mutex);
 926	mutex_init(&sbi->writepages);
 927	mutex_init(&sbi->cp_mutex);
 928	mutex_init(&sbi->node_write);
 929	sbi->por_doing = false;
 
 
 
 
 930	spin_lock_init(&sbi->stat_lock);
 931
 932	init_rwsem(&sbi->read_io.io_rwsem);
 933	sbi->read_io.sbi = sbi;
 934	sbi->read_io.bio = NULL;
 
 935	for (i = 0; i < NR_PAGE_TYPE; i++) {
 936		init_rwsem(&sbi->write_io[i].io_rwsem);
 937		sbi->write_io[i].sbi = sbi;
 938		sbi->write_io[i].bio = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 939	}
 940
 941	init_rwsem(&sbi->cp_rwsem);
 
 942	init_waitqueue_head(&sbi->cp_wait);
 943	init_sb_info(sbi);
 944
 
 
 
 
 
 
 
 
 
 
 
 
 
 945	/* get an inode for meta space */
 946	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
 947	if (IS_ERR(sbi->meta_inode)) {
 948		f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
 949		err = PTR_ERR(sbi->meta_inode);
 950		goto free_sb_buf;
 951	}
 952
 953	err = get_valid_checkpoint(sbi);
 954	if (err) {
 955		f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
 956		goto free_meta_inode;
 957	}
 958
 959	/* sanity checking of checkpoint */
 960	err = -EINVAL;
 961	if (sanity_check_ckpt(sbi)) {
 962		f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
 963		goto free_cp;
 
 
 
 
 
 
 
 
 
 
 964	}
 965
 966	sbi->total_valid_node_count =
 967				le32_to_cpu(sbi->ckpt->valid_node_count);
 968	sbi->total_valid_inode_count =
 969				le32_to_cpu(sbi->ckpt->valid_inode_count);
 970	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
 971	sbi->total_valid_block_count =
 972				le64_to_cpu(sbi->ckpt->valid_block_count);
 973	sbi->last_valid_block_count = sbi->total_valid_block_count;
 974	sbi->alloc_valid_block_count = 0;
 975	INIT_LIST_HEAD(&sbi->dir_inode_list);
 976	spin_lock_init(&sbi->dir_inode_lock);
 977
 978	init_orphan_info(sbi);
 
 
 
 
 
 
 
 
 
 
 979
 980	/* setup f2fs internal modules */
 981	err = build_segment_manager(sbi);
 982	if (err) {
 983		f2fs_msg(sb, KERN_ERR,
 984			"Failed to initialize F2FS segment manager");
 985		goto free_sm;
 986	}
 987	err = build_node_manager(sbi);
 988	if (err) {
 989		f2fs_msg(sb, KERN_ERR,
 990			"Failed to initialize F2FS node manager");
 991		goto free_nm;
 992	}
 993
 994	build_gc_manager(sbi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 995
 996	/* get an inode for node space */
 997	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
 998	if (IS_ERR(sbi->node_inode)) {
 999		f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1000		err = PTR_ERR(sbi->node_inode);
1001		goto free_nm;
1002	}
1003
1004	/* if there are nt orphan nodes free them */
1005	recover_orphan_inodes(sbi);
1006
1007	/* read root inode and dentry */
1008	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1009	if (IS_ERR(root)) {
1010		f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1011		err = PTR_ERR(root);
1012		goto free_node_inode;
1013	}
1014	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
 
 
1015		err = -EINVAL;
1016		goto free_root_inode;
1017	}
1018
1019	sb->s_root = d_make_root(root); /* allocate root dentry */
1020	if (!sb->s_root) {
1021		err = -ENOMEM;
1022		goto free_root_inode;
1023	}
1024
1025	err = f2fs_build_stats(sbi);
1026	if (err)
1027		goto free_root_inode;
1028
1029	if (f2fs_proc_root)
1030		sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
 
 
 
 
 
 
 
 
 
 
1031
1032	if (sbi->s_proc)
1033		proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1034				 &f2fs_seq_segment_info_fops, sb);
1035
1036	if (test_opt(sbi, DISCARD)) {
1037		struct request_queue *q = bdev_get_queue(sb->s_bdev);
1038		if (!blk_queue_discard(q))
1039			f2fs_msg(sb, KERN_WARNING,
1040					"mounting with \"discard\" option, but "
1041					"the device does not support discard");
1042	}
1043
1044	sbi->s_kobj.kset = f2fs_kset;
1045	init_completion(&sbi->s_kobj_unregister);
1046	err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1047							"%s", sb->s_id);
1048	if (err)
1049		goto free_proc;
1050
1051	/* recover fsynced data */
1052	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1053		err = recover_fsync_data(sbi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1054		if (err)
1055			f2fs_msg(sb, KERN_ERR,
1056				"Cannot recover all fsync data errno=%ld", err);
 
1057	}
1058
1059	/*
1060	 * If filesystem is not mounted as read-only then
1061	 * do start the gc_thread.
1062	 */
1063	if (!(sb->s_flags & MS_RDONLY)) {
1064		/* After POR, we can run background GC thread.*/
1065		err = start_gc_thread(sbi);
1066		if (err)
1067			goto free_kobj;
 
 
 
 
 
 
 
 
1068	}
 
 
 
 
 
 
 
 
 
 
1069	return 0;
1070
1071free_kobj:
1072	kobject_del(&sbi->s_kobj);
1073free_proc:
1074	if (sbi->s_proc) {
1075		remove_proc_entry("segment_info", sbi->s_proc);
1076		remove_proc_entry(sb->s_id, f2fs_proc_root);
1077	}
1078	f2fs_destroy_stats(sbi);
 
 
 
 
 
 
 
 
 
 
 
 
 
1079free_root_inode:
1080	dput(sb->s_root);
1081	sb->s_root = NULL;
1082free_node_inode:
 
 
1083	iput(sbi->node_inode);
 
 
 
1084free_nm:
1085	destroy_node_manager(sbi);
1086free_sm:
1087	destroy_segment_manager(sbi);
1088free_cp:
1089	kfree(sbi->ckpt);
 
1090free_meta_inode:
1091	make_bad_inode(sbi->meta_inode);
1092	iput(sbi->meta_inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1093free_sb_buf:
1094	brelse(raw_super_buf);
1095free_sbi:
1096	kfree(sbi);
 
 
 
 
 
 
 
 
 
1097	return err;
1098}
1099
1100static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1101			const char *dev_name, void *data)
1102{
1103	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1104}
1105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1106static struct file_system_type f2fs_fs_type = {
1107	.owner		= THIS_MODULE,
1108	.name		= "f2fs",
1109	.mount		= f2fs_mount,
1110	.kill_sb	= kill_block_super,
1111	.fs_flags	= FS_REQUIRES_DEV,
1112};
1113MODULE_ALIAS_FS("f2fs");
1114
1115static int __init init_inodecache(void)
1116{
1117	f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
1118			sizeof(struct f2fs_inode_info));
 
1119	if (!f2fs_inode_cachep)
1120		return -ENOMEM;
1121	return 0;
1122}
1123
1124static void destroy_inodecache(void)
1125{
1126	/*
1127	 * Make sure all delayed rcu free inodes are flushed before we
1128	 * destroy cache.
1129	 */
1130	rcu_barrier();
1131	kmem_cache_destroy(f2fs_inode_cachep);
1132}
1133
1134static int __init init_f2fs_fs(void)
1135{
1136	int err;
1137
 
 
 
 
 
 
 
 
1138	err = init_inodecache();
1139	if (err)
1140		goto fail;
1141	err = create_node_manager_caches();
1142	if (err)
1143		goto free_inodecache;
1144	err = create_segment_manager_caches();
1145	if (err)
1146		goto free_node_manager_caches;
1147	err = create_gc_caches();
1148	if (err)
1149		goto free_segment_manager_caches;
1150	err = create_checkpoint_caches();
1151	if (err)
1152		goto free_gc_caches;
1153	f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1154	if (!f2fs_kset) {
1155		err = -ENOMEM;
1156		goto free_checkpoint_caches;
1157	}
 
 
 
 
 
1158	err = register_filesystem(&f2fs_fs_type);
1159	if (err)
1160		goto free_kset;
1161	f2fs_create_root_stats();
1162	f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
 
 
1163	return 0;
1164
1165free_kset:
1166	kset_unregister(f2fs_kset);
 
 
 
 
 
 
 
1167free_checkpoint_caches:
1168	destroy_checkpoint_caches();
1169free_gc_caches:
1170	destroy_gc_caches();
1171free_segment_manager_caches:
1172	destroy_segment_manager_caches();
1173free_node_manager_caches:
1174	destroy_node_manager_caches();
1175free_inodecache:
1176	destroy_inodecache();
1177fail:
1178	return err;
1179}
1180
1181static void __exit exit_f2fs_fs(void)
1182{
1183	remove_proc_entry("fs/f2fs", NULL);
1184	f2fs_destroy_root_stats();
1185	unregister_filesystem(&f2fs_fs_type);
1186	destroy_checkpoint_caches();
1187	destroy_gc_caches();
1188	destroy_segment_manager_caches();
1189	destroy_node_manager_caches();
 
 
1190	destroy_inodecache();
1191	kset_unregister(f2fs_kset);
1192}
1193
1194module_init(init_f2fs_fs)
1195module_exit(exit_f2fs_fs)
1196
1197MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1198MODULE_DESCRIPTION("Flash Friendly File System");
1199MODULE_LICENSE("GPL");