Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2012 Fusion-io  All rights reserved.
   4 * Copyright (C) 2012 Intel Corp. All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/sched.h>
 
   8#include <linux/bio.h>
   9#include <linux/slab.h>
 
  10#include <linux/blkdev.h>
 
 
 
 
 
  11#include <linux/raid/pq.h>
  12#include <linux/hash.h>
  13#include <linux/list_sort.h>
  14#include <linux/raid/xor.h>
  15#include <linux/mm.h>
 
  16#include "ctree.h"
 
  17#include "disk-io.h"
 
 
  18#include "volumes.h"
  19#include "raid56.h"
  20#include "async-thread.h"
 
 
  21
  22/* set when additional merges to this rbio are not allowed */
  23#define RBIO_RMW_LOCKED_BIT	1
  24
  25/*
  26 * set when this rbio is sitting in the hash, but it is just a cache
  27 * of past RMW
  28 */
  29#define RBIO_CACHE_BIT		2
  30
  31/*
  32 * set when it is safe to trust the stripe_pages for caching
  33 */
  34#define RBIO_CACHE_READY_BIT	3
  35
  36#define RBIO_CACHE_SIZE 1024
  37
  38#define BTRFS_STRIPE_HASH_TABLE_BITS				11
  39
  40/* Used by the raid56 code to lock stripes for read/modify/write */
  41struct btrfs_stripe_hash {
  42	struct list_head hash_list;
  43	spinlock_t lock;
  44};
  45
  46/* Used by the raid56 code to lock stripes for read/modify/write */
  47struct btrfs_stripe_hash_table {
  48	struct list_head stripe_cache;
  49	spinlock_t cache_lock;
  50	int cache_size;
  51	struct btrfs_stripe_hash table[];
  52};
  53
  54enum btrfs_rbio_ops {
  55	BTRFS_RBIO_WRITE,
  56	BTRFS_RBIO_READ_REBUILD,
  57	BTRFS_RBIO_PARITY_SCRUB,
  58	BTRFS_RBIO_REBUILD_MISSING,
  59};
  60
  61struct btrfs_raid_bio {
  62	struct btrfs_fs_info *fs_info;
  63	struct btrfs_bio *bbio;
  64
 
 
 
 
 
 
 
  65	/* while we're doing rmw on a stripe
  66	 * we put it into a hash table so we can
  67	 * lock the stripe and merge more rbios
  68	 * into it.
  69	 */
  70	struct list_head hash_list;
  71
  72	/*
  73	 * LRU list for the stripe cache
  74	 */
  75	struct list_head stripe_cache;
  76
  77	/*
  78	 * for scheduling work in the helper threads
  79	 */
  80	struct btrfs_work work;
  81
  82	/*
  83	 * bio list and bio_list_lock are used
  84	 * to add more bios into the stripe
  85	 * in hopes of avoiding the full rmw
  86	 */
  87	struct bio_list bio_list;
  88	spinlock_t bio_list_lock;
  89
  90	/* also protected by the bio_list_lock, the
  91	 * plug list is used by the plugging code
  92	 * to collect partial bios while plugged.  The
  93	 * stripe locking code also uses it to hand off
  94	 * the stripe lock to the next pending IO
  95	 */
  96	struct list_head plug_list;
  97
  98	/*
  99	 * flags that tell us if it is safe to
 100	 * merge with this bio
 101	 */
 102	unsigned long flags;
 103
 104	/* size of each individual stripe on disk */
 105	int stripe_len;
 106
 107	/* number of data stripes (no p/q) */
 108	int nr_data;
 109
 110	int real_stripes;
 111
 112	int stripe_npages;
 113	/*
 114	 * set if we're doing a parity rebuild
 115	 * for a read from higher up, which is handled
 116	 * differently from a parity rebuild as part of
 117	 * rmw
 118	 */
 119	enum btrfs_rbio_ops operation;
 120
 121	/* first bad stripe */
 122	int faila;
 123
 124	/* second bad stripe (for raid6 use) */
 125	int failb;
 126
 127	int scrubp;
 128	/*
 129	 * number of pages needed to represent the full
 130	 * stripe
 131	 */
 132	int nr_pages;
 133
 134	/*
 135	 * size of all the bios in the bio_list.  This
 136	 * helps us decide if the rbio maps to a full
 137	 * stripe or not
 138	 */
 139	int bio_list_bytes;
 140
 141	int generic_bio_cnt;
 142
 143	refcount_t refs;
 144
 145	atomic_t stripes_pending;
 146
 147	atomic_t error;
 148	/*
 149	 * these are two arrays of pointers.  We allocate the
 150	 * rbio big enough to hold them both and setup their
 151	 * locations when the rbio is allocated
 152	 */
 153
 154	/* pointers to pages that we allocated for
 155	 * reading/writing stripes directly from the disk (including P/Q)
 156	 */
 157	struct page **stripe_pages;
 158
 159	/*
 160	 * pointers to the pages in the bio_list.  Stored
 161	 * here for faster lookup
 162	 */
 163	struct page **bio_pages;
 164
 165	/*
 166	 * bitmap to record which horizontal stripe has data
 167	 */
 168	unsigned long *dbitmap;
 169
 170	/* allocated with real_stripes-many pointers for finish_*() calls */
 171	void **finish_pointers;
 172
 173	/* allocated with stripe_npages-many bits for finish_*() calls */
 174	unsigned long *finish_pbitmap;
 175};
 176
 177static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
 178static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
 179static void rmw_work(struct btrfs_work *work);
 180static void read_rebuild_work(struct btrfs_work *work);
 
 
 181static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
 182static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
 183static void __free_raid_bio(struct btrfs_raid_bio *rbio);
 184static void index_rbio_pages(struct btrfs_raid_bio *rbio);
 185static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
 186
 187static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
 188					 int need_check);
 189static void scrub_parity_work(struct btrfs_work *work);
 190
 191static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func)
 192{
 193	btrfs_init_work(&rbio->work, btrfs_rmw_helper, work_func, NULL, NULL);
 194	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
 195}
 196
 197/*
 198 * the stripe hash table is used for locking, and to collect
 199 * bios in hopes of making a full stripe
 200 */
 201int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
 202{
 203	struct btrfs_stripe_hash_table *table;
 204	struct btrfs_stripe_hash_table *x;
 205	struct btrfs_stripe_hash *cur;
 206	struct btrfs_stripe_hash *h;
 207	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
 208	int i;
 209	int table_size;
 210
 211	if (info->stripe_hash_table)
 212		return 0;
 213
 214	/*
 215	 * The table is large, starting with order 4 and can go as high as
 216	 * order 7 in case lock debugging is turned on.
 217	 *
 218	 * Try harder to allocate and fallback to vmalloc to lower the chance
 219	 * of a failing mount.
 220	 */
 221	table_size = sizeof(*table) + sizeof(*h) * num_entries;
 222	table = kvzalloc(table_size, GFP_KERNEL);
 223	if (!table)
 224		return -ENOMEM;
 
 
 
 225
 226	spin_lock_init(&table->cache_lock);
 227	INIT_LIST_HEAD(&table->stripe_cache);
 228
 229	h = table->table;
 230
 231	for (i = 0; i < num_entries; i++) {
 232		cur = h + i;
 233		INIT_LIST_HEAD(&cur->hash_list);
 234		spin_lock_init(&cur->lock);
 
 235	}
 236
 237	x = cmpxchg(&info->stripe_hash_table, NULL, table);
 238	if (x)
 239		kvfree(x);
 
 
 
 
 240	return 0;
 241}
 242
 243/*
 244 * caching an rbio means to copy anything from the
 245 * bio_pages array into the stripe_pages array.  We
 246 * use the page uptodate bit in the stripe cache array
 247 * to indicate if it has valid data
 248 *
 249 * once the caching is done, we set the cache ready
 250 * bit.
 251 */
 252static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
 253{
 254	int i;
 255	char *s;
 256	char *d;
 257	int ret;
 258
 259	ret = alloc_rbio_pages(rbio);
 260	if (ret)
 261		return;
 262
 263	for (i = 0; i < rbio->nr_pages; i++) {
 264		if (!rbio->bio_pages[i])
 265			continue;
 266
 267		s = kmap(rbio->bio_pages[i]);
 268		d = kmap(rbio->stripe_pages[i]);
 269
 270		copy_page(d, s);
 271
 272		kunmap(rbio->bio_pages[i]);
 273		kunmap(rbio->stripe_pages[i]);
 274		SetPageUptodate(rbio->stripe_pages[i]);
 275	}
 276	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 277}
 278
 279/*
 280 * we hash on the first logical address of the stripe
 281 */
 282static int rbio_bucket(struct btrfs_raid_bio *rbio)
 283{
 284	u64 num = rbio->bbio->raid_map[0];
 285
 286	/*
 287	 * we shift down quite a bit.  We're using byte
 288	 * addressing, and most of the lower bits are zeros.
 289	 * This tends to upset hash_64, and it consistently
 290	 * returns just one or two different values.
 291	 *
 292	 * shifting off the lower bits fixes things.
 293	 */
 294	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
 295}
 296
 297/*
 298 * stealing an rbio means taking all the uptodate pages from the stripe
 299 * array in the source rbio and putting them into the destination rbio
 300 */
 301static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
 302{
 303	int i;
 304	struct page *s;
 305	struct page *d;
 306
 307	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
 308		return;
 309
 310	for (i = 0; i < dest->nr_pages; i++) {
 311		s = src->stripe_pages[i];
 312		if (!s || !PageUptodate(s)) {
 313			continue;
 314		}
 315
 316		d = dest->stripe_pages[i];
 317		if (d)
 318			__free_page(d);
 319
 320		dest->stripe_pages[i] = s;
 321		src->stripe_pages[i] = NULL;
 322	}
 323}
 324
 325/*
 326 * merging means we take the bio_list from the victim and
 327 * splice it into the destination.  The victim should
 328 * be discarded afterwards.
 329 *
 330 * must be called with dest->rbio_list_lock held
 331 */
 332static void merge_rbio(struct btrfs_raid_bio *dest,
 333		       struct btrfs_raid_bio *victim)
 334{
 335	bio_list_merge(&dest->bio_list, &victim->bio_list);
 336	dest->bio_list_bytes += victim->bio_list_bytes;
 337	dest->generic_bio_cnt += victim->generic_bio_cnt;
 338	bio_list_init(&victim->bio_list);
 339}
 340
 341/*
 342 * used to prune items that are in the cache.  The caller
 343 * must hold the hash table lock.
 344 */
 345static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 346{
 347	int bucket = rbio_bucket(rbio);
 348	struct btrfs_stripe_hash_table *table;
 349	struct btrfs_stripe_hash *h;
 350	int freeit = 0;
 351
 352	/*
 353	 * check the bit again under the hash table lock.
 354	 */
 355	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 356		return;
 357
 358	table = rbio->fs_info->stripe_hash_table;
 359	h = table->table + bucket;
 360
 361	/* hold the lock for the bucket because we may be
 362	 * removing it from the hash table
 363	 */
 364	spin_lock(&h->lock);
 365
 366	/*
 367	 * hold the lock for the bio list because we need
 368	 * to make sure the bio list is empty
 369	 */
 370	spin_lock(&rbio->bio_list_lock);
 371
 372	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 373		list_del_init(&rbio->stripe_cache);
 374		table->cache_size -= 1;
 375		freeit = 1;
 376
 377		/* if the bio list isn't empty, this rbio is
 378		 * still involved in an IO.  We take it out
 379		 * of the cache list, and drop the ref that
 380		 * was held for the list.
 381		 *
 382		 * If the bio_list was empty, we also remove
 383		 * the rbio from the hash_table, and drop
 384		 * the corresponding ref
 385		 */
 386		if (bio_list_empty(&rbio->bio_list)) {
 387			if (!list_empty(&rbio->hash_list)) {
 388				list_del_init(&rbio->hash_list);
 389				refcount_dec(&rbio->refs);
 390				BUG_ON(!list_empty(&rbio->plug_list));
 391			}
 392		}
 393	}
 394
 395	spin_unlock(&rbio->bio_list_lock);
 396	spin_unlock(&h->lock);
 397
 398	if (freeit)
 399		__free_raid_bio(rbio);
 400}
 401
 402/*
 403 * prune a given rbio from the cache
 404 */
 405static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 406{
 407	struct btrfs_stripe_hash_table *table;
 408	unsigned long flags;
 409
 410	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 411		return;
 412
 413	table = rbio->fs_info->stripe_hash_table;
 414
 415	spin_lock_irqsave(&table->cache_lock, flags);
 416	__remove_rbio_from_cache(rbio);
 417	spin_unlock_irqrestore(&table->cache_lock, flags);
 418}
 419
 420/*
 421 * remove everything in the cache
 422 */
 423static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
 424{
 425	struct btrfs_stripe_hash_table *table;
 426	unsigned long flags;
 427	struct btrfs_raid_bio *rbio;
 428
 429	table = info->stripe_hash_table;
 430
 431	spin_lock_irqsave(&table->cache_lock, flags);
 432	while (!list_empty(&table->stripe_cache)) {
 433		rbio = list_entry(table->stripe_cache.next,
 434				  struct btrfs_raid_bio,
 435				  stripe_cache);
 436		__remove_rbio_from_cache(rbio);
 437	}
 438	spin_unlock_irqrestore(&table->cache_lock, flags);
 439}
 440
 441/*
 442 * remove all cached entries and free the hash table
 443 * used by unmount
 444 */
 445void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
 446{
 447	if (!info->stripe_hash_table)
 448		return;
 449	btrfs_clear_rbio_cache(info);
 450	kvfree(info->stripe_hash_table);
 
 
 
 451	info->stripe_hash_table = NULL;
 452}
 453
 454/*
 455 * insert an rbio into the stripe cache.  It
 456 * must have already been prepared by calling
 457 * cache_rbio_pages
 458 *
 459 * If this rbio was already cached, it gets
 460 * moved to the front of the lru.
 461 *
 462 * If the size of the rbio cache is too big, we
 463 * prune an item.
 464 */
 465static void cache_rbio(struct btrfs_raid_bio *rbio)
 466{
 467	struct btrfs_stripe_hash_table *table;
 468	unsigned long flags;
 469
 470	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
 471		return;
 472
 473	table = rbio->fs_info->stripe_hash_table;
 474
 475	spin_lock_irqsave(&table->cache_lock, flags);
 476	spin_lock(&rbio->bio_list_lock);
 477
 478	/* bump our ref if we were not in the list before */
 479	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
 480		refcount_inc(&rbio->refs);
 481
 482	if (!list_empty(&rbio->stripe_cache)){
 483		list_move(&rbio->stripe_cache, &table->stripe_cache);
 484	} else {
 485		list_add(&rbio->stripe_cache, &table->stripe_cache);
 486		table->cache_size += 1;
 487	}
 488
 489	spin_unlock(&rbio->bio_list_lock);
 490
 491	if (table->cache_size > RBIO_CACHE_SIZE) {
 492		struct btrfs_raid_bio *found;
 493
 494		found = list_entry(table->stripe_cache.prev,
 495				  struct btrfs_raid_bio,
 496				  stripe_cache);
 497
 498		if (found != rbio)
 499			__remove_rbio_from_cache(found);
 500	}
 501
 502	spin_unlock_irqrestore(&table->cache_lock, flags);
 
 503}
 504
 505/*
 506 * helper function to run the xor_blocks api.  It is only
 507 * able to do MAX_XOR_BLOCKS at a time, so we need to
 508 * loop through.
 509 */
 510static void run_xor(void **pages, int src_cnt, ssize_t len)
 511{
 512	int src_off = 0;
 513	int xor_src_cnt = 0;
 514	void *dest = pages[src_cnt];
 515
 516	while(src_cnt > 0) {
 517		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
 518		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
 519
 520		src_cnt -= xor_src_cnt;
 521		src_off += xor_src_cnt;
 522	}
 523}
 524
 525/*
 526 * Returns true if the bio list inside this rbio covers an entire stripe (no
 527 * rmw required).
 
 
 
 528 */
 529static int rbio_is_full(struct btrfs_raid_bio *rbio)
 530{
 531	unsigned long flags;
 532	unsigned long size = rbio->bio_list_bytes;
 533	int ret = 1;
 534
 535	spin_lock_irqsave(&rbio->bio_list_lock, flags);
 536	if (size != rbio->nr_data * rbio->stripe_len)
 537		ret = 0;
 
 538	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
 539	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
 
 
 
 
 
 
 540
 
 
 
 541	return ret;
 542}
 543
 544/*
 545 * returns 1 if it is safe to merge two rbios together.
 546 * The merging is safe if the two rbios correspond to
 547 * the same stripe and if they are both going in the same
 548 * direction (read vs write), and if neither one is
 549 * locked for final IO
 550 *
 551 * The caller is responsible for locking such that
 552 * rmw_locked is safe to test
 553 */
 554static int rbio_can_merge(struct btrfs_raid_bio *last,
 555			  struct btrfs_raid_bio *cur)
 556{
 557	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
 558	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
 559		return 0;
 560
 561	/*
 562	 * we can't merge with cached rbios, since the
 563	 * idea is that when we merge the destination
 564	 * rbio is going to run our IO for us.  We can
 565	 * steal from cached rbios though, other functions
 566	 * handle that.
 567	 */
 568	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
 569	    test_bit(RBIO_CACHE_BIT, &cur->flags))
 570		return 0;
 571
 572	if (last->bbio->raid_map[0] !=
 573	    cur->bbio->raid_map[0])
 574		return 0;
 575
 576	/* we can't merge with different operations */
 577	if (last->operation != cur->operation)
 578		return 0;
 579	/*
 580	 * We've need read the full stripe from the drive.
 581	 * check and repair the parity and write the new results.
 582	 *
 583	 * We're not allowed to add any new bios to the
 584	 * bio list here, anyone else that wants to
 585	 * change this stripe needs to do their own rmw.
 586	 */
 587	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
 588		return 0;
 589
 590	if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
 
 
 591		return 0;
 592
 593	if (last->operation == BTRFS_RBIO_READ_REBUILD) {
 594		int fa = last->faila;
 595		int fb = last->failb;
 596		int cur_fa = cur->faila;
 597		int cur_fb = cur->failb;
 598
 599		if (last->faila >= last->failb) {
 600			fa = last->failb;
 601			fb = last->faila;
 602		}
 603
 604		if (cur->faila >= cur->failb) {
 605			cur_fa = cur->failb;
 606			cur_fb = cur->faila;
 607		}
 608
 609		if (fa != cur_fa || fb != cur_fb)
 610			return 0;
 611	}
 612	return 1;
 613}
 614
 615static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
 616				  int index)
 617{
 618	return stripe * rbio->stripe_npages + index;
 619}
 620
 621/*
 622 * these are just the pages from the rbio array, not from anything
 623 * the FS sent down to us
 624 */
 625static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
 626				     int index)
 627{
 628	return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
 629}
 630
 631/*
 632 * helper to index into the pstripe
 633 */
 634static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
 635{
 636	return rbio_stripe_page(rbio, rbio->nr_data, index);
 
 637}
 638
 639/*
 640 * helper to index into the qstripe, returns null
 641 * if there is no qstripe
 642 */
 643static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
 644{
 645	if (rbio->nr_data + 1 == rbio->real_stripes)
 646		return NULL;
 647	return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
 
 
 
 648}
 649
 650/*
 651 * The first stripe in the table for a logical address
 652 * has the lock.  rbios are added in one of three ways:
 653 *
 654 * 1) Nobody has the stripe locked yet.  The rbio is given
 655 * the lock and 0 is returned.  The caller must start the IO
 656 * themselves.
 657 *
 658 * 2) Someone has the stripe locked, but we're able to merge
 659 * with the lock owner.  The rbio is freed and the IO will
 660 * start automatically along with the existing rbio.  1 is returned.
 661 *
 662 * 3) Someone has the stripe locked, but we're not able to merge.
 663 * The rbio is added to the lock owner's plug list, or merged into
 664 * an rbio already on the plug list.  When the lock owner unlocks,
 665 * the next rbio on the list is run and the IO is started automatically.
 666 * 1 is returned
 667 *
 668 * If we return 0, the caller still owns the rbio and must continue with
 669 * IO submission.  If we return 1, the caller must assume the rbio has
 670 * already been freed.
 671 */
 672static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
 673{
 674	int bucket = rbio_bucket(rbio);
 675	struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
 676	struct btrfs_raid_bio *cur;
 677	struct btrfs_raid_bio *pending;
 678	unsigned long flags;
 
 679	struct btrfs_raid_bio *freeit = NULL;
 680	struct btrfs_raid_bio *cache_drop = NULL;
 681	int ret = 0;
 
 682
 683	spin_lock_irqsave(&h->lock, flags);
 684	list_for_each_entry(cur, &h->hash_list, hash_list) {
 685		if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
 
 686			spin_lock(&cur->bio_list_lock);
 687
 688			/* can we steal this cached rbio's pages? */
 689			if (bio_list_empty(&cur->bio_list) &&
 690			    list_empty(&cur->plug_list) &&
 691			    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
 692			    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
 693				list_del_init(&cur->hash_list);
 694				refcount_dec(&cur->refs);
 695
 696				steal_rbio(cur, rbio);
 697				cache_drop = cur;
 698				spin_unlock(&cur->bio_list_lock);
 699
 700				goto lockit;
 701			}
 702
 703			/* can we merge into the lock owner? */
 704			if (rbio_can_merge(cur, rbio)) {
 705				merge_rbio(cur, rbio);
 706				spin_unlock(&cur->bio_list_lock);
 707				freeit = rbio;
 708				ret = 1;
 709				goto out;
 710			}
 711
 712
 713			/*
 714			 * we couldn't merge with the running
 715			 * rbio, see if we can merge with the
 716			 * pending ones.  We don't have to
 717			 * check for rmw_locked because there
 718			 * is no way they are inside finish_rmw
 719			 * right now
 720			 */
 721			list_for_each_entry(pending, &cur->plug_list,
 722					    plug_list) {
 723				if (rbio_can_merge(pending, rbio)) {
 724					merge_rbio(pending, rbio);
 725					spin_unlock(&cur->bio_list_lock);
 726					freeit = rbio;
 727					ret = 1;
 728					goto out;
 729				}
 730			}
 731
 732			/* no merging, put us on the tail of the plug list,
 733			 * our rbio will be started with the currently
 734			 * running rbio unlocks
 735			 */
 736			list_add_tail(&rbio->plug_list, &cur->plug_list);
 737			spin_unlock(&cur->bio_list_lock);
 738			ret = 1;
 739			goto out;
 740		}
 741	}
 742lockit:
 743	refcount_inc(&rbio->refs);
 744	list_add(&rbio->hash_list, &h->hash_list);
 745out:
 746	spin_unlock_irqrestore(&h->lock, flags);
 747	if (cache_drop)
 748		remove_rbio_from_cache(cache_drop);
 749	if (freeit)
 750		__free_raid_bio(freeit);
 751	return ret;
 752}
 753
 754/*
 755 * called as rmw or parity rebuild is completed.  If the plug list has more
 756 * rbios waiting for this stripe, the next one on the list will be started
 757 */
 758static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
 759{
 760	int bucket;
 761	struct btrfs_stripe_hash *h;
 762	unsigned long flags;
 763	int keep_cache = 0;
 764
 765	bucket = rbio_bucket(rbio);
 766	h = rbio->fs_info->stripe_hash_table->table + bucket;
 767
 768	if (list_empty(&rbio->plug_list))
 769		cache_rbio(rbio);
 770
 771	spin_lock_irqsave(&h->lock, flags);
 772	spin_lock(&rbio->bio_list_lock);
 773
 774	if (!list_empty(&rbio->hash_list)) {
 775		/*
 776		 * if we're still cached and there is no other IO
 777		 * to perform, just leave this rbio here for others
 778		 * to steal from later
 779		 */
 780		if (list_empty(&rbio->plug_list) &&
 781		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 782			keep_cache = 1;
 783			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 784			BUG_ON(!bio_list_empty(&rbio->bio_list));
 785			goto done;
 786		}
 787
 788		list_del_init(&rbio->hash_list);
 789		refcount_dec(&rbio->refs);
 790
 791		/*
 792		 * we use the plug list to hold all the rbios
 793		 * waiting for the chance to lock this stripe.
 794		 * hand the lock over to one of them.
 795		 */
 796		if (!list_empty(&rbio->plug_list)) {
 797			struct btrfs_raid_bio *next;
 798			struct list_head *head = rbio->plug_list.next;
 799
 800			next = list_entry(head, struct btrfs_raid_bio,
 801					  plug_list);
 802
 803			list_del_init(&rbio->plug_list);
 804
 805			list_add(&next->hash_list, &h->hash_list);
 806			refcount_inc(&next->refs);
 807			spin_unlock(&rbio->bio_list_lock);
 808			spin_unlock_irqrestore(&h->lock, flags);
 809
 810			if (next->operation == BTRFS_RBIO_READ_REBUILD)
 811				start_async_work(next, read_rebuild_work);
 812			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
 813				steal_rbio(rbio, next);
 814				start_async_work(next, read_rebuild_work);
 815			} else if (next->operation == BTRFS_RBIO_WRITE) {
 816				steal_rbio(rbio, next);
 817				start_async_work(next, rmw_work);
 818			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
 819				steal_rbio(rbio, next);
 820				start_async_work(next, scrub_parity_work);
 821			}
 822
 823			goto done_nolock;
 
 
 
 
 
 824		}
 825	}
 826done:
 827	spin_unlock(&rbio->bio_list_lock);
 828	spin_unlock_irqrestore(&h->lock, flags);
 829
 830done_nolock:
 831	if (!keep_cache)
 832		remove_rbio_from_cache(rbio);
 833}
 834
 835static void __free_raid_bio(struct btrfs_raid_bio *rbio)
 836{
 837	int i;
 838
 839	if (!refcount_dec_and_test(&rbio->refs))
 
 840		return;
 841
 842	WARN_ON(!list_empty(&rbio->stripe_cache));
 843	WARN_ON(!list_empty(&rbio->hash_list));
 844	WARN_ON(!bio_list_empty(&rbio->bio_list));
 845
 846	for (i = 0; i < rbio->nr_pages; i++) {
 847		if (rbio->stripe_pages[i]) {
 848			__free_page(rbio->stripe_pages[i]);
 849			rbio->stripe_pages[i] = NULL;
 850		}
 851	}
 852
 853	btrfs_put_bbio(rbio->bbio);
 854	kfree(rbio);
 855}
 856
 857static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
 858{
 859	struct bio *next;
 860
 861	while (cur) {
 862		next = cur->bi_next;
 863		cur->bi_next = NULL;
 864		cur->bi_status = err;
 865		bio_endio(cur);
 866		cur = next;
 867	}
 868}
 869
 870/*
 871 * this frees the rbio and runs through all the bios in the
 872 * bio_list and calls end_io on them
 873 */
 874static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
 875{
 876	struct bio *cur = bio_list_get(&rbio->bio_list);
 877	struct bio *extra;
 878
 879	if (rbio->generic_bio_cnt)
 880		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
 881
 882	/*
 883	 * At this moment, rbio->bio_list is empty, however since rbio does not
 884	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
 885	 * hash list, rbio may be merged with others so that rbio->bio_list
 886	 * becomes non-empty.
 887	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
 888	 * more and we can call bio_endio() on all queued bios.
 889	 */
 890	unlock_stripe(rbio);
 891	extra = bio_list_get(&rbio->bio_list);
 892	__free_raid_bio(rbio);
 893
 894	rbio_endio_bio_list(cur, err);
 895	if (extra)
 896		rbio_endio_bio_list(extra, err);
 
 
 
 
 
 897}
 898
 899/*
 900 * end io function used by finish_rmw.  When we finally
 901 * get here, we've written a full stripe
 902 */
 903static void raid_write_end_io(struct bio *bio)
 904{
 905	struct btrfs_raid_bio *rbio = bio->bi_private;
 906	blk_status_t err = bio->bi_status;
 907	int max_errors;
 908
 909	if (err)
 910		fail_bio_stripe(rbio, bio);
 911
 912	bio_put(bio);
 913
 914	if (!atomic_dec_and_test(&rbio->stripes_pending))
 915		return;
 916
 917	err = BLK_STS_OK;
 918
 919	/* OK, we have read all the stripes we need to. */
 920	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
 921		     0 : rbio->bbio->max_errors;
 922	if (atomic_read(&rbio->error) > max_errors)
 923		err = BLK_STS_IOERR;
 924
 925	rbio_orig_end_io(rbio, err);
 
 926}
 927
 928/*
 929 * the read/modify/write code wants to use the original bio for
 930 * any pages it included, and then use the rbio for everything
 931 * else.  This function decides if a given index (stripe number)
 932 * and page number in that stripe fall inside the original bio
 933 * or the rbio.
 934 *
 935 * if you set bio_list_only, you'll get a NULL back for any ranges
 936 * that are outside the bio_list
 937 *
 938 * This doesn't take any refs on anything, you get a bare page pointer
 939 * and the caller must bump refs as required.
 940 *
 941 * You must call index_rbio_pages once before you can trust
 942 * the answers from this function.
 943 */
 944static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
 945				 int index, int pagenr, int bio_list_only)
 946{
 947	int chunk_page;
 948	struct page *p = NULL;
 949
 950	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
 951
 952	spin_lock_irq(&rbio->bio_list_lock);
 953	p = rbio->bio_pages[chunk_page];
 954	spin_unlock_irq(&rbio->bio_list_lock);
 955
 956	if (p || bio_list_only)
 957		return p;
 958
 959	return rbio->stripe_pages[chunk_page];
 960}
 961
 962/*
 963 * number of pages we need for the entire stripe across all the
 964 * drives
 965 */
 966static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
 967{
 968	return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
 
 969}
 970
 971/*
 972 * allocation and initial setup for the btrfs_raid_bio.  Not
 973 * this does not allocate any pages for rbio->pages.
 974 */
 975static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
 976					 struct btrfs_bio *bbio,
 977					 u64 stripe_len)
 978{
 979	struct btrfs_raid_bio *rbio;
 980	int nr_data = 0;
 981	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
 982	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
 983	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
 984	void *p;
 985
 986	rbio = kzalloc(sizeof(*rbio) +
 987		       sizeof(*rbio->stripe_pages) * num_pages +
 988		       sizeof(*rbio->bio_pages) * num_pages +
 989		       sizeof(*rbio->finish_pointers) * real_stripes +
 990		       sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_npages) +
 991		       sizeof(*rbio->finish_pbitmap) *
 992				BITS_TO_LONGS(stripe_npages),
 993		       GFP_NOFS);
 994	if (!rbio)
 995		return ERR_PTR(-ENOMEM);
 
 996
 997	bio_list_init(&rbio->bio_list);
 998	INIT_LIST_HEAD(&rbio->plug_list);
 999	spin_lock_init(&rbio->bio_list_lock);
1000	INIT_LIST_HEAD(&rbio->stripe_cache);
1001	INIT_LIST_HEAD(&rbio->hash_list);
1002	rbio->bbio = bbio;
1003	rbio->fs_info = fs_info;
 
1004	rbio->stripe_len = stripe_len;
1005	rbio->nr_pages = num_pages;
1006	rbio->real_stripes = real_stripes;
1007	rbio->stripe_npages = stripe_npages;
1008	rbio->faila = -1;
1009	rbio->failb = -1;
1010	refcount_set(&rbio->refs, 1);
1011	atomic_set(&rbio->error, 0);
1012	atomic_set(&rbio->stripes_pending, 0);
1013
1014	/*
1015	 * the stripe_pages, bio_pages, etc arrays point to the extra
1016	 * memory we allocated past the end of the rbio
1017	 */
1018	p = rbio + 1;
1019#define CONSUME_ALLOC(ptr, count)	do {				\
1020		ptr = p;						\
1021		p = (unsigned char *)p + sizeof(*(ptr)) * (count);	\
1022	} while (0)
1023	CONSUME_ALLOC(rbio->stripe_pages, num_pages);
1024	CONSUME_ALLOC(rbio->bio_pages, num_pages);
1025	CONSUME_ALLOC(rbio->finish_pointers, real_stripes);
1026	CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_npages));
1027	CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_npages));
1028#undef  CONSUME_ALLOC
1029
1030	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1031		nr_data = real_stripes - 1;
1032	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1033		nr_data = real_stripes - 2;
1034	else
1035		BUG();
1036
1037	rbio->nr_data = nr_data;
1038	return rbio;
1039}
1040
1041/* allocate pages for all the stripes in the bio, including parity */
1042static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1043{
1044	int i;
1045	struct page *page;
1046
1047	for (i = 0; i < rbio->nr_pages; i++) {
1048		if (rbio->stripe_pages[i])
1049			continue;
1050		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1051		if (!page)
1052			return -ENOMEM;
1053		rbio->stripe_pages[i] = page;
 
1054	}
1055	return 0;
1056}
1057
1058/* only allocate pages for p/q stripes */
1059static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1060{
1061	int i;
1062	struct page *page;
1063
1064	i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1065
1066	for (; i < rbio->nr_pages; i++) {
1067		if (rbio->stripe_pages[i])
1068			continue;
1069		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1070		if (!page)
1071			return -ENOMEM;
1072		rbio->stripe_pages[i] = page;
1073	}
1074	return 0;
1075}
1076
1077/*
1078 * add a single page from a specific stripe into our list of bios for IO
1079 * this will try to merge into existing bios if possible, and returns
1080 * zero if all went well.
1081 */
1082static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1083			    struct bio_list *bio_list,
1084			    struct page *page,
1085			    int stripe_nr,
1086			    unsigned long page_index,
1087			    unsigned long bio_max_len)
1088{
1089	struct bio *last = bio_list->tail;
1090	u64 last_end = 0;
1091	int ret;
1092	struct bio *bio;
1093	struct btrfs_bio_stripe *stripe;
1094	u64 disk_start;
1095
1096	stripe = &rbio->bbio->stripes[stripe_nr];
1097	disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1098
1099	/* if the device is missing, just fail this stripe */
1100	if (!stripe->dev->bdev)
1101		return fail_rbio_index(rbio, stripe_nr);
1102
1103	/* see if we can add this page onto our existing bio */
1104	if (last) {
1105		last_end = (u64)last->bi_iter.bi_sector << 9;
1106		last_end += last->bi_iter.bi_size;
1107
1108		/*
1109		 * we can't merge these if they are from different
1110		 * devices or if they are not contiguous
1111		 */
1112		if (last_end == disk_start && stripe->dev->bdev &&
1113		    !last->bi_status &&
1114		    last->bi_disk == stripe->dev->bdev->bd_disk &&
1115		    last->bi_partno == stripe->dev->bdev->bd_partno) {
1116			ret = bio_add_page(last, page, PAGE_SIZE, 0);
1117			if (ret == PAGE_SIZE)
1118				return 0;
1119		}
1120	}
1121
1122	/* put a new bio on the list */
1123	bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
 
 
 
1124	bio->bi_iter.bi_size = 0;
1125	bio_set_dev(bio, stripe->dev->bdev);
1126	bio->bi_iter.bi_sector = disk_start >> 9;
 
1127
1128	bio_add_page(bio, page, PAGE_SIZE, 0);
1129	bio_list_add(bio_list, bio);
1130	return 0;
1131}
1132
1133/*
1134 * while we're doing the read/modify/write cycle, we could
1135 * have errors in reading pages off the disk.  This checks
1136 * for errors and if we're not able to read the page it'll
1137 * trigger parity reconstruction.  The rmw will be finished
1138 * after we've reconstructed the failed stripes
1139 */
1140static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1141{
1142	if (rbio->faila >= 0 || rbio->failb >= 0) {
1143		BUG_ON(rbio->faila == rbio->real_stripes - 1);
1144		__raid56_parity_recover(rbio);
1145	} else {
1146		finish_rmw(rbio);
1147	}
1148}
1149
1150/*
 
 
 
 
 
 
 
 
 
 
 
 
1151 * helper function to walk our bio list and populate the bio_pages array with
1152 * the result.  This seems expensive, but it is faster than constantly
1153 * searching through the bio list as we setup the IO in finish_rmw or stripe
1154 * reconstruction.
1155 *
1156 * This must be called before you trust the answers from page_in_rbio
1157 */
1158static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1159{
1160	struct bio *bio;
1161	u64 start;
1162	unsigned long stripe_offset;
1163	unsigned long page_index;
 
 
1164
1165	spin_lock_irq(&rbio->bio_list_lock);
1166	bio_list_for_each(bio, &rbio->bio_list) {
1167		struct bio_vec bvec;
1168		struct bvec_iter iter;
1169		int i = 0;
1170
1171		start = (u64)bio->bi_iter.bi_sector << 9;
1172		stripe_offset = start - rbio->bbio->raid_map[0];
1173		page_index = stripe_offset >> PAGE_SHIFT;
1174
1175		if (bio_flagged(bio, BIO_CLONED))
1176			bio->bi_iter = btrfs_io_bio(bio)->iter;
1177
1178		bio_for_each_segment(bvec, bio, iter) {
1179			rbio->bio_pages[page_index + i] = bvec.bv_page;
1180			i++;
1181		}
1182	}
1183	spin_unlock_irq(&rbio->bio_list_lock);
1184}
1185
1186/*
1187 * this is called from one of two situations.  We either
1188 * have a full stripe from the higher layers, or we've read all
1189 * the missing bits off disk.
1190 *
1191 * This will calculate the parity and then send down any
1192 * changed blocks.
1193 */
1194static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1195{
1196	struct btrfs_bio *bbio = rbio->bbio;
1197	void **pointers = rbio->finish_pointers;
 
1198	int nr_data = rbio->nr_data;
1199	int stripe;
1200	int pagenr;
1201	int p_stripe = -1;
1202	int q_stripe = -1;
1203	struct bio_list bio_list;
1204	struct bio *bio;
 
1205	int ret;
1206
1207	bio_list_init(&bio_list);
1208
1209	if (rbio->real_stripes - rbio->nr_data == 1) {
1210		p_stripe = rbio->real_stripes - 1;
1211	} else if (rbio->real_stripes - rbio->nr_data == 2) {
1212		p_stripe = rbio->real_stripes - 2;
1213		q_stripe = rbio->real_stripes - 1;
1214	} else {
1215		BUG();
1216	}
1217
1218	/* at this point we either have a full stripe,
1219	 * or we've read the full stripe from the drive.
1220	 * recalculate the parity and write the new results.
1221	 *
1222	 * We're not allowed to add any new bios to the
1223	 * bio list here, anyone else that wants to
1224	 * change this stripe needs to do their own rmw.
1225	 */
1226	spin_lock_irq(&rbio->bio_list_lock);
1227	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1228	spin_unlock_irq(&rbio->bio_list_lock);
1229
1230	atomic_set(&rbio->error, 0);
1231
1232	/*
1233	 * now that we've set rmw_locked, run through the
1234	 * bio list one last time and map the page pointers
1235	 *
1236	 * We don't cache full rbios because we're assuming
1237	 * the higher layers are unlikely to use this area of
1238	 * the disk again soon.  If they do use it again,
1239	 * hopefully they will send another full bio.
1240	 */
1241	index_rbio_pages(rbio);
1242	if (!rbio_is_full(rbio))
1243		cache_rbio_pages(rbio);
1244	else
1245		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1246
1247	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1248		struct page *p;
1249		/* first collect one page from each data stripe */
1250		for (stripe = 0; stripe < nr_data; stripe++) {
1251			p = page_in_rbio(rbio, stripe, pagenr, 0);
1252			pointers[stripe] = kmap(p);
1253		}
1254
1255		/* then add the parity stripe */
1256		p = rbio_pstripe_page(rbio, pagenr);
1257		SetPageUptodate(p);
1258		pointers[stripe++] = kmap(p);
1259
1260		if (q_stripe != -1) {
1261
1262			/*
1263			 * raid6, add the qstripe and call the
1264			 * library function to fill in our p/q
1265			 */
1266			p = rbio_qstripe_page(rbio, pagenr);
1267			SetPageUptodate(p);
1268			pointers[stripe++] = kmap(p);
1269
1270			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1271						pointers);
1272		} else {
1273			/* raid5 */
1274			copy_page(pointers[nr_data], pointers[0]);
1275			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1276		}
1277
1278
1279		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1280			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1281	}
1282
1283	/*
1284	 * time to start writing.  Make bios for everything from the
1285	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1286	 * everything else.
1287	 */
1288	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1289		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1290			struct page *page;
1291			if (stripe < rbio->nr_data) {
1292				page = page_in_rbio(rbio, stripe, pagenr, 1);
1293				if (!page)
1294					continue;
1295			} else {
1296			       page = rbio_stripe_page(rbio, stripe, pagenr);
1297			}
1298
1299			ret = rbio_add_io_page(rbio, &bio_list,
1300				       page, stripe, pagenr, rbio->stripe_len);
1301			if (ret)
1302				goto cleanup;
1303		}
1304	}
1305
1306	if (likely(!bbio->num_tgtdevs))
1307		goto write_data;
1308
1309	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1310		if (!bbio->tgtdev_map[stripe])
1311			continue;
1312
1313		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1314			struct page *page;
1315			if (stripe < rbio->nr_data) {
1316				page = page_in_rbio(rbio, stripe, pagenr, 1);
1317				if (!page)
1318					continue;
1319			} else {
1320			       page = rbio_stripe_page(rbio, stripe, pagenr);
1321			}
1322
1323			ret = rbio_add_io_page(rbio, &bio_list, page,
1324					       rbio->bbio->tgtdev_map[stripe],
1325					       pagenr, rbio->stripe_len);
1326			if (ret)
1327				goto cleanup;
1328		}
1329	}
1330
1331write_data:
1332	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1333	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1334
1335	while (1) {
1336		bio = bio_list_pop(&bio_list);
1337		if (!bio)
1338			break;
1339
1340		bio->bi_private = rbio;
1341		bio->bi_end_io = raid_write_end_io;
1342		bio->bi_opf = REQ_OP_WRITE;
1343
1344		submit_bio(bio);
1345	}
1346	return;
1347
1348cleanup:
1349	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1350
1351	while ((bio = bio_list_pop(&bio_list)))
1352		bio_put(bio);
1353}
1354
1355/*
1356 * helper to find the stripe number for a given bio.  Used to figure out which
1357 * stripe has failed.  This expects the bio to correspond to a physical disk,
1358 * so it looks up based on physical sector numbers.
1359 */
1360static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1361			   struct bio *bio)
1362{
1363	u64 physical = bio->bi_iter.bi_sector;
1364	u64 stripe_start;
1365	int i;
1366	struct btrfs_bio_stripe *stripe;
1367
1368	physical <<= 9;
1369
1370	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1371		stripe = &rbio->bbio->stripes[i];
1372		stripe_start = stripe->physical;
1373		if (physical >= stripe_start &&
1374		    physical < stripe_start + rbio->stripe_len &&
1375		    stripe->dev->bdev &&
1376		    bio->bi_disk == stripe->dev->bdev->bd_disk &&
1377		    bio->bi_partno == stripe->dev->bdev->bd_partno) {
1378			return i;
1379		}
1380	}
1381	return -1;
1382}
1383
1384/*
1385 * helper to find the stripe number for a given
1386 * bio (before mapping).  Used to figure out which stripe has
1387 * failed.  This looks up based on logical block numbers.
1388 */
1389static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1390				   struct bio *bio)
1391{
1392	u64 logical = bio->bi_iter.bi_sector;
1393	u64 stripe_start;
1394	int i;
1395
1396	logical <<= 9;
1397
1398	for (i = 0; i < rbio->nr_data; i++) {
1399		stripe_start = rbio->bbio->raid_map[i];
1400		if (logical >= stripe_start &&
1401		    logical < stripe_start + rbio->stripe_len) {
1402			return i;
1403		}
1404	}
1405	return -1;
1406}
1407
1408/*
1409 * returns -EIO if we had too many failures
1410 */
1411static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1412{
1413	unsigned long flags;
1414	int ret = 0;
1415
1416	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1417
1418	/* we already know this stripe is bad, move on */
1419	if (rbio->faila == failed || rbio->failb == failed)
1420		goto out;
1421
1422	if (rbio->faila == -1) {
1423		/* first failure on this rbio */
1424		rbio->faila = failed;
1425		atomic_inc(&rbio->error);
1426	} else if (rbio->failb == -1) {
1427		/* second failure on this rbio */
1428		rbio->failb = failed;
1429		atomic_inc(&rbio->error);
1430	} else {
1431		ret = -EIO;
1432	}
1433out:
1434	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1435
1436	return ret;
1437}
1438
1439/*
1440 * helper to fail a stripe based on a physical disk
1441 * bio.
1442 */
1443static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1444			   struct bio *bio)
1445{
1446	int failed = find_bio_stripe(rbio, bio);
1447
1448	if (failed < 0)
1449		return -EIO;
1450
1451	return fail_rbio_index(rbio, failed);
1452}
1453
1454/*
1455 * this sets each page in the bio uptodate.  It should only be used on private
1456 * rbio pages, nothing that comes in from the higher layers
1457 */
1458static void set_bio_pages_uptodate(struct bio *bio)
1459{
1460	struct bio_vec *bvec;
1461	struct bvec_iter_all iter_all;
1462
1463	ASSERT(!bio_flagged(bio, BIO_CLONED));
1464
1465	bio_for_each_segment_all(bvec, bio, iter_all)
1466		SetPageUptodate(bvec->bv_page);
 
 
1467}
1468
1469/*
1470 * end io for the read phase of the rmw cycle.  All the bios here are physical
1471 * stripe bios we've read from the disk so we can recalculate the parity of the
1472 * stripe.
1473 *
1474 * This will usually kick off finish_rmw once all the bios are read in, but it
1475 * may trigger parity reconstruction if we had any errors along the way
1476 */
1477static void raid_rmw_end_io(struct bio *bio)
1478{
1479	struct btrfs_raid_bio *rbio = bio->bi_private;
1480
1481	if (bio->bi_status)
1482		fail_bio_stripe(rbio, bio);
1483	else
1484		set_bio_pages_uptodate(bio);
1485
1486	bio_put(bio);
1487
1488	if (!atomic_dec_and_test(&rbio->stripes_pending))
1489		return;
1490
1491	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
 
1492		goto cleanup;
1493
1494	/*
1495	 * this will normally call finish_rmw to start our write
1496	 * but if there are any failed stripes we'll reconstruct
1497	 * from parity first
1498	 */
1499	validate_rbio_for_rmw(rbio);
1500	return;
1501
1502cleanup:
1503
1504	rbio_orig_end_io(rbio, BLK_STS_IOERR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1505}
1506
1507/*
1508 * the stripe must be locked by the caller.  It will
1509 * unlock after all the writes are done
1510 */
1511static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1512{
1513	int bios_to_read = 0;
 
1514	struct bio_list bio_list;
1515	int ret;
 
1516	int pagenr;
1517	int stripe;
1518	struct bio *bio;
1519
1520	bio_list_init(&bio_list);
1521
1522	ret = alloc_rbio_pages(rbio);
1523	if (ret)
1524		goto cleanup;
1525
1526	index_rbio_pages(rbio);
1527
1528	atomic_set(&rbio->error, 0);
1529	/*
1530	 * build a list of bios to read all the missing parts of this
1531	 * stripe
1532	 */
1533	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1534		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1535			struct page *page;
1536			/*
1537			 * we want to find all the pages missing from
1538			 * the rbio and read them from the disk.  If
1539			 * page_in_rbio finds a page in the bio list
1540			 * we don't need to read it off the stripe.
1541			 */
1542			page = page_in_rbio(rbio, stripe, pagenr, 1);
1543			if (page)
1544				continue;
1545
1546			page = rbio_stripe_page(rbio, stripe, pagenr);
1547			/*
1548			 * the bio cache may have handed us an uptodate
1549			 * page.  If so, be happy and use it
1550			 */
1551			if (PageUptodate(page))
1552				continue;
1553
1554			ret = rbio_add_io_page(rbio, &bio_list, page,
1555				       stripe, pagenr, rbio->stripe_len);
1556			if (ret)
1557				goto cleanup;
1558		}
1559	}
1560
1561	bios_to_read = bio_list_size(&bio_list);
1562	if (!bios_to_read) {
1563		/*
1564		 * this can happen if others have merged with
1565		 * us, it means there is nothing left to read.
1566		 * But if there are missing devices it may not be
1567		 * safe to do the full stripe write yet.
1568		 */
1569		goto finish;
1570	}
1571
1572	/*
1573	 * the bbio may be freed once we submit the last bio.  Make sure
1574	 * not to touch it after that
1575	 */
1576	atomic_set(&rbio->stripes_pending, bios_to_read);
1577	while (1) {
1578		bio = bio_list_pop(&bio_list);
1579		if (!bio)
1580			break;
1581
1582		bio->bi_private = rbio;
1583		bio->bi_end_io = raid_rmw_end_io;
1584		bio->bi_opf = REQ_OP_READ;
1585
1586		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
 
1587
1588		submit_bio(bio);
 
1589	}
1590	/* the actual write will happen once the reads are done */
1591	return 0;
1592
1593cleanup:
1594	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1595
1596	while ((bio = bio_list_pop(&bio_list)))
1597		bio_put(bio);
1598
1599	return -EIO;
1600
1601finish:
1602	validate_rbio_for_rmw(rbio);
1603	return 0;
1604}
1605
1606/*
1607 * if the upper layers pass in a full stripe, we thank them by only allocating
1608 * enough pages to hold the parity, and sending it all down quickly.
1609 */
1610static int full_stripe_write(struct btrfs_raid_bio *rbio)
1611{
1612	int ret;
1613
1614	ret = alloc_rbio_parity_pages(rbio);
1615	if (ret) {
1616		__free_raid_bio(rbio);
1617		return ret;
1618	}
1619
1620	ret = lock_stripe_add(rbio);
1621	if (ret == 0)
1622		finish_rmw(rbio);
1623	return 0;
1624}
1625
1626/*
1627 * partial stripe writes get handed over to async helpers.
1628 * We're really hoping to merge a few more writes into this
1629 * rbio before calculating new parity
1630 */
1631static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1632{
1633	int ret;
1634
1635	ret = lock_stripe_add(rbio);
1636	if (ret == 0)
1637		start_async_work(rbio, rmw_work);
1638	return 0;
1639}
1640
1641/*
1642 * sometimes while we were reading from the drive to
1643 * recalculate parity, enough new bios come into create
1644 * a full stripe.  So we do a check here to see if we can
1645 * go directly to finish_rmw
1646 */
1647static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1648{
1649	/* head off into rmw land if we don't have a full stripe */
1650	if (!rbio_is_full(rbio))
1651		return partial_stripe_write(rbio);
1652	return full_stripe_write(rbio);
1653}
1654
1655/*
1656 * We use plugging call backs to collect full stripes.
1657 * Any time we get a partial stripe write while plugged
1658 * we collect it into a list.  When the unplug comes down,
1659 * we sort the list by logical block number and merge
1660 * everything we can into the same rbios
1661 */
1662struct btrfs_plug_cb {
1663	struct blk_plug_cb cb;
1664	struct btrfs_fs_info *info;
1665	struct list_head rbio_list;
1666	struct btrfs_work work;
1667};
1668
1669/*
1670 * rbios on the plug list are sorted for easier merging.
1671 */
1672static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1673{
1674	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1675						 plug_list);
1676	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1677						 plug_list);
1678	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1679	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1680
1681	if (a_sector < b_sector)
1682		return -1;
1683	if (a_sector > b_sector)
1684		return 1;
1685	return 0;
1686}
1687
1688static void run_plug(struct btrfs_plug_cb *plug)
1689{
1690	struct btrfs_raid_bio *cur;
1691	struct btrfs_raid_bio *last = NULL;
1692
1693	/*
1694	 * sort our plug list then try to merge
1695	 * everything we can in hopes of creating full
1696	 * stripes.
1697	 */
1698	list_sort(NULL, &plug->rbio_list, plug_cmp);
1699	while (!list_empty(&plug->rbio_list)) {
1700		cur = list_entry(plug->rbio_list.next,
1701				 struct btrfs_raid_bio, plug_list);
1702		list_del_init(&cur->plug_list);
1703
1704		if (rbio_is_full(cur)) {
1705			int ret;
1706
1707			/* we have a full stripe, send it down */
1708			ret = full_stripe_write(cur);
1709			BUG_ON(ret);
1710			continue;
1711		}
1712		if (last) {
1713			if (rbio_can_merge(last, cur)) {
1714				merge_rbio(last, cur);
1715				__free_raid_bio(cur);
1716				continue;
1717
1718			}
1719			__raid56_parity_write(last);
1720		}
1721		last = cur;
1722	}
1723	if (last) {
1724		__raid56_parity_write(last);
1725	}
1726	kfree(plug);
1727}
1728
1729/*
1730 * if the unplug comes from schedule, we have to push the
1731 * work off to a helper thread
1732 */
1733static void unplug_work(struct btrfs_work *work)
1734{
1735	struct btrfs_plug_cb *plug;
1736	plug = container_of(work, struct btrfs_plug_cb, work);
1737	run_plug(plug);
1738}
1739
1740static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1741{
1742	struct btrfs_plug_cb *plug;
1743	plug = container_of(cb, struct btrfs_plug_cb, cb);
1744
1745	if (from_schedule) {
1746		btrfs_init_work(&plug->work, btrfs_rmw_helper,
1747				unplug_work, NULL, NULL);
1748		btrfs_queue_work(plug->info->rmw_workers,
1749				 &plug->work);
1750		return;
1751	}
1752	run_plug(plug);
1753}
1754
1755/*
1756 * our main entry point for writes from the rest of the FS.
1757 */
1758int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1759			struct btrfs_bio *bbio, u64 stripe_len)
 
1760{
1761	struct btrfs_raid_bio *rbio;
1762	struct btrfs_plug_cb *plug = NULL;
1763	struct blk_plug_cb *cb;
1764	int ret;
1765
1766	rbio = alloc_rbio(fs_info, bbio, stripe_len);
1767	if (IS_ERR(rbio)) {
1768		btrfs_put_bbio(bbio);
1769		return PTR_ERR(rbio);
1770	}
1771	bio_list_add(&rbio->bio_list, bio);
1772	rbio->bio_list_bytes = bio->bi_iter.bi_size;
1773	rbio->operation = BTRFS_RBIO_WRITE;
1774
1775	btrfs_bio_counter_inc_noblocked(fs_info);
1776	rbio->generic_bio_cnt = 1;
1777
1778	/*
1779	 * don't plug on full rbios, just get them out the door
1780	 * as quickly as we can
1781	 */
1782	if (rbio_is_full(rbio)) {
1783		ret = full_stripe_write(rbio);
1784		if (ret)
1785			btrfs_bio_counter_dec(fs_info);
1786		return ret;
1787	}
1788
1789	cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
 
1790	if (cb) {
1791		plug = container_of(cb, struct btrfs_plug_cb, cb);
1792		if (!plug->info) {
1793			plug->info = fs_info;
1794			INIT_LIST_HEAD(&plug->rbio_list);
1795		}
1796		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1797		ret = 0;
1798	} else {
1799		ret = __raid56_parity_write(rbio);
1800		if (ret)
1801			btrfs_bio_counter_dec(fs_info);
1802	}
1803	return ret;
1804}
1805
1806/*
1807 * all parity reconstruction happens here.  We've read in everything
1808 * we can find from the drives and this does the heavy lifting of
1809 * sorting the good from the bad.
1810 */
1811static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1812{
1813	int pagenr, stripe;
1814	void **pointers;
1815	int faila = -1, failb = -1;
 
1816	struct page *page;
1817	blk_status_t err;
1818	int i;
1819
1820	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
 
1821	if (!pointers) {
1822		err = BLK_STS_RESOURCE;
1823		goto cleanup_io;
1824	}
1825
1826	faila = rbio->faila;
1827	failb = rbio->failb;
1828
1829	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1830	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1831		spin_lock_irq(&rbio->bio_list_lock);
1832		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1833		spin_unlock_irq(&rbio->bio_list_lock);
1834	}
1835
1836	index_rbio_pages(rbio);
1837
1838	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1839		/*
1840		 * Now we just use bitmap to mark the horizontal stripes in
1841		 * which we have data when doing parity scrub.
1842		 */
1843		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1844		    !test_bit(pagenr, rbio->dbitmap))
1845			continue;
1846
1847		/* setup our array of pointers with pages
1848		 * from each stripe
1849		 */
1850		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1851			/*
1852			 * if we're rebuilding a read, we have to use
1853			 * pages from the bio list
1854			 */
1855			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1856			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1857			    (stripe == faila || stripe == failb)) {
1858				page = page_in_rbio(rbio, stripe, pagenr, 0);
1859			} else {
1860				page = rbio_stripe_page(rbio, stripe, pagenr);
1861			}
1862			pointers[stripe] = kmap(page);
1863		}
1864
1865		/* all raid6 handling here */
1866		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
 
 
1867			/*
1868			 * single failure, rebuild from parity raid5
1869			 * style
1870			 */
1871			if (failb < 0) {
1872				if (faila == rbio->nr_data) {
1873					/*
1874					 * Just the P stripe has failed, without
1875					 * a bad data or Q stripe.
1876					 * TODO, we should redo the xor here.
1877					 */
1878					err = BLK_STS_IOERR;
1879					goto cleanup;
1880				}
1881				/*
1882				 * a single failure in raid6 is rebuilt
1883				 * in the pstripe code below
1884				 */
1885				goto pstripe;
1886			}
1887
1888			/* make sure our ps and qs are in order */
1889			if (faila > failb) {
1890				int tmp = failb;
1891				failb = faila;
1892				faila = tmp;
1893			}
1894
1895			/* if the q stripe is failed, do a pstripe reconstruction
1896			 * from the xors.
1897			 * If both the q stripe and the P stripe are failed, we're
1898			 * here due to a crc mismatch and we can't give them the
1899			 * data they want
1900			 */
1901			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1902				if (rbio->bbio->raid_map[faila] ==
1903				    RAID5_P_STRIPE) {
1904					err = BLK_STS_IOERR;
1905					goto cleanup;
1906				}
1907				/*
1908				 * otherwise we have one bad data stripe and
1909				 * a good P stripe.  raid5!
1910				 */
1911				goto pstripe;
1912			}
1913
1914			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1915				raid6_datap_recov(rbio->real_stripes,
1916						  PAGE_SIZE, faila, pointers);
1917			} else {
1918				raid6_2data_recov(rbio->real_stripes,
1919						  PAGE_SIZE, faila, failb,
1920						  pointers);
1921			}
1922		} else {
1923			void *p;
1924
1925			/* rebuild from P stripe here (raid5 or raid6) */
1926			BUG_ON(failb != -1);
1927pstripe:
1928			/* Copy parity block into failed block to start with */
1929			copy_page(pointers[faila], pointers[rbio->nr_data]);
 
 
1930
1931			/* rearrange the pointer array */
1932			p = pointers[faila];
1933			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1934				pointers[stripe] = pointers[stripe + 1];
1935			pointers[rbio->nr_data - 1] = p;
1936
1937			/* xor in the rest */
1938			run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1939		}
1940		/* if we're doing this rebuild as part of an rmw, go through
1941		 * and set all of our private rbio pages in the
1942		 * failed stripes as uptodate.  This way finish_rmw will
1943		 * know they can be trusted.  If this was a read reconstruction,
1944		 * other endio functions will fiddle the uptodate bits
1945		 */
1946		if (rbio->operation == BTRFS_RBIO_WRITE) {
1947			for (i = 0;  i < rbio->stripe_npages; i++) {
1948				if (faila != -1) {
1949					page = rbio_stripe_page(rbio, faila, i);
1950					SetPageUptodate(page);
1951				}
1952				if (failb != -1) {
1953					page = rbio_stripe_page(rbio, failb, i);
1954					SetPageUptodate(page);
1955				}
1956			}
1957		}
1958		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1959			/*
1960			 * if we're rebuilding a read, we have to use
1961			 * pages from the bio list
1962			 */
1963			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1964			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1965			    (stripe == faila || stripe == failb)) {
1966				page = page_in_rbio(rbio, stripe, pagenr, 0);
1967			} else {
1968				page = rbio_stripe_page(rbio, stripe, pagenr);
1969			}
1970			kunmap(page);
1971		}
1972	}
1973
1974	err = BLK_STS_OK;
1975cleanup:
1976	kfree(pointers);
1977
1978cleanup_io:
1979	/*
1980	 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
1981	 * valid rbio which is consistent with ondisk content, thus such a
1982	 * valid rbio can be cached to avoid further disk reads.
1983	 */
1984	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1985	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1986		/*
1987		 * - In case of two failures, where rbio->failb != -1:
1988		 *
1989		 *   Do not cache this rbio since the above read reconstruction
1990		 *   (raid6_datap_recov() or raid6_2data_recov()) may have
1991		 *   changed some content of stripes which are not identical to
1992		 *   on-disk content any more, otherwise, a later write/recover
1993		 *   may steal stripe_pages from this rbio and end up with
1994		 *   corruptions or rebuild failures.
1995		 *
1996		 * - In case of single failure, where rbio->failb == -1:
1997		 *
1998		 *   Cache this rbio iff the above read reconstruction is
1999		 *   executed without problems.
2000		 */
2001		if (err == BLK_STS_OK && rbio->failb < 0)
2002			cache_rbio_pages(rbio);
2003		else
2004			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2005
2006		rbio_orig_end_io(rbio, err);
2007	} else if (err == BLK_STS_OK) {
2008		rbio->faila = -1;
2009		rbio->failb = -1;
2010
2011		if (rbio->operation == BTRFS_RBIO_WRITE)
2012			finish_rmw(rbio);
2013		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
2014			finish_parity_scrub(rbio, 0);
2015		else
2016			BUG();
2017	} else {
2018		rbio_orig_end_io(rbio, err);
2019	}
2020}
2021
2022/*
2023 * This is called only for stripes we've read from disk to
2024 * reconstruct the parity.
2025 */
2026static void raid_recover_end_io(struct bio *bio)
2027{
2028	struct btrfs_raid_bio *rbio = bio->bi_private;
2029
2030	/*
2031	 * we only read stripe pages off the disk, set them
2032	 * up to date if there were no errors
2033	 */
2034	if (bio->bi_status)
2035		fail_bio_stripe(rbio, bio);
2036	else
2037		set_bio_pages_uptodate(bio);
2038	bio_put(bio);
2039
2040	if (!atomic_dec_and_test(&rbio->stripes_pending))
2041		return;
2042
2043	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2044		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2045	else
2046		__raid_recover_end_io(rbio);
2047}
2048
2049/*
2050 * reads everything we need off the disk to reconstruct
2051 * the parity. endio handlers trigger final reconstruction
2052 * when the IO is done.
2053 *
2054 * This is used both for reads from the higher layers and for
2055 * parity construction required to finish a rmw cycle.
2056 */
2057static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2058{
2059	int bios_to_read = 0;
 
2060	struct bio_list bio_list;
2061	int ret;
 
2062	int pagenr;
2063	int stripe;
2064	struct bio *bio;
2065
2066	bio_list_init(&bio_list);
2067
2068	ret = alloc_rbio_pages(rbio);
2069	if (ret)
2070		goto cleanup;
2071
2072	atomic_set(&rbio->error, 0);
2073
2074	/*
2075	 * read everything that hasn't failed.  Thanks to the
2076	 * stripe cache, it is possible that some or all of these
2077	 * pages are going to be uptodate.
2078	 */
2079	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2080		if (rbio->faila == stripe || rbio->failb == stripe) {
2081			atomic_inc(&rbio->error);
2082			continue;
2083		}
2084
2085		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2086			struct page *p;
2087
2088			/*
2089			 * the rmw code may have already read this
2090			 * page in
2091			 */
2092			p = rbio_stripe_page(rbio, stripe, pagenr);
2093			if (PageUptodate(p))
2094				continue;
2095
2096			ret = rbio_add_io_page(rbio, &bio_list,
2097				       rbio_stripe_page(rbio, stripe, pagenr),
2098				       stripe, pagenr, rbio->stripe_len);
2099			if (ret < 0)
2100				goto cleanup;
2101		}
2102	}
2103
2104	bios_to_read = bio_list_size(&bio_list);
2105	if (!bios_to_read) {
2106		/*
2107		 * we might have no bios to read just because the pages
2108		 * were up to date, or we might have no bios to read because
2109		 * the devices were gone.
2110		 */
2111		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2112			__raid_recover_end_io(rbio);
2113			goto out;
2114		} else {
2115			goto cleanup;
2116		}
2117	}
2118
2119	/*
2120	 * the bbio may be freed once we submit the last bio.  Make sure
2121	 * not to touch it after that
2122	 */
2123	atomic_set(&rbio->stripes_pending, bios_to_read);
2124	while (1) {
2125		bio = bio_list_pop(&bio_list);
2126		if (!bio)
2127			break;
2128
2129		bio->bi_private = rbio;
2130		bio->bi_end_io = raid_recover_end_io;
2131		bio->bi_opf = REQ_OP_READ;
2132
2133		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
 
2134
2135		submit_bio(bio);
 
2136	}
2137out:
2138	return 0;
2139
2140cleanup:
2141	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2142	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2143		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2144
2145	while ((bio = bio_list_pop(&bio_list)))
2146		bio_put(bio);
2147
2148	return -EIO;
2149}
2150
2151/*
2152 * the main entry point for reads from the higher layers.  This
2153 * is really only called when the normal read path had a failure,
2154 * so we assume the bio they send down corresponds to a failed part
2155 * of the drive.
2156 */
2157int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2158			  struct btrfs_bio *bbio, u64 stripe_len,
2159			  int mirror_num, int generic_io)
2160{
2161	struct btrfs_raid_bio *rbio;
2162	int ret;
2163
2164	if (generic_io) {
2165		ASSERT(bbio->mirror_num == mirror_num);
2166		btrfs_io_bio(bio)->mirror_num = mirror_num;
2167	}
2168
2169	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2170	if (IS_ERR(rbio)) {
2171		if (generic_io)
2172			btrfs_put_bbio(bbio);
2173		return PTR_ERR(rbio);
2174	}
2175
2176	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2177	bio_list_add(&rbio->bio_list, bio);
2178	rbio->bio_list_bytes = bio->bi_iter.bi_size;
2179
2180	rbio->faila = find_logical_bio_stripe(rbio, bio);
2181	if (rbio->faila == -1) {
2182		btrfs_warn(fs_info,
2183	"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2184			   __func__, (u64)bio->bi_iter.bi_sector << 9,
2185			   (u64)bio->bi_iter.bi_size, bbio->map_type);
2186		if (generic_io)
2187			btrfs_put_bbio(bbio);
2188		kfree(rbio);
2189		return -EIO;
2190	}
2191
2192	if (generic_io) {
2193		btrfs_bio_counter_inc_noblocked(fs_info);
2194		rbio->generic_bio_cnt = 1;
2195	} else {
2196		btrfs_get_bbio(bbio);
2197	}
2198
2199	/*
2200	 * Loop retry:
2201	 * for 'mirror == 2', reconstruct from all other stripes.
2202	 * for 'mirror_num > 2', select a stripe to fail on every retry.
2203	 */
2204	if (mirror_num > 2) {
2205		/*
2206		 * 'mirror == 3' is to fail the p stripe and
2207		 * reconstruct from the q stripe.  'mirror > 3' is to
2208		 * fail a data stripe and reconstruct from p+q stripe.
2209		 */
2210		rbio->failb = rbio->real_stripes - (mirror_num - 1);
2211		ASSERT(rbio->failb > 0);
2212		if (rbio->failb <= rbio->faila)
2213			rbio->failb--;
2214	}
2215
2216	ret = lock_stripe_add(rbio);
2217
2218	/*
2219	 * __raid56_parity_recover will end the bio with
2220	 * any errors it hits.  We don't want to return
2221	 * its error value up the stack because our caller
2222	 * will end up calling bio_endio with any nonzero
2223	 * return
2224	 */
2225	if (ret == 0)
2226		__raid56_parity_recover(rbio);
2227	/*
2228	 * our rbio has been added to the list of
2229	 * rbios that will be handled after the
2230	 * currently lock owner is done
2231	 */
2232	return 0;
2233
2234}
2235
2236static void rmw_work(struct btrfs_work *work)
2237{
2238	struct btrfs_raid_bio *rbio;
2239
2240	rbio = container_of(work, struct btrfs_raid_bio, work);
2241	raid56_rmw_stripe(rbio);
2242}
2243
2244static void read_rebuild_work(struct btrfs_work *work)
2245{
2246	struct btrfs_raid_bio *rbio;
2247
2248	rbio = container_of(work, struct btrfs_raid_bio, work);
2249	__raid56_parity_recover(rbio);
2250}
2251
2252/*
2253 * The following code is used to scrub/replace the parity stripe
2254 *
2255 * Caller must have already increased bio_counter for getting @bbio.
2256 *
2257 * Note: We need make sure all the pages that add into the scrub/replace
2258 * raid bio are correct and not be changed during the scrub/replace. That
2259 * is those pages just hold metadata or file data with checksum.
2260 */
2261
2262struct btrfs_raid_bio *
2263raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2264			       struct btrfs_bio *bbio, u64 stripe_len,
2265			       struct btrfs_device *scrub_dev,
2266			       unsigned long *dbitmap, int stripe_nsectors)
2267{
2268	struct btrfs_raid_bio *rbio;
2269	int i;
2270
2271	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2272	if (IS_ERR(rbio))
2273		return NULL;
2274	bio_list_add(&rbio->bio_list, bio);
2275	/*
2276	 * This is a special bio which is used to hold the completion handler
2277	 * and make the scrub rbio is similar to the other types
2278	 */
2279	ASSERT(!bio->bi_iter.bi_size);
2280	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2281
2282	/*
2283	 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted
2284	 * to the end position, so this search can start from the first parity
2285	 * stripe.
2286	 */
2287	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2288		if (bbio->stripes[i].dev == scrub_dev) {
2289			rbio->scrubp = i;
2290			break;
2291		}
2292	}
2293	ASSERT(i < rbio->real_stripes);
2294
2295	/* Now we just support the sectorsize equals to page size */
2296	ASSERT(fs_info->sectorsize == PAGE_SIZE);
2297	ASSERT(rbio->stripe_npages == stripe_nsectors);
2298	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2299
2300	/*
2301	 * We have already increased bio_counter when getting bbio, record it
2302	 * so we can free it at rbio_orig_end_io().
2303	 */
2304	rbio->generic_bio_cnt = 1;
2305
2306	return rbio;
2307}
2308
2309/* Used for both parity scrub and missing. */
2310void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2311			    u64 logical)
2312{
2313	int stripe_offset;
2314	int index;
2315
2316	ASSERT(logical >= rbio->bbio->raid_map[0]);
2317	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2318				rbio->stripe_len * rbio->nr_data);
2319	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2320	index = stripe_offset >> PAGE_SHIFT;
2321	rbio->bio_pages[index] = page;
2322}
2323
2324/*
2325 * We just scrub the parity that we have correct data on the same horizontal,
2326 * so we needn't allocate all pages for all the stripes.
2327 */
2328static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2329{
2330	int i;
2331	int bit;
2332	int index;
2333	struct page *page;
2334
2335	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2336		for (i = 0; i < rbio->real_stripes; i++) {
2337			index = i * rbio->stripe_npages + bit;
2338			if (rbio->stripe_pages[index])
2339				continue;
2340
2341			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2342			if (!page)
2343				return -ENOMEM;
2344			rbio->stripe_pages[index] = page;
2345		}
2346	}
2347	return 0;
2348}
2349
2350static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2351					 int need_check)
2352{
2353	struct btrfs_bio *bbio = rbio->bbio;
2354	void **pointers = rbio->finish_pointers;
2355	unsigned long *pbitmap = rbio->finish_pbitmap;
2356	int nr_data = rbio->nr_data;
2357	int stripe;
2358	int pagenr;
2359	int p_stripe = -1;
2360	int q_stripe = -1;
2361	struct page *p_page = NULL;
2362	struct page *q_page = NULL;
2363	struct bio_list bio_list;
2364	struct bio *bio;
2365	int is_replace = 0;
2366	int ret;
2367
2368	bio_list_init(&bio_list);
2369
2370	if (rbio->real_stripes - rbio->nr_data == 1) {
2371		p_stripe = rbio->real_stripes - 1;
2372	} else if (rbio->real_stripes - rbio->nr_data == 2) {
2373		p_stripe = rbio->real_stripes - 2;
2374		q_stripe = rbio->real_stripes - 1;
2375	} else {
2376		BUG();
2377	}
2378
2379	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2380		is_replace = 1;
2381		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2382	}
2383
2384	/*
2385	 * Because the higher layers(scrubber) are unlikely to
2386	 * use this area of the disk again soon, so don't cache
2387	 * it.
2388	 */
2389	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2390
2391	if (!need_check)
2392		goto writeback;
2393
2394	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2395	if (!p_page)
2396		goto cleanup;
2397	SetPageUptodate(p_page);
2398
2399	if (q_stripe != -1) {
2400		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2401		if (!q_page) {
2402			__free_page(p_page);
2403			goto cleanup;
2404		}
2405		SetPageUptodate(q_page);
2406	}
2407
2408	atomic_set(&rbio->error, 0);
2409
2410	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2411		struct page *p;
2412		void *parity;
2413		/* first collect one page from each data stripe */
2414		for (stripe = 0; stripe < nr_data; stripe++) {
2415			p = page_in_rbio(rbio, stripe, pagenr, 0);
2416			pointers[stripe] = kmap(p);
2417		}
2418
2419		/* then add the parity stripe */
2420		pointers[stripe++] = kmap(p_page);
2421
2422		if (q_stripe != -1) {
2423
2424			/*
2425			 * raid6, add the qstripe and call the
2426			 * library function to fill in our p/q
2427			 */
2428			pointers[stripe++] = kmap(q_page);
2429
2430			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2431						pointers);
2432		} else {
2433			/* raid5 */
2434			copy_page(pointers[nr_data], pointers[0]);
2435			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2436		}
2437
2438		/* Check scrubbing parity and repair it */
2439		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2440		parity = kmap(p);
2441		if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2442			copy_page(parity, pointers[rbio->scrubp]);
2443		else
2444			/* Parity is right, needn't writeback */
2445			bitmap_clear(rbio->dbitmap, pagenr, 1);
2446		kunmap(p);
2447
2448		for (stripe = 0; stripe < nr_data; stripe++)
2449			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2450		kunmap(p_page);
2451	}
2452
2453	__free_page(p_page);
2454	if (q_page)
2455		__free_page(q_page);
2456
2457writeback:
2458	/*
2459	 * time to start writing.  Make bios for everything from the
2460	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2461	 * everything else.
2462	 */
2463	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2464		struct page *page;
2465
2466		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2467		ret = rbio_add_io_page(rbio, &bio_list,
2468			       page, rbio->scrubp, pagenr, rbio->stripe_len);
2469		if (ret)
2470			goto cleanup;
2471	}
2472
2473	if (!is_replace)
2474		goto submit_write;
2475
2476	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2477		struct page *page;
2478
2479		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2480		ret = rbio_add_io_page(rbio, &bio_list, page,
2481				       bbio->tgtdev_map[rbio->scrubp],
2482				       pagenr, rbio->stripe_len);
2483		if (ret)
2484			goto cleanup;
2485	}
2486
2487submit_write:
2488	nr_data = bio_list_size(&bio_list);
2489	if (!nr_data) {
2490		/* Every parity is right */
2491		rbio_orig_end_io(rbio, BLK_STS_OK);
2492		return;
2493	}
2494
2495	atomic_set(&rbio->stripes_pending, nr_data);
2496
2497	while (1) {
2498		bio = bio_list_pop(&bio_list);
2499		if (!bio)
2500			break;
2501
2502		bio->bi_private = rbio;
2503		bio->bi_end_io = raid_write_end_io;
2504		bio->bi_opf = REQ_OP_WRITE;
2505
2506		submit_bio(bio);
2507	}
2508	return;
2509
2510cleanup:
2511	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2512
2513	while ((bio = bio_list_pop(&bio_list)))
2514		bio_put(bio);
2515}
2516
2517static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2518{
2519	if (stripe >= 0 && stripe < rbio->nr_data)
2520		return 1;
2521	return 0;
2522}
2523
2524/*
2525 * While we're doing the parity check and repair, we could have errors
2526 * in reading pages off the disk.  This checks for errors and if we're
2527 * not able to read the page it'll trigger parity reconstruction.  The
2528 * parity scrub will be finished after we've reconstructed the failed
2529 * stripes
2530 */
2531static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2532{
2533	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2534		goto cleanup;
2535
2536	if (rbio->faila >= 0 || rbio->failb >= 0) {
2537		int dfail = 0, failp = -1;
2538
2539		if (is_data_stripe(rbio, rbio->faila))
2540			dfail++;
2541		else if (is_parity_stripe(rbio->faila))
2542			failp = rbio->faila;
2543
2544		if (is_data_stripe(rbio, rbio->failb))
2545			dfail++;
2546		else if (is_parity_stripe(rbio->failb))
2547			failp = rbio->failb;
2548
2549		/*
2550		 * Because we can not use a scrubbing parity to repair
2551		 * the data, so the capability of the repair is declined.
2552		 * (In the case of RAID5, we can not repair anything)
2553		 */
2554		if (dfail > rbio->bbio->max_errors - 1)
2555			goto cleanup;
2556
2557		/*
2558		 * If all data is good, only parity is correctly, just
2559		 * repair the parity.
2560		 */
2561		if (dfail == 0) {
2562			finish_parity_scrub(rbio, 0);
2563			return;
2564		}
2565
2566		/*
2567		 * Here means we got one corrupted data stripe and one
2568		 * corrupted parity on RAID6, if the corrupted parity
2569		 * is scrubbing parity, luckily, use the other one to repair
2570		 * the data, or we can not repair the data stripe.
2571		 */
2572		if (failp != rbio->scrubp)
2573			goto cleanup;
2574
2575		__raid_recover_end_io(rbio);
2576	} else {
2577		finish_parity_scrub(rbio, 1);
2578	}
2579	return;
2580
2581cleanup:
2582	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2583}
2584
2585/*
2586 * end io for the read phase of the rmw cycle.  All the bios here are physical
2587 * stripe bios we've read from the disk so we can recalculate the parity of the
2588 * stripe.
2589 *
2590 * This will usually kick off finish_rmw once all the bios are read in, but it
2591 * may trigger parity reconstruction if we had any errors along the way
2592 */
2593static void raid56_parity_scrub_end_io(struct bio *bio)
2594{
2595	struct btrfs_raid_bio *rbio = bio->bi_private;
2596
2597	if (bio->bi_status)
2598		fail_bio_stripe(rbio, bio);
2599	else
2600		set_bio_pages_uptodate(bio);
2601
2602	bio_put(bio);
2603
2604	if (!atomic_dec_and_test(&rbio->stripes_pending))
2605		return;
2606
2607	/*
2608	 * this will normally call finish_rmw to start our write
2609	 * but if there are any failed stripes we'll reconstruct
2610	 * from parity first
2611	 */
2612	validate_rbio_for_parity_scrub(rbio);
2613}
2614
2615static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2616{
2617	int bios_to_read = 0;
2618	struct bio_list bio_list;
2619	int ret;
2620	int pagenr;
2621	int stripe;
2622	struct bio *bio;
2623
2624	bio_list_init(&bio_list);
2625
2626	ret = alloc_rbio_essential_pages(rbio);
2627	if (ret)
2628		goto cleanup;
2629
2630	atomic_set(&rbio->error, 0);
2631	/*
2632	 * build a list of bios to read all the missing parts of this
2633	 * stripe
2634	 */
2635	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2636		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2637			struct page *page;
2638			/*
2639			 * we want to find all the pages missing from
2640			 * the rbio and read them from the disk.  If
2641			 * page_in_rbio finds a page in the bio list
2642			 * we don't need to read it off the stripe.
2643			 */
2644			page = page_in_rbio(rbio, stripe, pagenr, 1);
2645			if (page)
2646				continue;
2647
2648			page = rbio_stripe_page(rbio, stripe, pagenr);
2649			/*
2650			 * the bio cache may have handed us an uptodate
2651			 * page.  If so, be happy and use it
2652			 */
2653			if (PageUptodate(page))
2654				continue;
2655
2656			ret = rbio_add_io_page(rbio, &bio_list, page,
2657				       stripe, pagenr, rbio->stripe_len);
2658			if (ret)
2659				goto cleanup;
2660		}
2661	}
2662
2663	bios_to_read = bio_list_size(&bio_list);
2664	if (!bios_to_read) {
2665		/*
2666		 * this can happen if others have merged with
2667		 * us, it means there is nothing left to read.
2668		 * But if there are missing devices it may not be
2669		 * safe to do the full stripe write yet.
2670		 */
2671		goto finish;
2672	}
2673
2674	/*
2675	 * the bbio may be freed once we submit the last bio.  Make sure
2676	 * not to touch it after that
2677	 */
2678	atomic_set(&rbio->stripes_pending, bios_to_read);
2679	while (1) {
2680		bio = bio_list_pop(&bio_list);
2681		if (!bio)
2682			break;
2683
2684		bio->bi_private = rbio;
2685		bio->bi_end_io = raid56_parity_scrub_end_io;
2686		bio->bi_opf = REQ_OP_READ;
2687
2688		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2689
2690		submit_bio(bio);
2691	}
2692	/* the actual write will happen once the reads are done */
2693	return;
2694
2695cleanup:
2696	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2697
2698	while ((bio = bio_list_pop(&bio_list)))
2699		bio_put(bio);
2700
2701	return;
2702
2703finish:
2704	validate_rbio_for_parity_scrub(rbio);
2705}
2706
2707static void scrub_parity_work(struct btrfs_work *work)
2708{
2709	struct btrfs_raid_bio *rbio;
2710
2711	rbio = container_of(work, struct btrfs_raid_bio, work);
2712	raid56_parity_scrub_stripe(rbio);
2713}
2714
2715void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2716{
2717	if (!lock_stripe_add(rbio))
2718		start_async_work(rbio, scrub_parity_work);
2719}
2720
2721/* The following code is used for dev replace of a missing RAID 5/6 device. */
2722
2723struct btrfs_raid_bio *
2724raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2725			  struct btrfs_bio *bbio, u64 length)
2726{
2727	struct btrfs_raid_bio *rbio;
2728
2729	rbio = alloc_rbio(fs_info, bbio, length);
2730	if (IS_ERR(rbio))
2731		return NULL;
2732
2733	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2734	bio_list_add(&rbio->bio_list, bio);
2735	/*
2736	 * This is a special bio which is used to hold the completion handler
2737	 * and make the scrub rbio is similar to the other types
2738	 */
2739	ASSERT(!bio->bi_iter.bi_size);
2740
2741	rbio->faila = find_logical_bio_stripe(rbio, bio);
2742	if (rbio->faila == -1) {
2743		BUG();
2744		kfree(rbio);
2745		return NULL;
2746	}
2747
2748	/*
2749	 * When we get bbio, we have already increased bio_counter, record it
2750	 * so we can free it at rbio_orig_end_io()
2751	 */
2752	rbio->generic_bio_cnt = 1;
2753
2754	return rbio;
2755}
2756
2757void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2758{
2759	if (!lock_stripe_add(rbio))
2760		start_async_work(rbio, read_rebuild_work);
2761}
v3.15
 
   1/*
   2 * Copyright (C) 2012 Fusion-io  All rights reserved.
   3 * Copyright (C) 2012 Intel Corp. All rights reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public
   7 * License v2 as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  12 * General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public
  15 * License along with this program; if not, write to the
  16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17 * Boston, MA 021110-1307, USA.
  18 */
 
  19#include <linux/sched.h>
  20#include <linux/wait.h>
  21#include <linux/bio.h>
  22#include <linux/slab.h>
  23#include <linux/buffer_head.h>
  24#include <linux/blkdev.h>
  25#include <linux/random.h>
  26#include <linux/iocontext.h>
  27#include <linux/capability.h>
  28#include <linux/ratelimit.h>
  29#include <linux/kthread.h>
  30#include <linux/raid/pq.h>
  31#include <linux/hash.h>
  32#include <linux/list_sort.h>
  33#include <linux/raid/xor.h>
  34#include <linux/vmalloc.h>
  35#include <asm/div64.h>
  36#include "ctree.h"
  37#include "extent_map.h"
  38#include "disk-io.h"
  39#include "transaction.h"
  40#include "print-tree.h"
  41#include "volumes.h"
  42#include "raid56.h"
  43#include "async-thread.h"
  44#include "check-integrity.h"
  45#include "rcu-string.h"
  46
  47/* set when additional merges to this rbio are not allowed */
  48#define RBIO_RMW_LOCKED_BIT	1
  49
  50/*
  51 * set when this rbio is sitting in the hash, but it is just a cache
  52 * of past RMW
  53 */
  54#define RBIO_CACHE_BIT		2
  55
  56/*
  57 * set when it is safe to trust the stripe_pages for caching
  58 */
  59#define RBIO_CACHE_READY_BIT	3
  60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61
  62#define RBIO_CACHE_SIZE 1024
 
 
 
 
 
  63
  64struct btrfs_raid_bio {
  65	struct btrfs_fs_info *fs_info;
  66	struct btrfs_bio *bbio;
  67
  68	/*
  69	 * logical block numbers for the start of each stripe
  70	 * The last one or two are p/q.  These are sorted,
  71	 * so raid_map[0] is the start of our full stripe
  72	 */
  73	u64 *raid_map;
  74
  75	/* while we're doing rmw on a stripe
  76	 * we put it into a hash table so we can
  77	 * lock the stripe and merge more rbios
  78	 * into it.
  79	 */
  80	struct list_head hash_list;
  81
  82	/*
  83	 * LRU list for the stripe cache
  84	 */
  85	struct list_head stripe_cache;
  86
  87	/*
  88	 * for scheduling work in the helper threads
  89	 */
  90	struct btrfs_work work;
  91
  92	/*
  93	 * bio list and bio_list_lock are used
  94	 * to add more bios into the stripe
  95	 * in hopes of avoiding the full rmw
  96	 */
  97	struct bio_list bio_list;
  98	spinlock_t bio_list_lock;
  99
 100	/* also protected by the bio_list_lock, the
 101	 * plug list is used by the plugging code
 102	 * to collect partial bios while plugged.  The
 103	 * stripe locking code also uses it to hand off
 104	 * the stripe lock to the next pending IO
 105	 */
 106	struct list_head plug_list;
 107
 108	/*
 109	 * flags that tell us if it is safe to
 110	 * merge with this bio
 111	 */
 112	unsigned long flags;
 113
 114	/* size of each individual stripe on disk */
 115	int stripe_len;
 116
 117	/* number of data stripes (no p/q) */
 118	int nr_data;
 119
 
 
 
 120	/*
 121	 * set if we're doing a parity rebuild
 122	 * for a read from higher up, which is handled
 123	 * differently from a parity rebuild as part of
 124	 * rmw
 125	 */
 126	int read_rebuild;
 127
 128	/* first bad stripe */
 129	int faila;
 130
 131	/* second bad stripe (for raid6 use) */
 132	int failb;
 133
 
 134	/*
 135	 * number of pages needed to represent the full
 136	 * stripe
 137	 */
 138	int nr_pages;
 139
 140	/*
 141	 * size of all the bios in the bio_list.  This
 142	 * helps us decide if the rbio maps to a full
 143	 * stripe or not
 144	 */
 145	int bio_list_bytes;
 146
 147	atomic_t refs;
 
 
 
 
 148
 
 149	/*
 150	 * these are two arrays of pointers.  We allocate the
 151	 * rbio big enough to hold them both and setup their
 152	 * locations when the rbio is allocated
 153	 */
 154
 155	/* pointers to pages that we allocated for
 156	 * reading/writing stripes directly from the disk (including P/Q)
 157	 */
 158	struct page **stripe_pages;
 159
 160	/*
 161	 * pointers to the pages in the bio_list.  Stored
 162	 * here for faster lookup
 163	 */
 164	struct page **bio_pages;
 
 
 
 
 
 
 
 
 
 
 
 165};
 166
 167static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
 168static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
 169static void rmw_work(struct btrfs_work *work);
 170static void read_rebuild_work(struct btrfs_work *work);
 171static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
 172static void async_read_rebuild(struct btrfs_raid_bio *rbio);
 173static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
 174static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
 175static void __free_raid_bio(struct btrfs_raid_bio *rbio);
 176static void index_rbio_pages(struct btrfs_raid_bio *rbio);
 177static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
 178
 
 
 
 
 
 
 
 
 
 
 179/*
 180 * the stripe hash table is used for locking, and to collect
 181 * bios in hopes of making a full stripe
 182 */
 183int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
 184{
 185	struct btrfs_stripe_hash_table *table;
 186	struct btrfs_stripe_hash_table *x;
 187	struct btrfs_stripe_hash *cur;
 188	struct btrfs_stripe_hash *h;
 189	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
 190	int i;
 191	int table_size;
 192
 193	if (info->stripe_hash_table)
 194		return 0;
 195
 196	/*
 197	 * The table is large, starting with order 4 and can go as high as
 198	 * order 7 in case lock debugging is turned on.
 199	 *
 200	 * Try harder to allocate and fallback to vmalloc to lower the chance
 201	 * of a failing mount.
 202	 */
 203	table_size = sizeof(*table) + sizeof(*h) * num_entries;
 204	table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
 205	if (!table) {
 206		table = vzalloc(table_size);
 207		if (!table)
 208			return -ENOMEM;
 209	}
 210
 211	spin_lock_init(&table->cache_lock);
 212	INIT_LIST_HEAD(&table->stripe_cache);
 213
 214	h = table->table;
 215
 216	for (i = 0; i < num_entries; i++) {
 217		cur = h + i;
 218		INIT_LIST_HEAD(&cur->hash_list);
 219		spin_lock_init(&cur->lock);
 220		init_waitqueue_head(&cur->wait);
 221	}
 222
 223	x = cmpxchg(&info->stripe_hash_table, NULL, table);
 224	if (x) {
 225		if (is_vmalloc_addr(x))
 226			vfree(x);
 227		else
 228			kfree(x);
 229	}
 230	return 0;
 231}
 232
 233/*
 234 * caching an rbio means to copy anything from the
 235 * bio_pages array into the stripe_pages array.  We
 236 * use the page uptodate bit in the stripe cache array
 237 * to indicate if it has valid data
 238 *
 239 * once the caching is done, we set the cache ready
 240 * bit.
 241 */
 242static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
 243{
 244	int i;
 245	char *s;
 246	char *d;
 247	int ret;
 248
 249	ret = alloc_rbio_pages(rbio);
 250	if (ret)
 251		return;
 252
 253	for (i = 0; i < rbio->nr_pages; i++) {
 254		if (!rbio->bio_pages[i])
 255			continue;
 256
 257		s = kmap(rbio->bio_pages[i]);
 258		d = kmap(rbio->stripe_pages[i]);
 259
 260		memcpy(d, s, PAGE_CACHE_SIZE);
 261
 262		kunmap(rbio->bio_pages[i]);
 263		kunmap(rbio->stripe_pages[i]);
 264		SetPageUptodate(rbio->stripe_pages[i]);
 265	}
 266	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 267}
 268
 269/*
 270 * we hash on the first logical address of the stripe
 271 */
 272static int rbio_bucket(struct btrfs_raid_bio *rbio)
 273{
 274	u64 num = rbio->raid_map[0];
 275
 276	/*
 277	 * we shift down quite a bit.  We're using byte
 278	 * addressing, and most of the lower bits are zeros.
 279	 * This tends to upset hash_64, and it consistently
 280	 * returns just one or two different values.
 281	 *
 282	 * shifting off the lower bits fixes things.
 283	 */
 284	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
 285}
 286
 287/*
 288 * stealing an rbio means taking all the uptodate pages from the stripe
 289 * array in the source rbio and putting them into the destination rbio
 290 */
 291static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
 292{
 293	int i;
 294	struct page *s;
 295	struct page *d;
 296
 297	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
 298		return;
 299
 300	for (i = 0; i < dest->nr_pages; i++) {
 301		s = src->stripe_pages[i];
 302		if (!s || !PageUptodate(s)) {
 303			continue;
 304		}
 305
 306		d = dest->stripe_pages[i];
 307		if (d)
 308			__free_page(d);
 309
 310		dest->stripe_pages[i] = s;
 311		src->stripe_pages[i] = NULL;
 312	}
 313}
 314
 315/*
 316 * merging means we take the bio_list from the victim and
 317 * splice it into the destination.  The victim should
 318 * be discarded afterwards.
 319 *
 320 * must be called with dest->rbio_list_lock held
 321 */
 322static void merge_rbio(struct btrfs_raid_bio *dest,
 323		       struct btrfs_raid_bio *victim)
 324{
 325	bio_list_merge(&dest->bio_list, &victim->bio_list);
 326	dest->bio_list_bytes += victim->bio_list_bytes;
 
 327	bio_list_init(&victim->bio_list);
 328}
 329
 330/*
 331 * used to prune items that are in the cache.  The caller
 332 * must hold the hash table lock.
 333 */
 334static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 335{
 336	int bucket = rbio_bucket(rbio);
 337	struct btrfs_stripe_hash_table *table;
 338	struct btrfs_stripe_hash *h;
 339	int freeit = 0;
 340
 341	/*
 342	 * check the bit again under the hash table lock.
 343	 */
 344	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 345		return;
 346
 347	table = rbio->fs_info->stripe_hash_table;
 348	h = table->table + bucket;
 349
 350	/* hold the lock for the bucket because we may be
 351	 * removing it from the hash table
 352	 */
 353	spin_lock(&h->lock);
 354
 355	/*
 356	 * hold the lock for the bio list because we need
 357	 * to make sure the bio list is empty
 358	 */
 359	spin_lock(&rbio->bio_list_lock);
 360
 361	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 362		list_del_init(&rbio->stripe_cache);
 363		table->cache_size -= 1;
 364		freeit = 1;
 365
 366		/* if the bio list isn't empty, this rbio is
 367		 * still involved in an IO.  We take it out
 368		 * of the cache list, and drop the ref that
 369		 * was held for the list.
 370		 *
 371		 * If the bio_list was empty, we also remove
 372		 * the rbio from the hash_table, and drop
 373		 * the corresponding ref
 374		 */
 375		if (bio_list_empty(&rbio->bio_list)) {
 376			if (!list_empty(&rbio->hash_list)) {
 377				list_del_init(&rbio->hash_list);
 378				atomic_dec(&rbio->refs);
 379				BUG_ON(!list_empty(&rbio->plug_list));
 380			}
 381		}
 382	}
 383
 384	spin_unlock(&rbio->bio_list_lock);
 385	spin_unlock(&h->lock);
 386
 387	if (freeit)
 388		__free_raid_bio(rbio);
 389}
 390
 391/*
 392 * prune a given rbio from the cache
 393 */
 394static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 395{
 396	struct btrfs_stripe_hash_table *table;
 397	unsigned long flags;
 398
 399	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 400		return;
 401
 402	table = rbio->fs_info->stripe_hash_table;
 403
 404	spin_lock_irqsave(&table->cache_lock, flags);
 405	__remove_rbio_from_cache(rbio);
 406	spin_unlock_irqrestore(&table->cache_lock, flags);
 407}
 408
 409/*
 410 * remove everything in the cache
 411 */
 412static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
 413{
 414	struct btrfs_stripe_hash_table *table;
 415	unsigned long flags;
 416	struct btrfs_raid_bio *rbio;
 417
 418	table = info->stripe_hash_table;
 419
 420	spin_lock_irqsave(&table->cache_lock, flags);
 421	while (!list_empty(&table->stripe_cache)) {
 422		rbio = list_entry(table->stripe_cache.next,
 423				  struct btrfs_raid_bio,
 424				  stripe_cache);
 425		__remove_rbio_from_cache(rbio);
 426	}
 427	spin_unlock_irqrestore(&table->cache_lock, flags);
 428}
 429
 430/*
 431 * remove all cached entries and free the hash table
 432 * used by unmount
 433 */
 434void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
 435{
 436	if (!info->stripe_hash_table)
 437		return;
 438	btrfs_clear_rbio_cache(info);
 439	if (is_vmalloc_addr(info->stripe_hash_table))
 440		vfree(info->stripe_hash_table);
 441	else
 442		kfree(info->stripe_hash_table);
 443	info->stripe_hash_table = NULL;
 444}
 445
 446/*
 447 * insert an rbio into the stripe cache.  It
 448 * must have already been prepared by calling
 449 * cache_rbio_pages
 450 *
 451 * If this rbio was already cached, it gets
 452 * moved to the front of the lru.
 453 *
 454 * If the size of the rbio cache is too big, we
 455 * prune an item.
 456 */
 457static void cache_rbio(struct btrfs_raid_bio *rbio)
 458{
 459	struct btrfs_stripe_hash_table *table;
 460	unsigned long flags;
 461
 462	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
 463		return;
 464
 465	table = rbio->fs_info->stripe_hash_table;
 466
 467	spin_lock_irqsave(&table->cache_lock, flags);
 468	spin_lock(&rbio->bio_list_lock);
 469
 470	/* bump our ref if we were not in the list before */
 471	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
 472		atomic_inc(&rbio->refs);
 473
 474	if (!list_empty(&rbio->stripe_cache)){
 475		list_move(&rbio->stripe_cache, &table->stripe_cache);
 476	} else {
 477		list_add(&rbio->stripe_cache, &table->stripe_cache);
 478		table->cache_size += 1;
 479	}
 480
 481	spin_unlock(&rbio->bio_list_lock);
 482
 483	if (table->cache_size > RBIO_CACHE_SIZE) {
 484		struct btrfs_raid_bio *found;
 485
 486		found = list_entry(table->stripe_cache.prev,
 487				  struct btrfs_raid_bio,
 488				  stripe_cache);
 489
 490		if (found != rbio)
 491			__remove_rbio_from_cache(found);
 492	}
 493
 494	spin_unlock_irqrestore(&table->cache_lock, flags);
 495	return;
 496}
 497
 498/*
 499 * helper function to run the xor_blocks api.  It is only
 500 * able to do MAX_XOR_BLOCKS at a time, so we need to
 501 * loop through.
 502 */
 503static void run_xor(void **pages, int src_cnt, ssize_t len)
 504{
 505	int src_off = 0;
 506	int xor_src_cnt = 0;
 507	void *dest = pages[src_cnt];
 508
 509	while(src_cnt > 0) {
 510		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
 511		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
 512
 513		src_cnt -= xor_src_cnt;
 514		src_off += xor_src_cnt;
 515	}
 516}
 517
 518/*
 519 * returns true if the bio list inside this rbio
 520 * covers an entire stripe (no rmw required).
 521 * Must be called with the bio list lock held, or
 522 * at a time when you know it is impossible to add
 523 * new bios into the list
 524 */
 525static int __rbio_is_full(struct btrfs_raid_bio *rbio)
 526{
 
 527	unsigned long size = rbio->bio_list_bytes;
 528	int ret = 1;
 529
 
 530	if (size != rbio->nr_data * rbio->stripe_len)
 531		ret = 0;
 532
 533	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
 534	return ret;
 535}
 536
 537static int rbio_is_full(struct btrfs_raid_bio *rbio)
 538{
 539	unsigned long flags;
 540	int ret;
 541
 542	spin_lock_irqsave(&rbio->bio_list_lock, flags);
 543	ret = __rbio_is_full(rbio);
 544	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
 545	return ret;
 546}
 547
 548/*
 549 * returns 1 if it is safe to merge two rbios together.
 550 * The merging is safe if the two rbios correspond to
 551 * the same stripe and if they are both going in the same
 552 * direction (read vs write), and if neither one is
 553 * locked for final IO
 554 *
 555 * The caller is responsible for locking such that
 556 * rmw_locked is safe to test
 557 */
 558static int rbio_can_merge(struct btrfs_raid_bio *last,
 559			  struct btrfs_raid_bio *cur)
 560{
 561	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
 562	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
 563		return 0;
 564
 565	/*
 566	 * we can't merge with cached rbios, since the
 567	 * idea is that when we merge the destination
 568	 * rbio is going to run our IO for us.  We can
 569	 * steal from cached rbio's though, other functions
 570	 * handle that.
 571	 */
 572	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
 573	    test_bit(RBIO_CACHE_BIT, &cur->flags))
 574		return 0;
 575
 576	if (last->raid_map[0] !=
 577	    cur->raid_map[0])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 578		return 0;
 579
 580	/* reads can't merge with writes */
 581	if (last->read_rebuild !=
 582	    cur->read_rebuild) {
 583		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 584	}
 
 
 
 
 
 
 
 
 585
 586	return 1;
 
 
 
 
 
 
 
 587}
 588
 589/*
 590 * helper to index into the pstripe
 591 */
 592static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
 593{
 594	index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
 595	return rbio->stripe_pages[index];
 596}
 597
 598/*
 599 * helper to index into the qstripe, returns null
 600 * if there is no qstripe
 601 */
 602static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
 603{
 604	if (rbio->nr_data + 1 == rbio->bbio->num_stripes)
 605		return NULL;
 606
 607	index += ((rbio->nr_data + 1) * rbio->stripe_len) >>
 608		PAGE_CACHE_SHIFT;
 609	return rbio->stripe_pages[index];
 610}
 611
 612/*
 613 * The first stripe in the table for a logical address
 614 * has the lock.  rbios are added in one of three ways:
 615 *
 616 * 1) Nobody has the stripe locked yet.  The rbio is given
 617 * the lock and 0 is returned.  The caller must start the IO
 618 * themselves.
 619 *
 620 * 2) Someone has the stripe locked, but we're able to merge
 621 * with the lock owner.  The rbio is freed and the IO will
 622 * start automatically along with the existing rbio.  1 is returned.
 623 *
 624 * 3) Someone has the stripe locked, but we're not able to merge.
 625 * The rbio is added to the lock owner's plug list, or merged into
 626 * an rbio already on the plug list.  When the lock owner unlocks,
 627 * the next rbio on the list is run and the IO is started automatically.
 628 * 1 is returned
 629 *
 630 * If we return 0, the caller still owns the rbio and must continue with
 631 * IO submission.  If we return 1, the caller must assume the rbio has
 632 * already been freed.
 633 */
 634static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
 635{
 636	int bucket = rbio_bucket(rbio);
 637	struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
 638	struct btrfs_raid_bio *cur;
 639	struct btrfs_raid_bio *pending;
 640	unsigned long flags;
 641	DEFINE_WAIT(wait);
 642	struct btrfs_raid_bio *freeit = NULL;
 643	struct btrfs_raid_bio *cache_drop = NULL;
 644	int ret = 0;
 645	int walk = 0;
 646
 647	spin_lock_irqsave(&h->lock, flags);
 648	list_for_each_entry(cur, &h->hash_list, hash_list) {
 649		walk++;
 650		if (cur->raid_map[0] == rbio->raid_map[0]) {
 651			spin_lock(&cur->bio_list_lock);
 652
 653			/* can we steal this cached rbio's pages? */
 654			if (bio_list_empty(&cur->bio_list) &&
 655			    list_empty(&cur->plug_list) &&
 656			    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
 657			    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
 658				list_del_init(&cur->hash_list);
 659				atomic_dec(&cur->refs);
 660
 661				steal_rbio(cur, rbio);
 662				cache_drop = cur;
 663				spin_unlock(&cur->bio_list_lock);
 664
 665				goto lockit;
 666			}
 667
 668			/* can we merge into the lock owner? */
 669			if (rbio_can_merge(cur, rbio)) {
 670				merge_rbio(cur, rbio);
 671				spin_unlock(&cur->bio_list_lock);
 672				freeit = rbio;
 673				ret = 1;
 674				goto out;
 675			}
 676
 677
 678			/*
 679			 * we couldn't merge with the running
 680			 * rbio, see if we can merge with the
 681			 * pending ones.  We don't have to
 682			 * check for rmw_locked because there
 683			 * is no way they are inside finish_rmw
 684			 * right now
 685			 */
 686			list_for_each_entry(pending, &cur->plug_list,
 687					    plug_list) {
 688				if (rbio_can_merge(pending, rbio)) {
 689					merge_rbio(pending, rbio);
 690					spin_unlock(&cur->bio_list_lock);
 691					freeit = rbio;
 692					ret = 1;
 693					goto out;
 694				}
 695			}
 696
 697			/* no merging, put us on the tail of the plug list,
 698			 * our rbio will be started with the currently
 699			 * running rbio unlocks
 700			 */
 701			list_add_tail(&rbio->plug_list, &cur->plug_list);
 702			spin_unlock(&cur->bio_list_lock);
 703			ret = 1;
 704			goto out;
 705		}
 706	}
 707lockit:
 708	atomic_inc(&rbio->refs);
 709	list_add(&rbio->hash_list, &h->hash_list);
 710out:
 711	spin_unlock_irqrestore(&h->lock, flags);
 712	if (cache_drop)
 713		remove_rbio_from_cache(cache_drop);
 714	if (freeit)
 715		__free_raid_bio(freeit);
 716	return ret;
 717}
 718
 719/*
 720 * called as rmw or parity rebuild is completed.  If the plug list has more
 721 * rbios waiting for this stripe, the next one on the list will be started
 722 */
 723static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
 724{
 725	int bucket;
 726	struct btrfs_stripe_hash *h;
 727	unsigned long flags;
 728	int keep_cache = 0;
 729
 730	bucket = rbio_bucket(rbio);
 731	h = rbio->fs_info->stripe_hash_table->table + bucket;
 732
 733	if (list_empty(&rbio->plug_list))
 734		cache_rbio(rbio);
 735
 736	spin_lock_irqsave(&h->lock, flags);
 737	spin_lock(&rbio->bio_list_lock);
 738
 739	if (!list_empty(&rbio->hash_list)) {
 740		/*
 741		 * if we're still cached and there is no other IO
 742		 * to perform, just leave this rbio here for others
 743		 * to steal from later
 744		 */
 745		if (list_empty(&rbio->plug_list) &&
 746		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 747			keep_cache = 1;
 748			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 749			BUG_ON(!bio_list_empty(&rbio->bio_list));
 750			goto done;
 751		}
 752
 753		list_del_init(&rbio->hash_list);
 754		atomic_dec(&rbio->refs);
 755
 756		/*
 757		 * we use the plug list to hold all the rbios
 758		 * waiting for the chance to lock this stripe.
 759		 * hand the lock over to one of them.
 760		 */
 761		if (!list_empty(&rbio->plug_list)) {
 762			struct btrfs_raid_bio *next;
 763			struct list_head *head = rbio->plug_list.next;
 764
 765			next = list_entry(head, struct btrfs_raid_bio,
 766					  plug_list);
 767
 768			list_del_init(&rbio->plug_list);
 769
 770			list_add(&next->hash_list, &h->hash_list);
 771			atomic_inc(&next->refs);
 772			spin_unlock(&rbio->bio_list_lock);
 773			spin_unlock_irqrestore(&h->lock, flags);
 774
 775			if (next->read_rebuild)
 776				async_read_rebuild(next);
 777			else {
 
 
 
 778				steal_rbio(rbio, next);
 779				async_rmw_stripe(next);
 
 
 
 780			}
 781
 782			goto done_nolock;
 783		} else  if (waitqueue_active(&h->wait)) {
 784			spin_unlock(&rbio->bio_list_lock);
 785			spin_unlock_irqrestore(&h->lock, flags);
 786			wake_up(&h->wait);
 787			goto done_nolock;
 788		}
 789	}
 790done:
 791	spin_unlock(&rbio->bio_list_lock);
 792	spin_unlock_irqrestore(&h->lock, flags);
 793
 794done_nolock:
 795	if (!keep_cache)
 796		remove_rbio_from_cache(rbio);
 797}
 798
 799static void __free_raid_bio(struct btrfs_raid_bio *rbio)
 800{
 801	int i;
 802
 803	WARN_ON(atomic_read(&rbio->refs) < 0);
 804	if (!atomic_dec_and_test(&rbio->refs))
 805		return;
 806
 807	WARN_ON(!list_empty(&rbio->stripe_cache));
 808	WARN_ON(!list_empty(&rbio->hash_list));
 809	WARN_ON(!bio_list_empty(&rbio->bio_list));
 810
 811	for (i = 0; i < rbio->nr_pages; i++) {
 812		if (rbio->stripe_pages[i]) {
 813			__free_page(rbio->stripe_pages[i]);
 814			rbio->stripe_pages[i] = NULL;
 815		}
 816	}
 817	kfree(rbio->raid_map);
 818	kfree(rbio->bbio);
 819	kfree(rbio);
 820}
 821
 822static void free_raid_bio(struct btrfs_raid_bio *rbio)
 823{
 824	unlock_stripe(rbio);
 825	__free_raid_bio(rbio);
 
 
 
 
 
 
 
 826}
 827
 828/*
 829 * this frees the rbio and runs through all the bios in the
 830 * bio_list and calls end_io on them
 831 */
 832static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err, int uptodate)
 833{
 834	struct bio *cur = bio_list_get(&rbio->bio_list);
 835	struct bio *next;
 836	free_raid_bio(rbio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 837
 838	while (cur) {
 839		next = cur->bi_next;
 840		cur->bi_next = NULL;
 841		if (uptodate)
 842			set_bit(BIO_UPTODATE, &cur->bi_flags);
 843		bio_endio(cur, err);
 844		cur = next;
 845	}
 846}
 847
 848/*
 849 * end io function used by finish_rmw.  When we finally
 850 * get here, we've written a full stripe
 851 */
 852static void raid_write_end_io(struct bio *bio, int err)
 853{
 854	struct btrfs_raid_bio *rbio = bio->bi_private;
 
 
 855
 856	if (err)
 857		fail_bio_stripe(rbio, bio);
 858
 859	bio_put(bio);
 860
 861	if (!atomic_dec_and_test(&rbio->bbio->stripes_pending))
 862		return;
 863
 864	err = 0;
 865
 866	/* OK, we have read all the stripes we need to. */
 867	if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors)
 868		err = -EIO;
 
 
 869
 870	rbio_orig_end_io(rbio, err, 0);
 871	return;
 872}
 873
 874/*
 875 * the read/modify/write code wants to use the original bio for
 876 * any pages it included, and then use the rbio for everything
 877 * else.  This function decides if a given index (stripe number)
 878 * and page number in that stripe fall inside the original bio
 879 * or the rbio.
 880 *
 881 * if you set bio_list_only, you'll get a NULL back for any ranges
 882 * that are outside the bio_list
 883 *
 884 * This doesn't take any refs on anything, you get a bare page pointer
 885 * and the caller must bump refs as required.
 886 *
 887 * You must call index_rbio_pages once before you can trust
 888 * the answers from this function.
 889 */
 890static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
 891				 int index, int pagenr, int bio_list_only)
 892{
 893	int chunk_page;
 894	struct page *p = NULL;
 895
 896	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
 897
 898	spin_lock_irq(&rbio->bio_list_lock);
 899	p = rbio->bio_pages[chunk_page];
 900	spin_unlock_irq(&rbio->bio_list_lock);
 901
 902	if (p || bio_list_only)
 903		return p;
 904
 905	return rbio->stripe_pages[chunk_page];
 906}
 907
 908/*
 909 * number of pages we need for the entire stripe across all the
 910 * drives
 911 */
 912static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
 913{
 914	unsigned long nr = stripe_len * nr_stripes;
 915	return (nr + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 916}
 917
 918/*
 919 * allocation and initial setup for the btrfs_raid_bio.  Not
 920 * this does not allocate any pages for rbio->pages.
 921 */
 922static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root,
 923			  struct btrfs_bio *bbio, u64 *raid_map,
 924			  u64 stripe_len)
 925{
 926	struct btrfs_raid_bio *rbio;
 927	int nr_data = 0;
 928	int num_pages = rbio_nr_pages(stripe_len, bbio->num_stripes);
 
 
 929	void *p;
 930
 931	rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2,
 932			GFP_NOFS);
 933	if (!rbio) {
 934		kfree(raid_map);
 935		kfree(bbio);
 
 
 
 
 936		return ERR_PTR(-ENOMEM);
 937	}
 938
 939	bio_list_init(&rbio->bio_list);
 940	INIT_LIST_HEAD(&rbio->plug_list);
 941	spin_lock_init(&rbio->bio_list_lock);
 942	INIT_LIST_HEAD(&rbio->stripe_cache);
 943	INIT_LIST_HEAD(&rbio->hash_list);
 944	rbio->bbio = bbio;
 945	rbio->raid_map = raid_map;
 946	rbio->fs_info = root->fs_info;
 947	rbio->stripe_len = stripe_len;
 948	rbio->nr_pages = num_pages;
 
 
 949	rbio->faila = -1;
 950	rbio->failb = -1;
 951	atomic_set(&rbio->refs, 1);
 
 
 952
 953	/*
 954	 * the stripe_pages and bio_pages array point to the extra
 955	 * memory we allocated past the end of the rbio
 956	 */
 957	p = rbio + 1;
 958	rbio->stripe_pages = p;
 959	rbio->bio_pages = p + sizeof(struct page *) * num_pages;
 960
 961	if (raid_map[bbio->num_stripes - 1] == RAID6_Q_STRIPE)
 962		nr_data = bbio->num_stripes - 2;
 
 
 
 
 
 
 
 
 
 
 963	else
 964		nr_data = bbio->num_stripes - 1;
 965
 966	rbio->nr_data = nr_data;
 967	return rbio;
 968}
 969
 970/* allocate pages for all the stripes in the bio, including parity */
 971static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
 972{
 973	int i;
 974	struct page *page;
 975
 976	for (i = 0; i < rbio->nr_pages; i++) {
 977		if (rbio->stripe_pages[i])
 978			continue;
 979		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
 980		if (!page)
 981			return -ENOMEM;
 982		rbio->stripe_pages[i] = page;
 983		ClearPageUptodate(page);
 984	}
 985	return 0;
 986}
 987
 988/* allocate pages for just the p/q stripes */
 989static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
 990{
 991	int i;
 992	struct page *page;
 993
 994	i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
 995
 996	for (; i < rbio->nr_pages; i++) {
 997		if (rbio->stripe_pages[i])
 998			continue;
 999		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1000		if (!page)
1001			return -ENOMEM;
1002		rbio->stripe_pages[i] = page;
1003	}
1004	return 0;
1005}
1006
1007/*
1008 * add a single page from a specific stripe into our list of bios for IO
1009 * this will try to merge into existing bios if possible, and returns
1010 * zero if all went well.
1011 */
1012static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1013			    struct bio_list *bio_list,
1014			    struct page *page,
1015			    int stripe_nr,
1016			    unsigned long page_index,
1017			    unsigned long bio_max_len)
1018{
1019	struct bio *last = bio_list->tail;
1020	u64 last_end = 0;
1021	int ret;
1022	struct bio *bio;
1023	struct btrfs_bio_stripe *stripe;
1024	u64 disk_start;
1025
1026	stripe = &rbio->bbio->stripes[stripe_nr];
1027	disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT);
1028
1029	/* if the device is missing, just fail this stripe */
1030	if (!stripe->dev->bdev)
1031		return fail_rbio_index(rbio, stripe_nr);
1032
1033	/* see if we can add this page onto our existing bio */
1034	if (last) {
1035		last_end = (u64)last->bi_iter.bi_sector << 9;
1036		last_end += last->bi_iter.bi_size;
1037
1038		/*
1039		 * we can't merge these if they are from different
1040		 * devices or if they are not contiguous
1041		 */
1042		if (last_end == disk_start && stripe->dev->bdev &&
1043		    test_bit(BIO_UPTODATE, &last->bi_flags) &&
1044		    last->bi_bdev == stripe->dev->bdev) {
1045			ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0);
1046			if (ret == PAGE_CACHE_SIZE)
 
1047				return 0;
1048		}
1049	}
1050
1051	/* put a new bio on the list */
1052	bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
1053	if (!bio)
1054		return -ENOMEM;
1055
1056	bio->bi_iter.bi_size = 0;
1057	bio->bi_bdev = stripe->dev->bdev;
1058	bio->bi_iter.bi_sector = disk_start >> 9;
1059	set_bit(BIO_UPTODATE, &bio->bi_flags);
1060
1061	bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
1062	bio_list_add(bio_list, bio);
1063	return 0;
1064}
1065
1066/*
1067 * while we're doing the read/modify/write cycle, we could
1068 * have errors in reading pages off the disk.  This checks
1069 * for errors and if we're not able to read the page it'll
1070 * trigger parity reconstruction.  The rmw will be finished
1071 * after we've reconstructed the failed stripes
1072 */
1073static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1074{
1075	if (rbio->faila >= 0 || rbio->failb >= 0) {
1076		BUG_ON(rbio->faila == rbio->bbio->num_stripes - 1);
1077		__raid56_parity_recover(rbio);
1078	} else {
1079		finish_rmw(rbio);
1080	}
1081}
1082
1083/*
1084 * these are just the pages from the rbio array, not from anything
1085 * the FS sent down to us
1086 */
1087static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page)
1088{
1089	int index;
1090	index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT);
1091	index += page;
1092	return rbio->stripe_pages[index];
1093}
1094
1095/*
1096 * helper function to walk our bio list and populate the bio_pages array with
1097 * the result.  This seems expensive, but it is faster than constantly
1098 * searching through the bio list as we setup the IO in finish_rmw or stripe
1099 * reconstruction.
1100 *
1101 * This must be called before you trust the answers from page_in_rbio
1102 */
1103static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1104{
1105	struct bio *bio;
1106	u64 start;
1107	unsigned long stripe_offset;
1108	unsigned long page_index;
1109	struct page *p;
1110	int i;
1111
1112	spin_lock_irq(&rbio->bio_list_lock);
1113	bio_list_for_each(bio, &rbio->bio_list) {
 
 
 
 
1114		start = (u64)bio->bi_iter.bi_sector << 9;
1115		stripe_offset = start - rbio->raid_map[0];
1116		page_index = stripe_offset >> PAGE_CACHE_SHIFT;
1117
1118		for (i = 0; i < bio->bi_vcnt; i++) {
1119			p = bio->bi_io_vec[i].bv_page;
1120			rbio->bio_pages[page_index + i] = p;
 
 
 
1121		}
1122	}
1123	spin_unlock_irq(&rbio->bio_list_lock);
1124}
1125
1126/*
1127 * this is called from one of two situations.  We either
1128 * have a full stripe from the higher layers, or we've read all
1129 * the missing bits off disk.
1130 *
1131 * This will calculate the parity and then send down any
1132 * changed blocks.
1133 */
1134static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1135{
1136	struct btrfs_bio *bbio = rbio->bbio;
1137	void *pointers[bbio->num_stripes];
1138	int stripe_len = rbio->stripe_len;
1139	int nr_data = rbio->nr_data;
1140	int stripe;
1141	int pagenr;
1142	int p_stripe = -1;
1143	int q_stripe = -1;
1144	struct bio_list bio_list;
1145	struct bio *bio;
1146	int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT;
1147	int ret;
1148
1149	bio_list_init(&bio_list);
1150
1151	if (bbio->num_stripes - rbio->nr_data == 1) {
1152		p_stripe = bbio->num_stripes - 1;
1153	} else if (bbio->num_stripes - rbio->nr_data == 2) {
1154		p_stripe = bbio->num_stripes - 2;
1155		q_stripe = bbio->num_stripes - 1;
1156	} else {
1157		BUG();
1158	}
1159
1160	/* at this point we either have a full stripe,
1161	 * or we've read the full stripe from the drive.
1162	 * recalculate the parity and write the new results.
1163	 *
1164	 * We're not allowed to add any new bios to the
1165	 * bio list here, anyone else that wants to
1166	 * change this stripe needs to do their own rmw.
1167	 */
1168	spin_lock_irq(&rbio->bio_list_lock);
1169	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1170	spin_unlock_irq(&rbio->bio_list_lock);
1171
1172	atomic_set(&rbio->bbio->error, 0);
1173
1174	/*
1175	 * now that we've set rmw_locked, run through the
1176	 * bio list one last time and map the page pointers
1177	 *
1178	 * We don't cache full rbios because we're assuming
1179	 * the higher layers are unlikely to use this area of
1180	 * the disk again soon.  If they do use it again,
1181	 * hopefully they will send another full bio.
1182	 */
1183	index_rbio_pages(rbio);
1184	if (!rbio_is_full(rbio))
1185		cache_rbio_pages(rbio);
1186	else
1187		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1188
1189	for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1190		struct page *p;
1191		/* first collect one page from each data stripe */
1192		for (stripe = 0; stripe < nr_data; stripe++) {
1193			p = page_in_rbio(rbio, stripe, pagenr, 0);
1194			pointers[stripe] = kmap(p);
1195		}
1196
1197		/* then add the parity stripe */
1198		p = rbio_pstripe_page(rbio, pagenr);
1199		SetPageUptodate(p);
1200		pointers[stripe++] = kmap(p);
1201
1202		if (q_stripe != -1) {
1203
1204			/*
1205			 * raid6, add the qstripe and call the
1206			 * library function to fill in our p/q
1207			 */
1208			p = rbio_qstripe_page(rbio, pagenr);
1209			SetPageUptodate(p);
1210			pointers[stripe++] = kmap(p);
1211
1212			raid6_call.gen_syndrome(bbio->num_stripes, PAGE_SIZE,
1213						pointers);
1214		} else {
1215			/* raid5 */
1216			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1217			run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
1218		}
1219
1220
1221		for (stripe = 0; stripe < bbio->num_stripes; stripe++)
1222			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1223	}
1224
1225	/*
1226	 * time to start writing.  Make bios for everything from the
1227	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1228	 * everything else.
1229	 */
1230	for (stripe = 0; stripe < bbio->num_stripes; stripe++) {
1231		for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1232			struct page *page;
1233			if (stripe < rbio->nr_data) {
1234				page = page_in_rbio(rbio, stripe, pagenr, 1);
1235				if (!page)
1236					continue;
1237			} else {
1238			       page = rbio_stripe_page(rbio, stripe, pagenr);
1239			}
1240
1241			ret = rbio_add_io_page(rbio, &bio_list,
1242				       page, stripe, pagenr, rbio->stripe_len);
1243			if (ret)
1244				goto cleanup;
1245		}
1246	}
1247
1248	atomic_set(&bbio->stripes_pending, bio_list_size(&bio_list));
1249	BUG_ON(atomic_read(&bbio->stripes_pending) == 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1250
1251	while (1) {
1252		bio = bio_list_pop(&bio_list);
1253		if (!bio)
1254			break;
1255
1256		bio->bi_private = rbio;
1257		bio->bi_end_io = raid_write_end_io;
1258		BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
1259		submit_bio(WRITE, bio);
 
1260	}
1261	return;
1262
1263cleanup:
1264	rbio_orig_end_io(rbio, -EIO, 0);
 
 
 
1265}
1266
1267/*
1268 * helper to find the stripe number for a given bio.  Used to figure out which
1269 * stripe has failed.  This expects the bio to correspond to a physical disk,
1270 * so it looks up based on physical sector numbers.
1271 */
1272static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1273			   struct bio *bio)
1274{
1275	u64 physical = bio->bi_iter.bi_sector;
1276	u64 stripe_start;
1277	int i;
1278	struct btrfs_bio_stripe *stripe;
1279
1280	physical <<= 9;
1281
1282	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1283		stripe = &rbio->bbio->stripes[i];
1284		stripe_start = stripe->physical;
1285		if (physical >= stripe_start &&
1286		    physical < stripe_start + rbio->stripe_len) {
 
 
 
1287			return i;
1288		}
1289	}
1290	return -1;
1291}
1292
1293/*
1294 * helper to find the stripe number for a given
1295 * bio (before mapping).  Used to figure out which stripe has
1296 * failed.  This looks up based on logical block numbers.
1297 */
1298static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1299				   struct bio *bio)
1300{
1301	u64 logical = bio->bi_iter.bi_sector;
1302	u64 stripe_start;
1303	int i;
1304
1305	logical <<= 9;
1306
1307	for (i = 0; i < rbio->nr_data; i++) {
1308		stripe_start = rbio->raid_map[i];
1309		if (logical >= stripe_start &&
1310		    logical < stripe_start + rbio->stripe_len) {
1311			return i;
1312		}
1313	}
1314	return -1;
1315}
1316
1317/*
1318 * returns -EIO if we had too many failures
1319 */
1320static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1321{
1322	unsigned long flags;
1323	int ret = 0;
1324
1325	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1326
1327	/* we already know this stripe is bad, move on */
1328	if (rbio->faila == failed || rbio->failb == failed)
1329		goto out;
1330
1331	if (rbio->faila == -1) {
1332		/* first failure on this rbio */
1333		rbio->faila = failed;
1334		atomic_inc(&rbio->bbio->error);
1335	} else if (rbio->failb == -1) {
1336		/* second failure on this rbio */
1337		rbio->failb = failed;
1338		atomic_inc(&rbio->bbio->error);
1339	} else {
1340		ret = -EIO;
1341	}
1342out:
1343	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1344
1345	return ret;
1346}
1347
1348/*
1349 * helper to fail a stripe based on a physical disk
1350 * bio.
1351 */
1352static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1353			   struct bio *bio)
1354{
1355	int failed = find_bio_stripe(rbio, bio);
1356
1357	if (failed < 0)
1358		return -EIO;
1359
1360	return fail_rbio_index(rbio, failed);
1361}
1362
1363/*
1364 * this sets each page in the bio uptodate.  It should only be used on private
1365 * rbio pages, nothing that comes in from the higher layers
1366 */
1367static void set_bio_pages_uptodate(struct bio *bio)
1368{
1369	int i;
1370	struct page *p;
 
 
1371
1372	for (i = 0; i < bio->bi_vcnt; i++) {
1373		p = bio->bi_io_vec[i].bv_page;
1374		SetPageUptodate(p);
1375	}
1376}
1377
1378/*
1379 * end io for the read phase of the rmw cycle.  All the bios here are physical
1380 * stripe bios we've read from the disk so we can recalculate the parity of the
1381 * stripe.
1382 *
1383 * This will usually kick off finish_rmw once all the bios are read in, but it
1384 * may trigger parity reconstruction if we had any errors along the way
1385 */
1386static void raid_rmw_end_io(struct bio *bio, int err)
1387{
1388	struct btrfs_raid_bio *rbio = bio->bi_private;
1389
1390	if (err)
1391		fail_bio_stripe(rbio, bio);
1392	else
1393		set_bio_pages_uptodate(bio);
1394
1395	bio_put(bio);
1396
1397	if (!atomic_dec_and_test(&rbio->bbio->stripes_pending))
1398		return;
1399
1400	err = 0;
1401	if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors)
1402		goto cleanup;
1403
1404	/*
1405	 * this will normally call finish_rmw to start our write
1406	 * but if there are any failed stripes we'll reconstruct
1407	 * from parity first
1408	 */
1409	validate_rbio_for_rmw(rbio);
1410	return;
1411
1412cleanup:
1413
1414	rbio_orig_end_io(rbio, -EIO, 0);
1415}
1416
1417static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1418{
1419	btrfs_init_work(&rbio->work, rmw_work, NULL, NULL);
1420
1421	btrfs_queue_work(rbio->fs_info->rmw_workers,
1422			 &rbio->work);
1423}
1424
1425static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1426{
1427	btrfs_init_work(&rbio->work, read_rebuild_work, NULL, NULL);
1428
1429	btrfs_queue_work(rbio->fs_info->rmw_workers,
1430			 &rbio->work);
1431}
1432
1433/*
1434 * the stripe must be locked by the caller.  It will
1435 * unlock after all the writes are done
1436 */
1437static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1438{
1439	int bios_to_read = 0;
1440	struct btrfs_bio *bbio = rbio->bbio;
1441	struct bio_list bio_list;
1442	int ret;
1443	int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1444	int pagenr;
1445	int stripe;
1446	struct bio *bio;
1447
1448	bio_list_init(&bio_list);
1449
1450	ret = alloc_rbio_pages(rbio);
1451	if (ret)
1452		goto cleanup;
1453
1454	index_rbio_pages(rbio);
1455
1456	atomic_set(&rbio->bbio->error, 0);
1457	/*
1458	 * build a list of bios to read all the missing parts of this
1459	 * stripe
1460	 */
1461	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1462		for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1463			struct page *page;
1464			/*
1465			 * we want to find all the pages missing from
1466			 * the rbio and read them from the disk.  If
1467			 * page_in_rbio finds a page in the bio list
1468			 * we don't need to read it off the stripe.
1469			 */
1470			page = page_in_rbio(rbio, stripe, pagenr, 1);
1471			if (page)
1472				continue;
1473
1474			page = rbio_stripe_page(rbio, stripe, pagenr);
1475			/*
1476			 * the bio cache may have handed us an uptodate
1477			 * page.  If so, be happy and use it
1478			 */
1479			if (PageUptodate(page))
1480				continue;
1481
1482			ret = rbio_add_io_page(rbio, &bio_list, page,
1483				       stripe, pagenr, rbio->stripe_len);
1484			if (ret)
1485				goto cleanup;
1486		}
1487	}
1488
1489	bios_to_read = bio_list_size(&bio_list);
1490	if (!bios_to_read) {
1491		/*
1492		 * this can happen if others have merged with
1493		 * us, it means there is nothing left to read.
1494		 * But if there are missing devices it may not be
1495		 * safe to do the full stripe write yet.
1496		 */
1497		goto finish;
1498	}
1499
1500	/*
1501	 * the bbio may be freed once we submit the last bio.  Make sure
1502	 * not to touch it after that
1503	 */
1504	atomic_set(&bbio->stripes_pending, bios_to_read);
1505	while (1) {
1506		bio = bio_list_pop(&bio_list);
1507		if (!bio)
1508			break;
1509
1510		bio->bi_private = rbio;
1511		bio->bi_end_io = raid_rmw_end_io;
 
1512
1513		btrfs_bio_wq_end_io(rbio->fs_info, bio,
1514				    BTRFS_WQ_ENDIO_RAID56);
1515
1516		BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
1517		submit_bio(READ, bio);
1518	}
1519	/* the actual write will happen once the reads are done */
1520	return 0;
1521
1522cleanup:
1523	rbio_orig_end_io(rbio, -EIO, 0);
 
 
 
 
1524	return -EIO;
1525
1526finish:
1527	validate_rbio_for_rmw(rbio);
1528	return 0;
1529}
1530
1531/*
1532 * if the upper layers pass in a full stripe, we thank them by only allocating
1533 * enough pages to hold the parity, and sending it all down quickly.
1534 */
1535static int full_stripe_write(struct btrfs_raid_bio *rbio)
1536{
1537	int ret;
1538
1539	ret = alloc_rbio_parity_pages(rbio);
1540	if (ret) {
1541		__free_raid_bio(rbio);
1542		return ret;
1543	}
1544
1545	ret = lock_stripe_add(rbio);
1546	if (ret == 0)
1547		finish_rmw(rbio);
1548	return 0;
1549}
1550
1551/*
1552 * partial stripe writes get handed over to async helpers.
1553 * We're really hoping to merge a few more writes into this
1554 * rbio before calculating new parity
1555 */
1556static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1557{
1558	int ret;
1559
1560	ret = lock_stripe_add(rbio);
1561	if (ret == 0)
1562		async_rmw_stripe(rbio);
1563	return 0;
1564}
1565
1566/*
1567 * sometimes while we were reading from the drive to
1568 * recalculate parity, enough new bios come into create
1569 * a full stripe.  So we do a check here to see if we can
1570 * go directly to finish_rmw
1571 */
1572static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1573{
1574	/* head off into rmw land if we don't have a full stripe */
1575	if (!rbio_is_full(rbio))
1576		return partial_stripe_write(rbio);
1577	return full_stripe_write(rbio);
1578}
1579
1580/*
1581 * We use plugging call backs to collect full stripes.
1582 * Any time we get a partial stripe write while plugged
1583 * we collect it into a list.  When the unplug comes down,
1584 * we sort the list by logical block number and merge
1585 * everything we can into the same rbios
1586 */
1587struct btrfs_plug_cb {
1588	struct blk_plug_cb cb;
1589	struct btrfs_fs_info *info;
1590	struct list_head rbio_list;
1591	struct btrfs_work work;
1592};
1593
1594/*
1595 * rbios on the plug list are sorted for easier merging.
1596 */
1597static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1598{
1599	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1600						 plug_list);
1601	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1602						 plug_list);
1603	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1604	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1605
1606	if (a_sector < b_sector)
1607		return -1;
1608	if (a_sector > b_sector)
1609		return 1;
1610	return 0;
1611}
1612
1613static void run_plug(struct btrfs_plug_cb *plug)
1614{
1615	struct btrfs_raid_bio *cur;
1616	struct btrfs_raid_bio *last = NULL;
1617
1618	/*
1619	 * sort our plug list then try to merge
1620	 * everything we can in hopes of creating full
1621	 * stripes.
1622	 */
1623	list_sort(NULL, &plug->rbio_list, plug_cmp);
1624	while (!list_empty(&plug->rbio_list)) {
1625		cur = list_entry(plug->rbio_list.next,
1626				 struct btrfs_raid_bio, plug_list);
1627		list_del_init(&cur->plug_list);
1628
1629		if (rbio_is_full(cur)) {
 
 
1630			/* we have a full stripe, send it down */
1631			full_stripe_write(cur);
 
1632			continue;
1633		}
1634		if (last) {
1635			if (rbio_can_merge(last, cur)) {
1636				merge_rbio(last, cur);
1637				__free_raid_bio(cur);
1638				continue;
1639
1640			}
1641			__raid56_parity_write(last);
1642		}
1643		last = cur;
1644	}
1645	if (last) {
1646		__raid56_parity_write(last);
1647	}
1648	kfree(plug);
1649}
1650
1651/*
1652 * if the unplug comes from schedule, we have to push the
1653 * work off to a helper thread
1654 */
1655static void unplug_work(struct btrfs_work *work)
1656{
1657	struct btrfs_plug_cb *plug;
1658	plug = container_of(work, struct btrfs_plug_cb, work);
1659	run_plug(plug);
1660}
1661
1662static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1663{
1664	struct btrfs_plug_cb *plug;
1665	plug = container_of(cb, struct btrfs_plug_cb, cb);
1666
1667	if (from_schedule) {
1668		btrfs_init_work(&plug->work, unplug_work, NULL, NULL);
 
1669		btrfs_queue_work(plug->info->rmw_workers,
1670				 &plug->work);
1671		return;
1672	}
1673	run_plug(plug);
1674}
1675
1676/*
1677 * our main entry point for writes from the rest of the FS.
1678 */
1679int raid56_parity_write(struct btrfs_root *root, struct bio *bio,
1680			struct btrfs_bio *bbio, u64 *raid_map,
1681			u64 stripe_len)
1682{
1683	struct btrfs_raid_bio *rbio;
1684	struct btrfs_plug_cb *plug = NULL;
1685	struct blk_plug_cb *cb;
 
1686
1687	rbio = alloc_rbio(root, bbio, raid_map, stripe_len);
1688	if (IS_ERR(rbio))
 
1689		return PTR_ERR(rbio);
 
1690	bio_list_add(&rbio->bio_list, bio);
1691	rbio->bio_list_bytes = bio->bi_iter.bi_size;
 
 
 
 
1692
1693	/*
1694	 * don't plug on full rbios, just get them out the door
1695	 * as quickly as we can
1696	 */
1697	if (rbio_is_full(rbio))
1698		return full_stripe_write(rbio);
 
 
 
 
1699
1700	cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info,
1701			       sizeof(*plug));
1702	if (cb) {
1703		plug = container_of(cb, struct btrfs_plug_cb, cb);
1704		if (!plug->info) {
1705			plug->info = root->fs_info;
1706			INIT_LIST_HEAD(&plug->rbio_list);
1707		}
1708		list_add_tail(&rbio->plug_list, &plug->rbio_list);
 
1709	} else {
1710		return __raid56_parity_write(rbio);
 
 
1711	}
1712	return 0;
1713}
1714
1715/*
1716 * all parity reconstruction happens here.  We've read in everything
1717 * we can find from the drives and this does the heavy lifting of
1718 * sorting the good from the bad.
1719 */
1720static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1721{
1722	int pagenr, stripe;
1723	void **pointers;
1724	int faila = -1, failb = -1;
1725	int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1726	struct page *page;
1727	int err;
1728	int i;
1729
1730	pointers = kzalloc(rbio->bbio->num_stripes * sizeof(void *),
1731			   GFP_NOFS);
1732	if (!pointers) {
1733		err = -ENOMEM;
1734		goto cleanup_io;
1735	}
1736
1737	faila = rbio->faila;
1738	failb = rbio->failb;
1739
1740	if (rbio->read_rebuild) {
 
1741		spin_lock_irq(&rbio->bio_list_lock);
1742		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1743		spin_unlock_irq(&rbio->bio_list_lock);
1744	}
1745
1746	index_rbio_pages(rbio);
1747
1748	for (pagenr = 0; pagenr < nr_pages; pagenr++) {
 
 
 
 
 
 
 
 
1749		/* setup our array of pointers with pages
1750		 * from each stripe
1751		 */
1752		for (stripe = 0; stripe < rbio->bbio->num_stripes; stripe++) {
1753			/*
1754			 * if we're rebuilding a read, we have to use
1755			 * pages from the bio list
1756			 */
1757			if (rbio->read_rebuild &&
 
1758			    (stripe == faila || stripe == failb)) {
1759				page = page_in_rbio(rbio, stripe, pagenr, 0);
1760			} else {
1761				page = rbio_stripe_page(rbio, stripe, pagenr);
1762			}
1763			pointers[stripe] = kmap(page);
1764		}
1765
1766		/* all raid6 handling here */
1767		if (rbio->raid_map[rbio->bbio->num_stripes - 1] ==
1768		    RAID6_Q_STRIPE) {
1769
1770			/*
1771			 * single failure, rebuild from parity raid5
1772			 * style
1773			 */
1774			if (failb < 0) {
1775				if (faila == rbio->nr_data) {
1776					/*
1777					 * Just the P stripe has failed, without
1778					 * a bad data or Q stripe.
1779					 * TODO, we should redo the xor here.
1780					 */
1781					err = -EIO;
1782					goto cleanup;
1783				}
1784				/*
1785				 * a single failure in raid6 is rebuilt
1786				 * in the pstripe code below
1787				 */
1788				goto pstripe;
1789			}
1790
1791			/* make sure our ps and qs are in order */
1792			if (faila > failb) {
1793				int tmp = failb;
1794				failb = faila;
1795				faila = tmp;
1796			}
1797
1798			/* if the q stripe is failed, do a pstripe reconstruction
1799			 * from the xors.
1800			 * If both the q stripe and the P stripe are failed, we're
1801			 * here due to a crc mismatch and we can't give them the
1802			 * data they want
1803			 */
1804			if (rbio->raid_map[failb] == RAID6_Q_STRIPE) {
1805				if (rbio->raid_map[faila] == RAID5_P_STRIPE) {
1806					err = -EIO;
 
1807					goto cleanup;
1808				}
1809				/*
1810				 * otherwise we have one bad data stripe and
1811				 * a good P stripe.  raid5!
1812				 */
1813				goto pstripe;
1814			}
1815
1816			if (rbio->raid_map[failb] == RAID5_P_STRIPE) {
1817				raid6_datap_recov(rbio->bbio->num_stripes,
1818						  PAGE_SIZE, faila, pointers);
1819			} else {
1820				raid6_2data_recov(rbio->bbio->num_stripes,
1821						  PAGE_SIZE, faila, failb,
1822						  pointers);
1823			}
1824		} else {
1825			void *p;
1826
1827			/* rebuild from P stripe here (raid5 or raid6) */
1828			BUG_ON(failb != -1);
1829pstripe:
1830			/* Copy parity block into failed block to start with */
1831			memcpy(pointers[faila],
1832			       pointers[rbio->nr_data],
1833			       PAGE_CACHE_SIZE);
1834
1835			/* rearrange the pointer array */
1836			p = pointers[faila];
1837			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1838				pointers[stripe] = pointers[stripe + 1];
1839			pointers[rbio->nr_data - 1] = p;
1840
1841			/* xor in the rest */
1842			run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE);
1843		}
1844		/* if we're doing this rebuild as part of an rmw, go through
1845		 * and set all of our private rbio pages in the
1846		 * failed stripes as uptodate.  This way finish_rmw will
1847		 * know they can be trusted.  If this was a read reconstruction,
1848		 * other endio functions will fiddle the uptodate bits
1849		 */
1850		if (!rbio->read_rebuild) {
1851			for (i = 0;  i < nr_pages; i++) {
1852				if (faila != -1) {
1853					page = rbio_stripe_page(rbio, faila, i);
1854					SetPageUptodate(page);
1855				}
1856				if (failb != -1) {
1857					page = rbio_stripe_page(rbio, failb, i);
1858					SetPageUptodate(page);
1859				}
1860			}
1861		}
1862		for (stripe = 0; stripe < rbio->bbio->num_stripes; stripe++) {
1863			/*
1864			 * if we're rebuilding a read, we have to use
1865			 * pages from the bio list
1866			 */
1867			if (rbio->read_rebuild &&
 
1868			    (stripe == faila || stripe == failb)) {
1869				page = page_in_rbio(rbio, stripe, pagenr, 0);
1870			} else {
1871				page = rbio_stripe_page(rbio, stripe, pagenr);
1872			}
1873			kunmap(page);
1874		}
1875	}
1876
1877	err = 0;
1878cleanup:
1879	kfree(pointers);
1880
1881cleanup_io:
1882
1883	if (rbio->read_rebuild) {
1884		if (err == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1885			cache_rbio_pages(rbio);
1886		else
1887			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1888
1889		rbio_orig_end_io(rbio, err, err == 0);
1890	} else if (err == 0) {
1891		rbio->faila = -1;
1892		rbio->failb = -1;
1893		finish_rmw(rbio);
 
 
 
 
 
 
1894	} else {
1895		rbio_orig_end_io(rbio, err, 0);
1896	}
1897}
1898
1899/*
1900 * This is called only for stripes we've read from disk to
1901 * reconstruct the parity.
1902 */
1903static void raid_recover_end_io(struct bio *bio, int err)
1904{
1905	struct btrfs_raid_bio *rbio = bio->bi_private;
1906
1907	/*
1908	 * we only read stripe pages off the disk, set them
1909	 * up to date if there were no errors
1910	 */
1911	if (err)
1912		fail_bio_stripe(rbio, bio);
1913	else
1914		set_bio_pages_uptodate(bio);
1915	bio_put(bio);
1916
1917	if (!atomic_dec_and_test(&rbio->bbio->stripes_pending))
1918		return;
1919
1920	if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors)
1921		rbio_orig_end_io(rbio, -EIO, 0);
1922	else
1923		__raid_recover_end_io(rbio);
1924}
1925
1926/*
1927 * reads everything we need off the disk to reconstruct
1928 * the parity. endio handlers trigger final reconstruction
1929 * when the IO is done.
1930 *
1931 * This is used both for reads from the higher layers and for
1932 * parity construction required to finish a rmw cycle.
1933 */
1934static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
1935{
1936	int bios_to_read = 0;
1937	struct btrfs_bio *bbio = rbio->bbio;
1938	struct bio_list bio_list;
1939	int ret;
1940	int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1941	int pagenr;
1942	int stripe;
1943	struct bio *bio;
1944
1945	bio_list_init(&bio_list);
1946
1947	ret = alloc_rbio_pages(rbio);
1948	if (ret)
1949		goto cleanup;
1950
1951	atomic_set(&rbio->bbio->error, 0);
1952
1953	/*
1954	 * read everything that hasn't failed.  Thanks to the
1955	 * stripe cache, it is possible that some or all of these
1956	 * pages are going to be uptodate.
1957	 */
1958	for (stripe = 0; stripe < bbio->num_stripes; stripe++) {
1959		if (rbio->faila == stripe ||
1960		    rbio->failb == stripe)
1961			continue;
 
1962
1963		for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1964			struct page *p;
1965
1966			/*
1967			 * the rmw code may have already read this
1968			 * page in
1969			 */
1970			p = rbio_stripe_page(rbio, stripe, pagenr);
1971			if (PageUptodate(p))
1972				continue;
1973
1974			ret = rbio_add_io_page(rbio, &bio_list,
1975				       rbio_stripe_page(rbio, stripe, pagenr),
1976				       stripe, pagenr, rbio->stripe_len);
1977			if (ret < 0)
1978				goto cleanup;
1979		}
1980	}
1981
1982	bios_to_read = bio_list_size(&bio_list);
1983	if (!bios_to_read) {
1984		/*
1985		 * we might have no bios to read just because the pages
1986		 * were up to date, or we might have no bios to read because
1987		 * the devices were gone.
1988		 */
1989		if (atomic_read(&rbio->bbio->error) <= rbio->bbio->max_errors) {
1990			__raid_recover_end_io(rbio);
1991			goto out;
1992		} else {
1993			goto cleanup;
1994		}
1995	}
1996
1997	/*
1998	 * the bbio may be freed once we submit the last bio.  Make sure
1999	 * not to touch it after that
2000	 */
2001	atomic_set(&bbio->stripes_pending, bios_to_read);
2002	while (1) {
2003		bio = bio_list_pop(&bio_list);
2004		if (!bio)
2005			break;
2006
2007		bio->bi_private = rbio;
2008		bio->bi_end_io = raid_recover_end_io;
 
2009
2010		btrfs_bio_wq_end_io(rbio->fs_info, bio,
2011				    BTRFS_WQ_ENDIO_RAID56);
2012
2013		BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
2014		submit_bio(READ, bio);
2015	}
2016out:
2017	return 0;
2018
2019cleanup:
2020	if (rbio->read_rebuild)
2021		rbio_orig_end_io(rbio, -EIO, 0);
 
 
 
 
 
2022	return -EIO;
2023}
2024
2025/*
2026 * the main entry point for reads from the higher layers.  This
2027 * is really only called when the normal read path had a failure,
2028 * so we assume the bio they send down corresponds to a failed part
2029 * of the drive.
2030 */
2031int raid56_parity_recover(struct btrfs_root *root, struct bio *bio,
2032			  struct btrfs_bio *bbio, u64 *raid_map,
2033			  u64 stripe_len, int mirror_num)
2034{
2035	struct btrfs_raid_bio *rbio;
2036	int ret;
2037
2038	rbio = alloc_rbio(root, bbio, raid_map, stripe_len);
2039	if (IS_ERR(rbio))
 
 
 
 
 
 
 
2040		return PTR_ERR(rbio);
 
2041
2042	rbio->read_rebuild = 1;
2043	bio_list_add(&rbio->bio_list, bio);
2044	rbio->bio_list_bytes = bio->bi_iter.bi_size;
2045
2046	rbio->faila = find_logical_bio_stripe(rbio, bio);
2047	if (rbio->faila == -1) {
2048		BUG();
2049		kfree(raid_map);
2050		kfree(bbio);
 
 
 
2051		kfree(rbio);
2052		return -EIO;
2053	}
2054
 
 
 
 
 
 
 
2055	/*
2056	 * reconstruct from the q stripe if they are
2057	 * asking for mirror 3
 
2058	 */
2059	if (mirror_num == 3)
2060		rbio->failb = bbio->num_stripes - 2;
 
 
 
 
 
 
 
 
 
2061
2062	ret = lock_stripe_add(rbio);
2063
2064	/*
2065	 * __raid56_parity_recover will end the bio with
2066	 * any errors it hits.  We don't want to return
2067	 * its error value up the stack because our caller
2068	 * will end up calling bio_endio with any nonzero
2069	 * return
2070	 */
2071	if (ret == 0)
2072		__raid56_parity_recover(rbio);
2073	/*
2074	 * our rbio has been added to the list of
2075	 * rbios that will be handled after the
2076	 * currently lock owner is done
2077	 */
2078	return 0;
2079
2080}
2081
2082static void rmw_work(struct btrfs_work *work)
2083{
2084	struct btrfs_raid_bio *rbio;
2085
2086	rbio = container_of(work, struct btrfs_raid_bio, work);
2087	raid56_rmw_stripe(rbio);
2088}
2089
2090static void read_rebuild_work(struct btrfs_work *work)
2091{
2092	struct btrfs_raid_bio *rbio;
2093
2094	rbio = container_of(work, struct btrfs_raid_bio, work);
2095	__raid56_parity_recover(rbio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2096}