Linux Audio

Check our new training course

Loading...
v5.4
    1/*
    2 * Copyright © 2012 Intel Corporation
    3 *
    4 * Permission is hereby granted, free of charge, to any person obtaining a
    5 * copy of this software and associated documentation files (the "Software"),
    6 * to deal in the Software without restriction, including without limitation
    7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
    8 * and/or sell copies of the Software, and to permit persons to whom the
    9 * Software is furnished to do so, subject to the following conditions:
   10 *
   11 * The above copyright notice and this permission notice (including the next
   12 * paragraph) shall be included in all copies or substantial portions of the
   13 * Software.
   14 *
   15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
   16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
   18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
   19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
   20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
   21 * IN THE SOFTWARE.
   22 *
   23 * Authors:
   24 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
   25 *
   26 */
   27
   28#include <linux/cpufreq.h>
   29#include <linux/module.h>
   30#include <linux/pm_runtime.h>
   31
   32#include <drm/drm_atomic_helper.h>
   33#include <drm/drm_fourcc.h>
   34#include <drm/drm_plane_helper.h>
   35
   36#include "display/intel_atomic.h"
   37#include "display/intel_display_types.h"
   38#include "display/intel_fbc.h"
   39#include "display/intel_sprite.h"
   40
   41#include "i915_drv.h"
   42#include "i915_irq.h"
   43#include "i915_trace.h"
   44#include "intel_pm.h"
   45#include "intel_sideband.h"
   46#include "../../../platform/x86/intel_ips.h"
 
 
 
 
   47
   48/**
   49 * DOC: RC6
   50 *
   51 * RC6 is a special power stage which allows the GPU to enter an very
   52 * low-voltage mode when idle, using down to 0V while at this stage.  This
   53 * stage is entered automatically when the GPU is idle when RC6 support is
   54 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
   55 *
   56 * There are different RC6 modes available in Intel GPU, which differentiate
   57 * among each other with the latency required to enter and leave RC6 and
   58 * voltage consumed by the GPU in different states.
   59 *
   60 * The combination of the following flags define which states GPU is allowed
   61 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
   62 * RC6pp is deepest RC6. Their support by hardware varies according to the
   63 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
   64 * which brings the most power savings; deeper states save more power, but
   65 * require higher latency to switch to and wake up.
   66 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   67
   68static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
   69{
   70	if (HAS_LLC(dev_priv)) {
   71		/*
   72		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
   73		 * Display WA #0390: skl,kbl
   74		 *
   75		 * Must match Sampler, Pixel Back End, and Media. See
   76		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
   77		 */
   78		I915_WRITE(CHICKEN_PAR1_1,
   79			   I915_READ(CHICKEN_PAR1_1) |
   80			   SKL_DE_COMPRESSED_HASH_MODE);
 
 
 
 
   81	}
   82
   83	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
   84	I915_WRITE(CHICKEN_PAR1_1,
   85		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
   86
   87	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
   88	I915_WRITE(GEN8_CHICKEN_DCPR_1,
   89		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
 
 
 
 
 
 
 
 
   90
   91	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
   92	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
   93	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
   94		   DISP_FBC_WM_DIS |
   95		   DISP_FBC_MEMORY_WAKE);
 
 
 
 
 
 
 
 
   96
   97	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
   98	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
   99		   ILK_DPFC_DISABLE_DUMMY0);
  100
  101	if (IS_SKYLAKE(dev_priv)) {
  102		/* WaDisableDopClockGating */
  103		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
  104			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
 
  105	}
 
 
 
 
 
 
 
 
 
 
 
 
 
  106}
  107
  108static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
  109{
  110	gen9_init_clock_gating(dev_priv);
  111
  112	/* WaDisableSDEUnitClockGating:bxt */
  113	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  114		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  115
  116	/*
  117	 * FIXME:
  118	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  119	 */
  120	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  121		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
 
  122
  123	/*
  124	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
  125	 * to stay fully on.
 
  126	 */
  127	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
  128		   PWM1_GATING_DIS | PWM2_GATING_DIS);
  129
  130	/*
  131	 * Lower the display internal timeout.
  132	 * This is needed to avoid any hard hangs when DSI port PLL
  133	 * is off and a MMIO access is attempted by any privilege
  134	 * application, using batch buffers or any other means.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  135	 */
  136	I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
 
 
 
 
 
 
 
 
 
 
 
 
 
  137}
  138
  139static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
 
  140{
  141	gen9_init_clock_gating(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  142
  143	/*
  144	 * WaDisablePWMClockGating:glk
  145	 * Backlight PWM may stop in the asserted state, causing backlight
  146	 * to stay fully on.
 
 
 
 
  147	 */
  148	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
  149		   PWM1_GATING_DIS | PWM2_GATING_DIS);
 
 
 
 
 
 
 
 
 
  150
  151	/* WaDDIIOTimeout:glk */
  152	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
  153		u32 val = I915_READ(CHICKEN_MISC_2);
  154		val &= ~(GLK_CL0_PWR_DOWN |
  155			 GLK_CL1_PWR_DOWN |
  156			 GLK_CL2_PWR_DOWN);
  157		I915_WRITE(CHICKEN_MISC_2, val);
  158	}
  159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  160}
  161
  162static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
  163{
 
  164	u32 tmp;
  165
  166	tmp = I915_READ(CLKCFG);
  167
  168	switch (tmp & CLKCFG_FSB_MASK) {
  169	case CLKCFG_FSB_533:
  170		dev_priv->fsb_freq = 533; /* 133*4 */
  171		break;
  172	case CLKCFG_FSB_800:
  173		dev_priv->fsb_freq = 800; /* 200*4 */
  174		break;
  175	case CLKCFG_FSB_667:
  176		dev_priv->fsb_freq =  667; /* 167*4 */
  177		break;
  178	case CLKCFG_FSB_400:
  179		dev_priv->fsb_freq = 400; /* 100*4 */
  180		break;
  181	}
  182
  183	switch (tmp & CLKCFG_MEM_MASK) {
  184	case CLKCFG_MEM_533:
  185		dev_priv->mem_freq = 533;
  186		break;
  187	case CLKCFG_MEM_667:
  188		dev_priv->mem_freq = 667;
  189		break;
  190	case CLKCFG_MEM_800:
  191		dev_priv->mem_freq = 800;
  192		break;
  193	}
  194
  195	/* detect pineview DDR3 setting */
  196	tmp = I915_READ(CSHRDDR3CTL);
  197	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  198}
  199
  200static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
  201{
 
  202	u16 ddrpll, csipll;
  203
  204	ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
  205	csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
  206
  207	switch (ddrpll & 0xff) {
  208	case 0xc:
  209		dev_priv->mem_freq = 800;
  210		break;
  211	case 0x10:
  212		dev_priv->mem_freq = 1066;
  213		break;
  214	case 0x14:
  215		dev_priv->mem_freq = 1333;
  216		break;
  217	case 0x18:
  218		dev_priv->mem_freq = 1600;
  219		break;
  220	default:
  221		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  222				 ddrpll & 0xff);
  223		dev_priv->mem_freq = 0;
  224		break;
  225	}
  226
  227	dev_priv->ips.r_t = dev_priv->mem_freq;
  228
  229	switch (csipll & 0x3ff) {
  230	case 0x00c:
  231		dev_priv->fsb_freq = 3200;
  232		break;
  233	case 0x00e:
  234		dev_priv->fsb_freq = 3733;
  235		break;
  236	case 0x010:
  237		dev_priv->fsb_freq = 4266;
  238		break;
  239	case 0x012:
  240		dev_priv->fsb_freq = 4800;
  241		break;
  242	case 0x014:
  243		dev_priv->fsb_freq = 5333;
  244		break;
  245	case 0x016:
  246		dev_priv->fsb_freq = 5866;
  247		break;
  248	case 0x018:
  249		dev_priv->fsb_freq = 6400;
  250		break;
  251	default:
  252		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  253				 csipll & 0x3ff);
  254		dev_priv->fsb_freq = 0;
  255		break;
  256	}
  257
  258	if (dev_priv->fsb_freq == 3200) {
  259		dev_priv->ips.c_m = 0;
  260	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  261		dev_priv->ips.c_m = 1;
  262	} else {
  263		dev_priv->ips.c_m = 2;
  264	}
  265}
  266
  267static const struct cxsr_latency cxsr_latency_table[] = {
  268	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
  269	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
  270	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
  271	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
  272	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
  273
  274	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
  275	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
  276	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
  277	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
  278	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
  279
  280	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
  281	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
  282	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
  283	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
  284	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
  285
  286	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
  287	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
  288	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
  289	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
  290	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
  291
  292	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
  293	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
  294	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
  295	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
  296	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
  297
  298	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
  299	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
  300	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
  301	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
  302	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
  303};
  304
  305static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
  306							 bool is_ddr3,
  307							 int fsb,
  308							 int mem)
  309{
  310	const struct cxsr_latency *latency;
  311	int i;
  312
  313	if (fsb == 0 || mem == 0)
  314		return NULL;
  315
  316	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  317		latency = &cxsr_latency_table[i];
  318		if (is_desktop == latency->is_desktop &&
  319		    is_ddr3 == latency->is_ddr3 &&
  320		    fsb == latency->fsb_freq && mem == latency->mem_freq)
  321			return latency;
  322	}
  323
  324	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  325
  326	return NULL;
  327}
  328
  329static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
  330{
  331	u32 val;
  332
  333	vlv_punit_get(dev_priv);
  334
  335	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  336	if (enable)
  337		val &= ~FORCE_DDR_HIGH_FREQ;
  338	else
  339		val |= FORCE_DDR_HIGH_FREQ;
  340	val &= ~FORCE_DDR_LOW_FREQ;
  341	val |= FORCE_DDR_FREQ_REQ_ACK;
  342	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
  343
  344	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
  345		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
  346		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
  347
  348	vlv_punit_put(dev_priv);
  349}
  350
  351static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
  352{
  353	u32 val;
  354
  355	vlv_punit_get(dev_priv);
  356
  357	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
  358	if (enable)
  359		val |= DSP_MAXFIFO_PM5_ENABLE;
  360	else
  361		val &= ~DSP_MAXFIFO_PM5_ENABLE;
  362	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
  363
  364	vlv_punit_put(dev_priv);
  365}
  366
  367#define FW_WM(value, plane) \
  368	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
  369
  370static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
  371{
  372	bool was_enabled;
  373	u32 val;
  374
  375	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  376		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  377		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
  378		POSTING_READ(FW_BLC_SELF_VLV);
  379	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
  380		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  381		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
  382		POSTING_READ(FW_BLC_SELF);
  383	} else if (IS_PINEVIEW(dev_priv)) {
  384		val = I915_READ(DSPFW3);
  385		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
  386		if (enable)
  387			val |= PINEVIEW_SELF_REFRESH_EN;
  388		else
  389			val &= ~PINEVIEW_SELF_REFRESH_EN;
  390		I915_WRITE(DSPFW3, val);
  391		POSTING_READ(DSPFW3);
  392	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
  393		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  394		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
  395			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
  396		I915_WRITE(FW_BLC_SELF, val);
  397		POSTING_READ(FW_BLC_SELF);
  398	} else if (IS_I915GM(dev_priv)) {
  399		/*
  400		 * FIXME can't find a bit like this for 915G, and
  401		 * and yet it does have the related watermark in
  402		 * FW_BLC_SELF. What's going on?
  403		 */
  404		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  405		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
  406			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
  407		I915_WRITE(INSTPM, val);
  408		POSTING_READ(INSTPM);
  409	} else {
  410		return false;
  411	}
  412
  413	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
  414
  415	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
  416		      enableddisabled(enable),
  417		      enableddisabled(was_enabled));
  418
  419	return was_enabled;
  420}
  421
  422/**
  423 * intel_set_memory_cxsr - Configure CxSR state
  424 * @dev_priv: i915 device
  425 * @enable: Allow vs. disallow CxSR
  426 *
  427 * Allow or disallow the system to enter a special CxSR
  428 * (C-state self refresh) state. What typically happens in CxSR mode
  429 * is that several display FIFOs may get combined into a single larger
  430 * FIFO for a particular plane (so called max FIFO mode) to allow the
  431 * system to defer memory fetches longer, and the memory will enter
  432 * self refresh.
  433 *
  434 * Note that enabling CxSR does not guarantee that the system enter
  435 * this special mode, nor does it guarantee that the system stays
  436 * in that mode once entered. So this just allows/disallows the system
  437 * to autonomously utilize the CxSR mode. Other factors such as core
  438 * C-states will affect when/if the system actually enters/exits the
  439 * CxSR mode.
  440 *
  441 * Note that on VLV/CHV this actually only controls the max FIFO mode,
  442 * and the system is free to enter/exit memory self refresh at any time
  443 * even when the use of CxSR has been disallowed.
  444 *
  445 * While the system is actually in the CxSR/max FIFO mode, some plane
  446 * control registers will not get latched on vblank. Thus in order to
  447 * guarantee the system will respond to changes in the plane registers
  448 * we must always disallow CxSR prior to making changes to those registers.
  449 * Unfortunately the system will re-evaluate the CxSR conditions at
  450 * frame start which happens after vblank start (which is when the plane
  451 * registers would get latched), so we can't proceed with the plane update
  452 * during the same frame where we disallowed CxSR.
  453 *
  454 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
  455 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
  456 * the hardware w.r.t. HPLL SR when writing to plane registers.
  457 * Disallowing just CxSR is sufficient.
  458 */
  459bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
  460{
  461	bool ret;
  462
  463	mutex_lock(&dev_priv->wm.wm_mutex);
  464	ret = _intel_set_memory_cxsr(dev_priv, enable);
  465	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  466		dev_priv->wm.vlv.cxsr = enable;
  467	else if (IS_G4X(dev_priv))
  468		dev_priv->wm.g4x.cxsr = enable;
  469	mutex_unlock(&dev_priv->wm.wm_mutex);
  470
  471	return ret;
  472}
  473
  474/*
  475 * Latency for FIFO fetches is dependent on several factors:
  476 *   - memory configuration (speed, channels)
  477 *   - chipset
  478 *   - current MCH state
  479 * It can be fairly high in some situations, so here we assume a fairly
  480 * pessimal value.  It's a tradeoff between extra memory fetches (if we
  481 * set this value too high, the FIFO will fetch frequently to stay full)
  482 * and power consumption (set it too low to save power and we might see
  483 * FIFO underruns and display "flicker").
  484 *
  485 * A value of 5us seems to be a good balance; safe for very low end
  486 * platforms but not overly aggressive on lower latency configs.
  487 */
  488static const int pessimal_latency_ns = 5000;
  489
  490#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
  491	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
  492
  493static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
  494{
  495	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  496	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  497	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
  498	enum pipe pipe = crtc->pipe;
  499	int sprite0_start, sprite1_start;
  500
  501	switch (pipe) {
  502		u32 dsparb, dsparb2, dsparb3;
  503	case PIPE_A:
  504		dsparb = I915_READ(DSPARB);
  505		dsparb2 = I915_READ(DSPARB2);
  506		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
  507		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
  508		break;
  509	case PIPE_B:
  510		dsparb = I915_READ(DSPARB);
  511		dsparb2 = I915_READ(DSPARB2);
  512		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
  513		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
  514		break;
  515	case PIPE_C:
  516		dsparb2 = I915_READ(DSPARB2);
  517		dsparb3 = I915_READ(DSPARB3);
  518		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
  519		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
  520		break;
  521	default:
  522		MISSING_CASE(pipe);
  523		return;
  524	}
  525
  526	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
  527	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
  528	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
  529	fifo_state->plane[PLANE_CURSOR] = 63;
  530}
  531
  532static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
  533			      enum i9xx_plane_id i9xx_plane)
  534{
  535	u32 dsparb = I915_READ(DSPARB);
 
  536	int size;
  537
  538	size = dsparb & 0x7f;
  539	if (i9xx_plane == PLANE_B)
  540		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  541
  542	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
  543		      dsparb, plane_name(i9xx_plane), size);
  544
  545	return size;
  546}
  547
  548static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
  549			      enum i9xx_plane_id i9xx_plane)
  550{
  551	u32 dsparb = I915_READ(DSPARB);
 
  552	int size;
  553
  554	size = dsparb & 0x1ff;
  555	if (i9xx_plane == PLANE_B)
  556		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  557	size >>= 1; /* Convert to cachelines */
  558
  559	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
  560		      dsparb, plane_name(i9xx_plane), size);
  561
  562	return size;
  563}
  564
  565static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
  566			      enum i9xx_plane_id i9xx_plane)
  567{
  568	u32 dsparb = I915_READ(DSPARB);
 
  569	int size;
  570
  571	size = dsparb & 0x7f;
  572	size >>= 2; /* Convert to cachelines */
  573
  574	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
  575		      dsparb, plane_name(i9xx_plane), size);
 
  576
  577	return size;
  578}
  579
  580/* Pineview has different values for various configs */
  581static const struct intel_watermark_params pineview_display_wm = {
  582	.fifo_size = PINEVIEW_DISPLAY_FIFO,
  583	.max_wm = PINEVIEW_MAX_WM,
  584	.default_wm = PINEVIEW_DFT_WM,
  585	.guard_size = PINEVIEW_GUARD_WM,
  586	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  587};
  588static const struct intel_watermark_params pineview_display_hplloff_wm = {
  589	.fifo_size = PINEVIEW_DISPLAY_FIFO,
  590	.max_wm = PINEVIEW_MAX_WM,
  591	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
  592	.guard_size = PINEVIEW_GUARD_WM,
  593	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  594};
  595static const struct intel_watermark_params pineview_cursor_wm = {
  596	.fifo_size = PINEVIEW_CURSOR_FIFO,
  597	.max_wm = PINEVIEW_CURSOR_MAX_WM,
  598	.default_wm = PINEVIEW_CURSOR_DFT_WM,
  599	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
  600	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  601};
  602static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  603	.fifo_size = PINEVIEW_CURSOR_FIFO,
  604	.max_wm = PINEVIEW_CURSOR_MAX_WM,
  605	.default_wm = PINEVIEW_CURSOR_DFT_WM,
  606	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
  607	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  608};
  609static const struct intel_watermark_params i965_cursor_wm_info = {
  610	.fifo_size = I965_CURSOR_FIFO,
  611	.max_wm = I965_CURSOR_MAX_WM,
  612	.default_wm = I965_CURSOR_DFT_WM,
  613	.guard_size = 2,
  614	.cacheline_size = I915_FIFO_LINE_SIZE,
  615};
  616static const struct intel_watermark_params i945_wm_info = {
  617	.fifo_size = I945_FIFO_SIZE,
  618	.max_wm = I915_MAX_WM,
  619	.default_wm = 1,
  620	.guard_size = 2,
  621	.cacheline_size = I915_FIFO_LINE_SIZE,
  622};
  623static const struct intel_watermark_params i915_wm_info = {
  624	.fifo_size = I915_FIFO_SIZE,
  625	.max_wm = I915_MAX_WM,
  626	.default_wm = 1,
  627	.guard_size = 2,
  628	.cacheline_size = I915_FIFO_LINE_SIZE,
  629};
  630static const struct intel_watermark_params i830_a_wm_info = {
  631	.fifo_size = I855GM_FIFO_SIZE,
  632	.max_wm = I915_MAX_WM,
  633	.default_wm = 1,
  634	.guard_size = 2,
  635	.cacheline_size = I830_FIFO_LINE_SIZE,
  636};
  637static const struct intel_watermark_params i830_bc_wm_info = {
  638	.fifo_size = I855GM_FIFO_SIZE,
  639	.max_wm = I915_MAX_WM/2,
  640	.default_wm = 1,
  641	.guard_size = 2,
  642	.cacheline_size = I830_FIFO_LINE_SIZE,
  643};
  644static const struct intel_watermark_params i845_wm_info = {
  645	.fifo_size = I830_FIFO_SIZE,
  646	.max_wm = I915_MAX_WM,
  647	.default_wm = 1,
  648	.guard_size = 2,
  649	.cacheline_size = I830_FIFO_LINE_SIZE,
  650};
  651
  652/**
  653 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
  654 * @pixel_rate: Pipe pixel rate in kHz
  655 * @cpp: Plane bytes per pixel
  656 * @latency: Memory wakeup latency in 0.1us units
  657 *
  658 * Compute the watermark using the method 1 or "small buffer"
  659 * formula. The caller may additonally add extra cachelines
  660 * to account for TLB misses and clock crossings.
  661 *
  662 * This method is concerned with the short term drain rate
  663 * of the FIFO, ie. it does not account for blanking periods
  664 * which would effectively reduce the average drain rate across
  665 * a longer period. The name "small" refers to the fact the
  666 * FIFO is relatively small compared to the amount of data
  667 * fetched.
  668 *
  669 * The FIFO level vs. time graph might look something like:
  670 *
  671 *   |\   |\
  672 *   | \  | \
  673 * __---__---__ (- plane active, _ blanking)
  674 * -> time
  675 *
  676 * or perhaps like this:
  677 *
  678 *   |\|\  |\|\
  679 * __----__----__ (- plane active, _ blanking)
  680 * -> time
  681 *
  682 * Returns:
  683 * The watermark in bytes
  684 */
  685static unsigned int intel_wm_method1(unsigned int pixel_rate,
  686				     unsigned int cpp,
  687				     unsigned int latency)
  688{
  689	u64 ret;
  690
  691	ret = mul_u32_u32(pixel_rate, cpp * latency);
  692	ret = DIV_ROUND_UP_ULL(ret, 10000);
  693
  694	return ret;
  695}
  696
  697/**
  698 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
  699 * @pixel_rate: Pipe pixel rate in kHz
  700 * @htotal: Pipe horizontal total
  701 * @width: Plane width in pixels
  702 * @cpp: Plane bytes per pixel
  703 * @latency: Memory wakeup latency in 0.1us units
  704 *
  705 * Compute the watermark using the method 2 or "large buffer"
  706 * formula. The caller may additonally add extra cachelines
  707 * to account for TLB misses and clock crossings.
  708 *
  709 * This method is concerned with the long term drain rate
  710 * of the FIFO, ie. it does account for blanking periods
  711 * which effectively reduce the average drain rate across
  712 * a longer period. The name "large" refers to the fact the
  713 * FIFO is relatively large compared to the amount of data
  714 * fetched.
  715 *
  716 * The FIFO level vs. time graph might look something like:
  717 *
  718 *    |\___       |\___
  719 *    |    \___   |    \___
  720 *    |        \  |        \
  721 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
  722 * -> time
  723 *
  724 * Returns:
  725 * The watermark in bytes
  726 */
  727static unsigned int intel_wm_method2(unsigned int pixel_rate,
  728				     unsigned int htotal,
  729				     unsigned int width,
  730				     unsigned int cpp,
  731				     unsigned int latency)
  732{
  733	unsigned int ret;
  734
  735	/*
  736	 * FIXME remove once all users are computing
  737	 * watermarks in the correct place.
  738	 */
  739	if (WARN_ON_ONCE(htotal == 0))
  740		htotal = 1;
  741
  742	ret = (latency * pixel_rate) / (htotal * 10000);
  743	ret = (ret + 1) * width * cpp;
  744
  745	return ret;
  746}
  747
  748/**
  749 * intel_calculate_wm - calculate watermark level
  750 * @pixel_rate: pixel clock
  751 * @wm: chip FIFO params
  752 * @fifo_size: size of the FIFO buffer
  753 * @cpp: bytes per pixel
  754 * @latency_ns: memory latency for the platform
  755 *
  756 * Calculate the watermark level (the level at which the display plane will
  757 * start fetching from memory again).  Each chip has a different display
  758 * FIFO size and allocation, so the caller needs to figure that out and pass
  759 * in the correct intel_watermark_params structure.
  760 *
  761 * As the pixel clock runs, the FIFO will be drained at a rate that depends
  762 * on the pixel size.  When it reaches the watermark level, it'll start
  763 * fetching FIFO line sized based chunks from memory until the FIFO fills
  764 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
  765 * will occur, and a display engine hang could result.
  766 */
  767static unsigned int intel_calculate_wm(int pixel_rate,
  768				       const struct intel_watermark_params *wm,
  769				       int fifo_size, int cpp,
  770				       unsigned int latency_ns)
 
  771{
  772	int entries, wm_size;
  773
  774	/*
  775	 * Note: we need to make sure we don't overflow for various clock &
  776	 * latency values.
  777	 * clocks go from a few thousand to several hundred thousand.
  778	 * latency is usually a few thousand
  779	 */
  780	entries = intel_wm_method1(pixel_rate, cpp,
  781				   latency_ns / 100);
  782	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
  783		wm->guard_size;
  784	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
  785
  786	wm_size = fifo_size - entries;
  787	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
 
  788
  789	/* Don't promote wm_size to unsigned... */
  790	if (wm_size > wm->max_wm)
  791		wm_size = wm->max_wm;
  792	if (wm_size <= 0)
  793		wm_size = wm->default_wm;
  794
  795	/*
  796	 * Bspec seems to indicate that the value shouldn't be lower than
  797	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
  798	 * Lets go for 8 which is the burst size since certain platforms
  799	 * already use a hardcoded 8 (which is what the spec says should be
  800	 * done).
  801	 */
  802	if (wm_size <= 8)
  803		wm_size = 8;
  804
  805	return wm_size;
  806}
  807
  808static bool is_disabling(int old, int new, int threshold)
  809{
  810	return old >= threshold && new < threshold;
  811}
  812
  813static bool is_enabling(int old, int new, int threshold)
  814{
  815	return old < threshold && new >= threshold;
  816}
  817
  818static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
  819{
  820	return dev_priv->wm.max_level + 1;
  821}
  822
  823static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
  824				   const struct intel_plane_state *plane_state)
  825{
  826	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
  827
  828	/* FIXME check the 'enable' instead */
  829	if (!crtc_state->base.active)
  830		return false;
  831
  832	/*
  833	 * Treat cursor with fb as always visible since cursor updates
  834	 * can happen faster than the vrefresh rate, and the current
  835	 * watermark code doesn't handle that correctly. Cursor updates
  836	 * which set/clear the fb or change the cursor size are going
  837	 * to get throttled by intel_legacy_cursor_update() to work
  838	 * around this problem with the watermark code.
  839	 */
  840	if (plane->id == PLANE_CURSOR)
  841		return plane_state->base.fb != NULL;
  842	else
  843		return plane_state->base.visible;
  844}
  845
  846static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
  847{
  848	struct intel_crtc *crtc, *enabled = NULL;
  849
  850	for_each_intel_crtc(&dev_priv->drm, crtc) {
  851		if (intel_crtc_active(crtc)) {
  852			if (enabled)
  853				return NULL;
  854			enabled = crtc;
  855		}
  856	}
  857
  858	return enabled;
  859}
  860
  861static void pineview_update_wm(struct intel_crtc *unused_crtc)
  862{
  863	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
  864	struct intel_crtc *crtc;
 
  865	const struct cxsr_latency *latency;
  866	u32 reg;
  867	unsigned int wm;
  868
  869	latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
  870					 dev_priv->is_ddr3,
  871					 dev_priv->fsb_freq,
  872					 dev_priv->mem_freq);
  873	if (!latency) {
  874		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  875		intel_set_memory_cxsr(dev_priv, false);
  876		return;
  877	}
  878
  879	crtc = single_enabled_crtc(dev_priv);
  880	if (crtc) {
  881		const struct drm_display_mode *adjusted_mode =
  882			&crtc->config->base.adjusted_mode;
  883		const struct drm_framebuffer *fb =
  884			crtc->base.primary->state->fb;
  885		int cpp = fb->format->cpp[0];
  886		int clock = adjusted_mode->crtc_clock;
  887
  888		/* Display SR */
  889		wm = intel_calculate_wm(clock, &pineview_display_wm,
  890					pineview_display_wm.fifo_size,
  891					cpp, latency->display_sr);
  892		reg = I915_READ(DSPFW1);
  893		reg &= ~DSPFW_SR_MASK;
  894		reg |= FW_WM(wm, SR);
  895		I915_WRITE(DSPFW1, reg);
  896		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  897
  898		/* cursor SR */
  899		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  900					pineview_display_wm.fifo_size,
  901					4, latency->cursor_sr);
  902		reg = I915_READ(DSPFW3);
  903		reg &= ~DSPFW_CURSOR_SR_MASK;
  904		reg |= FW_WM(wm, CURSOR_SR);
  905		I915_WRITE(DSPFW3, reg);
  906
  907		/* Display HPLL off SR */
  908		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  909					pineview_display_hplloff_wm.fifo_size,
  910					cpp, latency->display_hpll_disable);
  911		reg = I915_READ(DSPFW3);
  912		reg &= ~DSPFW_HPLL_SR_MASK;
  913		reg |= FW_WM(wm, HPLL_SR);
  914		I915_WRITE(DSPFW3, reg);
  915
  916		/* cursor HPLL off SR */
  917		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  918					pineview_display_hplloff_wm.fifo_size,
  919					4, latency->cursor_hpll_disable);
  920		reg = I915_READ(DSPFW3);
  921		reg &= ~DSPFW_HPLL_CURSOR_MASK;
  922		reg |= FW_WM(wm, HPLL_CURSOR);
  923		I915_WRITE(DSPFW3, reg);
  924		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  925
  926		intel_set_memory_cxsr(dev_priv, true);
  927	} else {
  928		intel_set_memory_cxsr(dev_priv, false);
  929	}
  930}
  931
  932/*
  933 * Documentation says:
  934 * "If the line size is small, the TLB fetches can get in the way of the
  935 *  data fetches, causing some lag in the pixel data return which is not
  936 *  accounted for in the above formulas. The following adjustment only
  937 *  needs to be applied if eight whole lines fit in the buffer at once.
  938 *  The WM is adjusted upwards by the difference between the FIFO size
  939 *  and the size of 8 whole lines. This adjustment is always performed
  940 *  in the actual pixel depth regardless of whether FBC is enabled or not."
  941 */
  942static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
  943{
  944	int tlb_miss = fifo_size * 64 - width * cpp * 8;
  945
  946	return max(0, tlb_miss);
  947}
  948
  949static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
  950				const struct g4x_wm_values *wm)
  951{
  952	enum pipe pipe;
  953
  954	for_each_pipe(dev_priv, pipe)
  955		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
  956
  957	I915_WRITE(DSPFW1,
  958		   FW_WM(wm->sr.plane, SR) |
  959		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
  960		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
  961		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
  962	I915_WRITE(DSPFW2,
  963		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
  964		   FW_WM(wm->sr.fbc, FBC_SR) |
  965		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
  966		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
  967		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
  968		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
  969	I915_WRITE(DSPFW3,
  970		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
  971		   FW_WM(wm->sr.cursor, CURSOR_SR) |
  972		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
  973		   FW_WM(wm->hpll.plane, HPLL_SR));
  974
  975	POSTING_READ(DSPFW1);
  976}
  977
  978#define FW_WM_VLV(value, plane) \
  979	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
  980
  981static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
  982				const struct vlv_wm_values *wm)
  983{
  984	enum pipe pipe;
  985
  986	for_each_pipe(dev_priv, pipe) {
  987		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
  988
  989		I915_WRITE(VLV_DDL(pipe),
  990			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
  991			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
  992			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
  993			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
  994	}
  995
  996	/*
  997	 * Zero the (unused) WM1 watermarks, and also clear all the
  998	 * high order bits so that there are no out of bounds values
  999	 * present in the registers during the reprogramming.
 1000	 */
 1001	I915_WRITE(DSPHOWM, 0);
 1002	I915_WRITE(DSPHOWM1, 0);
 1003	I915_WRITE(DSPFW4, 0);
 1004	I915_WRITE(DSPFW5, 0);
 1005	I915_WRITE(DSPFW6, 0);
 1006
 1007	I915_WRITE(DSPFW1,
 1008		   FW_WM(wm->sr.plane, SR) |
 1009		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
 1010		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
 1011		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
 1012	I915_WRITE(DSPFW2,
 1013		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
 1014		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
 1015		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
 1016	I915_WRITE(DSPFW3,
 1017		   FW_WM(wm->sr.cursor, CURSOR_SR));
 1018
 1019	if (IS_CHERRYVIEW(dev_priv)) {
 1020		I915_WRITE(DSPFW7_CHV,
 1021			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
 1022			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
 1023		I915_WRITE(DSPFW8_CHV,
 1024			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
 1025			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
 1026		I915_WRITE(DSPFW9_CHV,
 1027			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
 1028			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
 1029		I915_WRITE(DSPHOWM,
 1030			   FW_WM(wm->sr.plane >> 9, SR_HI) |
 1031			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
 1032			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
 1033			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
 1034			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
 1035			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
 1036			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
 1037			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
 1038			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
 1039			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
 1040	} else {
 1041		I915_WRITE(DSPFW7,
 1042			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
 1043			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
 1044		I915_WRITE(DSPHOWM,
 1045			   FW_WM(wm->sr.plane >> 9, SR_HI) |
 1046			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
 1047			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
 1048			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
 1049			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
 1050			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
 1051			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
 1052	}
 1053
 1054	POSTING_READ(DSPFW1);
 1055}
 1056
 1057#undef FW_WM_VLV
 1058
 1059static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
 1060{
 1061	/* all latencies in usec */
 1062	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
 1063	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
 1064	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
 1065
 1066	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
 1067}
 1068
 1069static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
 1070{
 1071	/*
 1072	 * DSPCNTR[13] supposedly controls whether the
 1073	 * primary plane can use the FIFO space otherwise
 1074	 * reserved for the sprite plane. It's not 100% clear
 1075	 * what the actual FIFO size is, but it looks like we
 1076	 * can happily set both primary and sprite watermarks
 1077	 * up to 127 cachelines. So that would seem to mean
 1078	 * that either DSPCNTR[13] doesn't do anything, or that
 1079	 * the total FIFO is >= 256 cachelines in size. Either
 1080	 * way, we don't seem to have to worry about this
 1081	 * repartitioning as the maximum watermark value the
 1082	 * register can hold for each plane is lower than the
 1083	 * minimum FIFO size.
 1084	 */
 1085	switch (plane_id) {
 1086	case PLANE_CURSOR:
 1087		return 63;
 1088	case PLANE_PRIMARY:
 1089		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
 1090	case PLANE_SPRITE0:
 1091		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
 1092	default:
 1093		MISSING_CASE(plane_id);
 1094		return 0;
 1095	}
 1096}
 1097
 1098static int g4x_fbc_fifo_size(int level)
 
 
 
 
 
 
 
 1099{
 1100	switch (level) {
 1101	case G4X_WM_LEVEL_SR:
 1102		return 7;
 1103	case G4X_WM_LEVEL_HPLL:
 1104		return 15;
 1105	default:
 1106		MISSING_CASE(level);
 1107		return 0;
 
 
 
 1108	}
 1109}
 1110
 1111static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
 1112			  const struct intel_plane_state *plane_state,
 1113			  int level)
 1114{
 1115	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
 1116	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
 1117	const struct drm_display_mode *adjusted_mode =
 1118		&crtc_state->base.adjusted_mode;
 1119	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
 1120	unsigned int clock, htotal, cpp, width, wm;
 1121
 1122	if (latency == 0)
 1123		return USHRT_MAX;
 1124
 1125	if (!intel_wm_plane_visible(crtc_state, plane_state))
 1126		return 0;
 1127
 1128	cpp = plane_state->base.fb->format->cpp[0];
 1129
 1130	/*
 1131	 * Not 100% sure which way ELK should go here as the
 1132	 * spec only says CL/CTG should assume 32bpp and BW
 1133	 * doesn't need to. But as these things followed the
 1134	 * mobile vs. desktop lines on gen3 as well, let's
 1135	 * assume ELK doesn't need this.
 1136	 *
 1137	 * The spec also fails to list such a restriction for
 1138	 * the HPLL watermark, which seems a little strange.
 1139	 * Let's use 32bpp for the HPLL watermark as well.
 1140	 */
 1141	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
 1142	    level != G4X_WM_LEVEL_NORMAL)
 1143		cpp = max(cpp, 4u);
 1144
 
 1145	clock = adjusted_mode->crtc_clock;
 1146	htotal = adjusted_mode->crtc_htotal;
 
 
 1147
 1148	if (plane->id == PLANE_CURSOR)
 1149		width = plane_state->base.crtc_w;
 1150	else
 1151		width = drm_rect_width(&plane_state->base.dst);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1152
 1153	if (plane->id == PLANE_CURSOR) {
 1154		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
 1155	} else if (plane->id == PLANE_PRIMARY &&
 1156		   level == G4X_WM_LEVEL_NORMAL) {
 1157		wm = intel_wm_method1(clock, cpp, latency);
 1158	} else {
 1159		unsigned int small, large;
 1160
 1161		small = intel_wm_method1(clock, cpp, latency);
 1162		large = intel_wm_method2(clock, htotal, width, cpp, latency);
 1163
 1164		wm = min(small, large);
 1165	}
 1166
 1167	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
 1168			      width, cpp);
 1169
 1170	wm = DIV_ROUND_UP(wm, 64) + 2;
 1171
 1172	return min_t(unsigned int, wm, USHRT_MAX);
 1173}
 1174
 1175static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
 1176				 int level, enum plane_id plane_id, u16 value)
 1177{
 1178	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
 1179	bool dirty = false;
 1180
 1181	for (; level < intel_wm_num_levels(dev_priv); level++) {
 1182		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
 1183
 1184		dirty |= raw->plane[plane_id] != value;
 1185		raw->plane[plane_id] = value;
 1186	}
 1187
 1188	return dirty;
 1189}
 1190
 1191static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
 1192			       int level, u16 value)
 1193{
 1194	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
 1195	bool dirty = false;
 1196
 1197	/* NORMAL level doesn't have an FBC watermark */
 1198	level = max(level, G4X_WM_LEVEL_SR);
 1199
 1200	for (; level < intel_wm_num_levels(dev_priv); level++) {
 1201		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
 1202
 1203		dirty |= raw->fbc != value;
 1204		raw->fbc = value;
 1205	}
 1206
 1207	return dirty;
 1208}
 1209
 1210static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
 1211			      const struct intel_plane_state *plane_state,
 1212			      u32 pri_val);
 1213
 1214static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
 1215				     const struct intel_plane_state *plane_state)
 1216{
 1217	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
 1218	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
 1219	enum plane_id plane_id = plane->id;
 1220	bool dirty = false;
 1221	int level;
 1222
 1223	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
 1224		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
 1225		if (plane_id == PLANE_PRIMARY)
 1226			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
 1227		goto out;
 1228	}
 1229
 1230	for (level = 0; level < num_levels; level++) {
 1231		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
 1232		int wm, max_wm;
 1233
 1234		wm = g4x_compute_wm(crtc_state, plane_state, level);
 1235		max_wm = g4x_plane_fifo_size(plane_id, level);
 1236
 1237		if (wm > max_wm)
 1238			break;
 1239
 1240		dirty |= raw->plane[plane_id] != wm;
 1241		raw->plane[plane_id] = wm;
 1242
 1243		if (plane_id != PLANE_PRIMARY ||
 1244		    level == G4X_WM_LEVEL_NORMAL)
 1245			continue;
 1246
 1247		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
 1248					raw->plane[plane_id]);
 1249		max_wm = g4x_fbc_fifo_size(level);
 1250
 1251		/*
 1252		 * FBC wm is not mandatory as we
 1253		 * can always just disable its use.
 1254		 */
 1255		if (wm > max_wm)
 1256			wm = USHRT_MAX;
 1257
 1258		dirty |= raw->fbc != wm;
 1259		raw->fbc = wm;
 1260	}
 1261
 1262	/* mark watermarks as invalid */
 1263	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
 1264
 1265	if (plane_id == PLANE_PRIMARY)
 1266		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
 1267
 1268 out:
 1269	if (dirty) {
 1270		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
 1271			      plane->base.name,
 1272			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
 1273			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
 1274			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
 1275
 1276		if (plane_id == PLANE_PRIMARY)
 1277			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
 1278				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
 1279				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
 1280	}
 1281
 1282	return dirty;
 1283}
 1284
 1285static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
 1286				      enum plane_id plane_id, int level)
 1287{
 1288	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
 1289
 1290	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
 1291}
 1292
 1293static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
 1294				     int level)
 1295{
 1296	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
 1297
 1298	if (level > dev_priv->wm.max_level)
 
 
 
 
 
 
 
 
 
 
 
 
 1299		return false;
 1300
 1301	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
 1302		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
 1303		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
 1304}
 1305
 1306/* mark all levels starting from 'level' as invalid */
 1307static void g4x_invalidate_wms(struct intel_crtc *crtc,
 1308			       struct g4x_wm_state *wm_state, int level)
 1309{
 1310	if (level <= G4X_WM_LEVEL_NORMAL) {
 1311		enum plane_id plane_id;
 1312
 1313		for_each_plane_id_on_crtc(crtc, plane_id)
 1314			wm_state->wm.plane[plane_id] = USHRT_MAX;
 1315	}
 1316
 1317	if (level <= G4X_WM_LEVEL_SR) {
 1318		wm_state->cxsr = false;
 1319		wm_state->sr.cursor = USHRT_MAX;
 1320		wm_state->sr.plane = USHRT_MAX;
 1321		wm_state->sr.fbc = USHRT_MAX;
 1322	}
 1323
 1324	if (level <= G4X_WM_LEVEL_HPLL) {
 1325		wm_state->hpll_en = false;
 1326		wm_state->hpll.cursor = USHRT_MAX;
 1327		wm_state->hpll.plane = USHRT_MAX;
 1328		wm_state->hpll.fbc = USHRT_MAX;
 1329	}
 1330}
 1331
 1332static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
 1333{
 1334	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
 1335	struct intel_atomic_state *state =
 1336		to_intel_atomic_state(crtc_state->base.state);
 1337	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
 1338	int num_active_planes = hweight32(crtc_state->active_planes &
 1339					  ~BIT(PLANE_CURSOR));
 1340	const struct g4x_pipe_wm *raw;
 1341	const struct intel_plane_state *old_plane_state;
 1342	const struct intel_plane_state *new_plane_state;
 1343	struct intel_plane *plane;
 1344	enum plane_id plane_id;
 1345	int i, level;
 1346	unsigned int dirty = 0;
 1347
 1348	for_each_oldnew_intel_plane_in_state(state, plane,
 1349					     old_plane_state,
 1350					     new_plane_state, i) {
 1351		if (new_plane_state->base.crtc != &crtc->base &&
 1352		    old_plane_state->base.crtc != &crtc->base)
 1353			continue;
 1354
 1355		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
 1356			dirty |= BIT(plane->id);
 1357	}
 1358
 1359	if (!dirty)
 1360		return 0;
 1361
 1362	level = G4X_WM_LEVEL_NORMAL;
 1363	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
 1364		goto out;
 1365
 1366	raw = &crtc_state->wm.g4x.raw[level];
 1367	for_each_plane_id_on_crtc(crtc, plane_id)
 1368		wm_state->wm.plane[plane_id] = raw->plane[plane_id];
 1369
 1370	level = G4X_WM_LEVEL_SR;
 1371
 1372	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
 1373		goto out;
 1374
 1375	raw = &crtc_state->wm.g4x.raw[level];
 1376	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
 1377	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
 1378	wm_state->sr.fbc = raw->fbc;
 1379
 1380	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
 1381
 1382	level = G4X_WM_LEVEL_HPLL;
 1383
 1384	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
 1385		goto out;
 1386
 1387	raw = &crtc_state->wm.g4x.raw[level];
 1388	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
 1389	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
 1390	wm_state->hpll.fbc = raw->fbc;
 1391
 1392	wm_state->hpll_en = wm_state->cxsr;
 1393
 1394	level++;
 1395
 1396 out:
 1397	if (level == G4X_WM_LEVEL_NORMAL)
 1398		return -EINVAL;
 1399
 1400	/* invalidate the higher levels */
 1401	g4x_invalidate_wms(crtc, wm_state, level);
 1402
 1403	/*
 1404	 * Determine if the FBC watermark(s) can be used. IF
 1405	 * this isn't the case we prefer to disable the FBC
 1406	 ( watermark(s) rather than disable the SR/HPLL
 1407	 * level(s) entirely.
 1408	 */
 1409	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
 1410
 1411	if (level >= G4X_WM_LEVEL_SR &&
 1412	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
 1413		wm_state->fbc_en = false;
 1414	else if (level >= G4X_WM_LEVEL_HPLL &&
 1415		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
 1416		wm_state->fbc_en = false;
 1417
 1418	return 0;
 1419}
 1420
 1421static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
 1422{
 1423	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
 1424	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
 1425	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
 1426	struct intel_atomic_state *intel_state =
 1427		to_intel_atomic_state(new_crtc_state->base.state);
 1428	const struct intel_crtc_state *old_crtc_state =
 1429		intel_atomic_get_old_crtc_state(intel_state, crtc);
 1430	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
 1431	enum plane_id plane_id;
 1432
 1433	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
 1434		*intermediate = *optimal;
 1435
 1436		intermediate->cxsr = false;
 1437		intermediate->hpll_en = false;
 1438		goto out;
 1439	}
 1440
 1441	intermediate->cxsr = optimal->cxsr && active->cxsr &&
 1442		!new_crtc_state->disable_cxsr;
 1443	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
 1444		!new_crtc_state->disable_cxsr;
 1445	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
 1446
 1447	for_each_plane_id_on_crtc(crtc, plane_id) {
 1448		intermediate->wm.plane[plane_id] =
 1449			max(optimal->wm.plane[plane_id],
 1450			    active->wm.plane[plane_id]);
 1451
 1452		WARN_ON(intermediate->wm.plane[plane_id] >
 1453			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
 1454	}
 1455
 1456	intermediate->sr.plane = max(optimal->sr.plane,
 1457				     active->sr.plane);
 1458	intermediate->sr.cursor = max(optimal->sr.cursor,
 1459				      active->sr.cursor);
 1460	intermediate->sr.fbc = max(optimal->sr.fbc,
 1461				   active->sr.fbc);
 1462
 1463	intermediate->hpll.plane = max(optimal->hpll.plane,
 1464				       active->hpll.plane);
 1465	intermediate->hpll.cursor = max(optimal->hpll.cursor,
 1466					active->hpll.cursor);
 1467	intermediate->hpll.fbc = max(optimal->hpll.fbc,
 1468				     active->hpll.fbc);
 1469
 1470	WARN_ON((intermediate->sr.plane >
 1471		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
 1472		 intermediate->sr.cursor >
 1473		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
 1474		intermediate->cxsr);
 1475	WARN_ON((intermediate->sr.plane >
 1476		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
 1477		 intermediate->sr.cursor >
 1478		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
 1479		intermediate->hpll_en);
 1480
 1481	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
 1482		intermediate->fbc_en && intermediate->cxsr);
 1483	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
 1484		intermediate->fbc_en && intermediate->hpll_en);
 1485
 1486out:
 1487	/*
 1488	 * If our intermediate WM are identical to the final WM, then we can
 1489	 * omit the post-vblank programming; only update if it's different.
 1490	 */
 1491	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
 1492		new_crtc_state->wm.need_postvbl_update = true;
 1493
 1494	return 0;
 1495}
 1496
 1497static void g4x_merge_wm(struct drm_i915_private *dev_priv,
 1498			 struct g4x_wm_values *wm)
 1499{
 1500	struct intel_crtc *crtc;
 1501	int num_active_crtcs = 0;
 1502
 1503	wm->cxsr = true;
 1504	wm->hpll_en = true;
 1505	wm->fbc_en = true;
 1506
 1507	for_each_intel_crtc(&dev_priv->drm, crtc) {
 1508		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
 1509
 1510		if (!crtc->active)
 1511			continue;
 1512
 1513		if (!wm_state->cxsr)
 1514			wm->cxsr = false;
 1515		if (!wm_state->hpll_en)
 1516			wm->hpll_en = false;
 1517		if (!wm_state->fbc_en)
 1518			wm->fbc_en = false;
 1519
 1520		num_active_crtcs++;
 1521	}
 1522
 1523	if (num_active_crtcs != 1) {
 1524		wm->cxsr = false;
 1525		wm->hpll_en = false;
 1526		wm->fbc_en = false;
 1527	}
 1528
 1529	for_each_intel_crtc(&dev_priv->drm, crtc) {
 1530		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
 1531		enum pipe pipe = crtc->pipe;
 1532
 1533		wm->pipe[pipe] = wm_state->wm;
 1534		if (crtc->active && wm->cxsr)
 1535			wm->sr = wm_state->sr;
 1536		if (crtc->active && wm->hpll_en)
 1537			wm->hpll = wm_state->hpll;
 1538	}
 1539}
 1540
 1541static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
 1542{
 1543	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
 1544	struct g4x_wm_values new_wm = {};
 1545
 1546	g4x_merge_wm(dev_priv, &new_wm);
 1547
 1548	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
 1549		return;
 1550
 1551	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
 1552		_intel_set_memory_cxsr(dev_priv, false);
 1553
 1554	g4x_write_wm_values(dev_priv, &new_wm);
 1555
 1556	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
 1557		_intel_set_memory_cxsr(dev_priv, true);
 1558
 1559	*old_wm = new_wm;
 1560}
 1561
 1562static void g4x_initial_watermarks(struct intel_atomic_state *state,
 1563				   struct intel_crtc_state *crtc_state)
 1564{
 1565	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
 1566	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
 1567
 1568	mutex_lock(&dev_priv->wm.wm_mutex);
 1569	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
 1570	g4x_program_watermarks(dev_priv);
 1571	mutex_unlock(&dev_priv->wm.wm_mutex);
 1572}
 1573
 1574static void g4x_optimize_watermarks(struct intel_atomic_state *state,
 1575				    struct intel_crtc_state *crtc_state)
 1576{
 1577	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
 1578	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
 1579
 1580	if (!crtc_state->wm.need_postvbl_update)
 1581		return;
 1582
 1583	mutex_lock(&dev_priv->wm.wm_mutex);
 1584	crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
 1585	g4x_program_watermarks(dev_priv);
 1586	mutex_unlock(&dev_priv->wm.wm_mutex);
 1587}
 1588
 1589/* latency must be in 0.1us units. */
 1590static unsigned int vlv_wm_method2(unsigned int pixel_rate,
 1591				   unsigned int htotal,
 1592				   unsigned int width,
 1593				   unsigned int cpp,
 1594				   unsigned int latency)
 1595{
 1596	unsigned int ret;
 1597
 1598	ret = intel_wm_method2(pixel_rate, htotal,
 1599			       width, cpp, latency);
 1600	ret = DIV_ROUND_UP(ret, 64);
 1601
 1602	return ret;
 1603}
 1604
 1605static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
 
 
 
 
 
 1606{
 1607	/* all latencies in usec */
 1608	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
 1609
 1610	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
 1611
 1612	if (IS_CHERRYVIEW(dev_priv)) {
 1613		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
 1614		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
 1615
 1616		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
 
 
 1617	}
 1618}
 1619
 1620static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
 1621				const struct intel_plane_state *plane_state,
 1622				int level)
 1623{
 1624	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
 1625	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
 1626	const struct drm_display_mode *adjusted_mode =
 1627		&crtc_state->base.adjusted_mode;
 1628	unsigned int clock, htotal, cpp, width, wm;
 1629
 1630	if (dev_priv->wm.pri_latency[level] == 0)
 1631		return USHRT_MAX;
 1632
 1633	if (!intel_wm_plane_visible(crtc_state, plane_state))
 1634		return 0;
 1635
 1636	cpp = plane_state->base.fb->format->cpp[0];
 1637	clock = adjusted_mode->crtc_clock;
 1638	htotal = adjusted_mode->crtc_htotal;
 1639	width = crtc_state->pipe_src_w;
 1640
 1641	if (plane->id == PLANE_CURSOR) {
 1642		/*
 1643		 * FIXME the formula gives values that are
 1644		 * too big for the cursor FIFO, and hence we
 1645		 * would never be able to use cursors. For
 1646		 * now just hardcode the watermark.
 1647		 */
 1648		wm = 63;
 1649	} else {
 1650		wm = vlv_wm_method2(clock, htotal, width, cpp,
 1651				    dev_priv->wm.pri_latency[level] * 10);
 1652	}
 1653
 1654	return min_t(unsigned int, wm, USHRT_MAX);
 1655}
 1656
 1657static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
 1658{
 1659	return (active_planes & (BIT(PLANE_SPRITE0) |
 1660				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
 1661}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1662
 1663static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
 1664{
 1665	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
 1666	const struct g4x_pipe_wm *raw =
 1667		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
 1668	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
 1669	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
 1670	int num_active_planes = hweight32(active_planes);
 1671	const int fifo_size = 511;
 1672	int fifo_extra, fifo_left = fifo_size;
 1673	int sprite0_fifo_extra = 0;
 1674	unsigned int total_rate;
 1675	enum plane_id plane_id;
 1676
 1677	/*
 1678	 * When enabling sprite0 after sprite1 has already been enabled
 1679	 * we tend to get an underrun unless sprite0 already has some
 1680	 * FIFO space allcoated. Hence we always allocate at least one
 1681	 * cacheline for sprite0 whenever sprite1 is enabled.
 1682	 *
 1683	 * All other plane enable sequences appear immune to this problem.
 1684	 */
 1685	if (vlv_need_sprite0_fifo_workaround(active_planes))
 1686		sprite0_fifo_extra = 1;
 1687
 1688	total_rate = raw->plane[PLANE_PRIMARY] +
 1689		raw->plane[PLANE_SPRITE0] +
 1690		raw->plane[PLANE_SPRITE1] +
 1691		sprite0_fifo_extra;
 1692
 1693	if (total_rate > fifo_size)
 1694		return -EINVAL;
 1695
 1696	if (total_rate == 0)
 1697		total_rate = 1;
 1698
 1699	for_each_plane_id_on_crtc(crtc, plane_id) {
 1700		unsigned int rate;
 1701
 1702		if ((active_planes & BIT(plane_id)) == 0) {
 1703			fifo_state->plane[plane_id] = 0;
 1704			continue;
 1705		}
 1706
 1707		rate = raw->plane[plane_id];
 1708		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
 1709		fifo_left -= fifo_state->plane[plane_id];
 1710	}
 1711
 1712	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
 1713	fifo_left -= sprite0_fifo_extra;
 1714
 1715	fifo_state->plane[PLANE_CURSOR] = 63;
 1716
 1717	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
 1718
 1719	/* spread the remainder evenly */
 1720	for_each_plane_id_on_crtc(crtc, plane_id) {
 1721		int plane_extra;
 1722
 1723		if (fifo_left == 0)
 1724			break;
 1725
 1726		if ((active_planes & BIT(plane_id)) == 0)
 1727			continue;
 1728
 1729		plane_extra = min(fifo_extra, fifo_left);
 1730		fifo_state->plane[plane_id] += plane_extra;
 1731		fifo_left -= plane_extra;
 1732	}
 1733
 1734	WARN_ON(active_planes != 0 && fifo_left != 0);
 1735
 1736	/* give it all to the first plane if none are active */
 1737	if (active_planes == 0) {
 1738		WARN_ON(fifo_left != fifo_size);
 1739		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
 1740	}
 1741
 1742	return 0;
 1743}
 1744
 1745/* mark all levels starting from 'level' as invalid */
 1746static void vlv_invalidate_wms(struct intel_crtc *crtc,
 1747			       struct vlv_wm_state *wm_state, int level)
 1748{
 1749	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 1750
 1751	for (; level < intel_wm_num_levels(dev_priv); level++) {
 1752		enum plane_id plane_id;
 1753
 1754		for_each_plane_id_on_crtc(crtc, plane_id)
 1755			wm_state->wm[level].plane[plane_id] = USHRT_MAX;
 
 
 
 
 
 
 
 
 1756
 1757		wm_state->sr[level].cursor = USHRT_MAX;
 1758		wm_state->sr[level].plane = USHRT_MAX;
 1759	}
 1760}
 1761
 1762static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
 1763{
 1764	if (wm > fifo_size)
 1765		return USHRT_MAX;
 1766	else
 1767		return fifo_size - wm;
 1768}
 1769
 1770/*
 1771 * Starting from 'level' set all higher
 1772 * levels to 'value' in the "raw" watermarks.
 
 
 
 1773 */
 1774static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
 1775				 int level, enum plane_id plane_id, u16 value)
 1776{
 1777	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
 1778	int num_levels = intel_wm_num_levels(dev_priv);
 1779	bool dirty = false;
 1780
 1781	for (; level < num_levels; level++) {
 1782		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
 1783
 1784		dirty |= raw->plane[plane_id] != value;
 1785		raw->plane[plane_id] = value;
 1786	}
 1787
 1788	return dirty;
 1789}
 1790
 1791static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
 1792				     const struct intel_plane_state *plane_state)
 1793{
 1794	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
 1795	enum plane_id plane_id = plane->id;
 1796	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
 1797	int level;
 1798	bool dirty = false;
 1799
 1800	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
 1801		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
 1802		goto out;
 1803	}
 1804
 1805	for (level = 0; level < num_levels; level++) {
 1806		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
 1807		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
 1808		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
 1809
 1810		if (wm > max_wm)
 1811			break;
 1812
 1813		dirty |= raw->plane[plane_id] != wm;
 1814		raw->plane[plane_id] = wm;
 1815	}
 1816
 1817	/* mark all higher levels as invalid */
 1818	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
 1819
 1820out:
 1821	if (dirty)
 1822		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
 1823			      plane->base.name,
 1824			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
 1825			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
 1826			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
 1827
 1828	return dirty;
 1829}
 1830
 1831static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
 1832				      enum plane_id plane_id, int level)
 1833{
 1834	const struct g4x_pipe_wm *raw =
 1835		&crtc_state->wm.vlv.raw[level];
 1836	const struct vlv_fifo_state *fifo_state =
 1837		&crtc_state->wm.vlv.fifo_state;
 1838
 1839	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
 1840}
 1841
 1842static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
 1843{
 1844	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
 1845		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
 1846		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
 1847		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
 1848}
 1849
 1850static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
 1851{
 1852	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
 1853	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 1854	struct intel_atomic_state *state =
 1855		to_intel_atomic_state(crtc_state->base.state);
 1856	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
 1857	const struct vlv_fifo_state *fifo_state =
 1858		&crtc_state->wm.vlv.fifo_state;
 1859	int num_active_planes = hweight32(crtc_state->active_planes &
 1860					  ~BIT(PLANE_CURSOR));
 1861	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
 1862	const struct intel_plane_state *old_plane_state;
 1863	const struct intel_plane_state *new_plane_state;
 1864	struct intel_plane *plane;
 1865	enum plane_id plane_id;
 1866	int level, ret, i;
 1867	unsigned int dirty = 0;
 1868
 1869	for_each_oldnew_intel_plane_in_state(state, plane,
 1870					     old_plane_state,
 1871					     new_plane_state, i) {
 1872		if (new_plane_state->base.crtc != &crtc->base &&
 1873		    old_plane_state->base.crtc != &crtc->base)
 1874			continue;
 1875
 1876		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
 1877			dirty |= BIT(plane->id);
 1878	}
 1879
 1880	/*
 1881	 * DSPARB registers may have been reset due to the
 1882	 * power well being turned off. Make sure we restore
 1883	 * them to a consistent state even if no primary/sprite
 1884	 * planes are initially active.
 1885	 */
 1886	if (needs_modeset)
 1887		crtc_state->fifo_changed = true;
 1888
 1889	if (!dirty)
 1890		return 0;
 1891
 1892	/* cursor changes don't warrant a FIFO recompute */
 1893	if (dirty & ~BIT(PLANE_CURSOR)) {
 1894		const struct intel_crtc_state *old_crtc_state =
 1895			intel_atomic_get_old_crtc_state(state, crtc);
 1896		const struct vlv_fifo_state *old_fifo_state =
 1897			&old_crtc_state->wm.vlv.fifo_state;
 1898
 1899		ret = vlv_compute_fifo(crtc_state);
 1900		if (ret)
 1901			return ret;
 1902
 1903		if (needs_modeset ||
 1904		    memcmp(old_fifo_state, fifo_state,
 1905			   sizeof(*fifo_state)) != 0)
 1906			crtc_state->fifo_changed = true;
 1907	}
 1908
 1909	/* initially allow all levels */
 1910	wm_state->num_levels = intel_wm_num_levels(dev_priv);
 1911	/*
 1912	 * Note that enabling cxsr with no primary/sprite planes
 1913	 * enabled can wedge the pipe. Hence we only allow cxsr
 1914	 * with exactly one enabled primary/sprite plane.
 1915	 */
 1916	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
 1917
 1918	for (level = 0; level < wm_state->num_levels; level++) {
 1919		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
 1920		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
 1921
 1922		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
 1923			break;
 1924
 1925		for_each_plane_id_on_crtc(crtc, plane_id) {
 1926			wm_state->wm[level].plane[plane_id] =
 1927				vlv_invert_wm_value(raw->plane[plane_id],
 1928						    fifo_state->plane[plane_id]);
 1929		}
 1930
 1931		wm_state->sr[level].plane =
 1932			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
 1933						 raw->plane[PLANE_SPRITE0],
 1934						 raw->plane[PLANE_SPRITE1]),
 1935					    sr_fifo_size);
 1936
 1937		wm_state->sr[level].cursor =
 1938			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
 1939					    63);
 1940	}
 1941
 1942	if (level == 0)
 1943		return -EINVAL;
 1944
 1945	/* limit to only levels we can actually handle */
 1946	wm_state->num_levels = level;
 1947
 1948	/* invalidate the higher levels */
 1949	vlv_invalidate_wms(crtc, wm_state, level);
 1950
 1951	return 0;
 1952}
 1953
 1954#define VLV_FIFO(plane, value) \
 1955	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
 1956
 1957static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
 1958				   struct intel_crtc_state *crtc_state)
 1959{
 1960	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
 1961	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 1962	struct intel_uncore *uncore = &dev_priv->uncore;
 1963	const struct vlv_fifo_state *fifo_state =
 1964		&crtc_state->wm.vlv.fifo_state;
 1965	int sprite0_start, sprite1_start, fifo_size;
 1966
 1967	if (!crtc_state->fifo_changed)
 1968		return;
 1969
 1970	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
 1971	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
 1972	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
 1973
 1974	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
 1975	WARN_ON(fifo_size != 511);
 1976
 1977	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
 1978
 1979	/*
 1980	 * uncore.lock serves a double purpose here. It allows us to
 1981	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
 1982	 * it protects the DSPARB registers from getting clobbered by
 1983	 * parallel updates from multiple pipes.
 1984	 *
 1985	 * intel_pipe_update_start() has already disabled interrupts
 1986	 * for us, so a plain spin_lock() is sufficient here.
 1987	 */
 1988	spin_lock(&uncore->lock);
 1989
 1990	switch (crtc->pipe) {
 1991		u32 dsparb, dsparb2, dsparb3;
 1992	case PIPE_A:
 1993		dsparb = intel_uncore_read_fw(uncore, DSPARB);
 1994		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
 1995
 1996		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
 1997			    VLV_FIFO(SPRITEB, 0xff));
 1998		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
 1999			   VLV_FIFO(SPRITEB, sprite1_start));
 2000
 2001		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
 2002			     VLV_FIFO(SPRITEB_HI, 0x1));
 2003		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
 2004			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
 2005
 2006		intel_uncore_write_fw(uncore, DSPARB, dsparb);
 2007		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
 2008		break;
 2009	case PIPE_B:
 2010		dsparb = intel_uncore_read_fw(uncore, DSPARB);
 2011		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
 2012
 2013		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
 2014			    VLV_FIFO(SPRITED, 0xff));
 2015		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
 2016			   VLV_FIFO(SPRITED, sprite1_start));
 2017
 2018		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
 2019			     VLV_FIFO(SPRITED_HI, 0xff));
 2020		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
 2021			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
 2022
 2023		intel_uncore_write_fw(uncore, DSPARB, dsparb);
 2024		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
 2025		break;
 2026	case PIPE_C:
 2027		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
 2028		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
 2029
 2030		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
 2031			     VLV_FIFO(SPRITEF, 0xff));
 2032		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
 2033			    VLV_FIFO(SPRITEF, sprite1_start));
 2034
 2035		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
 2036			     VLV_FIFO(SPRITEF_HI, 0xff));
 2037		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
 2038			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
 2039
 2040		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
 2041		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
 2042		break;
 2043	default:
 2044		break;
 2045	}
 2046
 2047	intel_uncore_posting_read_fw(uncore, DSPARB);
 2048
 2049	spin_unlock(&uncore->lock);
 2050}
 2051
 2052#undef VLV_FIFO
 2053
 2054static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
 2055{
 2056	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
 2057	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
 2058	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
 2059	struct intel_atomic_state *intel_state =
 2060		to_intel_atomic_state(new_crtc_state->base.state);
 2061	const struct intel_crtc_state *old_crtc_state =
 2062		intel_atomic_get_old_crtc_state(intel_state, crtc);
 2063	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
 2064	int level;
 2065
 2066	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
 2067		*intermediate = *optimal;
 2068
 2069		intermediate->cxsr = false;
 2070		goto out;
 2071	}
 2072
 2073	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
 2074	intermediate->cxsr = optimal->cxsr && active->cxsr &&
 2075		!new_crtc_state->disable_cxsr;
 2076
 2077	for (level = 0; level < intermediate->num_levels; level++) {
 2078		enum plane_id plane_id;
 2079
 2080		for_each_plane_id_on_crtc(crtc, plane_id) {
 2081			intermediate->wm[level].plane[plane_id] =
 2082				min(optimal->wm[level].plane[plane_id],
 2083				    active->wm[level].plane[plane_id]);
 2084		}
 2085
 2086		intermediate->sr[level].plane = min(optimal->sr[level].plane,
 2087						    active->sr[level].plane);
 2088		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
 2089						     active->sr[level].cursor);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2090	}
 2091
 2092	vlv_invalidate_wms(crtc, intermediate, level);
 2093
 2094out:
 2095	/*
 2096	 * If our intermediate WM are identical to the final WM, then we can
 2097	 * omit the post-vblank programming; only update if it's different.
 2098	 */
 2099	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
 2100		new_crtc_state->wm.need_postvbl_update = true;
 2101
 2102	return 0;
 
 
 
 
 
 
 
 
 
 
 2103}
 2104
 2105static void vlv_merge_wm(struct drm_i915_private *dev_priv,
 2106			 struct vlv_wm_values *wm)
 2107{
 2108	struct intel_crtc *crtc;
 2109	int num_active_crtcs = 0;
 2110
 2111	wm->level = dev_priv->wm.max_level;
 2112	wm->cxsr = true;
 2113
 2114	for_each_intel_crtc(&dev_priv->drm, crtc) {
 2115		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
 2116
 2117		if (!crtc->active)
 2118			continue;
 2119
 2120		if (!wm_state->cxsr)
 2121			wm->cxsr = false;
 2122
 2123		num_active_crtcs++;
 2124		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
 2125	}
 2126
 2127	if (num_active_crtcs != 1)
 2128		wm->cxsr = false;
 2129
 2130	if (num_active_crtcs > 1)
 2131		wm->level = VLV_WM_LEVEL_PM2;
 2132
 2133	for_each_intel_crtc(&dev_priv->drm, crtc) {
 2134		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
 2135		enum pipe pipe = crtc->pipe;
 2136
 2137		wm->pipe[pipe] = wm_state->wm[wm->level];
 2138		if (crtc->active && wm->cxsr)
 2139			wm->sr = wm_state->sr[wm->level];
 2140
 2141		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
 2142		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
 2143		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
 2144		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
 2145	}
 2146}
 2147
 2148static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
 2149{
 2150	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
 2151	struct vlv_wm_values new_wm = {};
 2152
 2153	vlv_merge_wm(dev_priv, &new_wm);
 2154
 2155	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
 2156		return;
 2157
 2158	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
 2159		chv_set_memory_dvfs(dev_priv, false);
 2160
 2161	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
 2162		chv_set_memory_pm5(dev_priv, false);
 2163
 2164	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
 2165		_intel_set_memory_cxsr(dev_priv, false);
 2166
 2167	vlv_write_wm_values(dev_priv, &new_wm);
 2168
 2169	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
 2170		_intel_set_memory_cxsr(dev_priv, true);
 2171
 2172	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
 2173		chv_set_memory_pm5(dev_priv, true);
 2174
 2175	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
 2176		chv_set_memory_dvfs(dev_priv, true);
 2177
 2178	*old_wm = new_wm;
 2179}
 2180
 2181static void vlv_initial_watermarks(struct intel_atomic_state *state,
 2182				   struct intel_crtc_state *crtc_state)
 2183{
 2184	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
 2185	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
 2186
 2187	mutex_lock(&dev_priv->wm.wm_mutex);
 2188	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
 2189	vlv_program_watermarks(dev_priv);
 2190	mutex_unlock(&dev_priv->wm.wm_mutex);
 2191}
 2192
 2193static void vlv_optimize_watermarks(struct intel_atomic_state *state,
 2194				    struct intel_crtc_state *crtc_state)
 2195{
 2196	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
 2197	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
 2198
 2199	if (!crtc_state->wm.need_postvbl_update)
 2200		return;
 2201
 2202	mutex_lock(&dev_priv->wm.wm_mutex);
 2203	crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
 2204	vlv_program_watermarks(dev_priv);
 2205	mutex_unlock(&dev_priv->wm.wm_mutex);
 2206}
 2207
 2208static void i965_update_wm(struct intel_crtc *unused_crtc)
 2209{
 2210	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
 2211	struct intel_crtc *crtc;
 
 2212	int srwm = 1;
 2213	int cursor_sr = 16;
 2214	bool cxsr_enabled;
 2215
 2216	/* Calc sr entries for one plane configs */
 2217	crtc = single_enabled_crtc(dev_priv);
 2218	if (crtc) {
 2219		/* self-refresh has much higher latency */
 2220		static const int sr_latency_ns = 12000;
 2221		const struct drm_display_mode *adjusted_mode =
 2222			&crtc->config->base.adjusted_mode;
 2223		const struct drm_framebuffer *fb =
 2224			crtc->base.primary->state->fb;
 2225		int clock = adjusted_mode->crtc_clock;
 2226		int htotal = adjusted_mode->crtc_htotal;
 2227		int hdisplay = crtc->config->pipe_src_w;
 2228		int cpp = fb->format->cpp[0];
 
 2229		int entries;
 2230
 2231		entries = intel_wm_method2(clock, htotal,
 2232					   hdisplay, cpp, sr_latency_ns / 100);
 
 
 
 2233		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
 2234		srwm = I965_FIFO_SIZE - entries;
 2235		if (srwm < 0)
 2236			srwm = 1;
 2237		srwm &= 0x1ff;
 2238		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
 2239			      entries, srwm);
 2240
 2241		entries = intel_wm_method2(clock, htotal,
 2242					   crtc->base.cursor->state->crtc_w, 4,
 2243					   sr_latency_ns / 100);
 2244		entries = DIV_ROUND_UP(entries,
 2245				       i965_cursor_wm_info.cacheline_size) +
 2246			i965_cursor_wm_info.guard_size;
 
 2247
 2248		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
 2249		if (cursor_sr > i965_cursor_wm_info.max_wm)
 2250			cursor_sr = i965_cursor_wm_info.max_wm;
 2251
 2252		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
 2253			      "cursor %d\n", srwm, cursor_sr);
 2254
 2255		cxsr_enabled = true;
 
 2256	} else {
 2257		cxsr_enabled = false;
 2258		/* Turn off self refresh if both pipes are enabled */
 2259		intel_set_memory_cxsr(dev_priv, false);
 
 
 2260	}
 2261
 2262	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
 2263		      srwm);
 2264
 2265	/* 965 has limitations... */
 2266	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
 2267		   FW_WM(8, CURSORB) |
 2268		   FW_WM(8, PLANEB) |
 2269		   FW_WM(8, PLANEA));
 2270	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
 2271		   FW_WM(8, PLANEC_OLD));
 2272	/* update cursor SR watermark */
 2273	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
 2274
 2275	if (cxsr_enabled)
 2276		intel_set_memory_cxsr(dev_priv, true);
 2277}
 2278
 2279#undef FW_WM
 2280
 2281static void i9xx_update_wm(struct intel_crtc *unused_crtc)
 2282{
 2283	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
 
 2284	const struct intel_watermark_params *wm_info;
 2285	u32 fwater_lo;
 2286	u32 fwater_hi;
 2287	int cwm, srwm = 1;
 2288	int fifo_size;
 2289	int planea_wm, planeb_wm;
 2290	struct intel_crtc *crtc, *enabled = NULL;
 2291
 2292	if (IS_I945GM(dev_priv))
 2293		wm_info = &i945_wm_info;
 2294	else if (!IS_GEN(dev_priv, 2))
 2295		wm_info = &i915_wm_info;
 2296	else
 2297		wm_info = &i830_a_wm_info;
 2298
 2299	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
 2300	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
 2301	if (intel_crtc_active(crtc)) {
 2302		const struct drm_display_mode *adjusted_mode =
 2303			&crtc->config->base.adjusted_mode;
 2304		const struct drm_framebuffer *fb =
 2305			crtc->base.primary->state->fb;
 2306		int cpp;
 2307
 2308		if (IS_GEN(dev_priv, 2))
 2309			cpp = 4;
 2310		else
 2311			cpp = fb->format->cpp[0];
 2312
 
 2313		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
 2314					       wm_info, fifo_size, cpp,
 2315					       pessimal_latency_ns);
 2316		enabled = crtc;
 2317	} else {
 2318		planea_wm = fifo_size - wm_info->guard_size;
 2319		if (planea_wm > (long)wm_info->max_wm)
 2320			planea_wm = wm_info->max_wm;
 2321	}
 2322
 2323	if (IS_GEN(dev_priv, 2))
 2324		wm_info = &i830_bc_wm_info;
 2325
 2326	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
 2327	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
 2328	if (intel_crtc_active(crtc)) {
 2329		const struct drm_display_mode *adjusted_mode =
 2330			&crtc->config->base.adjusted_mode;
 2331		const struct drm_framebuffer *fb =
 2332			crtc->base.primary->state->fb;
 2333		int cpp;
 2334
 2335		if (IS_GEN(dev_priv, 2))
 2336			cpp = 4;
 2337		else
 2338			cpp = fb->format->cpp[0];
 2339
 
 2340		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
 2341					       wm_info, fifo_size, cpp,
 2342					       pessimal_latency_ns);
 2343		if (enabled == NULL)
 2344			enabled = crtc;
 2345		else
 2346			enabled = NULL;
 2347	} else {
 2348		planeb_wm = fifo_size - wm_info->guard_size;
 2349		if (planeb_wm > (long)wm_info->max_wm)
 2350			planeb_wm = wm_info->max_wm;
 2351	}
 2352
 2353	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
 2354
 2355	if (IS_I915GM(dev_priv) && enabled) {
 2356		struct drm_i915_gem_object *obj;
 2357
 2358		obj = intel_fb_obj(enabled->base.primary->state->fb);
 2359
 2360		/* self-refresh seems busted with untiled */
 2361		if (!i915_gem_object_is_tiled(obj))
 2362			enabled = NULL;
 2363	}
 2364
 2365	/*
 2366	 * Overlay gets an aggressive default since video jitter is bad.
 2367	 */
 2368	cwm = 2;
 2369
 2370	/* Play safe and disable self-refresh before adjusting watermarks. */
 2371	intel_set_memory_cxsr(dev_priv, false);
 
 
 
 2372
 2373	/* Calc sr entries for one plane configs */
 2374	if (HAS_FW_BLC(dev_priv) && enabled) {
 2375		/* self-refresh has much higher latency */
 2376		static const int sr_latency_ns = 6000;
 2377		const struct drm_display_mode *adjusted_mode =
 2378			&enabled->config->base.adjusted_mode;
 2379		const struct drm_framebuffer *fb =
 2380			enabled->base.primary->state->fb;
 2381		int clock = adjusted_mode->crtc_clock;
 2382		int htotal = adjusted_mode->crtc_htotal;
 2383		int hdisplay = enabled->config->pipe_src_w;
 2384		int cpp;
 
 2385		int entries;
 2386
 2387		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
 2388			cpp = 4;
 2389		else
 2390			cpp = fb->format->cpp[0];
 2391
 2392		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
 2393					   sr_latency_ns / 100);
 
 2394		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
 2395		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
 2396		srwm = wm_info->fifo_size - entries;
 2397		if (srwm < 0)
 2398			srwm = 1;
 2399
 2400		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
 2401			I915_WRITE(FW_BLC_SELF,
 2402				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
 2403		else
 2404			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
 2405	}
 2406
 2407	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
 2408		      planea_wm, planeb_wm, cwm, srwm);
 2409
 2410	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
 2411	fwater_hi = (cwm & 0x1f);
 2412
 2413	/* Set request length to 8 cachelines per fetch */
 2414	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
 2415	fwater_hi = fwater_hi | (1 << 8);
 2416
 2417	I915_WRITE(FW_BLC, fwater_lo);
 2418	I915_WRITE(FW_BLC2, fwater_hi);
 2419
 2420	if (enabled)
 2421		intel_set_memory_cxsr(dev_priv, true);
 
 
 
 
 
 
 
 
 
 2422}
 2423
 2424static void i845_update_wm(struct intel_crtc *unused_crtc)
 2425{
 2426	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
 2427	struct intel_crtc *crtc;
 
 2428	const struct drm_display_mode *adjusted_mode;
 2429	u32 fwater_lo;
 2430	int planea_wm;
 2431
 2432	crtc = single_enabled_crtc(dev_priv);
 2433	if (crtc == NULL)
 2434		return;
 2435
 2436	adjusted_mode = &crtc->config->base.adjusted_mode;
 2437	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
 2438				       &i845_wm_info,
 2439				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
 2440				       4, pessimal_latency_ns);
 2441	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
 2442	fwater_lo |= (3<<8) | planea_wm;
 2443
 2444	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
 2445
 2446	I915_WRITE(FW_BLC, fwater_lo);
 2447}
 2448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2449/* latency must be in 0.1us units. */
 2450static unsigned int ilk_wm_method1(unsigned int pixel_rate,
 2451				   unsigned int cpp,
 2452				   unsigned int latency)
 2453{
 2454	unsigned int ret;
 2455
 2456	ret = intel_wm_method1(pixel_rate, cpp, latency);
 2457	ret = DIV_ROUND_UP(ret, 64) + 2;
 
 
 
 2458
 2459	return ret;
 2460}
 2461
 2462/* latency must be in 0.1us units. */
 2463static unsigned int ilk_wm_method2(unsigned int pixel_rate,
 2464				   unsigned int htotal,
 2465				   unsigned int width,
 2466				   unsigned int cpp,
 2467				   unsigned int latency)
 2468{
 2469	unsigned int ret;
 2470
 2471	ret = intel_wm_method2(pixel_rate, htotal,
 2472			       width, cpp, latency);
 2473	ret = DIV_ROUND_UP(ret, 64) + 2;
 2474
 
 
 
 2475	return ret;
 2476}
 2477
 2478static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
 
 2479{
 2480	/*
 2481	 * Neither of these should be possible since this function shouldn't be
 2482	 * called if the CRTC is off or the plane is invisible.  But let's be
 2483	 * extra paranoid to avoid a potential divide-by-zero if we screw up
 2484	 * elsewhere in the driver.
 2485	 */
 2486	if (WARN_ON(!cpp))
 2487		return 0;
 2488	if (WARN_ON(!horiz_pixels))
 2489		return 0;
 2490
 2491	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
 2492}
 2493
 
 
 
 
 
 
 
 
 
 2494struct ilk_wm_maximums {
 2495	u16 pri;
 2496	u16 spr;
 2497	u16 cur;
 2498	u16 fbc;
 
 
 
 
 
 
 
 2499};
 2500
 2501/*
 2502 * For both WM_PIPE and WM_LP.
 2503 * mem_value must be in 0.1us units.
 2504 */
 2505static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
 2506			      const struct intel_plane_state *plane_state,
 2507			      u32 mem_value, bool is_lp)
 2508{
 2509	u32 method1, method2;
 2510	int cpp;
 2511
 2512	if (mem_value == 0)
 2513		return U32_MAX;
 2514
 2515	if (!intel_wm_plane_visible(crtc_state, plane_state))
 2516		return 0;
 2517
 2518	cpp = plane_state->base.fb->format->cpp[0];
 2519
 2520	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
 2521
 2522	if (!is_lp)
 2523		return method1;
 2524
 2525	method2 = ilk_wm_method2(crtc_state->pixel_rate,
 2526				 crtc_state->base.adjusted_mode.crtc_htotal,
 2527				 drm_rect_width(&plane_state->base.dst),
 2528				 cpp, mem_value);
 
 2529
 2530	return min(method1, method2);
 2531}
 2532
 2533/*
 2534 * For both WM_PIPE and WM_LP.
 2535 * mem_value must be in 0.1us units.
 2536 */
 2537static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
 2538			      const struct intel_plane_state *plane_state,
 2539			      u32 mem_value)
 2540{
 2541	u32 method1, method2;
 2542	int cpp;
 2543
 2544	if (mem_value == 0)
 2545		return U32_MAX;
 2546
 2547	if (!intel_wm_plane_visible(crtc_state, plane_state))
 2548		return 0;
 2549
 2550	cpp = plane_state->base.fb->format->cpp[0];
 2551
 2552	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
 2553	method2 = ilk_wm_method2(crtc_state->pixel_rate,
 2554				 crtc_state->base.adjusted_mode.crtc_htotal,
 2555				 drm_rect_width(&plane_state->base.dst),
 2556				 cpp, mem_value);
 
 2557	return min(method1, method2);
 2558}
 2559
 2560/*
 2561 * For both WM_PIPE and WM_LP.
 2562 * mem_value must be in 0.1us units.
 2563 */
 2564static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
 2565			      const struct intel_plane_state *plane_state,
 2566			      u32 mem_value)
 2567{
 2568	int cpp;
 2569
 2570	if (mem_value == 0)
 2571		return U32_MAX;
 2572
 2573	if (!intel_wm_plane_visible(crtc_state, plane_state))
 2574		return 0;
 2575
 2576	cpp = plane_state->base.fb->format->cpp[0];
 2577
 2578	return ilk_wm_method2(crtc_state->pixel_rate,
 2579			      crtc_state->base.adjusted_mode.crtc_htotal,
 2580			      plane_state->base.crtc_w, cpp, mem_value);
 2581}
 2582
 2583/* Only for WM_LP. */
 2584static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
 2585			      const struct intel_plane_state *plane_state,
 2586			      u32 pri_val)
 2587{
 2588	int cpp;
 2589
 2590	if (!intel_wm_plane_visible(crtc_state, plane_state))
 2591		return 0;
 2592
 2593	cpp = plane_state->base.fb->format->cpp[0];
 2594
 2595	return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->base.dst), cpp);
 2596}
 2597
 2598static unsigned int
 2599ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
 2600{
 2601	if (INTEL_GEN(dev_priv) >= 8)
 2602		return 3072;
 2603	else if (INTEL_GEN(dev_priv) >= 7)
 2604		return 768;
 2605	else
 2606		return 512;
 2607}
 2608
 2609static unsigned int
 2610ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
 2611		     int level, bool is_sprite)
 2612{
 2613	if (INTEL_GEN(dev_priv) >= 8)
 2614		/* BDW primary/sprite plane watermarks */
 2615		return level == 0 ? 255 : 2047;
 2616	else if (INTEL_GEN(dev_priv) >= 7)
 2617		/* IVB/HSW primary/sprite plane watermarks */
 2618		return level == 0 ? 127 : 1023;
 2619	else if (!is_sprite)
 2620		/* ILK/SNB primary plane watermarks */
 2621		return level == 0 ? 127 : 511;
 2622	else
 2623		/* ILK/SNB sprite plane watermarks */
 2624		return level == 0 ? 63 : 255;
 2625}
 2626
 2627static unsigned int
 2628ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
 2629{
 2630	if (INTEL_GEN(dev_priv) >= 7)
 2631		return level == 0 ? 63 : 255;
 2632	else
 2633		return level == 0 ? 31 : 63;
 2634}
 2635
 2636static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
 2637{
 2638	if (INTEL_GEN(dev_priv) >= 8)
 2639		return 31;
 2640	else
 2641		return 15;
 2642}
 2643
 2644/* Calculate the maximum primary/sprite plane watermark */
 2645static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
 2646				     int level,
 2647				     const struct intel_wm_config *config,
 2648				     enum intel_ddb_partitioning ddb_partitioning,
 2649				     bool is_sprite)
 2650{
 2651	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
 
 2652
 2653	/* if sprites aren't enabled, sprites get nothing */
 2654	if (is_sprite && !config->sprites_enabled)
 2655		return 0;
 2656
 2657	/* HSW allows LP1+ watermarks even with multiple pipes */
 2658	if (level == 0 || config->num_pipes_active > 1) {
 2659		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
 2660
 2661		/*
 2662		 * For some reason the non self refresh
 2663		 * FIFO size is only half of the self
 2664		 * refresh FIFO size on ILK/SNB.
 2665		 */
 2666		if (INTEL_GEN(dev_priv) <= 6)
 2667			fifo_size /= 2;
 2668	}
 2669
 2670	if (config->sprites_enabled) {
 2671		/* level 0 is always calculated with 1:1 split */
 2672		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
 2673			if (is_sprite)
 2674				fifo_size *= 5;
 2675			fifo_size /= 6;
 2676		} else {
 2677			fifo_size /= 2;
 2678		}
 2679	}
 2680
 2681	/* clamp to max that the registers can hold */
 2682	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
 
 
 
 
 
 
 
 
 
 
 
 
 2683}
 2684
 2685/* Calculate the maximum cursor plane watermark */
 2686static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
 2687				      int level,
 2688				      const struct intel_wm_config *config)
 2689{
 2690	/* HSW LP1+ watermarks w/ multiple pipes */
 2691	if (level > 0 && config->num_pipes_active > 1)
 2692		return 64;
 2693
 2694	/* otherwise just report max that registers can hold */
 2695	return ilk_cursor_wm_reg_max(dev_priv, level);
 
 
 
 
 
 
 
 
 
 
 
 
 
 2696}
 2697
 2698static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
 2699				    int level,
 2700				    const struct intel_wm_config *config,
 2701				    enum intel_ddb_partitioning ddb_partitioning,
 2702				    struct ilk_wm_maximums *max)
 2703{
 2704	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
 2705	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
 2706	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
 2707	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
 2708}
 2709
 2710static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
 2711					int level,
 2712					struct ilk_wm_maximums *max)
 2713{
 2714	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
 2715	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
 2716	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
 2717	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
 2718}
 2719
 2720static bool ilk_validate_wm_level(int level,
 2721				  const struct ilk_wm_maximums *max,
 2722				  struct intel_wm_level *result)
 2723{
 2724	bool ret;
 2725
 2726	/* already determined to be invalid? */
 2727	if (!result->enable)
 2728		return false;
 2729
 2730	result->enable = result->pri_val <= max->pri &&
 2731			 result->spr_val <= max->spr &&
 2732			 result->cur_val <= max->cur;
 2733
 2734	ret = result->enable;
 2735
 2736	/*
 2737	 * HACK until we can pre-compute everything,
 2738	 * and thus fail gracefully if LP0 watermarks
 2739	 * are exceeded...
 2740	 */
 2741	if (level == 0 && !result->enable) {
 2742		if (result->pri_val > max->pri)
 2743			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
 2744				      level, result->pri_val, max->pri);
 2745		if (result->spr_val > max->spr)
 2746			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
 2747				      level, result->spr_val, max->spr);
 2748		if (result->cur_val > max->cur)
 2749			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
 2750				      level, result->cur_val, max->cur);
 2751
 2752		result->pri_val = min_t(u32, result->pri_val, max->pri);
 2753		result->spr_val = min_t(u32, result->spr_val, max->spr);
 2754		result->cur_val = min_t(u32, result->cur_val, max->cur);
 2755		result->enable = true;
 2756	}
 2757
 2758	return ret;
 2759}
 2760
 2761static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
 2762				 const struct intel_crtc *intel_crtc,
 2763				 int level,
 2764				 struct intel_crtc_state *crtc_state,
 2765				 const struct intel_plane_state *pristate,
 2766				 const struct intel_plane_state *sprstate,
 2767				 const struct intel_plane_state *curstate,
 2768				 struct intel_wm_level *result)
 2769{
 2770	u16 pri_latency = dev_priv->wm.pri_latency[level];
 2771	u16 spr_latency = dev_priv->wm.spr_latency[level];
 2772	u16 cur_latency = dev_priv->wm.cur_latency[level];
 2773
 2774	/* WM1+ latency values stored in 0.5us units */
 2775	if (level > 0) {
 2776		pri_latency *= 5;
 2777		spr_latency *= 5;
 2778		cur_latency *= 5;
 2779	}
 2780
 2781	if (pristate) {
 2782		result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
 2783						     pri_latency, level);
 2784		result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
 2785	}
 2786
 2787	if (sprstate)
 2788		result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
 2789
 2790	if (curstate)
 2791		result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
 2792
 2793	result->enable = true;
 2794}
 2795
 2796static u32
 2797hsw_compute_linetime_wm(const struct intel_crtc_state *crtc_state)
 2798{
 2799	const struct intel_atomic_state *intel_state =
 2800		to_intel_atomic_state(crtc_state->base.state);
 2801	const struct drm_display_mode *adjusted_mode =
 2802		&crtc_state->base.adjusted_mode;
 2803	u32 linetime, ips_linetime;
 2804
 2805	if (!crtc_state->base.active)
 2806		return 0;
 2807	if (WARN_ON(adjusted_mode->crtc_clock == 0))
 2808		return 0;
 2809	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
 2810		return 0;
 2811
 2812	/* The WM are computed with base on how long it takes to fill a single
 2813	 * row at the given clock rate, multiplied by 8.
 2814	 * */
 2815	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
 2816				     adjusted_mode->crtc_clock);
 2817	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
 2818					 intel_state->cdclk.logical.cdclk);
 2819
 2820	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
 2821	       PIPE_WM_LINETIME_TIME(linetime);
 2822}
 2823
 2824static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
 2825				  u16 wm[8])
 2826{
 2827	struct intel_uncore *uncore = &dev_priv->uncore;
 2828
 2829	if (INTEL_GEN(dev_priv) >= 9) {
 2830		u32 val;
 2831		int ret, i;
 2832		int level, max_level = ilk_wm_max_level(dev_priv);
 2833
 2834		/* read the first set of memory latencies[0:3] */
 2835		val = 0; /* data0 to be programmed to 0 for first set */
 2836		ret = sandybridge_pcode_read(dev_priv,
 2837					     GEN9_PCODE_READ_MEM_LATENCY,
 2838					     &val, NULL);
 2839
 2840		if (ret) {
 2841			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
 2842			return;
 2843		}
 2844
 2845		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
 2846		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
 2847				GEN9_MEM_LATENCY_LEVEL_MASK;
 2848		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
 2849				GEN9_MEM_LATENCY_LEVEL_MASK;
 2850		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
 2851				GEN9_MEM_LATENCY_LEVEL_MASK;
 2852
 2853		/* read the second set of memory latencies[4:7] */
 2854		val = 1; /* data0 to be programmed to 1 for second set */
 2855		ret = sandybridge_pcode_read(dev_priv,
 2856					     GEN9_PCODE_READ_MEM_LATENCY,
 2857					     &val, NULL);
 2858		if (ret) {
 2859			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
 2860			return;
 2861		}
 2862
 2863		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
 2864		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
 2865				GEN9_MEM_LATENCY_LEVEL_MASK;
 2866		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
 2867				GEN9_MEM_LATENCY_LEVEL_MASK;
 2868		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
 2869				GEN9_MEM_LATENCY_LEVEL_MASK;
 2870
 2871		/*
 2872		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
 2873		 * need to be disabled. We make sure to sanitize the values out
 2874		 * of the punit to satisfy this requirement.
 2875		 */
 2876		for (level = 1; level <= max_level; level++) {
 2877			if (wm[level] == 0) {
 2878				for (i = level + 1; i <= max_level; i++)
 2879					wm[i] = 0;
 2880				break;
 2881			}
 2882		}
 2883
 2884		/*
 2885		 * WaWmMemoryReadLatency:skl+,glk
 2886		 *
 2887		 * punit doesn't take into account the read latency so we need
 2888		 * to add 2us to the various latency levels we retrieve from the
 2889		 * punit when level 0 response data us 0us.
 2890		 */
 2891		if (wm[0] == 0) {
 2892			wm[0] += 2;
 2893			for (level = 1; level <= max_level; level++) {
 2894				if (wm[level] == 0)
 2895					break;
 2896				wm[level] += 2;
 2897			}
 2898		}
 2899
 2900		/*
 2901		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
 2902		 * If we could not get dimm info enable this WA to prevent from
 2903		 * any underrun. If not able to get Dimm info assume 16GB dimm
 2904		 * to avoid any underrun.
 2905		 */
 2906		if (dev_priv->dram_info.is_16gb_dimm)
 2907			wm[0] += 1;
 2908
 2909	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
 2910		u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
 2911
 2912		wm[0] = (sskpd >> 56) & 0xFF;
 2913		if (wm[0] == 0)
 2914			wm[0] = sskpd & 0xF;
 2915		wm[1] = (sskpd >> 4) & 0xFF;
 2916		wm[2] = (sskpd >> 12) & 0xFF;
 2917		wm[3] = (sskpd >> 20) & 0x1FF;
 2918		wm[4] = (sskpd >> 32) & 0x1FF;
 2919	} else if (INTEL_GEN(dev_priv) >= 6) {
 2920		u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
 2921
 2922		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
 2923		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
 2924		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
 2925		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
 2926	} else if (INTEL_GEN(dev_priv) >= 5) {
 2927		u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
 2928
 2929		/* ILK primary LP0 latency is 700 ns */
 2930		wm[0] = 7;
 2931		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
 2932		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
 2933	} else {
 2934		MISSING_CASE(INTEL_DEVID(dev_priv));
 2935	}
 2936}
 2937
 2938static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
 2939				       u16 wm[5])
 2940{
 2941	/* ILK sprite LP0 latency is 1300 ns */
 2942	if (IS_GEN(dev_priv, 5))
 2943		wm[0] = 13;
 2944}
 2945
 2946static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
 2947				       u16 wm[5])
 2948{
 2949	/* ILK cursor LP0 latency is 1300 ns */
 2950	if (IS_GEN(dev_priv, 5))
 2951		wm[0] = 13;
 
 
 
 
 2952}
 2953
 2954int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
 2955{
 2956	/* how many WM levels are we expecting */
 2957	if (INTEL_GEN(dev_priv) >= 9)
 2958		return 7;
 2959	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
 2960		return 4;
 2961	else if (INTEL_GEN(dev_priv) >= 6)
 2962		return 3;
 2963	else
 2964		return 2;
 2965}
 2966
 2967static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
 2968				   const char *name,
 2969				   const u16 wm[8])
 2970{
 2971	int level, max_level = ilk_wm_max_level(dev_priv);
 2972
 2973	for (level = 0; level <= max_level; level++) {
 2974		unsigned int latency = wm[level];
 2975
 2976		if (latency == 0) {
 2977			DRM_DEBUG_KMS("%s WM%d latency not provided\n",
 2978				      name, level);
 2979			continue;
 2980		}
 2981
 2982		/*
 2983		 * - latencies are in us on gen9.
 2984		 * - before then, WM1+ latency values are in 0.5us units
 2985		 */
 2986		if (INTEL_GEN(dev_priv) >= 9)
 2987			latency *= 10;
 2988		else if (level > 0)
 2989			latency *= 5;
 2990
 2991		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
 2992			      name, level, wm[level],
 2993			      latency / 10, latency % 10);
 2994	}
 2995}
 2996
 2997static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
 2998				    u16 wm[5], u16 min)
 2999{
 3000	int level, max_level = ilk_wm_max_level(dev_priv);
 3001
 3002	if (wm[0] >= min)
 3003		return false;
 3004
 3005	wm[0] = max(wm[0], min);
 3006	for (level = 1; level <= max_level; level++)
 3007		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
 3008
 3009	return true;
 3010}
 3011
 3012static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
 3013{
 
 3014	bool changed;
 3015
 3016	/*
 3017	 * The BIOS provided WM memory latency values are often
 3018	 * inadequate for high resolution displays. Adjust them.
 3019	 */
 3020	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
 3021		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
 3022		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
 3023
 3024	if (!changed)
 3025		return;
 3026
 3027	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
 3028	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
 3029	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
 3030	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
 3031}
 3032
 3033static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
 3034{
 3035	/*
 3036	 * On some SNB machines (Thinkpad X220 Tablet at least)
 3037	 * LP3 usage can cause vblank interrupts to be lost.
 3038	 * The DEIIR bit will go high but it looks like the CPU
 3039	 * never gets interrupted.
 3040	 *
 3041	 * It's not clear whether other interrupt source could
 3042	 * be affected or if this is somehow limited to vblank
 3043	 * interrupts only. To play it safe we disable LP3
 3044	 * watermarks entirely.
 3045	 */
 3046	if (dev_priv->wm.pri_latency[3] == 0 &&
 3047	    dev_priv->wm.spr_latency[3] == 0 &&
 3048	    dev_priv->wm.cur_latency[3] == 0)
 3049		return;
 3050
 3051	dev_priv->wm.pri_latency[3] = 0;
 3052	dev_priv->wm.spr_latency[3] = 0;
 3053	dev_priv->wm.cur_latency[3] = 0;
 3054
 3055	DRM_DEBUG_KMS("LP3 watermarks disabled due to potential for lost interrupts\n");
 3056	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
 3057	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
 3058	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
 3059}
 3060
 3061static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
 3062{
 3063	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
 3064
 3065	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
 3066	       sizeof(dev_priv->wm.pri_latency));
 3067	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
 3068	       sizeof(dev_priv->wm.pri_latency));
 3069
 3070	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
 3071	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
 3072
 3073	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
 3074	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
 3075	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
 3076
 3077	if (IS_GEN(dev_priv, 6)) {
 3078		snb_wm_latency_quirk(dev_priv);
 3079		snb_wm_lp3_irq_quirk(dev_priv);
 3080	}
 3081}
 3082
 3083static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
 
 
 3084{
 3085	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
 3086	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
 3087}
 
 3088
 3089static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
 3090				 struct intel_pipe_wm *pipe_wm)
 3091{
 3092	/* LP0 watermark maximums depend on this pipe alone */
 3093	const struct intel_wm_config config = {
 3094		.num_pipes_active = 1,
 3095		.sprites_enabled = pipe_wm->sprites_enabled,
 3096		.sprites_scaled = pipe_wm->sprites_scaled,
 3097	};
 3098	struct ilk_wm_maximums max;
 
 
 
 
 
 3099
 3100	/* LP0 watermarks always use 1/2 DDB partitioning */
 3101	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
 3102
 3103	/* At least LP0 must be valid */
 3104	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
 3105		DRM_DEBUG_KMS("LP0 watermark invalid\n");
 3106		return false;
 3107	}
 3108
 3109	return true;
 
 
 3110}
 3111
 3112/* Compute new watermarks for the pipe */
 3113static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
 3114{
 3115	struct drm_atomic_state *state = crtc_state->base.state;
 3116	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
 3117	struct intel_pipe_wm *pipe_wm;
 3118	struct drm_device *dev = state->dev;
 3119	const struct drm_i915_private *dev_priv = to_i915(dev);
 3120	struct drm_plane *plane;
 3121	const struct drm_plane_state *plane_state;
 3122	const struct intel_plane_state *pristate = NULL;
 3123	const struct intel_plane_state *sprstate = NULL;
 3124	const struct intel_plane_state *curstate = NULL;
 3125	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
 3126	struct ilk_wm_maximums max;
 3127
 3128	pipe_wm = &crtc_state->wm.ilk.optimal;
 3129
 3130	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &crtc_state->base) {
 3131		const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
 3132
 3133		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
 3134			pristate = ps;
 3135		else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
 3136			sprstate = ps;
 3137		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
 3138			curstate = ps;
 3139	}
 3140
 3141	pipe_wm->pipe_enabled = crtc_state->base.active;
 3142	if (sprstate) {
 3143		pipe_wm->sprites_enabled = sprstate->base.visible;
 3144		pipe_wm->sprites_scaled = sprstate->base.visible &&
 3145			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
 3146			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
 3147	}
 3148
 3149	usable_level = max_level;
 3150
 3151	/* ILK/SNB: LP2+ watermarks only w/o sprites */
 3152	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
 3153		usable_level = 1;
 3154
 3155	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
 3156	if (pipe_wm->sprites_scaled)
 3157		usable_level = 0;
 3158
 3159	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
 3160	ilk_compute_wm_level(dev_priv, intel_crtc, 0, crtc_state,
 3161			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
 3162
 3163	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
 3164		pipe_wm->linetime = hsw_compute_linetime_wm(crtc_state);
 3165
 3166	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
 3167		return -EINVAL;
 3168
 3169	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
 3170
 3171	for (level = 1; level <= usable_level; level++) {
 3172		struct intel_wm_level *wm = &pipe_wm->wm[level];
 3173
 3174		ilk_compute_wm_level(dev_priv, intel_crtc, level, crtc_state,
 3175				     pristate, sprstate, curstate, wm);
 3176
 3177		/*
 3178		 * Disable any watermark level that exceeds the
 3179		 * register maximums since such watermarks are
 3180		 * always invalid.
 3181		 */
 3182		if (!ilk_validate_wm_level(level, &max, wm)) {
 3183			memset(wm, 0, sizeof(*wm));
 3184			break;
 3185		}
 3186	}
 3187
 3188	return 0;
 3189}
 3190
 3191/*
 3192 * Build a set of 'intermediate' watermark values that satisfy both the old
 3193 * state and the new state.  These can be programmed to the hardware
 3194 * immediately.
 3195 */
 3196static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
 3197{
 3198	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->base.crtc);
 3199	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
 3200	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
 3201	struct intel_atomic_state *intel_state =
 3202		to_intel_atomic_state(newstate->base.state);
 3203	const struct intel_crtc_state *oldstate =
 3204		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
 3205	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
 3206	int level, max_level = ilk_wm_max_level(dev_priv);
 3207
 3208	/*
 3209	 * Start with the final, target watermarks, then combine with the
 3210	 * currently active watermarks to get values that are safe both before
 3211	 * and after the vblank.
 3212	 */
 3213	*a = newstate->wm.ilk.optimal;
 3214	if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base) ||
 3215	    intel_state->skip_intermediate_wm)
 3216		return 0;
 3217
 3218	a->pipe_enabled |= b->pipe_enabled;
 3219	a->sprites_enabled |= b->sprites_enabled;
 3220	a->sprites_scaled |= b->sprites_scaled;
 3221
 3222	for (level = 0; level <= max_level; level++) {
 3223		struct intel_wm_level *a_wm = &a->wm[level];
 3224		const struct intel_wm_level *b_wm = &b->wm[level];
 3225
 3226		a_wm->enable &= b_wm->enable;
 3227		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
 3228		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
 3229		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
 3230		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
 3231	}
 3232
 3233	/*
 3234	 * We need to make sure that these merged watermark values are
 3235	 * actually a valid configuration themselves.  If they're not,
 3236	 * there's no safe way to transition from the old state to
 3237	 * the new state, so we need to fail the atomic transaction.
 3238	 */
 3239	if (!ilk_validate_pipe_wm(dev_priv, a))
 3240		return -EINVAL;
 3241
 3242	/*
 3243	 * If our intermediate WM are identical to the final WM, then we can
 3244	 * omit the post-vblank programming; only update if it's different.
 3245	 */
 3246	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
 3247		newstate->wm.need_postvbl_update = true;
 3248
 3249	return 0;
 3250}
 3251
 3252/*
 3253 * Merge the watermarks from all active pipes for a specific level.
 3254 */
 3255static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
 3256			       int level,
 3257			       struct intel_wm_level *ret_wm)
 3258{
 3259	const struct intel_crtc *intel_crtc;
 3260
 3261	ret_wm->enable = true;
 
 
 3262
 3263	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
 3264		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
 3265		const struct intel_wm_level *wm = &active->wm[level];
 3266
 3267		if (!active->pipe_enabled)
 3268			continue;
 3269
 3270		/*
 3271		 * The watermark values may have been used in the past,
 3272		 * so we must maintain them in the registers for some
 3273		 * time even if the level is now disabled.
 3274		 */
 3275		if (!wm->enable)
 3276			ret_wm->enable = false;
 3277
 3278		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
 3279		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
 3280		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
 3281		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
 3282	}
 
 
 3283}
 3284
 3285/*
 3286 * Merge all low power watermarks for all active pipes.
 3287 */
 3288static void ilk_wm_merge(struct drm_i915_private *dev_priv,
 3289			 const struct intel_wm_config *config,
 3290			 const struct ilk_wm_maximums *max,
 3291			 struct intel_pipe_wm *merged)
 3292{
 3293	int level, max_level = ilk_wm_max_level(dev_priv);
 3294	int last_enabled_level = max_level;
 3295
 3296	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
 3297	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
 3298	    config->num_pipes_active > 1)
 3299		last_enabled_level = 0;
 3300
 3301	/* ILK: FBC WM must be disabled always */
 3302	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
 3303
 3304	/* merge each WM1+ level */
 3305	for (level = 1; level <= max_level; level++) {
 3306		struct intel_wm_level *wm = &merged->wm[level];
 3307
 3308		ilk_merge_wm_level(dev_priv, level, wm);
 3309
 3310		if (level > last_enabled_level)
 3311			wm->enable = false;
 3312		else if (!ilk_validate_wm_level(level, max, wm))
 3313			/* make sure all following levels get disabled */
 3314			last_enabled_level = level - 1;
 3315
 3316		/*
 3317		 * The spec says it is preferred to disable
 3318		 * FBC WMs instead of disabling a WM level.
 3319		 */
 3320		if (wm->fbc_val > max->fbc) {
 3321			if (wm->enable)
 3322				merged->fbc_wm_enabled = false;
 3323			wm->fbc_val = 0;
 3324		}
 3325	}
 3326
 3327	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
 3328	/*
 3329	 * FIXME this is racy. FBC might get enabled later.
 3330	 * What we should check here is whether FBC can be
 3331	 * enabled sometime later.
 3332	 */
 3333	if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
 3334	    intel_fbc_is_active(dev_priv)) {
 3335		for (level = 2; level <= max_level; level++) {
 3336			struct intel_wm_level *wm = &merged->wm[level];
 3337
 3338			wm->enable = false;
 3339		}
 3340	}
 3341}
 3342
 3343static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
 3344{
 3345	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
 3346	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
 3347}
 3348
 3349/* The value we need to program into the WM_LPx latency field */
 3350static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
 3351				      int level)
 3352{
 3353	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
 
 
 3354		return 2 * level;
 3355	else
 3356		return dev_priv->wm.pri_latency[level];
 3357}
 3358
 3359static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
 3360				   const struct intel_pipe_wm *merged,
 3361				   enum intel_ddb_partitioning partitioning,
 3362				   struct ilk_wm_values *results)
 3363{
 3364	struct intel_crtc *intel_crtc;
 3365	int level, wm_lp;
 3366
 3367	results->enable_fbc_wm = merged->fbc_wm_enabled;
 3368	results->partitioning = partitioning;
 3369
 3370	/* LP1+ register values */
 3371	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
 3372		const struct intel_wm_level *r;
 3373
 3374		level = ilk_wm_lp_to_level(wm_lp, merged);
 3375
 3376		r = &merged->wm[level];
 
 
 3377
 3378		/*
 3379		 * Maintain the watermark values even if the level is
 3380		 * disabled. Doing otherwise could cause underruns.
 3381		 */
 3382		results->wm_lp[wm_lp - 1] =
 3383			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
 3384			(r->pri_val << WM1_LP_SR_SHIFT) |
 3385			r->cur_val;
 3386
 3387		if (r->enable)
 3388			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
 3389
 3390		if (INTEL_GEN(dev_priv) >= 8)
 3391			results->wm_lp[wm_lp - 1] |=
 3392				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
 3393		else
 3394			results->wm_lp[wm_lp - 1] |=
 3395				r->fbc_val << WM1_LP_FBC_SHIFT;
 3396
 3397		/*
 3398		 * Always set WM1S_LP_EN when spr_val != 0, even if the
 3399		 * level is disabled. Doing otherwise could cause underruns.
 3400		 */
 3401		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
 3402			WARN_ON(wm_lp != 1);
 3403			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
 3404		} else
 3405			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
 3406	}
 3407
 3408	/* LP0 register values */
 3409	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
 3410		enum pipe pipe = intel_crtc->pipe;
 3411		const struct intel_wm_level *r =
 3412			&intel_crtc->wm.active.ilk.wm[0];
 3413
 3414		if (WARN_ON(!r->enable))
 3415			continue;
 3416
 3417		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
 3418
 3419		results->wm_pipe[pipe] =
 3420			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
 3421			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
 3422			r->cur_val;
 3423	}
 3424}
 3425
 3426/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 3427 * case both are at the same level. Prefer r1 in case they're the same. */
 3428static struct intel_pipe_wm *
 3429ilk_find_best_result(struct drm_i915_private *dev_priv,
 3430		     struct intel_pipe_wm *r1,
 3431		     struct intel_pipe_wm *r2)
 3432{
 3433	int level, max_level = ilk_wm_max_level(dev_priv);
 3434	int level1 = 0, level2 = 0;
 3435
 3436	for (level = 1; level <= max_level; level++) {
 3437		if (r1->wm[level].enable)
 3438			level1 = level;
 3439		if (r2->wm[level].enable)
 3440			level2 = level;
 3441	}
 3442
 3443	if (level1 == level2) {
 3444		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
 3445			return r2;
 3446		else
 3447			return r1;
 3448	} else if (level1 > level2) {
 3449		return r1;
 3450	} else {
 3451		return r2;
 3452	}
 3453}
 3454
 3455/* dirty bits used to track which watermarks need changes */
 3456#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
 3457#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
 3458#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
 3459#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
 3460#define WM_DIRTY_FBC (1 << 24)
 3461#define WM_DIRTY_DDB (1 << 25)
 3462
 3463static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
 3464					 const struct ilk_wm_values *old,
 3465					 const struct ilk_wm_values *new)
 3466{
 3467	unsigned int dirty = 0;
 3468	enum pipe pipe;
 3469	int wm_lp;
 3470
 3471	for_each_pipe(dev_priv, pipe) {
 3472		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
 3473			dirty |= WM_DIRTY_LINETIME(pipe);
 3474			/* Must disable LP1+ watermarks too */
 3475			dirty |= WM_DIRTY_LP_ALL;
 3476		}
 3477
 3478		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
 3479			dirty |= WM_DIRTY_PIPE(pipe);
 3480			/* Must disable LP1+ watermarks too */
 3481			dirty |= WM_DIRTY_LP_ALL;
 3482		}
 3483	}
 3484
 3485	if (old->enable_fbc_wm != new->enable_fbc_wm) {
 3486		dirty |= WM_DIRTY_FBC;
 3487		/* Must disable LP1+ watermarks too */
 3488		dirty |= WM_DIRTY_LP_ALL;
 3489	}
 3490
 3491	if (old->partitioning != new->partitioning) {
 3492		dirty |= WM_DIRTY_DDB;
 3493		/* Must disable LP1+ watermarks too */
 3494		dirty |= WM_DIRTY_LP_ALL;
 3495	}
 3496
 3497	/* LP1+ watermarks already deemed dirty, no need to continue */
 3498	if (dirty & WM_DIRTY_LP_ALL)
 3499		return dirty;
 3500
 3501	/* Find the lowest numbered LP1+ watermark in need of an update... */
 3502	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
 3503		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
 3504		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
 3505			break;
 3506	}
 3507
 3508	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
 3509	for (; wm_lp <= 3; wm_lp++)
 3510		dirty |= WM_DIRTY_LP(wm_lp);
 3511
 3512	return dirty;
 3513}
 3514
 3515static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
 3516			       unsigned int dirty)
 3517{
 3518	struct ilk_wm_values *previous = &dev_priv->wm.hw;
 3519	bool changed = false;
 3520
 3521	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
 3522		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
 3523		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
 3524		changed = true;
 3525	}
 3526	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
 3527		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
 3528		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
 3529		changed = true;
 3530	}
 3531	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
 3532		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
 3533		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
 3534		changed = true;
 3535	}
 3536
 3537	/*
 3538	 * Don't touch WM1S_LP_EN here.
 3539	 * Doing so could cause underruns.
 3540	 */
 3541
 3542	return changed;
 3543}
 3544
 3545/*
 3546 * The spec says we shouldn't write when we don't need, because every write
 3547 * causes WMs to be re-evaluated, expending some power.
 3548 */
 3549static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
 3550				struct ilk_wm_values *results)
 3551{
 
 3552	struct ilk_wm_values *previous = &dev_priv->wm.hw;
 3553	unsigned int dirty;
 3554	u32 val;
 3555
 3556	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
 3557	if (!dirty)
 3558		return;
 3559
 3560	_ilk_disable_lp_wm(dev_priv, dirty);
 3561
 3562	if (dirty & WM_DIRTY_PIPE(PIPE_A))
 3563		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
 3564	if (dirty & WM_DIRTY_PIPE(PIPE_B))
 3565		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
 3566	if (dirty & WM_DIRTY_PIPE(PIPE_C))
 3567		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
 3568
 3569	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
 3570		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
 3571	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
 3572		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
 3573	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
 3574		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
 3575
 3576	if (dirty & WM_DIRTY_DDB) {
 3577		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
 3578			val = I915_READ(WM_MISC);
 3579			if (results->partitioning == INTEL_DDB_PART_1_2)
 3580				val &= ~WM_MISC_DATA_PARTITION_5_6;
 3581			else
 3582				val |= WM_MISC_DATA_PARTITION_5_6;
 3583			I915_WRITE(WM_MISC, val);
 3584		} else {
 3585			val = I915_READ(DISP_ARB_CTL2);
 3586			if (results->partitioning == INTEL_DDB_PART_1_2)
 3587				val &= ~DISP_DATA_PARTITION_5_6;
 3588			else
 3589				val |= DISP_DATA_PARTITION_5_6;
 3590			I915_WRITE(DISP_ARB_CTL2, val);
 3591		}
 3592	}
 3593
 3594	if (dirty & WM_DIRTY_FBC) {
 3595		val = I915_READ(DISP_ARB_CTL);
 3596		if (results->enable_fbc_wm)
 3597			val &= ~DISP_FBC_WM_DIS;
 3598		else
 3599			val |= DISP_FBC_WM_DIS;
 3600		I915_WRITE(DISP_ARB_CTL, val);
 3601	}
 3602
 3603	if (dirty & WM_DIRTY_LP(1) &&
 3604	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
 3605		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
 3606
 3607	if (INTEL_GEN(dev_priv) >= 7) {
 3608		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
 3609			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
 3610		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
 3611			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
 3612	}
 3613
 3614	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
 3615		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
 3616	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
 3617		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
 3618	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
 3619		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
 3620
 3621	dev_priv->wm.hw = *results;
 3622}
 3623
 3624bool ilk_disable_lp_wm(struct drm_device *dev)
 3625{
 3626	struct drm_i915_private *dev_priv = to_i915(dev);
 3627
 3628	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
 3629}
 3630
 3631static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
 3632{
 3633	u8 enabled_slices;
 3634
 3635	/* Slice 1 will always be enabled */
 3636	enabled_slices = 1;
 3637
 3638	/* Gen prior to GEN11 have only one DBuf slice */
 3639	if (INTEL_GEN(dev_priv) < 11)
 3640		return enabled_slices;
 3641
 3642	/*
 3643	 * FIXME: for now we'll only ever use 1 slice; pretend that we have
 3644	 * only that 1 slice enabled until we have a proper way for on-demand
 3645	 * toggling of the second slice.
 3646	 */
 3647	if (0 && I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
 3648		enabled_slices++;
 3649
 3650	return enabled_slices;
 3651}
 3652
 3653/*
 3654 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 3655 * so assume we'll always need it in order to avoid underruns.
 3656 */
 3657static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
 3658{
 3659	return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
 3660}
 3661
 3662static bool
 3663intel_has_sagv(struct drm_i915_private *dev_priv)
 3664{
 3665	return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
 3666		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
 3667}
 3668
 3669/*
 3670 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 3671 * depending on power and performance requirements. The display engine access
 3672 * to system memory is blocked during the adjustment time. Because of the
 3673 * blocking time, having this enabled can cause full system hangs and/or pipe
 3674 * underruns if we don't meet all of the following requirements:
 3675 *
 3676 *  - <= 1 pipe enabled
 3677 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 3678 *  - We're not using an interlaced display configuration
 3679 */
 3680int
 3681intel_enable_sagv(struct drm_i915_private *dev_priv)
 3682{
 3683	int ret;
 3684
 3685	if (!intel_has_sagv(dev_priv))
 3686		return 0;
 3687
 3688	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
 3689		return 0;
 3690
 3691	DRM_DEBUG_KMS("Enabling SAGV\n");
 3692	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
 3693				      GEN9_SAGV_ENABLE);
 3694
 3695	/* We don't need to wait for SAGV when enabling */
 3696
 3697	/*
 3698	 * Some skl systems, pre-release machines in particular,
 3699	 * don't actually have SAGV.
 3700	 */
 3701	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
 3702		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
 3703		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
 3704		return 0;
 3705	} else if (ret < 0) {
 3706		DRM_ERROR("Failed to enable SAGV\n");
 3707		return ret;
 3708	}
 3709
 3710	dev_priv->sagv_status = I915_SAGV_ENABLED;
 3711	return 0;
 3712}
 3713
 3714int
 3715intel_disable_sagv(struct drm_i915_private *dev_priv)
 3716{
 3717	int ret;
 3718
 3719	if (!intel_has_sagv(dev_priv))
 3720		return 0;
 3721
 3722	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
 3723		return 0;
 3724
 3725	DRM_DEBUG_KMS("Disabling SAGV\n");
 3726	/* bspec says to keep retrying for at least 1 ms */
 3727	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
 3728				GEN9_SAGV_DISABLE,
 3729				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
 3730				1);
 3731	/*
 3732	 * Some skl systems, pre-release machines in particular,
 3733	 * don't actually have SAGV.
 3734	 */
 3735	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
 3736		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
 3737		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
 3738		return 0;
 3739	} else if (ret < 0) {
 3740		DRM_ERROR("Failed to disable SAGV (%d)\n", ret);
 3741		return ret;
 3742	}
 3743
 3744	dev_priv->sagv_status = I915_SAGV_DISABLED;
 3745	return 0;
 3746}
 3747
 3748bool intel_can_enable_sagv(struct intel_atomic_state *state)
 3749{
 3750	struct drm_device *dev = state->base.dev;
 3751	struct drm_i915_private *dev_priv = to_i915(dev);
 3752	struct intel_crtc *crtc;
 3753	struct intel_plane *plane;
 3754	struct intel_crtc_state *crtc_state;
 3755	enum pipe pipe;
 3756	int level, latency;
 3757	int sagv_block_time_us;
 3758
 3759	if (!intel_has_sagv(dev_priv))
 3760		return false;
 3761
 3762	if (IS_GEN(dev_priv, 9))
 3763		sagv_block_time_us = 30;
 3764	else if (IS_GEN(dev_priv, 10))
 3765		sagv_block_time_us = 20;
 3766	else
 3767		sagv_block_time_us = 10;
 3768
 3769	/*
 3770	 * If there are no active CRTCs, no additional checks need be performed
 3771	 */
 3772	if (hweight32(state->active_crtcs) == 0)
 3773		return true;
 3774
 3775	/*
 3776	 * SKL+ workaround: bspec recommends we disable SAGV when we have
 3777	 * more then one pipe enabled
 3778	 */
 3779	if (hweight32(state->active_crtcs) > 1)
 3780		return false;
 3781
 3782	/* Since we're now guaranteed to only have one active CRTC... */
 3783	pipe = ffs(state->active_crtcs) - 1;
 3784	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
 3785	crtc_state = to_intel_crtc_state(crtc->base.state);
 3786
 3787	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
 3788		return false;
 3789
 3790	for_each_intel_plane_on_crtc(dev, crtc, plane) {
 3791		struct skl_plane_wm *wm =
 3792			&crtc_state->wm.skl.optimal.planes[plane->id];
 3793
 3794		/* Skip this plane if it's not enabled */
 3795		if (!wm->wm[0].plane_en)
 3796			continue;
 3797
 3798		/* Find the highest enabled wm level for this plane */
 3799		for (level = ilk_wm_max_level(dev_priv);
 3800		     !wm->wm[level].plane_en; --level)
 3801		     { }
 3802
 3803		latency = dev_priv->wm.skl_latency[level];
 3804
 3805		if (skl_needs_memory_bw_wa(dev_priv) &&
 3806		    plane->base.state->fb->modifier ==
 3807		    I915_FORMAT_MOD_X_TILED)
 3808			latency += 15;
 3809
 3810		/*
 3811		 * If any of the planes on this pipe don't enable wm levels that
 3812		 * incur memory latencies higher than sagv_block_time_us we
 3813		 * can't enable SAGV.
 3814		 */
 3815		if (latency < sagv_block_time_us)
 3816			return false;
 3817	}
 3818
 3819	return true;
 3820}
 3821
 3822static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
 3823			      const struct intel_crtc_state *crtc_state,
 3824			      const u64 total_data_rate,
 3825			      const int num_active,
 3826			      struct skl_ddb_allocation *ddb)
 3827{
 3828	const struct drm_display_mode *adjusted_mode;
 3829	u64 total_data_bw;
 3830	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
 3831
 3832	WARN_ON(ddb_size == 0);
 3833
 3834	if (INTEL_GEN(dev_priv) < 11)
 3835		return ddb_size - 4; /* 4 blocks for bypass path allocation */
 3836
 3837	adjusted_mode = &crtc_state->base.adjusted_mode;
 3838	total_data_bw = total_data_rate * drm_mode_vrefresh(adjusted_mode);
 3839
 3840	/*
 3841	 * 12GB/s is maximum BW supported by single DBuf slice.
 3842	 *
 3843	 * FIXME dbuf slice code is broken:
 3844	 * - must wait for planes to stop using the slice before powering it off
 3845	 * - plane straddling both slices is illegal in multi-pipe scenarios
 3846	 * - should validate we stay within the hw bandwidth limits
 3847	 */
 3848	if (0 && (num_active > 1 || total_data_bw >= GBps(12))) {
 3849		ddb->enabled_slices = 2;
 3850	} else {
 3851		ddb->enabled_slices = 1;
 3852		ddb_size /= 2;
 3853	}
 3854
 3855	return ddb_size;
 3856}
 3857
 3858static void
 3859skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
 3860				   const struct intel_crtc_state *crtc_state,
 3861				   const u64 total_data_rate,
 3862				   struct skl_ddb_allocation *ddb,
 3863				   struct skl_ddb_entry *alloc, /* out */
 3864				   int *num_active /* out */)
 3865{
 3866	struct drm_atomic_state *state = crtc_state->base.state;
 3867	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
 3868	struct drm_crtc *for_crtc = crtc_state->base.crtc;
 3869	const struct intel_crtc *crtc;
 3870	u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
 3871	enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
 3872	u16 ddb_size;
 3873	u32 i;
 3874
 3875	if (WARN_ON(!state) || !crtc_state->base.active) {
 3876		alloc->start = 0;
 3877		alloc->end = 0;
 3878		*num_active = hweight32(dev_priv->active_crtcs);
 3879		return;
 3880	}
 3881
 3882	if (intel_state->active_pipe_changes)
 3883		*num_active = hweight32(intel_state->active_crtcs);
 3884	else
 3885		*num_active = hweight32(dev_priv->active_crtcs);
 3886
 3887	ddb_size = intel_get_ddb_size(dev_priv, crtc_state, total_data_rate,
 3888				      *num_active, ddb);
 3889
 3890	/*
 3891	 * If the state doesn't change the active CRTC's or there is no
 3892	 * modeset request, then there's no need to recalculate;
 3893	 * the existing pipe allocation limits should remain unchanged.
 3894	 * Note that we're safe from racing commits since any racing commit
 3895	 * that changes the active CRTC list or do modeset would need to
 3896	 * grab _all_ crtc locks, including the one we currently hold.
 3897	 */
 3898	if (!intel_state->active_pipe_changes && !intel_state->modeset) {
 3899		/*
 3900		 * alloc may be cleared by clear_intel_crtc_state,
 3901		 * copy from old state to be sure
 3902		 */
 3903		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
 3904		return;
 3905	}
 3906
 3907	/*
 3908	 * Watermark/ddb requirement highly depends upon width of the
 3909	 * framebuffer, So instead of allocating DDB equally among pipes
 3910	 * distribute DDB based on resolution/width of the display.
 3911	 */
 3912	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
 3913		const struct drm_display_mode *adjusted_mode =
 3914			&crtc_state->base.adjusted_mode;
 3915		enum pipe pipe = crtc->pipe;
 3916		int hdisplay, vdisplay;
 3917
 3918		if (!crtc_state->base.enable)
 3919			continue;
 3920
 3921		drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
 3922		total_width += hdisplay;
 3923
 3924		if (pipe < for_pipe)
 3925			width_before_pipe += hdisplay;
 3926		else if (pipe == for_pipe)
 3927			pipe_width = hdisplay;
 3928	}
 3929
 3930	alloc->start = ddb_size * width_before_pipe / total_width;
 3931	alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
 3932}
 3933
 3934static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
 3935				 int width, const struct drm_format_info *format,
 3936				 u64 modifier, unsigned int rotation,
 3937				 u32 plane_pixel_rate, struct skl_wm_params *wp,
 3938				 int color_plane);
 3939static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
 3940				 int level,
 3941				 const struct skl_wm_params *wp,
 3942				 const struct skl_wm_level *result_prev,
 3943				 struct skl_wm_level *result /* out */);
 3944
 3945static unsigned int
 3946skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
 3947		      int num_active)
 3948{
 3949	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
 3950	int level, max_level = ilk_wm_max_level(dev_priv);
 3951	struct skl_wm_level wm = {};
 3952	int ret, min_ddb_alloc = 0;
 3953	struct skl_wm_params wp;
 3954
 3955	ret = skl_compute_wm_params(crtc_state, 256,
 3956				    drm_format_info(DRM_FORMAT_ARGB8888),
 3957				    DRM_FORMAT_MOD_LINEAR,
 3958				    DRM_MODE_ROTATE_0,
 3959				    crtc_state->pixel_rate, &wp, 0);
 3960	WARN_ON(ret);
 3961
 3962	for (level = 0; level <= max_level; level++) {
 3963		skl_compute_plane_wm(crtc_state, level, &wp, &wm, &wm);
 3964		if (wm.min_ddb_alloc == U16_MAX)
 3965			break;
 3966
 3967		min_ddb_alloc = wm.min_ddb_alloc;
 3968	}
 3969
 3970	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
 3971}
 3972
 3973static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
 3974				       struct skl_ddb_entry *entry, u32 reg)
 3975{
 3976
 3977	entry->start = reg & DDB_ENTRY_MASK;
 3978	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
 3979
 3980	if (entry->end)
 3981		entry->end += 1;
 3982}
 3983
 3984static void
 3985skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
 3986			   const enum pipe pipe,
 3987			   const enum plane_id plane_id,
 3988			   struct skl_ddb_entry *ddb_y,
 3989			   struct skl_ddb_entry *ddb_uv)
 3990{
 3991	u32 val, val2;
 3992	u32 fourcc = 0;
 3993
 3994	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
 3995	if (plane_id == PLANE_CURSOR) {
 3996		val = I915_READ(CUR_BUF_CFG(pipe));
 3997		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
 3998		return;
 3999	}
 4000
 4001	val = I915_READ(PLANE_CTL(pipe, plane_id));
 4002
 4003	/* No DDB allocated for disabled planes */
 4004	if (val & PLANE_CTL_ENABLE)
 4005		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
 4006					      val & PLANE_CTL_ORDER_RGBX,
 4007					      val & PLANE_CTL_ALPHA_MASK);
 4008
 4009	if (INTEL_GEN(dev_priv) >= 11) {
 4010		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
 4011		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
 4012	} else {
 4013		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
 4014		val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
 4015
 4016		if (is_planar_yuv_format(fourcc))
 4017			swap(val, val2);
 4018
 4019		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
 4020		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
 4021	}
 4022}
 4023
 4024void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
 4025			       struct skl_ddb_entry *ddb_y,
 4026			       struct skl_ddb_entry *ddb_uv)
 4027{
 4028	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 4029	enum intel_display_power_domain power_domain;
 4030	enum pipe pipe = crtc->pipe;
 4031	intel_wakeref_t wakeref;
 4032	enum plane_id plane_id;
 4033
 4034	power_domain = POWER_DOMAIN_PIPE(pipe);
 4035	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
 4036	if (!wakeref)
 4037		return;
 4038
 4039	for_each_plane_id_on_crtc(crtc, plane_id)
 4040		skl_ddb_get_hw_plane_state(dev_priv, pipe,
 4041					   plane_id,
 4042					   &ddb_y[plane_id],
 4043					   &ddb_uv[plane_id]);
 4044
 4045	intel_display_power_put(dev_priv, power_domain, wakeref);
 4046}
 4047
 4048void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
 4049			  struct skl_ddb_allocation *ddb /* out */)
 4050{
 4051	ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
 4052}
 4053
 4054/*
 4055 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 4056 * The bspec defines downscale amount as:
 4057 *
 4058 * """
 4059 * Horizontal down scale amount = maximum[1, Horizontal source size /
 4060 *                                           Horizontal destination size]
 4061 * Vertical down scale amount = maximum[1, Vertical source size /
 4062 *                                         Vertical destination size]
 4063 * Total down scale amount = Horizontal down scale amount *
 4064 *                           Vertical down scale amount
 4065 * """
 4066 *
 4067 * Return value is provided in 16.16 fixed point form to retain fractional part.
 4068 * Caller should take care of dividing & rounding off the value.
 4069 */
 4070static uint_fixed_16_16_t
 4071skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
 4072			   const struct intel_plane_state *plane_state)
 4073{
 4074	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
 4075	u32 src_w, src_h, dst_w, dst_h;
 4076	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
 4077	uint_fixed_16_16_t downscale_h, downscale_w;
 4078
 4079	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
 4080		return u32_to_fixed16(0);
 4081
 4082	/* n.b., src is 16.16 fixed point, dst is whole integer */
 4083	if (plane->id == PLANE_CURSOR) {
 4084		/*
 4085		 * Cursors only support 0/180 degree rotation,
 4086		 * hence no need to account for rotation here.
 4087		 */
 4088		src_w = plane_state->base.src_w >> 16;
 4089		src_h = plane_state->base.src_h >> 16;
 4090		dst_w = plane_state->base.crtc_w;
 4091		dst_h = plane_state->base.crtc_h;
 4092	} else {
 4093		/*
 4094		 * Src coordinates are already rotated by 270 degrees for
 4095		 * the 90/270 degree plane rotation cases (to match the
 4096		 * GTT mapping), hence no need to account for rotation here.
 4097		 */
 4098		src_w = drm_rect_width(&plane_state->base.src) >> 16;
 4099		src_h = drm_rect_height(&plane_state->base.src) >> 16;
 4100		dst_w = drm_rect_width(&plane_state->base.dst);
 4101		dst_h = drm_rect_height(&plane_state->base.dst);
 4102	}
 4103
 4104	fp_w_ratio = div_fixed16(src_w, dst_w);
 4105	fp_h_ratio = div_fixed16(src_h, dst_h);
 4106	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
 4107	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
 4108
 4109	return mul_fixed16(downscale_w, downscale_h);
 4110}
 4111
 4112static uint_fixed_16_16_t
 4113skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
 4114{
 4115	uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
 4116
 4117	if (!crtc_state->base.enable)
 4118		return pipe_downscale;
 4119
 4120	if (crtc_state->pch_pfit.enabled) {
 4121		u32 src_w, src_h, dst_w, dst_h;
 4122		u32 pfit_size = crtc_state->pch_pfit.size;
 4123		uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
 4124		uint_fixed_16_16_t downscale_h, downscale_w;
 4125
 4126		src_w = crtc_state->pipe_src_w;
 4127		src_h = crtc_state->pipe_src_h;
 4128		dst_w = pfit_size >> 16;
 4129		dst_h = pfit_size & 0xffff;
 4130
 4131		if (!dst_w || !dst_h)
 4132			return pipe_downscale;
 4133
 4134		fp_w_ratio = div_fixed16(src_w, dst_w);
 4135		fp_h_ratio = div_fixed16(src_h, dst_h);
 4136		downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
 4137		downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
 4138
 4139		pipe_downscale = mul_fixed16(downscale_w, downscale_h);
 4140	}
 4141
 4142	return pipe_downscale;
 4143}
 4144
 4145int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
 4146				  struct intel_crtc_state *crtc_state)
 4147{
 4148	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
 4149	struct drm_atomic_state *state = crtc_state->base.state;
 4150	struct drm_plane *plane;
 4151	const struct drm_plane_state *drm_plane_state;
 4152	int crtc_clock, dotclk;
 4153	u32 pipe_max_pixel_rate;
 4154	uint_fixed_16_16_t pipe_downscale;
 4155	uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
 4156
 4157	if (!crtc_state->base.enable)
 4158		return 0;
 4159
 4160	drm_atomic_crtc_state_for_each_plane_state(plane, drm_plane_state, &crtc_state->base) {
 4161		uint_fixed_16_16_t plane_downscale;
 4162		uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
 4163		int bpp;
 4164		const struct intel_plane_state *plane_state =
 4165			to_intel_plane_state(drm_plane_state);
 4166
 4167		if (!intel_wm_plane_visible(crtc_state, plane_state))
 4168			continue;
 4169
 4170		if (WARN_ON(!plane_state->base.fb))
 4171			return -EINVAL;
 4172
 4173		plane_downscale = skl_plane_downscale_amount(crtc_state, plane_state);
 4174		bpp = plane_state->base.fb->format->cpp[0] * 8;
 4175		if (bpp == 64)
 4176			plane_downscale = mul_fixed16(plane_downscale,
 4177						      fp_9_div_8);
 4178
 4179		max_downscale = max_fixed16(plane_downscale, max_downscale);
 4180	}
 4181	pipe_downscale = skl_pipe_downscale_amount(crtc_state);
 4182
 4183	pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
 4184
 4185	crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
 4186	dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
 4187
 4188	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
 4189		dotclk *= 2;
 4190
 4191	pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
 4192
 4193	if (pipe_max_pixel_rate < crtc_clock) {
 4194		DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
 4195		return -EINVAL;
 4196	}
 4197
 4198	return 0;
 4199}
 4200
 4201static u64
 4202skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
 4203			     const struct intel_plane_state *plane_state,
 4204			     const int plane)
 4205{
 4206	struct intel_plane *intel_plane = to_intel_plane(plane_state->base.plane);
 4207	u32 data_rate;
 4208	u32 width = 0, height = 0;
 4209	struct drm_framebuffer *fb;
 4210	u32 format;
 4211	uint_fixed_16_16_t down_scale_amount;
 4212	u64 rate;
 4213
 4214	if (!plane_state->base.visible)
 4215		return 0;
 4216
 4217	fb = plane_state->base.fb;
 4218	format = fb->format->format;
 4219
 4220	if (intel_plane->id == PLANE_CURSOR)
 4221		return 0;
 4222	if (plane == 1 && !is_planar_yuv_format(format))
 4223		return 0;
 4224
 4225	/*
 4226	 * Src coordinates are already rotated by 270 degrees for
 4227	 * the 90/270 degree plane rotation cases (to match the
 4228	 * GTT mapping), hence no need to account for rotation here.
 4229	 */
 4230	width = drm_rect_width(&plane_state->base.src) >> 16;
 4231	height = drm_rect_height(&plane_state->base.src) >> 16;
 4232
 4233	/* UV plane does 1/2 pixel sub-sampling */
 4234	if (plane == 1 && is_planar_yuv_format(format)) {
 4235		width /= 2;
 4236		height /= 2;
 4237	}
 4238
 4239	data_rate = width * height;
 4240
 4241	down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
 4242
 4243	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);
 4244
 4245	rate *= fb->format->cpp[plane];
 4246	return rate;
 4247}
 4248
 4249static u64
 4250skl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
 4251				 u64 *plane_data_rate,
 4252				 u64 *uv_plane_data_rate)
 4253{
 4254	struct drm_atomic_state *state = crtc_state->base.state;
 4255	struct drm_plane *plane;
 4256	const struct drm_plane_state *drm_plane_state;
 4257	u64 total_data_rate = 0;
 4258
 4259	if (WARN_ON(!state))
 4260		return 0;
 4261
 4262	/* Calculate and cache data rate for each plane */
 4263	drm_atomic_crtc_state_for_each_plane_state(plane, drm_plane_state, &crtc_state->base) {
 4264		enum plane_id plane_id = to_intel_plane(plane)->id;
 4265		const struct intel_plane_state *plane_state =
 4266			to_intel_plane_state(drm_plane_state);
 4267		u64 rate;
 4268
 4269		/* packed/y */
 4270		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
 4271		plane_data_rate[plane_id] = rate;
 4272		total_data_rate += rate;
 4273
 4274		/* uv-plane */
 4275		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
 4276		uv_plane_data_rate[plane_id] = rate;
 4277		total_data_rate += rate;
 4278	}
 4279
 4280	return total_data_rate;
 4281}
 4282
 4283static u64
 4284icl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
 4285				 u64 *plane_data_rate)
 4286{
 4287	struct drm_plane *plane;
 4288	const struct drm_plane_state *drm_plane_state;
 4289	u64 total_data_rate = 0;
 4290
 4291	if (WARN_ON(!crtc_state->base.state))
 4292		return 0;
 4293
 4294	/* Calculate and cache data rate for each plane */
 4295	drm_atomic_crtc_state_for_each_plane_state(plane, drm_plane_state, &crtc_state->base) {
 4296		const struct intel_plane_state *plane_state =
 4297			to_intel_plane_state(drm_plane_state);
 4298		enum plane_id plane_id = to_intel_plane(plane)->id;
 4299		u64 rate;
 4300
 4301		if (!plane_state->linked_plane) {
 4302			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
 4303			plane_data_rate[plane_id] = rate;
 4304			total_data_rate += rate;
 4305		} else {
 4306			enum plane_id y_plane_id;
 4307
 4308			/*
 4309			 * The slave plane might not iterate in
 4310			 * drm_atomic_crtc_state_for_each_plane_state(),
 4311			 * and needs the master plane state which may be
 4312			 * NULL if we try get_new_plane_state(), so we
 4313			 * always calculate from the master.
 4314			 */
 4315			if (plane_state->slave)
 4316				continue;
 4317
 4318			/* Y plane rate is calculated on the slave */
 4319			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
 4320			y_plane_id = plane_state->linked_plane->id;
 4321			plane_data_rate[y_plane_id] = rate;
 4322			total_data_rate += rate;
 4323
 4324			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
 4325			plane_data_rate[plane_id] = rate;
 4326			total_data_rate += rate;
 4327		}
 4328	}
 4329
 4330	return total_data_rate;
 4331}
 4332
 4333static int
 4334skl_allocate_pipe_ddb(struct intel_crtc_state *crtc_state,
 4335		      struct skl_ddb_allocation *ddb /* out */)
 4336{
 4337	struct drm_atomic_state *state = crtc_state->base.state;
 4338	struct drm_crtc *crtc = crtc_state->base.crtc;
 4339	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 4340	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 4341	struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
 4342	u16 alloc_size, start = 0;
 4343	u16 total[I915_MAX_PLANES] = {};
 4344	u16 uv_total[I915_MAX_PLANES] = {};
 4345	u64 total_data_rate;
 4346	enum plane_id plane_id;
 4347	int num_active;
 4348	u64 plane_data_rate[I915_MAX_PLANES] = {};
 4349	u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
 4350	u32 blocks;
 4351	int level;
 4352
 4353	/* Clear the partitioning for disabled planes. */
 4354	memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
 4355	memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
 4356
 4357	if (WARN_ON(!state))
 4358		return 0;
 4359
 4360	if (!crtc_state->base.active) {
 4361		alloc->start = alloc->end = 0;
 4362		return 0;
 4363	}
 4364
 4365	if (INTEL_GEN(dev_priv) >= 11)
 4366		total_data_rate =
 4367			icl_get_total_relative_data_rate(crtc_state,
 4368							 plane_data_rate);
 4369	else
 4370		total_data_rate =
 4371			skl_get_total_relative_data_rate(crtc_state,
 4372							 plane_data_rate,
 4373							 uv_plane_data_rate);
 4374
 4375
 4376	skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state, total_data_rate,
 4377					   ddb, alloc, &num_active);
 4378	alloc_size = skl_ddb_entry_size(alloc);
 4379	if (alloc_size == 0)
 4380		return 0;
 4381
 4382	/* Allocate fixed number of blocks for cursor. */
 4383	total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
 4384	alloc_size -= total[PLANE_CURSOR];
 4385	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
 4386		alloc->end - total[PLANE_CURSOR];
 4387	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
 4388
 4389	if (total_data_rate == 0)
 4390		return 0;
 4391
 4392	/*
 4393	 * Find the highest watermark level for which we can satisfy the block
 4394	 * requirement of active planes.
 4395	 */
 4396	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
 4397		blocks = 0;
 4398		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
 4399			const struct skl_plane_wm *wm =
 4400				&crtc_state->wm.skl.optimal.planes[plane_id];
 4401
 4402			if (plane_id == PLANE_CURSOR) {
 4403				if (WARN_ON(wm->wm[level].min_ddb_alloc >
 4404					    total[PLANE_CURSOR])) {
 4405					blocks = U32_MAX;
 4406					break;
 4407				}
 4408				continue;
 4409			}
 4410
 4411			blocks += wm->wm[level].min_ddb_alloc;
 4412			blocks += wm->uv_wm[level].min_ddb_alloc;
 4413		}
 4414
 4415		if (blocks <= alloc_size) {
 4416			alloc_size -= blocks;
 4417			break;
 4418		}
 4419	}
 4420
 4421	if (level < 0) {
 4422		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
 4423		DRM_DEBUG_KMS("minimum required %d/%d\n", blocks,
 4424			      alloc_size);
 4425		return -EINVAL;
 4426	}
 4427
 4428	/*
 4429	 * Grant each plane the blocks it requires at the highest achievable
 4430	 * watermark level, plus an extra share of the leftover blocks
 4431	 * proportional to its relative data rate.
 4432	 */
 4433	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
 4434		const struct skl_plane_wm *wm =
 4435			&crtc_state->wm.skl.optimal.planes[plane_id];
 4436		u64 rate;
 4437		u16 extra;
 4438
 4439		if (plane_id == PLANE_CURSOR)
 4440			continue;
 4441
 4442		/*
 4443		 * We've accounted for all active planes; remaining planes are
 4444		 * all disabled.
 4445		 */
 4446		if (total_data_rate == 0)
 4447			break;
 4448
 4449		rate = plane_data_rate[plane_id];
 4450		extra = min_t(u16, alloc_size,
 4451			      DIV64_U64_ROUND_UP(alloc_size * rate,
 4452						 total_data_rate));
 4453		total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
 4454		alloc_size -= extra;
 4455		total_data_rate -= rate;
 4456
 4457		if (total_data_rate == 0)
 4458			break;
 4459
 4460		rate = uv_plane_data_rate[plane_id];
 4461		extra = min_t(u16, alloc_size,
 4462			      DIV64_U64_ROUND_UP(alloc_size * rate,
 4463						 total_data_rate));
 4464		uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
 4465		alloc_size -= extra;
 4466		total_data_rate -= rate;
 4467	}
 4468	WARN_ON(alloc_size != 0 || total_data_rate != 0);
 4469
 4470	/* Set the actual DDB start/end points for each plane */
 4471	start = alloc->start;
 4472	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
 4473		struct skl_ddb_entry *plane_alloc =
 4474			&crtc_state->wm.skl.plane_ddb_y[plane_id];
 4475		struct skl_ddb_entry *uv_plane_alloc =
 4476			&crtc_state->wm.skl.plane_ddb_uv[plane_id];
 4477
 4478		if (plane_id == PLANE_CURSOR)
 4479			continue;
 4480
 4481		/* Gen11+ uses a separate plane for UV watermarks */
 4482		WARN_ON(INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);
 4483
 4484		/* Leave disabled planes at (0,0) */
 4485		if (total[plane_id]) {
 4486			plane_alloc->start = start;
 4487			start += total[plane_id];
 4488			plane_alloc->end = start;
 4489		}
 4490
 4491		if (uv_total[plane_id]) {
 4492			uv_plane_alloc->start = start;
 4493			start += uv_total[plane_id];
 4494			uv_plane_alloc->end = start;
 4495		}
 4496	}
 4497
 4498	/*
 4499	 * When we calculated watermark values we didn't know how high
 4500	 * of a level we'd actually be able to hit, so we just marked
 4501	 * all levels as "enabled."  Go back now and disable the ones
 4502	 * that aren't actually possible.
 4503	 */
 4504	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
 4505		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
 4506			struct skl_plane_wm *wm =
 4507				&crtc_state->wm.skl.optimal.planes[plane_id];
 4508
 4509			/*
 4510			 * We only disable the watermarks for each plane if
 4511			 * they exceed the ddb allocation of said plane. This
 4512			 * is done so that we don't end up touching cursor
 4513			 * watermarks needlessly when some other plane reduces
 4514			 * our max possible watermark level.
 4515			 *
 4516			 * Bspec has this to say about the PLANE_WM enable bit:
 4517			 * "All the watermarks at this level for all enabled
 4518			 *  planes must be enabled before the level will be used."
 4519			 * So this is actually safe to do.
 4520			 */
 4521			if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
 4522			    wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
 4523				memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
 4524
 4525			/*
 4526			 * Wa_1408961008:icl, ehl
 4527			 * Underruns with WM1+ disabled
 4528			 */
 4529			if (IS_GEN(dev_priv, 11) &&
 4530			    level == 1 && wm->wm[0].plane_en) {
 4531				wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
 4532				wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
 4533				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
 4534			}
 4535		}
 4536	}
 4537
 4538	/*
 4539	 * Go back and disable the transition watermark if it turns out we
 4540	 * don't have enough DDB blocks for it.
 4541	 */
 4542	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
 4543		struct skl_plane_wm *wm =
 4544			&crtc_state->wm.skl.optimal.planes[plane_id];
 4545
 4546		if (wm->trans_wm.plane_res_b >= total[plane_id])
 4547			memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
 4548	}
 4549
 4550	return 0;
 4551}
 4552
 4553/*
 4554 * The max latency should be 257 (max the punit can code is 255 and we add 2us
 4555 * for the read latency) and cpp should always be <= 8, so that
 4556 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 4557 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
 4558*/
 4559static uint_fixed_16_16_t
 4560skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
 4561	       u8 cpp, u32 latency, u32 dbuf_block_size)
 4562{
 4563	u32 wm_intermediate_val;
 4564	uint_fixed_16_16_t ret;
 4565
 4566	if (latency == 0)
 4567		return FP_16_16_MAX;
 4568
 4569	wm_intermediate_val = latency * pixel_rate * cpp;
 4570	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
 4571
 4572	if (INTEL_GEN(dev_priv) >= 10)
 4573		ret = add_fixed16_u32(ret, 1);
 4574
 4575	return ret;
 4576}
 4577
 4578static uint_fixed_16_16_t
 4579skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
 4580	       uint_fixed_16_16_t plane_blocks_per_line)
 4581{
 4582	u32 wm_intermediate_val;
 4583	uint_fixed_16_16_t ret;
 4584
 4585	if (latency == 0)
 4586		return FP_16_16_MAX;
 4587
 4588	wm_intermediate_val = latency * pixel_rate;
 4589	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
 4590					   pipe_htotal * 1000);
 4591	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
 4592	return ret;
 4593}
 4594
 4595static uint_fixed_16_16_t
 4596intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
 4597{
 4598	u32 pixel_rate;
 4599	u32 crtc_htotal;
 4600	uint_fixed_16_16_t linetime_us;
 4601
 4602	if (!crtc_state->base.active)
 4603		return u32_to_fixed16(0);
 4604
 4605	pixel_rate = crtc_state->pixel_rate;
 4606
 4607	if (WARN_ON(pixel_rate == 0))
 4608		return u32_to_fixed16(0);
 4609
 4610	crtc_htotal = crtc_state->base.adjusted_mode.crtc_htotal;
 4611	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
 4612
 4613	return linetime_us;
 4614}
 4615
 4616static u32
 4617skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
 4618			      const struct intel_plane_state *plane_state)
 4619{
 4620	u64 adjusted_pixel_rate;
 4621	uint_fixed_16_16_t downscale_amount;
 4622
 4623	/* Shouldn't reach here on disabled planes... */
 4624	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
 4625		return 0;
 4626
 4627	/*
 4628	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
 4629	 * with additional adjustments for plane-specific scaling.
 4630	 */
 4631	adjusted_pixel_rate = crtc_state->pixel_rate;
 4632	downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
 4633
 4634	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
 4635					    downscale_amount);
 4636}
 4637
 4638static int
 4639skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
 4640		      int width, const struct drm_format_info *format,
 4641		      u64 modifier, unsigned int rotation,
 4642		      u32 plane_pixel_rate, struct skl_wm_params *wp,
 4643		      int color_plane)
 4644{
 4645	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
 4646	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 4647	u32 interm_pbpl;
 4648
 4649	/* only planar format has two planes */
 4650	if (color_plane == 1 && !is_planar_yuv_format(format->format)) {
 4651		DRM_DEBUG_KMS("Non planar format have single plane\n");
 4652		return -EINVAL;
 4653	}
 4654
 4655	wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
 4656		      modifier == I915_FORMAT_MOD_Yf_TILED ||
 4657		      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
 4658		      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
 4659	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
 4660	wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
 4661			 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
 4662	wp->is_planar = is_planar_yuv_format(format->format);
 4663
 4664	wp->width = width;
 4665	if (color_plane == 1 && wp->is_planar)
 4666		wp->width /= 2;
 4667
 4668	wp->cpp = format->cpp[color_plane];
 4669	wp->plane_pixel_rate = plane_pixel_rate;
 4670
 4671	if (INTEL_GEN(dev_priv) >= 11 &&
 4672	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
 4673		wp->dbuf_block_size = 256;
 4674	else
 4675		wp->dbuf_block_size = 512;
 4676
 4677	if (drm_rotation_90_or_270(rotation)) {
 4678		switch (wp->cpp) {
 4679		case 1:
 4680			wp->y_min_scanlines = 16;
 4681			break;
 4682		case 2:
 4683			wp->y_min_scanlines = 8;
 4684			break;
 4685		case 4:
 4686			wp->y_min_scanlines = 4;
 4687			break;
 4688		default:
 4689			MISSING_CASE(wp->cpp);
 4690			return -EINVAL;
 4691		}
 4692	} else {
 4693		wp->y_min_scanlines = 4;
 4694	}
 4695
 4696	if (skl_needs_memory_bw_wa(dev_priv))
 4697		wp->y_min_scanlines *= 2;
 4698
 4699	wp->plane_bytes_per_line = wp->width * wp->cpp;
 4700	if (wp->y_tiled) {
 4701		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
 4702					   wp->y_min_scanlines,
 4703					   wp->dbuf_block_size);
 4704
 4705		if (INTEL_GEN(dev_priv) >= 10)
 4706			interm_pbpl++;
 4707
 4708		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
 4709							wp->y_min_scanlines);
 4710	} else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
 4711		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
 4712					   wp->dbuf_block_size);
 4713		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
 4714	} else {
 4715		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
 4716					   wp->dbuf_block_size) + 1;
 4717		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
 4718	}
 4719
 4720	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
 4721					     wp->plane_blocks_per_line);
 4722
 4723	wp->linetime_us = fixed16_to_u32_round_up(
 4724					intel_get_linetime_us(crtc_state));
 4725
 4726	return 0;
 4727}
 4728
 4729static int
 4730skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
 4731			    const struct intel_plane_state *plane_state,
 4732			    struct skl_wm_params *wp, int color_plane)
 4733{
 4734	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
 4735	const struct drm_framebuffer *fb = plane_state->base.fb;
 4736	int width;
 4737
 4738	if (plane->id == PLANE_CURSOR) {
 4739		width = plane_state->base.crtc_w;
 4740	} else {
 4741		/*
 4742		 * Src coordinates are already rotated by 270 degrees for
 4743		 * the 90/270 degree plane rotation cases (to match the
 4744		 * GTT mapping), hence no need to account for rotation here.
 4745		 */
 4746		width = drm_rect_width(&plane_state->base.src) >> 16;
 4747	}
 4748
 4749	return skl_compute_wm_params(crtc_state, width,
 4750				     fb->format, fb->modifier,
 4751				     plane_state->base.rotation,
 4752				     skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
 4753				     wp, color_plane);
 4754}
 4755
 4756static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
 4757{
 4758	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
 4759		return true;
 4760
 4761	/* The number of lines are ignored for the level 0 watermark. */
 4762	return level > 0;
 4763}
 4764
 4765static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
 4766				 int level,
 4767				 const struct skl_wm_params *wp,
 4768				 const struct skl_wm_level *result_prev,
 4769				 struct skl_wm_level *result /* out */)
 4770{
 4771	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
 4772	u32 latency = dev_priv->wm.skl_latency[level];
 4773	uint_fixed_16_16_t method1, method2;
 4774	uint_fixed_16_16_t selected_result;
 4775	u32 res_blocks, res_lines, min_ddb_alloc = 0;
 4776
 4777	if (latency == 0) {
 4778		/* reject it */
 4779		result->min_ddb_alloc = U16_MAX;
 4780		return;
 4781	}
 4782
 4783	/*
 4784	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
 4785	 * Display WA #1141: kbl,cfl
 4786	 */
 4787	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) ||
 4788	    dev_priv->ipc_enabled)
 4789		latency += 4;
 4790
 4791	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
 4792		latency += 15;
 4793
 4794	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
 4795				 wp->cpp, latency, wp->dbuf_block_size);
 4796	method2 = skl_wm_method2(wp->plane_pixel_rate,
 4797				 crtc_state->base.adjusted_mode.crtc_htotal,
 4798				 latency,
 4799				 wp->plane_blocks_per_line);
 4800
 4801	if (wp->y_tiled) {
 4802		selected_result = max_fixed16(method2, wp->y_tile_minimum);
 4803	} else {
 4804		if ((wp->cpp * crtc_state->base.adjusted_mode.crtc_htotal /
 4805		     wp->dbuf_block_size < 1) &&
 4806		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
 4807			selected_result = method2;
 4808		} else if (latency >= wp->linetime_us) {
 4809			if (IS_GEN(dev_priv, 9) &&
 4810			    !IS_GEMINILAKE(dev_priv))
 4811				selected_result = min_fixed16(method1, method2);
 4812			else
 4813				selected_result = method2;
 4814		} else {
 4815			selected_result = method1;
 4816		}
 4817	}
 4818
 4819	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
 4820	res_lines = div_round_up_fixed16(selected_result,
 4821					 wp->plane_blocks_per_line);
 4822
 4823	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
 4824		/* Display WA #1125: skl,bxt,kbl */
 4825		if (level == 0 && wp->rc_surface)
 4826			res_blocks +=
 4827				fixed16_to_u32_round_up(wp->y_tile_minimum);
 4828
 4829		/* Display WA #1126: skl,bxt,kbl */
 4830		if (level >= 1 && level <= 7) {
 4831			if (wp->y_tiled) {
 4832				res_blocks +=
 4833				    fixed16_to_u32_round_up(wp->y_tile_minimum);
 4834				res_lines += wp->y_min_scanlines;
 4835			} else {
 4836				res_blocks++;
 4837			}
 4838
 4839			/*
 4840			 * Make sure result blocks for higher latency levels are
 4841			 * atleast as high as level below the current level.
 4842			 * Assumption in DDB algorithm optimization for special
 4843			 * cases. Also covers Display WA #1125 for RC.
 4844			 */
 4845			if (result_prev->plane_res_b > res_blocks)
 4846				res_blocks = result_prev->plane_res_b;
 4847		}
 4848	}
 4849
 4850	if (INTEL_GEN(dev_priv) >= 11) {
 4851		if (wp->y_tiled) {
 4852			int extra_lines;
 4853
 4854			if (res_lines % wp->y_min_scanlines == 0)
 4855				extra_lines = wp->y_min_scanlines;
 4856			else
 4857				extra_lines = wp->y_min_scanlines * 2 -
 4858					res_lines % wp->y_min_scanlines;
 4859
 4860			min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
 4861								 wp->plane_blocks_per_line);
 4862		} else {
 4863			min_ddb_alloc = res_blocks +
 4864				DIV_ROUND_UP(res_blocks, 10);
 4865		}
 4866	}
 4867
 4868	if (!skl_wm_has_lines(dev_priv, level))
 4869		res_lines = 0;
 4870
 4871	if (res_lines > 31) {
 4872		/* reject it */
 4873		result->min_ddb_alloc = U16_MAX;
 4874		return;
 4875	}
 4876
 4877	/*
 4878	 * If res_lines is valid, assume we can use this watermark level
 4879	 * for now.  We'll come back and disable it after we calculate the
 4880	 * DDB allocation if it turns out we don't actually have enough
 4881	 * blocks to satisfy it.
 4882	 */
 4883	result->plane_res_b = res_blocks;
 4884	result->plane_res_l = res_lines;
 4885	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
 4886	result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
 4887	result->plane_en = true;
 4888}
 4889
 4890static void
 4891skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
 4892		      const struct skl_wm_params *wm_params,
 4893		      struct skl_wm_level *levels)
 4894{
 4895	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
 4896	int level, max_level = ilk_wm_max_level(dev_priv);
 4897	struct skl_wm_level *result_prev = &levels[0];
 4898
 4899	for (level = 0; level <= max_level; level++) {
 4900		struct skl_wm_level *result = &levels[level];
 4901
 4902		skl_compute_plane_wm(crtc_state, level, wm_params,
 4903				     result_prev, result);
 4904
 4905		result_prev = result;
 4906	}
 4907}
 4908
 4909static u32
 4910skl_compute_linetime_wm(const struct intel_crtc_state *crtc_state)
 4911{
 4912	struct drm_atomic_state *state = crtc_state->base.state;
 4913	struct drm_i915_private *dev_priv = to_i915(state->dev);
 4914	uint_fixed_16_16_t linetime_us;
 4915	u32 linetime_wm;
 4916
 4917	linetime_us = intel_get_linetime_us(crtc_state);
 4918	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
 4919
 4920	/* Display WA #1135: BXT:ALL GLK:ALL */
 4921	if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
 4922		linetime_wm /= 2;
 4923
 4924	return linetime_wm;
 4925}
 4926
 4927static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
 4928				      const struct skl_wm_params *wp,
 4929				      struct skl_plane_wm *wm)
 4930{
 4931	struct drm_device *dev = crtc_state->base.crtc->dev;
 4932	const struct drm_i915_private *dev_priv = to_i915(dev);
 4933	u16 trans_min, trans_y_tile_min;
 4934	const u16 trans_amount = 10; /* This is configurable amount */
 4935	u16 wm0_sel_res_b, trans_offset_b, res_blocks;
 4936
 4937	/* Transition WM are not recommended by HW team for GEN9 */
 4938	if (INTEL_GEN(dev_priv) <= 9)
 4939		return;
 4940
 4941	/* Transition WM don't make any sense if ipc is disabled */
 4942	if (!dev_priv->ipc_enabled)
 4943		return;
 4944
 4945	trans_min = 14;
 4946	if (INTEL_GEN(dev_priv) >= 11)
 4947		trans_min = 4;
 4948
 4949	trans_offset_b = trans_min + trans_amount;
 4950
 4951	/*
 4952	 * The spec asks for Selected Result Blocks for wm0 (the real value),
 4953	 * not Result Blocks (the integer value). Pay attention to the capital
 4954	 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
 4955	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
 4956	 * and since we later will have to get the ceiling of the sum in the
 4957	 * transition watermarks calculation, we can just pretend Selected
 4958	 * Result Blocks is Result Blocks minus 1 and it should work for the
 4959	 * current platforms.
 4960	 */
 4961	wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
 4962
 4963	if (wp->y_tiled) {
 4964		trans_y_tile_min =
 4965			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
 4966		res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
 4967				trans_offset_b;
 4968	} else {
 4969		res_blocks = wm0_sel_res_b + trans_offset_b;
 4970
 4971		/* WA BUG:1938466 add one block for non y-tile planes */
 4972		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
 4973			res_blocks += 1;
 4974
 4975	}
 4976
 4977	/*
 4978	 * Just assume we can enable the transition watermark.  After
 4979	 * computing the DDB we'll come back and disable it if that
 4980	 * assumption turns out to be false.
 4981	 */
 4982	wm->trans_wm.plane_res_b = res_blocks + 1;
 4983	wm->trans_wm.plane_en = true;
 4984}
 4985
 4986static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
 4987				     const struct intel_plane_state *plane_state,
 4988				     enum plane_id plane_id, int color_plane)
 4989{
 4990	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
 4991	struct skl_wm_params wm_params;
 4992	int ret;
 4993
 4994	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
 4995					  &wm_params, color_plane);
 4996	if (ret)
 4997		return ret;
 4998
 4999	skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
 5000	skl_compute_transition_wm(crtc_state, &wm_params, wm);
 5001
 5002	return 0;
 5003}
 5004
 5005static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
 5006				 const struct intel_plane_state *plane_state,
 5007				 enum plane_id plane_id)
 5008{
 5009	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
 5010	struct skl_wm_params wm_params;
 5011	int ret;
 5012
 5013	wm->is_planar = true;
 5014
 5015	/* uv plane watermarks must also be validated for NV12/Planar */
 5016	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
 5017					  &wm_params, 1);
 5018	if (ret)
 5019		return ret;
 5020
 5021	skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
 5022
 5023	return 0;
 5024}
 5025
 5026static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
 5027			      const struct intel_plane_state *plane_state)
 5028{
 5029	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
 5030	const struct drm_framebuffer *fb = plane_state->base.fb;
 5031	enum plane_id plane_id = plane->id;
 5032	int ret;
 5033
 5034	if (!intel_wm_plane_visible(crtc_state, plane_state))
 5035		return 0;
 5036
 5037	ret = skl_build_plane_wm_single(crtc_state, plane_state,
 5038					plane_id, 0);
 5039	if (ret)
 5040		return ret;
 5041
 5042	if (fb->format->is_yuv && fb->format->num_planes > 1) {
 5043		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
 5044					    plane_id);
 5045		if (ret)
 5046			return ret;
 5047	}
 5048
 5049	return 0;
 5050}
 5051
 5052static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
 5053			      const struct intel_plane_state *plane_state)
 5054{
 5055	enum plane_id plane_id = to_intel_plane(plane_state->base.plane)->id;
 5056	int ret;
 5057
 5058	/* Watermarks calculated in master */
 5059	if (plane_state->slave)
 5060		return 0;
 5061
 5062	if (plane_state->linked_plane) {
 5063		const struct drm_framebuffer *fb = plane_state->base.fb;
 5064		enum plane_id y_plane_id = plane_state->linked_plane->id;
 5065
 5066		WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
 5067		WARN_ON(!fb->format->is_yuv ||
 5068			fb->format->num_planes == 1);
 5069
 5070		ret = skl_build_plane_wm_single(crtc_state, plane_state,
 5071						y_plane_id, 0);
 5072		if (ret)
 5073			return ret;
 5074
 5075		ret = skl_build_plane_wm_single(crtc_state, plane_state,
 5076						plane_id, 1);
 5077		if (ret)
 5078			return ret;
 5079	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
 5080		ret = skl_build_plane_wm_single(crtc_state, plane_state,
 5081						plane_id, 0);
 5082		if (ret)
 5083			return ret;
 5084	}
 5085
 5086	return 0;
 5087}
 5088
 5089static int skl_build_pipe_wm(struct intel_crtc_state *crtc_state)
 5090{
 5091	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
 5092	struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
 5093	struct drm_plane *plane;
 5094	const struct drm_plane_state *drm_plane_state;
 5095	int ret;
 5096
 5097	/*
 5098	 * We'll only calculate watermarks for planes that are actually
 5099	 * enabled, so make sure all other planes are set as disabled.
 5100	 */
 5101	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
 5102
 5103	drm_atomic_crtc_state_for_each_plane_state(plane, drm_plane_state,
 5104						   &crtc_state->base) {
 5105		const struct intel_plane_state *plane_state =
 5106			to_intel_plane_state(drm_plane_state);
 5107
 5108		if (INTEL_GEN(dev_priv) >= 11)
 5109			ret = icl_build_plane_wm(crtc_state, plane_state);
 5110		else
 5111			ret = skl_build_plane_wm(crtc_state, plane_state);
 5112		if (ret)
 5113			return ret;
 5114	}
 5115
 5116	pipe_wm->linetime = skl_compute_linetime_wm(crtc_state);
 5117
 5118	return 0;
 5119}
 5120
 5121static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
 5122				i915_reg_t reg,
 5123				const struct skl_ddb_entry *entry)
 5124{
 5125	if (entry->end)
 5126		I915_WRITE_FW(reg, (entry->end - 1) << 16 | entry->start);
 5127	else
 5128		I915_WRITE_FW(reg, 0);
 5129}
 5130
 5131static void skl_write_wm_level(struct drm_i915_private *dev_priv,
 5132			       i915_reg_t reg,
 5133			       const struct skl_wm_level *level)
 5134{
 5135	u32 val = 0;
 5136
 5137	if (level->plane_en)
 5138		val |= PLANE_WM_EN;
 5139	if (level->ignore_lines)
 5140		val |= PLANE_WM_IGNORE_LINES;
 5141	val |= level->plane_res_b;
 5142	val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
 5143
 5144	I915_WRITE_FW(reg, val);
 5145}
 5146
 5147void skl_write_plane_wm(struct intel_plane *plane,
 5148			const struct intel_crtc_state *crtc_state)
 5149{
 5150	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
 5151	int level, max_level = ilk_wm_max_level(dev_priv);
 5152	enum plane_id plane_id = plane->id;
 5153	enum pipe pipe = plane->pipe;
 5154	const struct skl_plane_wm *wm =
 5155		&crtc_state->wm.skl.optimal.planes[plane_id];
 5156	const struct skl_ddb_entry *ddb_y =
 5157		&crtc_state->wm.skl.plane_ddb_y[plane_id];
 5158	const struct skl_ddb_entry *ddb_uv =
 5159		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
 5160
 5161	for (level = 0; level <= max_level; level++) {
 5162		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
 5163				   &wm->wm[level]);
 5164	}
 5165	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
 5166			   &wm->trans_wm);
 5167
 5168	if (INTEL_GEN(dev_priv) >= 11) {
 5169		skl_ddb_entry_write(dev_priv,
 5170				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
 5171		return;
 5172	}
 5173
 5174	if (wm->is_planar)
 5175		swap(ddb_y, ddb_uv);
 5176
 5177	skl_ddb_entry_write(dev_priv,
 5178			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
 5179	skl_ddb_entry_write(dev_priv,
 5180			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
 5181}
 5182
 5183void skl_write_cursor_wm(struct intel_plane *plane,
 5184			 const struct intel_crtc_state *crtc_state)
 5185{
 5186	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
 5187	int level, max_level = ilk_wm_max_level(dev_priv);
 5188	enum plane_id plane_id = plane->id;
 5189	enum pipe pipe = plane->pipe;
 5190	const struct skl_plane_wm *wm =
 5191		&crtc_state->wm.skl.optimal.planes[plane_id];
 5192	const struct skl_ddb_entry *ddb =
 5193		&crtc_state->wm.skl.plane_ddb_y[plane_id];
 5194
 5195	for (level = 0; level <= max_level; level++) {
 5196		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
 5197				   &wm->wm[level]);
 5198	}
 5199	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
 5200
 5201	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
 5202}
 5203
 5204bool skl_wm_level_equals(const struct skl_wm_level *l1,
 5205			 const struct skl_wm_level *l2)
 5206{
 5207	return l1->plane_en == l2->plane_en &&
 5208		l1->ignore_lines == l2->ignore_lines &&
 5209		l1->plane_res_l == l2->plane_res_l &&
 5210		l1->plane_res_b == l2->plane_res_b;
 5211}
 5212
 5213static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
 5214				const struct skl_plane_wm *wm1,
 5215				const struct skl_plane_wm *wm2)
 5216{
 5217	int level, max_level = ilk_wm_max_level(dev_priv);
 5218
 5219	for (level = 0; level <= max_level; level++) {
 5220		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]) ||
 5221		    !skl_wm_level_equals(&wm1->uv_wm[level], &wm2->uv_wm[level]))
 5222			return false;
 5223	}
 5224
 5225	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
 5226}
 5227
 5228static bool skl_pipe_wm_equals(struct intel_crtc *crtc,
 5229			       const struct skl_pipe_wm *wm1,
 5230			       const struct skl_pipe_wm *wm2)
 5231{
 5232	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 5233	enum plane_id plane_id;
 5234
 5235	for_each_plane_id_on_crtc(crtc, plane_id) {
 5236		if (!skl_plane_wm_equals(dev_priv,
 5237					 &wm1->planes[plane_id],
 5238					 &wm2->planes[plane_id]))
 5239			return false;
 5240	}
 5241
 5242	return wm1->linetime == wm2->linetime;
 5243}
 5244
 5245static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
 5246					   const struct skl_ddb_entry *b)
 5247{
 5248	return a->start < b->end && b->start < a->end;
 5249}
 5250
 5251bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
 5252				 const struct skl_ddb_entry *entries,
 5253				 int num_entries, int ignore_idx)
 5254{
 5255	int i;
 5256
 5257	for (i = 0; i < num_entries; i++) {
 5258		if (i != ignore_idx &&
 5259		    skl_ddb_entries_overlap(ddb, &entries[i]))
 5260			return true;
 5261	}
 5262
 5263	return false;
 5264}
 5265
 5266static u32
 5267pipes_modified(struct intel_atomic_state *state)
 5268{
 5269	struct intel_crtc *crtc;
 5270	struct intel_crtc_state *crtc_state;
 5271	u32 i, ret = 0;
 5272
 5273	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
 5274		ret |= drm_crtc_mask(&crtc->base);
 5275
 5276	return ret;
 5277}
 5278
 5279static int
 5280skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
 5281			    struct intel_crtc_state *new_crtc_state)
 5282{
 5283	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->base.state);
 5284	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
 5285	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 5286	struct intel_plane *plane;
 5287
 5288	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
 5289		struct intel_plane_state *plane_state;
 5290		enum plane_id plane_id = plane->id;
 5291
 5292		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
 5293					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
 5294		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
 5295					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
 5296			continue;
 5297
 5298		plane_state = intel_atomic_get_plane_state(state, plane);
 5299		if (IS_ERR(plane_state))
 5300			return PTR_ERR(plane_state);
 5301
 5302		new_crtc_state->update_planes |= BIT(plane_id);
 5303	}
 5304
 5305	return 0;
 5306}
 5307
 5308static int
 5309skl_compute_ddb(struct intel_atomic_state *state)
 5310{
 5311	const struct drm_i915_private *dev_priv = to_i915(state->base.dev);
 5312	struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
 5313	struct intel_crtc_state *old_crtc_state;
 5314	struct intel_crtc_state *new_crtc_state;
 5315	struct intel_crtc *crtc;
 5316	int ret, i;
 5317
 5318	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
 5319
 5320	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
 5321					    new_crtc_state, i) {
 5322		ret = skl_allocate_pipe_ddb(new_crtc_state, ddb);
 5323		if (ret)
 5324			return ret;
 5325
 5326		ret = skl_ddb_add_affected_planes(old_crtc_state,
 5327						  new_crtc_state);
 5328		if (ret)
 5329			return ret;
 5330	}
 5331
 5332	return 0;
 5333}
 5334
 5335static char enast(bool enable)
 5336{
 5337	return enable ? '*' : ' ';
 5338}
 5339
 5340static void
 5341skl_print_wm_changes(struct intel_atomic_state *state)
 5342{
 5343	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
 5344	const struct intel_crtc_state *old_crtc_state;
 5345	const struct intel_crtc_state *new_crtc_state;
 5346	struct intel_plane *plane;
 5347	struct intel_crtc *crtc;
 5348	int i;
 5349
 5350	if ((drm_debug & DRM_UT_KMS) == 0)
 5351		return;
 5352
 5353	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
 5354					    new_crtc_state, i) {
 5355		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
 5356
 5357		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
 5358		new_pipe_wm = &new_crtc_state->wm.skl.optimal;
 5359
 5360		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
 5361			enum plane_id plane_id = plane->id;
 5362			const struct skl_ddb_entry *old, *new;
 5363
 5364			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
 5365			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
 5366
 5367			if (skl_ddb_entry_equal(old, new))
 5368				continue;
 5369
 5370			DRM_DEBUG_KMS("[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
 5371				      plane->base.base.id, plane->base.name,
 5372				      old->start, old->end, new->start, new->end,
 5373				      skl_ddb_entry_size(old), skl_ddb_entry_size(new));
 5374		}
 5375
 5376		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
 5377			enum plane_id plane_id = plane->id;
 5378			const struct skl_plane_wm *old_wm, *new_wm;
 5379
 5380			old_wm = &old_pipe_wm->planes[plane_id];
 5381			new_wm = &new_pipe_wm->planes[plane_id];
 5382
 5383			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
 5384				continue;
 5385
 5386			DRM_DEBUG_KMS("[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
 5387				      " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
 5388				      plane->base.base.id, plane->base.name,
 5389				      enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
 5390				      enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
 5391				      enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
 5392				      enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
 5393				      enast(old_wm->trans_wm.plane_en),
 5394				      enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
 5395				      enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
 5396				      enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
 5397				      enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
 5398				      enast(new_wm->trans_wm.plane_en));
 5399
 5400			DRM_DEBUG_KMS("[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
 5401				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
 5402				      plane->base.base.id, plane->base.name,
 5403				      enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
 5404				      enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
 5405				      enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
 5406				      enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
 5407				      enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
 5408				      enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
 5409				      enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
 5410				      enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
 5411				      enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,
 5412
 5413				      enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
 5414				      enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
 5415				      enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
 5416				      enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
 5417				      enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
 5418				      enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
 5419				      enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
 5420				      enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
 5421				      enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l);
 5422
 5423			DRM_DEBUG_KMS("[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
 5424				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
 5425				      plane->base.base.id, plane->base.name,
 5426				      old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
 5427				      old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
 5428				      old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
 5429				      old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
 5430				      old_wm->trans_wm.plane_res_b,
 5431				      new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
 5432				      new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
 5433				      new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
 5434				      new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
 5435				      new_wm->trans_wm.plane_res_b);
 5436
 5437			DRM_DEBUG_KMS("[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
 5438				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
 5439				      plane->base.base.id, plane->base.name,
 5440				      old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
 5441				      old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
 5442				      old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
 5443				      old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
 5444				      old_wm->trans_wm.min_ddb_alloc,
 5445				      new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
 5446				      new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
 5447				      new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
 5448				      new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
 5449				      new_wm->trans_wm.min_ddb_alloc);
 5450		}
 5451	}
 5452}
 5453
 5454static int
 5455skl_ddb_add_affected_pipes(struct intel_atomic_state *state, bool *changed)
 5456{
 5457	struct drm_device *dev = state->base.dev;
 5458	const struct drm_i915_private *dev_priv = to_i915(dev);
 5459	struct intel_crtc *crtc;
 5460	struct intel_crtc_state *crtc_state;
 5461	u32 realloc_pipes = pipes_modified(state);
 5462	int ret, i;
 5463
 5464	/*
 5465	 * When we distrust bios wm we always need to recompute to set the
 5466	 * expected DDB allocations for each CRTC.
 5467	 */
 5468	if (dev_priv->wm.distrust_bios_wm)
 5469		(*changed) = true;
 5470
 5471	/*
 5472	 * If this transaction isn't actually touching any CRTC's, don't
 5473	 * bother with watermark calculation.  Note that if we pass this
 5474	 * test, we're guaranteed to hold at least one CRTC state mutex,
 5475	 * which means we can safely use values like dev_priv->active_crtcs
 5476	 * since any racing commits that want to update them would need to
 5477	 * hold _all_ CRTC state mutexes.
 5478	 */
 5479	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
 5480		(*changed) = true;
 5481
 5482	if (!*changed)
 5483		return 0;
 5484
 5485	/*
 5486	 * If this is our first atomic update following hardware readout,
 5487	 * we can't trust the DDB that the BIOS programmed for us.  Let's
 5488	 * pretend that all pipes switched active status so that we'll
 5489	 * ensure a full DDB recompute.
 5490	 */
 5491	if (dev_priv->wm.distrust_bios_wm) {
 5492		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
 5493				       state->base.acquire_ctx);
 5494		if (ret)
 5495			return ret;
 5496
 5497		state->active_pipe_changes = ~0;
 5498
 5499		/*
 5500		 * We usually only initialize state->active_crtcs if we
 5501		 * we're doing a modeset; make sure this field is always
 5502		 * initialized during the sanitization process that happens
 5503		 * on the first commit too.
 5504		 */
 5505		if (!state->modeset)
 5506			state->active_crtcs = dev_priv->active_crtcs;
 5507	}
 5508
 5509	/*
 5510	 * If the modeset changes which CRTC's are active, we need to
 5511	 * recompute the DDB allocation for *all* active pipes, even
 5512	 * those that weren't otherwise being modified in any way by this
 5513	 * atomic commit.  Due to the shrinking of the per-pipe allocations
 5514	 * when new active CRTC's are added, it's possible for a pipe that
 5515	 * we were already using and aren't changing at all here to suddenly
 5516	 * become invalid if its DDB needs exceeds its new allocation.
 5517	 *
 5518	 * Note that if we wind up doing a full DDB recompute, we can't let
 5519	 * any other display updates race with this transaction, so we need
 5520	 * to grab the lock on *all* CRTC's.
 5521	 */
 5522	if (state->active_pipe_changes || state->modeset) {
 5523		realloc_pipes = ~0;
 5524		state->wm_results.dirty_pipes = ~0;
 5525	}
 5526
 5527	/*
 5528	 * We're not recomputing for the pipes not included in the commit, so
 5529	 * make sure we start with the current state.
 5530	 */
 5531	for_each_intel_crtc_mask(dev, crtc, realloc_pipes) {
 5532		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
 5533		if (IS_ERR(crtc_state))
 5534			return PTR_ERR(crtc_state);
 5535	}
 5536
 5537	return 0;
 5538}
 5539
 5540/*
 5541 * To make sure the cursor watermark registers are always consistent
 5542 * with our computed state the following scenario needs special
 5543 * treatment:
 5544 *
 5545 * 1. enable cursor
 5546 * 2. move cursor entirely offscreen
 5547 * 3. disable cursor
 5548 *
 5549 * Step 2. does call .disable_plane() but does not zero the watermarks
 5550 * (since we consider an offscreen cursor still active for the purposes
 5551 * of watermarks). Step 3. would not normally call .disable_plane()
 5552 * because the actual plane visibility isn't changing, and we don't
 5553 * deallocate the cursor ddb until the pipe gets disabled. So we must
 5554 * force step 3. to call .disable_plane() to update the watermark
 5555 * registers properly.
 5556 *
 5557 * Other planes do not suffer from this issues as their watermarks are
 5558 * calculated based on the actual plane visibility. The only time this
 5559 * can trigger for the other planes is during the initial readout as the
 5560 * default value of the watermarks registers is not zero.
 5561 */
 5562static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
 5563				      struct intel_crtc *crtc)
 5564{
 5565	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 5566	const struct intel_crtc_state *old_crtc_state =
 5567		intel_atomic_get_old_crtc_state(state, crtc);
 5568	struct intel_crtc_state *new_crtc_state =
 5569		intel_atomic_get_new_crtc_state(state, crtc);
 5570	struct intel_plane *plane;
 5571
 5572	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
 5573		struct intel_plane_state *plane_state;
 5574		enum plane_id plane_id = plane->id;
 5575
 5576		/*
 5577		 * Force a full wm update for every plane on modeset.
 5578		 * Required because the reset value of the wm registers
 5579		 * is non-zero, whereas we want all disabled planes to
 5580		 * have zero watermarks. So if we turn off the relevant
 5581		 * power well the hardware state will go out of sync
 5582		 * with the software state.
 5583		 */
 5584		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->base) &&
 5585		    skl_plane_wm_equals(dev_priv,
 5586					&old_crtc_state->wm.skl.optimal.planes[plane_id],
 5587					&new_crtc_state->wm.skl.optimal.planes[plane_id]))
 5588			continue;
 5589
 5590		plane_state = intel_atomic_get_plane_state(state, plane);
 5591		if (IS_ERR(plane_state))
 5592			return PTR_ERR(plane_state);
 5593
 5594		new_crtc_state->update_planes |= BIT(plane_id);
 5595	}
 5596
 5597	return 0;
 5598}
 5599
 5600static int
 5601skl_compute_wm(struct intel_atomic_state *state)
 5602{
 5603	struct intel_crtc *crtc;
 5604	struct intel_crtc_state *new_crtc_state;
 5605	struct intel_crtc_state *old_crtc_state;
 5606	struct skl_ddb_values *results = &state->wm_results;
 5607	bool changed = false;
 5608	int ret, i;
 5609
 5610	/* Clear all dirty flags */
 5611	results->dirty_pipes = 0;
 5612
 5613	ret = skl_ddb_add_affected_pipes(state, &changed);
 5614	if (ret || !changed)
 5615		return ret;
 5616
 5617	/*
 5618	 * Calculate WM's for all pipes that are part of this transaction.
 5619	 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
 5620	 * weren't otherwise being modified (and set bits in dirty_pipes) if
 5621	 * pipe allocations had to change.
 5622	 */
 5623	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
 5624					    new_crtc_state, i) {
 5625		ret = skl_build_pipe_wm(new_crtc_state);
 5626		if (ret)
 5627			return ret;
 5628
 5629		ret = skl_wm_add_affected_planes(state, crtc);
 5630		if (ret)
 5631			return ret;
 5632
 5633		if (!skl_pipe_wm_equals(crtc,
 5634					&old_crtc_state->wm.skl.optimal,
 5635					&new_crtc_state->wm.skl.optimal))
 5636			results->dirty_pipes |= drm_crtc_mask(&crtc->base);
 5637	}
 5638
 5639	ret = skl_compute_ddb(state);
 5640	if (ret)
 5641		return ret;
 5642
 5643	skl_print_wm_changes(state);
 5644
 5645	return 0;
 5646}
 5647
 5648static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
 5649				      struct intel_crtc_state *crtc_state)
 5650{
 5651	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
 5652	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
 5653	struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
 5654	enum pipe pipe = crtc->pipe;
 5655
 5656	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
 5657		return;
 5658
 5659	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
 5660}
 5661
 5662static void skl_initial_wm(struct intel_atomic_state *state,
 5663			   struct intel_crtc_state *crtc_state)
 5664{
 5665	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
 5666	struct drm_device *dev = intel_crtc->base.dev;
 5667	struct drm_i915_private *dev_priv = to_i915(dev);
 5668	struct skl_ddb_values *results = &state->wm_results;
 5669
 5670	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
 5671		return;
 5672
 5673	mutex_lock(&dev_priv->wm.wm_mutex);
 5674
 5675	if (crtc_state->base.active_changed)
 5676		skl_atomic_update_crtc_wm(state, crtc_state);
 5677
 5678	mutex_unlock(&dev_priv->wm.wm_mutex);
 5679}
 5680
 5681static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
 5682				  struct intel_wm_config *config)
 5683{
 5684	struct intel_crtc *crtc;
 5685
 5686	/* Compute the currently _active_ config */
 5687	for_each_intel_crtc(&dev_priv->drm, crtc) {
 5688		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
 5689
 5690		if (!wm->pipe_enabled)
 5691			continue;
 5692
 5693		config->sprites_enabled |= wm->sprites_enabled;
 5694		config->sprites_scaled |= wm->sprites_scaled;
 5695		config->num_pipes_active++;
 5696	}
 5697}
 5698
 5699static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
 5700{
 5701	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
 5702	struct ilk_wm_maximums max;
 5703	struct intel_wm_config config = {};
 5704	struct ilk_wm_values results = {};
 5705	enum intel_ddb_partitioning partitioning;
 5706
 5707	ilk_compute_wm_config(dev_priv, &config);
 5708
 5709	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
 5710	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
 5711
 5712	/* 5/6 split only in single pipe config on IVB+ */
 5713	if (INTEL_GEN(dev_priv) >= 7 &&
 5714	    config.num_pipes_active == 1 && config.sprites_enabled) {
 5715		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
 5716		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
 5717
 5718		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
 5719	} else {
 5720		best_lp_wm = &lp_wm_1_2;
 5721	}
 5722
 5723	partitioning = (best_lp_wm == &lp_wm_1_2) ?
 5724		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
 5725
 5726	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
 5727
 5728	ilk_write_wm_values(dev_priv, &results);
 5729}
 5730
 5731static void ilk_initial_watermarks(struct intel_atomic_state *state,
 5732				   struct intel_crtc_state *crtc_state)
 5733{
 5734	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
 5735	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
 5736
 5737	mutex_lock(&dev_priv->wm.wm_mutex);
 5738	crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
 5739	ilk_program_watermarks(dev_priv);
 5740	mutex_unlock(&dev_priv->wm.wm_mutex);
 5741}
 5742
 5743static void ilk_optimize_watermarks(struct intel_atomic_state *state,
 5744				    struct intel_crtc_state *crtc_state)
 5745{
 5746	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
 5747	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
 5748
 5749	if (!crtc_state->wm.need_postvbl_update)
 5750		return;
 5751
 5752	mutex_lock(&dev_priv->wm.wm_mutex);
 5753	crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
 5754	ilk_program_watermarks(dev_priv);
 5755	mutex_unlock(&dev_priv->wm.wm_mutex);
 5756}
 5757
 5758static inline void skl_wm_level_from_reg_val(u32 val,
 5759					     struct skl_wm_level *level)
 5760{
 5761	level->plane_en = val & PLANE_WM_EN;
 5762	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
 5763	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
 5764	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
 5765		PLANE_WM_LINES_MASK;
 5766}
 5767
 5768void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
 5769			      struct skl_pipe_wm *out)
 5770{
 5771	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 5772	enum pipe pipe = crtc->pipe;
 5773	int level, max_level;
 5774	enum plane_id plane_id;
 5775	u32 val;
 5776
 5777	max_level = ilk_wm_max_level(dev_priv);
 5778
 5779	for_each_plane_id_on_crtc(crtc, plane_id) {
 5780		struct skl_plane_wm *wm = &out->planes[plane_id];
 5781
 5782		for (level = 0; level <= max_level; level++) {
 5783			if (plane_id != PLANE_CURSOR)
 5784				val = I915_READ(PLANE_WM(pipe, plane_id, level));
 5785			else
 5786				val = I915_READ(CUR_WM(pipe, level));
 5787
 5788			skl_wm_level_from_reg_val(val, &wm->wm[level]);
 5789		}
 5790
 5791		if (plane_id != PLANE_CURSOR)
 5792			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
 5793		else
 5794			val = I915_READ(CUR_WM_TRANS(pipe));
 5795
 5796		skl_wm_level_from_reg_val(val, &wm->trans_wm);
 5797	}
 5798
 5799	if (!crtc->active)
 5800		return;
 5801
 5802	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
 5803}
 5804
 5805void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
 5806{
 5807	struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
 5808	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
 5809	struct intel_crtc *crtc;
 5810	struct intel_crtc_state *crtc_state;
 5811
 5812	skl_ddb_get_hw_state(dev_priv, ddb);
 5813	for_each_intel_crtc(&dev_priv->drm, crtc) {
 5814		crtc_state = to_intel_crtc_state(crtc->base.state);
 5815
 5816		skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
 5817
 5818		if (crtc->active)
 5819			hw->dirty_pipes |= drm_crtc_mask(&crtc->base);
 5820	}
 5821
 5822	if (dev_priv->active_crtcs) {
 5823		/* Fully recompute DDB on first atomic commit */
 5824		dev_priv->wm.distrust_bios_wm = true;
 5825	}
 5826}
 5827
 5828static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
 5829{
 5830	struct drm_device *dev = crtc->base.dev;
 5831	struct drm_i915_private *dev_priv = to_i915(dev);
 5832	struct ilk_wm_values *hw = &dev_priv->wm.hw;
 5833	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
 5834	struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
 5835	enum pipe pipe = crtc->pipe;
 5836	static const i915_reg_t wm0_pipe_reg[] = {
 5837		[PIPE_A] = WM0_PIPEA_ILK,
 5838		[PIPE_B] = WM0_PIPEB_ILK,
 5839		[PIPE_C] = WM0_PIPEC_IVB,
 5840	};
 5841
 5842	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
 5843	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
 5844		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
 5845
 5846	memset(active, 0, sizeof(*active));
 5847
 5848	active->pipe_enabled = crtc->active;
 5849
 5850	if (active->pipe_enabled) {
 5851		u32 tmp = hw->wm_pipe[pipe];
 5852
 5853		/*
 5854		 * For active pipes LP0 watermark is marked as
 5855		 * enabled, and LP1+ watermaks as disabled since
 5856		 * we can't really reverse compute them in case
 5857		 * multiple pipes are active.
 5858		 */
 5859		active->wm[0].enable = true;
 5860		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
 5861		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
 5862		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
 5863		active->linetime = hw->wm_linetime[pipe];
 5864	} else {
 5865		int level, max_level = ilk_wm_max_level(dev_priv);
 5866
 5867		/*
 5868		 * For inactive pipes, all watermark levels
 5869		 * should be marked as enabled but zeroed,
 5870		 * which is what we'd compute them to.
 5871		 */
 5872		for (level = 0; level <= max_level; level++)
 5873			active->wm[level].enable = true;
 5874	}
 5875
 5876	crtc->wm.active.ilk = *active;
 5877}
 5878
 5879#define _FW_WM(value, plane) \
 5880	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
 5881#define _FW_WM_VLV(value, plane) \
 5882	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
 5883
 5884static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
 5885			       struct g4x_wm_values *wm)
 5886{
 5887	u32 tmp;
 5888
 5889	tmp = I915_READ(DSPFW1);
 5890	wm->sr.plane = _FW_WM(tmp, SR);
 5891	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
 5892	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
 5893	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
 5894
 5895	tmp = I915_READ(DSPFW2);
 5896	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
 5897	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
 5898	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
 5899	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
 5900	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
 5901	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
 5902
 5903	tmp = I915_READ(DSPFW3);
 5904	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
 5905	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
 5906	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
 5907	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
 5908}
 5909
 5910static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
 5911			       struct vlv_wm_values *wm)
 5912{
 5913	enum pipe pipe;
 5914	u32 tmp;
 5915
 5916	for_each_pipe(dev_priv, pipe) {
 5917		tmp = I915_READ(VLV_DDL(pipe));
 5918
 5919		wm->ddl[pipe].plane[PLANE_PRIMARY] =
 5920			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
 5921		wm->ddl[pipe].plane[PLANE_CURSOR] =
 5922			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
 5923		wm->ddl[pipe].plane[PLANE_SPRITE0] =
 5924			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
 5925		wm->ddl[pipe].plane[PLANE_SPRITE1] =
 5926			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
 5927	}
 5928
 5929	tmp = I915_READ(DSPFW1);
 5930	wm->sr.plane = _FW_WM(tmp, SR);
 5931	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
 5932	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
 5933	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
 5934
 5935	tmp = I915_READ(DSPFW2);
 5936	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
 5937	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
 5938	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
 5939
 5940	tmp = I915_READ(DSPFW3);
 5941	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
 5942
 5943	if (IS_CHERRYVIEW(dev_priv)) {
 5944		tmp = I915_READ(DSPFW7_CHV);
 5945		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
 5946		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
 5947
 5948		tmp = I915_READ(DSPFW8_CHV);
 5949		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
 5950		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
 5951
 5952		tmp = I915_READ(DSPFW9_CHV);
 5953		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
 5954		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
 5955
 5956		tmp = I915_READ(DSPHOWM);
 5957		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
 5958		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
 5959		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
 5960		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
 5961		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
 5962		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
 5963		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
 5964		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
 5965		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
 5966		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
 5967	} else {
 5968		tmp = I915_READ(DSPFW7);
 5969		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
 5970		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
 5971
 5972		tmp = I915_READ(DSPHOWM);
 5973		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
 5974		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
 5975		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
 5976		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
 5977		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
 5978		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
 5979		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
 5980	}
 5981}
 5982
 5983#undef _FW_WM
 5984#undef _FW_WM_VLV
 5985
 5986void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
 5987{
 5988	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
 5989	struct intel_crtc *crtc;
 5990
 5991	g4x_read_wm_values(dev_priv, wm);
 5992
 5993	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
 5994
 5995	for_each_intel_crtc(&dev_priv->drm, crtc) {
 5996		struct intel_crtc_state *crtc_state =
 5997			to_intel_crtc_state(crtc->base.state);
 5998		struct g4x_wm_state *active = &crtc->wm.active.g4x;
 5999		struct g4x_pipe_wm *raw;
 6000		enum pipe pipe = crtc->pipe;
 6001		enum plane_id plane_id;
 6002		int level, max_level;
 6003
 6004		active->cxsr = wm->cxsr;
 6005		active->hpll_en = wm->hpll_en;
 6006		active->fbc_en = wm->fbc_en;
 6007
 6008		active->sr = wm->sr;
 6009		active->hpll = wm->hpll;
 6010
 6011		for_each_plane_id_on_crtc(crtc, plane_id) {
 6012			active->wm.plane[plane_id] =
 6013				wm->pipe[pipe].plane[plane_id];
 6014		}
 6015
 6016		if (wm->cxsr && wm->hpll_en)
 6017			max_level = G4X_WM_LEVEL_HPLL;
 6018		else if (wm->cxsr)
 6019			max_level = G4X_WM_LEVEL_SR;
 6020		else
 6021			max_level = G4X_WM_LEVEL_NORMAL;
 6022
 6023		level = G4X_WM_LEVEL_NORMAL;
 6024		raw = &crtc_state->wm.g4x.raw[level];
 6025		for_each_plane_id_on_crtc(crtc, plane_id)
 6026			raw->plane[plane_id] = active->wm.plane[plane_id];
 6027
 6028		if (++level > max_level)
 6029			goto out;
 6030
 6031		raw = &crtc_state->wm.g4x.raw[level];
 6032		raw->plane[PLANE_PRIMARY] = active->sr.plane;
 6033		raw->plane[PLANE_CURSOR] = active->sr.cursor;
 6034		raw->plane[PLANE_SPRITE0] = 0;
 6035		raw->fbc = active->sr.fbc;
 6036
 6037		if (++level > max_level)
 6038			goto out;
 6039
 6040		raw = &crtc_state->wm.g4x.raw[level];
 6041		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
 6042		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
 6043		raw->plane[PLANE_SPRITE0] = 0;
 6044		raw->fbc = active->hpll.fbc;
 6045
 6046	out:
 6047		for_each_plane_id_on_crtc(crtc, plane_id)
 6048			g4x_raw_plane_wm_set(crtc_state, level,
 6049					     plane_id, USHRT_MAX);
 6050		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
 6051
 6052		crtc_state->wm.g4x.optimal = *active;
 6053		crtc_state->wm.g4x.intermediate = *active;
 6054
 6055		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
 6056			      pipe_name(pipe),
 6057			      wm->pipe[pipe].plane[PLANE_PRIMARY],
 6058			      wm->pipe[pipe].plane[PLANE_CURSOR],
 6059			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
 6060	}
 6061
 6062	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
 6063		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
 6064	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
 6065		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
 6066	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
 6067		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
 6068}
 6069
 6070void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
 6071{
 6072	struct intel_plane *plane;
 6073	struct intel_crtc *crtc;
 6074
 6075	mutex_lock(&dev_priv->wm.wm_mutex);
 6076
 6077	for_each_intel_plane(&dev_priv->drm, plane) {
 6078		struct intel_crtc *crtc =
 6079			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
 6080		struct intel_crtc_state *crtc_state =
 6081			to_intel_crtc_state(crtc->base.state);
 6082		struct intel_plane_state *plane_state =
 6083			to_intel_plane_state(plane->base.state);
 6084		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
 6085		enum plane_id plane_id = plane->id;
 6086		int level;
 6087
 6088		if (plane_state->base.visible)
 6089			continue;
 6090
 6091		for (level = 0; level < 3; level++) {
 6092			struct g4x_pipe_wm *raw =
 6093				&crtc_state->wm.g4x.raw[level];
 6094
 6095			raw->plane[plane_id] = 0;
 6096			wm_state->wm.plane[plane_id] = 0;
 6097		}
 6098
 6099		if (plane_id == PLANE_PRIMARY) {
 6100			for (level = 0; level < 3; level++) {
 6101				struct g4x_pipe_wm *raw =
 6102					&crtc_state->wm.g4x.raw[level];
 6103				raw->fbc = 0;
 6104			}
 6105
 6106			wm_state->sr.fbc = 0;
 6107			wm_state->hpll.fbc = 0;
 6108			wm_state->fbc_en = false;
 6109		}
 6110	}
 6111
 6112	for_each_intel_crtc(&dev_priv->drm, crtc) {
 6113		struct intel_crtc_state *crtc_state =
 6114			to_intel_crtc_state(crtc->base.state);
 6115
 6116		crtc_state->wm.g4x.intermediate =
 6117			crtc_state->wm.g4x.optimal;
 6118		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
 6119	}
 6120
 6121	g4x_program_watermarks(dev_priv);
 6122
 6123	mutex_unlock(&dev_priv->wm.wm_mutex);
 6124}
 6125
 6126void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
 6127{
 6128	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
 6129	struct intel_crtc *crtc;
 6130	u32 val;
 6131
 6132	vlv_read_wm_values(dev_priv, wm);
 6133
 6134	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
 6135	wm->level = VLV_WM_LEVEL_PM2;
 6136
 6137	if (IS_CHERRYVIEW(dev_priv)) {
 6138		vlv_punit_get(dev_priv);
 6139
 6140		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
 6141		if (val & DSP_MAXFIFO_PM5_ENABLE)
 6142			wm->level = VLV_WM_LEVEL_PM5;
 6143
 6144		/*
 6145		 * If DDR DVFS is disabled in the BIOS, Punit
 6146		 * will never ack the request. So if that happens
 6147		 * assume we don't have to enable/disable DDR DVFS
 6148		 * dynamically. To test that just set the REQ_ACK
 6149		 * bit to poke the Punit, but don't change the
 6150		 * HIGH/LOW bits so that we don't actually change
 6151		 * the current state.
 6152		 */
 6153		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
 6154		val |= FORCE_DDR_FREQ_REQ_ACK;
 6155		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
 6156
 6157		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
 6158			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
 6159			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
 6160				      "assuming DDR DVFS is disabled\n");
 6161			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
 6162		} else {
 6163			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
 6164			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
 6165				wm->level = VLV_WM_LEVEL_DDR_DVFS;
 6166		}
 6167
 6168		vlv_punit_put(dev_priv);
 6169	}
 6170
 6171	for_each_intel_crtc(&dev_priv->drm, crtc) {
 6172		struct intel_crtc_state *crtc_state =
 6173			to_intel_crtc_state(crtc->base.state);
 6174		struct vlv_wm_state *active = &crtc->wm.active.vlv;
 6175		const struct vlv_fifo_state *fifo_state =
 6176			&crtc_state->wm.vlv.fifo_state;
 6177		enum pipe pipe = crtc->pipe;
 6178		enum plane_id plane_id;
 6179		int level;
 6180
 6181		vlv_get_fifo_size(crtc_state);
 6182
 6183		active->num_levels = wm->level + 1;
 6184		active->cxsr = wm->cxsr;
 6185
 6186		for (level = 0; level < active->num_levels; level++) {
 6187			struct g4x_pipe_wm *raw =
 6188				&crtc_state->wm.vlv.raw[level];
 6189
 6190			active->sr[level].plane = wm->sr.plane;
 6191			active->sr[level].cursor = wm->sr.cursor;
 6192
 6193			for_each_plane_id_on_crtc(crtc, plane_id) {
 6194				active->wm[level].plane[plane_id] =
 6195					wm->pipe[pipe].plane[plane_id];
 6196
 6197				raw->plane[plane_id] =
 6198					vlv_invert_wm_value(active->wm[level].plane[plane_id],
 6199							    fifo_state->plane[plane_id]);
 6200			}
 6201		}
 6202
 6203		for_each_plane_id_on_crtc(crtc, plane_id)
 6204			vlv_raw_plane_wm_set(crtc_state, level,
 6205					     plane_id, USHRT_MAX);
 6206		vlv_invalidate_wms(crtc, active, level);
 6207
 6208		crtc_state->wm.vlv.optimal = *active;
 6209		crtc_state->wm.vlv.intermediate = *active;
 6210
 6211		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
 6212			      pipe_name(pipe),
 6213			      wm->pipe[pipe].plane[PLANE_PRIMARY],
 6214			      wm->pipe[pipe].plane[PLANE_CURSOR],
 6215			      wm->pipe[pipe].plane[PLANE_SPRITE0],
 6216			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
 6217	}
 6218
 6219	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
 6220		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
 6221}
 6222
 6223void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
 6224{
 6225	struct intel_plane *plane;
 6226	struct intel_crtc *crtc;
 6227
 6228	mutex_lock(&dev_priv->wm.wm_mutex);
 6229
 6230	for_each_intel_plane(&dev_priv->drm, plane) {
 6231		struct intel_crtc *crtc =
 6232			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
 6233		struct intel_crtc_state *crtc_state =
 6234			to_intel_crtc_state(crtc->base.state);
 6235		struct intel_plane_state *plane_state =
 6236			to_intel_plane_state(plane->base.state);
 6237		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
 6238		const struct vlv_fifo_state *fifo_state =
 6239			&crtc_state->wm.vlv.fifo_state;
 6240		enum plane_id plane_id = plane->id;
 6241		int level;
 6242
 6243		if (plane_state->base.visible)
 6244			continue;
 6245
 6246		for (level = 0; level < wm_state->num_levels; level++) {
 6247			struct g4x_pipe_wm *raw =
 6248				&crtc_state->wm.vlv.raw[level];
 6249
 6250			raw->plane[plane_id] = 0;
 6251
 6252			wm_state->wm[level].plane[plane_id] =
 6253				vlv_invert_wm_value(raw->plane[plane_id],
 6254						    fifo_state->plane[plane_id]);
 6255		}
 6256	}
 6257
 6258	for_each_intel_crtc(&dev_priv->drm, crtc) {
 6259		struct intel_crtc_state *crtc_state =
 6260			to_intel_crtc_state(crtc->base.state);
 6261
 6262		crtc_state->wm.vlv.intermediate =
 6263			crtc_state->wm.vlv.optimal;
 6264		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
 6265	}
 6266
 6267	vlv_program_watermarks(dev_priv);
 6268
 6269	mutex_unlock(&dev_priv->wm.wm_mutex);
 6270}
 6271
 6272/*
 6273 * FIXME should probably kill this and improve
 6274 * the real watermark readout/sanitation instead
 6275 */
 6276static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
 6277{
 6278	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
 6279	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
 6280	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
 6281
 6282	/*
 6283	 * Don't touch WM1S_LP_EN here.
 6284	 * Doing so could cause underruns.
 6285	 */
 6286}
 6287
 6288void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
 6289{
 
 6290	struct ilk_wm_values *hw = &dev_priv->wm.hw;
 6291	struct intel_crtc *crtc;
 6292
 6293	ilk_init_lp_watermarks(dev_priv);
 6294
 6295	for_each_intel_crtc(&dev_priv->drm, crtc)
 6296		ilk_pipe_wm_get_hw_state(crtc);
 6297
 6298	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
 6299	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
 6300	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
 6301
 6302	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
 6303	if (INTEL_GEN(dev_priv) >= 7) {
 6304		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
 6305		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
 6306	}
 6307
 6308	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
 6309		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
 6310			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
 6311	else if (IS_IVYBRIDGE(dev_priv))
 6312		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
 6313			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
 6314
 6315	hw->enable_fbc_wm =
 6316		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
 6317}
 6318
 6319/**
 6320 * intel_update_watermarks - update FIFO watermark values based on current modes
 6321 * @crtc: the #intel_crtc on which to compute the WM
 6322 *
 6323 * Calculate watermark values for the various WM regs based on current mode
 6324 * and plane configuration.
 6325 *
 6326 * There are several cases to deal with here:
 6327 *   - normal (i.e. non-self-refresh)
 6328 *   - self-refresh (SR) mode
 6329 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 6330 *   - lines are small relative to FIFO size (buffer can hold more than 2
 6331 *     lines), so need to account for TLB latency
 6332 *
 6333 *   The normal calculation is:
 6334 *     watermark = dotclock * bytes per pixel * latency
 6335 *   where latency is platform & configuration dependent (we assume pessimal
 6336 *   values here).
 6337 *
 6338 *   The SR calculation is:
 6339 *     watermark = (trunc(latency/line time)+1) * surface width *
 6340 *       bytes per pixel
 6341 *   where
 6342 *     line time = htotal / dotclock
 6343 *     surface width = hdisplay for normal plane and 64 for cursor
 6344 *   and latency is assumed to be high, as above.
 6345 *
 6346 * The final value programmed to the register should always be rounded up,
 6347 * and include an extra 2 entries to account for clock crossings.
 6348 *
 6349 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 6350 * to set the non-SR watermarks to 8.
 6351 */
 6352void intel_update_watermarks(struct intel_crtc *crtc)
 6353{
 6354	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 6355
 6356	if (dev_priv->display.update_wm)
 6357		dev_priv->display.update_wm(crtc);
 6358}
 6359
 6360void intel_enable_ipc(struct drm_i915_private *dev_priv)
 
 
 
 6361{
 6362	u32 val;
 6363
 6364	if (!HAS_IPC(dev_priv))
 6365		return;
 6366
 6367	val = I915_READ(DISP_ARB_CTL2);
 6368
 6369	if (dev_priv->ipc_enabled)
 6370		val |= DISP_IPC_ENABLE;
 6371	else
 6372		val &= ~DISP_IPC_ENABLE;
 6373
 6374	I915_WRITE(DISP_ARB_CTL2, val);
 6375}
 6376
 6377static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
 
 6378{
 6379	/* Display WA #0477 WaDisableIPC: skl */
 6380	if (IS_SKYLAKE(dev_priv))
 6381		return false;
 6382
 6383	/* Display WA #1141: SKL:all KBL:all CFL */
 6384	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
 6385		return dev_priv->dram_info.symmetric_memory;
 6386
 6387	return true;
 6388}
 
 
 
 6389
 6390void intel_init_ipc(struct drm_i915_private *dev_priv)
 6391{
 6392	if (!HAS_IPC(dev_priv))
 6393		return;
 
 6394
 6395	dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
 
 
 
 
 
 
 6396
 6397	intel_enable_ipc(dev_priv);
 
 
 
 
 6398}
 6399
 6400/*
 6401 * Lock protecting IPS related data structures
 6402 */
 6403DEFINE_SPINLOCK(mchdev_lock);
 6404
 6405bool ironlake_set_drps(struct drm_i915_private *i915, u8 val)
 
 
 
 
 6406{
 6407	struct intel_uncore *uncore = &i915->uncore;
 6408	u16 rgvswctl;
 6409
 6410	lockdep_assert_held(&mchdev_lock);
 6411
 6412	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
 6413	if (rgvswctl & MEMCTL_CMD_STS) {
 6414		DRM_DEBUG("gpu busy, RCS change rejected\n");
 6415		return false; /* still busy with another command */
 6416	}
 6417
 6418	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
 6419		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
 6420	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
 6421	intel_uncore_posting_read16(uncore, MEMSWCTL);
 6422
 6423	rgvswctl |= MEMCTL_CMD_STS;
 6424	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
 6425
 6426	return true;
 6427}
 6428
 6429static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
 6430{
 6431	struct intel_uncore *uncore = &dev_priv->uncore;
 6432	u32 rgvmodectl;
 6433	u8 fmax, fmin, fstart, vstart;
 6434
 6435	spin_lock_irq(&mchdev_lock);
 6436
 6437	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
 6438
 6439	/* Enable temp reporting */
 6440	intel_uncore_write16(uncore, PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
 6441	intel_uncore_write16(uncore, TSC1, I915_READ(TSC1) | TSE);
 6442
 6443	/* 100ms RC evaluation intervals */
 6444	intel_uncore_write(uncore, RCUPEI, 100000);
 6445	intel_uncore_write(uncore, RCDNEI, 100000);
 6446
 6447	/* Set max/min thresholds to 90ms and 80ms respectively */
 6448	intel_uncore_write(uncore, RCBMAXAVG, 90000);
 6449	intel_uncore_write(uncore, RCBMINAVG, 80000);
 6450
 6451	intel_uncore_write(uncore, MEMIHYST, 1);
 6452
 6453	/* Set up min, max, and cur for interrupt handling */
 6454	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
 6455	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
 6456	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
 6457		MEMMODE_FSTART_SHIFT;
 6458
 6459	vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
 6460		  PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
 6461
 6462	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
 6463	dev_priv->ips.fstart = fstart;
 6464
 6465	dev_priv->ips.max_delay = fstart;
 6466	dev_priv->ips.min_delay = fmin;
 6467	dev_priv->ips.cur_delay = fstart;
 6468
 6469	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
 6470			 fmax, fmin, fstart);
 6471
 6472	intel_uncore_write(uncore,
 6473			   MEMINTREN,
 6474			   MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
 6475
 6476	/*
 6477	 * Interrupts will be enabled in ironlake_irq_postinstall
 6478	 */
 6479
 6480	intel_uncore_write(uncore, VIDSTART, vstart);
 6481	intel_uncore_posting_read(uncore, VIDSTART);
 6482
 6483	rgvmodectl |= MEMMODE_SWMODE_EN;
 6484	intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
 6485
 6486	if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
 6487			     MEMCTL_CMD_STS) == 0, 10))
 6488		DRM_ERROR("stuck trying to change perf mode\n");
 6489	mdelay(1);
 6490
 6491	ironlake_set_drps(dev_priv, fstart);
 6492
 6493	dev_priv->ips.last_count1 =
 6494		intel_uncore_read(uncore, DMIEC) +
 6495		intel_uncore_read(uncore, DDREC) +
 6496		intel_uncore_read(uncore, CSIEC);
 6497	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
 6498	dev_priv->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
 6499	dev_priv->ips.last_time2 = ktime_get_raw_ns();
 6500
 6501	spin_unlock_irq(&mchdev_lock);
 6502}
 6503
 6504static void ironlake_disable_drps(struct drm_i915_private *i915)
 6505{
 6506	struct intel_uncore *uncore = &i915->uncore;
 6507	u16 rgvswctl;
 6508
 6509	spin_lock_irq(&mchdev_lock);
 6510
 6511	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
 6512
 6513	/* Ack interrupts, disable EFC interrupt */
 6514	intel_uncore_write(uncore,
 6515			   MEMINTREN,
 6516			   intel_uncore_read(uncore, MEMINTREN) &
 6517			   ~MEMINT_EVAL_CHG_EN);
 6518	intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
 6519	intel_uncore_write(uncore,
 6520			   DEIER,
 6521			   intel_uncore_read(uncore, DEIER) & ~DE_PCU_EVENT);
 6522	intel_uncore_write(uncore, DEIIR, DE_PCU_EVENT);
 6523	intel_uncore_write(uncore,
 6524			   DEIMR,
 6525			   intel_uncore_read(uncore, DEIMR) | DE_PCU_EVENT);
 6526
 6527	/* Go back to the starting frequency */
 6528	ironlake_set_drps(i915, i915->ips.fstart);
 6529	mdelay(1);
 6530	rgvswctl |= MEMCTL_CMD_STS;
 6531	intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
 6532	mdelay(1);
 6533
 6534	spin_unlock_irq(&mchdev_lock);
 6535}
 6536
 6537/* There's a funny hw issue where the hw returns all 0 when reading from
 6538 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 6539 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 6540 * all limits and the gpu stuck at whatever frequency it is at atm).
 6541 */
 6542static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
 6543{
 6544	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 6545	u32 limits;
 6546
 6547	/* Only set the down limit when we've reached the lowest level to avoid
 6548	 * getting more interrupts, otherwise leave this clear. This prevents a
 6549	 * race in the hw when coming out of rc6: There's a tiny window where
 6550	 * the hw runs at the minimal clock before selecting the desired
 6551	 * frequency, if the down threshold expires in that window we will not
 6552	 * receive a down interrupt. */
 6553	if (INTEL_GEN(dev_priv) >= 9) {
 6554		limits = (rps->max_freq_softlimit) << 23;
 6555		if (val <= rps->min_freq_softlimit)
 6556			limits |= (rps->min_freq_softlimit) << 14;
 6557	} else {
 6558		limits = rps->max_freq_softlimit << 24;
 6559		if (val <= rps->min_freq_softlimit)
 6560			limits |= rps->min_freq_softlimit << 16;
 6561	}
 6562
 6563	return limits;
 6564}
 6565
 6566static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
 6567{
 6568	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 6569	u32 threshold_up = 0, threshold_down = 0; /* in % */
 6570	u32 ei_up = 0, ei_down = 0;
 
 
 
 
 
 6571
 6572	lockdep_assert_held(&rps->power.mutex);
 
 
 
 
 
 6573
 6574	if (new_power == rps->power.mode)
 
 
 
 
 
 
 
 
 
 
 6575		return;
 6576
 6577	/* Note the units here are not exactly 1us, but 1280ns. */
 6578	switch (new_power) {
 6579	case LOW_POWER:
 6580		/* Upclock if more than 95% busy over 16ms */
 6581		ei_up = 16000;
 6582		threshold_up = 95;
 6583
 6584		/* Downclock if less than 85% busy over 32ms */
 6585		ei_down = 32000;
 6586		threshold_down = 85;
 
 
 
 
 
 
 
 
 6587		break;
 6588
 6589	case BETWEEN:
 6590		/* Upclock if more than 90% busy over 13ms */
 6591		ei_up = 13000;
 6592		threshold_up = 90;
 6593
 6594		/* Downclock if less than 75% busy over 32ms */
 6595		ei_down = 32000;
 6596		threshold_down = 75;
 
 
 
 
 
 
 
 
 6597		break;
 6598
 6599	case HIGH_POWER:
 6600		/* Upclock if more than 85% busy over 10ms */
 6601		ei_up = 10000;
 6602		threshold_up = 85;
 6603
 6604		/* Downclock if less than 60% busy over 32ms */
 6605		ei_down = 32000;
 6606		threshold_down = 60;
 6607		break;
 6608	}
 6609
 6610	/* When byt can survive without system hang with dynamic
 6611	 * sw freq adjustments, this restriction can be lifted.
 6612	 */
 6613	if (IS_VALLEYVIEW(dev_priv))
 6614		goto skip_hw_write;
 6615
 6616	I915_WRITE(GEN6_RP_UP_EI,
 6617		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
 6618	I915_WRITE(GEN6_RP_UP_THRESHOLD,
 6619		   GT_INTERVAL_FROM_US(dev_priv,
 6620				       ei_up * threshold_up / 100));
 6621
 6622	I915_WRITE(GEN6_RP_DOWN_EI,
 6623		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
 6624	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
 6625		   GT_INTERVAL_FROM_US(dev_priv,
 6626				       ei_down * threshold_down / 100));
 6627
 6628	I915_WRITE(GEN6_RP_CONTROL,
 6629		   (INTEL_GEN(dev_priv) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
 6630		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
 6631		   GEN6_RP_MEDIA_IS_GFX |
 6632		   GEN6_RP_ENABLE |
 6633		   GEN6_RP_UP_BUSY_AVG |
 6634		   GEN6_RP_DOWN_IDLE_AVG);
 6635
 6636skip_hw_write:
 6637	rps->power.mode = new_power;
 6638	rps->power.up_threshold = threshold_up;
 6639	rps->power.down_threshold = threshold_down;
 6640}
 6641
 6642static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
 6643{
 6644	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 6645	int new_power;
 6646
 6647	new_power = rps->power.mode;
 6648	switch (rps->power.mode) {
 6649	case LOW_POWER:
 6650		if (val > rps->efficient_freq + 1 &&
 6651		    val > rps->cur_freq)
 6652			new_power = BETWEEN;
 6653		break;
 6654
 6655	case BETWEEN:
 6656		if (val <= rps->efficient_freq &&
 6657		    val < rps->cur_freq)
 6658			new_power = LOW_POWER;
 6659		else if (val >= rps->rp0_freq &&
 6660			 val > rps->cur_freq)
 6661			new_power = HIGH_POWER;
 6662		break;
 6663
 6664	case HIGH_POWER:
 6665		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
 6666		    val < rps->cur_freq)
 6667			new_power = BETWEEN;
 
 
 
 6668		break;
 6669	}
 6670	/* Max/min bins are special */
 6671	if (val <= rps->min_freq_softlimit)
 6672		new_power = LOW_POWER;
 6673	if (val >= rps->max_freq_softlimit)
 6674		new_power = HIGH_POWER;
 6675
 6676	mutex_lock(&rps->power.mutex);
 6677	if (rps->power.interactive)
 6678		new_power = HIGH_POWER;
 6679	rps_set_power(dev_priv, new_power);
 6680	mutex_unlock(&rps->power.mutex);
 6681}
 6682
 6683void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
 6684{
 6685	struct intel_rps *rps = &i915->gt_pm.rps;
 6686
 6687	if (INTEL_GEN(i915) < 6)
 6688		return;
 6689
 6690	mutex_lock(&rps->power.mutex);
 6691	if (interactive) {
 6692		if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
 6693			rps_set_power(i915, HIGH_POWER);
 6694	} else {
 6695		GEM_BUG_ON(!rps->power.interactive);
 6696		rps->power.interactive--;
 6697	}
 6698	mutex_unlock(&rps->power.mutex);
 6699}
 6700
 6701static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
 6702{
 6703	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 6704	u32 mask = 0;
 6705
 6706	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
 6707	if (val > rps->min_freq_softlimit)
 6708		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
 6709	if (val < rps->max_freq_softlimit)
 6710		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
 6711
 6712	mask &= dev_priv->pm_rps_events;
 
 
 
 
 6713
 6714	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
 6715}
 6716
 6717/* gen6_set_rps is called to update the frequency request, but should also be
 6718 * called when the range (min_delay and max_delay) is modified so that we can
 6719 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
 6720static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
 6721{
 6722	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 
 
 
 
 6723
 6724	/* min/max delay may still have been modified so be sure to
 6725	 * write the limits value.
 6726	 */
 6727	if (val != rps->cur_freq) {
 6728		gen6_set_rps_thresholds(dev_priv, val);
 6729
 6730		if (INTEL_GEN(dev_priv) >= 9)
 6731			I915_WRITE(GEN6_RPNSWREQ,
 6732				   GEN9_FREQUENCY(val));
 6733		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
 6734			I915_WRITE(GEN6_RPNSWREQ,
 6735				   HSW_FREQUENCY(val));
 6736		else
 6737			I915_WRITE(GEN6_RPNSWREQ,
 6738				   GEN6_FREQUENCY(val) |
 6739				   GEN6_OFFSET(0) |
 6740				   GEN6_AGGRESSIVE_TURBO);
 6741	}
 6742
 6743	/* Make sure we continue to get interrupts
 6744	 * until we hit the minimum or maximum frequencies.
 6745	 */
 6746	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
 6747	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
 6748
 6749	rps->cur_freq = val;
 6750	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
 6751
 6752	return 0;
 
 6753}
 6754
 6755static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
 6756{
 6757	int err;
 6758
 6759	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
 6760		      "Odd GPU freq value\n"))
 6761		val &= ~1;
 6762
 6763	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
 6764
 6765	if (val != dev_priv->gt_pm.rps.cur_freq) {
 6766		vlv_punit_get(dev_priv);
 6767		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
 6768		vlv_punit_put(dev_priv);
 6769		if (err)
 6770			return err;
 6771
 6772		gen6_set_rps_thresholds(dev_priv, val);
 6773	}
 6774
 6775	dev_priv->gt_pm.rps.cur_freq = val;
 6776	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
 6777
 6778	return 0;
 6779}
 6780
 6781/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
 6782 *
 6783 * * If Gfx is Idle, then
 6784 * 1. Forcewake Media well.
 6785 * 2. Request idle freq.
 6786 * 3. Release Forcewake of Media well.
 
 
 6787*/
 6788static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
 6789{
 6790	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 6791	u32 val = rps->idle_freq;
 6792	int err;
 6793
 6794	if (rps->cur_freq <= val)
 6795		return;
 6796
 6797	/* The punit delays the write of the frequency and voltage until it
 6798	 * determines the GPU is awake. During normal usage we don't want to
 6799	 * waste power changing the frequency if the GPU is sleeping (rc6).
 6800	 * However, the GPU and driver is now idle and we do not want to delay
 6801	 * switching to minimum voltage (reducing power whilst idle) as we do
 6802	 * not expect to be woken in the near future and so must flush the
 6803	 * change by waking the device.
 6804	 *
 6805	 * We choose to take the media powerwell (either would do to trick the
 6806	 * punit into committing the voltage change) as that takes a lot less
 6807	 * power than the render powerwell.
 6808	 */
 6809	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_MEDIA);
 6810	err = valleyview_set_rps(dev_priv, val);
 6811	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_MEDIA);
 6812
 6813	if (err)
 6814		DRM_ERROR("Failed to set RPS for idle\n");
 6815}
 
 6816
 6817void gen6_rps_busy(struct drm_i915_private *dev_priv)
 6818{
 6819	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 
 
 6820
 6821	mutex_lock(&rps->lock);
 6822	if (rps->enabled) {
 6823		u8 freq;
 6824
 6825		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
 6826			gen6_rps_reset_ei(dev_priv);
 6827		I915_WRITE(GEN6_PMINTRMSK,
 6828			   gen6_rps_pm_mask(dev_priv, rps->cur_freq));
 6829
 6830		gen6_enable_rps_interrupts(dev_priv);
 
 
 6831
 6832		/* Use the user's desired frequency as a guide, but for better
 6833		 * performance, jump directly to RPe as our starting frequency.
 6834		 */
 6835		freq = max(rps->cur_freq,
 6836			   rps->efficient_freq);
 6837
 6838		if (intel_set_rps(dev_priv,
 6839				  clamp(freq,
 6840					rps->min_freq_softlimit,
 6841					rps->max_freq_softlimit)))
 6842			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
 6843	}
 6844	mutex_unlock(&rps->lock);
 6845}
 6846
 6847void gen6_rps_idle(struct drm_i915_private *dev_priv)
 6848{
 6849	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 6850
 6851	/* Flush our bottom-half so that it does not race with us
 6852	 * setting the idle frequency and so that it is bounded by
 6853	 * our rpm wakeref. And then disable the interrupts to stop any
 6854	 * futher RPS reclocking whilst we are asleep.
 6855	 */
 6856	gen6_disable_rps_interrupts(dev_priv);
 6857
 6858	mutex_lock(&rps->lock);
 6859	if (rps->enabled) {
 6860		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
 6861			vlv_set_rps_idle(dev_priv);
 6862		else
 6863			gen6_set_rps(dev_priv, rps->idle_freq);
 6864		rps->last_adj = 0;
 6865		I915_WRITE(GEN6_PMINTRMSK,
 6866			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
 6867	}
 6868	mutex_unlock(&rps->lock);
 6869}
 6870
 6871void gen6_rps_boost(struct i915_request *rq)
 6872{
 6873	struct intel_rps *rps = &rq->i915->gt_pm.rps;
 6874	unsigned long flags;
 6875	bool boost;
 6876
 6877	/* This is intentionally racy! We peek at the state here, then
 6878	 * validate inside the RPS worker.
 6879	 */
 6880	if (!rps->enabled)
 6881		return;
 6882
 6883	if (i915_request_signaled(rq))
 6884		return;
 6885
 6886	/* Serializes with i915_request_retire() */
 6887	boost = false;
 6888	spin_lock_irqsave(&rq->lock, flags);
 6889	if (!i915_request_has_waitboost(rq) &&
 6890	    !dma_fence_is_signaled_locked(&rq->fence)) {
 6891		boost = !atomic_fetch_inc(&rps->num_waiters);
 6892		rq->flags |= I915_REQUEST_WAITBOOST;
 6893	}
 6894	spin_unlock_irqrestore(&rq->lock, flags);
 6895	if (!boost)
 6896		return;
 6897
 6898	if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
 6899		schedule_work(&rps->work);
 6900
 6901	atomic_inc(&rps->boosts);
 6902}
 6903
 6904int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
 6905{
 6906	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 6907	int err;
 6908
 6909	lockdep_assert_held(&rps->lock);
 6910	GEM_BUG_ON(val > rps->max_freq);
 6911	GEM_BUG_ON(val < rps->min_freq);
 6912
 6913	if (!rps->enabled) {
 6914		rps->cur_freq = val;
 6915		return 0;
 6916	}
 6917
 6918	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
 6919		err = valleyview_set_rps(dev_priv, val);
 6920	else
 6921		err = gen6_set_rps(dev_priv, val);
 6922
 6923	return err;
 6924}
 6925
 6926static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
 6927{
 6928	I915_WRITE(GEN6_RC_CONTROL, 0);
 6929	I915_WRITE(GEN9_PG_ENABLE, 0);
 6930}
 6931
 6932static void gen9_disable_rps(struct drm_i915_private *dev_priv)
 6933{
 6934	I915_WRITE(GEN6_RP_CONTROL, 0);
 6935}
 6936
 6937static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
 6938{
 6939	I915_WRITE(GEN6_RC_CONTROL, 0);
 6940}
 
 
 
 6941
 6942static void gen6_disable_rps(struct drm_i915_private *dev_priv)
 6943{
 6944	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
 6945	I915_WRITE(GEN6_RP_CONTROL, 0);
 6946}
 6947
 6948static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
 6949{
 6950	I915_WRITE(GEN6_RC_CONTROL, 0);
 6951}
 6952
 6953static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
 6954{
 6955	I915_WRITE(GEN6_RP_CONTROL, 0);
 6956}
 6957
 6958static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
 6959{
 6960	/* We're doing forcewake before Disabling RC6,
 6961	 * This what the BIOS expects when going into suspend */
 6962	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
 6963
 6964	I915_WRITE(GEN6_RC_CONTROL, 0);
 
 6965
 6966	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
 6967}
 6968
 6969static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
 6970{
 6971	I915_WRITE(GEN6_RP_CONTROL, 0);
 6972}
 6973
 6974static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
 6975{
 6976	bool enable_rc6 = true;
 6977	unsigned long rc6_ctx_base;
 6978	u32 rc_ctl;
 6979	int rc_sw_target;
 6980
 6981	rc_ctl = I915_READ(GEN6_RC_CONTROL);
 6982	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
 6983		       RC_SW_TARGET_STATE_SHIFT;
 6984	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
 6985			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
 6986			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
 6987			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
 6988			 rc_sw_target);
 6989
 6990	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
 6991		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
 6992		enable_rc6 = false;
 6993	}
 6994
 6995	/*
 6996	 * The exact context size is not known for BXT, so assume a page size
 6997	 * for this check.
 6998	 */
 6999	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
 7000	if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
 7001	      (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
 7002		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
 7003		enable_rc6 = false;
 7004	}
 7005
 7006	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
 7007	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
 7008	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
 7009	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
 7010		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
 7011		enable_rc6 = false;
 7012	}
 7013
 7014	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
 7015	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
 7016	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
 7017		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
 7018		enable_rc6 = false;
 7019	}
 7020
 7021	if (!I915_READ(GEN6_GFXPAUSE)) {
 7022		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
 7023		enable_rc6 = false;
 7024	}
 7025
 7026	if (!I915_READ(GEN8_MISC_CTRL0)) {
 7027		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
 7028		enable_rc6 = false;
 7029	}
 7030
 7031	return enable_rc6;
 7032}
 7033
 7034static bool sanitize_rc6(struct drm_i915_private *i915)
 7035{
 7036	struct intel_device_info *info = mkwrite_device_info(i915);
 7037
 7038	/* Powersaving is controlled by the host when inside a VM */
 7039	if (intel_vgpu_active(i915)) {
 7040		info->has_rc6 = 0;
 7041		info->has_rps = false;
 7042	}
 7043
 7044	if (info->has_rc6 &&
 7045	    IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
 7046		DRM_INFO("RC6 disabled by BIOS\n");
 7047		info->has_rc6 = 0;
 7048	}
 7049
 7050	/*
 7051	 * We assume that we do not have any deep rc6 levels if we don't have
 7052	 * have the previous rc6 level supported, i.e. we use HAS_RC6()
 7053	 * as the initial coarse check for rc6 in general, moving on to
 7054	 * progressively finer/deeper levels.
 7055	 */
 7056	if (!info->has_rc6 && info->has_rc6p)
 7057		info->has_rc6p = 0;
 7058
 7059	return info->has_rc6;
 7060}
 7061
 7062static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
 7063{
 7064	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 7065
 7066	/* All of these values are in units of 50MHz */
 7067
 7068	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
 7069	if (IS_GEN9_LP(dev_priv)) {
 7070		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
 7071		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
 7072		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
 7073		rps->min_freq = (rp_state_cap >>  0) & 0xff;
 7074	} else {
 7075		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
 7076		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
 7077		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
 7078		rps->min_freq = (rp_state_cap >> 16) & 0xff;
 7079	}
 7080	/* hw_max = RP0 until we check for overclocking */
 7081	rps->max_freq = rps->rp0_freq;
 7082
 7083	rps->efficient_freq = rps->rp1_freq;
 7084	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
 7085	    IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
 7086		u32 ddcc_status = 0;
 7087
 7088		if (sandybridge_pcode_read(dev_priv,
 7089					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
 7090					   &ddcc_status, NULL) == 0)
 7091			rps->efficient_freq =
 7092				clamp_t(u8,
 7093					((ddcc_status >> 8) & 0xff),
 7094					rps->min_freq,
 7095					rps->max_freq);
 7096	}
 7097
 7098	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
 7099		/* Store the frequency values in 16.66 MHZ units, which is
 7100		 * the natural hardware unit for SKL
 7101		 */
 7102		rps->rp0_freq *= GEN9_FREQ_SCALER;
 7103		rps->rp1_freq *= GEN9_FREQ_SCALER;
 7104		rps->min_freq *= GEN9_FREQ_SCALER;
 7105		rps->max_freq *= GEN9_FREQ_SCALER;
 7106		rps->efficient_freq *= GEN9_FREQ_SCALER;
 7107	}
 7108}
 7109
 7110static void reset_rps(struct drm_i915_private *dev_priv,
 7111		      int (*set)(struct drm_i915_private *, u8))
 7112{
 7113	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 7114	u8 freq = rps->cur_freq;
 7115
 7116	/* force a reset */
 7117	rps->power.mode = -1;
 7118	rps->cur_freq = -1;
 7119
 7120	if (set(dev_priv, freq))
 7121		DRM_ERROR("Failed to reset RPS to initial values\n");
 7122}
 7123
 7124/* See the Gen9_GT_PM_Programming_Guide doc for the below */
 7125static void gen9_enable_rps(struct drm_i915_private *dev_priv)
 7126{
 7127	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
 7128
 7129	/* Program defaults and thresholds for RPS */
 7130	if (IS_GEN(dev_priv, 9))
 7131		I915_WRITE(GEN6_RC_VIDEO_FREQ,
 7132			GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
 7133
 7134	/* 1 second timeout*/
 7135	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
 7136		GT_INTERVAL_FROM_US(dev_priv, 1000000));
 7137
 7138	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
 
 
 7139
 7140	/* Leaning on the below call to gen6_set_rps to program/setup the
 7141	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
 7142	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
 7143	reset_rps(dev_priv, gen6_set_rps);
 7144
 7145	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
 7146}
 7147
 7148static void gen11_enable_rc6(struct drm_i915_private *dev_priv)
 7149{
 7150	struct intel_engine_cs *engine;
 7151	enum intel_engine_id id;
 7152
 7153	/* 1a: Software RC state - RC0 */
 7154	I915_WRITE(GEN6_RC_STATE, 0);
 7155
 7156	/*
 7157	 * 1b: Get forcewake during program sequence. Although the driver
 7158	 * hasn't enabled a state yet where we need forcewake, BIOS may have.
 7159	 */
 7160	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
 7161
 7162	/* 2a: Disable RC states. */
 7163	I915_WRITE(GEN6_RC_CONTROL, 0);
 7164
 7165	/* 2b: Program RC6 thresholds.*/
 7166	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
 7167	I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
 7168
 7169	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
 7170	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
 7171	for_each_engine(engine, dev_priv, id)
 7172		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
 7173
 7174	if (HAS_GT_UC(dev_priv))
 7175		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
 7176
 7177	I915_WRITE(GEN6_RC_SLEEP, 0);
 7178
 7179	I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
 7180
 7181	/*
 7182	 * 2c: Program Coarse Power Gating Policies.
 7183	 *
 7184	 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
 7185	 * use instead is a more conservative estimate for the maximum time
 7186	 * it takes us to service a CS interrupt and submit a new ELSP - that
 7187	 * is the time which the GPU is idle waiting for the CPU to select the
 7188	 * next request to execute. If the idle hysteresis is less than that
 7189	 * interrupt service latency, the hardware will automatically gate
 7190	 * the power well and we will then incur the wake up cost on top of
 7191	 * the service latency. A similar guide from plane_state is that we
 7192	 * do not want the enable hysteresis to less than the wakeup latency.
 7193	 *
 7194	 * igt/gem_exec_nop/sequential provides a rough estimate for the
 7195	 * service latency, and puts it around 10us for Broadwell (and other
 7196	 * big core) and around 40us for Broxton (and other low power cores).
 7197	 * [Note that for legacy ringbuffer submission, this is less than 1us!]
 7198	 * However, the wakeup latency on Broxton is closer to 100us. To be
 7199	 * conservative, we have to factor in a context switch on top (due
 7200	 * to ksoftirqd).
 7201	 */
 7202	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
 7203	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
 7204
 7205	/* 3a: Enable RC6 */
 7206	I915_WRITE(GEN6_RC_CONTROL,
 7207		   GEN6_RC_CTL_HW_ENABLE |
 7208		   GEN6_RC_CTL_RC6_ENABLE |
 7209		   GEN6_RC_CTL_EI_MODE(1));
 7210
 7211	/* 3b: Enable Coarse Power Gating only when RC6 is enabled. */
 7212	I915_WRITE(GEN9_PG_ENABLE,
 7213		   GEN9_RENDER_PG_ENABLE |
 7214		   GEN9_MEDIA_PG_ENABLE |
 7215		   GEN11_MEDIA_SAMPLER_PG_ENABLE);
 7216
 7217	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
 7218}
 7219
 7220static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
 7221{
 7222	struct intel_engine_cs *engine;
 7223	enum intel_engine_id id;
 7224	u32 rc6_mode;
 
 7225
 7226	/* 1a: Software RC state - RC0 */
 7227	I915_WRITE(GEN6_RC_STATE, 0);
 7228
 7229	/* 1b: Get forcewake during program sequence. Although the driver
 7230	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
 7231	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
 7232
 7233	/* 2a: Disable RC states. */
 7234	I915_WRITE(GEN6_RC_CONTROL, 0);
 7235
 7236	/* 2b: Program RC6 thresholds.*/
 7237	if (INTEL_GEN(dev_priv) >= 10) {
 7238		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
 7239		I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
 7240	} else if (IS_SKYLAKE(dev_priv)) {
 7241		/*
 7242		 * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
 7243		 * when CPG is enabled
 7244		 */
 7245		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
 7246	} else {
 7247		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
 7248	}
 7249
 7250	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
 7251	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
 7252	for_each_engine(engine, dev_priv, id)
 7253		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
 7254
 7255	if (HAS_GT_UC(dev_priv))
 7256		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
 7257
 7258	I915_WRITE(GEN6_RC_SLEEP, 0);
 7259
 7260	/*
 7261	 * 2c: Program Coarse Power Gating Policies.
 7262	 *
 7263	 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
 7264	 * use instead is a more conservative estimate for the maximum time
 7265	 * it takes us to service a CS interrupt and submit a new ELSP - that
 7266	 * is the time which the GPU is idle waiting for the CPU to select the
 7267	 * next request to execute. If the idle hysteresis is less than that
 7268	 * interrupt service latency, the hardware will automatically gate
 7269	 * the power well and we will then incur the wake up cost on top of
 7270	 * the service latency. A similar guide from plane_state is that we
 7271	 * do not want the enable hysteresis to less than the wakeup latency.
 7272	 *
 7273	 * igt/gem_exec_nop/sequential provides a rough estimate for the
 7274	 * service latency, and puts it around 10us for Broadwell (and other
 7275	 * big core) and around 40us for Broxton (and other low power cores).
 7276	 * [Note that for legacy ringbuffer submission, this is less than 1us!]
 7277	 * However, the wakeup latency on Broxton is closer to 100us. To be
 7278	 * conservative, we have to factor in a context switch on top (due
 7279	 * to ksoftirqd).
 7280	 */
 7281	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
 7282	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
 7283
 7284	/* 3a: Enable RC6 */
 7285	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
 7286
 7287	/* WaRsUseTimeoutMode:cnl (pre-prod) */
 7288	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
 7289		rc6_mode = GEN7_RC_CTL_TO_MODE;
 7290	else
 7291		rc6_mode = GEN6_RC_CTL_EI_MODE(1);
 7292
 7293	I915_WRITE(GEN6_RC_CONTROL,
 7294		   GEN6_RC_CTL_HW_ENABLE |
 7295		   GEN6_RC_CTL_RC6_ENABLE |
 7296		   rc6_mode);
 7297
 7298	/*
 7299	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
 7300	 * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
 7301	 */
 7302	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
 7303		I915_WRITE(GEN9_PG_ENABLE, 0);
 7304	else
 7305		I915_WRITE(GEN9_PG_ENABLE,
 7306			   GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
 7307
 7308	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
 7309}
 7310
 7311static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
 7312{
 7313	struct intel_engine_cs *engine;
 7314	enum intel_engine_id id;
 7315
 7316	/* 1a: Software RC state - RC0 */
 7317	I915_WRITE(GEN6_RC_STATE, 0);
 7318
 7319	/* 1b: Get forcewake during program sequence. Although the driver
 7320	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
 7321	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
 7322
 7323	/* 2a: Disable RC states. */
 7324	I915_WRITE(GEN6_RC_CONTROL, 0);
 7325
 7326	/* 2b: Program RC6 thresholds.*/
 7327	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
 7328	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
 7329	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
 7330	for_each_engine(engine, dev_priv, id)
 7331		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
 7332	I915_WRITE(GEN6_RC_SLEEP, 0);
 7333	I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
 7334
 7335	/* 3: Enable RC6 */
 7336
 7337	I915_WRITE(GEN6_RC_CONTROL,
 7338		   GEN6_RC_CTL_HW_ENABLE |
 7339		   GEN7_RC_CTL_TO_MODE |
 7340		   GEN6_RC_CTL_RC6_ENABLE);
 7341
 7342	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
 7343}
 7344
 7345static void gen8_enable_rps(struct drm_i915_private *dev_priv)
 7346{
 7347	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 7348
 7349	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
 7350
 7351	/* 1 Program defaults and thresholds for RPS*/
 7352	I915_WRITE(GEN6_RPNSWREQ,
 7353		   HSW_FREQUENCY(rps->rp1_freq));
 7354	I915_WRITE(GEN6_RC_VIDEO_FREQ,
 7355		   HSW_FREQUENCY(rps->rp1_freq));
 7356	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
 7357	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
 7358
 7359	/* Docs recommend 900MHz, and 300 MHz respectively */
 7360	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
 7361		   rps->max_freq_softlimit << 24 |
 7362		   rps->min_freq_softlimit << 16);
 7363
 7364	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
 7365	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
 7366	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
 7367	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
 7368
 7369	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
 7370
 7371	/* 2: Enable RPS */
 7372	I915_WRITE(GEN6_RP_CONTROL,
 7373		   GEN6_RP_MEDIA_TURBO |
 7374		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
 7375		   GEN6_RP_MEDIA_IS_GFX |
 7376		   GEN6_RP_ENABLE |
 7377		   GEN6_RP_UP_BUSY_AVG |
 7378		   GEN6_RP_DOWN_IDLE_AVG);
 7379
 7380	reset_rps(dev_priv, gen6_set_rps);
 
 
 7381
 7382	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
 
 
 7383}
 7384
 7385static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
 7386{
 7387	struct intel_engine_cs *engine;
 7388	enum intel_engine_id id;
 7389	u32 rc6vids, rc6_mask;
 
 
 7390	u32 gtfifodbg;
 7391	int ret;
 
 
 
 7392
 
 
 
 
 
 
 7393	I915_WRITE(GEN6_RC_STATE, 0);
 7394
 7395	/* Clear the DBG now so we don't confuse earlier errors */
 7396	gtfifodbg = I915_READ(GTFIFODBG);
 7397	if (gtfifodbg) {
 7398		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
 7399		I915_WRITE(GTFIFODBG, gtfifodbg);
 7400	}
 7401
 7402	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7403
 7404	/* disable the counters and set deterministic thresholds */
 7405	I915_WRITE(GEN6_RC_CONTROL, 0);
 7406
 7407	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
 7408	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
 7409	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
 7410	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
 7411	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
 7412
 7413	for_each_engine(engine, dev_priv, id)
 7414		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
 7415
 7416	I915_WRITE(GEN6_RC_SLEEP, 0);
 7417	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
 7418	if (IS_IVYBRIDGE(dev_priv))
 7419		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
 7420	else
 7421		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
 7422	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
 7423	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
 7424
 
 
 
 
 
 7425	/* We don't use those on Haswell */
 7426	rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
 7427	if (HAS_RC6p(dev_priv))
 7428		rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
 7429	if (HAS_RC6pp(dev_priv))
 7430		rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
 
 
 
 
 
 7431	I915_WRITE(GEN6_RC_CONTROL,
 7432		   rc6_mask |
 7433		   GEN6_RC_CTL_EI_MODE(1) |
 7434		   GEN6_RC_CTL_HW_ENABLE);
 7435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7436	rc6vids = 0;
 7437	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS,
 7438				     &rc6vids, NULL);
 7439	if (IS_GEN(dev_priv, 6) && ret) {
 7440		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
 7441	} else if (IS_GEN(dev_priv, 6) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
 7442		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
 7443			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
 7444		rc6vids &= 0xffff00;
 7445		rc6vids |= GEN6_ENCODE_RC6_VID(450);
 7446		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
 7447		if (ret)
 7448			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
 7449	}
 7450
 7451	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
 7452}
 7453
 7454static void gen6_enable_rps(struct drm_i915_private *dev_priv)
 7455{
 7456	/* Here begins a magic sequence of register writes to enable
 7457	 * auto-downclocking.
 7458	 *
 7459	 * Perhaps there might be some value in exposing these to
 7460	 * userspace...
 7461	 */
 7462	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
 7463
 7464	/* Power down if completely idle for over 50ms */
 7465	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
 7466	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
 7467
 7468	reset_rps(dev_priv, gen6_set_rps);
 7469
 7470	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
 7471}
 7472
 7473static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
 7474{
 7475	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 7476	const int min_freq = 15;
 7477	const int scaling_factor = 180;
 7478	unsigned int gpu_freq;
 7479	unsigned int max_ia_freq, min_ring_freq;
 7480	unsigned int max_gpu_freq, min_gpu_freq;
 7481	struct cpufreq_policy *policy;
 7482
 7483	lockdep_assert_held(&rps->lock);
 7484
 7485	if (rps->max_freq <= rps->min_freq)
 7486		return;
 7487
 7488	policy = cpufreq_cpu_get(0);
 7489	if (policy) {
 7490		max_ia_freq = policy->cpuinfo.max_freq;
 7491		cpufreq_cpu_put(policy);
 7492	} else {
 7493		/*
 7494		 * Default to measured freq if none found, PCU will ensure we
 7495		 * don't go over
 7496		 */
 7497		max_ia_freq = tsc_khz;
 7498	}
 7499
 7500	/* Convert from kHz to MHz */
 7501	max_ia_freq /= 1000;
 7502
 7503	min_ring_freq = I915_READ(DCLK) & 0xf;
 7504	/* convert DDR frequency from units of 266.6MHz to bandwidth */
 7505	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
 7506
 7507	min_gpu_freq = rps->min_freq;
 7508	max_gpu_freq = rps->max_freq;
 7509	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
 7510		/* Convert GT frequency to 50 HZ units */
 7511		min_gpu_freq /= GEN9_FREQ_SCALER;
 7512		max_gpu_freq /= GEN9_FREQ_SCALER;
 7513	}
 7514
 7515	/*
 7516	 * For each potential GPU frequency, load a ring frequency we'd like
 7517	 * to use for memory access.  We do this by specifying the IA frequency
 7518	 * the PCU should use as a reference to determine the ring frequency.
 7519	 */
 7520	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
 7521		const int diff = max_gpu_freq - gpu_freq;
 
 7522		unsigned int ia_freq = 0, ring_freq = 0;
 7523
 7524		if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
 7525			/*
 7526			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
 7527			 * No floor required for ring frequency on SKL.
 7528			 */
 7529			ring_freq = gpu_freq;
 7530		} else if (INTEL_GEN(dev_priv) >= 8) {
 7531			/* max(2 * GT, DDR). NB: GT is 50MHz units */
 7532			ring_freq = max(min_ring_freq, gpu_freq);
 7533		} else if (IS_HASWELL(dev_priv)) {
 7534			ring_freq = mult_frac(gpu_freq, 5, 4);
 7535			ring_freq = max(min_ring_freq, ring_freq);
 7536			/* leave ia_freq as the default, chosen by cpufreq */
 7537		} else {
 7538			/* On older processors, there is no separate ring
 7539			 * clock domain, so in order to boost the bandwidth
 7540			 * of the ring, we need to upclock the CPU (ia_freq).
 7541			 *
 7542			 * For GPU frequencies less than 750MHz,
 7543			 * just use the lowest ring freq.
 7544			 */
 7545			if (gpu_freq < min_freq)
 7546				ia_freq = 800;
 7547			else
 7548				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
 7549			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
 7550		}
 7551
 7552		sandybridge_pcode_write(dev_priv,
 7553					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
 7554					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
 7555					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
 7556					gpu_freq);
 7557	}
 7558}
 7559
 7560static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
 7561{
 7562	u32 val, rp0;
 7563
 7564	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
 7565
 7566	switch (RUNTIME_INFO(dev_priv)->sseu.eu_total) {
 7567	case 8:
 7568		/* (2 * 4) config */
 7569		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
 7570		break;
 7571	case 12:
 7572		/* (2 * 6) config */
 7573		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
 7574		break;
 7575	case 16:
 7576		/* (2 * 8) config */
 7577	default:
 7578		/* Setting (2 * 8) Min RP0 for any other combination */
 7579		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
 7580		break;
 7581	}
 7582
 7583	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
 7584
 7585	return rp0;
 7586}
 7587
 7588static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
 7589{
 7590	u32 val, rpe;
 7591
 7592	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
 7593	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
 7594
 7595	return rpe;
 7596}
 7597
 7598static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
 7599{
 7600	u32 val, rp1;
 7601
 7602	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
 7603	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
 7604
 7605	return rp1;
 7606}
 7607
 7608static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
 7609{
 7610	u32 val, rpn;
 7611
 7612	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
 7613	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
 7614		       FB_GFX_FREQ_FUSE_MASK);
 7615
 7616	return rpn;
 7617}
 7618
 7619static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
 7620{
 7621	u32 val, rp1;
 7622
 7623	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
 7624
 7625	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
 7626
 7627	return rp1;
 7628}
 7629
 7630static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
 7631{
 7632	u32 val, rp0;
 7633
 7634	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
 7635
 7636	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
 7637	/* Clamp to max */
 7638	rp0 = min_t(u32, rp0, 0xea);
 7639
 7640	return rp0;
 7641}
 7642
 7643static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
 7644{
 7645	u32 val, rpe;
 7646
 7647	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
 7648	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
 7649	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
 7650	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
 7651
 7652	return rpe;
 7653}
 7654
 7655static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
 7656{
 7657	u32 val;
 7658
 7659	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
 7660	/*
 7661	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
 7662	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
 7663	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
 7664	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
 7665	 * to make sure it matches what Punit accepts.
 7666	 */
 7667	return max_t(u32, val, 0xc0);
 7668}
 7669
 7670/* Check that the pctx buffer wasn't move under us. */
 7671static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
 7672{
 7673	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
 7674
 7675	WARN_ON(pctx_addr != dev_priv->dsm.start +
 7676			     dev_priv->vlv_pctx->stolen->start);
 7677}
 7678
 7679
 7680/* Check that the pcbr address is not empty. */
 7681static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
 7682{
 7683	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
 7684
 7685	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
 7686}
 7687
 7688static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
 7689{
 7690	resource_size_t pctx_paddr, paddr;
 7691	resource_size_t pctx_size = 32*1024;
 7692	u32 pcbr;
 7693
 7694	pcbr = I915_READ(VLV_PCBR);
 7695	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
 7696		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
 7697		paddr = dev_priv->dsm.end + 1 - pctx_size;
 7698		GEM_BUG_ON(paddr > U32_MAX);
 7699
 7700		pctx_paddr = (paddr & (~4095));
 7701		I915_WRITE(VLV_PCBR, pctx_paddr);
 7702	}
 7703
 7704	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
 7705}
 7706
 7707static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
 7708{
 
 7709	struct drm_i915_gem_object *pctx;
 7710	resource_size_t pctx_paddr;
 7711	resource_size_t pctx_size = 24*1024;
 7712	u32 pcbr;
 
 
 
 7713
 7714	pcbr = I915_READ(VLV_PCBR);
 7715	if (pcbr) {
 7716		/* BIOS set it up already, grab the pre-alloc'd space */
 7717		resource_size_t pcbr_offset;
 7718
 7719		pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
 7720		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
 7721								      pcbr_offset,
 7722								      I915_GTT_OFFSET_NONE,
 7723								      pctx_size);
 7724		goto out;
 7725	}
 7726
 7727	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
 7728
 7729	/*
 7730	 * From the Gunit register HAS:
 7731	 * The Gfx driver is expected to program this register and ensure
 7732	 * proper allocation within Gfx stolen memory.  For example, this
 7733	 * register should be programmed such than the PCBR range does not
 7734	 * overlap with other ranges, such as the frame buffer, protected
 7735	 * memory, or any other relevant ranges.
 7736	 */
 7737	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
 7738	if (!pctx) {
 7739		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
 7740		goto out;
 7741	}
 7742
 7743	GEM_BUG_ON(range_overflows_t(u64,
 7744				     dev_priv->dsm.start,
 7745				     pctx->stolen->start,
 7746				     U32_MAX));
 7747	pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
 7748	I915_WRITE(VLV_PCBR, pctx_paddr);
 7749
 7750out:
 7751	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
 7752	dev_priv->vlv_pctx = pctx;
 7753}
 7754
 7755static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
 7756{
 7757	struct drm_i915_gem_object *pctx;
 7758
 7759	pctx = fetch_and_zero(&dev_priv->vlv_pctx);
 7760	if (pctx)
 7761		i915_gem_object_put(pctx);
 7762}
 7763
 7764static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
 7765{
 7766	dev_priv->gt_pm.rps.gpll_ref_freq =
 7767		vlv_get_cck_clock(dev_priv, "GPLL ref",
 7768				  CCK_GPLL_CLOCK_CONTROL,
 7769				  dev_priv->czclk_freq);
 7770
 7771	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
 7772			 dev_priv->gt_pm.rps.gpll_ref_freq);
 7773}
 7774
 7775static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
 7776{
 7777	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 7778	u32 val;
 7779
 7780	valleyview_setup_pctx(dev_priv);
 7781
 7782	vlv_iosf_sb_get(dev_priv,
 7783			BIT(VLV_IOSF_SB_PUNIT) |
 7784			BIT(VLV_IOSF_SB_NC) |
 7785			BIT(VLV_IOSF_SB_CCK));
 7786
 7787	vlv_init_gpll_ref_freq(dev_priv);
 7788
 7789	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
 7790	switch ((val >> 6) & 3) {
 7791	case 0:
 7792	case 1:
 7793		dev_priv->mem_freq = 800;
 7794		break;
 7795	case 2:
 7796		dev_priv->mem_freq = 1066;
 7797		break;
 7798	case 3:
 7799		dev_priv->mem_freq = 1333;
 7800		break;
 7801	}
 7802	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
 7803
 7804	rps->max_freq = valleyview_rps_max_freq(dev_priv);
 7805	rps->rp0_freq = rps->max_freq;
 7806	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
 7807			 intel_gpu_freq(dev_priv, rps->max_freq),
 7808			 rps->max_freq);
 7809
 7810	rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
 7811	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
 7812			 intel_gpu_freq(dev_priv, rps->efficient_freq),
 7813			 rps->efficient_freq);
 7814
 7815	rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
 7816	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
 7817			 intel_gpu_freq(dev_priv, rps->rp1_freq),
 7818			 rps->rp1_freq);
 7819
 7820	rps->min_freq = valleyview_rps_min_freq(dev_priv);
 7821	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
 7822			 intel_gpu_freq(dev_priv, rps->min_freq),
 7823			 rps->min_freq);
 7824
 7825	vlv_iosf_sb_put(dev_priv,
 7826			BIT(VLV_IOSF_SB_PUNIT) |
 7827			BIT(VLV_IOSF_SB_NC) |
 7828			BIT(VLV_IOSF_SB_CCK));
 7829}
 7830
 7831static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
 7832{
 7833	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 7834	u32 val;
 7835
 7836	cherryview_setup_pctx(dev_priv);
 7837
 7838	vlv_iosf_sb_get(dev_priv,
 7839			BIT(VLV_IOSF_SB_PUNIT) |
 7840			BIT(VLV_IOSF_SB_NC) |
 7841			BIT(VLV_IOSF_SB_CCK));
 7842
 7843	vlv_init_gpll_ref_freq(dev_priv);
 7844
 7845	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
 7846
 7847	switch ((val >> 2) & 0x7) {
 7848	case 3:
 7849		dev_priv->mem_freq = 2000;
 7850		break;
 7851	default:
 7852		dev_priv->mem_freq = 1600;
 7853		break;
 7854	}
 7855	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
 7856
 7857	rps->max_freq = cherryview_rps_max_freq(dev_priv);
 7858	rps->rp0_freq = rps->max_freq;
 7859	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
 7860			 intel_gpu_freq(dev_priv, rps->max_freq),
 7861			 rps->max_freq);
 7862
 7863	rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
 7864	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
 7865			 intel_gpu_freq(dev_priv, rps->efficient_freq),
 7866			 rps->efficient_freq);
 7867
 7868	rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
 7869	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
 7870			 intel_gpu_freq(dev_priv, rps->rp1_freq),
 7871			 rps->rp1_freq);
 7872
 7873	rps->min_freq = cherryview_rps_min_freq(dev_priv);
 7874	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
 7875			 intel_gpu_freq(dev_priv, rps->min_freq),
 7876			 rps->min_freq);
 7877
 7878	vlv_iosf_sb_put(dev_priv,
 7879			BIT(VLV_IOSF_SB_PUNIT) |
 7880			BIT(VLV_IOSF_SB_NC) |
 7881			BIT(VLV_IOSF_SB_CCK));
 7882
 7883	WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
 7884		   rps->min_freq) & 1,
 7885		  "Odd GPU freq values\n");
 7886}
 7887
 7888static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
 7889{
 7890	valleyview_cleanup_pctx(dev_priv);
 7891}
 7892
 7893static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
 7894{
 7895	struct intel_engine_cs *engine;
 7896	enum intel_engine_id id;
 7897	u32 gtfifodbg, rc6_mode, pcbr;
 7898
 7899	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
 7900					     GT_FIFO_FREE_ENTRIES_CHV);
 7901	if (gtfifodbg) {
 7902		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
 7903				 gtfifodbg);
 7904		I915_WRITE(GTFIFODBG, gtfifodbg);
 7905	}
 7906
 7907	cherryview_check_pctx(dev_priv);
 
 7908
 7909	/* 1a & 1b: Get forcewake during program sequence. Although the driver
 7910	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
 7911	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
 
 7912
 7913	/*  Disable RC states. */
 7914	I915_WRITE(GEN6_RC_CONTROL, 0);
 7915
 7916	/* 2a: Program RC6 thresholds.*/
 7917	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
 7918	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
 7919	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
 
 
 
 7920
 7921	for_each_engine(engine, dev_priv, id)
 7922		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
 7923	I915_WRITE(GEN6_RC_SLEEP, 0);
 7924
 7925	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
 7926	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
 7927
 7928	/* Allows RC6 residency counter to work */
 
 
 7929	I915_WRITE(VLV_COUNTER_CONTROL,
 7930		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
 7931				      VLV_MEDIA_RC6_COUNT_EN |
 7932				      VLV_RENDER_RC6_COUNT_EN));
 
 
 7933
 7934	/* For now we assume BIOS is allocating and populating the PCBR  */
 7935	pcbr = I915_READ(VLV_PCBR);
 7936
 7937	/* 3: Enable RC6 */
 7938	rc6_mode = 0;
 7939	if (pcbr >> VLV_PCBR_ADDR_SHIFT)
 7940		rc6_mode = GEN7_RC_CTL_TO_MODE;
 7941	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
 7942
 7943	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
 7944}
 7945
 7946static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
 7947{
 7948	u32 val;
 7949
 7950	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
 7951
 7952	/* 1: Program defaults and thresholds for RPS*/
 7953	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
 7954	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
 7955	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
 7956	I915_WRITE(GEN6_RP_UP_EI, 66000);
 7957	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
 7958
 7959	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
 
 
 
 7960
 7961	/* 2: Enable RPS */
 7962	I915_WRITE(GEN6_RP_CONTROL,
 7963		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
 7964		   GEN6_RP_MEDIA_IS_GFX |
 7965		   GEN6_RP_ENABLE |
 7966		   GEN6_RP_UP_BUSY_AVG |
 7967		   GEN6_RP_DOWN_IDLE_AVG);
 7968
 7969	/* Setting Fixed Bias */
 7970	vlv_punit_get(dev_priv);
 
 
 7971
 7972	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
 7973	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
 
 
 7974
 7975	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
 
 
 7976
 7977	vlv_punit_put(dev_priv);
 
 7978
 7979	/* RPS code assumes GPLL is used */
 7980	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
 
 7981
 7982	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
 7983	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
 7984
 7985	reset_rps(dev_priv, valleyview_set_rps);
 7986
 7987	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
 7988}
 7989
 7990static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
 7991{
 7992	struct intel_engine_cs *engine;
 7993	enum intel_engine_id id;
 7994	u32 gtfifodbg;
 7995
 7996	valleyview_check_pctx(dev_priv);
 
 
 
 
 7997
 7998	gtfifodbg = I915_READ(GTFIFODBG);
 7999	if (gtfifodbg) {
 8000		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
 8001				 gtfifodbg);
 8002		I915_WRITE(GTFIFODBG, gtfifodbg);
 8003	}
 
 8004
 8005	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
 
 
 8006
 8007	/*  Disable RC states. */
 8008	I915_WRITE(GEN6_RC_CONTROL, 0);
 
 
 
 8009
 8010	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
 8011	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
 8012	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
 8013
 8014	for_each_engine(engine, dev_priv, id)
 8015		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
 
 
 8016
 8017	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
 
 
 8018
 8019	/* Allows RC6 residency counter to work */
 8020	I915_WRITE(VLV_COUNTER_CONTROL,
 8021		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
 8022				      VLV_MEDIA_RC0_COUNT_EN |
 8023				      VLV_RENDER_RC0_COUNT_EN |
 8024				      VLV_MEDIA_RC6_COUNT_EN |
 8025				      VLV_RENDER_RC6_COUNT_EN));
 8026
 8027	I915_WRITE(GEN6_RC_CONTROL,
 8028		   GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
 
 
 
 
 8029
 8030	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
 8031}
 8032
 8033static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
 8034{
 8035	u32 val;
 8036
 8037	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
 8038
 8039	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
 8040	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
 8041	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
 8042	I915_WRITE(GEN6_RP_UP_EI, 66000);
 8043	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
 8044
 8045	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
 8046
 8047	I915_WRITE(GEN6_RP_CONTROL,
 8048		   GEN6_RP_MEDIA_TURBO |
 8049		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
 8050		   GEN6_RP_MEDIA_IS_GFX |
 8051		   GEN6_RP_ENABLE |
 8052		   GEN6_RP_UP_BUSY_AVG |
 8053		   GEN6_RP_DOWN_IDLE_CONT);
 8054
 8055	vlv_punit_get(dev_priv);
 8056
 8057	/* Setting Fixed Bias */
 8058	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
 8059	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
 8060
 8061	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
 
 8062
 8063	vlv_punit_put(dev_priv);
 
 
 
 
 
 
 
 
 
 8064
 8065	/* RPS code assumes GPLL is used */
 8066	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
 
 
 
 
 
 
 
 
 
 8067
 8068	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
 8069	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
 
 
 
 
 
 
 
 
 
 
 8070
 8071	reset_rps(dev_priv, valleyview_set_rps);
 
 8072
 8073	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
 8074}
 8075
 8076static unsigned long intel_pxfreq(u32 vidfreq)
 8077{
 8078	unsigned long freq;
 8079	int div = (vidfreq & 0x3f0000) >> 16;
 8080	int post = (vidfreq & 0x3000) >> 12;
 8081	int pre = (vidfreq & 0x7);
 8082
 8083	if (!pre)
 8084		return 0;
 8085
 8086	freq = ((div * 133333) / ((1<<post) * pre));
 8087
 8088	return freq;
 8089}
 8090
 8091static const struct cparams {
 8092	u16 i;
 8093	u16 t;
 8094	u16 m;
 8095	u16 c;
 8096} cparams[] = {
 8097	{ 1, 1333, 301, 28664 },
 8098	{ 1, 1066, 294, 24460 },
 8099	{ 1, 800, 294, 25192 },
 8100	{ 0, 1333, 276, 27605 },
 8101	{ 0, 1066, 276, 27605 },
 8102	{ 0, 800, 231, 23784 },
 8103};
 8104
 8105static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
 8106{
 8107	u64 total_count, diff, ret;
 8108	u32 count1, count2, count3, m = 0, c = 0;
 8109	unsigned long now = jiffies_to_msecs(jiffies), diff1;
 8110	int i;
 8111
 8112	lockdep_assert_held(&mchdev_lock);
 8113
 8114	diff1 = now - dev_priv->ips.last_time1;
 8115
 8116	/* Prevent division-by-zero if we are asking too fast.
 8117	 * Also, we don't get interesting results if we are polling
 8118	 * faster than once in 10ms, so just return the saved value
 8119	 * in such cases.
 8120	 */
 8121	if (diff1 <= 10)
 8122		return dev_priv->ips.chipset_power;
 8123
 8124	count1 = I915_READ(DMIEC);
 8125	count2 = I915_READ(DDREC);
 8126	count3 = I915_READ(CSIEC);
 8127
 8128	total_count = count1 + count2 + count3;
 8129
 8130	/* FIXME: handle per-counter overflow */
 8131	if (total_count < dev_priv->ips.last_count1) {
 8132		diff = ~0UL - dev_priv->ips.last_count1;
 8133		diff += total_count;
 8134	} else {
 8135		diff = total_count - dev_priv->ips.last_count1;
 8136	}
 8137
 8138	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
 8139		if (cparams[i].i == dev_priv->ips.c_m &&
 8140		    cparams[i].t == dev_priv->ips.r_t) {
 8141			m = cparams[i].m;
 8142			c = cparams[i].c;
 8143			break;
 8144		}
 8145	}
 8146
 8147	diff = div_u64(diff, diff1);
 8148	ret = ((m * diff) + c);
 8149	ret = div_u64(ret, 10);
 8150
 8151	dev_priv->ips.last_count1 = total_count;
 8152	dev_priv->ips.last_time1 = now;
 8153
 8154	dev_priv->ips.chipset_power = ret;
 8155
 8156	return ret;
 8157}
 8158
 8159unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
 8160{
 8161	intel_wakeref_t wakeref;
 8162	unsigned long val = 0;
 8163
 8164	if (!IS_GEN(dev_priv, 5))
 8165		return 0;
 8166
 8167	with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
 8168		spin_lock_irq(&mchdev_lock);
 8169		val = __i915_chipset_val(dev_priv);
 8170		spin_unlock_irq(&mchdev_lock);
 8171	}
 8172
 8173	return val;
 8174}
 8175
 8176unsigned long i915_mch_val(struct drm_i915_private *i915)
 8177{
 8178	unsigned long m, x, b;
 8179	u32 tsfs;
 8180
 8181	tsfs = intel_uncore_read(&i915->uncore, TSFS);
 8182
 8183	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
 8184	x = intel_uncore_read8(&i915->uncore, TR1);
 8185
 8186	b = tsfs & TSFS_INTR_MASK;
 8187
 8188	return ((m * x) / 127) - b;
 8189}
 8190
 8191static int _pxvid_to_vd(u8 pxvid)
 8192{
 8193	if (pxvid == 0)
 8194		return 0;
 8195
 8196	if (pxvid >= 8 && pxvid < 31)
 8197		pxvid = 31;
 8198
 8199	return (pxvid + 2) * 125;
 8200}
 8201
 8202static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
 8203{
 8204	const int vd = _pxvid_to_vd(pxvid);
 8205	const int vm = vd - 1125;
 8206
 8207	if (INTEL_INFO(dev_priv)->is_mobile)
 8208		return vm > 0 ? vm : 0;
 8209
 8210	return vd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8211}
 8212
 8213static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
 8214{
 8215	u64 now, diff, diffms;
 
 
 8216	u32 count;
 8217
 8218	lockdep_assert_held(&mchdev_lock);
 8219
 8220	now = ktime_get_raw_ns();
 8221	diffms = now - dev_priv->ips.last_time2;
 8222	do_div(diffms, NSEC_PER_MSEC);
 8223
 8224	/* Don't divide by 0 */
 
 8225	if (!diffms)
 8226		return;
 8227
 8228	count = I915_READ(GFXEC);
 8229
 8230	if (count < dev_priv->ips.last_count2) {
 8231		diff = ~0UL - dev_priv->ips.last_count2;
 8232		diff += count;
 8233	} else {
 8234		diff = count - dev_priv->ips.last_count2;
 8235	}
 8236
 8237	dev_priv->ips.last_count2 = count;
 8238	dev_priv->ips.last_time2 = now;
 8239
 8240	/* More magic constants... */
 8241	diff = diff * 1181;
 8242	diff = div_u64(diff, diffms * 10);
 8243	dev_priv->ips.gfx_power = diff;
 8244}
 8245
 8246void i915_update_gfx_val(struct drm_i915_private *dev_priv)
 8247{
 8248	intel_wakeref_t wakeref;
 8249
 8250	if (!IS_GEN(dev_priv, 5))
 8251		return;
 8252
 8253	with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
 8254		spin_lock_irq(&mchdev_lock);
 8255		__i915_update_gfx_val(dev_priv);
 8256		spin_unlock_irq(&mchdev_lock);
 8257	}
 8258}
 8259
 8260static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
 8261{
 8262	unsigned long t, corr, state1, corr2, state2;
 8263	u32 pxvid, ext_v;
 8264
 8265	lockdep_assert_held(&mchdev_lock);
 8266
 8267	pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
 8268	pxvid = (pxvid >> 24) & 0x7f;
 8269	ext_v = pvid_to_extvid(dev_priv, pxvid);
 8270
 8271	state1 = ext_v;
 8272
 8273	t = i915_mch_val(dev_priv);
 8274
 8275	/* Revel in the empirically derived constants */
 8276
 8277	/* Correction factor in 1/100000 units */
 8278	if (t > 80)
 8279		corr = ((t * 2349) + 135940);
 8280	else if (t >= 50)
 8281		corr = ((t * 964) + 29317);
 8282	else /* < 50 */
 8283		corr = ((t * 301) + 1004);
 8284
 8285	corr = corr * ((150142 * state1) / 10000 - 78642);
 8286	corr /= 100000;
 8287	corr2 = (corr * dev_priv->ips.corr);
 8288
 8289	state2 = (corr2 * state1) / 10000;
 8290	state2 /= 100; /* convert to mW */
 8291
 8292	__i915_update_gfx_val(dev_priv);
 8293
 8294	return dev_priv->ips.gfx_power + state2;
 8295}
 8296
 8297unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
 8298{
 8299	intel_wakeref_t wakeref;
 8300	unsigned long val = 0;
 8301
 8302	if (!IS_GEN(dev_priv, 5))
 8303		return 0;
 8304
 8305	with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
 8306		spin_lock_irq(&mchdev_lock);
 8307		val = __i915_gfx_val(dev_priv);
 8308		spin_unlock_irq(&mchdev_lock);
 8309	}
 8310
 8311	return val;
 8312}
 8313
 8314static struct drm_i915_private __rcu *i915_mch_dev;
 8315
 8316static struct drm_i915_private *mchdev_get(void)
 8317{
 8318	struct drm_i915_private *i915;
 8319
 8320	rcu_read_lock();
 8321	i915 = rcu_dereference(i915_mch_dev);
 8322	if (!kref_get_unless_zero(&i915->drm.ref))
 8323		i915 = NULL;
 8324	rcu_read_unlock();
 8325
 8326	return i915;
 8327}
 8328
 8329/**
 8330 * i915_read_mch_val - return value for IPS use
 8331 *
 8332 * Calculate and return a value for the IPS driver to use when deciding whether
 8333 * we have thermal and power headroom to increase CPU or GPU power budget.
 8334 */
 8335unsigned long i915_read_mch_val(void)
 8336{
 8337	struct drm_i915_private *i915;
 8338	unsigned long chipset_val = 0;
 8339	unsigned long graphics_val = 0;
 8340	intel_wakeref_t wakeref;
 8341
 8342	i915 = mchdev_get();
 8343	if (!i915)
 8344		return 0;
 
 8345
 8346	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
 8347		spin_lock_irq(&mchdev_lock);
 8348		chipset_val = __i915_chipset_val(i915);
 8349		graphics_val = __i915_gfx_val(i915);
 8350		spin_unlock_irq(&mchdev_lock);
 8351	}
 8352
 8353	drm_dev_put(&i915->drm);
 8354	return chipset_val + graphics_val;
 
 
 8355}
 8356EXPORT_SYMBOL_GPL(i915_read_mch_val);
 8357
 8358/**
 8359 * i915_gpu_raise - raise GPU frequency limit
 8360 *
 8361 * Raise the limit; IPS indicates we have thermal headroom.
 8362 */
 8363bool i915_gpu_raise(void)
 8364{
 8365	struct drm_i915_private *i915;
 8366
 8367	i915 = mchdev_get();
 8368	if (!i915)
 8369		return false;
 8370
 8371	spin_lock_irq(&mchdev_lock);
 8372	if (i915->ips.max_delay > i915->ips.fmax)
 8373		i915->ips.max_delay--;
 
 
 
 
 
 
 
 
 8374	spin_unlock_irq(&mchdev_lock);
 8375
 8376	drm_dev_put(&i915->drm);
 8377	return true;
 8378}
 8379EXPORT_SYMBOL_GPL(i915_gpu_raise);
 8380
 8381/**
 8382 * i915_gpu_lower - lower GPU frequency limit
 8383 *
 8384 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 8385 * frequency maximum.
 8386 */
 8387bool i915_gpu_lower(void)
 8388{
 8389	struct drm_i915_private *i915;
 8390
 8391	i915 = mchdev_get();
 8392	if (!i915)
 8393		return false;
 8394
 8395	spin_lock_irq(&mchdev_lock);
 8396	if (i915->ips.max_delay < i915->ips.min_delay)
 8397		i915->ips.max_delay++;
 
 
 
 
 
 
 
 
 8398	spin_unlock_irq(&mchdev_lock);
 8399
 8400	drm_dev_put(&i915->drm);
 8401	return true;
 8402}
 8403EXPORT_SYMBOL_GPL(i915_gpu_lower);
 8404
 8405/**
 8406 * i915_gpu_busy - indicate GPU business to IPS
 8407 *
 8408 * Tell the IPS driver whether or not the GPU is busy.
 8409 */
 8410bool i915_gpu_busy(void)
 8411{
 8412	struct drm_i915_private *i915;
 8413	bool ret;
 
 
 8414
 8415	i915 = mchdev_get();
 8416	if (!i915)
 8417		return false;
 
 
 
 
 8418
 8419	ret = i915->gt.awake;
 
 8420
 8421	drm_dev_put(&i915->drm);
 8422	return ret;
 8423}
 8424EXPORT_SYMBOL_GPL(i915_gpu_busy);
 8425
 8426/**
 8427 * i915_gpu_turbo_disable - disable graphics turbo
 8428 *
 8429 * Disable graphics turbo by resetting the max frequency and setting the
 8430 * current frequency to the default.
 8431 */
 8432bool i915_gpu_turbo_disable(void)
 8433{
 8434	struct drm_i915_private *i915;
 8435	bool ret;
 8436
 8437	i915 = mchdev_get();
 8438	if (!i915)
 8439		return false;
 8440
 8441	spin_lock_irq(&mchdev_lock);
 8442	i915->ips.max_delay = i915->ips.fstart;
 8443	ret = ironlake_set_drps(i915, i915->ips.fstart);
 
 
 
 
 
 
 
 
 
 
 8444	spin_unlock_irq(&mchdev_lock);
 8445
 8446	drm_dev_put(&i915->drm);
 8447	return ret;
 8448}
 8449EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
 8450
 8451/**
 8452 * Tells the intel_ips driver that the i915 driver is now loaded, if
 8453 * IPS got loaded first.
 8454 *
 8455 * This awkward dance is so that neither module has to depend on the
 8456 * other in order for IPS to do the appropriate communication of
 8457 * GPU turbo limits to i915.
 8458 */
 8459static void
 8460ips_ping_for_i915_load(void)
 8461{
 8462	void (*link)(void);
 8463
 8464	link = symbol_get(ips_link_to_i915_driver);
 8465	if (link) {
 8466		link();
 8467		symbol_put(ips_link_to_i915_driver);
 8468	}
 8469}
 8470
 8471void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
 8472{
 8473	/* We only register the i915 ips part with intel-ips once everything is
 8474	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
 8475	rcu_assign_pointer(i915_mch_dev, dev_priv);
 
 
 8476
 8477	ips_ping_for_i915_load();
 8478}
 8479
 8480void intel_gpu_ips_teardown(void)
 8481{
 8482	rcu_assign_pointer(i915_mch_dev, NULL);
 
 
 8483}
 8484
 8485static void intel_init_emon(struct drm_i915_private *dev_priv)
 8486{
 
 8487	u32 lcfuse;
 8488	u8 pxw[16];
 8489	int i;
 8490
 8491	/* Disable to program */
 8492	I915_WRITE(ECR, 0);
 8493	POSTING_READ(ECR);
 8494
 8495	/* Program energy weights for various events */
 8496	I915_WRITE(SDEW, 0x15040d00);
 8497	I915_WRITE(CSIEW0, 0x007f0000);
 8498	I915_WRITE(CSIEW1, 0x1e220004);
 8499	I915_WRITE(CSIEW2, 0x04000004);
 8500
 8501	for (i = 0; i < 5; i++)
 8502		I915_WRITE(PEW(i), 0);
 8503	for (i = 0; i < 3; i++)
 8504		I915_WRITE(DEW(i), 0);
 8505
 8506	/* Program P-state weights to account for frequency power adjustment */
 8507	for (i = 0; i < 16; i++) {
 8508		u32 pxvidfreq = I915_READ(PXVFREQ(i));
 8509		unsigned long freq = intel_pxfreq(pxvidfreq);
 8510		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
 8511			PXVFREQ_PX_SHIFT;
 8512		unsigned long val;
 8513
 8514		val = vid * vid;
 8515		val *= (freq / 1000);
 8516		val *= 255;
 8517		val /= (127*127*900);
 8518		if (val > 0xff)
 8519			DRM_ERROR("bad pxval: %ld\n", val);
 8520		pxw[i] = val;
 8521	}
 8522	/* Render standby states get 0 weight */
 8523	pxw[14] = 0;
 8524	pxw[15] = 0;
 8525
 8526	for (i = 0; i < 4; i++) {
 8527		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
 8528			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
 8529		I915_WRITE(PXW(i), val);
 8530	}
 8531
 8532	/* Adjust magic regs to magic values (more experimental results) */
 8533	I915_WRITE(OGW0, 0);
 8534	I915_WRITE(OGW1, 0);
 8535	I915_WRITE(EG0, 0x00007f00);
 8536	I915_WRITE(EG1, 0x0000000e);
 8537	I915_WRITE(EG2, 0x000e0000);
 8538	I915_WRITE(EG3, 0x68000300);
 8539	I915_WRITE(EG4, 0x42000000);
 8540	I915_WRITE(EG5, 0x00140031);
 8541	I915_WRITE(EG6, 0);
 8542	I915_WRITE(EG7, 0);
 8543
 8544	for (i = 0; i < 8; i++)
 8545		I915_WRITE(PXWL(i), 0);
 8546
 8547	/* Enable PMON + select events */
 8548	I915_WRITE(ECR, 0x80000019);
 8549
 8550	lcfuse = I915_READ(LCFUSE02);
 8551
 8552	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
 8553}
 8554
 8555static bool i915_rc6_ctx_corrupted(struct drm_i915_private *dev_priv)
 8556{
 8557	return !I915_READ(GEN8_RC6_CTX_INFO);
 
 8558}
 8559
 8560static void i915_rc6_ctx_wa_init(struct drm_i915_private *i915)
 8561{
 8562	if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915))
 8563		return;
 8564
 8565	if (i915_rc6_ctx_corrupted(i915)) {
 8566		DRM_INFO("RC6 context corrupted, disabling runtime power management\n");
 8567		i915->gt_pm.rc6.ctx_corrupted = true;
 8568		i915->gt_pm.rc6.ctx_corrupted_wakeref =
 8569			intel_runtime_pm_get(&i915->runtime_pm);
 8570	}
 8571}
 8572
 8573static void i915_rc6_ctx_wa_cleanup(struct drm_i915_private *i915)
 8574{
 8575	if (i915->gt_pm.rc6.ctx_corrupted) {
 8576		intel_runtime_pm_put(&i915->runtime_pm,
 8577				     i915->gt_pm.rc6.ctx_corrupted_wakeref);
 8578		i915->gt_pm.rc6.ctx_corrupted = false;
 8579	}
 8580}
 8581
 8582/**
 8583 * i915_rc6_ctx_wa_suspend - system suspend sequence for the RC6 CTX WA
 8584 * @i915: i915 device
 8585 *
 8586 * Perform any steps needed to clean up the RC6 CTX WA before system suspend.
 8587 */
 8588void i915_rc6_ctx_wa_suspend(struct drm_i915_private *i915)
 8589{
 8590	if (i915->gt_pm.rc6.ctx_corrupted)
 8591		intel_runtime_pm_put(&i915->runtime_pm,
 8592				     i915->gt_pm.rc6.ctx_corrupted_wakeref);
 8593}
 8594
 8595/**
 8596 * i915_rc6_ctx_wa_resume - system resume sequence for the RC6 CTX WA
 8597 * @i915: i915 device
 8598 *
 8599 * Perform any steps needed to re-init the RC6 CTX WA after system resume.
 8600 */
 8601void i915_rc6_ctx_wa_resume(struct drm_i915_private *i915)
 8602{
 8603	if (!i915->gt_pm.rc6.ctx_corrupted)
 8604		return;
 8605
 8606	if (i915_rc6_ctx_corrupted(i915)) {
 8607		i915->gt_pm.rc6.ctx_corrupted_wakeref =
 8608			intel_runtime_pm_get(&i915->runtime_pm);
 8609		return;
 
 
 
 
 
 
 
 
 
 8610	}
 8611
 8612	DRM_INFO("RC6 context restored, re-enabling runtime power management\n");
 8613	i915->gt_pm.rc6.ctx_corrupted = false;
 8614}
 8615
 8616static void intel_disable_rc6(struct drm_i915_private *dev_priv);
 8617
 8618/**
 8619 * i915_rc6_ctx_wa_check - check for a new RC6 CTX corruption
 8620 * @i915: i915 device
 8621 *
 8622 * Check if an RC6 CTX corruption has happened since the last check and if so
 8623 * disable RC6 and runtime power management.
 8624 *
 8625 * Return false if no context corruption has happened since the last call of
 8626 * this function, true otherwise.
 8627*/
 8628bool i915_rc6_ctx_wa_check(struct drm_i915_private *i915)
 8629{
 8630	if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915))
 8631		return false;
 
 
 8632
 8633	if (i915->gt_pm.rc6.ctx_corrupted)
 8634		return false;
 8635
 8636	if (!i915_rc6_ctx_corrupted(i915))
 8637		return false;
 8638
 8639	DRM_NOTE("RC6 context corruption, disabling runtime power management\n");
 8640
 8641	intel_disable_rc6(i915);
 8642	i915->gt_pm.rc6.ctx_corrupted = true;
 8643	i915->gt_pm.rc6.ctx_corrupted_wakeref =
 8644		intel_runtime_pm_get_noresume(&i915->runtime_pm);
 8645
 8646	return true;
 8647}
 8648
 8649void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
 8650{
 8651	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 8652
 8653	/*
 8654	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
 8655	 * requirement.
 8656	 */
 8657	if (!sanitize_rc6(dev_priv)) {
 8658		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
 8659		pm_runtime_get(&dev_priv->drm.pdev->dev);
 8660	}
 8661
 8662	i915_rc6_ctx_wa_init(dev_priv);
 8663
 8664	/* Initialize RPS limits (for userspace) */
 8665	if (IS_CHERRYVIEW(dev_priv))
 8666		cherryview_init_gt_powersave(dev_priv);
 8667	else if (IS_VALLEYVIEW(dev_priv))
 8668		valleyview_init_gt_powersave(dev_priv);
 8669	else if (INTEL_GEN(dev_priv) >= 6)
 8670		gen6_init_rps_frequencies(dev_priv);
 8671
 8672	/* Derive initial user preferences/limits from the hardware limits */
 8673	rps->max_freq_softlimit = rps->max_freq;
 8674	rps->min_freq_softlimit = rps->min_freq;
 8675
 8676	/* After setting max-softlimit, find the overclock max freq */
 8677	if (IS_GEN(dev_priv, 6) ||
 8678	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
 8679		u32 params = 0;
 8680
 8681		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS,
 8682				       &params, NULL);
 8683		if (params & BIT(31)) { /* OC supported */
 8684			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
 8685					 (rps->max_freq & 0xff) * 50,
 8686					 (params & 0xff) * 50);
 8687			rps->max_freq = params & 0xff;
 8688		}
 8689	}
 8690
 8691	/* Finally allow us to boost to max by default */
 8692	rps->boost_freq = rps->max_freq;
 8693	rps->idle_freq = rps->min_freq;
 8694	rps->cur_freq = rps->idle_freq;
 8695}
 8696
 8697void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
 8698{
 8699	if (IS_VALLEYVIEW(dev_priv))
 8700		valleyview_cleanup_gt_powersave(dev_priv);
 8701
 8702	i915_rc6_ctx_wa_cleanup(dev_priv);
 8703
 8704	if (!HAS_RC6(dev_priv))
 8705		pm_runtime_put(&dev_priv->drm.pdev->dev);
 8706}
 8707
 8708void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
 8709{
 8710	dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
 8711	dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
 8712	intel_disable_gt_powersave(dev_priv);
 8713
 8714	if (INTEL_GEN(dev_priv) >= 11)
 8715		gen11_reset_rps_interrupts(dev_priv);
 8716	else if (INTEL_GEN(dev_priv) >= 6)
 8717		gen6_reset_rps_interrupts(dev_priv);
 8718}
 8719
 8720static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
 8721{
 8722	lockdep_assert_held(&i915->gt_pm.rps.lock);
 8723
 8724	if (!i915->gt_pm.llc_pstate.enabled)
 8725		return;
 8726
 8727	/* Currently there is no HW configuration to be done to disable. */
 8728
 8729	i915->gt_pm.llc_pstate.enabled = false;
 8730}
 8731
 8732static void __intel_disable_rc6(struct drm_i915_private *dev_priv)
 8733{
 8734	lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
 8735
 8736	if (!dev_priv->gt_pm.rc6.enabled)
 8737		return;
 8738
 8739	if (INTEL_GEN(dev_priv) >= 9)
 8740		gen9_disable_rc6(dev_priv);
 8741	else if (IS_CHERRYVIEW(dev_priv))
 8742		cherryview_disable_rc6(dev_priv);
 8743	else if (IS_VALLEYVIEW(dev_priv))
 8744		valleyview_disable_rc6(dev_priv);
 8745	else if (INTEL_GEN(dev_priv) >= 6)
 8746		gen6_disable_rc6(dev_priv);
 8747
 8748	dev_priv->gt_pm.rc6.enabled = false;
 8749}
 8750
 8751static void intel_disable_rc6(struct drm_i915_private *dev_priv)
 8752{
 8753	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 8754
 8755	mutex_lock(&rps->lock);
 8756	__intel_disable_rc6(dev_priv);
 8757	mutex_unlock(&rps->lock);
 8758}
 8759
 8760static void intel_disable_rps(struct drm_i915_private *dev_priv)
 8761{
 8762	lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
 8763
 8764	if (!dev_priv->gt_pm.rps.enabled)
 8765		return;
 8766
 8767	if (INTEL_GEN(dev_priv) >= 9)
 8768		gen9_disable_rps(dev_priv);
 8769	else if (IS_CHERRYVIEW(dev_priv))
 8770		cherryview_disable_rps(dev_priv);
 8771	else if (IS_VALLEYVIEW(dev_priv))
 8772		valleyview_disable_rps(dev_priv);
 8773	else if (INTEL_GEN(dev_priv) >= 6)
 8774		gen6_disable_rps(dev_priv);
 8775	else if (IS_IRONLAKE_M(dev_priv))
 8776		ironlake_disable_drps(dev_priv);
 8777
 8778	dev_priv->gt_pm.rps.enabled = false;
 8779}
 8780
 8781void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
 8782{
 8783	mutex_lock(&dev_priv->gt_pm.rps.lock);
 8784
 8785	__intel_disable_rc6(dev_priv);
 8786	intel_disable_rps(dev_priv);
 8787	if (HAS_LLC(dev_priv))
 8788		intel_disable_llc_pstate(dev_priv);
 8789
 8790	mutex_unlock(&dev_priv->gt_pm.rps.lock);
 8791}
 8792
 8793static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
 8794{
 8795	lockdep_assert_held(&i915->gt_pm.rps.lock);
 8796
 8797	if (i915->gt_pm.llc_pstate.enabled)
 8798		return;
 8799
 8800	gen6_update_ring_freq(i915);
 8801
 8802	i915->gt_pm.llc_pstate.enabled = true;
 8803}
 8804
 8805static void intel_enable_rc6(struct drm_i915_private *dev_priv)
 8806{
 8807	lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
 8808
 8809	if (dev_priv->gt_pm.rc6.enabled)
 8810		return;
 8811
 8812	if (dev_priv->gt_pm.rc6.ctx_corrupted)
 8813		return;
 8814
 8815	if (IS_CHERRYVIEW(dev_priv))
 8816		cherryview_enable_rc6(dev_priv);
 8817	else if (IS_VALLEYVIEW(dev_priv))
 8818		valleyview_enable_rc6(dev_priv);
 8819	else if (INTEL_GEN(dev_priv) >= 11)
 8820		gen11_enable_rc6(dev_priv);
 8821	else if (INTEL_GEN(dev_priv) >= 9)
 8822		gen9_enable_rc6(dev_priv);
 8823	else if (IS_BROADWELL(dev_priv))
 8824		gen8_enable_rc6(dev_priv);
 8825	else if (INTEL_GEN(dev_priv) >= 6)
 8826		gen6_enable_rc6(dev_priv);
 8827
 8828	dev_priv->gt_pm.rc6.enabled = true;
 8829}
 8830
 8831static void intel_enable_rps(struct drm_i915_private *dev_priv)
 8832{
 8833	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 8834
 8835	lockdep_assert_held(&rps->lock);
 8836
 8837	if (rps->enabled)
 8838		return;
 8839
 8840	if (IS_CHERRYVIEW(dev_priv)) {
 8841		cherryview_enable_rps(dev_priv);
 8842	} else if (IS_VALLEYVIEW(dev_priv)) {
 8843		valleyview_enable_rps(dev_priv);
 8844	} else if (INTEL_GEN(dev_priv) >= 9) {
 8845		gen9_enable_rps(dev_priv);
 8846	} else if (IS_BROADWELL(dev_priv)) {
 8847		gen8_enable_rps(dev_priv);
 8848	} else if (INTEL_GEN(dev_priv) >= 6) {
 8849		gen6_enable_rps(dev_priv);
 8850	} else if (IS_IRONLAKE_M(dev_priv)) {
 8851		ironlake_enable_drps(dev_priv);
 8852		intel_init_emon(dev_priv);
 8853	}
 8854
 8855	WARN_ON(rps->max_freq < rps->min_freq);
 8856	WARN_ON(rps->idle_freq > rps->max_freq);
 8857
 8858	WARN_ON(rps->efficient_freq < rps->min_freq);
 8859	WARN_ON(rps->efficient_freq > rps->max_freq);
 8860
 8861	rps->enabled = true;
 8862}
 8863
 8864void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
 8865{
 8866	/* Powersaving is controlled by the host when inside a VM */
 8867	if (intel_vgpu_active(dev_priv))
 8868		return;
 8869
 8870	mutex_lock(&dev_priv->gt_pm.rps.lock);
 8871
 8872	if (HAS_RC6(dev_priv))
 8873		intel_enable_rc6(dev_priv);
 8874	if (HAS_RPS(dev_priv))
 8875		intel_enable_rps(dev_priv);
 8876	if (HAS_LLC(dev_priv))
 8877		intel_enable_llc_pstate(dev_priv);
 8878
 8879	mutex_unlock(&dev_priv->gt_pm.rps.lock);
 8880}
 8881
 8882static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
 8883{
 8884	/*
 8885	 * On Ibex Peak and Cougar Point, we need to disable clock
 8886	 * gating for the panel power sequencer or it will fail to
 8887	 * start up when no ports are active.
 8888	 */
 8889	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
 8890}
 8891
 8892static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
 8893{
 8894	enum pipe pipe;
 
 8895
 8896	for_each_pipe(dev_priv, pipe) {
 8897		I915_WRITE(DSPCNTR(pipe),
 8898			   I915_READ(DSPCNTR(pipe)) |
 8899			   DISPPLANE_TRICKLE_FEED_DISABLE);
 8900
 8901		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
 8902		POSTING_READ(DSPSURF(pipe));
 8903	}
 8904}
 8905
 8906static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
 8907{
 8908	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8909
 8910	/*
 8911	 * Required for FBC
 8912	 * WaFbcDisableDpfcClockGating:ilk
 8913	 */
 8914	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
 8915		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
 8916		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
 8917
 8918	I915_WRITE(PCH_3DCGDIS0,
 8919		   MARIUNIT_CLOCK_GATE_DISABLE |
 8920		   SVSMUNIT_CLOCK_GATE_DISABLE);
 8921	I915_WRITE(PCH_3DCGDIS1,
 8922		   VFMUNIT_CLOCK_GATE_DISABLE);
 8923
 8924	/*
 8925	 * According to the spec the following bits should be set in
 8926	 * order to enable memory self-refresh
 8927	 * The bit 22/21 of 0x42004
 8928	 * The bit 5 of 0x42020
 8929	 * The bit 15 of 0x45000
 8930	 */
 8931	I915_WRITE(ILK_DISPLAY_CHICKEN2,
 8932		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
 8933		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
 8934	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
 8935	I915_WRITE(DISP_ARB_CTL,
 8936		   (I915_READ(DISP_ARB_CTL) |
 8937		    DISP_FBC_WM_DIS));
 8938
 
 
 8939	/*
 8940	 * Based on the document from hardware guys the following bits
 8941	 * should be set unconditionally in order to enable FBC.
 8942	 * The bit 22 of 0x42000
 8943	 * The bit 22 of 0x42004
 8944	 * The bit 7,8,9 of 0x42020.
 8945	 */
 8946	if (IS_IRONLAKE_M(dev_priv)) {
 8947		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
 8948		I915_WRITE(ILK_DISPLAY_CHICKEN1,
 8949			   I915_READ(ILK_DISPLAY_CHICKEN1) |
 8950			   ILK_FBCQ_DIS);
 8951		I915_WRITE(ILK_DISPLAY_CHICKEN2,
 8952			   I915_READ(ILK_DISPLAY_CHICKEN2) |
 8953			   ILK_DPARB_GATE);
 8954	}
 8955
 8956	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
 8957
 8958	I915_WRITE(ILK_DISPLAY_CHICKEN2,
 8959		   I915_READ(ILK_DISPLAY_CHICKEN2) |
 8960		   ILK_ELPIN_409_SELECT);
 8961	I915_WRITE(_3D_CHICKEN2,
 8962		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
 8963		   _3D_CHICKEN2_WM_READ_PIPELINED);
 8964
 8965	/* WaDisableRenderCachePipelinedFlush:ilk */
 8966	I915_WRITE(CACHE_MODE_0,
 8967		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
 8968
 8969	/* WaDisable_RenderCache_OperationalFlush:ilk */
 8970	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
 8971
 8972	g4x_disable_trickle_feed(dev_priv);
 8973
 8974	ibx_init_clock_gating(dev_priv);
 8975}
 8976
 8977static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
 8978{
 
 8979	int pipe;
 8980	u32 val;
 8981
 8982	/*
 8983	 * On Ibex Peak and Cougar Point, we need to disable clock
 8984	 * gating for the panel power sequencer or it will fail to
 8985	 * start up when no ports are active.
 8986	 */
 8987	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
 8988		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
 8989		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
 8990	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
 8991		   DPLS_EDP_PPS_FIX_DIS);
 8992	/* The below fixes the weird display corruption, a few pixels shifted
 8993	 * downward, on (only) LVDS of some HP laptops with IVY.
 8994	 */
 8995	for_each_pipe(dev_priv, pipe) {
 8996		val = I915_READ(TRANS_CHICKEN2(pipe));
 8997		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
 8998		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
 8999		if (dev_priv->vbt.fdi_rx_polarity_inverted)
 9000			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
 9001		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
 9002		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
 9003		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
 9004		I915_WRITE(TRANS_CHICKEN2(pipe), val);
 9005	}
 9006	/* WADP0ClockGatingDisable */
 9007	for_each_pipe(dev_priv, pipe) {
 9008		I915_WRITE(TRANS_CHICKEN1(pipe),
 9009			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
 9010	}
 9011}
 9012
 9013static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
 9014{
 9015	u32 tmp;
 
 9016
 9017	tmp = I915_READ(MCH_SSKPD);
 9018	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
 9019		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
 9020			      tmp);
 
 
 9021}
 9022
 9023static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
 9024{
 9025	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
 
 9026
 9027	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
 9028
 9029	I915_WRITE(ILK_DISPLAY_CHICKEN2,
 9030		   I915_READ(ILK_DISPLAY_CHICKEN2) |
 9031		   ILK_ELPIN_409_SELECT);
 9032
 9033	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
 9034	I915_WRITE(_3D_CHICKEN,
 9035		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
 9036
 9037	/* WaDisable_RenderCache_OperationalFlush:snb */
 9038	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
 
 
 9039
 9040	/*
 9041	 * BSpec recoomends 8x4 when MSAA is used,
 9042	 * however in practice 16x4 seems fastest.
 9043	 *
 9044	 * Note that PS/WM thread counts depend on the WIZ hashing
 9045	 * disable bit, which we don't touch here, but it's good
 9046	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
 9047	 */
 9048	I915_WRITE(GEN6_GT_MODE,
 9049		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
 
 
 9050
 9051	I915_WRITE(CACHE_MODE_0,
 9052		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
 9053
 9054	I915_WRITE(GEN6_UCGCTL1,
 9055		   I915_READ(GEN6_UCGCTL1) |
 9056		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
 9057		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
 9058
 9059	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
 9060	 * gating disable must be set.  Failure to set it results in
 9061	 * flickering pixels due to Z write ordering failures after
 9062	 * some amount of runtime in the Mesa "fire" demo, and Unigine
 9063	 * Sanctuary and Tropics, and apparently anything else with
 9064	 * alpha test or pixel discard.
 9065	 *
 9066	 * According to the spec, bit 11 (RCCUNIT) must also be set,
 9067	 * but we didn't debug actual testcases to find it out.
 9068	 *
 9069	 * WaDisableRCCUnitClockGating:snb
 9070	 * WaDisableRCPBUnitClockGating:snb
 9071	 */
 9072	I915_WRITE(GEN6_UCGCTL2,
 9073		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
 9074		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
 9075
 9076	/* WaStripsFansDisableFastClipPerformanceFix:snb */
 9077	I915_WRITE(_3D_CHICKEN3,
 9078		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
 9079
 9080	/*
 9081	 * Bspec says:
 9082	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
 9083	 * 3DSTATE_SF number of SF output attributes is more than 16."
 9084	 */
 9085	I915_WRITE(_3D_CHICKEN3,
 9086		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
 9087
 9088	/*
 9089	 * According to the spec the following bits should be
 9090	 * set in order to enable memory self-refresh and fbc:
 9091	 * The bit21 and bit22 of 0x42000
 9092	 * The bit21 and bit22 of 0x42004
 9093	 * The bit5 and bit7 of 0x42020
 9094	 * The bit14 of 0x70180
 9095	 * The bit14 of 0x71180
 9096	 *
 9097	 * WaFbcAsynchFlipDisableFbcQueue:snb
 9098	 */
 9099	I915_WRITE(ILK_DISPLAY_CHICKEN1,
 9100		   I915_READ(ILK_DISPLAY_CHICKEN1) |
 9101		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
 9102	I915_WRITE(ILK_DISPLAY_CHICKEN2,
 9103		   I915_READ(ILK_DISPLAY_CHICKEN2) |
 9104		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
 9105	I915_WRITE(ILK_DSPCLK_GATE_D,
 9106		   I915_READ(ILK_DSPCLK_GATE_D) |
 9107		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
 9108		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
 9109
 9110	g4x_disable_trickle_feed(dev_priv);
 9111
 9112	cpt_init_clock_gating(dev_priv);
 9113
 9114	gen6_check_mch_setup(dev_priv);
 9115}
 9116
 9117static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
 9118{
 9119	u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
 9120
 9121	/*
 9122	 * WaVSThreadDispatchOverride:ivb,vlv
 9123	 *
 9124	 * This actually overrides the dispatch
 9125	 * mode for all thread types.
 9126	 */
 9127	reg &= ~GEN7_FF_SCHED_MASK;
 9128	reg |= GEN7_FF_TS_SCHED_HW;
 9129	reg |= GEN7_FF_VS_SCHED_HW;
 9130	reg |= GEN7_FF_DS_SCHED_HW;
 9131
 9132	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
 9133}
 9134
 9135static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
 9136{
 
 
 9137	/*
 9138	 * TODO: this bit should only be enabled when really needed, then
 9139	 * disabled when not needed anymore in order to save power.
 9140	 */
 9141	if (HAS_PCH_LPT_LP(dev_priv))
 9142		I915_WRITE(SOUTH_DSPCLK_GATE_D,
 9143			   I915_READ(SOUTH_DSPCLK_GATE_D) |
 9144			   PCH_LP_PARTITION_LEVEL_DISABLE);
 9145
 9146	/* WADPOClockGatingDisable:hsw */
 9147	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
 9148		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
 9149		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
 9150}
 9151
 9152static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
 9153{
 9154	if (HAS_PCH_LPT_LP(dev_priv)) {
 9155		u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
 
 
 9156
 9157		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
 9158		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
 9159	}
 9160}
 9161
 9162static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
 9163				   int general_prio_credits,
 9164				   int high_prio_credits)
 9165{
 9166	u32 misccpctl;
 9167	u32 val;
 9168
 9169	/* WaTempDisableDOPClkGating:bdw */
 9170	misccpctl = I915_READ(GEN7_MISCCPCTL);
 9171	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
 9172
 9173	val = I915_READ(GEN8_L3SQCREG1);
 9174	val &= ~L3_PRIO_CREDITS_MASK;
 9175	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
 9176	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
 9177	I915_WRITE(GEN8_L3SQCREG1, val);
 9178
 9179	/*
 9180	 * Wait at least 100 clocks before re-enabling clock gating.
 9181	 * See the definition of L3SQCREG1 in BSpec.
 9182	 */
 9183	POSTING_READ(GEN8_L3SQCREG1);
 9184	udelay(1);
 9185	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
 9186}
 9187
 9188static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
 9189{
 9190	/* This is not an Wa. Enable to reduce Sampler power */
 9191	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
 9192		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
 9193
 9194	/* WaEnable32PlaneMode:icl */
 9195	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS,
 9196		   _MASKED_BIT_ENABLE(GEN11_ENABLE_32_PLANE_MODE));
 9197}
 9198
 9199static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
 9200{
 9201	if (!HAS_PCH_CNP(dev_priv))
 9202		return;
 9203
 9204	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
 9205	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
 9206		   CNP_PWM_CGE_GATING_DISABLE);
 9207}
 9208
 9209static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
 9210{
 9211	u32 val;
 9212	cnp_init_clock_gating(dev_priv);
 
 
 
 
 
 9213
 9214	/* This is not an Wa. Enable for better image quality */
 9215	I915_WRITE(_3D_CHICKEN3,
 9216		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
 9217
 9218	/* WaEnableChickenDCPR:cnl */
 9219	I915_WRITE(GEN8_CHICKEN_DCPR_1,
 9220		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
 9221
 9222	/* WaFbcWakeMemOn:cnl */
 9223	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
 9224		   DISP_FBC_MEMORY_WAKE);
 9225
 9226	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
 9227	/* ReadHitWriteOnlyDisable:cnl */
 9228	val |= RCCUNIT_CLKGATE_DIS;
 9229	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
 9230	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
 9231		val |= SARBUNIT_CLKGATE_DIS;
 9232	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
 9233
 9234	/* Wa_2201832410:cnl */
 9235	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
 9236	val |= GWUNIT_CLKGATE_DIS;
 9237	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);
 9238
 9239	/* WaDisableVFclkgate:cnl */
 9240	/* WaVFUnitClockGatingDisable:cnl */
 9241	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
 9242	val |= VFUNIT_CLKGATE_DIS;
 9243	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
 9244}
 9245
 9246static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
 9247{
 9248	cnp_init_clock_gating(dev_priv);
 9249	gen9_init_clock_gating(dev_priv);
 9250
 9251	/* WaFbcNukeOnHostModify:cfl */
 9252	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
 9253		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
 9254}
 9255
 9256static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
 9257{
 9258	gen9_init_clock_gating(dev_priv);
 9259
 9260	/* WaDisableSDEUnitClockGating:kbl */
 9261	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
 9262		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
 9263			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
 9264
 9265	/* WaDisableGamClockGating:kbl */
 9266	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
 9267		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
 9268			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
 9269
 9270	/* WaFbcNukeOnHostModify:kbl */
 9271	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
 9272		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
 9273}
 9274
 9275static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
 9276{
 9277	gen9_init_clock_gating(dev_priv);
 9278
 9279	/* WAC6entrylatency:skl */
 9280	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
 9281		   FBC_LLC_FULLY_OPEN);
 9282
 9283	/* WaFbcNukeOnHostModify:skl */
 9284	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
 9285		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
 9286}
 9287
 9288static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
 9289{
 9290	enum pipe pipe;
 9291
 9292	/* WaSwitchSolVfFArbitrationPriority:bdw */
 9293	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
 9294
 9295	/* WaPsrDPAMaskVBlankInSRD:bdw */
 9296	I915_WRITE(CHICKEN_PAR1_1,
 9297		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
 9298
 9299	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
 9300	for_each_pipe(dev_priv, pipe) {
 9301		I915_WRITE(CHICKEN_PIPESL_1(pipe),
 9302			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
 9303			   BDW_DPRS_MASK_VBLANK_SRD);
 9304	}
 9305
 
 
 
 
 
 
 
 
 9306	/* WaVSRefCountFullforceMissDisable:bdw */
 9307	/* WaDSRefCountFullforceMissDisable:bdw */
 9308	I915_WRITE(GEN7_FF_THREAD_MODE,
 9309		   I915_READ(GEN7_FF_THREAD_MODE) &
 9310		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
 9311
 
 
 
 
 
 
 
 
 
 
 
 9312	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
 9313		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
 9314
 9315	/* WaDisableSDEUnitClockGating:bdw */
 9316	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
 9317		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
 9318
 9319	/* WaProgramL3SqcReg1Default:bdw */
 9320	gen8_set_l3sqc_credits(dev_priv, 30, 2);
 9321
 9322	/* WaKVMNotificationOnConfigChange:bdw */
 9323	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
 9324		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
 9325
 9326	lpt_init_clock_gating(dev_priv);
 9327
 9328	/* WaDisableDopClockGating:bdw
 9329	 *
 9330	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
 9331	 * clock gating.
 9332	 */
 9333	I915_WRITE(GEN6_UCGCTL1,
 9334		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
 9335}
 9336
 9337static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
 9338{
 
 
 
 
 9339	/* L3 caching of data atomics doesn't work -- disable it. */
 9340	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
 9341	I915_WRITE(HSW_ROW_CHICKEN3,
 9342		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
 9343
 9344	/* This is required by WaCatErrorRejectionIssue:hsw */
 9345	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
 9346			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
 9347			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
 9348
 9349	/* WaVSRefCountFullforceMissDisable:hsw */
 9350	I915_WRITE(GEN7_FF_THREAD_MODE,
 9351		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
 9352
 9353	/* WaDisable_RenderCache_OperationalFlush:hsw */
 9354	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
 9355
 9356	/* enable HiZ Raw Stall Optimization */
 9357	I915_WRITE(CACHE_MODE_0_GEN7,
 9358		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
 9359
 9360	/* WaDisable4x2SubspanOptimization:hsw */
 9361	I915_WRITE(CACHE_MODE_1,
 9362		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
 9363
 9364	/*
 9365	 * BSpec recommends 8x4 when MSAA is used,
 9366	 * however in practice 16x4 seems fastest.
 9367	 *
 9368	 * Note that PS/WM thread counts depend on the WIZ hashing
 9369	 * disable bit, which we don't touch here, but it's good
 9370	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
 9371	 */
 9372	I915_WRITE(GEN7_GT_MODE,
 9373		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
 9374
 9375	/* WaSampleCChickenBitEnable:hsw */
 9376	I915_WRITE(HALF_SLICE_CHICKEN3,
 9377		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
 9378
 9379	/* WaSwitchSolVfFArbitrationPriority:hsw */
 9380	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
 9381
 9382	lpt_init_clock_gating(dev_priv);
 
 
 
 
 9383}
 9384
 9385static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
 9386{
 9387	u32 snpcr;
 
 
 
 9388
 9389	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
 9390
 9391	/* WaDisableEarlyCull:ivb */
 9392	I915_WRITE(_3D_CHICKEN3,
 9393		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
 9394
 9395	/* WaDisableBackToBackFlipFix:ivb */
 9396	I915_WRITE(IVB_CHICKEN3,
 9397		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
 9398		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
 9399
 9400	/* WaDisablePSDDualDispatchEnable:ivb */
 9401	if (IS_IVB_GT1(dev_priv))
 9402		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
 9403			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
 9404
 9405	/* WaDisable_RenderCache_OperationalFlush:ivb */
 9406	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
 9407
 9408	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
 9409	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
 9410		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
 9411
 9412	/* WaApplyL3ControlAndL3ChickenMode:ivb */
 9413	I915_WRITE(GEN7_L3CNTLREG1,
 9414			GEN7_WA_FOR_GEN7_L3_CONTROL);
 9415	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
 9416		   GEN7_WA_L3_CHICKEN_MODE);
 9417	if (IS_IVB_GT1(dev_priv))
 9418		I915_WRITE(GEN7_ROW_CHICKEN2,
 9419			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
 9420	else {
 9421		/* must write both registers */
 9422		I915_WRITE(GEN7_ROW_CHICKEN2,
 9423			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
 9424		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
 9425			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
 9426	}
 9427
 9428	/* WaForceL3Serialization:ivb */
 9429	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
 9430		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
 9431
 9432	/*
 9433	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
 9434	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
 9435	 */
 9436	I915_WRITE(GEN6_UCGCTL2,
 9437		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
 9438
 9439	/* This is required by WaCatErrorRejectionIssue:ivb */
 9440	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
 9441			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
 9442			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
 9443
 9444	g4x_disable_trickle_feed(dev_priv);
 9445
 9446	gen7_setup_fixed_func_scheduler(dev_priv);
 9447
 9448	if (0) { /* causes HiZ corruption on ivb:gt1 */
 9449		/* enable HiZ Raw Stall Optimization */
 9450		I915_WRITE(CACHE_MODE_0_GEN7,
 9451			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
 9452	}
 9453
 9454	/* WaDisable4x2SubspanOptimization:ivb */
 9455	I915_WRITE(CACHE_MODE_1,
 9456		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
 9457
 9458	/*
 9459	 * BSpec recommends 8x4 when MSAA is used,
 9460	 * however in practice 16x4 seems fastest.
 9461	 *
 9462	 * Note that PS/WM thread counts depend on the WIZ hashing
 9463	 * disable bit, which we don't touch here, but it's good
 9464	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
 9465	 */
 9466	I915_WRITE(GEN7_GT_MODE,
 9467		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
 9468
 9469	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
 9470	snpcr &= ~GEN6_MBC_SNPCR_MASK;
 9471	snpcr |= GEN6_MBC_SNPCR_MED;
 9472	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
 9473
 9474	if (!HAS_PCH_NOP(dev_priv))
 9475		cpt_init_clock_gating(dev_priv);
 9476
 9477	gen6_check_mch_setup(dev_priv);
 9478}
 9479
 9480static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
 9481{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9482	/* WaDisableEarlyCull:vlv */
 9483	I915_WRITE(_3D_CHICKEN3,
 9484		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
 9485
 9486	/* WaDisableBackToBackFlipFix:vlv */
 9487	I915_WRITE(IVB_CHICKEN3,
 9488		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
 9489		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
 9490
 9491	/* WaPsdDispatchEnable:vlv */
 9492	/* WaDisablePSDDualDispatchEnable:vlv */
 9493	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
 9494		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
 9495				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
 9496
 9497	/* WaDisable_RenderCache_OperationalFlush:vlv */
 9498	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
 9499
 9500	/* WaForceL3Serialization:vlv */
 9501	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
 9502		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
 9503
 9504	/* WaDisableDopClockGating:vlv */
 9505	I915_WRITE(GEN7_ROW_CHICKEN2,
 9506		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
 9507
 9508	/* This is required by WaCatErrorRejectionIssue:vlv */
 9509	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
 9510		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
 9511		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
 9512
 9513	gen7_setup_fixed_func_scheduler(dev_priv);
 9514
 9515	/*
 9516	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
 9517	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
 9518	 */
 9519	I915_WRITE(GEN6_UCGCTL2,
 9520		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
 9521
 9522	/* WaDisableL3Bank2xClockGate:vlv
 9523	 * Disabling L3 clock gating- MMIO 940c[25] = 1
 9524	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
 9525	I915_WRITE(GEN7_UCGCTL4,
 9526		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
 9527
 9528	/*
 9529	 * BSpec says this must be set, even though
 9530	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
 9531	 */
 9532	I915_WRITE(CACHE_MODE_1,
 9533		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
 9534
 9535	/*
 9536	 * BSpec recommends 8x4 when MSAA is used,
 9537	 * however in practice 16x4 seems fastest.
 9538	 *
 9539	 * Note that PS/WM thread counts depend on the WIZ hashing
 9540	 * disable bit, which we don't touch here, but it's good
 9541	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
 9542	 */
 9543	I915_WRITE(GEN7_GT_MODE,
 9544		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
 9545
 9546	/*
 9547	 * WaIncreaseL3CreditsForVLVB0:vlv
 9548	 * This is the hardware default actually.
 9549	 */
 9550	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
 9551
 9552	/*
 9553	 * WaDisableVLVClockGating_VBIIssue:vlv
 9554	 * Disable clock gating on th GCFG unit to prevent a delay
 9555	 * in the reporting of vblank events.
 9556	 */
 9557	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
 9558}
 9559
 9560static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
 9561{
 9562	/* WaVSRefCountFullforceMissDisable:chv */
 9563	/* WaDSRefCountFullforceMissDisable:chv */
 9564	I915_WRITE(GEN7_FF_THREAD_MODE,
 9565		   I915_READ(GEN7_FF_THREAD_MODE) &
 9566		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
 9567
 9568	/* WaDisableSemaphoreAndSyncFlipWait:chv */
 9569	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
 9570		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
 9571
 9572	/* WaDisableCSUnitClockGating:chv */
 9573	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
 9574		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
 9575
 9576	/* WaDisableSDEUnitClockGating:chv */
 9577	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
 9578		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
 9579
 9580	/*
 9581	 * WaProgramL3SqcReg1Default:chv
 9582	 * See gfxspecs/Related Documents/Performance Guide/
 9583	 * LSQC Setting Recommendations.
 9584	 */
 9585	gen8_set_l3sqc_credits(dev_priv, 38, 2);
 9586}
 9587
 9588static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
 9589{
 9590	u32 dspclk_gate;
 9591
 9592	I915_WRITE(RENCLK_GATE_D1, 0);
 9593	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
 9594		   GS_UNIT_CLOCK_GATE_DISABLE |
 9595		   CL_UNIT_CLOCK_GATE_DISABLE);
 9596	I915_WRITE(RAMCLK_GATE_D, 0);
 9597	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
 9598		OVRUNIT_CLOCK_GATE_DISABLE |
 9599		OVCUNIT_CLOCK_GATE_DISABLE;
 9600	if (IS_GM45(dev_priv))
 9601		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
 9602	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
 9603
 9604	/* WaDisableRenderCachePipelinedFlush */
 9605	I915_WRITE(CACHE_MODE_0,
 9606		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
 9607
 9608	/* WaDisable_RenderCache_OperationalFlush:g4x */
 9609	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
 9610
 9611	g4x_disable_trickle_feed(dev_priv);
 9612}
 9613
 9614static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
 9615{
 9616	struct intel_uncore *uncore = &dev_priv->uncore;
 9617
 9618	intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
 9619	intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
 9620	intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
 9621	intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
 9622	intel_uncore_write16(uncore, DEUC, 0);
 9623	intel_uncore_write(uncore,
 9624			   MI_ARB_STATE,
 9625			   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
 9626
 9627	/* WaDisable_RenderCache_OperationalFlush:gen4 */
 9628	intel_uncore_write(uncore,
 9629			   CACHE_MODE_0,
 9630			   _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
 
 
 
 9631}
 9632
 9633static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
 9634{
 
 
 9635	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
 9636		   I965_RCC_CLOCK_GATE_DISABLE |
 9637		   I965_RCPB_CLOCK_GATE_DISABLE |
 9638		   I965_ISC_CLOCK_GATE_DISABLE |
 9639		   I965_FBC_CLOCK_GATE_DISABLE);
 9640	I915_WRITE(RENCLK_GATE_D2, 0);
 9641	I915_WRITE(MI_ARB_STATE,
 9642		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
 9643
 9644	/* WaDisable_RenderCache_OperationalFlush:gen4 */
 9645	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
 9646}
 9647
 9648static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
 9649{
 
 9650	u32 dstate = I915_READ(D_STATE);
 9651
 9652	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
 9653		DSTATE_DOT_CLOCK_GATING;
 9654	I915_WRITE(D_STATE, dstate);
 9655
 9656	if (IS_PINEVIEW(dev_priv))
 9657		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
 9658
 9659	/* IIR "flip pending" means done if this bit is set */
 9660	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
 9661
 9662	/* interrupts should cause a wake up from C3 */
 9663	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
 9664
 9665	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
 9666	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
 9667
 9668	I915_WRITE(MI_ARB_STATE,
 9669		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
 9670}
 9671
 9672static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
 9673{
 
 
 9674	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
 
 9675
 9676	/* interrupts should cause a wake up from C3 */
 9677	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
 9678		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
 9679
 9680	I915_WRITE(MEM_MODE,
 9681		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
 9682}
 9683
 9684static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
 9685{
 9686	I915_WRITE(MEM_MODE,
 9687		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
 9688		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
 9689}
 9690
 9691void intel_init_clock_gating(struct drm_i915_private *dev_priv)
 9692{
 9693	dev_priv->display.init_clock_gating(dev_priv);
 
 9694}
 9695
 9696void intel_suspend_hw(struct drm_i915_private *dev_priv)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9697{
 9698	if (HAS_PCH_LPT(dev_priv))
 9699		lpt_suspend_hw(dev_priv);
 9700}
 9701
 9702static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
 
 9703{
 9704	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
 
 
 
 
 9705}
 9706
 9707/**
 9708 * intel_init_clock_gating_hooks - setup the clock gating hooks
 9709 * @dev_priv: device private
 9710 *
 9711 * Setup the hooks that configure which clocks of a given platform can be
 9712 * gated and also apply various GT and display specific workarounds for these
 9713 * platforms. Note that some GT specific workarounds are applied separately
 9714 * when GPU contexts or batchbuffers start their execution.
 9715 */
 9716void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
 9717{
 9718	if (IS_GEN(dev_priv, 12))
 9719		dev_priv->display.init_clock_gating = nop_init_clock_gating;
 9720	else if (IS_GEN(dev_priv, 11))
 9721		dev_priv->display.init_clock_gating = icl_init_clock_gating;
 9722	else if (IS_CANNONLAKE(dev_priv))
 9723		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
 9724	else if (IS_COFFEELAKE(dev_priv))
 9725		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
 9726	else if (IS_SKYLAKE(dev_priv))
 9727		dev_priv->display.init_clock_gating = skl_init_clock_gating;
 9728	else if (IS_KABYLAKE(dev_priv))
 9729		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
 9730	else if (IS_BROXTON(dev_priv))
 9731		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
 9732	else if (IS_GEMINILAKE(dev_priv))
 9733		dev_priv->display.init_clock_gating = glk_init_clock_gating;
 9734	else if (IS_BROADWELL(dev_priv))
 9735		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
 9736	else if (IS_CHERRYVIEW(dev_priv))
 9737		dev_priv->display.init_clock_gating = chv_init_clock_gating;
 9738	else if (IS_HASWELL(dev_priv))
 9739		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
 9740	else if (IS_IVYBRIDGE(dev_priv))
 9741		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
 9742	else if (IS_VALLEYVIEW(dev_priv))
 9743		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
 9744	else if (IS_GEN(dev_priv, 6))
 9745		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
 9746	else if (IS_GEN(dev_priv, 5))
 9747		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
 9748	else if (IS_G4X(dev_priv))
 9749		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
 9750	else if (IS_I965GM(dev_priv))
 9751		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
 9752	else if (IS_I965G(dev_priv))
 9753		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
 9754	else if (IS_GEN(dev_priv, 3))
 9755		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
 9756	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
 9757		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
 9758	else if (IS_GEN(dev_priv, 2))
 9759		dev_priv->display.init_clock_gating = i830_init_clock_gating;
 9760	else {
 9761		MISSING_CASE(INTEL_DEVID(dev_priv));
 9762		dev_priv->display.init_clock_gating = nop_init_clock_gating;
 9763	}
 
 
 
 9764}
 9765
 9766/* Set up chip specific power management-related functions */
 9767void intel_init_pm(struct drm_i915_private *dev_priv)
 
 
 
 
 
 9768{
 9769	/* For cxsr */
 9770	if (IS_PINEVIEW(dev_priv))
 9771		i915_pineview_get_mem_freq(dev_priv);
 9772	else if (IS_GEN(dev_priv, 5))
 9773		i915_ironlake_get_mem_freq(dev_priv);
 9774
 9775	/* For FIFO watermark updates */
 9776	if (INTEL_GEN(dev_priv) >= 9) {
 9777		skl_setup_wm_latency(dev_priv);
 9778		dev_priv->display.initial_watermarks = skl_initial_wm;
 9779		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
 9780		dev_priv->display.compute_global_watermarks = skl_compute_wm;
 9781	} else if (HAS_PCH_SPLIT(dev_priv)) {
 9782		ilk_setup_wm_latency(dev_priv);
 
 
 
 
 
 9783
 9784		if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
 9785		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
 9786		    (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
 9787		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
 9788			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
 9789			dev_priv->display.compute_intermediate_wm =
 9790				ilk_compute_intermediate_wm;
 9791			dev_priv->display.initial_watermarks =
 9792				ilk_initial_watermarks;
 9793			dev_priv->display.optimize_watermarks =
 9794				ilk_optimize_watermarks;
 9795		} else {
 9796			DRM_DEBUG_KMS("Failed to read display plane latency. "
 9797				      "Disable CxSR\n");
 9798		}
 9799	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
 9800		vlv_setup_wm_latency(dev_priv);
 9801		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
 9802		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
 9803		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
 9804		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
 9805		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
 9806	} else if (IS_G4X(dev_priv)) {
 9807		g4x_setup_wm_latency(dev_priv);
 9808		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
 9809		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
 9810		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
 9811		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
 9812	} else if (IS_PINEVIEW(dev_priv)) {
 9813		if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
 9814					    dev_priv->is_ddr3,
 9815					    dev_priv->fsb_freq,
 9816					    dev_priv->mem_freq)) {
 9817			DRM_INFO("failed to find known CxSR latency "
 9818				 "(found ddr%s fsb freq %d, mem freq %d), "
 9819				 "disabling CxSR\n",
 9820				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
 9821				 dev_priv->fsb_freq, dev_priv->mem_freq);
 9822			/* Disable CxSR and never update its watermark again */
 9823			intel_set_memory_cxsr(dev_priv, false);
 9824			dev_priv->display.update_wm = NULL;
 9825		} else
 9826			dev_priv->display.update_wm = pineview_update_wm;
 9827	} else if (IS_GEN(dev_priv, 4)) {
 9828		dev_priv->display.update_wm = i965_update_wm;
 9829	} else if (IS_GEN(dev_priv, 3)) {
 9830		dev_priv->display.update_wm = i9xx_update_wm;
 9831		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
 9832	} else if (IS_GEN(dev_priv, 2)) {
 9833		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
 9834			dev_priv->display.update_wm = i845_update_wm;
 9835			dev_priv->display.get_fifo_size = i845_get_fifo_size;
 9836		} else {
 9837			dev_priv->display.update_wm = i9xx_update_wm;
 9838			dev_priv->display.get_fifo_size = i830_get_fifo_size;
 9839		}
 9840	} else {
 9841		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
 9842	}
 9843}
 9844
 9845static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
 
 
 
 
 
 
 
 9846{
 9847	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 
 
 9848
 9849	/*
 9850	 * N = val - 0xb7
 9851	 * Slow = Fast = GPLL ref * N
 
 
 
 9852	 */
 9853	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
 
 
 
 
 9854}
 9855
 9856static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
 
 9857{
 9858	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 
 
 
 
 
 9859
 9860	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9861}
 9862
 9863static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
 
 9864{
 9865	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 9866
 9867	/*
 9868	 * N = val / 2
 9869	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
 9870	 */
 9871	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
 
 9872}
 9873
 9874static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
 
 9875{
 9876	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 
 9877
 9878	/* CHV needs even values */
 9879	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
 
 
 9880}
 9881
 9882int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
 
 9883{
 9884	if (INTEL_GEN(dev_priv) >= 9)
 9885		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
 9886					 GEN9_FREQ_SCALER);
 9887	else if (IS_CHERRYVIEW(dev_priv))
 9888		return chv_gpu_freq(dev_priv, val);
 9889	else if (IS_VALLEYVIEW(dev_priv))
 9890		return byt_gpu_freq(dev_priv, val);
 9891	else
 9892		return val * GT_FREQUENCY_MULTIPLIER;
 9893}
 9894
 9895int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
 
 9896{
 9897	if (INTEL_GEN(dev_priv) >= 9)
 9898		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
 9899					 GT_FREQUENCY_MULTIPLIER);
 9900	else if (IS_CHERRYVIEW(dev_priv))
 9901		return chv_freq_opcode(dev_priv, val);
 9902	else if (IS_VALLEYVIEW(dev_priv))
 9903		return byt_freq_opcode(dev_priv, val);
 9904	else
 9905		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9906}
 9907
 9908void intel_pm_setup(struct drm_i915_private *dev_priv)
 
 9909{
 9910	mutex_init(&dev_priv->gt_pm.rps.lock);
 9911	mutex_init(&dev_priv->gt_pm.rps.power.mutex);
 9912
 9913	atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
 
 
 
 
 9914
 9915	dev_priv->runtime_pm.suspended = false;
 9916	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
 
 
 9917}
 9918
 9919static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
 9920			     const i915_reg_t reg)
 9921{
 9922	u32 lower, upper, tmp;
 9923	int loop = 2;
 
 
 
 9924
 
 
 
 
 
 
 9925	/*
 9926	 * The register accessed do not need forcewake. We borrow
 9927	 * uncore lock to prevent concurrent access to range reg.
 9928	 */
 9929	lockdep_assert_held(&dev_priv->uncore.lock);
 
 
 
 9930
 9931	/*
 9932	 * vlv and chv residency counters are 40 bits in width.
 9933	 * With a control bit, we can choose between upper or lower
 9934	 * 32bit window into this counter.
 9935	 *
 9936	 * Although we always use the counter in high-range mode elsewhere,
 9937	 * userspace may attempt to read the value before rc6 is initialised,
 9938	 * before we have set the default VLV_COUNTER_CONTROL value. So always
 9939	 * set the high bit to be safe.
 9940	 */
 9941	I915_WRITE_FW(VLV_COUNTER_CONTROL,
 9942		      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
 9943	upper = I915_READ_FW(reg);
 9944	do {
 9945		tmp = upper;
 
 
 
 
 
 
 
 9946
 9947		I915_WRITE_FW(VLV_COUNTER_CONTROL,
 9948			      _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
 9949		lower = I915_READ_FW(reg);
 9950
 9951		I915_WRITE_FW(VLV_COUNTER_CONTROL,
 9952			      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
 9953		upper = I915_READ_FW(reg);
 9954	} while (upper != tmp && --loop);
 9955
 9956	/*
 9957	 * Everywhere else we always use VLV_COUNTER_CONTROL with the
 9958	 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
 9959	 * now.
 9960	 */
 
 
 9961
 9962	return lower | (u64)upper << 8;
 9963}
 9964
 9965u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
 9966			   const i915_reg_t reg)
 9967{
 9968	struct intel_uncore *uncore = &dev_priv->uncore;
 9969	u64 time_hw, prev_hw, overflow_hw;
 9970	unsigned int fw_domains;
 9971	unsigned long flags;
 9972	unsigned int i;
 9973	u32 mul, div;
 9974
 9975	if (!HAS_RC6(dev_priv))
 9976		return 0;
 9977
 9978	/*
 9979	 * Store previous hw counter values for counter wrap-around handling.
 9980	 *
 9981	 * There are only four interesting registers and they live next to each
 9982	 * other so we can use the relative address, compared to the smallest
 9983	 * one as the index into driver storage.
 9984	 */
 9985	i = (i915_mmio_reg_offset(reg) -
 9986	     i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
 9987	if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
 9988		return 0;
 9989
 9990	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg, FW_REG_READ);
 
 9991
 9992	spin_lock_irqsave(&uncore->lock, flags);
 9993	intel_uncore_forcewake_get__locked(uncore, fw_domains);
 
 
 9994
 9995	/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
 9996	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
 9997		mul = 1000000;
 9998		div = dev_priv->czclk_freq;
 9999		overflow_hw = BIT_ULL(40);
10000		time_hw = vlv_residency_raw(dev_priv, reg);
10001	} else {
10002		/* 833.33ns units on Gen9LP, 1.28us elsewhere. */
10003		if (IS_GEN9_LP(dev_priv)) {
10004			mul = 10000;
10005			div = 12;
10006		} else {
10007			mul = 1280;
10008			div = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10009		}
10010
10011		overflow_hw = BIT_ULL(32);
10012		time_hw = intel_uncore_read_fw(uncore, reg);
10013	}
10014
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10015	/*
10016	 * Counter wrap handling.
10017	 *
10018	 * But relying on a sufficient frequency of queries otherwise counters
10019	 * can still wrap.
10020	 */
10021	prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
10022	dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;
 
 
 
 
 
 
 
 
 
10023
10024	/* RC6 delta from last sample. */
10025	if (time_hw >= prev_hw)
10026		time_hw -= prev_hw;
10027	else
10028		time_hw += overflow_hw - prev_hw;
10029
10030	/* Add delta to RC6 extended raw driver copy. */
10031	time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
10032	dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;
 
10033
10034	intel_uncore_forcewake_put__locked(uncore, fw_domains);
10035	spin_unlock_irqrestore(&uncore->lock, flags);
 
 
 
10036
10037	return mul_u64_u32_div(time_hw, mul, div);
 
 
 
10038}
10039
10040u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
10041			   i915_reg_t reg)
10042{
10043	return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000);
 
 
10044}
10045
10046u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
10047{
10048	u32 cagf;
 
10049
10050	if (INTEL_GEN(dev_priv) >= 9)
10051		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
10052	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
10053		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
10054	else
10055		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10056
10057	return  cagf;
 
10058}
v3.15
   1/*
   2 * Copyright © 2012 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
  25 *
  26 */
  27
  28#include <linux/cpufreq.h>
 
 
 
 
 
 
 
 
 
 
 
 
  29#include "i915_drv.h"
  30#include "intel_drv.h"
 
 
 
  31#include "../../../platform/x86/intel_ips.h"
  32#include <linux/module.h>
  33#include <linux/vgaarb.h>
  34#include <drm/i915_powerwell.h>
  35#include <linux/pm_runtime.h>
  36
  37/**
 
 
  38 * RC6 is a special power stage which allows the GPU to enter an very
  39 * low-voltage mode when idle, using down to 0V while at this stage.  This
  40 * stage is entered automatically when the GPU is idle when RC6 support is
  41 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  42 *
  43 * There are different RC6 modes available in Intel GPU, which differentiate
  44 * among each other with the latency required to enter and leave RC6 and
  45 * voltage consumed by the GPU in different states.
  46 *
  47 * The combination of the following flags define which states GPU is allowed
  48 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  49 * RC6pp is deepest RC6. Their support by hardware varies according to the
  50 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  51 * which brings the most power savings; deeper states save more power, but
  52 * require higher latency to switch to and wake up.
  53 */
  54#define INTEL_RC6_ENABLE			(1<<0)
  55#define INTEL_RC6p_ENABLE			(1<<1)
  56#define INTEL_RC6pp_ENABLE			(1<<2)
  57
  58/* FBC, or Frame Buffer Compression, is a technique employed to compress the
  59 * framebuffer contents in-memory, aiming at reducing the required bandwidth
  60 * during in-memory transfers and, therefore, reduce the power packet.
  61 *
  62 * The benefits of FBC are mostly visible with solid backgrounds and
  63 * variation-less patterns.
  64 *
  65 * FBC-related functionality can be enabled by the means of the
  66 * i915.i915_enable_fbc parameter
  67 */
  68
  69static void i8xx_disable_fbc(struct drm_device *dev)
  70{
  71	struct drm_i915_private *dev_priv = dev->dev_private;
  72	u32 fbc_ctl;
  73
  74	/* Disable compression */
  75	fbc_ctl = I915_READ(FBC_CONTROL);
  76	if ((fbc_ctl & FBC_CTL_EN) == 0)
  77		return;
  78
  79	fbc_ctl &= ~FBC_CTL_EN;
  80	I915_WRITE(FBC_CONTROL, fbc_ctl);
  81
  82	/* Wait for compressing bit to clear */
  83	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  84		DRM_DEBUG_KMS("FBC idle timed out\n");
  85		return;
  86	}
  87
  88	DRM_DEBUG_KMS("disabled FBC\n");
  89}
 
  90
  91static void i8xx_enable_fbc(struct drm_crtc *crtc)
  92{
  93	struct drm_device *dev = crtc->dev;
  94	struct drm_i915_private *dev_priv = dev->dev_private;
  95	struct drm_framebuffer *fb = crtc->primary->fb;
  96	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  97	struct drm_i915_gem_object *obj = intel_fb->obj;
  98	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  99	int cfb_pitch;
 100	int i;
 101	u32 fbc_ctl;
 102
 103	cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
 104	if (fb->pitches[0] < cfb_pitch)
 105		cfb_pitch = fb->pitches[0];
 106
 107	/* FBC_CTL wants 32B or 64B units */
 108	if (IS_GEN2(dev))
 109		cfb_pitch = (cfb_pitch / 32) - 1;
 110	else
 111		cfb_pitch = (cfb_pitch / 64) - 1;
 112
 113	/* Clear old tags */
 114	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
 115		I915_WRITE(FBC_TAG + (i * 4), 0);
 116
 117	if (IS_GEN4(dev)) {
 118		u32 fbc_ctl2;
 
 119
 120		/* Set it up... */
 121		fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
 122		fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
 123		I915_WRITE(FBC_CONTROL2, fbc_ctl2);
 124		I915_WRITE(FBC_FENCE_OFF, crtc->y);
 125	}
 126
 127	/* enable it... */
 128	fbc_ctl = I915_READ(FBC_CONTROL);
 129	fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
 130	fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
 131	if (IS_I945GM(dev))
 132		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
 133	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
 134	fbc_ctl |= obj->fence_reg;
 135	I915_WRITE(FBC_CONTROL, fbc_ctl);
 136
 137	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
 138		      cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
 139}
 140
 141static bool i8xx_fbc_enabled(struct drm_device *dev)
 142{
 143	struct drm_i915_private *dev_priv = dev->dev_private;
 144
 145	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
 146}
 
 147
 148static void g4x_enable_fbc(struct drm_crtc *crtc)
 149{
 150	struct drm_device *dev = crtc->dev;
 151	struct drm_i915_private *dev_priv = dev->dev_private;
 152	struct drm_framebuffer *fb = crtc->primary->fb;
 153	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
 154	struct drm_i915_gem_object *obj = intel_fb->obj;
 155	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 156	u32 dpfc_ctl;
 157
 158	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
 159	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
 160		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
 161	else
 162		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
 163	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
 164
 165	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
 166
 167	/* enable it... */
 168	I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
 169
 170	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
 171}
 172
 173static void g4x_disable_fbc(struct drm_device *dev)
 174{
 175	struct drm_i915_private *dev_priv = dev->dev_private;
 176	u32 dpfc_ctl;
 177
 178	/* Disable compression */
 179	dpfc_ctl = I915_READ(DPFC_CONTROL);
 180	if (dpfc_ctl & DPFC_CTL_EN) {
 181		dpfc_ctl &= ~DPFC_CTL_EN;
 182		I915_WRITE(DPFC_CONTROL, dpfc_ctl);
 183
 184		DRM_DEBUG_KMS("disabled FBC\n");
 185	}
 186}
 187
 188static bool g4x_fbc_enabled(struct drm_device *dev)
 189{
 190	struct drm_i915_private *dev_priv = dev->dev_private;
 191
 192	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
 193}
 194
 195static void sandybridge_blit_fbc_update(struct drm_device *dev)
 196{
 197	struct drm_i915_private *dev_priv = dev->dev_private;
 198	u32 blt_ecoskpd;
 199
 200	/* Make sure blitter notifies FBC of writes */
 201
 202	/* Blitter is part of Media powerwell on VLV. No impact of
 203	 * his param in other platforms for now */
 204	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
 205
 206	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
 207	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
 208		GEN6_BLITTER_LOCK_SHIFT;
 209	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
 210	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
 211	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
 212	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
 213			 GEN6_BLITTER_LOCK_SHIFT);
 214	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
 215	POSTING_READ(GEN6_BLITTER_ECOSKPD);
 216
 217	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
 218}
 219
 220static void ironlake_enable_fbc(struct drm_crtc *crtc)
 221{
 222	struct drm_device *dev = crtc->dev;
 223	struct drm_i915_private *dev_priv = dev->dev_private;
 224	struct drm_framebuffer *fb = crtc->primary->fb;
 225	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
 226	struct drm_i915_gem_object *obj = intel_fb->obj;
 227	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 228	u32 dpfc_ctl;
 229
 230	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
 231	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
 232		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
 233	else
 234		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
 235	dpfc_ctl |= DPFC_CTL_FENCE_EN;
 236	if (IS_GEN5(dev))
 237		dpfc_ctl |= obj->fence_reg;
 238
 239	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
 240	I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
 241	/* enable it... */
 242	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
 243
 244	if (IS_GEN6(dev)) {
 245		I915_WRITE(SNB_DPFC_CTL_SA,
 246			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
 247		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
 248		sandybridge_blit_fbc_update(dev);
 249	}
 250
 251	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
 252}
 253
 254static void ironlake_disable_fbc(struct drm_device *dev)
 255{
 256	struct drm_i915_private *dev_priv = dev->dev_private;
 257	u32 dpfc_ctl;
 258
 259	/* Disable compression */
 260	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
 261	if (dpfc_ctl & DPFC_CTL_EN) {
 262		dpfc_ctl &= ~DPFC_CTL_EN;
 263		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
 264
 265		DRM_DEBUG_KMS("disabled FBC\n");
 266	}
 267}
 268
 269static bool ironlake_fbc_enabled(struct drm_device *dev)
 270{
 271	struct drm_i915_private *dev_priv = dev->dev_private;
 272
 273	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
 274}
 275
 276static void gen7_enable_fbc(struct drm_crtc *crtc)
 277{
 278	struct drm_device *dev = crtc->dev;
 279	struct drm_i915_private *dev_priv = dev->dev_private;
 280	struct drm_framebuffer *fb = crtc->primary->fb;
 281	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
 282	struct drm_i915_gem_object *obj = intel_fb->obj;
 283	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 284	u32 dpfc_ctl;
 285
 286	dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
 287	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
 288		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
 289	else
 290		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
 291	dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
 292
 293	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
 294
 295	if (IS_IVYBRIDGE(dev)) {
 296		/* WaFbcAsynchFlipDisableFbcQueue:ivb */
 297		I915_WRITE(ILK_DISPLAY_CHICKEN1,
 298			   I915_READ(ILK_DISPLAY_CHICKEN1) |
 299			   ILK_FBCQ_DIS);
 300	} else {
 301		/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
 302		I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
 303			   I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
 304			   HSW_FBCQ_DIS);
 305	}
 306
 307	I915_WRITE(SNB_DPFC_CTL_SA,
 308		   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
 309	I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
 310
 311	sandybridge_blit_fbc_update(dev);
 312
 313	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
 314}
 315
 316bool intel_fbc_enabled(struct drm_device *dev)
 317{
 318	struct drm_i915_private *dev_priv = dev->dev_private;
 319
 320	if (!dev_priv->display.fbc_enabled)
 321		return false;
 322
 323	return dev_priv->display.fbc_enabled(dev);
 324}
 325
 326static void intel_fbc_work_fn(struct work_struct *__work)
 327{
 328	struct intel_fbc_work *work =
 329		container_of(to_delayed_work(__work),
 330			     struct intel_fbc_work, work);
 331	struct drm_device *dev = work->crtc->dev;
 332	struct drm_i915_private *dev_priv = dev->dev_private;
 333
 334	mutex_lock(&dev->struct_mutex);
 335	if (work == dev_priv->fbc.fbc_work) {
 336		/* Double check that we haven't switched fb without cancelling
 337		 * the prior work.
 338		 */
 339		if (work->crtc->primary->fb == work->fb) {
 340			dev_priv->display.enable_fbc(work->crtc);
 341
 342			dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
 343			dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
 344			dev_priv->fbc.y = work->crtc->y;
 345		}
 346
 347		dev_priv->fbc.fbc_work = NULL;
 348	}
 349	mutex_unlock(&dev->struct_mutex);
 350
 351	kfree(work);
 352}
 353
 354static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
 355{
 356	if (dev_priv->fbc.fbc_work == NULL)
 357		return;
 358
 359	DRM_DEBUG_KMS("cancelling pending FBC enable\n");
 360
 361	/* Synchronisation is provided by struct_mutex and checking of
 362	 * dev_priv->fbc.fbc_work, so we can perform the cancellation
 363	 * entirely asynchronously.
 364	 */
 365	if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
 366		/* tasklet was killed before being run, clean up */
 367		kfree(dev_priv->fbc.fbc_work);
 368
 369	/* Mark the work as no longer wanted so that if it does
 370	 * wake-up (because the work was already running and waiting
 371	 * for our mutex), it will discover that is no longer
 372	 * necessary to run.
 373	 */
 374	dev_priv->fbc.fbc_work = NULL;
 375}
 376
 377static void intel_enable_fbc(struct drm_crtc *crtc)
 378{
 379	struct intel_fbc_work *work;
 380	struct drm_device *dev = crtc->dev;
 381	struct drm_i915_private *dev_priv = dev->dev_private;
 382
 383	if (!dev_priv->display.enable_fbc)
 384		return;
 385
 386	intel_cancel_fbc_work(dev_priv);
 387
 388	work = kzalloc(sizeof(*work), GFP_KERNEL);
 389	if (work == NULL) {
 390		DRM_ERROR("Failed to allocate FBC work structure\n");
 391		dev_priv->display.enable_fbc(crtc);
 392		return;
 393	}
 394
 395	work->crtc = crtc;
 396	work->fb = crtc->primary->fb;
 397	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
 398
 399	dev_priv->fbc.fbc_work = work;
 400
 401	/* Delay the actual enabling to let pageflipping cease and the
 402	 * display to settle before starting the compression. Note that
 403	 * this delay also serves a second purpose: it allows for a
 404	 * vblank to pass after disabling the FBC before we attempt
 405	 * to modify the control registers.
 406	 *
 407	 * A more complicated solution would involve tracking vblanks
 408	 * following the termination of the page-flipping sequence
 409	 * and indeed performing the enable as a co-routine and not
 410	 * waiting synchronously upon the vblank.
 411	 *
 412	 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
 413	 */
 414	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
 415}
 416
 417void intel_disable_fbc(struct drm_device *dev)
 418{
 419	struct drm_i915_private *dev_priv = dev->dev_private;
 420
 421	intel_cancel_fbc_work(dev_priv);
 422
 423	if (!dev_priv->display.disable_fbc)
 424		return;
 425
 426	dev_priv->display.disable_fbc(dev);
 427	dev_priv->fbc.plane = -1;
 428}
 429
 430static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
 431			      enum no_fbc_reason reason)
 432{
 433	if (dev_priv->fbc.no_fbc_reason == reason)
 434		return false;
 435
 436	dev_priv->fbc.no_fbc_reason = reason;
 437	return true;
 438}
 439
 440/**
 441 * intel_update_fbc - enable/disable FBC as needed
 442 * @dev: the drm_device
 443 *
 444 * Set up the framebuffer compression hardware at mode set time.  We
 445 * enable it if possible:
 446 *   - plane A only (on pre-965)
 447 *   - no pixel mulitply/line duplication
 448 *   - no alpha buffer discard
 449 *   - no dual wide
 450 *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
 451 *
 452 * We can't assume that any compression will take place (worst case),
 453 * so the compressed buffer has to be the same size as the uncompressed
 454 * one.  It also must reside (along with the line length buffer) in
 455 * stolen memory.
 456 *
 457 * We need to enable/disable FBC on a global basis.
 458 */
 459void intel_update_fbc(struct drm_device *dev)
 460{
 461	struct drm_i915_private *dev_priv = dev->dev_private;
 462	struct drm_crtc *crtc = NULL, *tmp_crtc;
 463	struct intel_crtc *intel_crtc;
 464	struct drm_framebuffer *fb;
 465	struct intel_framebuffer *intel_fb;
 466	struct drm_i915_gem_object *obj;
 467	const struct drm_display_mode *adjusted_mode;
 468	unsigned int max_width, max_height;
 469
 470	if (!HAS_FBC(dev)) {
 471		set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
 472		return;
 473	}
 474
 475	if (!i915.powersave) {
 476		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
 477			DRM_DEBUG_KMS("fbc disabled per module param\n");
 478		return;
 479	}
 480
 481	/*
 482	 * If FBC is already on, we just have to verify that we can
 483	 * keep it that way...
 484	 * Need to disable if:
 485	 *   - more than one pipe is active
 486	 *   - changing FBC params (stride, fence, mode)
 487	 *   - new fb is too large to fit in compressed buffer
 488	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
 489	 */
 490	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
 491		if (intel_crtc_active(tmp_crtc) &&
 492		    to_intel_crtc(tmp_crtc)->primary_enabled) {
 493			if (crtc) {
 494				if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
 495					DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
 496				goto out_disable;
 497			}
 498			crtc = tmp_crtc;
 499		}
 500	}
 501
 502	if (!crtc || crtc->primary->fb == NULL) {
 503		if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
 504			DRM_DEBUG_KMS("no output, disabling\n");
 505		goto out_disable;
 
 
 
 506	}
 507
 508	intel_crtc = to_intel_crtc(crtc);
 509	fb = crtc->primary->fb;
 510	intel_fb = to_intel_framebuffer(fb);
 511	obj = intel_fb->obj;
 512	adjusted_mode = &intel_crtc->config.adjusted_mode;
 513
 514	if (i915.enable_fbc < 0 &&
 515	    INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
 516		if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
 517			DRM_DEBUG_KMS("disabled per chip default\n");
 518		goto out_disable;
 519	}
 520	if (!i915.enable_fbc) {
 521		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
 522			DRM_DEBUG_KMS("fbc disabled per module param\n");
 523		goto out_disable;
 524	}
 525	if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
 526	    (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
 527		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
 528			DRM_DEBUG_KMS("mode incompatible with compression, "
 529				      "disabling\n");
 530		goto out_disable;
 531	}
 532
 533	if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
 534		max_width = 4096;
 535		max_height = 2048;
 536	} else {
 537		max_width = 2048;
 538		max_height = 1536;
 539	}
 540	if (intel_crtc->config.pipe_src_w > max_width ||
 541	    intel_crtc->config.pipe_src_h > max_height) {
 542		if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
 543			DRM_DEBUG_KMS("mode too large for compression, disabling\n");
 544		goto out_disable;
 545	}
 546	if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
 547	    intel_crtc->plane != PLANE_A) {
 548		if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
 549			DRM_DEBUG_KMS("plane not A, disabling compression\n");
 550		goto out_disable;
 551	}
 552
 553	/* The use of a CPU fence is mandatory in order to detect writes
 554	 * by the CPU to the scanout and trigger updates to the FBC.
 555	 */
 556	if (obj->tiling_mode != I915_TILING_X ||
 557	    obj->fence_reg == I915_FENCE_REG_NONE) {
 558		if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
 559			DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
 560		goto out_disable;
 561	}
 562
 563	/* If the kernel debugger is active, always disable compression */
 564	if (in_dbg_master())
 565		goto out_disable;
 566
 567	if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
 568		if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
 569			DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
 570		goto out_disable;
 571	}
 572
 573	/* If the scanout has not changed, don't modify the FBC settings.
 574	 * Note that we make the fundamental assumption that the fb->obj
 575	 * cannot be unpinned (and have its GTT offset and fence revoked)
 576	 * without first being decoupled from the scanout and FBC disabled.
 577	 */
 578	if (dev_priv->fbc.plane == intel_crtc->plane &&
 579	    dev_priv->fbc.fb_id == fb->base.id &&
 580	    dev_priv->fbc.y == crtc->y)
 581		return;
 582
 583	if (intel_fbc_enabled(dev)) {
 584		/* We update FBC along two paths, after changing fb/crtc
 585		 * configuration (modeswitching) and after page-flipping
 586		 * finishes. For the latter, we know that not only did
 587		 * we disable the FBC at the start of the page-flip
 588		 * sequence, but also more than one vblank has passed.
 589		 *
 590		 * For the former case of modeswitching, it is possible
 591		 * to switch between two FBC valid configurations
 592		 * instantaneously so we do need to disable the FBC
 593		 * before we can modify its control registers. We also
 594		 * have to wait for the next vblank for that to take
 595		 * effect. However, since we delay enabling FBC we can
 596		 * assume that a vblank has passed since disabling and
 597		 * that we can safely alter the registers in the deferred
 598		 * callback.
 599		 *
 600		 * In the scenario that we go from a valid to invalid
 601		 * and then back to valid FBC configuration we have
 602		 * no strict enforcement that a vblank occurred since
 603		 * disabling the FBC. However, along all current pipe
 604		 * disabling paths we do need to wait for a vblank at
 605		 * some point. And we wait before enabling FBC anyway.
 606		 */
 607		DRM_DEBUG_KMS("disabling active FBC for update\n");
 608		intel_disable_fbc(dev);
 609	}
 610
 611	intel_enable_fbc(crtc);
 612	dev_priv->fbc.no_fbc_reason = FBC_OK;
 613	return;
 614
 615out_disable:
 616	/* Multiple disables should be harmless */
 617	if (intel_fbc_enabled(dev)) {
 618		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
 619		intel_disable_fbc(dev);
 620	}
 621	i915_gem_stolen_cleanup_compression(dev);
 622}
 623
 624static void i915_pineview_get_mem_freq(struct drm_device *dev)
 625{
 626	struct drm_i915_private *dev_priv = dev->dev_private;
 627	u32 tmp;
 628
 629	tmp = I915_READ(CLKCFG);
 630
 631	switch (tmp & CLKCFG_FSB_MASK) {
 632	case CLKCFG_FSB_533:
 633		dev_priv->fsb_freq = 533; /* 133*4 */
 634		break;
 635	case CLKCFG_FSB_800:
 636		dev_priv->fsb_freq = 800; /* 200*4 */
 637		break;
 638	case CLKCFG_FSB_667:
 639		dev_priv->fsb_freq =  667; /* 167*4 */
 640		break;
 641	case CLKCFG_FSB_400:
 642		dev_priv->fsb_freq = 400; /* 100*4 */
 643		break;
 644	}
 645
 646	switch (tmp & CLKCFG_MEM_MASK) {
 647	case CLKCFG_MEM_533:
 648		dev_priv->mem_freq = 533;
 649		break;
 650	case CLKCFG_MEM_667:
 651		dev_priv->mem_freq = 667;
 652		break;
 653	case CLKCFG_MEM_800:
 654		dev_priv->mem_freq = 800;
 655		break;
 656	}
 657
 658	/* detect pineview DDR3 setting */
 659	tmp = I915_READ(CSHRDDR3CTL);
 660	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
 661}
 662
 663static void i915_ironlake_get_mem_freq(struct drm_device *dev)
 664{
 665	struct drm_i915_private *dev_priv = dev->dev_private;
 666	u16 ddrpll, csipll;
 667
 668	ddrpll = I915_READ16(DDRMPLL1);
 669	csipll = I915_READ16(CSIPLL0);
 670
 671	switch (ddrpll & 0xff) {
 672	case 0xc:
 673		dev_priv->mem_freq = 800;
 674		break;
 675	case 0x10:
 676		dev_priv->mem_freq = 1066;
 677		break;
 678	case 0x14:
 679		dev_priv->mem_freq = 1333;
 680		break;
 681	case 0x18:
 682		dev_priv->mem_freq = 1600;
 683		break;
 684	default:
 685		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
 686				 ddrpll & 0xff);
 687		dev_priv->mem_freq = 0;
 688		break;
 689	}
 690
 691	dev_priv->ips.r_t = dev_priv->mem_freq;
 692
 693	switch (csipll & 0x3ff) {
 694	case 0x00c:
 695		dev_priv->fsb_freq = 3200;
 696		break;
 697	case 0x00e:
 698		dev_priv->fsb_freq = 3733;
 699		break;
 700	case 0x010:
 701		dev_priv->fsb_freq = 4266;
 702		break;
 703	case 0x012:
 704		dev_priv->fsb_freq = 4800;
 705		break;
 706	case 0x014:
 707		dev_priv->fsb_freq = 5333;
 708		break;
 709	case 0x016:
 710		dev_priv->fsb_freq = 5866;
 711		break;
 712	case 0x018:
 713		dev_priv->fsb_freq = 6400;
 714		break;
 715	default:
 716		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
 717				 csipll & 0x3ff);
 718		dev_priv->fsb_freq = 0;
 719		break;
 720	}
 721
 722	if (dev_priv->fsb_freq == 3200) {
 723		dev_priv->ips.c_m = 0;
 724	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
 725		dev_priv->ips.c_m = 1;
 726	} else {
 727		dev_priv->ips.c_m = 2;
 728	}
 729}
 730
 731static const struct cxsr_latency cxsr_latency_table[] = {
 732	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
 733	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
 734	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
 735	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
 736	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
 737
 738	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
 739	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
 740	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
 741	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
 742	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
 743
 744	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
 745	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
 746	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
 747	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
 748	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
 749
 750	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
 751	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
 752	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
 753	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
 754	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
 755
 756	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
 757	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
 758	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
 759	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
 760	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
 761
 762	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
 763	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
 764	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
 765	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
 766	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
 767};
 768
 769static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
 770							 int is_ddr3,
 771							 int fsb,
 772							 int mem)
 773{
 774	const struct cxsr_latency *latency;
 775	int i;
 776
 777	if (fsb == 0 || mem == 0)
 778		return NULL;
 779
 780	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
 781		latency = &cxsr_latency_table[i];
 782		if (is_desktop == latency->is_desktop &&
 783		    is_ddr3 == latency->is_ddr3 &&
 784		    fsb == latency->fsb_freq && mem == latency->mem_freq)
 785			return latency;
 786	}
 787
 788	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 789
 790	return NULL;
 791}
 792
 793static void pineview_disable_cxsr(struct drm_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 794{
 795	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 796
 797	/* deactivate cxsr */
 798	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 799}
 800
 801/*
 802 * Latency for FIFO fetches is dependent on several factors:
 803 *   - memory configuration (speed, channels)
 804 *   - chipset
 805 *   - current MCH state
 806 * It can be fairly high in some situations, so here we assume a fairly
 807 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 808 * set this value too high, the FIFO will fetch frequently to stay full)
 809 * and power consumption (set it too low to save power and we might see
 810 * FIFO underruns and display "flicker").
 811 *
 812 * A value of 5us seems to be a good balance; safe for very low end
 813 * platforms but not overly aggressive on lower latency configs.
 814 */
 815static const int latency_ns = 5000;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 816
 817static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
 
 818{
 819	struct drm_i915_private *dev_priv = dev->dev_private;
 820	uint32_t dsparb = I915_READ(DSPARB);
 821	int size;
 822
 823	size = dsparb & 0x7f;
 824	if (plane)
 825		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
 826
 827	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 828		      plane ? "B" : "A", size);
 829
 830	return size;
 831}
 832
 833static int i830_get_fifo_size(struct drm_device *dev, int plane)
 
 834{
 835	struct drm_i915_private *dev_priv = dev->dev_private;
 836	uint32_t dsparb = I915_READ(DSPARB);
 837	int size;
 838
 839	size = dsparb & 0x1ff;
 840	if (plane)
 841		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
 842	size >>= 1; /* Convert to cachelines */
 843
 844	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 845		      plane ? "B" : "A", size);
 846
 847	return size;
 848}
 849
 850static int i845_get_fifo_size(struct drm_device *dev, int plane)
 
 851{
 852	struct drm_i915_private *dev_priv = dev->dev_private;
 853	uint32_t dsparb = I915_READ(DSPARB);
 854	int size;
 855
 856	size = dsparb & 0x7f;
 857	size >>= 2; /* Convert to cachelines */
 858
 859	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 860		      plane ? "B" : "A",
 861		      size);
 862
 863	return size;
 864}
 865
 866/* Pineview has different values for various configs */
 867static const struct intel_watermark_params pineview_display_wm = {
 868	PINEVIEW_DISPLAY_FIFO,
 869	PINEVIEW_MAX_WM,
 870	PINEVIEW_DFT_WM,
 871	PINEVIEW_GUARD_WM,
 872	PINEVIEW_FIFO_LINE_SIZE
 873};
 874static const struct intel_watermark_params pineview_display_hplloff_wm = {
 875	PINEVIEW_DISPLAY_FIFO,
 876	PINEVIEW_MAX_WM,
 877	PINEVIEW_DFT_HPLLOFF_WM,
 878	PINEVIEW_GUARD_WM,
 879	PINEVIEW_FIFO_LINE_SIZE
 880};
 881static const struct intel_watermark_params pineview_cursor_wm = {
 882	PINEVIEW_CURSOR_FIFO,
 883	PINEVIEW_CURSOR_MAX_WM,
 884	PINEVIEW_CURSOR_DFT_WM,
 885	PINEVIEW_CURSOR_GUARD_WM,
 886	PINEVIEW_FIFO_LINE_SIZE,
 887};
 888static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
 889	PINEVIEW_CURSOR_FIFO,
 890	PINEVIEW_CURSOR_MAX_WM,
 891	PINEVIEW_CURSOR_DFT_WM,
 892	PINEVIEW_CURSOR_GUARD_WM,
 893	PINEVIEW_FIFO_LINE_SIZE
 894};
 895static const struct intel_watermark_params g4x_wm_info = {
 896	G4X_FIFO_SIZE,
 897	G4X_MAX_WM,
 898	G4X_MAX_WM,
 899	2,
 900	G4X_FIFO_LINE_SIZE,
 901};
 902static const struct intel_watermark_params g4x_cursor_wm_info = {
 903	I965_CURSOR_FIFO,
 904	I965_CURSOR_MAX_WM,
 905	I965_CURSOR_DFT_WM,
 906	2,
 907	G4X_FIFO_LINE_SIZE,
 908};
 909static const struct intel_watermark_params valleyview_wm_info = {
 910	VALLEYVIEW_FIFO_SIZE,
 911	VALLEYVIEW_MAX_WM,
 912	VALLEYVIEW_MAX_WM,
 913	2,
 914	G4X_FIFO_LINE_SIZE,
 915};
 916static const struct intel_watermark_params valleyview_cursor_wm_info = {
 917	I965_CURSOR_FIFO,
 918	VALLEYVIEW_CURSOR_MAX_WM,
 919	I965_CURSOR_DFT_WM,
 920	2,
 921	G4X_FIFO_LINE_SIZE,
 922};
 923static const struct intel_watermark_params i965_cursor_wm_info = {
 924	I965_CURSOR_FIFO,
 925	I965_CURSOR_MAX_WM,
 926	I965_CURSOR_DFT_WM,
 927	2,
 928	I915_FIFO_LINE_SIZE,
 929};
 930static const struct intel_watermark_params i945_wm_info = {
 931	I945_FIFO_SIZE,
 932	I915_MAX_WM,
 933	1,
 934	2,
 935	I915_FIFO_LINE_SIZE
 936};
 937static const struct intel_watermark_params i915_wm_info = {
 938	I915_FIFO_SIZE,
 939	I915_MAX_WM,
 940	1,
 941	2,
 942	I915_FIFO_LINE_SIZE
 
 
 
 
 
 
 
 943};
 944static const struct intel_watermark_params i830_wm_info = {
 945	I855GM_FIFO_SIZE,
 946	I915_MAX_WM,
 947	1,
 948	2,
 949	I830_FIFO_LINE_SIZE
 950};
 951static const struct intel_watermark_params i845_wm_info = {
 952	I830_FIFO_SIZE,
 953	I915_MAX_WM,
 954	1,
 955	2,
 956	I830_FIFO_LINE_SIZE
 957};
 958
 959/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 960 * intel_calculate_wm - calculate watermark level
 961 * @clock_in_khz: pixel clock
 962 * @wm: chip FIFO params
 963 * @pixel_size: display pixel size
 
 964 * @latency_ns: memory latency for the platform
 965 *
 966 * Calculate the watermark level (the level at which the display plane will
 967 * start fetching from memory again).  Each chip has a different display
 968 * FIFO size and allocation, so the caller needs to figure that out and pass
 969 * in the correct intel_watermark_params structure.
 970 *
 971 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 972 * on the pixel size.  When it reaches the watermark level, it'll start
 973 * fetching FIFO line sized based chunks from memory until the FIFO fills
 974 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 975 * will occur, and a display engine hang could result.
 976 */
 977static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
 978					const struct intel_watermark_params *wm,
 979					int fifo_size,
 980					int pixel_size,
 981					unsigned long latency_ns)
 982{
 983	long entries_required, wm_size;
 984
 985	/*
 986	 * Note: we need to make sure we don't overflow for various clock &
 987	 * latency values.
 988	 * clocks go from a few thousand to several hundred thousand.
 989	 * latency is usually a few thousand
 990	 */
 991	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
 992		1000;
 993	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
 994
 995	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
 996
 997	wm_size = fifo_size - (entries_required + wm->guard_size);
 998
 999	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1000
1001	/* Don't promote wm_size to unsigned... */
1002	if (wm_size > (long)wm->max_wm)
1003		wm_size = wm->max_wm;
1004	if (wm_size <= 0)
1005		wm_size = wm->default_wm;
 
 
 
 
 
 
 
 
 
 
 
1006	return wm_size;
1007}
1008
1009static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
 
 
 
 
 
1010{
1011	struct drm_crtc *crtc, *enabled = NULL;
 
 
 
 
 
 
 
 
 
 
 
1012
1013	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1014		if (intel_crtc_active(crtc)) {
1015			if (enabled)
1016				return NULL;
1017			enabled = crtc;
1018		}
1019	}
1020
1021	return enabled;
1022}
1023
1024static void pineview_update_wm(struct drm_crtc *unused_crtc)
1025{
1026	struct drm_device *dev = unused_crtc->dev;
1027	struct drm_i915_private *dev_priv = dev->dev_private;
1028	struct drm_crtc *crtc;
1029	const struct cxsr_latency *latency;
1030	u32 reg;
1031	unsigned long wm;
1032
1033	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1034					 dev_priv->fsb_freq, dev_priv->mem_freq);
 
 
1035	if (!latency) {
1036		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1037		pineview_disable_cxsr(dev);
1038		return;
1039	}
1040
1041	crtc = single_enabled_crtc(dev);
1042	if (crtc) {
1043		const struct drm_display_mode *adjusted_mode;
1044		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1045		int clock;
1046
1047		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1048		clock = adjusted_mode->crtc_clock;
1049
1050		/* Display SR */
1051		wm = intel_calculate_wm(clock, &pineview_display_wm,
1052					pineview_display_wm.fifo_size,
1053					pixel_size, latency->display_sr);
1054		reg = I915_READ(DSPFW1);
1055		reg &= ~DSPFW_SR_MASK;
1056		reg |= wm << DSPFW_SR_SHIFT;
1057		I915_WRITE(DSPFW1, reg);
1058		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1059
1060		/* cursor SR */
1061		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1062					pineview_display_wm.fifo_size,
1063					pixel_size, latency->cursor_sr);
1064		reg = I915_READ(DSPFW3);
1065		reg &= ~DSPFW_CURSOR_SR_MASK;
1066		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1067		I915_WRITE(DSPFW3, reg);
1068
1069		/* Display HPLL off SR */
1070		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1071					pineview_display_hplloff_wm.fifo_size,
1072					pixel_size, latency->display_hpll_disable);
1073		reg = I915_READ(DSPFW3);
1074		reg &= ~DSPFW_HPLL_SR_MASK;
1075		reg |= wm & DSPFW_HPLL_SR_MASK;
1076		I915_WRITE(DSPFW3, reg);
1077
1078		/* cursor HPLL off SR */
1079		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1080					pineview_display_hplloff_wm.fifo_size,
1081					pixel_size, latency->cursor_hpll_disable);
1082		reg = I915_READ(DSPFW3);
1083		reg &= ~DSPFW_HPLL_CURSOR_MASK;
1084		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1085		I915_WRITE(DSPFW3, reg);
1086		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1087
1088		/* activate cxsr */
1089		I915_WRITE(DSPFW3,
1090			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1091		DRM_DEBUG_KMS("Self-refresh is enabled\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1092	} else {
1093		pineview_disable_cxsr(dev);
1094		DRM_DEBUG_KMS("Self-refresh is disabled\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1095	}
1096}
1097
1098static bool g4x_compute_wm0(struct drm_device *dev,
1099			    int plane,
1100			    const struct intel_watermark_params *display,
1101			    int display_latency_ns,
1102			    const struct intel_watermark_params *cursor,
1103			    int cursor_latency_ns,
1104			    int *plane_wm,
1105			    int *cursor_wm)
1106{
1107	struct drm_crtc *crtc;
1108	const struct drm_display_mode *adjusted_mode;
1109	int htotal, hdisplay, clock, pixel_size;
1110	int line_time_us, line_count;
1111	int entries, tlb_miss;
1112
1113	crtc = intel_get_crtc_for_plane(dev, plane);
1114	if (!intel_crtc_active(crtc)) {
1115		*cursor_wm = cursor->guard_size;
1116		*plane_wm = display->guard_size;
1117		return false;
1118	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1119
1120	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1121	clock = adjusted_mode->crtc_clock;
1122	htotal = adjusted_mode->crtc_htotal;
1123	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1124	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1125
1126	/* Use the small buffer method to calculate plane watermark */
1127	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1128	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1129	if (tlb_miss > 0)
1130		entries += tlb_miss;
1131	entries = DIV_ROUND_UP(entries, display->cacheline_size);
1132	*plane_wm = entries + display->guard_size;
1133	if (*plane_wm > (int)display->max_wm)
1134		*plane_wm = display->max_wm;
1135
1136	/* Use the large buffer method to calculate cursor watermark */
1137	line_time_us = max(htotal * 1000 / clock, 1);
1138	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1139	entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1140	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1141	if (tlb_miss > 0)
1142		entries += tlb_miss;
1143	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1144	*cursor_wm = entries + cursor->guard_size;
1145	if (*cursor_wm > (int)cursor->max_wm)
1146		*cursor_wm = (int)cursor->max_wm;
1147
1148	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1149}
1150
1151/*
1152 * Check the wm result.
1153 *
1154 * If any calculated watermark values is larger than the maximum value that
1155 * can be programmed into the associated watermark register, that watermark
1156 * must be disabled.
1157 */
1158static bool g4x_check_srwm(struct drm_device *dev,
1159			   int display_wm, int cursor_wm,
1160			   const struct intel_watermark_params *display,
1161			   const struct intel_watermark_params *cursor)
1162{
1163	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1164		      display_wm, cursor_wm);
1165
1166	if (display_wm > display->max_wm) {
1167		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1168			      display_wm, display->max_wm);
1169		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1170	}
1171
1172	if (cursor_wm > cursor->max_wm) {
1173		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1174			      cursor_wm, cursor->max_wm);
1175		return false;
1176	}
1177
1178	if (!(display_wm || cursor_wm)) {
1179		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1180		return false;
 
 
 
 
 
 
1181	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1182
1183	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1184}
1185
1186static bool g4x_compute_srwm(struct drm_device *dev,
1187			     int plane,
1188			     int latency_ns,
1189			     const struct intel_watermark_params *display,
1190			     const struct intel_watermark_params *cursor,
1191			     int *display_wm, int *cursor_wm)
1192{
1193	struct drm_crtc *crtc;
1194	const struct drm_display_mode *adjusted_mode;
1195	int hdisplay, htotal, pixel_size, clock;
1196	unsigned long line_time_us;
1197	int line_count, line_size;
1198	int small, large;
1199	int entries;
 
1200
1201	if (!latency_ns) {
1202		*display_wm = *cursor_wm = 0;
1203		return false;
1204	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1205
1206	crtc = intel_get_crtc_for_plane(dev, plane);
1207	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
 
 
1208	clock = adjusted_mode->crtc_clock;
1209	htotal = adjusted_mode->crtc_htotal;
1210	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1211	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1212
1213	line_time_us = max(htotal * 1000 / clock, 1);
1214	line_count = (latency_ns / line_time_us + 1000) / 1000;
1215	line_size = hdisplay * pixel_size;
1216
1217	/* Use the minimum of the small and large buffer method for primary */
1218	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1219	large = line_count * line_size;
1220
1221	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1222	*display_wm = entries + display->guard_size;
1223
1224	/* calculate the self-refresh watermark for display cursor */
1225	entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1226	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1227	*cursor_wm = entries + cursor->guard_size;
1228
1229	return g4x_check_srwm(dev,
1230			      *display_wm, *cursor_wm,
1231			      display, cursor);
1232}
1233
1234static bool vlv_compute_drain_latency(struct drm_device *dev,
1235				     int plane,
1236				     int *plane_prec_mult,
1237				     int *plane_dl,
1238				     int *cursor_prec_mult,
1239				     int *cursor_dl)
1240{
1241	struct drm_crtc *crtc;
1242	int clock, pixel_size;
1243	int entries;
1244
1245	crtc = intel_get_crtc_for_plane(dev, plane);
1246	if (!intel_crtc_active(crtc))
1247		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1248
1249	clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1250	pixel_size = crtc->primary->fb->bits_per_pixel / 8;	/* BPP */
1251
1252	entries = (clock / 1000) * pixel_size;
1253	*plane_prec_mult = (entries > 256) ?
1254		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1255	*plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1256						     pixel_size);
1257
1258	entries = (clock / 1000) * 4;	/* BPP is always 4 for cursor */
1259	*cursor_prec_mult = (entries > 256) ?
1260		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1261	*cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1262
1263	return true;
 
 
 
 
 
 
 
 
 
 
1264}
1265
1266/*
1267 * Update drain latency registers of memory arbiter
1268 *
1269 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1270 * to be programmed. Each plane has a drain latency multiplier and a drain
1271 * latency value.
1272 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1273
1274static void vlv_update_drain_latency(struct drm_device *dev)
1275{
1276	struct drm_i915_private *dev_priv = dev->dev_private;
1277	int planea_prec, planea_dl, planeb_prec, planeb_dl;
1278	int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1279	int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1280							either 16 or 32 */
1281
1282	/* For plane A, Cursor A */
1283	if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1284				      &cursor_prec_mult, &cursora_dl)) {
1285		cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1286			DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1287		planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1288			DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1289
1290		I915_WRITE(VLV_DDL1, cursora_prec |
1291				(cursora_dl << DDL_CURSORA_SHIFT) |
1292				planea_prec | planea_dl);
1293	}
1294
1295	/* For plane B, Cursor B */
1296	if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1297				      &cursor_prec_mult, &cursorb_dl)) {
1298		cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1299			DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1300		planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1301			DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1302
1303		I915_WRITE(VLV_DDL2, cursorb_prec |
1304				(cursorb_dl << DDL_CURSORB_SHIFT) |
1305				planeb_prec | planeb_dl);
1306	}
1307}
1308
1309#define single_plane_enabled(mask) is_power_of_2(mask)
1310
1311static void valleyview_update_wm(struct drm_crtc *crtc)
1312{
1313	struct drm_device *dev = crtc->dev;
1314	static const int sr_latency_ns = 12000;
1315	struct drm_i915_private *dev_priv = dev->dev_private;
1316	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1317	int plane_sr, cursor_sr;
1318	int ignore_plane_sr, ignore_cursor_sr;
1319	unsigned int enabled = 0;
1320
1321	vlv_update_drain_latency(dev);
1322
1323	if (g4x_compute_wm0(dev, PIPE_A,
1324			    &valleyview_wm_info, latency_ns,
1325			    &valleyview_cursor_wm_info, latency_ns,
1326			    &planea_wm, &cursora_wm))
1327		enabled |= 1 << PIPE_A;
1328
1329	if (g4x_compute_wm0(dev, PIPE_B,
1330			    &valleyview_wm_info, latency_ns,
1331			    &valleyview_cursor_wm_info, latency_ns,
1332			    &planeb_wm, &cursorb_wm))
1333		enabled |= 1 << PIPE_B;
1334
1335	if (single_plane_enabled(enabled) &&
1336	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1337			     sr_latency_ns,
1338			     &valleyview_wm_info,
1339			     &valleyview_cursor_wm_info,
1340			     &plane_sr, &ignore_cursor_sr) &&
1341	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1342			     2*sr_latency_ns,
1343			     &valleyview_wm_info,
1344			     &valleyview_cursor_wm_info,
1345			     &ignore_plane_sr, &cursor_sr)) {
1346		I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1347	} else {
1348		I915_WRITE(FW_BLC_SELF_VLV,
1349			   I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1350		plane_sr = cursor_sr = 0;
1351	}
1352
1353	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1354		      planea_wm, cursora_wm,
1355		      planeb_wm, cursorb_wm,
1356		      plane_sr, cursor_sr);
 
 
 
 
 
1357
1358	I915_WRITE(DSPFW1,
1359		   (plane_sr << DSPFW_SR_SHIFT) |
1360		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1361		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1362		   planea_wm);
1363	I915_WRITE(DSPFW2,
1364		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1365		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1366	I915_WRITE(DSPFW3,
1367		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1368		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1369}
1370
1371static void g4x_update_wm(struct drm_crtc *crtc)
 
1372{
1373	struct drm_device *dev = crtc->dev;
1374	static const int sr_latency_ns = 12000;
1375	struct drm_i915_private *dev_priv = dev->dev_private;
1376	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1377	int plane_sr, cursor_sr;
1378	unsigned int enabled = 0;
1379
1380	if (g4x_compute_wm0(dev, PIPE_A,
1381			    &g4x_wm_info, latency_ns,
1382			    &g4x_cursor_wm_info, latency_ns,
1383			    &planea_wm, &cursora_wm))
1384		enabled |= 1 << PIPE_A;
1385
1386	if (g4x_compute_wm0(dev, PIPE_B,
1387			    &g4x_wm_info, latency_ns,
1388			    &g4x_cursor_wm_info, latency_ns,
1389			    &planeb_wm, &cursorb_wm))
1390		enabled |= 1 << PIPE_B;
1391
1392	if (single_plane_enabled(enabled) &&
1393	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1394			     sr_latency_ns,
1395			     &g4x_wm_info,
1396			     &g4x_cursor_wm_info,
1397			     &plane_sr, &cursor_sr)) {
1398		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1399	} else {
1400		I915_WRITE(FW_BLC_SELF,
1401			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1402		plane_sr = cursor_sr = 0;
 
 
 
 
 
 
 
1403	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1404
1405	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1406		      planea_wm, cursora_wm,
1407		      planeb_wm, cursorb_wm,
1408		      plane_sr, cursor_sr);
 
 
 
 
 
 
 
 
 
 
1409
1410	I915_WRITE(DSPFW1,
1411		   (plane_sr << DSPFW_SR_SHIFT) |
1412		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1413		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1414		   planea_wm);
1415	I915_WRITE(DSPFW2,
1416		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1417		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1418	/* HPLL off in SR has some issues on G4x... disable it */
1419	I915_WRITE(DSPFW3,
1420		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1421		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
 
 
 
 
 
 
 
1422}
1423
1424static void i965_update_wm(struct drm_crtc *unused_crtc)
1425{
1426	struct drm_device *dev = unused_crtc->dev;
1427	struct drm_i915_private *dev_priv = dev->dev_private;
1428	struct drm_crtc *crtc;
1429	int srwm = 1;
1430	int cursor_sr = 16;
 
1431
1432	/* Calc sr entries for one plane configs */
1433	crtc = single_enabled_crtc(dev);
1434	if (crtc) {
1435		/* self-refresh has much higher latency */
1436		static const int sr_latency_ns = 12000;
1437		const struct drm_display_mode *adjusted_mode =
1438			&to_intel_crtc(crtc)->config.adjusted_mode;
 
 
1439		int clock = adjusted_mode->crtc_clock;
1440		int htotal = adjusted_mode->crtc_htotal;
1441		int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1442		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1443		unsigned long line_time_us;
1444		int entries;
1445
1446		line_time_us = max(htotal * 1000 / clock, 1);
1447
1448		/* Use ns/us then divide to preserve precision */
1449		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1450			pixel_size * hdisplay;
1451		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1452		srwm = I965_FIFO_SIZE - entries;
1453		if (srwm < 0)
1454			srwm = 1;
1455		srwm &= 0x1ff;
1456		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1457			      entries, srwm);
1458
1459		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1460			pixel_size * to_intel_crtc(crtc)->cursor_width;
 
1461		entries = DIV_ROUND_UP(entries,
1462					  i965_cursor_wm_info.cacheline_size);
1463		cursor_sr = i965_cursor_wm_info.fifo_size -
1464			(entries + i965_cursor_wm_info.guard_size);
1465
 
1466		if (cursor_sr > i965_cursor_wm_info.max_wm)
1467			cursor_sr = i965_cursor_wm_info.max_wm;
1468
1469		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1470			      "cursor %d\n", srwm, cursor_sr);
1471
1472		if (IS_CRESTLINE(dev))
1473			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1474	} else {
 
1475		/* Turn off self refresh if both pipes are enabled */
1476		if (IS_CRESTLINE(dev))
1477			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1478				   & ~FW_BLC_SELF_EN);
1479	}
1480
1481	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1482		      srwm);
1483
1484	/* 965 has limitations... */
1485	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1486		   (8 << 16) | (8 << 8) | (8 << 0));
1487	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
 
 
 
1488	/* update cursor SR watermark */
1489	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
 
 
 
1490}
1491
1492static void i9xx_update_wm(struct drm_crtc *unused_crtc)
 
 
1493{
1494	struct drm_device *dev = unused_crtc->dev;
1495	struct drm_i915_private *dev_priv = dev->dev_private;
1496	const struct intel_watermark_params *wm_info;
1497	uint32_t fwater_lo;
1498	uint32_t fwater_hi;
1499	int cwm, srwm = 1;
1500	int fifo_size;
1501	int planea_wm, planeb_wm;
1502	struct drm_crtc *crtc, *enabled = NULL;
1503
1504	if (IS_I945GM(dev))
1505		wm_info = &i945_wm_info;
1506	else if (!IS_GEN2(dev))
1507		wm_info = &i915_wm_info;
1508	else
1509		wm_info = &i830_wm_info;
1510
1511	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1512	crtc = intel_get_crtc_for_plane(dev, 0);
1513	if (intel_crtc_active(crtc)) {
1514		const struct drm_display_mode *adjusted_mode;
1515		int cpp = crtc->primary->fb->bits_per_pixel / 8;
1516		if (IS_GEN2(dev))
 
 
 
 
1517			cpp = 4;
 
 
1518
1519		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1520		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1521					       wm_info, fifo_size, cpp,
1522					       latency_ns);
1523		enabled = crtc;
1524	} else
1525		planea_wm = fifo_size - wm_info->guard_size;
 
 
 
1526
1527	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1528	crtc = intel_get_crtc_for_plane(dev, 1);
 
 
 
1529	if (intel_crtc_active(crtc)) {
1530		const struct drm_display_mode *adjusted_mode;
1531		int cpp = crtc->primary->fb->bits_per_pixel / 8;
1532		if (IS_GEN2(dev))
 
 
 
 
1533			cpp = 4;
 
 
1534
1535		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1536		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1537					       wm_info, fifo_size, cpp,
1538					       latency_ns);
1539		if (enabled == NULL)
1540			enabled = crtc;
1541		else
1542			enabled = NULL;
1543	} else
1544		planeb_wm = fifo_size - wm_info->guard_size;
 
 
 
1545
1546	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1547
1548	if (IS_I915GM(dev) && enabled) {
1549		struct intel_framebuffer *fb;
1550
1551		fb = to_intel_framebuffer(enabled->primary->fb);
1552
1553		/* self-refresh seems busted with untiled */
1554		if (fb->obj->tiling_mode == I915_TILING_NONE)
1555			enabled = NULL;
1556	}
1557
1558	/*
1559	 * Overlay gets an aggressive default since video jitter is bad.
1560	 */
1561	cwm = 2;
1562
1563	/* Play safe and disable self-refresh before adjusting watermarks. */
1564	if (IS_I945G(dev) || IS_I945GM(dev))
1565		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1566	else if (IS_I915GM(dev))
1567		I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_SELF_EN));
1568
1569	/* Calc sr entries for one plane configs */
1570	if (HAS_FW_BLC(dev) && enabled) {
1571		/* self-refresh has much higher latency */
1572		static const int sr_latency_ns = 6000;
1573		const struct drm_display_mode *adjusted_mode =
1574			&to_intel_crtc(enabled)->config.adjusted_mode;
 
 
1575		int clock = adjusted_mode->crtc_clock;
1576		int htotal = adjusted_mode->crtc_htotal;
1577		int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1578		int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1579		unsigned long line_time_us;
1580		int entries;
1581
1582		line_time_us = max(htotal * 1000 / clock, 1);
 
 
 
1583
1584		/* Use ns/us then divide to preserve precision */
1585		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1586			pixel_size * hdisplay;
1587		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1588		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1589		srwm = wm_info->fifo_size - entries;
1590		if (srwm < 0)
1591			srwm = 1;
1592
1593		if (IS_I945G(dev) || IS_I945GM(dev))
1594			I915_WRITE(FW_BLC_SELF,
1595				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1596		else if (IS_I915GM(dev))
1597			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1598	}
1599
1600	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1601		      planea_wm, planeb_wm, cwm, srwm);
1602
1603	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1604	fwater_hi = (cwm & 0x1f);
1605
1606	/* Set request length to 8 cachelines per fetch */
1607	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1608	fwater_hi = fwater_hi | (1 << 8);
1609
1610	I915_WRITE(FW_BLC, fwater_lo);
1611	I915_WRITE(FW_BLC2, fwater_hi);
1612
1613	if (HAS_FW_BLC(dev)) {
1614		if (enabled) {
1615			if (IS_I945G(dev) || IS_I945GM(dev))
1616				I915_WRITE(FW_BLC_SELF,
1617					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1618			else if (IS_I915GM(dev))
1619				I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_SELF_EN));
1620			DRM_DEBUG_KMS("memory self refresh enabled\n");
1621		} else
1622			DRM_DEBUG_KMS("memory self refresh disabled\n");
1623	}
1624}
1625
1626static void i845_update_wm(struct drm_crtc *unused_crtc)
1627{
1628	struct drm_device *dev = unused_crtc->dev;
1629	struct drm_i915_private *dev_priv = dev->dev_private;
1630	struct drm_crtc *crtc;
1631	const struct drm_display_mode *adjusted_mode;
1632	uint32_t fwater_lo;
1633	int planea_wm;
1634
1635	crtc = single_enabled_crtc(dev);
1636	if (crtc == NULL)
1637		return;
1638
1639	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1640	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1641				       &i845_wm_info,
1642				       dev_priv->display.get_fifo_size(dev, 0),
1643				       4, latency_ns);
1644	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1645	fwater_lo |= (3<<8) | planea_wm;
1646
1647	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1648
1649	I915_WRITE(FW_BLC, fwater_lo);
1650}
1651
1652static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1653				    struct drm_crtc *crtc)
1654{
1655	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1656	uint32_t pixel_rate;
1657
1658	pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1659
1660	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1661	 * adjust the pixel_rate here. */
1662
1663	if (intel_crtc->config.pch_pfit.enabled) {
1664		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1665		uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1666
1667		pipe_w = intel_crtc->config.pipe_src_w;
1668		pipe_h = intel_crtc->config.pipe_src_h;
1669		pfit_w = (pfit_size >> 16) & 0xFFFF;
1670		pfit_h = pfit_size & 0xFFFF;
1671		if (pipe_w < pfit_w)
1672			pipe_w = pfit_w;
1673		if (pipe_h < pfit_h)
1674			pipe_h = pfit_h;
1675
1676		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1677				     pfit_w * pfit_h);
1678	}
1679
1680	return pixel_rate;
1681}
1682
1683/* latency must be in 0.1us units. */
1684static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1685			       uint32_t latency)
 
1686{
1687	uint64_t ret;
1688
1689	if (WARN(latency == 0, "Latency value missing\n"))
1690		return UINT_MAX;
1691
1692	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1693	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1694
1695	return ret;
1696}
1697
1698/* latency must be in 0.1us units. */
1699static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1700			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1701			       uint32_t latency)
 
 
1702{
1703	uint32_t ret;
1704
1705	if (WARN(latency == 0, "Latency value missing\n"))
1706		return UINT_MAX;
 
1707
1708	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1709	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1710	ret = DIV_ROUND_UP(ret, 64) + 2;
1711	return ret;
1712}
1713
1714static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1715			   uint8_t bytes_per_pixel)
1716{
1717	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
 
 
 
 
 
 
 
 
 
 
 
1718}
1719
1720struct ilk_pipe_wm_parameters {
1721	bool active;
1722	uint32_t pipe_htotal;
1723	uint32_t pixel_rate;
1724	struct intel_plane_wm_parameters pri;
1725	struct intel_plane_wm_parameters spr;
1726	struct intel_plane_wm_parameters cur;
1727};
1728
1729struct ilk_wm_maximums {
1730	uint16_t pri;
1731	uint16_t spr;
1732	uint16_t cur;
1733	uint16_t fbc;
1734};
1735
1736/* used in computing the new watermarks state */
1737struct intel_wm_config {
1738	unsigned int num_pipes_active;
1739	bool sprites_enabled;
1740	bool sprites_scaled;
1741};
1742
1743/*
1744 * For both WM_PIPE and WM_LP.
1745 * mem_value must be in 0.1us units.
1746 */
1747static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1748				   uint32_t mem_value,
1749				   bool is_lp)
1750{
1751	uint32_t method1, method2;
 
 
 
 
1752
1753	if (!params->active || !params->pri.enabled)
1754		return 0;
1755
1756	method1 = ilk_wm_method1(params->pixel_rate,
1757				 params->pri.bytes_per_pixel,
1758				 mem_value);
1759
1760	if (!is_lp)
1761		return method1;
1762
1763	method2 = ilk_wm_method2(params->pixel_rate,
1764				 params->pipe_htotal,
1765				 params->pri.horiz_pixels,
1766				 params->pri.bytes_per_pixel,
1767				 mem_value);
1768
1769	return min(method1, method2);
1770}
1771
1772/*
1773 * For both WM_PIPE and WM_LP.
1774 * mem_value must be in 0.1us units.
1775 */
1776static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1777				   uint32_t mem_value)
 
1778{
1779	uint32_t method1, method2;
 
 
 
 
1780
1781	if (!params->active || !params->spr.enabled)
1782		return 0;
1783
1784	method1 = ilk_wm_method1(params->pixel_rate,
1785				 params->spr.bytes_per_pixel,
1786				 mem_value);
1787	method2 = ilk_wm_method2(params->pixel_rate,
1788				 params->pipe_htotal,
1789				 params->spr.horiz_pixels,
1790				 params->spr.bytes_per_pixel,
1791				 mem_value);
1792	return min(method1, method2);
1793}
1794
1795/*
1796 * For both WM_PIPE and WM_LP.
1797 * mem_value must be in 0.1us units.
1798 */
1799static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1800				   uint32_t mem_value)
 
1801{
1802	if (!params->active || !params->cur.enabled)
 
 
 
 
 
1803		return 0;
1804
1805	return ilk_wm_method2(params->pixel_rate,
1806			      params->pipe_htotal,
1807			      params->cur.horiz_pixels,
1808			      params->cur.bytes_per_pixel,
1809			      mem_value);
1810}
1811
1812/* Only for WM_LP. */
1813static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1814				   uint32_t pri_val)
 
1815{
1816	if (!params->active || !params->pri.enabled)
 
 
1817		return 0;
1818
1819	return ilk_wm_fbc(pri_val,
1820			  params->pri.horiz_pixels,
1821			  params->pri.bytes_per_pixel);
1822}
1823
1824static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
 
1825{
1826	if (INTEL_INFO(dev)->gen >= 8)
1827		return 3072;
1828	else if (INTEL_INFO(dev)->gen >= 7)
1829		return 768;
1830	else
1831		return 512;
1832}
1833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1834/* Calculate the maximum primary/sprite plane watermark */
1835static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1836				     int level,
1837				     const struct intel_wm_config *config,
1838				     enum intel_ddb_partitioning ddb_partitioning,
1839				     bool is_sprite)
1840{
1841	unsigned int fifo_size = ilk_display_fifo_size(dev);
1842	unsigned int max;
1843
1844	/* if sprites aren't enabled, sprites get nothing */
1845	if (is_sprite && !config->sprites_enabled)
1846		return 0;
1847
1848	/* HSW allows LP1+ watermarks even with multiple pipes */
1849	if (level == 0 || config->num_pipes_active > 1) {
1850		fifo_size /= INTEL_INFO(dev)->num_pipes;
1851
1852		/*
1853		 * For some reason the non self refresh
1854		 * FIFO size is only half of the self
1855		 * refresh FIFO size on ILK/SNB.
1856		 */
1857		if (INTEL_INFO(dev)->gen <= 6)
1858			fifo_size /= 2;
1859	}
1860
1861	if (config->sprites_enabled) {
1862		/* level 0 is always calculated with 1:1 split */
1863		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1864			if (is_sprite)
1865				fifo_size *= 5;
1866			fifo_size /= 6;
1867		} else {
1868			fifo_size /= 2;
1869		}
1870	}
1871
1872	/* clamp to max that the registers can hold */
1873	if (INTEL_INFO(dev)->gen >= 8)
1874		max = level == 0 ? 255 : 2047;
1875	else if (INTEL_INFO(dev)->gen >= 7)
1876		/* IVB/HSW primary/sprite plane watermarks */
1877		max = level == 0 ? 127 : 1023;
1878	else if (!is_sprite)
1879		/* ILK/SNB primary plane watermarks */
1880		max = level == 0 ? 127 : 511;
1881	else
1882		/* ILK/SNB sprite plane watermarks */
1883		max = level == 0 ? 63 : 255;
1884
1885	return min(fifo_size, max);
1886}
1887
1888/* Calculate the maximum cursor plane watermark */
1889static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1890				      int level,
1891				      const struct intel_wm_config *config)
1892{
1893	/* HSW LP1+ watermarks w/ multiple pipes */
1894	if (level > 0 && config->num_pipes_active > 1)
1895		return 64;
1896
1897	/* otherwise just report max that registers can hold */
1898	if (INTEL_INFO(dev)->gen >= 7)
1899		return level == 0 ? 63 : 255;
1900	else
1901		return level == 0 ? 31 : 63;
1902}
1903
1904/* Calculate the maximum FBC watermark */
1905static unsigned int ilk_fbc_wm_max(const struct drm_device *dev)
1906{
1907	/* max that registers can hold */
1908	if (INTEL_INFO(dev)->gen >= 8)
1909		return 31;
1910	else
1911		return 15;
1912}
1913
1914static void ilk_compute_wm_maximums(const struct drm_device *dev,
1915				    int level,
1916				    const struct intel_wm_config *config,
1917				    enum intel_ddb_partitioning ddb_partitioning,
1918				    struct ilk_wm_maximums *max)
1919{
1920	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1921	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1922	max->cur = ilk_cursor_wm_max(dev, level, config);
1923	max->fbc = ilk_fbc_wm_max(dev);
 
 
 
 
 
 
 
 
 
 
1924}
1925
1926static bool ilk_validate_wm_level(int level,
1927				  const struct ilk_wm_maximums *max,
1928				  struct intel_wm_level *result)
1929{
1930	bool ret;
1931
1932	/* already determined to be invalid? */
1933	if (!result->enable)
1934		return false;
1935
1936	result->enable = result->pri_val <= max->pri &&
1937			 result->spr_val <= max->spr &&
1938			 result->cur_val <= max->cur;
1939
1940	ret = result->enable;
1941
1942	/*
1943	 * HACK until we can pre-compute everything,
1944	 * and thus fail gracefully if LP0 watermarks
1945	 * are exceeded...
1946	 */
1947	if (level == 0 && !result->enable) {
1948		if (result->pri_val > max->pri)
1949			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1950				      level, result->pri_val, max->pri);
1951		if (result->spr_val > max->spr)
1952			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1953				      level, result->spr_val, max->spr);
1954		if (result->cur_val > max->cur)
1955			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1956				      level, result->cur_val, max->cur);
1957
1958		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1959		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1960		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1961		result->enable = true;
1962	}
1963
1964	return ret;
1965}
1966
1967static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
 
1968				 int level,
1969				 const struct ilk_pipe_wm_parameters *p,
 
 
 
1970				 struct intel_wm_level *result)
1971{
1972	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1973	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1974	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1975
1976	/* WM1+ latency values stored in 0.5us units */
1977	if (level > 0) {
1978		pri_latency *= 5;
1979		spr_latency *= 5;
1980		cur_latency *= 5;
1981	}
1982
1983	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
1984	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
1985	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
1986	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
 
 
 
 
 
 
 
 
1987	result->enable = true;
1988}
1989
1990static uint32_t
1991hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1992{
1993	struct drm_i915_private *dev_priv = dev->dev_private;
1994	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1995	struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
 
1996	u32 linetime, ips_linetime;
1997
1998	if (!intel_crtc_active(crtc))
 
 
 
 
1999		return 0;
2000
2001	/* The WM are computed with base on how long it takes to fill a single
2002	 * row at the given clock rate, multiplied by 8.
2003	 * */
2004	linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2005				     mode->crtc_clock);
2006	ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2007					 intel_ddi_get_cdclk_freq(dev_priv));
2008
2009	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2010	       PIPE_WM_LINETIME_TIME(linetime);
2011}
2012
2013static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
 
2014{
2015	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2016
2017	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2018		uint64_t sskpd = I915_READ64(MCH_SSKPD);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2019
2020		wm[0] = (sskpd >> 56) & 0xFF;
2021		if (wm[0] == 0)
2022			wm[0] = sskpd & 0xF;
2023		wm[1] = (sskpd >> 4) & 0xFF;
2024		wm[2] = (sskpd >> 12) & 0xFF;
2025		wm[3] = (sskpd >> 20) & 0x1FF;
2026		wm[4] = (sskpd >> 32) & 0x1FF;
2027	} else if (INTEL_INFO(dev)->gen >= 6) {
2028		uint32_t sskpd = I915_READ(MCH_SSKPD);
2029
2030		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2031		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2032		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2033		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2034	} else if (INTEL_INFO(dev)->gen >= 5) {
2035		uint32_t mltr = I915_READ(MLTR_ILK);
2036
2037		/* ILK primary LP0 latency is 700 ns */
2038		wm[0] = 7;
2039		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2040		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
 
 
2041	}
2042}
2043
2044static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
 
2045{
2046	/* ILK sprite LP0 latency is 1300 ns */
2047	if (INTEL_INFO(dev)->gen == 5)
2048		wm[0] = 13;
2049}
2050
2051static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
 
2052{
2053	/* ILK cursor LP0 latency is 1300 ns */
2054	if (INTEL_INFO(dev)->gen == 5)
2055		wm[0] = 13;
2056
2057	/* WaDoubleCursorLP3Latency:ivb */
2058	if (IS_IVYBRIDGE(dev))
2059		wm[3] *= 2;
2060}
2061
2062static int ilk_wm_max_level(const struct drm_device *dev)
2063{
2064	/* how many WM levels are we expecting */
2065	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
 
 
2066		return 4;
2067	else if (INTEL_INFO(dev)->gen >= 6)
2068		return 3;
2069	else
2070		return 2;
2071}
2072
2073static void intel_print_wm_latency(struct drm_device *dev,
2074				   const char *name,
2075				   const uint16_t wm[5])
2076{
2077	int level, max_level = ilk_wm_max_level(dev);
2078
2079	for (level = 0; level <= max_level; level++) {
2080		unsigned int latency = wm[level];
2081
2082		if (latency == 0) {
2083			DRM_ERROR("%s WM%d latency not provided\n",
2084				  name, level);
2085			continue;
2086		}
2087
2088		/* WM1+ latency values in 0.5us units */
2089		if (level > 0)
 
 
 
 
 
2090			latency *= 5;
2091
2092		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2093			      name, level, wm[level],
2094			      latency / 10, latency % 10);
2095	}
2096}
2097
2098static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2099				    uint16_t wm[5], uint16_t min)
2100{
2101	int level, max_level = ilk_wm_max_level(dev_priv->dev);
2102
2103	if (wm[0] >= min)
2104		return false;
2105
2106	wm[0] = max(wm[0], min);
2107	for (level = 1; level <= max_level; level++)
2108		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2109
2110	return true;
2111}
2112
2113static void snb_wm_latency_quirk(struct drm_device *dev)
2114{
2115	struct drm_i915_private *dev_priv = dev->dev_private;
2116	bool changed;
2117
2118	/*
2119	 * The BIOS provided WM memory latency values are often
2120	 * inadequate for high resolution displays. Adjust them.
2121	 */
2122	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2123		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2124		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2125
2126	if (!changed)
2127		return;
2128
2129	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2130	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2131	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2132	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2133}
2134
2135static void ilk_setup_wm_latency(struct drm_device *dev)
2136{
2137	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2138
2139	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
 
 
 
 
 
 
 
 
 
 
 
 
2140
2141	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2142	       sizeof(dev_priv->wm.pri_latency));
2143	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2144	       sizeof(dev_priv->wm.pri_latency));
2145
2146	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2147	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2148
2149	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2150	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2151	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2152
2153	if (IS_GEN6(dev))
2154		snb_wm_latency_quirk(dev);
 
 
2155}
2156
2157static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2158				      struct ilk_pipe_wm_parameters *p,
2159				      struct intel_wm_config *config)
2160{
2161	struct drm_device *dev = crtc->dev;
2162	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2163	enum pipe pipe = intel_crtc->pipe;
2164	struct drm_plane *plane;
2165
2166	p->active = intel_crtc_active(crtc);
2167	if (p->active) {
2168		p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2169		p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2170		p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
2171		p->cur.bytes_per_pixel = 4;
2172		p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2173		p->cur.horiz_pixels = intel_crtc->cursor_width;
2174		/* TODO: for now, assume primary and cursor planes are always enabled. */
2175		p->pri.enabled = true;
2176		p->cur.enabled = true;
2177	}
2178
2179	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2180		config->num_pipes_active += intel_crtc_active(crtc);
2181
2182	drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2183		struct intel_plane *intel_plane = to_intel_plane(plane);
2184
2185		if (intel_plane->pipe == pipe)
2186			p->spr = intel_plane->wm;
 
 
 
2187
2188		config->sprites_enabled |= intel_plane->wm.enabled;
2189		config->sprites_scaled |= intel_plane->wm.scaled;
2190	}
2191}
2192
2193/* Compute new watermarks for the pipe */
2194static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2195				  const struct ilk_pipe_wm_parameters *params,
2196				  struct intel_pipe_wm *pipe_wm)
2197{
2198	struct drm_device *dev = crtc->dev;
2199	const struct drm_i915_private *dev_priv = dev->dev_private;
2200	int level, max_level = ilk_wm_max_level(dev);
2201	/* LP0 watermark maximums depend on this pipe alone */
2202	struct intel_wm_config config = {
2203		.num_pipes_active = 1,
2204		.sprites_enabled = params->spr.enabled,
2205		.sprites_scaled = params->spr.scaled,
2206	};
2207	struct ilk_wm_maximums max;
2208
2209	/* LP0 watermarks always use 1/2 DDB partitioning */
2210	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2211
2212	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2213	if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2214		max_level = 1;
2215
2216	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2217	if (params->spr.scaled)
2218		max_level = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2219
2220	for (level = 0; level <= max_level; level++)
2221		ilk_compute_wm_level(dev_priv, level, params,
2222				     &pipe_wm->wm[level]);
2223
2224	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2225		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2226
2227	/* At least LP0 must be valid */
2228	return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
 
 
 
 
 
 
2229}
2230
2231/*
2232 * Merge the watermarks from all active pipes for a specific level.
2233 */
2234static void ilk_merge_wm_level(struct drm_device *dev,
2235			       int level,
2236			       struct intel_wm_level *ret_wm)
2237{
2238	const struct intel_crtc *intel_crtc;
2239
2240	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2241		const struct intel_wm_level *wm =
2242			&intel_crtc->wm.active.wm[level];
2243
 
 
 
 
 
 
 
 
 
 
 
 
2244		if (!wm->enable)
2245			return;
2246
2247		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2248		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2249		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2250		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2251	}
2252
2253	ret_wm->enable = true;
2254}
2255
2256/*
2257 * Merge all low power watermarks for all active pipes.
2258 */
2259static void ilk_wm_merge(struct drm_device *dev,
2260			 const struct intel_wm_config *config,
2261			 const struct ilk_wm_maximums *max,
2262			 struct intel_pipe_wm *merged)
2263{
2264	int level, max_level = ilk_wm_max_level(dev);
 
2265
2266	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2267	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2268	    config->num_pipes_active > 1)
2269		return;
2270
2271	/* ILK: FBC WM must be disabled always */
2272	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2273
2274	/* merge each WM1+ level */
2275	for (level = 1; level <= max_level; level++) {
2276		struct intel_wm_level *wm = &merged->wm[level];
2277
2278		ilk_merge_wm_level(dev, level, wm);
2279
2280		if (!ilk_validate_wm_level(level, max, wm))
2281			break;
 
 
 
2282
2283		/*
2284		 * The spec says it is preferred to disable
2285		 * FBC WMs instead of disabling a WM level.
2286		 */
2287		if (wm->fbc_val > max->fbc) {
2288			merged->fbc_wm_enabled = false;
 
2289			wm->fbc_val = 0;
2290		}
2291	}
2292
2293	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2294	/*
2295	 * FIXME this is racy. FBC might get enabled later.
2296	 * What we should check here is whether FBC can be
2297	 * enabled sometime later.
2298	 */
2299	if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
 
2300		for (level = 2; level <= max_level; level++) {
2301			struct intel_wm_level *wm = &merged->wm[level];
2302
2303			wm->enable = false;
2304		}
2305	}
2306}
2307
2308static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2309{
2310	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2311	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2312}
2313
2314/* The value we need to program into the WM_LPx latency field */
2315static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
 
2316{
2317	struct drm_i915_private *dev_priv = dev->dev_private;
2318
2319	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2320		return 2 * level;
2321	else
2322		return dev_priv->wm.pri_latency[level];
2323}
2324
2325static void ilk_compute_wm_results(struct drm_device *dev,
2326				   const struct intel_pipe_wm *merged,
2327				   enum intel_ddb_partitioning partitioning,
2328				   struct ilk_wm_values *results)
2329{
2330	struct intel_crtc *intel_crtc;
2331	int level, wm_lp;
2332
2333	results->enable_fbc_wm = merged->fbc_wm_enabled;
2334	results->partitioning = partitioning;
2335
2336	/* LP1+ register values */
2337	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2338		const struct intel_wm_level *r;
2339
2340		level = ilk_wm_lp_to_level(wm_lp, merged);
2341
2342		r = &merged->wm[level];
2343		if (!r->enable)
2344			break;
2345
2346		results->wm_lp[wm_lp - 1] = WM3_LP_EN |
2347			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
 
 
 
 
2348			(r->pri_val << WM1_LP_SR_SHIFT) |
2349			r->cur_val;
2350
2351		if (INTEL_INFO(dev)->gen >= 8)
 
 
 
2352			results->wm_lp[wm_lp - 1] |=
2353				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2354		else
2355			results->wm_lp[wm_lp - 1] |=
2356				r->fbc_val << WM1_LP_FBC_SHIFT;
2357
2358		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
 
 
 
 
2359			WARN_ON(wm_lp != 1);
2360			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2361		} else
2362			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2363	}
2364
2365	/* LP0 register values */
2366	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2367		enum pipe pipe = intel_crtc->pipe;
2368		const struct intel_wm_level *r =
2369			&intel_crtc->wm.active.wm[0];
2370
2371		if (WARN_ON(!r->enable))
2372			continue;
2373
2374		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2375
2376		results->wm_pipe[pipe] =
2377			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2378			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2379			r->cur_val;
2380	}
2381}
2382
2383/* Find the result with the highest level enabled. Check for enable_fbc_wm in
2384 * case both are at the same level. Prefer r1 in case they're the same. */
2385static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2386						  struct intel_pipe_wm *r1,
2387						  struct intel_pipe_wm *r2)
 
2388{
2389	int level, max_level = ilk_wm_max_level(dev);
2390	int level1 = 0, level2 = 0;
2391
2392	for (level = 1; level <= max_level; level++) {
2393		if (r1->wm[level].enable)
2394			level1 = level;
2395		if (r2->wm[level].enable)
2396			level2 = level;
2397	}
2398
2399	if (level1 == level2) {
2400		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2401			return r2;
2402		else
2403			return r1;
2404	} else if (level1 > level2) {
2405		return r1;
2406	} else {
2407		return r2;
2408	}
2409}
2410
2411/* dirty bits used to track which watermarks need changes */
2412#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2413#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2414#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2415#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2416#define WM_DIRTY_FBC (1 << 24)
2417#define WM_DIRTY_DDB (1 << 25)
2418
2419static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2420					 const struct ilk_wm_values *old,
2421					 const struct ilk_wm_values *new)
2422{
2423	unsigned int dirty = 0;
2424	enum pipe pipe;
2425	int wm_lp;
2426
2427	for_each_pipe(pipe) {
2428		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2429			dirty |= WM_DIRTY_LINETIME(pipe);
2430			/* Must disable LP1+ watermarks too */
2431			dirty |= WM_DIRTY_LP_ALL;
2432		}
2433
2434		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2435			dirty |= WM_DIRTY_PIPE(pipe);
2436			/* Must disable LP1+ watermarks too */
2437			dirty |= WM_DIRTY_LP_ALL;
2438		}
2439	}
2440
2441	if (old->enable_fbc_wm != new->enable_fbc_wm) {
2442		dirty |= WM_DIRTY_FBC;
2443		/* Must disable LP1+ watermarks too */
2444		dirty |= WM_DIRTY_LP_ALL;
2445	}
2446
2447	if (old->partitioning != new->partitioning) {
2448		dirty |= WM_DIRTY_DDB;
2449		/* Must disable LP1+ watermarks too */
2450		dirty |= WM_DIRTY_LP_ALL;
2451	}
2452
2453	/* LP1+ watermarks already deemed dirty, no need to continue */
2454	if (dirty & WM_DIRTY_LP_ALL)
2455		return dirty;
2456
2457	/* Find the lowest numbered LP1+ watermark in need of an update... */
2458	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2459		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2460		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2461			break;
2462	}
2463
2464	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2465	for (; wm_lp <= 3; wm_lp++)
2466		dirty |= WM_DIRTY_LP(wm_lp);
2467
2468	return dirty;
2469}
2470
2471static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2472			       unsigned int dirty)
2473{
2474	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2475	bool changed = false;
2476
2477	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2478		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2479		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2480		changed = true;
2481	}
2482	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2483		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2484		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2485		changed = true;
2486	}
2487	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2488		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2489		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2490		changed = true;
2491	}
2492
2493	/*
2494	 * Don't touch WM1S_LP_EN here.
2495	 * Doing so could cause underruns.
2496	 */
2497
2498	return changed;
2499}
2500
2501/*
2502 * The spec says we shouldn't write when we don't need, because every write
2503 * causes WMs to be re-evaluated, expending some power.
2504 */
2505static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2506				struct ilk_wm_values *results)
2507{
2508	struct drm_device *dev = dev_priv->dev;
2509	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2510	unsigned int dirty;
2511	uint32_t val;
2512
2513	dirty = ilk_compute_wm_dirty(dev, previous, results);
2514	if (!dirty)
2515		return;
2516
2517	_ilk_disable_lp_wm(dev_priv, dirty);
2518
2519	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2520		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2521	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2522		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2523	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2524		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2525
2526	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2527		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2528	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2529		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2530	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2531		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2532
2533	if (dirty & WM_DIRTY_DDB) {
2534		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2535			val = I915_READ(WM_MISC);
2536			if (results->partitioning == INTEL_DDB_PART_1_2)
2537				val &= ~WM_MISC_DATA_PARTITION_5_6;
2538			else
2539				val |= WM_MISC_DATA_PARTITION_5_6;
2540			I915_WRITE(WM_MISC, val);
2541		} else {
2542			val = I915_READ(DISP_ARB_CTL2);
2543			if (results->partitioning == INTEL_DDB_PART_1_2)
2544				val &= ~DISP_DATA_PARTITION_5_6;
2545			else
2546				val |= DISP_DATA_PARTITION_5_6;
2547			I915_WRITE(DISP_ARB_CTL2, val);
2548		}
2549	}
2550
2551	if (dirty & WM_DIRTY_FBC) {
2552		val = I915_READ(DISP_ARB_CTL);
2553		if (results->enable_fbc_wm)
2554			val &= ~DISP_FBC_WM_DIS;
2555		else
2556			val |= DISP_FBC_WM_DIS;
2557		I915_WRITE(DISP_ARB_CTL, val);
2558	}
2559
2560	if (dirty & WM_DIRTY_LP(1) &&
2561	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2562		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2563
2564	if (INTEL_INFO(dev)->gen >= 7) {
2565		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2566			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2567		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2568			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2569	}
2570
2571	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2572		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2573	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2574		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2575	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2576		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2577
2578	dev_priv->wm.hw = *results;
2579}
2580
2581static bool ilk_disable_lp_wm(struct drm_device *dev)
2582{
2583	struct drm_i915_private *dev_priv = dev->dev_private;
2584
2585	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2586}
2587
2588static void ilk_update_wm(struct drm_crtc *crtc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2589{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2590	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2591	struct drm_device *dev = crtc->dev;
2592	struct drm_i915_private *dev_priv = dev->dev_private;
2593	struct ilk_wm_maximums max;
2594	struct ilk_pipe_wm_parameters params = {};
2595	struct ilk_wm_values results = {};
2596	enum intel_ddb_partitioning partitioning;
2597	struct intel_pipe_wm pipe_wm = {};
2598	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2599	struct intel_wm_config config = {};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2600
2601	ilk_compute_wm_parameters(crtc, &params, &config);
 
2602
2603	intel_compute_pipe_wm(crtc, &params, &pipe_wm);
 
 
 
 
 
 
2604
2605	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2606		return;
2607
2608	intel_crtc->wm.active = pipe_wm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2609
2610	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2611	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2612
2613	/* 5/6 split only in single pipe config on IVB+ */
2614	if (INTEL_INFO(dev)->gen >= 7 &&
2615	    config.num_pipes_active == 1 && config.sprites_enabled) {
2616		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2617		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2618
2619		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2620	} else {
2621		best_lp_wm = &lp_wm_1_2;
2622	}
2623
2624	partitioning = (best_lp_wm == &lp_wm_1_2) ?
2625		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2626
2627	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2628
2629	ilk_write_wm_values(dev_priv, &results);
2630}
2631
2632static void ilk_update_sprite_wm(struct drm_plane *plane,
2633				     struct drm_crtc *crtc,
2634				     uint32_t sprite_width, int pixel_size,
2635				     bool enabled, bool scaled)
2636{
2637	struct drm_device *dev = plane->dev;
2638	struct intel_plane *intel_plane = to_intel_plane(plane);
2639
2640	intel_plane->wm.enabled = enabled;
2641	intel_plane->wm.scaled = scaled;
2642	intel_plane->wm.horiz_pixels = sprite_width;
2643	intel_plane->wm.bytes_per_pixel = pixel_size;
2644
2645	/*
2646	 * IVB workaround: must disable low power watermarks for at least
2647	 * one frame before enabling scaling.  LP watermarks can be re-enabled
2648	 * when scaling is disabled.
2649	 *
2650	 * WaCxSRDisabledForSpriteScaling:ivb
2651	 */
2652	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2653		intel_wait_for_vblank(dev, intel_plane->pipe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2654
2655	ilk_update_wm(crtc);
 
 
 
2656}
2657
2658static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2659{
2660	struct drm_device *dev = crtc->dev;
2661	struct drm_i915_private *dev_priv = dev->dev_private;
2662	struct ilk_wm_values *hw = &dev_priv->wm.hw;
2663	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2664	struct intel_pipe_wm *active = &intel_crtc->wm.active;
2665	enum pipe pipe = intel_crtc->pipe;
2666	static const unsigned int wm0_pipe_reg[] = {
2667		[PIPE_A] = WM0_PIPEA_ILK,
2668		[PIPE_B] = WM0_PIPEB_ILK,
2669		[PIPE_C] = WM0_PIPEC_IVB,
2670	};
2671
2672	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2673	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2674		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2675
2676	if (intel_crtc_active(crtc)) {
 
 
 
 
2677		u32 tmp = hw->wm_pipe[pipe];
2678
2679		/*
2680		 * For active pipes LP0 watermark is marked as
2681		 * enabled, and LP1+ watermaks as disabled since
2682		 * we can't really reverse compute them in case
2683		 * multiple pipes are active.
2684		 */
2685		active->wm[0].enable = true;
2686		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2687		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2688		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2689		active->linetime = hw->wm_linetime[pipe];
2690	} else {
2691		int level, max_level = ilk_wm_max_level(dev);
2692
2693		/*
2694		 * For inactive pipes, all watermark levels
2695		 * should be marked as enabled but zeroed,
2696		 * which is what we'd compute them to.
2697		 */
2698		for (level = 0; level <= max_level; level++)
2699			active->wm[level].enable = true;
2700	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2701}
2702
2703void ilk_wm_get_hw_state(struct drm_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2704{
2705	struct drm_i915_private *dev_priv = dev->dev_private;
2706	struct ilk_wm_values *hw = &dev_priv->wm.hw;
2707	struct drm_crtc *crtc;
 
 
2708
2709	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2710		ilk_pipe_wm_get_hw_state(crtc);
2711
2712	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2713	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2714	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2715
2716	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2717	hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2718	hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
 
 
2719
2720	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2721		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2722			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2723	else if (IS_IVYBRIDGE(dev))
2724		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2725			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2726
2727	hw->enable_fbc_wm =
2728		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2729}
2730
2731/**
2732 * intel_update_watermarks - update FIFO watermark values based on current modes
 
2733 *
2734 * Calculate watermark values for the various WM regs based on current mode
2735 * and plane configuration.
2736 *
2737 * There are several cases to deal with here:
2738 *   - normal (i.e. non-self-refresh)
2739 *   - self-refresh (SR) mode
2740 *   - lines are large relative to FIFO size (buffer can hold up to 2)
2741 *   - lines are small relative to FIFO size (buffer can hold more than 2
2742 *     lines), so need to account for TLB latency
2743 *
2744 *   The normal calculation is:
2745 *     watermark = dotclock * bytes per pixel * latency
2746 *   where latency is platform & configuration dependent (we assume pessimal
2747 *   values here).
2748 *
2749 *   The SR calculation is:
2750 *     watermark = (trunc(latency/line time)+1) * surface width *
2751 *       bytes per pixel
2752 *   where
2753 *     line time = htotal / dotclock
2754 *     surface width = hdisplay for normal plane and 64 for cursor
2755 *   and latency is assumed to be high, as above.
2756 *
2757 * The final value programmed to the register should always be rounded up,
2758 * and include an extra 2 entries to account for clock crossings.
2759 *
2760 * We don't use the sprite, so we can ignore that.  And on Crestline we have
2761 * to set the non-SR watermarks to 8.
2762 */
2763void intel_update_watermarks(struct drm_crtc *crtc)
2764{
2765	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2766
2767	if (dev_priv->display.update_wm)
2768		dev_priv->display.update_wm(crtc);
2769}
2770
2771void intel_update_sprite_watermarks(struct drm_plane *plane,
2772				    struct drm_crtc *crtc,
2773				    uint32_t sprite_width, int pixel_size,
2774				    bool enabled, bool scaled)
2775{
2776	struct drm_i915_private *dev_priv = plane->dev->dev_private;
2777
2778	if (dev_priv->display.update_sprite_wm)
2779		dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
2780						   pixel_size, enabled, scaled);
 
 
 
 
 
 
 
 
2781}
2782
2783static struct drm_i915_gem_object *
2784intel_alloc_context_page(struct drm_device *dev)
2785{
2786	struct drm_i915_gem_object *ctx;
2787	int ret;
 
2788
2789	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
 
 
2790
2791	ctx = i915_gem_alloc_object(dev, 4096);
2792	if (!ctx) {
2793		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2794		return NULL;
2795	}
2796
2797	ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
2798	if (ret) {
2799		DRM_ERROR("failed to pin power context: %d\n", ret);
2800		goto err_unref;
2801	}
2802
2803	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2804	if (ret) {
2805		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2806		goto err_unpin;
2807	}
2808
2809	return ctx;
2810
2811err_unpin:
2812	i915_gem_object_ggtt_unpin(ctx);
2813err_unref:
2814	drm_gem_object_unreference(&ctx->base);
2815	return NULL;
2816}
2817
2818/**
2819 * Lock protecting IPS related data structures
2820 */
2821DEFINE_SPINLOCK(mchdev_lock);
2822
2823/* Global for IPS driver to get at the current i915 device. Protected by
2824 * mchdev_lock. */
2825static struct drm_i915_private *i915_mch_dev;
2826
2827bool ironlake_set_drps(struct drm_device *dev, u8 val)
2828{
2829	struct drm_i915_private *dev_priv = dev->dev_private;
2830	u16 rgvswctl;
2831
2832	assert_spin_locked(&mchdev_lock);
2833
2834	rgvswctl = I915_READ16(MEMSWCTL);
2835	if (rgvswctl & MEMCTL_CMD_STS) {
2836		DRM_DEBUG("gpu busy, RCS change rejected\n");
2837		return false; /* still busy with another command */
2838	}
2839
2840	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2841		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2842	I915_WRITE16(MEMSWCTL, rgvswctl);
2843	POSTING_READ16(MEMSWCTL);
2844
2845	rgvswctl |= MEMCTL_CMD_STS;
2846	I915_WRITE16(MEMSWCTL, rgvswctl);
2847
2848	return true;
2849}
2850
2851static void ironlake_enable_drps(struct drm_device *dev)
2852{
2853	struct drm_i915_private *dev_priv = dev->dev_private;
2854	u32 rgvmodectl = I915_READ(MEMMODECTL);
2855	u8 fmax, fmin, fstart, vstart;
2856
2857	spin_lock_irq(&mchdev_lock);
2858
 
 
2859	/* Enable temp reporting */
2860	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2861	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2862
2863	/* 100ms RC evaluation intervals */
2864	I915_WRITE(RCUPEI, 100000);
2865	I915_WRITE(RCDNEI, 100000);
2866
2867	/* Set max/min thresholds to 90ms and 80ms respectively */
2868	I915_WRITE(RCBMAXAVG, 90000);
2869	I915_WRITE(RCBMINAVG, 80000);
2870
2871	I915_WRITE(MEMIHYST, 1);
2872
2873	/* Set up min, max, and cur for interrupt handling */
2874	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2875	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2876	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2877		MEMMODE_FSTART_SHIFT;
2878
2879	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2880		PXVFREQ_PX_SHIFT;
2881
2882	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2883	dev_priv->ips.fstart = fstart;
2884
2885	dev_priv->ips.max_delay = fstart;
2886	dev_priv->ips.min_delay = fmin;
2887	dev_priv->ips.cur_delay = fstart;
2888
2889	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2890			 fmax, fmin, fstart);
2891
2892	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
 
 
2893
2894	/*
2895	 * Interrupts will be enabled in ironlake_irq_postinstall
2896	 */
2897
2898	I915_WRITE(VIDSTART, vstart);
2899	POSTING_READ(VIDSTART);
2900
2901	rgvmodectl |= MEMMODE_SWMODE_EN;
2902	I915_WRITE(MEMMODECTL, rgvmodectl);
2903
2904	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
 
2905		DRM_ERROR("stuck trying to change perf mode\n");
2906	mdelay(1);
2907
2908	ironlake_set_drps(dev, fstart);
2909
2910	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2911		I915_READ(0x112e0);
 
 
2912	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2913	dev_priv->ips.last_count2 = I915_READ(0x112f4);
2914	getrawmonotonic(&dev_priv->ips.last_time2);
2915
2916	spin_unlock_irq(&mchdev_lock);
2917}
2918
2919static void ironlake_disable_drps(struct drm_device *dev)
2920{
2921	struct drm_i915_private *dev_priv = dev->dev_private;
2922	u16 rgvswctl;
2923
2924	spin_lock_irq(&mchdev_lock);
2925
2926	rgvswctl = I915_READ16(MEMSWCTL);
2927
2928	/* Ack interrupts, disable EFC interrupt */
2929	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2930	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2931	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2932	I915_WRITE(DEIIR, DE_PCU_EVENT);
2933	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
 
 
 
 
 
 
 
2934
2935	/* Go back to the starting frequency */
2936	ironlake_set_drps(dev, dev_priv->ips.fstart);
2937	mdelay(1);
2938	rgvswctl |= MEMCTL_CMD_STS;
2939	I915_WRITE(MEMSWCTL, rgvswctl);
2940	mdelay(1);
2941
2942	spin_unlock_irq(&mchdev_lock);
2943}
2944
2945/* There's a funny hw issue where the hw returns all 0 when reading from
2946 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2947 * ourselves, instead of doing a rmw cycle (which might result in us clearing
2948 * all limits and the gpu stuck at whatever frequency it is at atm).
2949 */
2950static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
2951{
 
2952	u32 limits;
2953
2954	/* Only set the down limit when we've reached the lowest level to avoid
2955	 * getting more interrupts, otherwise leave this clear. This prevents a
2956	 * race in the hw when coming out of rc6: There's a tiny window where
2957	 * the hw runs at the minimal clock before selecting the desired
2958	 * frequency, if the down threshold expires in that window we will not
2959	 * receive a down interrupt. */
2960	limits = dev_priv->rps.max_freq_softlimit << 24;
2961	if (val <= dev_priv->rps.min_freq_softlimit)
2962		limits |= dev_priv->rps.min_freq_softlimit << 16;
 
 
 
 
 
 
2963
2964	return limits;
2965}
2966
2967static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
2968{
2969	int new_power;
2970
2971	new_power = dev_priv->rps.power;
2972	switch (dev_priv->rps.power) {
2973	case LOW_POWER:
2974		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
2975			new_power = BETWEEN;
2976		break;
2977
2978	case BETWEEN:
2979		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
2980			new_power = LOW_POWER;
2981		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
2982			new_power = HIGH_POWER;
2983		break;
2984
2985	case HIGH_POWER:
2986		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
2987			new_power = BETWEEN;
2988		break;
2989	}
2990	/* Max/min bins are special */
2991	if (val == dev_priv->rps.min_freq_softlimit)
2992		new_power = LOW_POWER;
2993	if (val == dev_priv->rps.max_freq_softlimit)
2994		new_power = HIGH_POWER;
2995	if (new_power == dev_priv->rps.power)
2996		return;
2997
2998	/* Note the units here are not exactly 1us, but 1280ns. */
2999	switch (new_power) {
3000	case LOW_POWER:
3001		/* Upclock if more than 95% busy over 16ms */
3002		I915_WRITE(GEN6_RP_UP_EI, 12500);
3003		I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3004
3005		/* Downclock if less than 85% busy over 32ms */
3006		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3007		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3008
3009		I915_WRITE(GEN6_RP_CONTROL,
3010			   GEN6_RP_MEDIA_TURBO |
3011			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
3012			   GEN6_RP_MEDIA_IS_GFX |
3013			   GEN6_RP_ENABLE |
3014			   GEN6_RP_UP_BUSY_AVG |
3015			   GEN6_RP_DOWN_IDLE_AVG);
3016		break;
3017
3018	case BETWEEN:
3019		/* Upclock if more than 90% busy over 13ms */
3020		I915_WRITE(GEN6_RP_UP_EI, 10250);
3021		I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3022
3023		/* Downclock if less than 75% busy over 32ms */
3024		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3025		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3026
3027		I915_WRITE(GEN6_RP_CONTROL,
3028			   GEN6_RP_MEDIA_TURBO |
3029			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
3030			   GEN6_RP_MEDIA_IS_GFX |
3031			   GEN6_RP_ENABLE |
3032			   GEN6_RP_UP_BUSY_AVG |
3033			   GEN6_RP_DOWN_IDLE_AVG);
3034		break;
3035
3036	case HIGH_POWER:
3037		/* Upclock if more than 85% busy over 10ms */
3038		I915_WRITE(GEN6_RP_UP_EI, 8000);
3039		I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3040
3041		/* Downclock if less than 60% busy over 32ms */
3042		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3043		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3044
3045		I915_WRITE(GEN6_RP_CONTROL,
3046			   GEN6_RP_MEDIA_TURBO |
3047			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
3048			   GEN6_RP_MEDIA_IS_GFX |
3049			   GEN6_RP_ENABLE |
3050			   GEN6_RP_UP_BUSY_AVG |
3051			   GEN6_RP_DOWN_IDLE_AVG);
3052		break;
3053	}
 
 
 
 
 
3054
3055	dev_priv->rps.power = new_power;
3056	dev_priv->rps.last_adj = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3057}
3058
3059static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3060{
 
3061	u32 mask = 0;
3062
3063	if (val > dev_priv->rps.min_freq_softlimit)
3064		mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3065	if (val < dev_priv->rps.max_freq_softlimit)
3066		mask |= GEN6_PM_RP_UP_THRESHOLD;
 
3067
3068	/* IVB and SNB hard hangs on looping batchbuffer
3069	 * if GEN6_PM_UP_EI_EXPIRED is masked.
3070	 */
3071	if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
3072		mask |= GEN6_PM_RP_UP_EI_EXPIRED;
3073
3074	return ~mask;
3075}
3076
3077/* gen6_set_rps is called to update the frequency request, but should also be
3078 * called when the range (min_delay and max_delay) is modified so that we can
3079 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3080void gen6_set_rps(struct drm_device *dev, u8 val)
3081{
3082	struct drm_i915_private *dev_priv = dev->dev_private;
3083
3084	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3085	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3086	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3087
3088	/* min/max delay may still have been modified so be sure to
3089	 * write the limits value.
3090	 */
3091	if (val != dev_priv->rps.cur_freq) {
3092		gen6_set_rps_thresholds(dev_priv, val);
3093
3094		if (IS_HASWELL(dev))
 
 
 
3095			I915_WRITE(GEN6_RPNSWREQ,
3096				   HSW_FREQUENCY(val));
3097		else
3098			I915_WRITE(GEN6_RPNSWREQ,
3099				   GEN6_FREQUENCY(val) |
3100				   GEN6_OFFSET(0) |
3101				   GEN6_AGGRESSIVE_TURBO);
3102	}
3103
3104	/* Make sure we continue to get interrupts
3105	 * until we hit the minimum or maximum frequencies.
3106	 */
3107	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3108	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3109
3110	POSTING_READ(GEN6_RPNSWREQ);
 
3111
3112	dev_priv->rps.cur_freq = val;
3113	trace_intel_gpu_freq_change(val * 50);
3114}
3115
3116/* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3117 *
3118 * * If Gfx is Idle, then
3119 * 1. Mask Turbo interrupts
3120 * 2. Bring up Gfx clock
3121 * 3. Change the freq to Rpn and wait till P-Unit updates freq
3122 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3123 * 5. Unmask Turbo interrupts
3124*/
3125static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3126{
3127	/*
3128	 * When we are idle.  Drop to min voltage state.
3129	 */
3130
3131	if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3132		return;
3133
3134	/* Mask turbo interrupt so that they will not come in between */
3135	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
 
 
 
 
 
 
 
 
 
 
 
 
 
3136
3137	/* Bring up the Gfx clock */
3138	I915_WRITE(VLV_GTLC_SURVIVABILITY_REG,
3139		I915_READ(VLV_GTLC_SURVIVABILITY_REG) |
3140				VLV_GFX_CLK_FORCE_ON_BIT);
3141
3142	if (wait_for(((VLV_GFX_CLK_STATUS_BIT &
3143		I915_READ(VLV_GTLC_SURVIVABILITY_REG)) != 0), 5)) {
3144			DRM_ERROR("GFX_CLK_ON request timed out\n");
3145		return;
3146	}
3147
3148	dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
 
 
3149
3150	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3151					dev_priv->rps.min_freq_softlimit);
 
 
3152
3153	if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3154				& GENFREQSTATUS) == 0, 5))
3155		DRM_ERROR("timed out waiting for Punit\n");
3156
3157	/* Release the Gfx clock */
3158	I915_WRITE(VLV_GTLC_SURVIVABILITY_REG,
3159		I915_READ(VLV_GTLC_SURVIVABILITY_REG) &
3160				~VLV_GFX_CLK_FORCE_ON_BIT);
 
3161
3162	I915_WRITE(GEN6_PMINTRMSK,
3163		   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
 
 
 
 
 
3164}
3165
3166void gen6_rps_idle(struct drm_i915_private *dev_priv)
3167{
3168	struct drm_device *dev = dev_priv->dev;
3169
3170	mutex_lock(&dev_priv->rps.hw_lock);
3171	if (dev_priv->rps.enabled) {
3172		if (IS_VALLEYVIEW(dev))
 
 
 
 
 
 
 
3173			vlv_set_rps_idle(dev_priv);
3174		else
3175			gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3176		dev_priv->rps.last_adj = 0;
 
 
3177	}
3178	mutex_unlock(&dev_priv->rps.hw_lock);
3179}
3180
3181void gen6_rps_boost(struct drm_i915_private *dev_priv)
3182{
3183	struct drm_device *dev = dev_priv->dev;
 
 
3184
3185	mutex_lock(&dev_priv->rps.hw_lock);
3186	if (dev_priv->rps.enabled) {
3187		if (IS_VALLEYVIEW(dev))
3188			valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3189		else
3190			gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3191		dev_priv->rps.last_adj = 0;
 
 
 
 
 
 
 
 
 
3192	}
3193	mutex_unlock(&dev_priv->rps.hw_lock);
 
 
 
 
 
 
 
3194}
3195
3196void valleyview_set_rps(struct drm_device *dev, u8 val)
3197{
3198	struct drm_i915_private *dev_priv = dev->dev_private;
 
3199
3200	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3201	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3202	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3203
3204	DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3205			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3206			 dev_priv->rps.cur_freq,
3207			 vlv_gpu_freq(dev_priv, val), val);
3208
3209	if (val != dev_priv->rps.cur_freq)
3210		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
 
 
3211
3212	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
 
3213
3214	dev_priv->rps.cur_freq = val;
3215	trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
 
 
3216}
3217
3218static void gen6_disable_rps_interrupts(struct drm_device *dev)
3219{
3220	struct drm_i915_private *dev_priv = dev->dev_private;
 
3221
3222	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3223	I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
3224				~dev_priv->pm_rps_events);
3225	/* Complete PM interrupt masking here doesn't race with the rps work
3226	 * item again unmasking PM interrupts because that is using a different
3227	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3228	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3229
3230	spin_lock_irq(&dev_priv->irq_lock);
3231	dev_priv->rps.pm_iir = 0;
3232	spin_unlock_irq(&dev_priv->irq_lock);
 
 
3233
3234	I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
 
 
3235}
3236
3237static void gen6_disable_rps(struct drm_device *dev)
3238{
3239	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 
 
 
3240
3241	I915_WRITE(GEN6_RC_CONTROL, 0);
3242	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3243
3244	gen6_disable_rps_interrupts(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3245}
3246
3247static void valleyview_disable_rps(struct drm_device *dev)
3248{
3249	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 
 
3250
3251	I915_WRITE(GEN6_RC_CONTROL, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
3252
3253	gen6_disable_rps_interrupts(dev);
3254}
3255
3256static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3257{
3258	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3259		 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3260		 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3261		 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3262}
3263
3264int intel_enable_rc6(const struct drm_device *dev)
 
3265{
3266	/* No RC6 before Ironlake */
3267	if (INTEL_INFO(dev)->gen < 5)
3268		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3269
3270	/* Respect the kernel parameter if it is set */
3271	if (i915.enable_rc6 >= 0)
3272		return i915.enable_rc6;
3273
3274	/* Disable RC6 on Ironlake */
3275	if (INTEL_INFO(dev)->gen == 5)
3276		return 0;
3277
3278	if (IS_IVYBRIDGE(dev))
3279		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
 
 
3280
3281	return INTEL_RC6_ENABLE;
3282}
3283
3284static void gen6_enable_rps_interrupts(struct drm_device *dev)
3285{
3286	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3287
3288	spin_lock_irq(&dev_priv->irq_lock);
3289	WARN_ON(dev_priv->rps.pm_iir);
3290	snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3291	I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3292	spin_unlock_irq(&dev_priv->irq_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293}
3294
3295static void gen8_enable_rps(struct drm_device *dev)
3296{
3297	struct drm_i915_private *dev_priv = dev->dev_private;
3298	struct intel_ring_buffer *ring;
3299	uint32_t rc6_mask = 0, rp_state_cap;
3300	int unused;
3301
3302	/* 1a: Software RC state - RC0 */
3303	I915_WRITE(GEN6_RC_STATE, 0);
3304
3305	/* 1c & 1d: Get forcewake during program sequence. Although the driver
3306	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3307	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3308
3309	/* 2a: Disable RC states. */
3310	I915_WRITE(GEN6_RC_CONTROL, 0);
3311
3312	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3313
3314	/* 2b: Program RC6 thresholds.*/
3315	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3316	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3317	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3318	for_each_ring(ring, dev_priv, unused)
3319		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3320	I915_WRITE(GEN6_RC_SLEEP, 0);
3321	I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3322
3323	/* 3: Enable RC6 */
3324	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3325		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3326	intel_print_rc6_info(dev, rc6_mask);
3327	I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3328				    GEN6_RC_CTL_EI_MODE(1) |
3329				    rc6_mask);
3330
3331	/* 4 Program defaults and thresholds for RPS*/
3332	I915_WRITE(GEN6_RPNSWREQ, HSW_FREQUENCY(10)); /* Request 500 MHz */
3333	I915_WRITE(GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(12)); /* Request 600 MHz */
 
 
 
 
 
 
 
 
 
 
3334	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3335	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3336
3337	/* Docs recommend 900MHz, and 300 MHz respectively */
3338	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3339		   dev_priv->rps.max_freq_softlimit << 24 |
3340		   dev_priv->rps.min_freq_softlimit << 16);
3341
3342	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3343	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3344	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3345	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3346
3347	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3348
3349	/* 5: Enable RPS */
3350	I915_WRITE(GEN6_RP_CONTROL,
3351		   GEN6_RP_MEDIA_TURBO |
3352		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
3353		   GEN6_RP_MEDIA_IS_GFX |
3354		   GEN6_RP_ENABLE |
3355		   GEN6_RP_UP_BUSY_AVG |
3356		   GEN6_RP_DOWN_IDLE_AVG);
3357
3358	/* 6: Ring frequency + overclocking (our driver does this later */
3359
3360	gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3361
3362	gen6_enable_rps_interrupts(dev);
3363
3364	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3365}
3366
3367static void gen6_enable_rps(struct drm_device *dev)
3368{
3369	struct drm_i915_private *dev_priv = dev->dev_private;
3370	struct intel_ring_buffer *ring;
3371	u32 rp_state_cap;
3372	u32 gt_perf_status;
3373	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3374	u32 gtfifodbg;
3375	int rc6_mode;
3376	int i, ret;
3377
3378	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3379
3380	/* Here begins a magic sequence of register writes to enable
3381	 * auto-downclocking.
3382	 *
3383	 * Perhaps there might be some value in exposing these to
3384	 * userspace...
3385	 */
3386	I915_WRITE(GEN6_RC_STATE, 0);
3387
3388	/* Clear the DBG now so we don't confuse earlier errors */
3389	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
 
3390		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3391		I915_WRITE(GTFIFODBG, gtfifodbg);
3392	}
3393
3394	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3395
3396	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3397	gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3398
3399	/* All of these values are in units of 50MHz */
3400	dev_priv->rps.cur_freq		= 0;
3401	/* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
3402	dev_priv->rps.rp1_freq		= (rp_state_cap >>  8) & 0xff;
3403	dev_priv->rps.rp0_freq		= (rp_state_cap >>  0) & 0xff;
3404	dev_priv->rps.min_freq		= (rp_state_cap >> 16) & 0xff;
3405	/* XXX: only BYT has a special efficient freq */
3406	dev_priv->rps.efficient_freq	= dev_priv->rps.rp1_freq;
3407	/* hw_max = RP0 until we check for overclocking */
3408	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;
3409
3410	/* Preserve min/max settings in case of re-init */
3411	if (dev_priv->rps.max_freq_softlimit == 0)
3412		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3413
3414	if (dev_priv->rps.min_freq_softlimit == 0)
3415		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3416
3417	/* disable the counters and set deterministic thresholds */
3418	I915_WRITE(GEN6_RC_CONTROL, 0);
3419
3420	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3421	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3422	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3423	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3424	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3425
3426	for_each_ring(ring, dev_priv, i)
3427		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3428
3429	I915_WRITE(GEN6_RC_SLEEP, 0);
3430	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3431	if (IS_IVYBRIDGE(dev))
3432		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3433	else
3434		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3435	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3436	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3437
3438	/* Check if we are enabling RC6 */
3439	rc6_mode = intel_enable_rc6(dev_priv->dev);
3440	if (rc6_mode & INTEL_RC6_ENABLE)
3441		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3442
3443	/* We don't use those on Haswell */
3444	if (!IS_HASWELL(dev)) {
3445		if (rc6_mode & INTEL_RC6p_ENABLE)
3446			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3447
3448		if (rc6_mode & INTEL_RC6pp_ENABLE)
3449			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3450	}
3451
3452	intel_print_rc6_info(dev, rc6_mask);
3453
3454	I915_WRITE(GEN6_RC_CONTROL,
3455		   rc6_mask |
3456		   GEN6_RC_CTL_EI_MODE(1) |
3457		   GEN6_RC_CTL_HW_ENABLE);
3458
3459	/* Power down if completely idle for over 50ms */
3460	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3461	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3462
3463	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3464	if (ret)
3465		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3466
3467	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3468	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3469		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3470				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3471				 (pcu_mbox & 0xff) * 50);
3472		dev_priv->rps.max_freq = pcu_mbox & 0xff;
3473	}
3474
3475	dev_priv->rps.power = HIGH_POWER; /* force a reset */
3476	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3477
3478	gen6_enable_rps_interrupts(dev);
3479
3480	rc6vids = 0;
3481	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3482	if (IS_GEN6(dev) && ret) {
 
3483		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3484	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3485		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3486			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3487		rc6vids &= 0xffff00;
3488		rc6vids |= GEN6_ENCODE_RC6_VID(450);
3489		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3490		if (ret)
3491			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3492	}
3493
3494	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3495}
3496
3497void gen6_update_ring_freq(struct drm_device *dev)
3498{
3499	struct drm_i915_private *dev_priv = dev->dev_private;
3500	int min_freq = 15;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3501	unsigned int gpu_freq;
3502	unsigned int max_ia_freq, min_ring_freq;
3503	int scaling_factor = 180;
3504	struct cpufreq_policy *policy;
3505
3506	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
 
 
 
3507
3508	policy = cpufreq_cpu_get(0);
3509	if (policy) {
3510		max_ia_freq = policy->cpuinfo.max_freq;
3511		cpufreq_cpu_put(policy);
3512	} else {
3513		/*
3514		 * Default to measured freq if none found, PCU will ensure we
3515		 * don't go over
3516		 */
3517		max_ia_freq = tsc_khz;
3518	}
3519
3520	/* Convert from kHz to MHz */
3521	max_ia_freq /= 1000;
3522
3523	min_ring_freq = I915_READ(DCLK) & 0xf;
3524	/* convert DDR frequency from units of 266.6MHz to bandwidth */
3525	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3526
 
 
 
 
 
 
 
 
3527	/*
3528	 * For each potential GPU frequency, load a ring frequency we'd like
3529	 * to use for memory access.  We do this by specifying the IA frequency
3530	 * the PCU should use as a reference to determine the ring frequency.
3531	 */
3532	for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
3533	     gpu_freq--) {
3534		int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
3535		unsigned int ia_freq = 0, ring_freq = 0;
3536
3537		if (INTEL_INFO(dev)->gen >= 8) {
 
 
 
 
 
 
3538			/* max(2 * GT, DDR). NB: GT is 50MHz units */
3539			ring_freq = max(min_ring_freq, gpu_freq);
3540		} else if (IS_HASWELL(dev)) {
3541			ring_freq = mult_frac(gpu_freq, 5, 4);
3542			ring_freq = max(min_ring_freq, ring_freq);
3543			/* leave ia_freq as the default, chosen by cpufreq */
3544		} else {
3545			/* On older processors, there is no separate ring
3546			 * clock domain, so in order to boost the bandwidth
3547			 * of the ring, we need to upclock the CPU (ia_freq).
3548			 *
3549			 * For GPU frequencies less than 750MHz,
3550			 * just use the lowest ring freq.
3551			 */
3552			if (gpu_freq < min_freq)
3553				ia_freq = 800;
3554			else
3555				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3556			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3557		}
3558
3559		sandybridge_pcode_write(dev_priv,
3560					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3561					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3562					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3563					gpu_freq);
3564	}
3565}
3566
3567int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3568{
3569	u32 val, rp0;
3570
3571	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3572
3573	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3574	/* Clamp to max */
3575	rp0 = min_t(u32, rp0, 0xea);
3576
3577	return rp0;
3578}
3579
3580static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3581{
3582	u32 val, rpe;
3583
3584	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3585	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3586	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3587	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3588
3589	return rpe;
3590}
3591
3592int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3593{
3594	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
 
 
 
 
 
 
 
 
 
 
3595}
3596
3597/* Check that the pctx buffer wasn't move under us. */
3598static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
3599{
3600	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
3601
3602	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
3603			     dev_priv->vlv_pctx->stolen->start);
3604}
3605
3606static void valleyview_setup_pctx(struct drm_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3607{
3608	struct drm_i915_private *dev_priv = dev->dev_private;
3609	struct drm_i915_gem_object *pctx;
3610	unsigned long pctx_paddr;
 
3611	u32 pcbr;
3612	int pctx_size = 24*1024;
3613
3614	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3615
3616	pcbr = I915_READ(VLV_PCBR);
3617	if (pcbr) {
3618		/* BIOS set it up already, grab the pre-alloc'd space */
3619		int pcbr_offset;
3620
3621		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3622		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3623								      pcbr_offset,
3624								      I915_GTT_OFFSET_NONE,
3625								      pctx_size);
3626		goto out;
3627	}
3628
 
 
3629	/*
3630	 * From the Gunit register HAS:
3631	 * The Gfx driver is expected to program this register and ensure
3632	 * proper allocation within Gfx stolen memory.  For example, this
3633	 * register should be programmed such than the PCBR range does not
3634	 * overlap with other ranges, such as the frame buffer, protected
3635	 * memory, or any other relevant ranges.
3636	 */
3637	pctx = i915_gem_object_create_stolen(dev, pctx_size);
3638	if (!pctx) {
3639		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3640		return;
3641	}
3642
3643	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
 
 
 
 
3644	I915_WRITE(VLV_PCBR, pctx_paddr);
3645
3646out:
 
3647	dev_priv->vlv_pctx = pctx;
3648}
3649
3650static void valleyview_cleanup_pctx(struct drm_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3651{
3652	struct drm_i915_private *dev_priv = dev->dev_private;
 
3653
3654	if (WARN_ON(!dev_priv->vlv_pctx))
3655		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3656
3657	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3658	dev_priv->vlv_pctx = NULL;
 
 
3659}
3660
3661static void valleyview_enable_rps(struct drm_device *dev)
3662{
3663	struct drm_i915_private *dev_priv = dev->dev_private;
3664	struct intel_ring_buffer *ring;
3665	u32 gtfifodbg, val, rc6_mode = 0;
3666	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3667
3668	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
 
 
 
3669
3670	valleyview_check_pctx(dev_priv);
 
 
 
 
3671
3672	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
 
 
3673		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
3674				 gtfifodbg);
3675		I915_WRITE(GTFIFODBG, gtfifodbg);
3676	}
3677
3678	/* If VLV, Forcewake all wells, else re-direct to regular path */
3679	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3680
3681	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3682	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3683	I915_WRITE(GEN6_RP_UP_EI, 66000);
3684	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3685
3686	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
 
3687
3688	I915_WRITE(GEN6_RP_CONTROL,
3689		   GEN6_RP_MEDIA_TURBO |
3690		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
3691		   GEN6_RP_MEDIA_IS_GFX |
3692		   GEN6_RP_ENABLE |
3693		   GEN6_RP_UP_BUSY_AVG |
3694		   GEN6_RP_DOWN_IDLE_CONT);
3695
3696	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3697	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3698	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3699
3700	for_each_ring(ring, dev_priv, i)
3701		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3702
3703	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
3704
3705	/* allows RC6 residency counter to work */
3706	I915_WRITE(VLV_COUNTER_CONTROL,
3707		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
3708				      VLV_MEDIA_RC6_COUNT_EN |
3709				      VLV_RENDER_RC6_COUNT_EN));
3710	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3711		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
3712
3713	intel_print_rc6_info(dev, rc6_mode);
 
3714
 
 
 
 
3715	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
3716
3717	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
 
 
 
 
 
 
 
3718
3719	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3720	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
 
 
 
 
3721
3722	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
3723	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3724			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3725			 dev_priv->rps.cur_freq);
3726
3727	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
3728	dev_priv->rps.rp0_freq  = dev_priv->rps.max_freq;
3729	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3730			 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
3731			 dev_priv->rps.max_freq);
 
 
3732
3733	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
3734	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3735			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3736			 dev_priv->rps.efficient_freq);
3737
3738	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
3739	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3740			 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
3741			 dev_priv->rps.min_freq);
3742
3743	/* Preserve min/max settings in case of re-init */
3744	if (dev_priv->rps.max_freq_softlimit == 0)
3745		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3746
3747	if (dev_priv->rps.min_freq_softlimit == 0)
3748		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3749
3750	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3751			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3752			 dev_priv->rps.efficient_freq);
3753
3754	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
 
3755
3756	gen6_enable_rps_interrupts(dev);
3757
3758	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3759}
3760
3761void ironlake_teardown_rc6(struct drm_device *dev)
3762{
3763	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
3764
3765	if (dev_priv->ips.renderctx) {
3766		i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
3767		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3768		dev_priv->ips.renderctx = NULL;
3769	}
3770
3771	if (dev_priv->ips.pwrctx) {
3772		i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
3773		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3774		dev_priv->ips.pwrctx = NULL;
 
3775	}
3776}
3777
3778static void ironlake_disable_rc6(struct drm_device *dev)
3779{
3780	struct drm_i915_private *dev_priv = dev->dev_private;
3781
3782	if (I915_READ(PWRCTXA)) {
3783		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3784		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3785		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3786			 50);
3787
3788		I915_WRITE(PWRCTXA, 0);
3789		POSTING_READ(PWRCTXA);
 
3790
3791		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3792		POSTING_READ(RSTDBYCTL);
3793	}
3794}
3795
3796static int ironlake_setup_rc6(struct drm_device *dev)
3797{
3798	struct drm_i915_private *dev_priv = dev->dev_private;
3799
3800	if (dev_priv->ips.renderctx == NULL)
3801		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3802	if (!dev_priv->ips.renderctx)
3803		return -ENOMEM;
 
 
 
3804
3805	if (dev_priv->ips.pwrctx == NULL)
3806		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3807	if (!dev_priv->ips.pwrctx) {
3808		ironlake_teardown_rc6(dev);
3809		return -ENOMEM;
3810	}
3811
3812	return 0;
3813}
3814
3815static void ironlake_enable_rc6(struct drm_device *dev)
3816{
3817	struct drm_i915_private *dev_priv = dev->dev_private;
3818	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3819	bool was_interruptible;
3820	int ret;
 
 
 
 
 
 
 
3821
3822	/* rc6 disabled by default due to repeated reports of hanging during
3823	 * boot and resume.
3824	 */
3825	if (!intel_enable_rc6(dev))
3826		return;
 
 
3827
3828	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3829
3830	ret = ironlake_setup_rc6(dev);
3831	if (ret)
3832		return;
3833
3834	was_interruptible = dev_priv->mm.interruptible;
3835	dev_priv->mm.interruptible = false;
3836
3837	/*
3838	 * GPU can automatically power down the render unit if given a page
3839	 * to save state.
3840	 */
3841	ret = intel_ring_begin(ring, 6);
3842	if (ret) {
3843		ironlake_teardown_rc6(dev);
3844		dev_priv->mm.interruptible = was_interruptible;
3845		return;
3846	}
3847
3848	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3849	intel_ring_emit(ring, MI_SET_CONTEXT);
3850	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
3851			MI_MM_SPACE_GTT |
3852			MI_SAVE_EXT_STATE_EN |
3853			MI_RESTORE_EXT_STATE_EN |
3854			MI_RESTORE_INHIBIT);
3855	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3856	intel_ring_emit(ring, MI_NOOP);
3857	intel_ring_emit(ring, MI_FLUSH);
3858	intel_ring_advance(ring);
3859
3860	/*
3861	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3862	 * does an implicit flush, combined with MI_FLUSH above, it should be
3863	 * safe to assume that renderctx is valid
3864	 */
3865	ret = intel_ring_idle(ring);
3866	dev_priv->mm.interruptible = was_interruptible;
3867	if (ret) {
3868		DRM_ERROR("failed to enable ironlake power savings\n");
3869		ironlake_teardown_rc6(dev);
3870		return;
3871	}
3872
3873	I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
3874	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3875
3876	intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
3877}
3878
3879static unsigned long intel_pxfreq(u32 vidfreq)
3880{
3881	unsigned long freq;
3882	int div = (vidfreq & 0x3f0000) >> 16;
3883	int post = (vidfreq & 0x3000) >> 12;
3884	int pre = (vidfreq & 0x7);
3885
3886	if (!pre)
3887		return 0;
3888
3889	freq = ((div * 133333) / ((1<<post) * pre));
3890
3891	return freq;
3892}
3893
3894static const struct cparams {
3895	u16 i;
3896	u16 t;
3897	u16 m;
3898	u16 c;
3899} cparams[] = {
3900	{ 1, 1333, 301, 28664 },
3901	{ 1, 1066, 294, 24460 },
3902	{ 1, 800, 294, 25192 },
3903	{ 0, 1333, 276, 27605 },
3904	{ 0, 1066, 276, 27605 },
3905	{ 0, 800, 231, 23784 },
3906};
3907
3908static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
3909{
3910	u64 total_count, diff, ret;
3911	u32 count1, count2, count3, m = 0, c = 0;
3912	unsigned long now = jiffies_to_msecs(jiffies), diff1;
3913	int i;
3914
3915	assert_spin_locked(&mchdev_lock);
3916
3917	diff1 = now - dev_priv->ips.last_time1;
3918
3919	/* Prevent division-by-zero if we are asking too fast.
3920	 * Also, we don't get interesting results if we are polling
3921	 * faster than once in 10ms, so just return the saved value
3922	 * in such cases.
3923	 */
3924	if (diff1 <= 10)
3925		return dev_priv->ips.chipset_power;
3926
3927	count1 = I915_READ(DMIEC);
3928	count2 = I915_READ(DDREC);
3929	count3 = I915_READ(CSIEC);
3930
3931	total_count = count1 + count2 + count3;
3932
3933	/* FIXME: handle per-counter overflow */
3934	if (total_count < dev_priv->ips.last_count1) {
3935		diff = ~0UL - dev_priv->ips.last_count1;
3936		diff += total_count;
3937	} else {
3938		diff = total_count - dev_priv->ips.last_count1;
3939	}
3940
3941	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
3942		if (cparams[i].i == dev_priv->ips.c_m &&
3943		    cparams[i].t == dev_priv->ips.r_t) {
3944			m = cparams[i].m;
3945			c = cparams[i].c;
3946			break;
3947		}
3948	}
3949
3950	diff = div_u64(diff, diff1);
3951	ret = ((m * diff) + c);
3952	ret = div_u64(ret, 10);
3953
3954	dev_priv->ips.last_count1 = total_count;
3955	dev_priv->ips.last_time1 = now;
3956
3957	dev_priv->ips.chipset_power = ret;
3958
3959	return ret;
3960}
3961
3962unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
3963{
3964	struct drm_device *dev = dev_priv->dev;
3965	unsigned long val;
3966
3967	if (INTEL_INFO(dev)->gen != 5)
3968		return 0;
3969
3970	spin_lock_irq(&mchdev_lock);
3971
3972	val = __i915_chipset_val(dev_priv);
3973
3974	spin_unlock_irq(&mchdev_lock);
3975
3976	return val;
3977}
3978
3979unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
3980{
3981	unsigned long m, x, b;
3982	u32 tsfs;
3983
3984	tsfs = I915_READ(TSFS);
3985
3986	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
3987	x = I915_READ8(TR1);
3988
3989	b = tsfs & TSFS_INTR_MASK;
3990
3991	return ((m * x) / 127) - b;
3992}
3993
3994static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
3995{
3996	struct drm_device *dev = dev_priv->dev;
3997	static const struct v_table {
3998		u16 vd; /* in .1 mil */
3999		u16 vm; /* in .1 mil */
4000	} v_table[] = {
4001		{ 0, 0, },
4002		{ 375, 0, },
4003		{ 500, 0, },
4004		{ 625, 0, },
4005		{ 750, 0, },
4006		{ 875, 0, },
4007		{ 1000, 0, },
4008		{ 1125, 0, },
4009		{ 4125, 3000, },
4010		{ 4125, 3000, },
4011		{ 4125, 3000, },
4012		{ 4125, 3000, },
4013		{ 4125, 3000, },
4014		{ 4125, 3000, },
4015		{ 4125, 3000, },
4016		{ 4125, 3000, },
4017		{ 4125, 3000, },
4018		{ 4125, 3000, },
4019		{ 4125, 3000, },
4020		{ 4125, 3000, },
4021		{ 4125, 3000, },
4022		{ 4125, 3000, },
4023		{ 4125, 3000, },
4024		{ 4125, 3000, },
4025		{ 4125, 3000, },
4026		{ 4125, 3000, },
4027		{ 4125, 3000, },
4028		{ 4125, 3000, },
4029		{ 4125, 3000, },
4030		{ 4125, 3000, },
4031		{ 4125, 3000, },
4032		{ 4125, 3000, },
4033		{ 4250, 3125, },
4034		{ 4375, 3250, },
4035		{ 4500, 3375, },
4036		{ 4625, 3500, },
4037		{ 4750, 3625, },
4038		{ 4875, 3750, },
4039		{ 5000, 3875, },
4040		{ 5125, 4000, },
4041		{ 5250, 4125, },
4042		{ 5375, 4250, },
4043		{ 5500, 4375, },
4044		{ 5625, 4500, },
4045		{ 5750, 4625, },
4046		{ 5875, 4750, },
4047		{ 6000, 4875, },
4048		{ 6125, 5000, },
4049		{ 6250, 5125, },
4050		{ 6375, 5250, },
4051		{ 6500, 5375, },
4052		{ 6625, 5500, },
4053		{ 6750, 5625, },
4054		{ 6875, 5750, },
4055		{ 7000, 5875, },
4056		{ 7125, 6000, },
4057		{ 7250, 6125, },
4058		{ 7375, 6250, },
4059		{ 7500, 6375, },
4060		{ 7625, 6500, },
4061		{ 7750, 6625, },
4062		{ 7875, 6750, },
4063		{ 8000, 6875, },
4064		{ 8125, 7000, },
4065		{ 8250, 7125, },
4066		{ 8375, 7250, },
4067		{ 8500, 7375, },
4068		{ 8625, 7500, },
4069		{ 8750, 7625, },
4070		{ 8875, 7750, },
4071		{ 9000, 7875, },
4072		{ 9125, 8000, },
4073		{ 9250, 8125, },
4074		{ 9375, 8250, },
4075		{ 9500, 8375, },
4076		{ 9625, 8500, },
4077		{ 9750, 8625, },
4078		{ 9875, 8750, },
4079		{ 10000, 8875, },
4080		{ 10125, 9000, },
4081		{ 10250, 9125, },
4082		{ 10375, 9250, },
4083		{ 10500, 9375, },
4084		{ 10625, 9500, },
4085		{ 10750, 9625, },
4086		{ 10875, 9750, },
4087		{ 11000, 9875, },
4088		{ 11125, 10000, },
4089		{ 11250, 10125, },
4090		{ 11375, 10250, },
4091		{ 11500, 10375, },
4092		{ 11625, 10500, },
4093		{ 11750, 10625, },
4094		{ 11875, 10750, },
4095		{ 12000, 10875, },
4096		{ 12125, 11000, },
4097		{ 12250, 11125, },
4098		{ 12375, 11250, },
4099		{ 12500, 11375, },
4100		{ 12625, 11500, },
4101		{ 12750, 11625, },
4102		{ 12875, 11750, },
4103		{ 13000, 11875, },
4104		{ 13125, 12000, },
4105		{ 13250, 12125, },
4106		{ 13375, 12250, },
4107		{ 13500, 12375, },
4108		{ 13625, 12500, },
4109		{ 13750, 12625, },
4110		{ 13875, 12750, },
4111		{ 14000, 12875, },
4112		{ 14125, 13000, },
4113		{ 14250, 13125, },
4114		{ 14375, 13250, },
4115		{ 14500, 13375, },
4116		{ 14625, 13500, },
4117		{ 14750, 13625, },
4118		{ 14875, 13750, },
4119		{ 15000, 13875, },
4120		{ 15125, 14000, },
4121		{ 15250, 14125, },
4122		{ 15375, 14250, },
4123		{ 15500, 14375, },
4124		{ 15625, 14500, },
4125		{ 15750, 14625, },
4126		{ 15875, 14750, },
4127		{ 16000, 14875, },
4128		{ 16125, 15000, },
4129	};
4130	if (INTEL_INFO(dev)->is_mobile)
4131		return v_table[pxvid].vm;
4132	else
4133		return v_table[pxvid].vd;
4134}
4135
4136static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4137{
4138	struct timespec now, diff1;
4139	u64 diff;
4140	unsigned long diffms;
4141	u32 count;
4142
4143	assert_spin_locked(&mchdev_lock);
4144
4145	getrawmonotonic(&now);
4146	diff1 = timespec_sub(now, dev_priv->ips.last_time2);
 
4147
4148	/* Don't divide by 0 */
4149	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4150	if (!diffms)
4151		return;
4152
4153	count = I915_READ(GFXEC);
4154
4155	if (count < dev_priv->ips.last_count2) {
4156		diff = ~0UL - dev_priv->ips.last_count2;
4157		diff += count;
4158	} else {
4159		diff = count - dev_priv->ips.last_count2;
4160	}
4161
4162	dev_priv->ips.last_count2 = count;
4163	dev_priv->ips.last_time2 = now;
4164
4165	/* More magic constants... */
4166	diff = diff * 1181;
4167	diff = div_u64(diff, diffms * 10);
4168	dev_priv->ips.gfx_power = diff;
4169}
4170
4171void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4172{
4173	struct drm_device *dev = dev_priv->dev;
4174
4175	if (INTEL_INFO(dev)->gen != 5)
4176		return;
4177
4178	spin_lock_irq(&mchdev_lock);
4179
4180	__i915_update_gfx_val(dev_priv);
4181
4182	spin_unlock_irq(&mchdev_lock);
4183}
4184
4185static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4186{
4187	unsigned long t, corr, state1, corr2, state2;
4188	u32 pxvid, ext_v;
4189
4190	assert_spin_locked(&mchdev_lock);
4191
4192	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
4193	pxvid = (pxvid >> 24) & 0x7f;
4194	ext_v = pvid_to_extvid(dev_priv, pxvid);
4195
4196	state1 = ext_v;
4197
4198	t = i915_mch_val(dev_priv);
4199
4200	/* Revel in the empirically derived constants */
4201
4202	/* Correction factor in 1/100000 units */
4203	if (t > 80)
4204		corr = ((t * 2349) + 135940);
4205	else if (t >= 50)
4206		corr = ((t * 964) + 29317);
4207	else /* < 50 */
4208		corr = ((t * 301) + 1004);
4209
4210	corr = corr * ((150142 * state1) / 10000 - 78642);
4211	corr /= 100000;
4212	corr2 = (corr * dev_priv->ips.corr);
4213
4214	state2 = (corr2 * state1) / 10000;
4215	state2 /= 100; /* convert to mW */
4216
4217	__i915_update_gfx_val(dev_priv);
4218
4219	return dev_priv->ips.gfx_power + state2;
4220}
4221
4222unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4223{
4224	struct drm_device *dev = dev_priv->dev;
4225	unsigned long val;
4226
4227	if (INTEL_INFO(dev)->gen != 5)
4228		return 0;
4229
4230	spin_lock_irq(&mchdev_lock);
 
 
 
 
 
 
 
 
 
4231
4232	val = __i915_gfx_val(dev_priv);
 
 
4233
4234	spin_unlock_irq(&mchdev_lock);
 
 
 
 
4235
4236	return val;
4237}
4238
4239/**
4240 * i915_read_mch_val - return value for IPS use
4241 *
4242 * Calculate and return a value for the IPS driver to use when deciding whether
4243 * we have thermal and power headroom to increase CPU or GPU power budget.
4244 */
4245unsigned long i915_read_mch_val(void)
4246{
4247	struct drm_i915_private *dev_priv;
4248	unsigned long chipset_val, graphics_val, ret = 0;
 
 
4249
4250	spin_lock_irq(&mchdev_lock);
4251	if (!i915_mch_dev)
4252		goto out_unlock;
4253	dev_priv = i915_mch_dev;
4254
4255	chipset_val = __i915_chipset_val(dev_priv);
4256	graphics_val = __i915_gfx_val(dev_priv);
4257
4258	ret = chipset_val + graphics_val;
 
 
4259
4260out_unlock:
4261	spin_unlock_irq(&mchdev_lock);
4262
4263	return ret;
4264}
4265EXPORT_SYMBOL_GPL(i915_read_mch_val);
4266
4267/**
4268 * i915_gpu_raise - raise GPU frequency limit
4269 *
4270 * Raise the limit; IPS indicates we have thermal headroom.
4271 */
4272bool i915_gpu_raise(void)
4273{
4274	struct drm_i915_private *dev_priv;
4275	bool ret = true;
 
 
 
4276
4277	spin_lock_irq(&mchdev_lock);
4278	if (!i915_mch_dev) {
4279		ret = false;
4280		goto out_unlock;
4281	}
4282	dev_priv = i915_mch_dev;
4283
4284	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4285		dev_priv->ips.max_delay--;
4286
4287out_unlock:
4288	spin_unlock_irq(&mchdev_lock);
4289
4290	return ret;
 
4291}
4292EXPORT_SYMBOL_GPL(i915_gpu_raise);
4293
4294/**
4295 * i915_gpu_lower - lower GPU frequency limit
4296 *
4297 * IPS indicates we're close to a thermal limit, so throttle back the GPU
4298 * frequency maximum.
4299 */
4300bool i915_gpu_lower(void)
4301{
4302	struct drm_i915_private *dev_priv;
4303	bool ret = true;
 
 
 
4304
4305	spin_lock_irq(&mchdev_lock);
4306	if (!i915_mch_dev) {
4307		ret = false;
4308		goto out_unlock;
4309	}
4310	dev_priv = i915_mch_dev;
4311
4312	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4313		dev_priv->ips.max_delay++;
4314
4315out_unlock:
4316	spin_unlock_irq(&mchdev_lock);
4317
4318	return ret;
 
4319}
4320EXPORT_SYMBOL_GPL(i915_gpu_lower);
4321
4322/**
4323 * i915_gpu_busy - indicate GPU business to IPS
4324 *
4325 * Tell the IPS driver whether or not the GPU is busy.
4326 */
4327bool i915_gpu_busy(void)
4328{
4329	struct drm_i915_private *dev_priv;
4330	struct intel_ring_buffer *ring;
4331	bool ret = false;
4332	int i;
4333
4334	spin_lock_irq(&mchdev_lock);
4335	if (!i915_mch_dev)
4336		goto out_unlock;
4337	dev_priv = i915_mch_dev;
4338
4339	for_each_ring(ring, dev_priv, i)
4340		ret |= !list_empty(&ring->request_list);
4341
4342out_unlock:
4343	spin_unlock_irq(&mchdev_lock);
4344
 
4345	return ret;
4346}
4347EXPORT_SYMBOL_GPL(i915_gpu_busy);
4348
4349/**
4350 * i915_gpu_turbo_disable - disable graphics turbo
4351 *
4352 * Disable graphics turbo by resetting the max frequency and setting the
4353 * current frequency to the default.
4354 */
4355bool i915_gpu_turbo_disable(void)
4356{
4357	struct drm_i915_private *dev_priv;
4358	bool ret = true;
 
 
 
 
4359
4360	spin_lock_irq(&mchdev_lock);
4361	if (!i915_mch_dev) {
4362		ret = false;
4363		goto out_unlock;
4364	}
4365	dev_priv = i915_mch_dev;
4366
4367	dev_priv->ips.max_delay = dev_priv->ips.fstart;
4368
4369	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4370		ret = false;
4371
4372out_unlock:
4373	spin_unlock_irq(&mchdev_lock);
4374
 
4375	return ret;
4376}
4377EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4378
4379/**
4380 * Tells the intel_ips driver that the i915 driver is now loaded, if
4381 * IPS got loaded first.
4382 *
4383 * This awkward dance is so that neither module has to depend on the
4384 * other in order for IPS to do the appropriate communication of
4385 * GPU turbo limits to i915.
4386 */
4387static void
4388ips_ping_for_i915_load(void)
4389{
4390	void (*link)(void);
4391
4392	link = symbol_get(ips_link_to_i915_driver);
4393	if (link) {
4394		link();
4395		symbol_put(ips_link_to_i915_driver);
4396	}
4397}
4398
4399void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4400{
4401	/* We only register the i915 ips part with intel-ips once everything is
4402	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4403	spin_lock_irq(&mchdev_lock);
4404	i915_mch_dev = dev_priv;
4405	spin_unlock_irq(&mchdev_lock);
4406
4407	ips_ping_for_i915_load();
4408}
4409
4410void intel_gpu_ips_teardown(void)
4411{
4412	spin_lock_irq(&mchdev_lock);
4413	i915_mch_dev = NULL;
4414	spin_unlock_irq(&mchdev_lock);
4415}
4416
4417static void intel_init_emon(struct drm_device *dev)
4418{
4419	struct drm_i915_private *dev_priv = dev->dev_private;
4420	u32 lcfuse;
4421	u8 pxw[16];
4422	int i;
4423
4424	/* Disable to program */
4425	I915_WRITE(ECR, 0);
4426	POSTING_READ(ECR);
4427
4428	/* Program energy weights for various events */
4429	I915_WRITE(SDEW, 0x15040d00);
4430	I915_WRITE(CSIEW0, 0x007f0000);
4431	I915_WRITE(CSIEW1, 0x1e220004);
4432	I915_WRITE(CSIEW2, 0x04000004);
4433
4434	for (i = 0; i < 5; i++)
4435		I915_WRITE(PEW + (i * 4), 0);
4436	for (i = 0; i < 3; i++)
4437		I915_WRITE(DEW + (i * 4), 0);
4438
4439	/* Program P-state weights to account for frequency power adjustment */
4440	for (i = 0; i < 16; i++) {
4441		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4442		unsigned long freq = intel_pxfreq(pxvidfreq);
4443		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4444			PXVFREQ_PX_SHIFT;
4445		unsigned long val;
4446
4447		val = vid * vid;
4448		val *= (freq / 1000);
4449		val *= 255;
4450		val /= (127*127*900);
4451		if (val > 0xff)
4452			DRM_ERROR("bad pxval: %ld\n", val);
4453		pxw[i] = val;
4454	}
4455	/* Render standby states get 0 weight */
4456	pxw[14] = 0;
4457	pxw[15] = 0;
4458
4459	for (i = 0; i < 4; i++) {
4460		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4461			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4462		I915_WRITE(PXW + (i * 4), val);
4463	}
4464
4465	/* Adjust magic regs to magic values (more experimental results) */
4466	I915_WRITE(OGW0, 0);
4467	I915_WRITE(OGW1, 0);
4468	I915_WRITE(EG0, 0x00007f00);
4469	I915_WRITE(EG1, 0x0000000e);
4470	I915_WRITE(EG2, 0x000e0000);
4471	I915_WRITE(EG3, 0x68000300);
4472	I915_WRITE(EG4, 0x42000000);
4473	I915_WRITE(EG5, 0x00140031);
4474	I915_WRITE(EG6, 0);
4475	I915_WRITE(EG7, 0);
4476
4477	for (i = 0; i < 8; i++)
4478		I915_WRITE(PXWL + (i * 4), 0);
4479
4480	/* Enable PMON + select events */
4481	I915_WRITE(ECR, 0x80000019);
4482
4483	lcfuse = I915_READ(LCFUSE02);
4484
4485	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4486}
4487
4488void intel_init_gt_powersave(struct drm_device *dev)
4489{
4490	if (IS_VALLEYVIEW(dev))
4491		valleyview_setup_pctx(dev);
4492}
4493
4494void intel_cleanup_gt_powersave(struct drm_device *dev)
4495{
4496	if (IS_VALLEYVIEW(dev))
4497		valleyview_cleanup_pctx(dev);
 
 
 
 
 
 
 
4498}
4499
4500void intel_disable_gt_powersave(struct drm_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4501{
4502	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
4503
4504	/* Interrupts should be disabled already to avoid re-arming. */
4505	WARN_ON(dev->irq_enabled);
 
 
 
 
 
 
 
 
4506
4507	if (IS_IRONLAKE_M(dev)) {
4508		ironlake_disable_drps(dev);
4509		ironlake_disable_rc6(dev);
4510	} else if (INTEL_INFO(dev)->gen >= 6) {
4511		cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4512		cancel_work_sync(&dev_priv->rps.work);
4513		mutex_lock(&dev_priv->rps.hw_lock);
4514		if (IS_VALLEYVIEW(dev))
4515			valleyview_disable_rps(dev);
4516		else
4517			gen6_disable_rps(dev);
4518		dev_priv->rps.enabled = false;
4519		mutex_unlock(&dev_priv->rps.hw_lock);
4520	}
 
 
 
4521}
4522
4523static void intel_gen6_powersave_work(struct work_struct *work)
 
 
 
 
 
 
 
 
 
 
 
 
4524{
4525	struct drm_i915_private *dev_priv =
4526		container_of(work, struct drm_i915_private,
4527			     rps.delayed_resume_work.work);
4528	struct drm_device *dev = dev_priv->dev;
4529
4530	mutex_lock(&dev_priv->rps.hw_lock);
 
4531
4532	if (IS_VALLEYVIEW(dev)) {
4533		valleyview_enable_rps(dev);
4534	} else if (IS_BROADWELL(dev)) {
4535		gen8_enable_rps(dev);
4536		gen6_update_ring_freq(dev);
4537	} else {
4538		gen6_enable_rps(dev);
4539		gen6_update_ring_freq(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4540	}
4541	dev_priv->rps.enabled = true;
4542	mutex_unlock(&dev_priv->rps.hw_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4543}
4544
4545void intel_enable_gt_powersave(struct drm_device *dev)
4546{
4547	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 
4548
4549	if (IS_IRONLAKE_M(dev)) {
4550		ironlake_enable_drps(dev);
4551		ironlake_enable_rc6(dev);
4552		intel_init_emon(dev);
4553	} else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4554		/*
4555		 * PCU communication is slow and this doesn't need to be
4556		 * done at any specific time, so do this out of our fast path
4557		 * to make resume and init faster.
4558		 */
4559		schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4560				      round_jiffies_up_relative(HZ));
4561	}
 
 
 
 
 
 
 
 
 
4562}
4563
4564static void ibx_init_clock_gating(struct drm_device *dev)
4565{
4566	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
4567
 
 
 
 
 
 
 
 
 
 
 
 
4568	/*
4569	 * On Ibex Peak and Cougar Point, we need to disable clock
4570	 * gating for the panel power sequencer or it will fail to
4571	 * start up when no ports are active.
4572	 */
4573	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4574}
4575
4576static void g4x_disable_trickle_feed(struct drm_device *dev)
4577{
4578	struct drm_i915_private *dev_priv = dev->dev_private;
4579	int pipe;
4580
4581	for_each_pipe(pipe) {
4582		I915_WRITE(DSPCNTR(pipe),
4583			   I915_READ(DSPCNTR(pipe)) |
4584			   DISPPLANE_TRICKLE_FEED_DISABLE);
4585		intel_flush_primary_plane(dev_priv, pipe);
 
 
4586	}
4587}
4588
4589static void ilk_init_lp_watermarks(struct drm_device *dev)
4590{
4591	struct drm_i915_private *dev_priv = dev->dev_private;
4592
4593	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
4594	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
4595	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
4596
4597	/*
4598	 * Don't touch WM1S_LP_EN here.
4599	 * Doing so could cause underruns.
4600	 */
4601}
4602
4603static void ironlake_init_clock_gating(struct drm_device *dev)
4604{
4605	struct drm_i915_private *dev_priv = dev->dev_private;
4606	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4607
4608	/*
4609	 * Required for FBC
4610	 * WaFbcDisableDpfcClockGating:ilk
4611	 */
4612	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4613		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4614		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4615
4616	I915_WRITE(PCH_3DCGDIS0,
4617		   MARIUNIT_CLOCK_GATE_DISABLE |
4618		   SVSMUNIT_CLOCK_GATE_DISABLE);
4619	I915_WRITE(PCH_3DCGDIS1,
4620		   VFMUNIT_CLOCK_GATE_DISABLE);
4621
4622	/*
4623	 * According to the spec the following bits should be set in
4624	 * order to enable memory self-refresh
4625	 * The bit 22/21 of 0x42004
4626	 * The bit 5 of 0x42020
4627	 * The bit 15 of 0x45000
4628	 */
4629	I915_WRITE(ILK_DISPLAY_CHICKEN2,
4630		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
4631		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4632	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4633	I915_WRITE(DISP_ARB_CTL,
4634		   (I915_READ(DISP_ARB_CTL) |
4635		    DISP_FBC_WM_DIS));
4636
4637	ilk_init_lp_watermarks(dev);
4638
4639	/*
4640	 * Based on the document from hardware guys the following bits
4641	 * should be set unconditionally in order to enable FBC.
4642	 * The bit 22 of 0x42000
4643	 * The bit 22 of 0x42004
4644	 * The bit 7,8,9 of 0x42020.
4645	 */
4646	if (IS_IRONLAKE_M(dev)) {
4647		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
4648		I915_WRITE(ILK_DISPLAY_CHICKEN1,
4649			   I915_READ(ILK_DISPLAY_CHICKEN1) |
4650			   ILK_FBCQ_DIS);
4651		I915_WRITE(ILK_DISPLAY_CHICKEN2,
4652			   I915_READ(ILK_DISPLAY_CHICKEN2) |
4653			   ILK_DPARB_GATE);
4654	}
4655
4656	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4657
4658	I915_WRITE(ILK_DISPLAY_CHICKEN2,
4659		   I915_READ(ILK_DISPLAY_CHICKEN2) |
4660		   ILK_ELPIN_409_SELECT);
4661	I915_WRITE(_3D_CHICKEN2,
4662		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4663		   _3D_CHICKEN2_WM_READ_PIPELINED);
4664
4665	/* WaDisableRenderCachePipelinedFlush:ilk */
4666	I915_WRITE(CACHE_MODE_0,
4667		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4668
4669	g4x_disable_trickle_feed(dev);
 
4670
4671	ibx_init_clock_gating(dev);
 
 
4672}
4673
4674static void cpt_init_clock_gating(struct drm_device *dev)
4675{
4676	struct drm_i915_private *dev_priv = dev->dev_private;
4677	int pipe;
4678	uint32_t val;
4679
4680	/*
4681	 * On Ibex Peak and Cougar Point, we need to disable clock
4682	 * gating for the panel power sequencer or it will fail to
4683	 * start up when no ports are active.
4684	 */
4685	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
4686		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
4687		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
4688	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4689		   DPLS_EDP_PPS_FIX_DIS);
4690	/* The below fixes the weird display corruption, a few pixels shifted
4691	 * downward, on (only) LVDS of some HP laptops with IVY.
4692	 */
4693	for_each_pipe(pipe) {
4694		val = I915_READ(TRANS_CHICKEN2(pipe));
4695		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4696		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4697		if (dev_priv->vbt.fdi_rx_polarity_inverted)
4698			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4699		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4700		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4701		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4702		I915_WRITE(TRANS_CHICKEN2(pipe), val);
4703	}
4704	/* WADP0ClockGatingDisable */
4705	for_each_pipe(pipe) {
4706		I915_WRITE(TRANS_CHICKEN1(pipe),
4707			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4708	}
4709}
4710
4711static void gen6_check_mch_setup(struct drm_device *dev)
4712{
4713	struct drm_i915_private *dev_priv = dev->dev_private;
4714	uint32_t tmp;
4715
4716	tmp = I915_READ(MCH_SSKPD);
4717	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4718		DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4719		DRM_INFO("This can cause pipe underruns and display issues.\n");
4720		DRM_INFO("Please upgrade your BIOS to fix this.\n");
4721	}
4722}
4723
4724static void gen6_init_clock_gating(struct drm_device *dev)
4725{
4726	struct drm_i915_private *dev_priv = dev->dev_private;
4727	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4728
4729	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4730
4731	I915_WRITE(ILK_DISPLAY_CHICKEN2,
4732		   I915_READ(ILK_DISPLAY_CHICKEN2) |
4733		   ILK_ELPIN_409_SELECT);
4734
4735	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4736	I915_WRITE(_3D_CHICKEN,
4737		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4738
4739	/* WaSetupGtModeTdRowDispatch:snb */
4740	if (IS_SNB_GT1(dev))
4741		I915_WRITE(GEN6_GT_MODE,
4742			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4743
4744	/*
4745	 * BSpec recoomends 8x4 when MSAA is used,
4746	 * however in practice 16x4 seems fastest.
4747	 *
4748	 * Note that PS/WM thread counts depend on the WIZ hashing
4749	 * disable bit, which we don't touch here, but it's good
4750	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
4751	 */
4752	I915_WRITE(GEN6_GT_MODE,
4753		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
4754
4755	ilk_init_lp_watermarks(dev);
4756
4757	I915_WRITE(CACHE_MODE_0,
4758		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4759
4760	I915_WRITE(GEN6_UCGCTL1,
4761		   I915_READ(GEN6_UCGCTL1) |
4762		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4763		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4764
4765	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4766	 * gating disable must be set.  Failure to set it results in
4767	 * flickering pixels due to Z write ordering failures after
4768	 * some amount of runtime in the Mesa "fire" demo, and Unigine
4769	 * Sanctuary and Tropics, and apparently anything else with
4770	 * alpha test or pixel discard.
4771	 *
4772	 * According to the spec, bit 11 (RCCUNIT) must also be set,
4773	 * but we didn't debug actual testcases to find it out.
4774	 *
4775	 * WaDisableRCCUnitClockGating:snb
4776	 * WaDisableRCPBUnitClockGating:snb
4777	 */
4778	I915_WRITE(GEN6_UCGCTL2,
4779		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4780		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4781
4782	/* WaStripsFansDisableFastClipPerformanceFix:snb */
4783	I915_WRITE(_3D_CHICKEN3,
4784		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
4785
4786	/*
4787	 * Bspec says:
4788	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
4789	 * 3DSTATE_SF number of SF output attributes is more than 16."
4790	 */
4791	I915_WRITE(_3D_CHICKEN3,
4792		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
4793
4794	/*
4795	 * According to the spec the following bits should be
4796	 * set in order to enable memory self-refresh and fbc:
4797	 * The bit21 and bit22 of 0x42000
4798	 * The bit21 and bit22 of 0x42004
4799	 * The bit5 and bit7 of 0x42020
4800	 * The bit14 of 0x70180
4801	 * The bit14 of 0x71180
4802	 *
4803	 * WaFbcAsynchFlipDisableFbcQueue:snb
4804	 */
4805	I915_WRITE(ILK_DISPLAY_CHICKEN1,
4806		   I915_READ(ILK_DISPLAY_CHICKEN1) |
4807		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4808	I915_WRITE(ILK_DISPLAY_CHICKEN2,
4809		   I915_READ(ILK_DISPLAY_CHICKEN2) |
4810		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4811	I915_WRITE(ILK_DSPCLK_GATE_D,
4812		   I915_READ(ILK_DSPCLK_GATE_D) |
4813		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
4814		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4815
4816	g4x_disable_trickle_feed(dev);
4817
4818	cpt_init_clock_gating(dev);
4819
4820	gen6_check_mch_setup(dev);
4821}
4822
4823static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4824{
4825	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4826
4827	/*
4828	 * WaVSThreadDispatchOverride:ivb,vlv
4829	 *
4830	 * This actually overrides the dispatch
4831	 * mode for all thread types.
4832	 */
4833	reg &= ~GEN7_FF_SCHED_MASK;
4834	reg |= GEN7_FF_TS_SCHED_HW;
4835	reg |= GEN7_FF_VS_SCHED_HW;
4836	reg |= GEN7_FF_DS_SCHED_HW;
4837
4838	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4839}
4840
4841static void lpt_init_clock_gating(struct drm_device *dev)
4842{
4843	struct drm_i915_private *dev_priv = dev->dev_private;
4844
4845	/*
4846	 * TODO: this bit should only be enabled when really needed, then
4847	 * disabled when not needed anymore in order to save power.
4848	 */
4849	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4850		I915_WRITE(SOUTH_DSPCLK_GATE_D,
4851			   I915_READ(SOUTH_DSPCLK_GATE_D) |
4852			   PCH_LP_PARTITION_LEVEL_DISABLE);
4853
4854	/* WADPOClockGatingDisable:hsw */
4855	I915_WRITE(_TRANSA_CHICKEN1,
4856		   I915_READ(_TRANSA_CHICKEN1) |
4857		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4858}
4859
4860static void lpt_suspend_hw(struct drm_device *dev)
4861{
4862	struct drm_i915_private *dev_priv = dev->dev_private;
4863
4864	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4865		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4866
4867		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4868		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4869	}
4870}
4871
4872static void gen8_init_clock_gating(struct drm_device *dev)
 
 
4873{
4874	struct drm_i915_private *dev_priv = dev->dev_private;
4875	enum pipe pipe;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4876
4877	I915_WRITE(WM3_LP_ILK, 0);
4878	I915_WRITE(WM2_LP_ILK, 0);
4879	I915_WRITE(WM1_LP_ILK, 0);
 
 
4880
4881	/* FIXME(BDW): Check all the w/a, some might only apply to
4882	 * pre-production hw. */
 
 
4883
4884	/* WaDisablePartialInstShootdown:bdw */
4885	I915_WRITE(GEN8_ROW_CHICKEN,
4886		   _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
 
4887
4888	/* WaDisableThreadStallDopClockGating:bdw */
4889	/* FIXME: Unclear whether we really need this on production bdw. */
4890	I915_WRITE(GEN8_ROW_CHICKEN,
4891		   _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
4892
4893	/*
4894	 * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
4895	 * pre-production hardware
4896	 */
4897	I915_WRITE(HALF_SLICE_CHICKEN3,
4898		   _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
4899	I915_WRITE(HALF_SLICE_CHICKEN3,
4900		   _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
4901	I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
4902
 
4903	I915_WRITE(_3D_CHICKEN3,
4904		   _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
 
 
 
 
 
 
 
 
4905
4906	I915_WRITE(COMMON_SLICE_CHICKEN2,
4907		   _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4908
4909	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4910		   _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4911
4912	/* WaSwitchSolVfFArbitrationPriority:bdw */
4913	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4914
4915	/* WaPsrDPAMaskVBlankInSRD:bdw */
4916	I915_WRITE(CHICKEN_PAR1_1,
4917		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
4918
4919	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
4920	for_each_pipe(pipe) {
4921		I915_WRITE(CHICKEN_PIPESL_1(pipe),
4922			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
4923			   BDW_DPRS_MASK_VBLANK_SRD);
4924	}
4925
4926	/* Use Force Non-Coherent whenever executing a 3D context. This is a
4927	 * workaround for for a possible hang in the unlikely event a TLB
4928	 * invalidation occurs during a PSD flush.
4929	 */
4930	I915_WRITE(HDC_CHICKEN0,
4931		   I915_READ(HDC_CHICKEN0) |
4932		   _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
4933
4934	/* WaVSRefCountFullforceMissDisable:bdw */
4935	/* WaDSRefCountFullforceMissDisable:bdw */
4936	I915_WRITE(GEN7_FF_THREAD_MODE,
4937		   I915_READ(GEN7_FF_THREAD_MODE) &
4938		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
4939
4940	/*
4941	 * BSpec recommends 8x4 when MSAA is used,
4942	 * however in practice 16x4 seems fastest.
4943	 *
4944	 * Note that PS/WM thread counts depend on the WIZ hashing
4945	 * disable bit, which we don't touch here, but it's good
4946	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
4947	 */
4948	I915_WRITE(GEN7_GT_MODE,
4949		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
4950
4951	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
4952		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
4953
4954	/* WaDisableSDEUnitClockGating:bdw */
4955	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
4956		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
4957
4958	/* Wa4x4STCOptimizationDisable:bdw */
4959	I915_WRITE(CACHE_MODE_1,
4960		   _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
 
 
 
 
 
 
 
 
 
 
 
 
 
4961}
4962
4963static void haswell_init_clock_gating(struct drm_device *dev)
4964{
4965	struct drm_i915_private *dev_priv = dev->dev_private;
4966
4967	ilk_init_lp_watermarks(dev);
4968
4969	/* L3 caching of data atomics doesn't work -- disable it. */
4970	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
4971	I915_WRITE(HSW_ROW_CHICKEN3,
4972		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
4973
4974	/* This is required by WaCatErrorRejectionIssue:hsw */
4975	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4976			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4977			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4978
4979	/* WaVSRefCountFullforceMissDisable:hsw */
4980	I915_WRITE(GEN7_FF_THREAD_MODE,
4981		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
4982
 
 
 
4983	/* enable HiZ Raw Stall Optimization */
4984	I915_WRITE(CACHE_MODE_0_GEN7,
4985		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
4986
4987	/* WaDisable4x2SubspanOptimization:hsw */
4988	I915_WRITE(CACHE_MODE_1,
4989		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4990
4991	/*
4992	 * BSpec recommends 8x4 when MSAA is used,
4993	 * however in practice 16x4 seems fastest.
4994	 *
4995	 * Note that PS/WM thread counts depend on the WIZ hashing
4996	 * disable bit, which we don't touch here, but it's good
4997	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
4998	 */
4999	I915_WRITE(GEN7_GT_MODE,
5000		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
 
 
 
 
5001
5002	/* WaSwitchSolVfFArbitrationPriority:hsw */
5003	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5004
5005	/* WaRsPkgCStateDisplayPMReq:hsw */
5006	I915_WRITE(CHICKEN_PAR1_1,
5007		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5008
5009	lpt_init_clock_gating(dev);
5010}
5011
5012static void ivybridge_init_clock_gating(struct drm_device *dev)
5013{
5014	struct drm_i915_private *dev_priv = dev->dev_private;
5015	uint32_t snpcr;
5016
5017	ilk_init_lp_watermarks(dev);
5018
5019	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5020
5021	/* WaDisableEarlyCull:ivb */
5022	I915_WRITE(_3D_CHICKEN3,
5023		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5024
5025	/* WaDisableBackToBackFlipFix:ivb */
5026	I915_WRITE(IVB_CHICKEN3,
5027		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5028		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
5029
5030	/* WaDisablePSDDualDispatchEnable:ivb */
5031	if (IS_IVB_GT1(dev))
5032		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5033			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5034
 
 
 
5035	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5036	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5037		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5038
5039	/* WaApplyL3ControlAndL3ChickenMode:ivb */
5040	I915_WRITE(GEN7_L3CNTLREG1,
5041			GEN7_WA_FOR_GEN7_L3_CONTROL);
5042	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5043		   GEN7_WA_L3_CHICKEN_MODE);
5044	if (IS_IVB_GT1(dev))
5045		I915_WRITE(GEN7_ROW_CHICKEN2,
5046			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5047	else {
5048		/* must write both registers */
5049		I915_WRITE(GEN7_ROW_CHICKEN2,
5050			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5051		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5052			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5053	}
5054
5055	/* WaForceL3Serialization:ivb */
5056	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5057		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5058
5059	/*
5060	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5061	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5062	 */
5063	I915_WRITE(GEN6_UCGCTL2,
5064		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5065
5066	/* This is required by WaCatErrorRejectionIssue:ivb */
5067	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5068			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5069			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5070
5071	g4x_disable_trickle_feed(dev);
5072
5073	gen7_setup_fixed_func_scheduler(dev_priv);
5074
5075	if (0) { /* causes HiZ corruption on ivb:gt1 */
5076		/* enable HiZ Raw Stall Optimization */
5077		I915_WRITE(CACHE_MODE_0_GEN7,
5078			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5079	}
5080
5081	/* WaDisable4x2SubspanOptimization:ivb */
5082	I915_WRITE(CACHE_MODE_1,
5083		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5084
5085	/*
5086	 * BSpec recommends 8x4 when MSAA is used,
5087	 * however in practice 16x4 seems fastest.
5088	 *
5089	 * Note that PS/WM thread counts depend on the WIZ hashing
5090	 * disable bit, which we don't touch here, but it's good
5091	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5092	 */
5093	I915_WRITE(GEN7_GT_MODE,
5094		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5095
5096	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5097	snpcr &= ~GEN6_MBC_SNPCR_MASK;
5098	snpcr |= GEN6_MBC_SNPCR_MED;
5099	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5100
5101	if (!HAS_PCH_NOP(dev))
5102		cpt_init_clock_gating(dev);
5103
5104	gen6_check_mch_setup(dev);
5105}
5106
5107static void valleyview_init_clock_gating(struct drm_device *dev)
5108{
5109	struct drm_i915_private *dev_priv = dev->dev_private;
5110	u32 val;
5111
5112	mutex_lock(&dev_priv->rps.hw_lock);
5113	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5114	mutex_unlock(&dev_priv->rps.hw_lock);
5115	switch ((val >> 6) & 3) {
5116	case 0:
5117	case 1:
5118		dev_priv->mem_freq = 800;
5119		break;
5120	case 2:
5121		dev_priv->mem_freq = 1066;
5122		break;
5123	case 3:
5124		dev_priv->mem_freq = 1333;
5125		break;
5126	}
5127	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5128
5129	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5130
5131	/* WaDisableEarlyCull:vlv */
5132	I915_WRITE(_3D_CHICKEN3,
5133		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5134
5135	/* WaDisableBackToBackFlipFix:vlv */
5136	I915_WRITE(IVB_CHICKEN3,
5137		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5138		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
5139
5140	/* WaPsdDispatchEnable:vlv */
5141	/* WaDisablePSDDualDispatchEnable:vlv */
5142	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5143		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5144				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5145
 
 
 
5146	/* WaForceL3Serialization:vlv */
5147	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5148		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5149
5150	/* WaDisableDopClockGating:vlv */
5151	I915_WRITE(GEN7_ROW_CHICKEN2,
5152		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5153
5154	/* This is required by WaCatErrorRejectionIssue:vlv */
5155	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5156		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5157		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5158
5159	gen7_setup_fixed_func_scheduler(dev_priv);
5160
5161	/*
5162	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5163	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5164	 */
5165	I915_WRITE(GEN6_UCGCTL2,
5166		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5167
5168	/* WaDisableL3Bank2xClockGate:vlv */
5169	I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5170
5171	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
 
5172
5173	/*
5174	 * BSpec says this must be set, even though
5175	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
5176	 */
5177	I915_WRITE(CACHE_MODE_1,
5178		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5179
5180	/*
 
 
 
 
 
 
 
 
 
 
 
5181	 * WaIncreaseL3CreditsForVLVB0:vlv
5182	 * This is the hardware default actually.
5183	 */
5184	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
5185
5186	/*
5187	 * WaDisableVLVClockGating_VBIIssue:vlv
5188	 * Disable clock gating on th GCFG unit to prevent a delay
5189	 * in the reporting of vblank events.
5190	 */
5191	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5192}
5193
5194static void g4x_init_clock_gating(struct drm_device *dev)
5195{
5196	struct drm_i915_private *dev_priv = dev->dev_private;
5197	uint32_t dspclk_gate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5198
5199	I915_WRITE(RENCLK_GATE_D1, 0);
5200	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5201		   GS_UNIT_CLOCK_GATE_DISABLE |
5202		   CL_UNIT_CLOCK_GATE_DISABLE);
5203	I915_WRITE(RAMCLK_GATE_D, 0);
5204	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5205		OVRUNIT_CLOCK_GATE_DISABLE |
5206		OVCUNIT_CLOCK_GATE_DISABLE;
5207	if (IS_GM45(dev))
5208		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5209	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5210
5211	/* WaDisableRenderCachePipelinedFlush */
5212	I915_WRITE(CACHE_MODE_0,
5213		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5214
5215	g4x_disable_trickle_feed(dev);
 
 
 
5216}
5217
5218static void crestline_init_clock_gating(struct drm_device *dev)
5219{
5220	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 
 
 
 
 
5221
5222	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5223	I915_WRITE(RENCLK_GATE_D2, 0);
5224	I915_WRITE(DSPCLK_GATE_D, 0);
5225	I915_WRITE(RAMCLK_GATE_D, 0);
5226	I915_WRITE16(DEUC, 0);
5227	I915_WRITE(MI_ARB_STATE,
5228		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5229}
5230
5231static void broadwater_init_clock_gating(struct drm_device *dev)
5232{
5233	struct drm_i915_private *dev_priv = dev->dev_private;
5234
5235	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5236		   I965_RCC_CLOCK_GATE_DISABLE |
5237		   I965_RCPB_CLOCK_GATE_DISABLE |
5238		   I965_ISC_CLOCK_GATE_DISABLE |
5239		   I965_FBC_CLOCK_GATE_DISABLE);
5240	I915_WRITE(RENCLK_GATE_D2, 0);
5241	I915_WRITE(MI_ARB_STATE,
5242		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
 
 
 
5243}
5244
5245static void gen3_init_clock_gating(struct drm_device *dev)
5246{
5247	struct drm_i915_private *dev_priv = dev->dev_private;
5248	u32 dstate = I915_READ(D_STATE);
5249
5250	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5251		DSTATE_DOT_CLOCK_GATING;
5252	I915_WRITE(D_STATE, dstate);
5253
5254	if (IS_PINEVIEW(dev))
5255		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5256
5257	/* IIR "flip pending" means done if this bit is set */
5258	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
 
 
 
 
 
 
 
 
 
5259}
5260
5261static void i85x_init_clock_gating(struct drm_device *dev)
5262{
5263	struct drm_i915_private *dev_priv = dev->dev_private;
5264
5265	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5266}
5267
5268static void i830_init_clock_gating(struct drm_device *dev)
5269{
5270	struct drm_i915_private *dev_priv = dev->dev_private;
5271
5272	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
 
5273}
5274
5275void intel_init_clock_gating(struct drm_device *dev)
5276{
5277	struct drm_i915_private *dev_priv = dev->dev_private;
5278
5279	dev_priv->display.init_clock_gating(dev);
5280}
5281
5282void intel_suspend_hw(struct drm_device *dev)
5283{
5284	if (HAS_PCH_LPT(dev))
5285		lpt_suspend_hw(dev);
5286}
5287
5288#define for_each_power_well(i, power_well, domain_mask, power_domains)	\
5289	for (i = 0;							\
5290	     i < (power_domains)->power_well_count &&			\
5291		 ((power_well) = &(power_domains)->power_wells[i]);	\
5292	     i++)							\
5293		if ((power_well)->domains & (domain_mask))
5294
5295#define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5296	for (i = (power_domains)->power_well_count - 1;			 \
5297	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5298	     i--)							 \
5299		if ((power_well)->domains & (domain_mask))
5300
5301/**
5302 * We should only use the power well if we explicitly asked the hardware to
5303 * enable it, so check if it's enabled and also check if we've requested it to
5304 * be enabled.
5305 */
5306static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
5307				   struct i915_power_well *power_well)
5308{
5309	return I915_READ(HSW_PWR_WELL_DRIVER) ==
5310		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5311}
5312
5313bool intel_display_power_enabled_sw(struct drm_i915_private *dev_priv,
5314				    enum intel_display_power_domain domain)
5315{
5316	struct i915_power_domains *power_domains;
5317
5318	power_domains = &dev_priv->power_domains;
5319
5320	return power_domains->domain_use_count[domain];
5321}
5322
5323bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
5324				 enum intel_display_power_domain domain)
 
 
 
 
 
 
 
 
5325{
5326	struct i915_power_domains *power_domains;
5327	struct i915_power_well *power_well;
5328	bool is_enabled;
5329	int i;
5330
5331	if (dev_priv->pm.suspended)
5332		return false;
5333
5334	power_domains = &dev_priv->power_domains;
5335
5336	is_enabled = true;
5337
5338	mutex_lock(&power_domains->lock);
5339	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5340		if (power_well->always_on)
5341			continue;
5342
5343		if (!power_well->ops->is_enabled(dev_priv, power_well)) {
5344			is_enabled = false;
5345			break;
5346		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5347	}
5348	mutex_unlock(&power_domains->lock);
5349
5350	return is_enabled;
5351}
5352
5353/*
5354 * Starting with Haswell, we have a "Power Down Well" that can be turned off
5355 * when not needed anymore. We have 4 registers that can request the power well
5356 * to be enabled, and it will only be disabled if none of the registers is
5357 * requesting it to be enabled.
5358 */
5359static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
5360{
5361	struct drm_device *dev = dev_priv->dev;
5362	unsigned long irqflags;
 
 
 
5363
5364	/*
5365	 * After we re-enable the power well, if we touch VGA register 0x3d5
5366	 * we'll get unclaimed register interrupts. This stops after we write
5367	 * anything to the VGA MSR register. The vgacon module uses this
5368	 * register all the time, so if we unbind our driver and, as a
5369	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
5370	 * console_unlock(). So make here we touch the VGA MSR register, making
5371	 * sure vgacon can keep working normally without triggering interrupts
5372	 * and error messages.
5373	 */
5374	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
5375	outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
5376	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
5377
5378	if (IS_BROADWELL(dev)) {
5379		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5380		I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
5381			   dev_priv->de_irq_mask[PIPE_B]);
5382		I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
5383			   ~dev_priv->de_irq_mask[PIPE_B] |
5384			   GEN8_PIPE_VBLANK);
5385		I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
5386			   dev_priv->de_irq_mask[PIPE_C]);
5387		I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
5388			   ~dev_priv->de_irq_mask[PIPE_C] |
5389			   GEN8_PIPE_VBLANK);
5390		POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
5391		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5392	}
5393}
5394
5395static void reset_vblank_counter(struct drm_device *dev, enum pipe pipe)
5396{
5397	assert_spin_locked(&dev->vbl_lock);
5398
5399	dev->vblank[pipe].last = 0;
5400}
5401
5402static void hsw_power_well_post_disable(struct drm_i915_private *dev_priv)
5403{
5404	struct drm_device *dev = dev_priv->dev;
5405	enum pipe pipe;
5406	unsigned long irqflags;
5407
5408	/*
5409	 * After this, the registers on the pipes that are part of the power
5410	 * well will become zero, so we have to adjust our counters according to
5411	 * that.
5412	 *
5413	 * FIXME: Should we do this in general in drm_vblank_post_modeset?
5414	 */
5415	spin_lock_irqsave(&dev->vbl_lock, irqflags);
5416	for_each_pipe(pipe)
5417		if (pipe != PIPE_A)
5418			reset_vblank_counter(dev, pipe);
5419	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
5420}
5421
5422static void hsw_set_power_well(struct drm_i915_private *dev_priv,
5423			       struct i915_power_well *power_well, bool enable)
5424{
5425	bool is_enabled, enable_requested;
5426	uint32_t tmp;
5427
5428	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5429	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5430	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5431
5432	if (enable) {
5433		if (!enable_requested)
5434			I915_WRITE(HSW_PWR_WELL_DRIVER,
5435				   HSW_PWR_WELL_ENABLE_REQUEST);
5436
5437		if (!is_enabled) {
5438			DRM_DEBUG_KMS("Enabling power well\n");
5439			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5440				      HSW_PWR_WELL_STATE_ENABLED), 20))
5441				DRM_ERROR("Timeout enabling power well\n");
5442		}
5443
5444		hsw_power_well_post_enable(dev_priv);
5445	} else {
5446		if (enable_requested) {
5447			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5448			POSTING_READ(HSW_PWR_WELL_DRIVER);
5449			DRM_DEBUG_KMS("Requesting to disable the power well\n");
5450
5451			hsw_power_well_post_disable(dev_priv);
5452		}
5453	}
5454}
5455
5456static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
5457				   struct i915_power_well *power_well)
5458{
5459	hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
5460
5461	/*
5462	 * We're taking over the BIOS, so clear any requests made by it since
5463	 * the driver is in charge now.
5464	 */
5465	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5466		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5467}
5468
5469static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
5470				  struct i915_power_well *power_well)
5471{
5472	hsw_set_power_well(dev_priv, power_well, true);
5473}
5474
5475static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
5476				   struct i915_power_well *power_well)
5477{
5478	hsw_set_power_well(dev_priv, power_well, false);
5479}
5480
5481static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
5482					   struct i915_power_well *power_well)
5483{
 
 
 
 
 
 
 
 
 
5484}
5485
5486static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
5487					     struct i915_power_well *power_well)
5488{
5489	return true;
5490}
5491
5492static void vlv_set_power_well(struct drm_i915_private *dev_priv,
5493			       struct i915_power_well *power_well, bool enable)
5494{
5495	enum punit_power_well power_well_id = power_well->data;
5496	u32 mask;
5497	u32 state;
5498	u32 ctrl;
5499
5500	mask = PUNIT_PWRGT_MASK(power_well_id);
5501	state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
5502			 PUNIT_PWRGT_PWR_GATE(power_well_id);
5503
5504	mutex_lock(&dev_priv->rps.hw_lock);
5505
5506#define COND \
5507	((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
5508
5509	if (COND)
5510		goto out;
5511
5512	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
5513	ctrl &= ~mask;
5514	ctrl |= state;
5515	vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
5516
5517	if (wait_for(COND, 100))
5518		DRM_ERROR("timout setting power well state %08x (%08x)\n",
5519			  state,
5520			  vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
5521
5522#undef COND
5523
5524out:
5525	mutex_unlock(&dev_priv->rps.hw_lock);
5526}
5527
5528static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
5529				   struct i915_power_well *power_well)
5530{
5531	vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
5532}
5533
5534static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
5535				  struct i915_power_well *power_well)
5536{
5537	vlv_set_power_well(dev_priv, power_well, true);
5538}
5539
5540static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
5541				   struct i915_power_well *power_well)
5542{
5543	vlv_set_power_well(dev_priv, power_well, false);
5544}
5545
5546static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
5547				   struct i915_power_well *power_well)
5548{
5549	int power_well_id = power_well->data;
5550	bool enabled = false;
5551	u32 mask;
5552	u32 state;
5553	u32 ctrl;
5554
5555	mask = PUNIT_PWRGT_MASK(power_well_id);
5556	ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
5557
5558	mutex_lock(&dev_priv->rps.hw_lock);
5559
5560	state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
5561	/*
5562	 * We only ever set the power-on and power-gate states, anything
5563	 * else is unexpected.
5564	 */
5565	WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
5566		state != PUNIT_PWRGT_PWR_GATE(power_well_id));
5567	if (state == ctrl)
5568		enabled = true;
5569
5570	/*
5571	 * A transient state at this point would mean some unexpected party
5572	 * is poking at the power controls too.
 
 
 
 
 
 
5573	 */
5574	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
5575	WARN_ON(ctrl != state);
5576
5577	mutex_unlock(&dev_priv->rps.hw_lock);
5578
5579	return enabled;
5580}
5581
5582static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
5583					  struct i915_power_well *power_well)
5584{
5585	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
5586
5587	vlv_set_power_well(dev_priv, power_well, true);
 
 
5588
5589	spin_lock_irq(&dev_priv->irq_lock);
5590	valleyview_enable_display_irqs(dev_priv);
5591	spin_unlock_irq(&dev_priv->irq_lock);
 
5592
5593	/*
5594	 * During driver initialization we need to defer enabling hotplug
5595	 * processing until fbdev is set up.
 
5596	 */
5597	if (dev_priv->enable_hotplug_processing)
5598		intel_hpd_init(dev_priv->dev);
5599
5600	i915_redisable_vga_power_on(dev_priv->dev);
5601}
5602
5603static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
5604					   struct i915_power_well *power_well)
5605{
5606	struct drm_device *dev = dev_priv->dev;
5607	enum pipe pipe;
 
 
 
 
5608
5609	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
 
5610
5611	spin_lock_irq(&dev_priv->irq_lock);
5612	for_each_pipe(pipe)
5613		__intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
 
 
 
 
 
 
 
 
5614
5615	valleyview_disable_display_irqs(dev_priv);
5616	spin_unlock_irq(&dev_priv->irq_lock);
5617
5618	spin_lock_irq(&dev->vbl_lock);
5619	for_each_pipe(pipe)
5620		reset_vblank_counter(dev, pipe);
5621	spin_unlock_irq(&dev->vbl_lock);
5622
5623	vlv_set_power_well(dev_priv, power_well, false);
5624}
5625
5626static void check_power_well_state(struct drm_i915_private *dev_priv,
5627				   struct i915_power_well *power_well)
5628{
5629	bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
5630
5631	if (power_well->always_on || !i915.disable_power_well) {
5632		if (!enabled)
5633			goto mismatch;
5634
5635		return;
5636	}
5637
5638	if (enabled != (power_well->count > 0))
5639		goto mismatch;
5640
5641	return;
5642
5643mismatch:
5644	WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
5645		  power_well->name, power_well->always_on, enabled,
5646		  power_well->count, i915.disable_power_well);
5647}
5648
5649void intel_display_power_get(struct drm_i915_private *dev_priv,
5650			     enum intel_display_power_domain domain)
5651{
5652	struct i915_power_domains *power_domains;
5653	struct i915_power_well *power_well;
5654	int i;
5655
5656	intel_runtime_pm_get(dev_priv);
5657
5658	power_domains = &dev_priv->power_domains;
5659
5660	mutex_lock(&power_domains->lock);
5661
5662	for_each_power_well(i, power_well, BIT(domain), power_domains) {
5663		if (!power_well->count++) {
5664			DRM_DEBUG_KMS("enabling %s\n", power_well->name);
5665			power_well->ops->enable(dev_priv, power_well);
5666		}
5667
5668		check_power_well_state(dev_priv, power_well);
5669	}
5670
5671	power_domains->domain_use_count[domain]++;
5672
5673	mutex_unlock(&power_domains->lock);
5674}
5675
5676void intel_display_power_put(struct drm_i915_private *dev_priv,
5677			     enum intel_display_power_domain domain)
5678{
5679	struct i915_power_domains *power_domains;
5680	struct i915_power_well *power_well;
5681	int i;
5682
5683	power_domains = &dev_priv->power_domains;
5684
5685	mutex_lock(&power_domains->lock);
5686
5687	WARN_ON(!power_domains->domain_use_count[domain]);
5688	power_domains->domain_use_count[domain]--;
5689
5690	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5691		WARN_ON(!power_well->count);
5692
5693		if (!--power_well->count && i915.disable_power_well) {
5694			DRM_DEBUG_KMS("disabling %s\n", power_well->name);
5695			power_well->ops->disable(dev_priv, power_well);
5696		}
5697
5698		check_power_well_state(dev_priv, power_well);
 
5699	}
5700
5701	mutex_unlock(&power_domains->lock);
5702
5703	intel_runtime_pm_put(dev_priv);
5704}
5705
5706static struct i915_power_domains *hsw_pwr;
5707
5708/* Display audio driver power well request */
5709void i915_request_power_well(void)
5710{
5711	struct drm_i915_private *dev_priv;
5712
5713	if (WARN_ON(!hsw_pwr))
5714		return;
5715
5716	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5717				power_domains);
5718	intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
5719}
5720EXPORT_SYMBOL_GPL(i915_request_power_well);
5721
5722/* Display audio driver power well release */
5723void i915_release_power_well(void)
5724{
5725	struct drm_i915_private *dev_priv;
5726
5727	if (WARN_ON(!hsw_pwr))
5728		return;
5729
5730	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5731				power_domains);
5732	intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
5733}
5734EXPORT_SYMBOL_GPL(i915_release_power_well);
5735
5736#define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
5737
5738#define HSW_ALWAYS_ON_POWER_DOMAINS (			\
5739	BIT(POWER_DOMAIN_PIPE_A) |			\
5740	BIT(POWER_DOMAIN_TRANSCODER_EDP) |		\
5741	BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |		\
5742	BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |		\
5743	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |		\
5744	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |		\
5745	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |		\
5746	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |		\
5747	BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |		\
5748	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |		\
5749	BIT(POWER_DOMAIN_PORT_CRT) |			\
5750	BIT(POWER_DOMAIN_INIT))
5751#define HSW_DISPLAY_POWER_DOMAINS (				\
5752	(POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |	\
5753	BIT(POWER_DOMAIN_INIT))
5754
5755#define BDW_ALWAYS_ON_POWER_DOMAINS (			\
5756	HSW_ALWAYS_ON_POWER_DOMAINS |			\
5757	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
5758#define BDW_DISPLAY_POWER_DOMAINS (				\
5759	(POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |	\
5760	BIT(POWER_DOMAIN_INIT))
5761
5762#define VLV_ALWAYS_ON_POWER_DOMAINS	BIT(POWER_DOMAIN_INIT)
5763#define VLV_DISPLAY_POWER_DOMAINS	POWER_DOMAIN_MASK
5764
5765#define VLV_DPIO_CMN_BC_POWER_DOMAINS (		\
5766	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
5767	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
5768	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
5769	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
5770	BIT(POWER_DOMAIN_PORT_CRT) |		\
5771	BIT(POWER_DOMAIN_INIT))
5772
5773#define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (	\
5774	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
5775	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
5776	BIT(POWER_DOMAIN_INIT))
5777
5778#define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (	\
5779	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
5780	BIT(POWER_DOMAIN_INIT))
5781
5782#define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (	\
5783	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
5784	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
5785	BIT(POWER_DOMAIN_INIT))
5786
5787#define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (	\
5788	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
5789	BIT(POWER_DOMAIN_INIT))
5790
5791static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
5792	.sync_hw = i9xx_always_on_power_well_noop,
5793	.enable = i9xx_always_on_power_well_noop,
5794	.disable = i9xx_always_on_power_well_noop,
5795	.is_enabled = i9xx_always_on_power_well_enabled,
5796};
5797
5798static struct i915_power_well i9xx_always_on_power_well[] = {
5799	{
5800		.name = "always-on",
5801		.always_on = 1,
5802		.domains = POWER_DOMAIN_MASK,
5803		.ops = &i9xx_always_on_power_well_ops,
5804	},
5805};
5806
5807static const struct i915_power_well_ops hsw_power_well_ops = {
5808	.sync_hw = hsw_power_well_sync_hw,
5809	.enable = hsw_power_well_enable,
5810	.disable = hsw_power_well_disable,
5811	.is_enabled = hsw_power_well_enabled,
5812};
5813
5814static struct i915_power_well hsw_power_wells[] = {
5815	{
5816		.name = "always-on",
5817		.always_on = 1,
5818		.domains = HSW_ALWAYS_ON_POWER_DOMAINS,
5819		.ops = &i9xx_always_on_power_well_ops,
5820	},
5821	{
5822		.name = "display",
5823		.domains = HSW_DISPLAY_POWER_DOMAINS,
5824		.ops = &hsw_power_well_ops,
5825	},
5826};
5827
5828static struct i915_power_well bdw_power_wells[] = {
5829	{
5830		.name = "always-on",
5831		.always_on = 1,
5832		.domains = BDW_ALWAYS_ON_POWER_DOMAINS,
5833		.ops = &i9xx_always_on_power_well_ops,
5834	},
5835	{
5836		.name = "display",
5837		.domains = BDW_DISPLAY_POWER_DOMAINS,
5838		.ops = &hsw_power_well_ops,
5839	},
5840};
5841
5842static const struct i915_power_well_ops vlv_display_power_well_ops = {
5843	.sync_hw = vlv_power_well_sync_hw,
5844	.enable = vlv_display_power_well_enable,
5845	.disable = vlv_display_power_well_disable,
5846	.is_enabled = vlv_power_well_enabled,
5847};
5848
5849static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
5850	.sync_hw = vlv_power_well_sync_hw,
5851	.enable = vlv_power_well_enable,
5852	.disable = vlv_power_well_disable,
5853	.is_enabled = vlv_power_well_enabled,
5854};
5855
5856static struct i915_power_well vlv_power_wells[] = {
5857	{
5858		.name = "always-on",
5859		.always_on = 1,
5860		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
5861		.ops = &i9xx_always_on_power_well_ops,
5862	},
5863	{
5864		.name = "display",
5865		.domains = VLV_DISPLAY_POWER_DOMAINS,
5866		.data = PUNIT_POWER_WELL_DISP2D,
5867		.ops = &vlv_display_power_well_ops,
5868	},
5869	{
5870		.name = "dpio-common",
5871		.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
5872		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
5873		.ops = &vlv_dpio_power_well_ops,
5874	},
5875	{
5876		.name = "dpio-tx-b-01",
5877		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5878			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5879			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5880			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5881		.ops = &vlv_dpio_power_well_ops,
5882		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
5883	},
5884	{
5885		.name = "dpio-tx-b-23",
5886		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5887			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5888			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5889			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5890		.ops = &vlv_dpio_power_well_ops,
5891		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
5892	},
5893	{
5894		.name = "dpio-tx-c-01",
5895		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5896			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5897			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5898			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5899		.ops = &vlv_dpio_power_well_ops,
5900		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
5901	},
5902	{
5903		.name = "dpio-tx-c-23",
5904		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5905			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5906			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5907			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5908		.ops = &vlv_dpio_power_well_ops,
5909		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
5910	},
5911};
5912
5913#define set_power_wells(power_domains, __power_wells) ({		\
5914	(power_domains)->power_wells = (__power_wells);			\
5915	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
5916})
5917
5918int intel_power_domains_init(struct drm_i915_private *dev_priv)
5919{
5920	struct i915_power_domains *power_domains = &dev_priv->power_domains;
5921
5922	mutex_init(&power_domains->lock);
5923
5924	/*
5925	 * The enabling order will be from lower to higher indexed wells,
5926	 * the disabling order is reversed.
 
 
5927	 */
5928	if (IS_HASWELL(dev_priv->dev)) {
5929		set_power_wells(power_domains, hsw_power_wells);
5930		hsw_pwr = power_domains;
5931	} else if (IS_BROADWELL(dev_priv->dev)) {
5932		set_power_wells(power_domains, bdw_power_wells);
5933		hsw_pwr = power_domains;
5934	} else if (IS_VALLEYVIEW(dev_priv->dev)) {
5935		set_power_wells(power_domains, vlv_power_wells);
5936	} else {
5937		set_power_wells(power_domains, i9xx_always_on_power_well);
5938	}
5939
5940	return 0;
5941}
 
 
 
5942
5943void intel_power_domains_remove(struct drm_i915_private *dev_priv)
5944{
5945	hsw_pwr = NULL;
5946}
5947
5948static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
5949{
5950	struct i915_power_domains *power_domains = &dev_priv->power_domains;
5951	struct i915_power_well *power_well;
5952	int i;
5953
5954	mutex_lock(&power_domains->lock);
5955	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains)
5956		power_well->ops->sync_hw(dev_priv, power_well);
5957	mutex_unlock(&power_domains->lock);
5958}
5959
5960void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
 
5961{
5962	/* For now, we need the power well to be always enabled. */
5963	intel_display_set_init_power(dev_priv, true);
5964	intel_power_domains_resume(dev_priv);
5965}
5966
5967void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
5968{
5969	intel_runtime_pm_get(dev_priv);
5970}
5971
5972void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
5973{
5974	intel_runtime_pm_put(dev_priv);
5975}
5976
5977void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
5978{
5979	struct drm_device *dev = dev_priv->dev;
5980	struct device *device = &dev->pdev->dev;
5981
5982	if (!HAS_RUNTIME_PM(dev))
5983		return;
5984
5985	pm_runtime_get_sync(device);
5986	WARN(dev_priv->pm.suspended, "Device still suspended.\n");
5987}
5988
5989void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
5990{
5991	struct drm_device *dev = dev_priv->dev;
5992	struct device *device = &dev->pdev->dev;
5993
5994	if (!HAS_RUNTIME_PM(dev))
5995		return;
5996
5997	pm_runtime_mark_last_busy(device);
5998	pm_runtime_put_autosuspend(device);
5999}
6000
6001void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
6002{
6003	struct drm_device *dev = dev_priv->dev;
6004	struct device *device = &dev->pdev->dev;
6005
6006	if (!HAS_RUNTIME_PM(dev))
6007		return;
6008
6009	pm_runtime_set_active(device);
6010
6011	pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
6012	pm_runtime_mark_last_busy(device);
6013	pm_runtime_use_autosuspend(device);
6014
6015	pm_runtime_put_autosuspend(device);
6016}
6017
6018void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
6019{
6020	struct drm_device *dev = dev_priv->dev;
6021	struct device *device = &dev->pdev->dev;
6022
6023	if (!HAS_RUNTIME_PM(dev))
6024		return;
6025
6026	/* Make sure we're not suspended first. */
6027	pm_runtime_get_sync(device);
6028	pm_runtime_disable(device);
6029}
6030
6031/* Set up chip specific power management-related functions */
6032void intel_init_pm(struct drm_device *dev)
6033{
6034	struct drm_i915_private *dev_priv = dev->dev_private;
6035
6036	if (HAS_FBC(dev)) {
6037		if (INTEL_INFO(dev)->gen >= 7) {
6038			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6039			dev_priv->display.enable_fbc = gen7_enable_fbc;
6040			dev_priv->display.disable_fbc = ironlake_disable_fbc;
6041		} else if (INTEL_INFO(dev)->gen >= 5) {
6042			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6043			dev_priv->display.enable_fbc = ironlake_enable_fbc;
6044			dev_priv->display.disable_fbc = ironlake_disable_fbc;
6045		} else if (IS_GM45(dev)) {
6046			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
6047			dev_priv->display.enable_fbc = g4x_enable_fbc;
6048			dev_priv->display.disable_fbc = g4x_disable_fbc;
6049		} else {
6050			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
6051			dev_priv->display.enable_fbc = i8xx_enable_fbc;
6052			dev_priv->display.disable_fbc = i8xx_disable_fbc;
6053
6054			/* This value was pulled out of someone's hat */
6055			I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
6056		}
6057	}
6058
6059	/* For cxsr */
6060	if (IS_PINEVIEW(dev))
6061		i915_pineview_get_mem_freq(dev);
6062	else if (IS_GEN5(dev))
6063		i915_ironlake_get_mem_freq(dev);
6064
6065	/* For FIFO watermark updates */
6066	if (HAS_PCH_SPLIT(dev)) {
6067		ilk_setup_wm_latency(dev);
6068
6069		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6070		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6071		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6072		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6073			dev_priv->display.update_wm = ilk_update_wm;
6074			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6075		} else {
6076			DRM_DEBUG_KMS("Failed to read display plane latency. "
6077				      "Disable CxSR\n");
6078		}
6079
6080		if (IS_GEN5(dev))
6081			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6082		else if (IS_GEN6(dev))
6083			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6084		else if (IS_IVYBRIDGE(dev))
6085			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6086		else if (IS_HASWELL(dev))
6087			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6088		else if (INTEL_INFO(dev)->gen == 8)
6089			dev_priv->display.init_clock_gating = gen8_init_clock_gating;
6090	} else if (IS_VALLEYVIEW(dev)) {
6091		dev_priv->display.update_wm = valleyview_update_wm;
6092		dev_priv->display.init_clock_gating =
6093			valleyview_init_clock_gating;
6094	} else if (IS_PINEVIEW(dev)) {
6095		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6096					    dev_priv->is_ddr3,
6097					    dev_priv->fsb_freq,
6098					    dev_priv->mem_freq)) {
6099			DRM_INFO("failed to find known CxSR latency "
6100				 "(found ddr%s fsb freq %d, mem freq %d), "
6101				 "disabling CxSR\n",
6102				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
6103				 dev_priv->fsb_freq, dev_priv->mem_freq);
6104			/* Disable CxSR and never update its watermark again */
6105			pineview_disable_cxsr(dev);
6106			dev_priv->display.update_wm = NULL;
6107		} else
6108			dev_priv->display.update_wm = pineview_update_wm;
6109		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6110	} else if (IS_G4X(dev)) {
6111		dev_priv->display.update_wm = g4x_update_wm;
6112		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6113	} else if (IS_GEN4(dev)) {
6114		dev_priv->display.update_wm = i965_update_wm;
6115		if (IS_CRESTLINE(dev))
6116			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6117		else if (IS_BROADWATER(dev))
6118			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6119	} else if (IS_GEN3(dev)) {
6120		dev_priv->display.update_wm = i9xx_update_wm;
6121		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6122		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6123	} else if (IS_GEN2(dev)) {
6124		if (INTEL_INFO(dev)->num_pipes == 1) {
6125			dev_priv->display.update_wm = i845_update_wm;
6126			dev_priv->display.get_fifo_size = i845_get_fifo_size;
6127		} else {
6128			dev_priv->display.update_wm = i9xx_update_wm;
6129			dev_priv->display.get_fifo_size = i830_get_fifo_size;
6130		}
6131
6132		if (IS_I85X(dev) || IS_I865G(dev))
6133			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6134		else
6135			dev_priv->display.init_clock_gating = i830_init_clock_gating;
6136	} else {
6137		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6138	}
6139}
6140
6141int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
6142{
6143	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6144
6145	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6146		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6147		return -EAGAIN;
6148	}
6149
6150	I915_WRITE(GEN6_PCODE_DATA, *val);
6151	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6152
6153	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6154		     500)) {
6155		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6156		return -ETIMEDOUT;
6157	}
6158
6159	*val = I915_READ(GEN6_PCODE_DATA);
6160	I915_WRITE(GEN6_PCODE_DATA, 0);
6161
6162	return 0;
6163}
6164
6165int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
6166{
6167	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6168
6169	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6170		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6171		return -EAGAIN;
6172	}
6173
6174	I915_WRITE(GEN6_PCODE_DATA, val);
6175	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6176
6177	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6178		     500)) {
6179		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6180		return -ETIMEDOUT;
6181	}
6182
6183	I915_WRITE(GEN6_PCODE_DATA, 0);
6184
6185	return 0;
6186}
6187
6188int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6189{
6190	int div;
6191
6192	/* 4 x czclk */
6193	switch (dev_priv->mem_freq) {
6194	case 800:
6195		div = 10;
6196		break;
6197	case 1066:
6198		div = 12;
6199		break;
6200	case 1333:
6201		div = 16;
6202		break;
6203	default:
6204		return -1;
6205	}
6206
6207	return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
6208}
6209
6210int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6211{
6212	int mul;
6213
6214	/* 4 x czclk */
6215	switch (dev_priv->mem_freq) {
6216	case 800:
6217		mul = 10;
6218		break;
6219	case 1066:
6220		mul = 12;
6221		break;
6222	case 1333:
6223		mul = 16;
6224		break;
6225	default:
6226		return -1;
6227	}
6228
6229	return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
6230}
6231
6232void intel_pm_setup(struct drm_device *dev)
6233{
6234	struct drm_i915_private *dev_priv = dev->dev_private;
6235
6236	mutex_init(&dev_priv->rps.hw_lock);
6237
6238	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6239			  intel_gen6_powersave_work);
6240
6241	dev_priv->pm.suspended = false;
6242	dev_priv->pm.irqs_disabled = false;
6243}