Loading...
1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3/*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31#include <linux/circ_buf.h>
32#include <linux/cpuidle.h>
33#include <linux/slab.h>
34#include <linux/sysrq.h>
35
36#include <drm/drm_drv.h>
37#include <drm/drm_irq.h>
38#include <drm/i915_drm.h>
39
40#include "display/intel_display_types.h"
41#include "display/intel_fifo_underrun.h"
42#include "display/intel_hotplug.h"
43#include "display/intel_lpe_audio.h"
44#include "display/intel_psr.h"
45
46#include "gt/intel_gt.h"
47#include "gt/intel_gt_irq.h"
48#include "gt/intel_gt_pm_irq.h"
49
50#include "i915_drv.h"
51#include "i915_irq.h"
52#include "i915_trace.h"
53#include "intel_pm.h"
54
55/**
56 * DOC: interrupt handling
57 *
58 * These functions provide the basic support for enabling and disabling the
59 * interrupt handling support. There's a lot more functionality in i915_irq.c
60 * and related files, but that will be described in separate chapters.
61 */
62
63typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
64
65static const u32 hpd_ilk[HPD_NUM_PINS] = {
66 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
67};
68
69static const u32 hpd_ivb[HPD_NUM_PINS] = {
70 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
71};
72
73static const u32 hpd_bdw[HPD_NUM_PINS] = {
74 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
75};
76
77static const u32 hpd_ibx[HPD_NUM_PINS] = {
78 [HPD_CRT] = SDE_CRT_HOTPLUG,
79 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
80 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
81 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
82 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
83};
84
85static const u32 hpd_cpt[HPD_NUM_PINS] = {
86 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
87 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
88 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
89 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
90 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
91};
92
93static const u32 hpd_spt[HPD_NUM_PINS] = {
94 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
95 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
96 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
97 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
98 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
99};
100
101static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
102 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
103 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
104 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
105 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
106 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
107 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
108};
109
110static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
111 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
112 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
113 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
114 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
115 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
116 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
117};
118
119static const u32 hpd_status_i915[HPD_NUM_PINS] = {
120 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
121 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
122 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
123 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
124 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
125 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
126};
127
128/* BXT hpd list */
129static const u32 hpd_bxt[HPD_NUM_PINS] = {
130 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
131 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
132 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
133};
134
135static const u32 hpd_gen11[HPD_NUM_PINS] = {
136 [HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
137 [HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
138 [HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
139 [HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG
140};
141
142static const u32 hpd_gen12[HPD_NUM_PINS] = {
143 [HPD_PORT_D] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
144 [HPD_PORT_E] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
145 [HPD_PORT_F] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
146 [HPD_PORT_G] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG,
147 [HPD_PORT_H] = GEN12_TC5_HOTPLUG | GEN12_TBT5_HOTPLUG,
148 [HPD_PORT_I] = GEN12_TC6_HOTPLUG | GEN12_TBT6_HOTPLUG
149};
150
151static const u32 hpd_icp[HPD_NUM_PINS] = {
152 [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
153 [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
154 [HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP,
155 [HPD_PORT_D] = SDE_TC2_HOTPLUG_ICP,
156 [HPD_PORT_E] = SDE_TC3_HOTPLUG_ICP,
157 [HPD_PORT_F] = SDE_TC4_HOTPLUG_ICP
158};
159
160static const u32 hpd_mcc[HPD_NUM_PINS] = {
161 [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
162 [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
163 [HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP
164};
165
166static const u32 hpd_tgp[HPD_NUM_PINS] = {
167 [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
168 [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
169 [HPD_PORT_C] = SDE_DDIC_HOTPLUG_TGP,
170 [HPD_PORT_D] = SDE_TC1_HOTPLUG_ICP,
171 [HPD_PORT_E] = SDE_TC2_HOTPLUG_ICP,
172 [HPD_PORT_F] = SDE_TC3_HOTPLUG_ICP,
173 [HPD_PORT_G] = SDE_TC4_HOTPLUG_ICP,
174 [HPD_PORT_H] = SDE_TC5_HOTPLUG_TGP,
175 [HPD_PORT_I] = SDE_TC6_HOTPLUG_TGP,
176};
177
178void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
179 i915_reg_t iir, i915_reg_t ier)
180{
181 intel_uncore_write(uncore, imr, 0xffffffff);
182 intel_uncore_posting_read(uncore, imr);
183
184 intel_uncore_write(uncore, ier, 0);
185
186 /* IIR can theoretically queue up two events. Be paranoid. */
187 intel_uncore_write(uncore, iir, 0xffffffff);
188 intel_uncore_posting_read(uncore, iir);
189 intel_uncore_write(uncore, iir, 0xffffffff);
190 intel_uncore_posting_read(uncore, iir);
191}
192
193void gen2_irq_reset(struct intel_uncore *uncore)
194{
195 intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
196 intel_uncore_posting_read16(uncore, GEN2_IMR);
197
198 intel_uncore_write16(uncore, GEN2_IER, 0);
199
200 /* IIR can theoretically queue up two events. Be paranoid. */
201 intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
202 intel_uncore_posting_read16(uncore, GEN2_IIR);
203 intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
204 intel_uncore_posting_read16(uncore, GEN2_IIR);
205}
206
207/*
208 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
209 */
210static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
211{
212 u32 val = intel_uncore_read(uncore, reg);
213
214 if (val == 0)
215 return;
216
217 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
218 i915_mmio_reg_offset(reg), val);
219 intel_uncore_write(uncore, reg, 0xffffffff);
220 intel_uncore_posting_read(uncore, reg);
221 intel_uncore_write(uncore, reg, 0xffffffff);
222 intel_uncore_posting_read(uncore, reg);
223}
224
225static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
226{
227 u16 val = intel_uncore_read16(uncore, GEN2_IIR);
228
229 if (val == 0)
230 return;
231
232 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
233 i915_mmio_reg_offset(GEN2_IIR), val);
234 intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
235 intel_uncore_posting_read16(uncore, GEN2_IIR);
236 intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
237 intel_uncore_posting_read16(uncore, GEN2_IIR);
238}
239
240void gen3_irq_init(struct intel_uncore *uncore,
241 i915_reg_t imr, u32 imr_val,
242 i915_reg_t ier, u32 ier_val,
243 i915_reg_t iir)
244{
245 gen3_assert_iir_is_zero(uncore, iir);
246
247 intel_uncore_write(uncore, ier, ier_val);
248 intel_uncore_write(uncore, imr, imr_val);
249 intel_uncore_posting_read(uncore, imr);
250}
251
252void gen2_irq_init(struct intel_uncore *uncore,
253 u32 imr_val, u32 ier_val)
254{
255 gen2_assert_iir_is_zero(uncore);
256
257 intel_uncore_write16(uncore, GEN2_IER, ier_val);
258 intel_uncore_write16(uncore, GEN2_IMR, imr_val);
259 intel_uncore_posting_read16(uncore, GEN2_IMR);
260}
261
262/* For display hotplug interrupt */
263static inline void
264i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
265 u32 mask,
266 u32 bits)
267{
268 u32 val;
269
270 lockdep_assert_held(&dev_priv->irq_lock);
271 WARN_ON(bits & ~mask);
272
273 val = I915_READ(PORT_HOTPLUG_EN);
274 val &= ~mask;
275 val |= bits;
276 I915_WRITE(PORT_HOTPLUG_EN, val);
277}
278
279/**
280 * i915_hotplug_interrupt_update - update hotplug interrupt enable
281 * @dev_priv: driver private
282 * @mask: bits to update
283 * @bits: bits to enable
284 * NOTE: the HPD enable bits are modified both inside and outside
285 * of an interrupt context. To avoid that read-modify-write cycles
286 * interfer, these bits are protected by a spinlock. Since this
287 * function is usually not called from a context where the lock is
288 * held already, this function acquires the lock itself. A non-locking
289 * version is also available.
290 */
291void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
292 u32 mask,
293 u32 bits)
294{
295 spin_lock_irq(&dev_priv->irq_lock);
296 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
297 spin_unlock_irq(&dev_priv->irq_lock);
298}
299
300/**
301 * ilk_update_display_irq - update DEIMR
302 * @dev_priv: driver private
303 * @interrupt_mask: mask of interrupt bits to update
304 * @enabled_irq_mask: mask of interrupt bits to enable
305 */
306void ilk_update_display_irq(struct drm_i915_private *dev_priv,
307 u32 interrupt_mask,
308 u32 enabled_irq_mask)
309{
310 u32 new_val;
311
312 lockdep_assert_held(&dev_priv->irq_lock);
313
314 WARN_ON(enabled_irq_mask & ~interrupt_mask);
315
316 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
317 return;
318
319 new_val = dev_priv->irq_mask;
320 new_val &= ~interrupt_mask;
321 new_val |= (~enabled_irq_mask & interrupt_mask);
322
323 if (new_val != dev_priv->irq_mask) {
324 dev_priv->irq_mask = new_val;
325 I915_WRITE(DEIMR, dev_priv->irq_mask);
326 POSTING_READ(DEIMR);
327 }
328}
329
330static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
331{
332 WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11);
333
334 return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
335}
336
337void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv)
338{
339 struct intel_gt *gt = &dev_priv->gt;
340
341 spin_lock_irq(>->irq_lock);
342
343 while (gen11_gt_reset_one_iir(gt, 0, GEN11_GTPM))
344 ;
345
346 dev_priv->gt_pm.rps.pm_iir = 0;
347
348 spin_unlock_irq(>->irq_lock);
349}
350
351void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
352{
353 struct intel_gt *gt = &dev_priv->gt;
354
355 spin_lock_irq(>->irq_lock);
356 gen6_gt_pm_reset_iir(gt, GEN6_PM_RPS_EVENTS);
357 dev_priv->gt_pm.rps.pm_iir = 0;
358 spin_unlock_irq(>->irq_lock);
359}
360
361void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
362{
363 struct intel_gt *gt = &dev_priv->gt;
364 struct intel_rps *rps = &dev_priv->gt_pm.rps;
365
366 if (READ_ONCE(rps->interrupts_enabled))
367 return;
368
369 spin_lock_irq(>->irq_lock);
370 WARN_ON_ONCE(rps->pm_iir);
371
372 if (INTEL_GEN(dev_priv) >= 11)
373 WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GTPM));
374 else
375 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
376
377 rps->interrupts_enabled = true;
378 gen6_gt_pm_enable_irq(gt, dev_priv->pm_rps_events);
379
380 spin_unlock_irq(>->irq_lock);
381}
382
383u32 gen6_sanitize_rps_pm_mask(const struct drm_i915_private *i915, u32 mask)
384{
385 return mask & ~i915->gt_pm.rps.pm_intrmsk_mbz;
386}
387
388void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
389{
390 struct intel_rps *rps = &dev_priv->gt_pm.rps;
391 struct intel_gt *gt = &dev_priv->gt;
392
393 if (!READ_ONCE(rps->interrupts_enabled))
394 return;
395
396 spin_lock_irq(>->irq_lock);
397 rps->interrupts_enabled = false;
398
399 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
400
401 gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
402
403 spin_unlock_irq(>->irq_lock);
404 intel_synchronize_irq(dev_priv);
405
406 /* Now that we will not be generating any more work, flush any
407 * outstanding tasks. As we are called on the RPS idle path,
408 * we will reset the GPU to minimum frequencies, so the current
409 * state of the worker can be discarded.
410 */
411 cancel_work_sync(&rps->work);
412 if (INTEL_GEN(dev_priv) >= 11)
413 gen11_reset_rps_interrupts(dev_priv);
414 else
415 gen6_reset_rps_interrupts(dev_priv);
416}
417
418void gen9_reset_guc_interrupts(struct intel_guc *guc)
419{
420 struct intel_gt *gt = guc_to_gt(guc);
421
422 assert_rpm_wakelock_held(>->i915->runtime_pm);
423
424 spin_lock_irq(>->irq_lock);
425 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
426 spin_unlock_irq(>->irq_lock);
427}
428
429void gen9_enable_guc_interrupts(struct intel_guc *guc)
430{
431 struct intel_gt *gt = guc_to_gt(guc);
432
433 assert_rpm_wakelock_held(>->i915->runtime_pm);
434
435 spin_lock_irq(>->irq_lock);
436 if (!guc->interrupts.enabled) {
437 WARN_ON_ONCE(intel_uncore_read(gt->uncore,
438 gen6_pm_iir(gt->i915)) &
439 gt->pm_guc_events);
440 guc->interrupts.enabled = true;
441 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
442 }
443 spin_unlock_irq(>->irq_lock);
444}
445
446void gen9_disable_guc_interrupts(struct intel_guc *guc)
447{
448 struct intel_gt *gt = guc_to_gt(guc);
449
450 assert_rpm_wakelock_held(>->i915->runtime_pm);
451
452 spin_lock_irq(>->irq_lock);
453 guc->interrupts.enabled = false;
454
455 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
456
457 spin_unlock_irq(>->irq_lock);
458 intel_synchronize_irq(gt->i915);
459
460 gen9_reset_guc_interrupts(guc);
461}
462
463void gen11_reset_guc_interrupts(struct intel_guc *guc)
464{
465 struct intel_gt *gt = guc_to_gt(guc);
466
467 spin_lock_irq(>->irq_lock);
468 gen11_gt_reset_one_iir(gt, 0, GEN11_GUC);
469 spin_unlock_irq(>->irq_lock);
470}
471
472void gen11_enable_guc_interrupts(struct intel_guc *guc)
473{
474 struct intel_gt *gt = guc_to_gt(guc);
475
476 spin_lock_irq(>->irq_lock);
477 if (!guc->interrupts.enabled) {
478 u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
479
480 WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC));
481 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, events);
482 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~events);
483 guc->interrupts.enabled = true;
484 }
485 spin_unlock_irq(>->irq_lock);
486}
487
488void gen11_disable_guc_interrupts(struct intel_guc *guc)
489{
490 struct intel_gt *gt = guc_to_gt(guc);
491
492 spin_lock_irq(>->irq_lock);
493 guc->interrupts.enabled = false;
494
495 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0);
496 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
497
498 spin_unlock_irq(>->irq_lock);
499 intel_synchronize_irq(gt->i915);
500
501 gen11_reset_guc_interrupts(guc);
502}
503
504/**
505 * bdw_update_port_irq - update DE port interrupt
506 * @dev_priv: driver private
507 * @interrupt_mask: mask of interrupt bits to update
508 * @enabled_irq_mask: mask of interrupt bits to enable
509 */
510static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
511 u32 interrupt_mask,
512 u32 enabled_irq_mask)
513{
514 u32 new_val;
515 u32 old_val;
516
517 lockdep_assert_held(&dev_priv->irq_lock);
518
519 WARN_ON(enabled_irq_mask & ~interrupt_mask);
520
521 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
522 return;
523
524 old_val = I915_READ(GEN8_DE_PORT_IMR);
525
526 new_val = old_val;
527 new_val &= ~interrupt_mask;
528 new_val |= (~enabled_irq_mask & interrupt_mask);
529
530 if (new_val != old_val) {
531 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
532 POSTING_READ(GEN8_DE_PORT_IMR);
533 }
534}
535
536/**
537 * bdw_update_pipe_irq - update DE pipe interrupt
538 * @dev_priv: driver private
539 * @pipe: pipe whose interrupt to update
540 * @interrupt_mask: mask of interrupt bits to update
541 * @enabled_irq_mask: mask of interrupt bits to enable
542 */
543void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
544 enum pipe pipe,
545 u32 interrupt_mask,
546 u32 enabled_irq_mask)
547{
548 u32 new_val;
549
550 lockdep_assert_held(&dev_priv->irq_lock);
551
552 WARN_ON(enabled_irq_mask & ~interrupt_mask);
553
554 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
555 return;
556
557 new_val = dev_priv->de_irq_mask[pipe];
558 new_val &= ~interrupt_mask;
559 new_val |= (~enabled_irq_mask & interrupt_mask);
560
561 if (new_val != dev_priv->de_irq_mask[pipe]) {
562 dev_priv->de_irq_mask[pipe] = new_val;
563 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
564 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
565 }
566}
567
568/**
569 * ibx_display_interrupt_update - update SDEIMR
570 * @dev_priv: driver private
571 * @interrupt_mask: mask of interrupt bits to update
572 * @enabled_irq_mask: mask of interrupt bits to enable
573 */
574void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
575 u32 interrupt_mask,
576 u32 enabled_irq_mask)
577{
578 u32 sdeimr = I915_READ(SDEIMR);
579 sdeimr &= ~interrupt_mask;
580 sdeimr |= (~enabled_irq_mask & interrupt_mask);
581
582 WARN_ON(enabled_irq_mask & ~interrupt_mask);
583
584 lockdep_assert_held(&dev_priv->irq_lock);
585
586 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
587 return;
588
589 I915_WRITE(SDEIMR, sdeimr);
590 POSTING_READ(SDEIMR);
591}
592
593u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
594 enum pipe pipe)
595{
596 u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
597 u32 enable_mask = status_mask << 16;
598
599 lockdep_assert_held(&dev_priv->irq_lock);
600
601 if (INTEL_GEN(dev_priv) < 5)
602 goto out;
603
604 /*
605 * On pipe A we don't support the PSR interrupt yet,
606 * on pipe B and C the same bit MBZ.
607 */
608 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
609 return 0;
610 /*
611 * On pipe B and C we don't support the PSR interrupt yet, on pipe
612 * A the same bit is for perf counters which we don't use either.
613 */
614 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
615 return 0;
616
617 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
618 SPRITE0_FLIP_DONE_INT_EN_VLV |
619 SPRITE1_FLIP_DONE_INT_EN_VLV);
620 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
621 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
622 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
623 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
624
625out:
626 WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
627 status_mask & ~PIPESTAT_INT_STATUS_MASK,
628 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
629 pipe_name(pipe), enable_mask, status_mask);
630
631 return enable_mask;
632}
633
634void i915_enable_pipestat(struct drm_i915_private *dev_priv,
635 enum pipe pipe, u32 status_mask)
636{
637 i915_reg_t reg = PIPESTAT(pipe);
638 u32 enable_mask;
639
640 WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
641 "pipe %c: status_mask=0x%x\n",
642 pipe_name(pipe), status_mask);
643
644 lockdep_assert_held(&dev_priv->irq_lock);
645 WARN_ON(!intel_irqs_enabled(dev_priv));
646
647 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
648 return;
649
650 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
651 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
652
653 I915_WRITE(reg, enable_mask | status_mask);
654 POSTING_READ(reg);
655}
656
657void i915_disable_pipestat(struct drm_i915_private *dev_priv,
658 enum pipe pipe, u32 status_mask)
659{
660 i915_reg_t reg = PIPESTAT(pipe);
661 u32 enable_mask;
662
663 WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
664 "pipe %c: status_mask=0x%x\n",
665 pipe_name(pipe), status_mask);
666
667 lockdep_assert_held(&dev_priv->irq_lock);
668 WARN_ON(!intel_irqs_enabled(dev_priv));
669
670 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
671 return;
672
673 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
674 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
675
676 I915_WRITE(reg, enable_mask | status_mask);
677 POSTING_READ(reg);
678}
679
680static bool i915_has_asle(struct drm_i915_private *dev_priv)
681{
682 if (!dev_priv->opregion.asle)
683 return false;
684
685 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
686}
687
688/**
689 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
690 * @dev_priv: i915 device private
691 */
692static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
693{
694 if (!i915_has_asle(dev_priv))
695 return;
696
697 spin_lock_irq(&dev_priv->irq_lock);
698
699 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
700 if (INTEL_GEN(dev_priv) >= 4)
701 i915_enable_pipestat(dev_priv, PIPE_A,
702 PIPE_LEGACY_BLC_EVENT_STATUS);
703
704 spin_unlock_irq(&dev_priv->irq_lock);
705}
706
707/*
708 * This timing diagram depicts the video signal in and
709 * around the vertical blanking period.
710 *
711 * Assumptions about the fictitious mode used in this example:
712 * vblank_start >= 3
713 * vsync_start = vblank_start + 1
714 * vsync_end = vblank_start + 2
715 * vtotal = vblank_start + 3
716 *
717 * start of vblank:
718 * latch double buffered registers
719 * increment frame counter (ctg+)
720 * generate start of vblank interrupt (gen4+)
721 * |
722 * | frame start:
723 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
724 * | may be shifted forward 1-3 extra lines via PIPECONF
725 * | |
726 * | | start of vsync:
727 * | | generate vsync interrupt
728 * | | |
729 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
730 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
731 * ----va---> <-----------------vb--------------------> <--------va-------------
732 * | | <----vs-----> |
733 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
734 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
735 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
736 * | | |
737 * last visible pixel first visible pixel
738 * | increment frame counter (gen3/4)
739 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
740 *
741 * x = horizontal active
742 * _ = horizontal blanking
743 * hs = horizontal sync
744 * va = vertical active
745 * vb = vertical blanking
746 * vs = vertical sync
747 * vbs = vblank_start (number)
748 *
749 * Summary:
750 * - most events happen at the start of horizontal sync
751 * - frame start happens at the start of horizontal blank, 1-4 lines
752 * (depending on PIPECONF settings) after the start of vblank
753 * - gen3/4 pixel and frame counter are synchronized with the start
754 * of horizontal active on the first line of vertical active
755 */
756
757/* Called from drm generic code, passed a 'crtc', which
758 * we use as a pipe index
759 */
760u32 i915_get_vblank_counter(struct drm_crtc *crtc)
761{
762 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
763 struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
764 const struct drm_display_mode *mode = &vblank->hwmode;
765 enum pipe pipe = to_intel_crtc(crtc)->pipe;
766 i915_reg_t high_frame, low_frame;
767 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
768 unsigned long irqflags;
769
770 /*
771 * On i965gm TV output the frame counter only works up to
772 * the point when we enable the TV encoder. After that the
773 * frame counter ceases to work and reads zero. We need a
774 * vblank wait before enabling the TV encoder and so we
775 * have to enable vblank interrupts while the frame counter
776 * is still in a working state. However the core vblank code
777 * does not like us returning non-zero frame counter values
778 * when we've told it that we don't have a working frame
779 * counter. Thus we must stop non-zero values leaking out.
780 */
781 if (!vblank->max_vblank_count)
782 return 0;
783
784 htotal = mode->crtc_htotal;
785 hsync_start = mode->crtc_hsync_start;
786 vbl_start = mode->crtc_vblank_start;
787 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
788 vbl_start = DIV_ROUND_UP(vbl_start, 2);
789
790 /* Convert to pixel count */
791 vbl_start *= htotal;
792
793 /* Start of vblank event occurs at start of hsync */
794 vbl_start -= htotal - hsync_start;
795
796 high_frame = PIPEFRAME(pipe);
797 low_frame = PIPEFRAMEPIXEL(pipe);
798
799 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
800
801 /*
802 * High & low register fields aren't synchronized, so make sure
803 * we get a low value that's stable across two reads of the high
804 * register.
805 */
806 do {
807 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
808 low = I915_READ_FW(low_frame);
809 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
810 } while (high1 != high2);
811
812 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
813
814 high1 >>= PIPE_FRAME_HIGH_SHIFT;
815 pixel = low & PIPE_PIXEL_MASK;
816 low >>= PIPE_FRAME_LOW_SHIFT;
817
818 /*
819 * The frame counter increments at beginning of active.
820 * Cook up a vblank counter by also checking the pixel
821 * counter against vblank start.
822 */
823 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
824}
825
826u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
827{
828 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
829 enum pipe pipe = to_intel_crtc(crtc)->pipe;
830
831 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
832}
833
834/*
835 * On certain encoders on certain platforms, pipe
836 * scanline register will not work to get the scanline,
837 * since the timings are driven from the PORT or issues
838 * with scanline register updates.
839 * This function will use Framestamp and current
840 * timestamp registers to calculate the scanline.
841 */
842static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
843{
844 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
845 struct drm_vblank_crtc *vblank =
846 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
847 const struct drm_display_mode *mode = &vblank->hwmode;
848 u32 vblank_start = mode->crtc_vblank_start;
849 u32 vtotal = mode->crtc_vtotal;
850 u32 htotal = mode->crtc_htotal;
851 u32 clock = mode->crtc_clock;
852 u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
853
854 /*
855 * To avoid the race condition where we might cross into the
856 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
857 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
858 * during the same frame.
859 */
860 do {
861 /*
862 * This field provides read back of the display
863 * pipe frame time stamp. The time stamp value
864 * is sampled at every start of vertical blank.
865 */
866 scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
867
868 /*
869 * The TIMESTAMP_CTR register has the current
870 * time stamp value.
871 */
872 scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
873
874 scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
875 } while (scan_post_time != scan_prev_time);
876
877 scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
878 clock), 1000 * htotal);
879 scanline = min(scanline, vtotal - 1);
880 scanline = (scanline + vblank_start) % vtotal;
881
882 return scanline;
883}
884
885/* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
886static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
887{
888 struct drm_device *dev = crtc->base.dev;
889 struct drm_i915_private *dev_priv = to_i915(dev);
890 const struct drm_display_mode *mode;
891 struct drm_vblank_crtc *vblank;
892 enum pipe pipe = crtc->pipe;
893 int position, vtotal;
894
895 if (!crtc->active)
896 return -1;
897
898 vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
899 mode = &vblank->hwmode;
900
901 if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
902 return __intel_get_crtc_scanline_from_timestamp(crtc);
903
904 vtotal = mode->crtc_vtotal;
905 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
906 vtotal /= 2;
907
908 if (IS_GEN(dev_priv, 2))
909 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
910 else
911 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
912
913 /*
914 * On HSW, the DSL reg (0x70000) appears to return 0 if we
915 * read it just before the start of vblank. So try it again
916 * so we don't accidentally end up spanning a vblank frame
917 * increment, causing the pipe_update_end() code to squak at us.
918 *
919 * The nature of this problem means we can't simply check the ISR
920 * bit and return the vblank start value; nor can we use the scanline
921 * debug register in the transcoder as it appears to have the same
922 * problem. We may need to extend this to include other platforms,
923 * but so far testing only shows the problem on HSW.
924 */
925 if (HAS_DDI(dev_priv) && !position) {
926 int i, temp;
927
928 for (i = 0; i < 100; i++) {
929 udelay(1);
930 temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
931 if (temp != position) {
932 position = temp;
933 break;
934 }
935 }
936 }
937
938 /*
939 * See update_scanline_offset() for the details on the
940 * scanline_offset adjustment.
941 */
942 return (position + crtc->scanline_offset) % vtotal;
943}
944
945bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
946 bool in_vblank_irq, int *vpos, int *hpos,
947 ktime_t *stime, ktime_t *etime,
948 const struct drm_display_mode *mode)
949{
950 struct drm_i915_private *dev_priv = to_i915(dev);
951 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
952 pipe);
953 int position;
954 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
955 unsigned long irqflags;
956 bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
957 IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
958 mode->private_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
959
960 if (WARN_ON(!mode->crtc_clock)) {
961 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
962 "pipe %c\n", pipe_name(pipe));
963 return false;
964 }
965
966 htotal = mode->crtc_htotal;
967 hsync_start = mode->crtc_hsync_start;
968 vtotal = mode->crtc_vtotal;
969 vbl_start = mode->crtc_vblank_start;
970 vbl_end = mode->crtc_vblank_end;
971
972 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
973 vbl_start = DIV_ROUND_UP(vbl_start, 2);
974 vbl_end /= 2;
975 vtotal /= 2;
976 }
977
978 /*
979 * Lock uncore.lock, as we will do multiple timing critical raw
980 * register reads, potentially with preemption disabled, so the
981 * following code must not block on uncore.lock.
982 */
983 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
984
985 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
986
987 /* Get optional system timestamp before query. */
988 if (stime)
989 *stime = ktime_get();
990
991 if (use_scanline_counter) {
992 /* No obvious pixelcount register. Only query vertical
993 * scanout position from Display scan line register.
994 */
995 position = __intel_get_crtc_scanline(intel_crtc);
996 } else {
997 /* Have access to pixelcount since start of frame.
998 * We can split this into vertical and horizontal
999 * scanout position.
1000 */
1001 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
1002
1003 /* convert to pixel counts */
1004 vbl_start *= htotal;
1005 vbl_end *= htotal;
1006 vtotal *= htotal;
1007
1008 /*
1009 * In interlaced modes, the pixel counter counts all pixels,
1010 * so one field will have htotal more pixels. In order to avoid
1011 * the reported position from jumping backwards when the pixel
1012 * counter is beyond the length of the shorter field, just
1013 * clamp the position the length of the shorter field. This
1014 * matches how the scanline counter based position works since
1015 * the scanline counter doesn't count the two half lines.
1016 */
1017 if (position >= vtotal)
1018 position = vtotal - 1;
1019
1020 /*
1021 * Start of vblank interrupt is triggered at start of hsync,
1022 * just prior to the first active line of vblank. However we
1023 * consider lines to start at the leading edge of horizontal
1024 * active. So, should we get here before we've crossed into
1025 * the horizontal active of the first line in vblank, we would
1026 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
1027 * always add htotal-hsync_start to the current pixel position.
1028 */
1029 position = (position + htotal - hsync_start) % vtotal;
1030 }
1031
1032 /* Get optional system timestamp after query. */
1033 if (etime)
1034 *etime = ktime_get();
1035
1036 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1037
1038 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1039
1040 /*
1041 * While in vblank, position will be negative
1042 * counting up towards 0 at vbl_end. And outside
1043 * vblank, position will be positive counting
1044 * up since vbl_end.
1045 */
1046 if (position >= vbl_start)
1047 position -= vbl_end;
1048 else
1049 position += vtotal - vbl_end;
1050
1051 if (use_scanline_counter) {
1052 *vpos = position;
1053 *hpos = 0;
1054 } else {
1055 *vpos = position / htotal;
1056 *hpos = position - (*vpos * htotal);
1057 }
1058
1059 return true;
1060}
1061
1062int intel_get_crtc_scanline(struct intel_crtc *crtc)
1063{
1064 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1065 unsigned long irqflags;
1066 int position;
1067
1068 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1069 position = __intel_get_crtc_scanline(crtc);
1070 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1071
1072 return position;
1073}
1074
1075static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1076{
1077 struct intel_uncore *uncore = &dev_priv->uncore;
1078 u32 busy_up, busy_down, max_avg, min_avg;
1079 u8 new_delay;
1080
1081 spin_lock(&mchdev_lock);
1082
1083 intel_uncore_write16(uncore,
1084 MEMINTRSTS,
1085 intel_uncore_read(uncore, MEMINTRSTS));
1086
1087 new_delay = dev_priv->ips.cur_delay;
1088
1089 intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1090 busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1091 busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1092 max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1093 min_avg = intel_uncore_read(uncore, RCBMINAVG);
1094
1095 /* Handle RCS change request from hw */
1096 if (busy_up > max_avg) {
1097 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1098 new_delay = dev_priv->ips.cur_delay - 1;
1099 if (new_delay < dev_priv->ips.max_delay)
1100 new_delay = dev_priv->ips.max_delay;
1101 } else if (busy_down < min_avg) {
1102 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1103 new_delay = dev_priv->ips.cur_delay + 1;
1104 if (new_delay > dev_priv->ips.min_delay)
1105 new_delay = dev_priv->ips.min_delay;
1106 }
1107
1108 if (ironlake_set_drps(dev_priv, new_delay))
1109 dev_priv->ips.cur_delay = new_delay;
1110
1111 spin_unlock(&mchdev_lock);
1112
1113 return;
1114}
1115
1116static void vlv_c0_read(struct drm_i915_private *dev_priv,
1117 struct intel_rps_ei *ei)
1118{
1119 ei->ktime = ktime_get_raw();
1120 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1121 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1122}
1123
1124void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1125{
1126 memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1127}
1128
1129static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1130{
1131 struct intel_rps *rps = &dev_priv->gt_pm.rps;
1132 const struct intel_rps_ei *prev = &rps->ei;
1133 struct intel_rps_ei now;
1134 u32 events = 0;
1135
1136 if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1137 return 0;
1138
1139 vlv_c0_read(dev_priv, &now);
1140
1141 if (prev->ktime) {
1142 u64 time, c0;
1143 u32 render, media;
1144
1145 time = ktime_us_delta(now.ktime, prev->ktime);
1146
1147 time *= dev_priv->czclk_freq;
1148
1149 /* Workload can be split between render + media,
1150 * e.g. SwapBuffers being blitted in X after being rendered in
1151 * mesa. To account for this we need to combine both engines
1152 * into our activity counter.
1153 */
1154 render = now.render_c0 - prev->render_c0;
1155 media = now.media_c0 - prev->media_c0;
1156 c0 = max(render, media);
1157 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1158
1159 if (c0 > time * rps->power.up_threshold)
1160 events = GEN6_PM_RP_UP_THRESHOLD;
1161 else if (c0 < time * rps->power.down_threshold)
1162 events = GEN6_PM_RP_DOWN_THRESHOLD;
1163 }
1164
1165 rps->ei = now;
1166 return events;
1167}
1168
1169static void gen6_pm_rps_work(struct work_struct *work)
1170{
1171 struct drm_i915_private *dev_priv =
1172 container_of(work, struct drm_i915_private, gt_pm.rps.work);
1173 struct intel_gt *gt = &dev_priv->gt;
1174 struct intel_rps *rps = &dev_priv->gt_pm.rps;
1175 bool client_boost = false;
1176 int new_delay, adj, min, max;
1177 u32 pm_iir = 0;
1178
1179 spin_lock_irq(>->irq_lock);
1180 if (rps->interrupts_enabled) {
1181 pm_iir = fetch_and_zero(&rps->pm_iir);
1182 client_boost = atomic_read(&rps->num_waiters);
1183 }
1184 spin_unlock_irq(>->irq_lock);
1185
1186 /* Make sure we didn't queue anything we're not going to process. */
1187 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1188 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1189 goto out;
1190
1191 mutex_lock(&rps->lock);
1192
1193 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1194
1195 adj = rps->last_adj;
1196 new_delay = rps->cur_freq;
1197 min = rps->min_freq_softlimit;
1198 max = rps->max_freq_softlimit;
1199 if (client_boost)
1200 max = rps->max_freq;
1201 if (client_boost && new_delay < rps->boost_freq) {
1202 new_delay = rps->boost_freq;
1203 adj = 0;
1204 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1205 if (adj > 0)
1206 adj *= 2;
1207 else /* CHV needs even encode values */
1208 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1209
1210 if (new_delay >= rps->max_freq_softlimit)
1211 adj = 0;
1212 } else if (client_boost) {
1213 adj = 0;
1214 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1215 if (rps->cur_freq > rps->efficient_freq)
1216 new_delay = rps->efficient_freq;
1217 else if (rps->cur_freq > rps->min_freq_softlimit)
1218 new_delay = rps->min_freq_softlimit;
1219 adj = 0;
1220 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1221 if (adj < 0)
1222 adj *= 2;
1223 else /* CHV needs even encode values */
1224 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1225
1226 if (new_delay <= rps->min_freq_softlimit)
1227 adj = 0;
1228 } else { /* unknown event */
1229 adj = 0;
1230 }
1231
1232 rps->last_adj = adj;
1233
1234 /*
1235 * Limit deboosting and boosting to keep ourselves at the extremes
1236 * when in the respective power modes (i.e. slowly decrease frequencies
1237 * while in the HIGH_POWER zone and slowly increase frequencies while
1238 * in the LOW_POWER zone). On idle, we will hit the timeout and drop
1239 * to the next level quickly, and conversely if busy we expect to
1240 * hit a waitboost and rapidly switch into max power.
1241 */
1242 if ((adj < 0 && rps->power.mode == HIGH_POWER) ||
1243 (adj > 0 && rps->power.mode == LOW_POWER))
1244 rps->last_adj = 0;
1245
1246 /* sysfs frequency interfaces may have snuck in while servicing the
1247 * interrupt
1248 */
1249 new_delay += adj;
1250 new_delay = clamp_t(int, new_delay, min, max);
1251
1252 if (intel_set_rps(dev_priv, new_delay)) {
1253 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1254 rps->last_adj = 0;
1255 }
1256
1257 mutex_unlock(&rps->lock);
1258
1259out:
1260 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1261 spin_lock_irq(>->irq_lock);
1262 if (rps->interrupts_enabled)
1263 gen6_gt_pm_unmask_irq(gt, dev_priv->pm_rps_events);
1264 spin_unlock_irq(>->irq_lock);
1265}
1266
1267
1268/**
1269 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1270 * occurred.
1271 * @work: workqueue struct
1272 *
1273 * Doesn't actually do anything except notify userspace. As a consequence of
1274 * this event, userspace should try to remap the bad rows since statistically
1275 * it is likely the same row is more likely to go bad again.
1276 */
1277static void ivybridge_parity_work(struct work_struct *work)
1278{
1279 struct drm_i915_private *dev_priv =
1280 container_of(work, typeof(*dev_priv), l3_parity.error_work);
1281 struct intel_gt *gt = &dev_priv->gt;
1282 u32 error_status, row, bank, subbank;
1283 char *parity_event[6];
1284 u32 misccpctl;
1285 u8 slice = 0;
1286
1287 /* We must turn off DOP level clock gating to access the L3 registers.
1288 * In order to prevent a get/put style interface, acquire struct mutex
1289 * any time we access those registers.
1290 */
1291 mutex_lock(&dev_priv->drm.struct_mutex);
1292
1293 /* If we've screwed up tracking, just let the interrupt fire again */
1294 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1295 goto out;
1296
1297 misccpctl = I915_READ(GEN7_MISCCPCTL);
1298 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1299 POSTING_READ(GEN7_MISCCPCTL);
1300
1301 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1302 i915_reg_t reg;
1303
1304 slice--;
1305 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1306 break;
1307
1308 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1309
1310 reg = GEN7_L3CDERRST1(slice);
1311
1312 error_status = I915_READ(reg);
1313 row = GEN7_PARITY_ERROR_ROW(error_status);
1314 bank = GEN7_PARITY_ERROR_BANK(error_status);
1315 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1316
1317 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1318 POSTING_READ(reg);
1319
1320 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1321 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1322 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1323 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1324 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1325 parity_event[5] = NULL;
1326
1327 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1328 KOBJ_CHANGE, parity_event);
1329
1330 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1331 slice, row, bank, subbank);
1332
1333 kfree(parity_event[4]);
1334 kfree(parity_event[3]);
1335 kfree(parity_event[2]);
1336 kfree(parity_event[1]);
1337 }
1338
1339 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1340
1341out:
1342 WARN_ON(dev_priv->l3_parity.which_slice);
1343 spin_lock_irq(>->irq_lock);
1344 gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1345 spin_unlock_irq(>->irq_lock);
1346
1347 mutex_unlock(&dev_priv->drm.struct_mutex);
1348}
1349
1350static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1351{
1352 switch (pin) {
1353 case HPD_PORT_C:
1354 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1355 case HPD_PORT_D:
1356 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1357 case HPD_PORT_E:
1358 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1359 case HPD_PORT_F:
1360 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1361 default:
1362 return false;
1363 }
1364}
1365
1366static bool gen12_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1367{
1368 switch (pin) {
1369 case HPD_PORT_D:
1370 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1371 case HPD_PORT_E:
1372 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1373 case HPD_PORT_F:
1374 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1375 case HPD_PORT_G:
1376 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1377 case HPD_PORT_H:
1378 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC5);
1379 case HPD_PORT_I:
1380 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC6);
1381 default:
1382 return false;
1383 }
1384}
1385
1386static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1387{
1388 switch (pin) {
1389 case HPD_PORT_A:
1390 return val & PORTA_HOTPLUG_LONG_DETECT;
1391 case HPD_PORT_B:
1392 return val & PORTB_HOTPLUG_LONG_DETECT;
1393 case HPD_PORT_C:
1394 return val & PORTC_HOTPLUG_LONG_DETECT;
1395 default:
1396 return false;
1397 }
1398}
1399
1400static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1401{
1402 switch (pin) {
1403 case HPD_PORT_A:
1404 return val & ICP_DDIA_HPD_LONG_DETECT;
1405 case HPD_PORT_B:
1406 return val & ICP_DDIB_HPD_LONG_DETECT;
1407 case HPD_PORT_C:
1408 return val & TGP_DDIC_HPD_LONG_DETECT;
1409 default:
1410 return false;
1411 }
1412}
1413
1414static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1415{
1416 switch (pin) {
1417 case HPD_PORT_C:
1418 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1419 case HPD_PORT_D:
1420 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1421 case HPD_PORT_E:
1422 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1423 case HPD_PORT_F:
1424 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1425 default:
1426 return false;
1427 }
1428}
1429
1430static bool tgp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1431{
1432 switch (pin) {
1433 case HPD_PORT_A:
1434 return val & ICP_DDIA_HPD_LONG_DETECT;
1435 case HPD_PORT_B:
1436 return val & ICP_DDIB_HPD_LONG_DETECT;
1437 case HPD_PORT_C:
1438 return val & TGP_DDIC_HPD_LONG_DETECT;
1439 default:
1440 return false;
1441 }
1442}
1443
1444static bool tgp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1445{
1446 switch (pin) {
1447 case HPD_PORT_D:
1448 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1449 case HPD_PORT_E:
1450 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1451 case HPD_PORT_F:
1452 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1453 case HPD_PORT_G:
1454 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1455 case HPD_PORT_H:
1456 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC5);
1457 case HPD_PORT_I:
1458 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC6);
1459 default:
1460 return false;
1461 }
1462}
1463
1464static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1465{
1466 switch (pin) {
1467 case HPD_PORT_E:
1468 return val & PORTE_HOTPLUG_LONG_DETECT;
1469 default:
1470 return false;
1471 }
1472}
1473
1474static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1475{
1476 switch (pin) {
1477 case HPD_PORT_A:
1478 return val & PORTA_HOTPLUG_LONG_DETECT;
1479 case HPD_PORT_B:
1480 return val & PORTB_HOTPLUG_LONG_DETECT;
1481 case HPD_PORT_C:
1482 return val & PORTC_HOTPLUG_LONG_DETECT;
1483 case HPD_PORT_D:
1484 return val & PORTD_HOTPLUG_LONG_DETECT;
1485 default:
1486 return false;
1487 }
1488}
1489
1490static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1491{
1492 switch (pin) {
1493 case HPD_PORT_A:
1494 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1495 default:
1496 return false;
1497 }
1498}
1499
1500static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1501{
1502 switch (pin) {
1503 case HPD_PORT_B:
1504 return val & PORTB_HOTPLUG_LONG_DETECT;
1505 case HPD_PORT_C:
1506 return val & PORTC_HOTPLUG_LONG_DETECT;
1507 case HPD_PORT_D:
1508 return val & PORTD_HOTPLUG_LONG_DETECT;
1509 default:
1510 return false;
1511 }
1512}
1513
1514static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1515{
1516 switch (pin) {
1517 case HPD_PORT_B:
1518 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1519 case HPD_PORT_C:
1520 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1521 case HPD_PORT_D:
1522 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1523 default:
1524 return false;
1525 }
1526}
1527
1528/*
1529 * Get a bit mask of pins that have triggered, and which ones may be long.
1530 * This can be called multiple times with the same masks to accumulate
1531 * hotplug detection results from several registers.
1532 *
1533 * Note that the caller is expected to zero out the masks initially.
1534 */
1535static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1536 u32 *pin_mask, u32 *long_mask,
1537 u32 hotplug_trigger, u32 dig_hotplug_reg,
1538 const u32 hpd[HPD_NUM_PINS],
1539 bool long_pulse_detect(enum hpd_pin pin, u32 val))
1540{
1541 enum hpd_pin pin;
1542
1543 BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1544
1545 for_each_hpd_pin(pin) {
1546 if ((hpd[pin] & hotplug_trigger) == 0)
1547 continue;
1548
1549 *pin_mask |= BIT(pin);
1550
1551 if (long_pulse_detect(pin, dig_hotplug_reg))
1552 *long_mask |= BIT(pin);
1553 }
1554
1555 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1556 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1557
1558}
1559
1560static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1561{
1562 wake_up_all(&dev_priv->gmbus_wait_queue);
1563}
1564
1565static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1566{
1567 wake_up_all(&dev_priv->gmbus_wait_queue);
1568}
1569
1570#if defined(CONFIG_DEBUG_FS)
1571static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1572 enum pipe pipe,
1573 u32 crc0, u32 crc1,
1574 u32 crc2, u32 crc3,
1575 u32 crc4)
1576{
1577 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1578 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1579 u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1580
1581 trace_intel_pipe_crc(crtc, crcs);
1582
1583 spin_lock(&pipe_crc->lock);
1584 /*
1585 * For some not yet identified reason, the first CRC is
1586 * bonkers. So let's just wait for the next vblank and read
1587 * out the buggy result.
1588 *
1589 * On GEN8+ sometimes the second CRC is bonkers as well, so
1590 * don't trust that one either.
1591 */
1592 if (pipe_crc->skipped <= 0 ||
1593 (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1594 pipe_crc->skipped++;
1595 spin_unlock(&pipe_crc->lock);
1596 return;
1597 }
1598 spin_unlock(&pipe_crc->lock);
1599
1600 drm_crtc_add_crc_entry(&crtc->base, true,
1601 drm_crtc_accurate_vblank_count(&crtc->base),
1602 crcs);
1603}
1604#else
1605static inline void
1606display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1607 enum pipe pipe,
1608 u32 crc0, u32 crc1,
1609 u32 crc2, u32 crc3,
1610 u32 crc4) {}
1611#endif
1612
1613
1614static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1615 enum pipe pipe)
1616{
1617 display_pipe_crc_irq_handler(dev_priv, pipe,
1618 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1619 0, 0, 0, 0);
1620}
1621
1622static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1623 enum pipe pipe)
1624{
1625 display_pipe_crc_irq_handler(dev_priv, pipe,
1626 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1627 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1628 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1629 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1630 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1631}
1632
1633static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1634 enum pipe pipe)
1635{
1636 u32 res1, res2;
1637
1638 if (INTEL_GEN(dev_priv) >= 3)
1639 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1640 else
1641 res1 = 0;
1642
1643 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1644 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1645 else
1646 res2 = 0;
1647
1648 display_pipe_crc_irq_handler(dev_priv, pipe,
1649 I915_READ(PIPE_CRC_RES_RED(pipe)),
1650 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1651 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1652 res1, res2);
1653}
1654
1655/* The RPS events need forcewake, so we add them to a work queue and mask their
1656 * IMR bits until the work is done. Other interrupts can be processed without
1657 * the work queue. */
1658void gen11_rps_irq_handler(struct intel_gt *gt, u32 pm_iir)
1659{
1660 struct drm_i915_private *i915 = gt->i915;
1661 struct intel_rps *rps = &i915->gt_pm.rps;
1662 const u32 events = i915->pm_rps_events & pm_iir;
1663
1664 lockdep_assert_held(>->irq_lock);
1665
1666 if (unlikely(!events))
1667 return;
1668
1669 gen6_gt_pm_mask_irq(gt, events);
1670
1671 if (!rps->interrupts_enabled)
1672 return;
1673
1674 rps->pm_iir |= events;
1675 schedule_work(&rps->work);
1676}
1677
1678void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1679{
1680 struct intel_rps *rps = &dev_priv->gt_pm.rps;
1681 struct intel_gt *gt = &dev_priv->gt;
1682
1683 if (pm_iir & dev_priv->pm_rps_events) {
1684 spin_lock(>->irq_lock);
1685 gen6_gt_pm_mask_irq(gt, pm_iir & dev_priv->pm_rps_events);
1686 if (rps->interrupts_enabled) {
1687 rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1688 schedule_work(&rps->work);
1689 }
1690 spin_unlock(>->irq_lock);
1691 }
1692
1693 if (INTEL_GEN(dev_priv) >= 8)
1694 return;
1695
1696 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1697 intel_engine_breadcrumbs_irq(dev_priv->engine[VECS0]);
1698
1699 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1700 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1701}
1702
1703static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1704{
1705 enum pipe pipe;
1706
1707 for_each_pipe(dev_priv, pipe) {
1708 I915_WRITE(PIPESTAT(pipe),
1709 PIPESTAT_INT_STATUS_MASK |
1710 PIPE_FIFO_UNDERRUN_STATUS);
1711
1712 dev_priv->pipestat_irq_mask[pipe] = 0;
1713 }
1714}
1715
1716static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1717 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1718{
1719 int pipe;
1720
1721 spin_lock(&dev_priv->irq_lock);
1722
1723 if (!dev_priv->display_irqs_enabled) {
1724 spin_unlock(&dev_priv->irq_lock);
1725 return;
1726 }
1727
1728 for_each_pipe(dev_priv, pipe) {
1729 i915_reg_t reg;
1730 u32 status_mask, enable_mask, iir_bit = 0;
1731
1732 /*
1733 * PIPESTAT bits get signalled even when the interrupt is
1734 * disabled with the mask bits, and some of the status bits do
1735 * not generate interrupts at all (like the underrun bit). Hence
1736 * we need to be careful that we only handle what we want to
1737 * handle.
1738 */
1739
1740 /* fifo underruns are filterered in the underrun handler. */
1741 status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1742
1743 switch (pipe) {
1744 case PIPE_A:
1745 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1746 break;
1747 case PIPE_B:
1748 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1749 break;
1750 case PIPE_C:
1751 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1752 break;
1753 }
1754 if (iir & iir_bit)
1755 status_mask |= dev_priv->pipestat_irq_mask[pipe];
1756
1757 if (!status_mask)
1758 continue;
1759
1760 reg = PIPESTAT(pipe);
1761 pipe_stats[pipe] = I915_READ(reg) & status_mask;
1762 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1763
1764 /*
1765 * Clear the PIPE*STAT regs before the IIR
1766 *
1767 * Toggle the enable bits to make sure we get an
1768 * edge in the ISR pipe event bit if we don't clear
1769 * all the enabled status bits. Otherwise the edge
1770 * triggered IIR on i965/g4x wouldn't notice that
1771 * an interrupt is still pending.
1772 */
1773 if (pipe_stats[pipe]) {
1774 I915_WRITE(reg, pipe_stats[pipe]);
1775 I915_WRITE(reg, enable_mask);
1776 }
1777 }
1778 spin_unlock(&dev_priv->irq_lock);
1779}
1780
1781static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1782 u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1783{
1784 enum pipe pipe;
1785
1786 for_each_pipe(dev_priv, pipe) {
1787 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1788 drm_handle_vblank(&dev_priv->drm, pipe);
1789
1790 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1791 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1792
1793 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1794 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1795 }
1796}
1797
1798static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1799 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1800{
1801 bool blc_event = false;
1802 enum pipe pipe;
1803
1804 for_each_pipe(dev_priv, pipe) {
1805 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1806 drm_handle_vblank(&dev_priv->drm, pipe);
1807
1808 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1809 blc_event = true;
1810
1811 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1812 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1813
1814 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1815 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1816 }
1817
1818 if (blc_event || (iir & I915_ASLE_INTERRUPT))
1819 intel_opregion_asle_intr(dev_priv);
1820}
1821
1822static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1823 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1824{
1825 bool blc_event = false;
1826 enum pipe pipe;
1827
1828 for_each_pipe(dev_priv, pipe) {
1829 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1830 drm_handle_vblank(&dev_priv->drm, pipe);
1831
1832 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1833 blc_event = true;
1834
1835 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1836 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1837
1838 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1839 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1840 }
1841
1842 if (blc_event || (iir & I915_ASLE_INTERRUPT))
1843 intel_opregion_asle_intr(dev_priv);
1844
1845 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1846 gmbus_irq_handler(dev_priv);
1847}
1848
1849static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1850 u32 pipe_stats[I915_MAX_PIPES])
1851{
1852 enum pipe pipe;
1853
1854 for_each_pipe(dev_priv, pipe) {
1855 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1856 drm_handle_vblank(&dev_priv->drm, pipe);
1857
1858 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1859 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1860
1861 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1862 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1863 }
1864
1865 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1866 gmbus_irq_handler(dev_priv);
1867}
1868
1869static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1870{
1871 u32 hotplug_status = 0, hotplug_status_mask;
1872 int i;
1873
1874 if (IS_G4X(dev_priv) ||
1875 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1876 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1877 DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1878 else
1879 hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1880
1881 /*
1882 * We absolutely have to clear all the pending interrupt
1883 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1884 * interrupt bit won't have an edge, and the i965/g4x
1885 * edge triggered IIR will not notice that an interrupt
1886 * is still pending. We can't use PORT_HOTPLUG_EN to
1887 * guarantee the edge as the act of toggling the enable
1888 * bits can itself generate a new hotplug interrupt :(
1889 */
1890 for (i = 0; i < 10; i++) {
1891 u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
1892
1893 if (tmp == 0)
1894 return hotplug_status;
1895
1896 hotplug_status |= tmp;
1897 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1898 }
1899
1900 WARN_ONCE(1,
1901 "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1902 I915_READ(PORT_HOTPLUG_STAT));
1903
1904 return hotplug_status;
1905}
1906
1907static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1908 u32 hotplug_status)
1909{
1910 u32 pin_mask = 0, long_mask = 0;
1911
1912 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1913 IS_CHERRYVIEW(dev_priv)) {
1914 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1915
1916 if (hotplug_trigger) {
1917 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1918 hotplug_trigger, hotplug_trigger,
1919 hpd_status_g4x,
1920 i9xx_port_hotplug_long_detect);
1921
1922 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1923 }
1924
1925 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1926 dp_aux_irq_handler(dev_priv);
1927 } else {
1928 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1929
1930 if (hotplug_trigger) {
1931 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1932 hotplug_trigger, hotplug_trigger,
1933 hpd_status_i915,
1934 i9xx_port_hotplug_long_detect);
1935 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1936 }
1937 }
1938}
1939
1940static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1941{
1942 struct drm_i915_private *dev_priv = arg;
1943 irqreturn_t ret = IRQ_NONE;
1944
1945 if (!intel_irqs_enabled(dev_priv))
1946 return IRQ_NONE;
1947
1948 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1949 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1950
1951 do {
1952 u32 iir, gt_iir, pm_iir;
1953 u32 pipe_stats[I915_MAX_PIPES] = {};
1954 u32 hotplug_status = 0;
1955 u32 ier = 0;
1956
1957 gt_iir = I915_READ(GTIIR);
1958 pm_iir = I915_READ(GEN6_PMIIR);
1959 iir = I915_READ(VLV_IIR);
1960
1961 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1962 break;
1963
1964 ret = IRQ_HANDLED;
1965
1966 /*
1967 * Theory on interrupt generation, based on empirical evidence:
1968 *
1969 * x = ((VLV_IIR & VLV_IER) ||
1970 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1971 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1972 *
1973 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1974 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1975 * guarantee the CPU interrupt will be raised again even if we
1976 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1977 * bits this time around.
1978 */
1979 I915_WRITE(VLV_MASTER_IER, 0);
1980 ier = I915_READ(VLV_IER);
1981 I915_WRITE(VLV_IER, 0);
1982
1983 if (gt_iir)
1984 I915_WRITE(GTIIR, gt_iir);
1985 if (pm_iir)
1986 I915_WRITE(GEN6_PMIIR, pm_iir);
1987
1988 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1989 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1990
1991 /* Call regardless, as some status bits might not be
1992 * signalled in iir */
1993 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1994
1995 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1996 I915_LPE_PIPE_B_INTERRUPT))
1997 intel_lpe_audio_irq_handler(dev_priv);
1998
1999 /*
2000 * VLV_IIR is single buffered, and reflects the level
2001 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2002 */
2003 if (iir)
2004 I915_WRITE(VLV_IIR, iir);
2005
2006 I915_WRITE(VLV_IER, ier);
2007 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2008
2009 if (gt_iir)
2010 gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
2011 if (pm_iir)
2012 gen6_rps_irq_handler(dev_priv, pm_iir);
2013
2014 if (hotplug_status)
2015 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2016
2017 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2018 } while (0);
2019
2020 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2021
2022 return ret;
2023}
2024
2025static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2026{
2027 struct drm_i915_private *dev_priv = arg;
2028 irqreturn_t ret = IRQ_NONE;
2029
2030 if (!intel_irqs_enabled(dev_priv))
2031 return IRQ_NONE;
2032
2033 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2034 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2035
2036 do {
2037 u32 master_ctl, iir;
2038 u32 pipe_stats[I915_MAX_PIPES] = {};
2039 u32 hotplug_status = 0;
2040 u32 gt_iir[4];
2041 u32 ier = 0;
2042
2043 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2044 iir = I915_READ(VLV_IIR);
2045
2046 if (master_ctl == 0 && iir == 0)
2047 break;
2048
2049 ret = IRQ_HANDLED;
2050
2051 /*
2052 * Theory on interrupt generation, based on empirical evidence:
2053 *
2054 * x = ((VLV_IIR & VLV_IER) ||
2055 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2056 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2057 *
2058 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2059 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2060 * guarantee the CPU interrupt will be raised again even if we
2061 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2062 * bits this time around.
2063 */
2064 I915_WRITE(GEN8_MASTER_IRQ, 0);
2065 ier = I915_READ(VLV_IER);
2066 I915_WRITE(VLV_IER, 0);
2067
2068 gen8_gt_irq_ack(&dev_priv->gt, master_ctl, gt_iir);
2069
2070 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2071 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2072
2073 /* Call regardless, as some status bits might not be
2074 * signalled in iir */
2075 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2076
2077 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2078 I915_LPE_PIPE_B_INTERRUPT |
2079 I915_LPE_PIPE_C_INTERRUPT))
2080 intel_lpe_audio_irq_handler(dev_priv);
2081
2082 /*
2083 * VLV_IIR is single buffered, and reflects the level
2084 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2085 */
2086 if (iir)
2087 I915_WRITE(VLV_IIR, iir);
2088
2089 I915_WRITE(VLV_IER, ier);
2090 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2091
2092 gen8_gt_irq_handler(&dev_priv->gt, master_ctl, gt_iir);
2093
2094 if (hotplug_status)
2095 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2096
2097 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2098 } while (0);
2099
2100 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2101
2102 return ret;
2103}
2104
2105static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2106 u32 hotplug_trigger,
2107 const u32 hpd[HPD_NUM_PINS])
2108{
2109 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2110
2111 /*
2112 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2113 * unless we touch the hotplug register, even if hotplug_trigger is
2114 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2115 * errors.
2116 */
2117 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2118 if (!hotplug_trigger) {
2119 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2120 PORTD_HOTPLUG_STATUS_MASK |
2121 PORTC_HOTPLUG_STATUS_MASK |
2122 PORTB_HOTPLUG_STATUS_MASK;
2123 dig_hotplug_reg &= ~mask;
2124 }
2125
2126 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2127 if (!hotplug_trigger)
2128 return;
2129
2130 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2131 dig_hotplug_reg, hpd,
2132 pch_port_hotplug_long_detect);
2133
2134 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2135}
2136
2137static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2138{
2139 int pipe;
2140 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2141
2142 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2143
2144 if (pch_iir & SDE_AUDIO_POWER_MASK) {
2145 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2146 SDE_AUDIO_POWER_SHIFT);
2147 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2148 port_name(port));
2149 }
2150
2151 if (pch_iir & SDE_AUX_MASK)
2152 dp_aux_irq_handler(dev_priv);
2153
2154 if (pch_iir & SDE_GMBUS)
2155 gmbus_irq_handler(dev_priv);
2156
2157 if (pch_iir & SDE_AUDIO_HDCP_MASK)
2158 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2159
2160 if (pch_iir & SDE_AUDIO_TRANS_MASK)
2161 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2162
2163 if (pch_iir & SDE_POISON)
2164 DRM_ERROR("PCH poison interrupt\n");
2165
2166 if (pch_iir & SDE_FDI_MASK)
2167 for_each_pipe(dev_priv, pipe)
2168 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2169 pipe_name(pipe),
2170 I915_READ(FDI_RX_IIR(pipe)));
2171
2172 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2173 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2174
2175 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2176 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2177
2178 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2179 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2180
2181 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2182 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2183}
2184
2185static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2186{
2187 u32 err_int = I915_READ(GEN7_ERR_INT);
2188 enum pipe pipe;
2189
2190 if (err_int & ERR_INT_POISON)
2191 DRM_ERROR("Poison interrupt\n");
2192
2193 for_each_pipe(dev_priv, pipe) {
2194 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2195 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2196
2197 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2198 if (IS_IVYBRIDGE(dev_priv))
2199 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2200 else
2201 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2202 }
2203 }
2204
2205 I915_WRITE(GEN7_ERR_INT, err_int);
2206}
2207
2208static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2209{
2210 u32 serr_int = I915_READ(SERR_INT);
2211 enum pipe pipe;
2212
2213 if (serr_int & SERR_INT_POISON)
2214 DRM_ERROR("PCH poison interrupt\n");
2215
2216 for_each_pipe(dev_priv, pipe)
2217 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2218 intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2219
2220 I915_WRITE(SERR_INT, serr_int);
2221}
2222
2223static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2224{
2225 int pipe;
2226 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2227
2228 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2229
2230 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2231 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2232 SDE_AUDIO_POWER_SHIFT_CPT);
2233 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2234 port_name(port));
2235 }
2236
2237 if (pch_iir & SDE_AUX_MASK_CPT)
2238 dp_aux_irq_handler(dev_priv);
2239
2240 if (pch_iir & SDE_GMBUS_CPT)
2241 gmbus_irq_handler(dev_priv);
2242
2243 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2244 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2245
2246 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2247 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2248
2249 if (pch_iir & SDE_FDI_MASK_CPT)
2250 for_each_pipe(dev_priv, pipe)
2251 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2252 pipe_name(pipe),
2253 I915_READ(FDI_RX_IIR(pipe)));
2254
2255 if (pch_iir & SDE_ERROR_CPT)
2256 cpt_serr_int_handler(dev_priv);
2257}
2258
2259static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir,
2260 const u32 *pins)
2261{
2262 u32 ddi_hotplug_trigger;
2263 u32 tc_hotplug_trigger;
2264 u32 pin_mask = 0, long_mask = 0;
2265
2266 if (HAS_PCH_MCC(dev_priv)) {
2267 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
2268 tc_hotplug_trigger = 0;
2269 } else {
2270 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
2271 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
2272 }
2273
2274 if (ddi_hotplug_trigger) {
2275 u32 dig_hotplug_reg;
2276
2277 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2278 I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2279
2280 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2281 ddi_hotplug_trigger,
2282 dig_hotplug_reg, pins,
2283 icp_ddi_port_hotplug_long_detect);
2284 }
2285
2286 if (tc_hotplug_trigger) {
2287 u32 dig_hotplug_reg;
2288
2289 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2290 I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2291
2292 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2293 tc_hotplug_trigger,
2294 dig_hotplug_reg, pins,
2295 icp_tc_port_hotplug_long_detect);
2296 }
2297
2298 if (pin_mask)
2299 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2300
2301 if (pch_iir & SDE_GMBUS_ICP)
2302 gmbus_irq_handler(dev_priv);
2303}
2304
2305static void tgp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2306{
2307 u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
2308 u32 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_TGP;
2309 u32 pin_mask = 0, long_mask = 0;
2310
2311 if (ddi_hotplug_trigger) {
2312 u32 dig_hotplug_reg;
2313
2314 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2315 I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2316
2317 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2318 ddi_hotplug_trigger,
2319 dig_hotplug_reg, hpd_tgp,
2320 tgp_ddi_port_hotplug_long_detect);
2321 }
2322
2323 if (tc_hotplug_trigger) {
2324 u32 dig_hotplug_reg;
2325
2326 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2327 I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2328
2329 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2330 tc_hotplug_trigger,
2331 dig_hotplug_reg, hpd_tgp,
2332 tgp_tc_port_hotplug_long_detect);
2333 }
2334
2335 if (pin_mask)
2336 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2337
2338 if (pch_iir & SDE_GMBUS_ICP)
2339 gmbus_irq_handler(dev_priv);
2340}
2341
2342static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2343{
2344 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2345 ~SDE_PORTE_HOTPLUG_SPT;
2346 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2347 u32 pin_mask = 0, long_mask = 0;
2348
2349 if (hotplug_trigger) {
2350 u32 dig_hotplug_reg;
2351
2352 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2353 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2354
2355 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2356 hotplug_trigger, dig_hotplug_reg, hpd_spt,
2357 spt_port_hotplug_long_detect);
2358 }
2359
2360 if (hotplug2_trigger) {
2361 u32 dig_hotplug_reg;
2362
2363 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2364 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2365
2366 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2367 hotplug2_trigger, dig_hotplug_reg, hpd_spt,
2368 spt_port_hotplug2_long_detect);
2369 }
2370
2371 if (pin_mask)
2372 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2373
2374 if (pch_iir & SDE_GMBUS_CPT)
2375 gmbus_irq_handler(dev_priv);
2376}
2377
2378static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2379 u32 hotplug_trigger,
2380 const u32 hpd[HPD_NUM_PINS])
2381{
2382 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2383
2384 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2385 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2386
2387 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2388 dig_hotplug_reg, hpd,
2389 ilk_port_hotplug_long_detect);
2390
2391 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2392}
2393
2394static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2395 u32 de_iir)
2396{
2397 enum pipe pipe;
2398 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2399
2400 if (hotplug_trigger)
2401 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2402
2403 if (de_iir & DE_AUX_CHANNEL_A)
2404 dp_aux_irq_handler(dev_priv);
2405
2406 if (de_iir & DE_GSE)
2407 intel_opregion_asle_intr(dev_priv);
2408
2409 if (de_iir & DE_POISON)
2410 DRM_ERROR("Poison interrupt\n");
2411
2412 for_each_pipe(dev_priv, pipe) {
2413 if (de_iir & DE_PIPE_VBLANK(pipe))
2414 drm_handle_vblank(&dev_priv->drm, pipe);
2415
2416 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2417 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2418
2419 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2420 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2421 }
2422
2423 /* check event from PCH */
2424 if (de_iir & DE_PCH_EVENT) {
2425 u32 pch_iir = I915_READ(SDEIIR);
2426
2427 if (HAS_PCH_CPT(dev_priv))
2428 cpt_irq_handler(dev_priv, pch_iir);
2429 else
2430 ibx_irq_handler(dev_priv, pch_iir);
2431
2432 /* should clear PCH hotplug event before clear CPU irq */
2433 I915_WRITE(SDEIIR, pch_iir);
2434 }
2435
2436 if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2437 ironlake_rps_change_irq_handler(dev_priv);
2438}
2439
2440static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2441 u32 de_iir)
2442{
2443 enum pipe pipe;
2444 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2445
2446 if (hotplug_trigger)
2447 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2448
2449 if (de_iir & DE_ERR_INT_IVB)
2450 ivb_err_int_handler(dev_priv);
2451
2452 if (de_iir & DE_EDP_PSR_INT_HSW) {
2453 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2454
2455 intel_psr_irq_handler(dev_priv, psr_iir);
2456 I915_WRITE(EDP_PSR_IIR, psr_iir);
2457 }
2458
2459 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2460 dp_aux_irq_handler(dev_priv);
2461
2462 if (de_iir & DE_GSE_IVB)
2463 intel_opregion_asle_intr(dev_priv);
2464
2465 for_each_pipe(dev_priv, pipe) {
2466 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2467 drm_handle_vblank(&dev_priv->drm, pipe);
2468 }
2469
2470 /* check event from PCH */
2471 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2472 u32 pch_iir = I915_READ(SDEIIR);
2473
2474 cpt_irq_handler(dev_priv, pch_iir);
2475
2476 /* clear PCH hotplug event before clear CPU irq */
2477 I915_WRITE(SDEIIR, pch_iir);
2478 }
2479}
2480
2481/*
2482 * To handle irqs with the minimum potential races with fresh interrupts, we:
2483 * 1 - Disable Master Interrupt Control.
2484 * 2 - Find the source(s) of the interrupt.
2485 * 3 - Clear the Interrupt Identity bits (IIR).
2486 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2487 * 5 - Re-enable Master Interrupt Control.
2488 */
2489static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2490{
2491 struct drm_i915_private *dev_priv = arg;
2492 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2493 irqreturn_t ret = IRQ_NONE;
2494
2495 if (!intel_irqs_enabled(dev_priv))
2496 return IRQ_NONE;
2497
2498 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2499 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2500
2501 /* disable master interrupt before clearing iir */
2502 de_ier = I915_READ(DEIER);
2503 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2504
2505 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2506 * interrupts will will be stored on its back queue, and then we'll be
2507 * able to process them after we restore SDEIER (as soon as we restore
2508 * it, we'll get an interrupt if SDEIIR still has something to process
2509 * due to its back queue). */
2510 if (!HAS_PCH_NOP(dev_priv)) {
2511 sde_ier = I915_READ(SDEIER);
2512 I915_WRITE(SDEIER, 0);
2513 }
2514
2515 /* Find, clear, then process each source of interrupt */
2516
2517 gt_iir = I915_READ(GTIIR);
2518 if (gt_iir) {
2519 I915_WRITE(GTIIR, gt_iir);
2520 ret = IRQ_HANDLED;
2521 if (INTEL_GEN(dev_priv) >= 6)
2522 gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
2523 else
2524 gen5_gt_irq_handler(&dev_priv->gt, gt_iir);
2525 }
2526
2527 de_iir = I915_READ(DEIIR);
2528 if (de_iir) {
2529 I915_WRITE(DEIIR, de_iir);
2530 ret = IRQ_HANDLED;
2531 if (INTEL_GEN(dev_priv) >= 7)
2532 ivb_display_irq_handler(dev_priv, de_iir);
2533 else
2534 ilk_display_irq_handler(dev_priv, de_iir);
2535 }
2536
2537 if (INTEL_GEN(dev_priv) >= 6) {
2538 u32 pm_iir = I915_READ(GEN6_PMIIR);
2539 if (pm_iir) {
2540 I915_WRITE(GEN6_PMIIR, pm_iir);
2541 ret = IRQ_HANDLED;
2542 gen6_rps_irq_handler(dev_priv, pm_iir);
2543 }
2544 }
2545
2546 I915_WRITE(DEIER, de_ier);
2547 if (!HAS_PCH_NOP(dev_priv))
2548 I915_WRITE(SDEIER, sde_ier);
2549
2550 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2551 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2552
2553 return ret;
2554}
2555
2556static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2557 u32 hotplug_trigger,
2558 const u32 hpd[HPD_NUM_PINS])
2559{
2560 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2561
2562 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2563 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2564
2565 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2566 dig_hotplug_reg, hpd,
2567 bxt_port_hotplug_long_detect);
2568
2569 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2570}
2571
2572static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2573{
2574 u32 pin_mask = 0, long_mask = 0;
2575 u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2576 u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2577 long_pulse_detect_func long_pulse_detect;
2578 const u32 *hpd;
2579
2580 if (INTEL_GEN(dev_priv) >= 12) {
2581 long_pulse_detect = gen12_port_hotplug_long_detect;
2582 hpd = hpd_gen12;
2583 } else {
2584 long_pulse_detect = gen11_port_hotplug_long_detect;
2585 hpd = hpd_gen11;
2586 }
2587
2588 if (trigger_tc) {
2589 u32 dig_hotplug_reg;
2590
2591 dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2592 I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2593
2594 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2595 dig_hotplug_reg, hpd, long_pulse_detect);
2596 }
2597
2598 if (trigger_tbt) {
2599 u32 dig_hotplug_reg;
2600
2601 dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2602 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2603
2604 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2605 dig_hotplug_reg, hpd, long_pulse_detect);
2606 }
2607
2608 if (pin_mask)
2609 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2610 else
2611 DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir);
2612}
2613
2614static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2615{
2616 u32 mask;
2617
2618 if (INTEL_GEN(dev_priv) >= 12)
2619 /* TODO: Add AUX entries for USBC */
2620 return TGL_DE_PORT_AUX_DDIA |
2621 TGL_DE_PORT_AUX_DDIB |
2622 TGL_DE_PORT_AUX_DDIC;
2623
2624 mask = GEN8_AUX_CHANNEL_A;
2625 if (INTEL_GEN(dev_priv) >= 9)
2626 mask |= GEN9_AUX_CHANNEL_B |
2627 GEN9_AUX_CHANNEL_C |
2628 GEN9_AUX_CHANNEL_D;
2629
2630 if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11))
2631 mask |= CNL_AUX_CHANNEL_F;
2632
2633 if (IS_GEN(dev_priv, 11))
2634 mask |= ICL_AUX_CHANNEL_E;
2635
2636 return mask;
2637}
2638
2639static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2640{
2641 if (INTEL_GEN(dev_priv) >= 9)
2642 return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2643 else
2644 return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2645}
2646
2647static void
2648gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2649{
2650 bool found = false;
2651
2652 if (iir & GEN8_DE_MISC_GSE) {
2653 intel_opregion_asle_intr(dev_priv);
2654 found = true;
2655 }
2656
2657 if (iir & GEN8_DE_EDP_PSR) {
2658 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2659
2660 intel_psr_irq_handler(dev_priv, psr_iir);
2661 I915_WRITE(EDP_PSR_IIR, psr_iir);
2662 found = true;
2663 }
2664
2665 if (!found)
2666 DRM_ERROR("Unexpected DE Misc interrupt\n");
2667}
2668
2669static irqreturn_t
2670gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2671{
2672 irqreturn_t ret = IRQ_NONE;
2673 u32 iir;
2674 enum pipe pipe;
2675
2676 if (master_ctl & GEN8_DE_MISC_IRQ) {
2677 iir = I915_READ(GEN8_DE_MISC_IIR);
2678 if (iir) {
2679 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2680 ret = IRQ_HANDLED;
2681 gen8_de_misc_irq_handler(dev_priv, iir);
2682 } else {
2683 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2684 }
2685 }
2686
2687 if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2688 iir = I915_READ(GEN11_DE_HPD_IIR);
2689 if (iir) {
2690 I915_WRITE(GEN11_DE_HPD_IIR, iir);
2691 ret = IRQ_HANDLED;
2692 gen11_hpd_irq_handler(dev_priv, iir);
2693 } else {
2694 DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
2695 }
2696 }
2697
2698 if (master_ctl & GEN8_DE_PORT_IRQ) {
2699 iir = I915_READ(GEN8_DE_PORT_IIR);
2700 if (iir) {
2701 u32 tmp_mask;
2702 bool found = false;
2703
2704 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2705 ret = IRQ_HANDLED;
2706
2707 if (iir & gen8_de_port_aux_mask(dev_priv)) {
2708 dp_aux_irq_handler(dev_priv);
2709 found = true;
2710 }
2711
2712 if (IS_GEN9_LP(dev_priv)) {
2713 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2714 if (tmp_mask) {
2715 bxt_hpd_irq_handler(dev_priv, tmp_mask,
2716 hpd_bxt);
2717 found = true;
2718 }
2719 } else if (IS_BROADWELL(dev_priv)) {
2720 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2721 if (tmp_mask) {
2722 ilk_hpd_irq_handler(dev_priv,
2723 tmp_mask, hpd_bdw);
2724 found = true;
2725 }
2726 }
2727
2728 if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2729 gmbus_irq_handler(dev_priv);
2730 found = true;
2731 }
2732
2733 if (!found)
2734 DRM_ERROR("Unexpected DE Port interrupt\n");
2735 }
2736 else
2737 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2738 }
2739
2740 for_each_pipe(dev_priv, pipe) {
2741 u32 fault_errors;
2742
2743 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2744 continue;
2745
2746 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2747 if (!iir) {
2748 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2749 continue;
2750 }
2751
2752 ret = IRQ_HANDLED;
2753 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2754
2755 if (iir & GEN8_PIPE_VBLANK)
2756 drm_handle_vblank(&dev_priv->drm, pipe);
2757
2758 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2759 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2760
2761 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2762 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2763
2764 fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2765 if (fault_errors)
2766 DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2767 pipe_name(pipe),
2768 fault_errors);
2769 }
2770
2771 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2772 master_ctl & GEN8_DE_PCH_IRQ) {
2773 /*
2774 * FIXME(BDW): Assume for now that the new interrupt handling
2775 * scheme also closed the SDE interrupt handling race we've seen
2776 * on older pch-split platforms. But this needs testing.
2777 */
2778 iir = I915_READ(SDEIIR);
2779 if (iir) {
2780 I915_WRITE(SDEIIR, iir);
2781 ret = IRQ_HANDLED;
2782
2783 if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
2784 tgp_irq_handler(dev_priv, iir);
2785 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_MCC)
2786 icp_irq_handler(dev_priv, iir, hpd_mcc);
2787 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2788 icp_irq_handler(dev_priv, iir, hpd_icp);
2789 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2790 spt_irq_handler(dev_priv, iir);
2791 else
2792 cpt_irq_handler(dev_priv, iir);
2793 } else {
2794 /*
2795 * Like on previous PCH there seems to be something
2796 * fishy going on with forwarding PCH interrupts.
2797 */
2798 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2799 }
2800 }
2801
2802 return ret;
2803}
2804
2805static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2806{
2807 raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2808
2809 /*
2810 * Now with master disabled, get a sample of level indications
2811 * for this interrupt. Indications will be cleared on related acks.
2812 * New indications can and will light up during processing,
2813 * and will generate new interrupt after enabling master.
2814 */
2815 return raw_reg_read(regs, GEN8_MASTER_IRQ);
2816}
2817
2818static inline void gen8_master_intr_enable(void __iomem * const regs)
2819{
2820 raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2821}
2822
2823static irqreturn_t gen8_irq_handler(int irq, void *arg)
2824{
2825 struct drm_i915_private *dev_priv = arg;
2826 void __iomem * const regs = dev_priv->uncore.regs;
2827 u32 master_ctl;
2828 u32 gt_iir[4];
2829
2830 if (!intel_irqs_enabled(dev_priv))
2831 return IRQ_NONE;
2832
2833 master_ctl = gen8_master_intr_disable(regs);
2834 if (!master_ctl) {
2835 gen8_master_intr_enable(regs);
2836 return IRQ_NONE;
2837 }
2838
2839 /* Find, clear, then process each source of interrupt */
2840 gen8_gt_irq_ack(&dev_priv->gt, master_ctl, gt_iir);
2841
2842 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2843 if (master_ctl & ~GEN8_GT_IRQS) {
2844 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2845 gen8_de_irq_handler(dev_priv, master_ctl);
2846 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2847 }
2848
2849 gen8_master_intr_enable(regs);
2850
2851 gen8_gt_irq_handler(&dev_priv->gt, master_ctl, gt_iir);
2852
2853 return IRQ_HANDLED;
2854}
2855
2856static u32
2857gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2858{
2859 void __iomem * const regs = gt->uncore->regs;
2860 u32 iir;
2861
2862 if (!(master_ctl & GEN11_GU_MISC_IRQ))
2863 return 0;
2864
2865 iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2866 if (likely(iir))
2867 raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2868
2869 return iir;
2870}
2871
2872static void
2873gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2874{
2875 if (iir & GEN11_GU_MISC_GSE)
2876 intel_opregion_asle_intr(gt->i915);
2877}
2878
2879static inline u32 gen11_master_intr_disable(void __iomem * const regs)
2880{
2881 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2882
2883 /*
2884 * Now with master disabled, get a sample of level indications
2885 * for this interrupt. Indications will be cleared on related acks.
2886 * New indications can and will light up during processing,
2887 * and will generate new interrupt after enabling master.
2888 */
2889 return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2890}
2891
2892static inline void gen11_master_intr_enable(void __iomem * const regs)
2893{
2894 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2895}
2896
2897static irqreturn_t gen11_irq_handler(int irq, void *arg)
2898{
2899 struct drm_i915_private * const i915 = arg;
2900 void __iomem * const regs = i915->uncore.regs;
2901 struct intel_gt *gt = &i915->gt;
2902 u32 master_ctl;
2903 u32 gu_misc_iir;
2904
2905 if (!intel_irqs_enabled(i915))
2906 return IRQ_NONE;
2907
2908 master_ctl = gen11_master_intr_disable(regs);
2909 if (!master_ctl) {
2910 gen11_master_intr_enable(regs);
2911 return IRQ_NONE;
2912 }
2913
2914 /* Find, clear, then process each source of interrupt. */
2915 gen11_gt_irq_handler(gt, master_ctl);
2916
2917 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2918 if (master_ctl & GEN11_DISPLAY_IRQ) {
2919 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2920
2921 disable_rpm_wakeref_asserts(&i915->runtime_pm);
2922 /*
2923 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2924 * for the display related bits.
2925 */
2926 gen8_de_irq_handler(i915, disp_ctl);
2927 enable_rpm_wakeref_asserts(&i915->runtime_pm);
2928 }
2929
2930 gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2931
2932 gen11_master_intr_enable(regs);
2933
2934 gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2935
2936 return IRQ_HANDLED;
2937}
2938
2939/* Called from drm generic code, passed 'crtc' which
2940 * we use as a pipe index
2941 */
2942int i8xx_enable_vblank(struct drm_crtc *crtc)
2943{
2944 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2945 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2946 unsigned long irqflags;
2947
2948 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2949 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2950 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2951
2952 return 0;
2953}
2954
2955int i945gm_enable_vblank(struct drm_crtc *crtc)
2956{
2957 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2958
2959 if (dev_priv->i945gm_vblank.enabled++ == 0)
2960 schedule_work(&dev_priv->i945gm_vblank.work);
2961
2962 return i8xx_enable_vblank(crtc);
2963}
2964
2965int i965_enable_vblank(struct drm_crtc *crtc)
2966{
2967 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2968 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2969 unsigned long irqflags;
2970
2971 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2972 i915_enable_pipestat(dev_priv, pipe,
2973 PIPE_START_VBLANK_INTERRUPT_STATUS);
2974 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2975
2976 return 0;
2977}
2978
2979int ilk_enable_vblank(struct drm_crtc *crtc)
2980{
2981 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2982 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2983 unsigned long irqflags;
2984 u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2985 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2986
2987 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2988 ilk_enable_display_irq(dev_priv, bit);
2989 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2990
2991 /* Even though there is no DMC, frame counter can get stuck when
2992 * PSR is active as no frames are generated.
2993 */
2994 if (HAS_PSR(dev_priv))
2995 drm_crtc_vblank_restore(crtc);
2996
2997 return 0;
2998}
2999
3000int bdw_enable_vblank(struct drm_crtc *crtc)
3001{
3002 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3003 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3004 unsigned long irqflags;
3005
3006 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3007 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3008 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3009
3010 /* Even if there is no DMC, frame counter can get stuck when
3011 * PSR is active as no frames are generated, so check only for PSR.
3012 */
3013 if (HAS_PSR(dev_priv))
3014 drm_crtc_vblank_restore(crtc);
3015
3016 return 0;
3017}
3018
3019/* Called from drm generic code, passed 'crtc' which
3020 * we use as a pipe index
3021 */
3022void i8xx_disable_vblank(struct drm_crtc *crtc)
3023{
3024 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3025 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3026 unsigned long irqflags;
3027
3028 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3029 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3030 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3031}
3032
3033void i945gm_disable_vblank(struct drm_crtc *crtc)
3034{
3035 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3036
3037 i8xx_disable_vblank(crtc);
3038
3039 if (--dev_priv->i945gm_vblank.enabled == 0)
3040 schedule_work(&dev_priv->i945gm_vblank.work);
3041}
3042
3043void i965_disable_vblank(struct drm_crtc *crtc)
3044{
3045 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3046 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3047 unsigned long irqflags;
3048
3049 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3050 i915_disable_pipestat(dev_priv, pipe,
3051 PIPE_START_VBLANK_INTERRUPT_STATUS);
3052 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3053}
3054
3055void ilk_disable_vblank(struct drm_crtc *crtc)
3056{
3057 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3058 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3059 unsigned long irqflags;
3060 u32 bit = INTEL_GEN(dev_priv) >= 7 ?
3061 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3062
3063 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3064 ilk_disable_display_irq(dev_priv, bit);
3065 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3066}
3067
3068void bdw_disable_vblank(struct drm_crtc *crtc)
3069{
3070 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3071 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3072 unsigned long irqflags;
3073
3074 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3075 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3076 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3077}
3078
3079static void i945gm_vblank_work_func(struct work_struct *work)
3080{
3081 struct drm_i915_private *dev_priv =
3082 container_of(work, struct drm_i915_private, i945gm_vblank.work);
3083
3084 /*
3085 * Vblank interrupts fail to wake up the device from C3,
3086 * hence we want to prevent C3 usage while vblank interrupts
3087 * are enabled.
3088 */
3089 pm_qos_update_request(&dev_priv->i945gm_vblank.pm_qos,
3090 READ_ONCE(dev_priv->i945gm_vblank.enabled) ?
3091 dev_priv->i945gm_vblank.c3_disable_latency :
3092 PM_QOS_DEFAULT_VALUE);
3093}
3094
3095static int cstate_disable_latency(const char *name)
3096{
3097 const struct cpuidle_driver *drv;
3098 int i;
3099
3100 drv = cpuidle_get_driver();
3101 if (!drv)
3102 return 0;
3103
3104 for (i = 0; i < drv->state_count; i++) {
3105 const struct cpuidle_state *state = &drv->states[i];
3106
3107 if (!strcmp(state->name, name))
3108 return state->exit_latency ?
3109 state->exit_latency - 1 : 0;
3110 }
3111
3112 return 0;
3113}
3114
3115static void i945gm_vblank_work_init(struct drm_i915_private *dev_priv)
3116{
3117 INIT_WORK(&dev_priv->i945gm_vblank.work,
3118 i945gm_vblank_work_func);
3119
3120 dev_priv->i945gm_vblank.c3_disable_latency =
3121 cstate_disable_latency("C3");
3122 pm_qos_add_request(&dev_priv->i945gm_vblank.pm_qos,
3123 PM_QOS_CPU_DMA_LATENCY,
3124 PM_QOS_DEFAULT_VALUE);
3125}
3126
3127static void i945gm_vblank_work_fini(struct drm_i915_private *dev_priv)
3128{
3129 cancel_work_sync(&dev_priv->i945gm_vblank.work);
3130 pm_qos_remove_request(&dev_priv->i945gm_vblank.pm_qos);
3131}
3132
3133static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3134{
3135 struct intel_uncore *uncore = &dev_priv->uncore;
3136
3137 if (HAS_PCH_NOP(dev_priv))
3138 return;
3139
3140 GEN3_IRQ_RESET(uncore, SDE);
3141
3142 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3143 I915_WRITE(SERR_INT, 0xffffffff);
3144}
3145
3146/*
3147 * SDEIER is also touched by the interrupt handler to work around missed PCH
3148 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3149 * instead we unconditionally enable all PCH interrupt sources here, but then
3150 * only unmask them as needed with SDEIMR.
3151 *
3152 * This function needs to be called before interrupts are enabled.
3153 */
3154static void ibx_irq_pre_postinstall(struct drm_i915_private *dev_priv)
3155{
3156 if (HAS_PCH_NOP(dev_priv))
3157 return;
3158
3159 WARN_ON(I915_READ(SDEIER) != 0);
3160 I915_WRITE(SDEIER, 0xffffffff);
3161 POSTING_READ(SDEIER);
3162}
3163
3164static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3165{
3166 struct intel_uncore *uncore = &dev_priv->uncore;
3167
3168 if (IS_CHERRYVIEW(dev_priv))
3169 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3170 else
3171 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
3172
3173 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3174 intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3175
3176 i9xx_pipestat_irq_reset(dev_priv);
3177
3178 GEN3_IRQ_RESET(uncore, VLV_);
3179 dev_priv->irq_mask = ~0u;
3180}
3181
3182static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3183{
3184 struct intel_uncore *uncore = &dev_priv->uncore;
3185
3186 u32 pipestat_mask;
3187 u32 enable_mask;
3188 enum pipe pipe;
3189
3190 pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3191
3192 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3193 for_each_pipe(dev_priv, pipe)
3194 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3195
3196 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3197 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3198 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3199 I915_LPE_PIPE_A_INTERRUPT |
3200 I915_LPE_PIPE_B_INTERRUPT;
3201
3202 if (IS_CHERRYVIEW(dev_priv))
3203 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3204 I915_LPE_PIPE_C_INTERRUPT;
3205
3206 WARN_ON(dev_priv->irq_mask != ~0u);
3207
3208 dev_priv->irq_mask = ~enable_mask;
3209
3210 GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
3211}
3212
3213/* drm_dma.h hooks
3214*/
3215static void ironlake_irq_reset(struct drm_i915_private *dev_priv)
3216{
3217 struct intel_uncore *uncore = &dev_priv->uncore;
3218
3219 GEN3_IRQ_RESET(uncore, DE);
3220 if (IS_GEN(dev_priv, 7))
3221 intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
3222
3223 if (IS_HASWELL(dev_priv)) {
3224 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3225 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3226 }
3227
3228 gen5_gt_irq_reset(&dev_priv->gt);
3229
3230 ibx_irq_reset(dev_priv);
3231}
3232
3233static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
3234{
3235 I915_WRITE(VLV_MASTER_IER, 0);
3236 POSTING_READ(VLV_MASTER_IER);
3237
3238 gen5_gt_irq_reset(&dev_priv->gt);
3239
3240 spin_lock_irq(&dev_priv->irq_lock);
3241 if (dev_priv->display_irqs_enabled)
3242 vlv_display_irq_reset(dev_priv);
3243 spin_unlock_irq(&dev_priv->irq_lock);
3244}
3245
3246static void gen8_irq_reset(struct drm_i915_private *dev_priv)
3247{
3248 struct intel_uncore *uncore = &dev_priv->uncore;
3249 int pipe;
3250
3251 gen8_master_intr_disable(dev_priv->uncore.regs);
3252
3253 gen8_gt_irq_reset(&dev_priv->gt);
3254
3255 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3256 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3257
3258 for_each_pipe(dev_priv, pipe)
3259 if (intel_display_power_is_enabled(dev_priv,
3260 POWER_DOMAIN_PIPE(pipe)))
3261 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3262
3263 GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3264 GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3265 GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3266
3267 if (HAS_PCH_SPLIT(dev_priv))
3268 ibx_irq_reset(dev_priv);
3269}
3270
3271static void gen11_irq_reset(struct drm_i915_private *dev_priv)
3272{
3273 struct intel_uncore *uncore = &dev_priv->uncore;
3274 int pipe;
3275
3276 gen11_master_intr_disable(dev_priv->uncore.regs);
3277
3278 gen11_gt_irq_reset(&dev_priv->gt);
3279
3280 intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
3281
3282 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3283 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3284
3285 for_each_pipe(dev_priv, pipe)
3286 if (intel_display_power_is_enabled(dev_priv,
3287 POWER_DOMAIN_PIPE(pipe)))
3288 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3289
3290 GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3291 GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3292 GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
3293 GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
3294 GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3295
3296 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3297 GEN3_IRQ_RESET(uncore, SDE);
3298}
3299
3300void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3301 u8 pipe_mask)
3302{
3303 struct intel_uncore *uncore = &dev_priv->uncore;
3304
3305 u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3306 enum pipe pipe;
3307
3308 spin_lock_irq(&dev_priv->irq_lock);
3309
3310 if (!intel_irqs_enabled(dev_priv)) {
3311 spin_unlock_irq(&dev_priv->irq_lock);
3312 return;
3313 }
3314
3315 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3316 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3317 dev_priv->de_irq_mask[pipe],
3318 ~dev_priv->de_irq_mask[pipe] | extra_ier);
3319
3320 spin_unlock_irq(&dev_priv->irq_lock);
3321}
3322
3323void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3324 u8 pipe_mask)
3325{
3326 struct intel_uncore *uncore = &dev_priv->uncore;
3327 enum pipe pipe;
3328
3329 spin_lock_irq(&dev_priv->irq_lock);
3330
3331 if (!intel_irqs_enabled(dev_priv)) {
3332 spin_unlock_irq(&dev_priv->irq_lock);
3333 return;
3334 }
3335
3336 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3337 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3338
3339 spin_unlock_irq(&dev_priv->irq_lock);
3340
3341 /* make sure we're done processing display irqs */
3342 intel_synchronize_irq(dev_priv);
3343}
3344
3345static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
3346{
3347 struct intel_uncore *uncore = &dev_priv->uncore;
3348
3349 I915_WRITE(GEN8_MASTER_IRQ, 0);
3350 POSTING_READ(GEN8_MASTER_IRQ);
3351
3352 gen8_gt_irq_reset(&dev_priv->gt);
3353
3354 GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3355
3356 spin_lock_irq(&dev_priv->irq_lock);
3357 if (dev_priv->display_irqs_enabled)
3358 vlv_display_irq_reset(dev_priv);
3359 spin_unlock_irq(&dev_priv->irq_lock);
3360}
3361
3362static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3363 const u32 hpd[HPD_NUM_PINS])
3364{
3365 struct intel_encoder *encoder;
3366 u32 enabled_irqs = 0;
3367
3368 for_each_intel_encoder(&dev_priv->drm, encoder)
3369 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3370 enabled_irqs |= hpd[encoder->hpd_pin];
3371
3372 return enabled_irqs;
3373}
3374
3375static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3376{
3377 u32 hotplug;
3378
3379 /*
3380 * Enable digital hotplug on the PCH, and configure the DP short pulse
3381 * duration to 2ms (which is the minimum in the Display Port spec).
3382 * The pulse duration bits are reserved on LPT+.
3383 */
3384 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3385 hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3386 PORTC_PULSE_DURATION_MASK |
3387 PORTD_PULSE_DURATION_MASK);
3388 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3389 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3390 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3391 /*
3392 * When CPU and PCH are on the same package, port A
3393 * HPD must be enabled in both north and south.
3394 */
3395 if (HAS_PCH_LPT_LP(dev_priv))
3396 hotplug |= PORTA_HOTPLUG_ENABLE;
3397 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3398}
3399
3400static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3401{
3402 u32 hotplug_irqs, enabled_irqs;
3403
3404 if (HAS_PCH_IBX(dev_priv)) {
3405 hotplug_irqs = SDE_HOTPLUG_MASK;
3406 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3407 } else {
3408 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3409 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3410 }
3411
3412 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3413
3414 ibx_hpd_detection_setup(dev_priv);
3415}
3416
3417static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv,
3418 u32 ddi_hotplug_enable_mask,
3419 u32 tc_hotplug_enable_mask)
3420{
3421 u32 hotplug;
3422
3423 hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3424 hotplug |= ddi_hotplug_enable_mask;
3425 I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3426
3427 if (tc_hotplug_enable_mask) {
3428 hotplug = I915_READ(SHOTPLUG_CTL_TC);
3429 hotplug |= tc_hotplug_enable_mask;
3430 I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3431 }
3432}
3433
3434static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3435{
3436 u32 hotplug_irqs, enabled_irqs;
3437
3438 hotplug_irqs = SDE_DDI_MASK_ICP | SDE_TC_MASK_ICP;
3439 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_icp);
3440
3441 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3442
3443 icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3444 ICP_TC_HPD_ENABLE_MASK);
3445}
3446
3447static void mcc_hpd_irq_setup(struct drm_i915_private *dev_priv)
3448{
3449 u32 hotplug_irqs, enabled_irqs;
3450
3451 hotplug_irqs = SDE_DDI_MASK_TGP;
3452 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_mcc);
3453
3454 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3455
3456 icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
3457}
3458
3459static void tgp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3460{
3461 u32 hotplug_irqs, enabled_irqs;
3462
3463 hotplug_irqs = SDE_DDI_MASK_TGP | SDE_TC_MASK_TGP;
3464 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_tgp);
3465
3466 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3467
3468 icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
3469 TGP_TC_HPD_ENABLE_MASK);
3470}
3471
3472static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3473{
3474 u32 hotplug;
3475
3476 hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3477 hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3478 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3479 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3480 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3481 I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3482
3483 hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3484 hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3485 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3486 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3487 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3488 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3489}
3490
3491static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3492{
3493 u32 hotplug_irqs, enabled_irqs;
3494 const u32 *hpd;
3495 u32 val;
3496
3497 hpd = INTEL_GEN(dev_priv) >= 12 ? hpd_gen12 : hpd_gen11;
3498 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd);
3499 hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3500
3501 val = I915_READ(GEN11_DE_HPD_IMR);
3502 val &= ~hotplug_irqs;
3503 I915_WRITE(GEN11_DE_HPD_IMR, val);
3504 POSTING_READ(GEN11_DE_HPD_IMR);
3505
3506 gen11_hpd_detection_setup(dev_priv);
3507
3508 if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
3509 tgp_hpd_irq_setup(dev_priv);
3510 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3511 icp_hpd_irq_setup(dev_priv);
3512}
3513
3514static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3515{
3516 u32 val, hotplug;
3517
3518 /* Display WA #1179 WaHardHangonHotPlug: cnp */
3519 if (HAS_PCH_CNP(dev_priv)) {
3520 val = I915_READ(SOUTH_CHICKEN1);
3521 val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3522 val |= CHASSIS_CLK_REQ_DURATION(0xf);
3523 I915_WRITE(SOUTH_CHICKEN1, val);
3524 }
3525
3526 /* Enable digital hotplug on the PCH */
3527 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3528 hotplug |= PORTA_HOTPLUG_ENABLE |
3529 PORTB_HOTPLUG_ENABLE |
3530 PORTC_HOTPLUG_ENABLE |
3531 PORTD_HOTPLUG_ENABLE;
3532 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3533
3534 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3535 hotplug |= PORTE_HOTPLUG_ENABLE;
3536 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3537}
3538
3539static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3540{
3541 u32 hotplug_irqs, enabled_irqs;
3542
3543 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3544 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3545
3546 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3547
3548 spt_hpd_detection_setup(dev_priv);
3549}
3550
3551static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3552{
3553 u32 hotplug;
3554
3555 /*
3556 * Enable digital hotplug on the CPU, and configure the DP short pulse
3557 * duration to 2ms (which is the minimum in the Display Port spec)
3558 * The pulse duration bits are reserved on HSW+.
3559 */
3560 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3561 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3562 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3563 DIGITAL_PORTA_PULSE_DURATION_2ms;
3564 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3565}
3566
3567static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3568{
3569 u32 hotplug_irqs, enabled_irqs;
3570
3571 if (INTEL_GEN(dev_priv) >= 8) {
3572 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3573 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3574
3575 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3576 } else if (INTEL_GEN(dev_priv) >= 7) {
3577 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3578 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3579
3580 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3581 } else {
3582 hotplug_irqs = DE_DP_A_HOTPLUG;
3583 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3584
3585 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3586 }
3587
3588 ilk_hpd_detection_setup(dev_priv);
3589
3590 ibx_hpd_irq_setup(dev_priv);
3591}
3592
3593static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3594 u32 enabled_irqs)
3595{
3596 u32 hotplug;
3597
3598 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3599 hotplug |= PORTA_HOTPLUG_ENABLE |
3600 PORTB_HOTPLUG_ENABLE |
3601 PORTC_HOTPLUG_ENABLE;
3602
3603 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3604 hotplug, enabled_irqs);
3605 hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3606
3607 /*
3608 * For BXT invert bit has to be set based on AOB design
3609 * for HPD detection logic, update it based on VBT fields.
3610 */
3611 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3612 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3613 hotplug |= BXT_DDIA_HPD_INVERT;
3614 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3615 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3616 hotplug |= BXT_DDIB_HPD_INVERT;
3617 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3618 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3619 hotplug |= BXT_DDIC_HPD_INVERT;
3620
3621 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3622}
3623
3624static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3625{
3626 __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3627}
3628
3629static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3630{
3631 u32 hotplug_irqs, enabled_irqs;
3632
3633 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3634 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3635
3636 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3637
3638 __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3639}
3640
3641static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3642{
3643 u32 mask;
3644
3645 if (HAS_PCH_NOP(dev_priv))
3646 return;
3647
3648 if (HAS_PCH_IBX(dev_priv))
3649 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3650 else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3651 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3652 else
3653 mask = SDE_GMBUS_CPT;
3654
3655 gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3656 I915_WRITE(SDEIMR, ~mask);
3657
3658 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3659 HAS_PCH_LPT(dev_priv))
3660 ibx_hpd_detection_setup(dev_priv);
3661 else
3662 spt_hpd_detection_setup(dev_priv);
3663}
3664
3665static void ironlake_irq_postinstall(struct drm_i915_private *dev_priv)
3666{
3667 struct intel_uncore *uncore = &dev_priv->uncore;
3668 u32 display_mask, extra_mask;
3669
3670 if (INTEL_GEN(dev_priv) >= 7) {
3671 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3672 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3673 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3674 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3675 DE_DP_A_HOTPLUG_IVB);
3676 } else {
3677 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3678 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3679 DE_PIPEA_CRC_DONE | DE_POISON);
3680 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3681 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3682 DE_DP_A_HOTPLUG);
3683 }
3684
3685 if (IS_HASWELL(dev_priv)) {
3686 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3687 intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
3688 display_mask |= DE_EDP_PSR_INT_HSW;
3689 }
3690
3691 dev_priv->irq_mask = ~display_mask;
3692
3693 ibx_irq_pre_postinstall(dev_priv);
3694
3695 GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3696 display_mask | extra_mask);
3697
3698 gen5_gt_irq_postinstall(&dev_priv->gt);
3699
3700 ilk_hpd_detection_setup(dev_priv);
3701
3702 ibx_irq_postinstall(dev_priv);
3703
3704 if (IS_IRONLAKE_M(dev_priv)) {
3705 /* Enable PCU event interrupts
3706 *
3707 * spinlocking not required here for correctness since interrupt
3708 * setup is guaranteed to run in single-threaded context. But we
3709 * need it to make the assert_spin_locked happy. */
3710 spin_lock_irq(&dev_priv->irq_lock);
3711 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3712 spin_unlock_irq(&dev_priv->irq_lock);
3713 }
3714}
3715
3716void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3717{
3718 lockdep_assert_held(&dev_priv->irq_lock);
3719
3720 if (dev_priv->display_irqs_enabled)
3721 return;
3722
3723 dev_priv->display_irqs_enabled = true;
3724
3725 if (intel_irqs_enabled(dev_priv)) {
3726 vlv_display_irq_reset(dev_priv);
3727 vlv_display_irq_postinstall(dev_priv);
3728 }
3729}
3730
3731void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3732{
3733 lockdep_assert_held(&dev_priv->irq_lock);
3734
3735 if (!dev_priv->display_irqs_enabled)
3736 return;
3737
3738 dev_priv->display_irqs_enabled = false;
3739
3740 if (intel_irqs_enabled(dev_priv))
3741 vlv_display_irq_reset(dev_priv);
3742}
3743
3744
3745static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3746{
3747 gen5_gt_irq_postinstall(&dev_priv->gt);
3748
3749 spin_lock_irq(&dev_priv->irq_lock);
3750 if (dev_priv->display_irqs_enabled)
3751 vlv_display_irq_postinstall(dev_priv);
3752 spin_unlock_irq(&dev_priv->irq_lock);
3753
3754 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3755 POSTING_READ(VLV_MASTER_IER);
3756}
3757
3758static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3759{
3760 struct intel_uncore *uncore = &dev_priv->uncore;
3761
3762 u32 de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3763 u32 de_pipe_enables;
3764 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3765 u32 de_port_enables;
3766 u32 de_misc_masked = GEN8_DE_EDP_PSR;
3767 enum pipe pipe;
3768
3769 if (INTEL_GEN(dev_priv) <= 10)
3770 de_misc_masked |= GEN8_DE_MISC_GSE;
3771
3772 if (INTEL_GEN(dev_priv) >= 9) {
3773 de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3774 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3775 GEN9_AUX_CHANNEL_D;
3776 if (IS_GEN9_LP(dev_priv))
3777 de_port_masked |= BXT_DE_PORT_GMBUS;
3778 } else {
3779 de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3780 }
3781
3782 if (INTEL_GEN(dev_priv) >= 11)
3783 de_port_masked |= ICL_AUX_CHANNEL_E;
3784
3785 if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11)
3786 de_port_masked |= CNL_AUX_CHANNEL_F;
3787
3788 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3789 GEN8_PIPE_FIFO_UNDERRUN;
3790
3791 de_port_enables = de_port_masked;
3792 if (IS_GEN9_LP(dev_priv))
3793 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3794 else if (IS_BROADWELL(dev_priv))
3795 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3796
3797 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3798 intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
3799
3800 for_each_pipe(dev_priv, pipe) {
3801 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3802
3803 if (intel_display_power_is_enabled(dev_priv,
3804 POWER_DOMAIN_PIPE(pipe)))
3805 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3806 dev_priv->de_irq_mask[pipe],
3807 de_pipe_enables);
3808 }
3809
3810 GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3811 GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3812
3813 if (INTEL_GEN(dev_priv) >= 11) {
3814 u32 de_hpd_masked = 0;
3815 u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3816 GEN11_DE_TBT_HOTPLUG_MASK;
3817
3818 GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3819 de_hpd_enables);
3820 gen11_hpd_detection_setup(dev_priv);
3821 } else if (IS_GEN9_LP(dev_priv)) {
3822 bxt_hpd_detection_setup(dev_priv);
3823 } else if (IS_BROADWELL(dev_priv)) {
3824 ilk_hpd_detection_setup(dev_priv);
3825 }
3826}
3827
3828static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3829{
3830 if (HAS_PCH_SPLIT(dev_priv))
3831 ibx_irq_pre_postinstall(dev_priv);
3832
3833 gen8_gt_irq_postinstall(&dev_priv->gt);
3834 gen8_de_irq_postinstall(dev_priv);
3835
3836 if (HAS_PCH_SPLIT(dev_priv))
3837 ibx_irq_postinstall(dev_priv);
3838
3839 gen8_master_intr_enable(dev_priv->uncore.regs);
3840}
3841
3842static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3843{
3844 u32 mask = SDE_GMBUS_ICP;
3845
3846 WARN_ON(I915_READ(SDEIER) != 0);
3847 I915_WRITE(SDEIER, 0xffffffff);
3848 POSTING_READ(SDEIER);
3849
3850 gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3851 I915_WRITE(SDEIMR, ~mask);
3852
3853 if (HAS_PCH_TGP(dev_priv))
3854 icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
3855 TGP_TC_HPD_ENABLE_MASK);
3856 else if (HAS_PCH_MCC(dev_priv))
3857 icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
3858 else
3859 icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3860 ICP_TC_HPD_ENABLE_MASK);
3861}
3862
3863static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3864{
3865 struct intel_uncore *uncore = &dev_priv->uncore;
3866 u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3867
3868 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3869 icp_irq_postinstall(dev_priv);
3870
3871 gen11_gt_irq_postinstall(&dev_priv->gt);
3872 gen8_de_irq_postinstall(dev_priv);
3873
3874 GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3875
3876 I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3877
3878 gen11_master_intr_enable(uncore->regs);
3879 POSTING_READ(GEN11_GFX_MSTR_IRQ);
3880}
3881
3882static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3883{
3884 gen8_gt_irq_postinstall(&dev_priv->gt);
3885
3886 spin_lock_irq(&dev_priv->irq_lock);
3887 if (dev_priv->display_irqs_enabled)
3888 vlv_display_irq_postinstall(dev_priv);
3889 spin_unlock_irq(&dev_priv->irq_lock);
3890
3891 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3892 POSTING_READ(GEN8_MASTER_IRQ);
3893}
3894
3895static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3896{
3897 struct intel_uncore *uncore = &dev_priv->uncore;
3898
3899 i9xx_pipestat_irq_reset(dev_priv);
3900
3901 GEN2_IRQ_RESET(uncore);
3902}
3903
3904static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3905{
3906 struct intel_uncore *uncore = &dev_priv->uncore;
3907 u16 enable_mask;
3908
3909 intel_uncore_write16(uncore,
3910 EMR,
3911 ~(I915_ERROR_PAGE_TABLE |
3912 I915_ERROR_MEMORY_REFRESH));
3913
3914 /* Unmask the interrupts that we always want on. */
3915 dev_priv->irq_mask =
3916 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3917 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3918 I915_MASTER_ERROR_INTERRUPT);
3919
3920 enable_mask =
3921 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3922 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3923 I915_MASTER_ERROR_INTERRUPT |
3924 I915_USER_INTERRUPT;
3925
3926 GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3927
3928 /* Interrupt setup is already guaranteed to be single-threaded, this is
3929 * just to make the assert_spin_locked check happy. */
3930 spin_lock_irq(&dev_priv->irq_lock);
3931 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3932 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3933 spin_unlock_irq(&dev_priv->irq_lock);
3934}
3935
3936static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3937 u16 *eir, u16 *eir_stuck)
3938{
3939 struct intel_uncore *uncore = &i915->uncore;
3940 u16 emr;
3941
3942 *eir = intel_uncore_read16(uncore, EIR);
3943
3944 if (*eir)
3945 intel_uncore_write16(uncore, EIR, *eir);
3946
3947 *eir_stuck = intel_uncore_read16(uncore, EIR);
3948 if (*eir_stuck == 0)
3949 return;
3950
3951 /*
3952 * Toggle all EMR bits to make sure we get an edge
3953 * in the ISR master error bit if we don't clear
3954 * all the EIR bits. Otherwise the edge triggered
3955 * IIR on i965/g4x wouldn't notice that an interrupt
3956 * is still pending. Also some EIR bits can't be
3957 * cleared except by handling the underlying error
3958 * (or by a GPU reset) so we mask any bit that
3959 * remains set.
3960 */
3961 emr = intel_uncore_read16(uncore, EMR);
3962 intel_uncore_write16(uncore, EMR, 0xffff);
3963 intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3964}
3965
3966static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3967 u16 eir, u16 eir_stuck)
3968{
3969 DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3970
3971 if (eir_stuck)
3972 DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck);
3973}
3974
3975static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3976 u32 *eir, u32 *eir_stuck)
3977{
3978 u32 emr;
3979
3980 *eir = I915_READ(EIR);
3981
3982 I915_WRITE(EIR, *eir);
3983
3984 *eir_stuck = I915_READ(EIR);
3985 if (*eir_stuck == 0)
3986 return;
3987
3988 /*
3989 * Toggle all EMR bits to make sure we get an edge
3990 * in the ISR master error bit if we don't clear
3991 * all the EIR bits. Otherwise the edge triggered
3992 * IIR on i965/g4x wouldn't notice that an interrupt
3993 * is still pending. Also some EIR bits can't be
3994 * cleared except by handling the underlying error
3995 * (or by a GPU reset) so we mask any bit that
3996 * remains set.
3997 */
3998 emr = I915_READ(EMR);
3999 I915_WRITE(EMR, 0xffffffff);
4000 I915_WRITE(EMR, emr | *eir_stuck);
4001}
4002
4003static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
4004 u32 eir, u32 eir_stuck)
4005{
4006 DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
4007
4008 if (eir_stuck)
4009 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck);
4010}
4011
4012static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4013{
4014 struct drm_i915_private *dev_priv = arg;
4015 irqreturn_t ret = IRQ_NONE;
4016
4017 if (!intel_irqs_enabled(dev_priv))
4018 return IRQ_NONE;
4019
4020 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4021 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4022
4023 do {
4024 u32 pipe_stats[I915_MAX_PIPES] = {};
4025 u16 eir = 0, eir_stuck = 0;
4026 u16 iir;
4027
4028 iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
4029 if (iir == 0)
4030 break;
4031
4032 ret = IRQ_HANDLED;
4033
4034 /* Call regardless, as some status bits might not be
4035 * signalled in iir */
4036 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4037
4038 if (iir & I915_MASTER_ERROR_INTERRUPT)
4039 i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4040
4041 intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
4042
4043 if (iir & I915_USER_INTERRUPT)
4044 intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4045
4046 if (iir & I915_MASTER_ERROR_INTERRUPT)
4047 i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
4048
4049 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4050 } while (0);
4051
4052 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4053
4054 return ret;
4055}
4056
4057static void i915_irq_reset(struct drm_i915_private *dev_priv)
4058{
4059 struct intel_uncore *uncore = &dev_priv->uncore;
4060
4061 if (I915_HAS_HOTPLUG(dev_priv)) {
4062 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4063 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4064 }
4065
4066 i9xx_pipestat_irq_reset(dev_priv);
4067
4068 GEN3_IRQ_RESET(uncore, GEN2_);
4069}
4070
4071static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
4072{
4073 struct intel_uncore *uncore = &dev_priv->uncore;
4074 u32 enable_mask;
4075
4076 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
4077 I915_ERROR_MEMORY_REFRESH));
4078
4079 /* Unmask the interrupts that we always want on. */
4080 dev_priv->irq_mask =
4081 ~(I915_ASLE_INTERRUPT |
4082 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4083 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4084 I915_MASTER_ERROR_INTERRUPT);
4085
4086 enable_mask =
4087 I915_ASLE_INTERRUPT |
4088 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4089 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4090 I915_MASTER_ERROR_INTERRUPT |
4091 I915_USER_INTERRUPT;
4092
4093 if (I915_HAS_HOTPLUG(dev_priv)) {
4094 /* Enable in IER... */
4095 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4096 /* and unmask in IMR */
4097 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4098 }
4099
4100 GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4101
4102 /* Interrupt setup is already guaranteed to be single-threaded, this is
4103 * just to make the assert_spin_locked check happy. */
4104 spin_lock_irq(&dev_priv->irq_lock);
4105 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4106 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4107 spin_unlock_irq(&dev_priv->irq_lock);
4108
4109 i915_enable_asle_pipestat(dev_priv);
4110}
4111
4112static irqreturn_t i915_irq_handler(int irq, void *arg)
4113{
4114 struct drm_i915_private *dev_priv = arg;
4115 irqreturn_t ret = IRQ_NONE;
4116
4117 if (!intel_irqs_enabled(dev_priv))
4118 return IRQ_NONE;
4119
4120 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4121 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4122
4123 do {
4124 u32 pipe_stats[I915_MAX_PIPES] = {};
4125 u32 eir = 0, eir_stuck = 0;
4126 u32 hotplug_status = 0;
4127 u32 iir;
4128
4129 iir = I915_READ(GEN2_IIR);
4130 if (iir == 0)
4131 break;
4132
4133 ret = IRQ_HANDLED;
4134
4135 if (I915_HAS_HOTPLUG(dev_priv) &&
4136 iir & I915_DISPLAY_PORT_INTERRUPT)
4137 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4138
4139 /* Call regardless, as some status bits might not be
4140 * signalled in iir */
4141 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4142
4143 if (iir & I915_MASTER_ERROR_INTERRUPT)
4144 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4145
4146 I915_WRITE(GEN2_IIR, iir);
4147
4148 if (iir & I915_USER_INTERRUPT)
4149 intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4150
4151 if (iir & I915_MASTER_ERROR_INTERRUPT)
4152 i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4153
4154 if (hotplug_status)
4155 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4156
4157 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4158 } while (0);
4159
4160 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4161
4162 return ret;
4163}
4164
4165static void i965_irq_reset(struct drm_i915_private *dev_priv)
4166{
4167 struct intel_uncore *uncore = &dev_priv->uncore;
4168
4169 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4170 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4171
4172 i9xx_pipestat_irq_reset(dev_priv);
4173
4174 GEN3_IRQ_RESET(uncore, GEN2_);
4175}
4176
4177static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
4178{
4179 struct intel_uncore *uncore = &dev_priv->uncore;
4180 u32 enable_mask;
4181 u32 error_mask;
4182
4183 /*
4184 * Enable some error detection, note the instruction error mask
4185 * bit is reserved, so we leave it masked.
4186 */
4187 if (IS_G4X(dev_priv)) {
4188 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4189 GM45_ERROR_MEM_PRIV |
4190 GM45_ERROR_CP_PRIV |
4191 I915_ERROR_MEMORY_REFRESH);
4192 } else {
4193 error_mask = ~(I915_ERROR_PAGE_TABLE |
4194 I915_ERROR_MEMORY_REFRESH);
4195 }
4196 I915_WRITE(EMR, error_mask);
4197
4198 /* Unmask the interrupts that we always want on. */
4199 dev_priv->irq_mask =
4200 ~(I915_ASLE_INTERRUPT |
4201 I915_DISPLAY_PORT_INTERRUPT |
4202 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4203 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4204 I915_MASTER_ERROR_INTERRUPT);
4205
4206 enable_mask =
4207 I915_ASLE_INTERRUPT |
4208 I915_DISPLAY_PORT_INTERRUPT |
4209 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4210 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4211 I915_MASTER_ERROR_INTERRUPT |
4212 I915_USER_INTERRUPT;
4213
4214 if (IS_G4X(dev_priv))
4215 enable_mask |= I915_BSD_USER_INTERRUPT;
4216
4217 GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4218
4219 /* Interrupt setup is already guaranteed to be single-threaded, this is
4220 * just to make the assert_spin_locked check happy. */
4221 spin_lock_irq(&dev_priv->irq_lock);
4222 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4223 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4224 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4225 spin_unlock_irq(&dev_priv->irq_lock);
4226
4227 i915_enable_asle_pipestat(dev_priv);
4228}
4229
4230static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4231{
4232 u32 hotplug_en;
4233
4234 lockdep_assert_held(&dev_priv->irq_lock);
4235
4236 /* Note HDMI and DP share hotplug bits */
4237 /* enable bits are the same for all generations */
4238 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4239 /* Programming the CRT detection parameters tends
4240 to generate a spurious hotplug event about three
4241 seconds later. So just do it once.
4242 */
4243 if (IS_G4X(dev_priv))
4244 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4245 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4246
4247 /* Ignore TV since it's buggy */
4248 i915_hotplug_interrupt_update_locked(dev_priv,
4249 HOTPLUG_INT_EN_MASK |
4250 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4251 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4252 hotplug_en);
4253}
4254
4255static irqreturn_t i965_irq_handler(int irq, void *arg)
4256{
4257 struct drm_i915_private *dev_priv = arg;
4258 irqreturn_t ret = IRQ_NONE;
4259
4260 if (!intel_irqs_enabled(dev_priv))
4261 return IRQ_NONE;
4262
4263 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4264 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4265
4266 do {
4267 u32 pipe_stats[I915_MAX_PIPES] = {};
4268 u32 eir = 0, eir_stuck = 0;
4269 u32 hotplug_status = 0;
4270 u32 iir;
4271
4272 iir = I915_READ(GEN2_IIR);
4273 if (iir == 0)
4274 break;
4275
4276 ret = IRQ_HANDLED;
4277
4278 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4279 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4280
4281 /* Call regardless, as some status bits might not be
4282 * signalled in iir */
4283 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4284
4285 if (iir & I915_MASTER_ERROR_INTERRUPT)
4286 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4287
4288 I915_WRITE(GEN2_IIR, iir);
4289
4290 if (iir & I915_USER_INTERRUPT)
4291 intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4292
4293 if (iir & I915_BSD_USER_INTERRUPT)
4294 intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]);
4295
4296 if (iir & I915_MASTER_ERROR_INTERRUPT)
4297 i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4298
4299 if (hotplug_status)
4300 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4301
4302 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4303 } while (0);
4304
4305 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4306
4307 return ret;
4308}
4309
4310/**
4311 * intel_irq_init - initializes irq support
4312 * @dev_priv: i915 device instance
4313 *
4314 * This function initializes all the irq support including work items, timers
4315 * and all the vtables. It does not setup the interrupt itself though.
4316 */
4317void intel_irq_init(struct drm_i915_private *dev_priv)
4318{
4319 struct drm_device *dev = &dev_priv->drm;
4320 struct intel_rps *rps = &dev_priv->gt_pm.rps;
4321 int i;
4322
4323 if (IS_I945GM(dev_priv))
4324 i945gm_vblank_work_init(dev_priv);
4325
4326 intel_hpd_init_work(dev_priv);
4327
4328 INIT_WORK(&rps->work, gen6_pm_rps_work);
4329
4330 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4331 for (i = 0; i < MAX_L3_SLICES; ++i)
4332 dev_priv->l3_parity.remap_info[i] = NULL;
4333
4334 /* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
4335 if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
4336 dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
4337
4338 /* Let's track the enabled rps events */
4339 if (IS_VALLEYVIEW(dev_priv))
4340 /* WaGsvRC0ResidencyMethod:vlv */
4341 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4342 else
4343 dev_priv->pm_rps_events = (GEN6_PM_RP_UP_THRESHOLD |
4344 GEN6_PM_RP_DOWN_THRESHOLD |
4345 GEN6_PM_RP_DOWN_TIMEOUT);
4346
4347 /* We share the register with other engine */
4348 if (INTEL_GEN(dev_priv) > 9)
4349 GEM_WARN_ON(dev_priv->pm_rps_events & 0xffff0000);
4350
4351 rps->pm_intrmsk_mbz = 0;
4352
4353 /*
4354 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4355 * if GEN6_PM_UP_EI_EXPIRED is masked.
4356 *
4357 * TODO: verify if this can be reproduced on VLV,CHV.
4358 */
4359 if (INTEL_GEN(dev_priv) <= 7)
4360 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4361
4362 if (INTEL_GEN(dev_priv) >= 8)
4363 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4364
4365 dev->vblank_disable_immediate = true;
4366
4367 /* Most platforms treat the display irq block as an always-on
4368 * power domain. vlv/chv can disable it at runtime and need
4369 * special care to avoid writing any of the display block registers
4370 * outside of the power domain. We defer setting up the display irqs
4371 * in this case to the runtime pm.
4372 */
4373 dev_priv->display_irqs_enabled = true;
4374 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4375 dev_priv->display_irqs_enabled = false;
4376
4377 dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4378 /* If we have MST support, we want to avoid doing short HPD IRQ storm
4379 * detection, as short HPD storms will occur as a natural part of
4380 * sideband messaging with MST.
4381 * On older platforms however, IRQ storms can occur with both long and
4382 * short pulses, as seen on some G4x systems.
4383 */
4384 dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4385
4386 if (HAS_GMCH(dev_priv)) {
4387 if (I915_HAS_HOTPLUG(dev_priv))
4388 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4389 } else {
4390 if (HAS_PCH_MCC(dev_priv))
4391 /* EHL doesn't need most of gen11_hpd_irq_setup */
4392 dev_priv->display.hpd_irq_setup = mcc_hpd_irq_setup;
4393 else if (INTEL_GEN(dev_priv) >= 11)
4394 dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4395 else if (IS_GEN9_LP(dev_priv))
4396 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4397 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4398 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4399 else
4400 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4401 }
4402}
4403
4404/**
4405 * intel_irq_fini - deinitializes IRQ support
4406 * @i915: i915 device instance
4407 *
4408 * This function deinitializes all the IRQ support.
4409 */
4410void intel_irq_fini(struct drm_i915_private *i915)
4411{
4412 int i;
4413
4414 if (IS_I945GM(i915))
4415 i945gm_vblank_work_fini(i915);
4416
4417 for (i = 0; i < MAX_L3_SLICES; ++i)
4418 kfree(i915->l3_parity.remap_info[i]);
4419}
4420
4421static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
4422{
4423 if (HAS_GMCH(dev_priv)) {
4424 if (IS_CHERRYVIEW(dev_priv))
4425 return cherryview_irq_handler;
4426 else if (IS_VALLEYVIEW(dev_priv))
4427 return valleyview_irq_handler;
4428 else if (IS_GEN(dev_priv, 4))
4429 return i965_irq_handler;
4430 else if (IS_GEN(dev_priv, 3))
4431 return i915_irq_handler;
4432 else
4433 return i8xx_irq_handler;
4434 } else {
4435 if (INTEL_GEN(dev_priv) >= 11)
4436 return gen11_irq_handler;
4437 else if (INTEL_GEN(dev_priv) >= 8)
4438 return gen8_irq_handler;
4439 else
4440 return ironlake_irq_handler;
4441 }
4442}
4443
4444static void intel_irq_reset(struct drm_i915_private *dev_priv)
4445{
4446 if (HAS_GMCH(dev_priv)) {
4447 if (IS_CHERRYVIEW(dev_priv))
4448 cherryview_irq_reset(dev_priv);
4449 else if (IS_VALLEYVIEW(dev_priv))
4450 valleyview_irq_reset(dev_priv);
4451 else if (IS_GEN(dev_priv, 4))
4452 i965_irq_reset(dev_priv);
4453 else if (IS_GEN(dev_priv, 3))
4454 i915_irq_reset(dev_priv);
4455 else
4456 i8xx_irq_reset(dev_priv);
4457 } else {
4458 if (INTEL_GEN(dev_priv) >= 11)
4459 gen11_irq_reset(dev_priv);
4460 else if (INTEL_GEN(dev_priv) >= 8)
4461 gen8_irq_reset(dev_priv);
4462 else
4463 ironlake_irq_reset(dev_priv);
4464 }
4465}
4466
4467static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4468{
4469 if (HAS_GMCH(dev_priv)) {
4470 if (IS_CHERRYVIEW(dev_priv))
4471 cherryview_irq_postinstall(dev_priv);
4472 else if (IS_VALLEYVIEW(dev_priv))
4473 valleyview_irq_postinstall(dev_priv);
4474 else if (IS_GEN(dev_priv, 4))
4475 i965_irq_postinstall(dev_priv);
4476 else if (IS_GEN(dev_priv, 3))
4477 i915_irq_postinstall(dev_priv);
4478 else
4479 i8xx_irq_postinstall(dev_priv);
4480 } else {
4481 if (INTEL_GEN(dev_priv) >= 11)
4482 gen11_irq_postinstall(dev_priv);
4483 else if (INTEL_GEN(dev_priv) >= 8)
4484 gen8_irq_postinstall(dev_priv);
4485 else
4486 ironlake_irq_postinstall(dev_priv);
4487 }
4488}
4489
4490/**
4491 * intel_irq_install - enables the hardware interrupt
4492 * @dev_priv: i915 device instance
4493 *
4494 * This function enables the hardware interrupt handling, but leaves the hotplug
4495 * handling still disabled. It is called after intel_irq_init().
4496 *
4497 * In the driver load and resume code we need working interrupts in a few places
4498 * but don't want to deal with the hassle of concurrent probe and hotplug
4499 * workers. Hence the split into this two-stage approach.
4500 */
4501int intel_irq_install(struct drm_i915_private *dev_priv)
4502{
4503 int irq = dev_priv->drm.pdev->irq;
4504 int ret;
4505
4506 /*
4507 * We enable some interrupt sources in our postinstall hooks, so mark
4508 * interrupts as enabled _before_ actually enabling them to avoid
4509 * special cases in our ordering checks.
4510 */
4511 dev_priv->runtime_pm.irqs_enabled = true;
4512
4513 dev_priv->drm.irq_enabled = true;
4514
4515 intel_irq_reset(dev_priv);
4516
4517 ret = request_irq(irq, intel_irq_handler(dev_priv),
4518 IRQF_SHARED, DRIVER_NAME, dev_priv);
4519 if (ret < 0) {
4520 dev_priv->drm.irq_enabled = false;
4521 return ret;
4522 }
4523
4524 intel_irq_postinstall(dev_priv);
4525
4526 return ret;
4527}
4528
4529/**
4530 * intel_irq_uninstall - finilizes all irq handling
4531 * @dev_priv: i915 device instance
4532 *
4533 * This stops interrupt and hotplug handling and unregisters and frees all
4534 * resources acquired in the init functions.
4535 */
4536void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4537{
4538 int irq = dev_priv->drm.pdev->irq;
4539
4540 /*
4541 * FIXME we can get called twice during driver load
4542 * error handling due to intel_modeset_cleanup()
4543 * calling us out of sequence. Would be nice if
4544 * it didn't do that...
4545 */
4546 if (!dev_priv->drm.irq_enabled)
4547 return;
4548
4549 dev_priv->drm.irq_enabled = false;
4550
4551 intel_irq_reset(dev_priv);
4552
4553 free_irq(irq, dev_priv);
4554
4555 intel_hpd_cancel_work(dev_priv);
4556 dev_priv->runtime_pm.irqs_enabled = false;
4557}
4558
4559/**
4560 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4561 * @dev_priv: i915 device instance
4562 *
4563 * This function is used to disable interrupts at runtime, both in the runtime
4564 * pm and the system suspend/resume code.
4565 */
4566void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4567{
4568 intel_irq_reset(dev_priv);
4569 dev_priv->runtime_pm.irqs_enabled = false;
4570 intel_synchronize_irq(dev_priv);
4571}
4572
4573/**
4574 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4575 * @dev_priv: i915 device instance
4576 *
4577 * This function is used to enable interrupts at runtime, both in the runtime
4578 * pm and the system suspend/resume code.
4579 */
4580void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4581{
4582 dev_priv->runtime_pm.irqs_enabled = true;
4583 intel_irq_reset(dev_priv);
4584 intel_irq_postinstall(dev_priv);
4585}
4586
4587bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4588{
4589 /*
4590 * We only use drm_irq_uninstall() at unload and VT switch, so
4591 * this is the only thing we need to check.
4592 */
4593 return dev_priv->runtime_pm.irqs_enabled;
4594}
4595
4596void intel_synchronize_irq(struct drm_i915_private *i915)
4597{
4598 synchronize_irq(i915->drm.pdev->irq);
4599}
1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3/*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31#include <linux/sysrq.h>
32#include <linux/slab.h>
33#include <linux/circ_buf.h>
34#include <drm/drmP.h>
35#include <drm/i915_drm.h>
36#include "i915_drv.h"
37#include "i915_trace.h"
38#include "intel_drv.h"
39
40static const u32 hpd_ibx[] = {
41 [HPD_CRT] = SDE_CRT_HOTPLUG,
42 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
46};
47
48static const u32 hpd_cpt[] = {
49 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54};
55
56static const u32 hpd_mask_i915[] = {
57 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
58 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63};
64
65static const u32 hpd_status_g4x[] = {
66 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72};
73
74static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81};
82
83/* For display hotplug interrupt */
84static void
85ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
86{
87 assert_spin_locked(&dev_priv->irq_lock);
88
89 if (dev_priv->pm.irqs_disabled) {
90 WARN(1, "IRQs disabled\n");
91 dev_priv->pm.regsave.deimr &= ~mask;
92 return;
93 }
94
95 if ((dev_priv->irq_mask & mask) != 0) {
96 dev_priv->irq_mask &= ~mask;
97 I915_WRITE(DEIMR, dev_priv->irq_mask);
98 POSTING_READ(DEIMR);
99 }
100}
101
102static void
103ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
104{
105 assert_spin_locked(&dev_priv->irq_lock);
106
107 if (dev_priv->pm.irqs_disabled) {
108 WARN(1, "IRQs disabled\n");
109 dev_priv->pm.regsave.deimr |= mask;
110 return;
111 }
112
113 if ((dev_priv->irq_mask & mask) != mask) {
114 dev_priv->irq_mask |= mask;
115 I915_WRITE(DEIMR, dev_priv->irq_mask);
116 POSTING_READ(DEIMR);
117 }
118}
119
120/**
121 * ilk_update_gt_irq - update GTIMR
122 * @dev_priv: driver private
123 * @interrupt_mask: mask of interrupt bits to update
124 * @enabled_irq_mask: mask of interrupt bits to enable
125 */
126static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
127 uint32_t interrupt_mask,
128 uint32_t enabled_irq_mask)
129{
130 assert_spin_locked(&dev_priv->irq_lock);
131
132 if (dev_priv->pm.irqs_disabled) {
133 WARN(1, "IRQs disabled\n");
134 dev_priv->pm.regsave.gtimr &= ~interrupt_mask;
135 dev_priv->pm.regsave.gtimr |= (~enabled_irq_mask &
136 interrupt_mask);
137 return;
138 }
139
140 dev_priv->gt_irq_mask &= ~interrupt_mask;
141 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
142 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
143 POSTING_READ(GTIMR);
144}
145
146void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
147{
148 ilk_update_gt_irq(dev_priv, mask, mask);
149}
150
151void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
152{
153 ilk_update_gt_irq(dev_priv, mask, 0);
154}
155
156/**
157 * snb_update_pm_irq - update GEN6_PMIMR
158 * @dev_priv: driver private
159 * @interrupt_mask: mask of interrupt bits to update
160 * @enabled_irq_mask: mask of interrupt bits to enable
161 */
162static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
163 uint32_t interrupt_mask,
164 uint32_t enabled_irq_mask)
165{
166 uint32_t new_val;
167
168 assert_spin_locked(&dev_priv->irq_lock);
169
170 if (dev_priv->pm.irqs_disabled) {
171 WARN(1, "IRQs disabled\n");
172 dev_priv->pm.regsave.gen6_pmimr &= ~interrupt_mask;
173 dev_priv->pm.regsave.gen6_pmimr |= (~enabled_irq_mask &
174 interrupt_mask);
175 return;
176 }
177
178 new_val = dev_priv->pm_irq_mask;
179 new_val &= ~interrupt_mask;
180 new_val |= (~enabled_irq_mask & interrupt_mask);
181
182 if (new_val != dev_priv->pm_irq_mask) {
183 dev_priv->pm_irq_mask = new_val;
184 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
185 POSTING_READ(GEN6_PMIMR);
186 }
187}
188
189void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
190{
191 snb_update_pm_irq(dev_priv, mask, mask);
192}
193
194void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
195{
196 snb_update_pm_irq(dev_priv, mask, 0);
197}
198
199static bool ivb_can_enable_err_int(struct drm_device *dev)
200{
201 struct drm_i915_private *dev_priv = dev->dev_private;
202 struct intel_crtc *crtc;
203 enum pipe pipe;
204
205 assert_spin_locked(&dev_priv->irq_lock);
206
207 for_each_pipe(pipe) {
208 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
209
210 if (crtc->cpu_fifo_underrun_disabled)
211 return false;
212 }
213
214 return true;
215}
216
217static bool cpt_can_enable_serr_int(struct drm_device *dev)
218{
219 struct drm_i915_private *dev_priv = dev->dev_private;
220 enum pipe pipe;
221 struct intel_crtc *crtc;
222
223 assert_spin_locked(&dev_priv->irq_lock);
224
225 for_each_pipe(pipe) {
226 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
227
228 if (crtc->pch_fifo_underrun_disabled)
229 return false;
230 }
231
232 return true;
233}
234
235static void i9xx_clear_fifo_underrun(struct drm_device *dev, enum pipe pipe)
236{
237 struct drm_i915_private *dev_priv = dev->dev_private;
238 u32 reg = PIPESTAT(pipe);
239 u32 pipestat = I915_READ(reg) & 0x7fff0000;
240
241 assert_spin_locked(&dev_priv->irq_lock);
242
243 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
244 POSTING_READ(reg);
245}
246
247static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
248 enum pipe pipe, bool enable)
249{
250 struct drm_i915_private *dev_priv = dev->dev_private;
251 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
252 DE_PIPEB_FIFO_UNDERRUN;
253
254 if (enable)
255 ironlake_enable_display_irq(dev_priv, bit);
256 else
257 ironlake_disable_display_irq(dev_priv, bit);
258}
259
260static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
261 enum pipe pipe, bool enable)
262{
263 struct drm_i915_private *dev_priv = dev->dev_private;
264 if (enable) {
265 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
266
267 if (!ivb_can_enable_err_int(dev))
268 return;
269
270 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
271 } else {
272 bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
273
274 /* Change the state _after_ we've read out the current one. */
275 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
276
277 if (!was_enabled &&
278 (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
279 DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
280 pipe_name(pipe));
281 }
282 }
283}
284
285static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
286 enum pipe pipe, bool enable)
287{
288 struct drm_i915_private *dev_priv = dev->dev_private;
289
290 assert_spin_locked(&dev_priv->irq_lock);
291
292 if (enable)
293 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
294 else
295 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
296 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
297 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
298}
299
300/**
301 * ibx_display_interrupt_update - update SDEIMR
302 * @dev_priv: driver private
303 * @interrupt_mask: mask of interrupt bits to update
304 * @enabled_irq_mask: mask of interrupt bits to enable
305 */
306static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
307 uint32_t interrupt_mask,
308 uint32_t enabled_irq_mask)
309{
310 uint32_t sdeimr = I915_READ(SDEIMR);
311 sdeimr &= ~interrupt_mask;
312 sdeimr |= (~enabled_irq_mask & interrupt_mask);
313
314 assert_spin_locked(&dev_priv->irq_lock);
315
316 if (dev_priv->pm.irqs_disabled &&
317 (interrupt_mask & SDE_HOTPLUG_MASK_CPT)) {
318 WARN(1, "IRQs disabled\n");
319 dev_priv->pm.regsave.sdeimr &= ~interrupt_mask;
320 dev_priv->pm.regsave.sdeimr |= (~enabled_irq_mask &
321 interrupt_mask);
322 return;
323 }
324
325 I915_WRITE(SDEIMR, sdeimr);
326 POSTING_READ(SDEIMR);
327}
328#define ibx_enable_display_interrupt(dev_priv, bits) \
329 ibx_display_interrupt_update((dev_priv), (bits), (bits))
330#define ibx_disable_display_interrupt(dev_priv, bits) \
331 ibx_display_interrupt_update((dev_priv), (bits), 0)
332
333static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
334 enum transcoder pch_transcoder,
335 bool enable)
336{
337 struct drm_i915_private *dev_priv = dev->dev_private;
338 uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
339 SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
340
341 if (enable)
342 ibx_enable_display_interrupt(dev_priv, bit);
343 else
344 ibx_disable_display_interrupt(dev_priv, bit);
345}
346
347static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
348 enum transcoder pch_transcoder,
349 bool enable)
350{
351 struct drm_i915_private *dev_priv = dev->dev_private;
352
353 if (enable) {
354 I915_WRITE(SERR_INT,
355 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
356
357 if (!cpt_can_enable_serr_int(dev))
358 return;
359
360 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
361 } else {
362 uint32_t tmp = I915_READ(SERR_INT);
363 bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
364
365 /* Change the state _after_ we've read out the current one. */
366 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
367
368 if (!was_enabled &&
369 (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
370 DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
371 transcoder_name(pch_transcoder));
372 }
373 }
374}
375
376/**
377 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
378 * @dev: drm device
379 * @pipe: pipe
380 * @enable: true if we want to report FIFO underrun errors, false otherwise
381 *
382 * This function makes us disable or enable CPU fifo underruns for a specific
383 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
384 * reporting for one pipe may also disable all the other CPU error interruts for
385 * the other pipes, due to the fact that there's just one interrupt mask/enable
386 * bit for all the pipes.
387 *
388 * Returns the previous state of underrun reporting.
389 */
390bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
391 enum pipe pipe, bool enable)
392{
393 struct drm_i915_private *dev_priv = dev->dev_private;
394 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
395 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
396 bool ret;
397
398 assert_spin_locked(&dev_priv->irq_lock);
399
400 ret = !intel_crtc->cpu_fifo_underrun_disabled;
401
402 if (enable == ret)
403 goto done;
404
405 intel_crtc->cpu_fifo_underrun_disabled = !enable;
406
407 if (enable && (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev)))
408 i9xx_clear_fifo_underrun(dev, pipe);
409 else if (IS_GEN5(dev) || IS_GEN6(dev))
410 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
411 else if (IS_GEN7(dev))
412 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
413 else if (IS_GEN8(dev))
414 broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
415
416done:
417 return ret;
418}
419
420bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
421 enum pipe pipe, bool enable)
422{
423 struct drm_i915_private *dev_priv = dev->dev_private;
424 unsigned long flags;
425 bool ret;
426
427 spin_lock_irqsave(&dev_priv->irq_lock, flags);
428 ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
429 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
430
431 return ret;
432}
433
434static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
435 enum pipe pipe)
436{
437 struct drm_i915_private *dev_priv = dev->dev_private;
438 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
439 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
440
441 return !intel_crtc->cpu_fifo_underrun_disabled;
442}
443
444/**
445 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
446 * @dev: drm device
447 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
448 * @enable: true if we want to report FIFO underrun errors, false otherwise
449 *
450 * This function makes us disable or enable PCH fifo underruns for a specific
451 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
452 * underrun reporting for one transcoder may also disable all the other PCH
453 * error interruts for the other transcoders, due to the fact that there's just
454 * one interrupt mask/enable bit for all the transcoders.
455 *
456 * Returns the previous state of underrun reporting.
457 */
458bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
459 enum transcoder pch_transcoder,
460 bool enable)
461{
462 struct drm_i915_private *dev_priv = dev->dev_private;
463 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
464 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
465 unsigned long flags;
466 bool ret;
467
468 /*
469 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
470 * has only one pch transcoder A that all pipes can use. To avoid racy
471 * pch transcoder -> pipe lookups from interrupt code simply store the
472 * underrun statistics in crtc A. Since we never expose this anywhere
473 * nor use it outside of the fifo underrun code here using the "wrong"
474 * crtc on LPT won't cause issues.
475 */
476
477 spin_lock_irqsave(&dev_priv->irq_lock, flags);
478
479 ret = !intel_crtc->pch_fifo_underrun_disabled;
480
481 if (enable == ret)
482 goto done;
483
484 intel_crtc->pch_fifo_underrun_disabled = !enable;
485
486 if (HAS_PCH_IBX(dev))
487 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
488 else
489 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
490
491done:
492 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
493 return ret;
494}
495
496
497static void
498__i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
499 u32 enable_mask, u32 status_mask)
500{
501 u32 reg = PIPESTAT(pipe);
502 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
503
504 assert_spin_locked(&dev_priv->irq_lock);
505
506 if (WARN_ON_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
507 status_mask & ~PIPESTAT_INT_STATUS_MASK))
508 return;
509
510 if ((pipestat & enable_mask) == enable_mask)
511 return;
512
513 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
514
515 /* Enable the interrupt, clear any pending status */
516 pipestat |= enable_mask | status_mask;
517 I915_WRITE(reg, pipestat);
518 POSTING_READ(reg);
519}
520
521static void
522__i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
523 u32 enable_mask, u32 status_mask)
524{
525 u32 reg = PIPESTAT(pipe);
526 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
527
528 assert_spin_locked(&dev_priv->irq_lock);
529
530 if (WARN_ON_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
531 status_mask & ~PIPESTAT_INT_STATUS_MASK))
532 return;
533
534 if ((pipestat & enable_mask) == 0)
535 return;
536
537 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
538
539 pipestat &= ~enable_mask;
540 I915_WRITE(reg, pipestat);
541 POSTING_READ(reg);
542}
543
544static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
545{
546 u32 enable_mask = status_mask << 16;
547
548 /*
549 * On pipe A we don't support the PSR interrupt yet, on pipe B the
550 * same bit MBZ.
551 */
552 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
553 return 0;
554
555 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
556 SPRITE0_FLIP_DONE_INT_EN_VLV |
557 SPRITE1_FLIP_DONE_INT_EN_VLV);
558 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
559 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
560 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
561 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
562
563 return enable_mask;
564}
565
566void
567i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
568 u32 status_mask)
569{
570 u32 enable_mask;
571
572 if (IS_VALLEYVIEW(dev_priv->dev))
573 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
574 status_mask);
575 else
576 enable_mask = status_mask << 16;
577 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
578}
579
580void
581i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
582 u32 status_mask)
583{
584 u32 enable_mask;
585
586 if (IS_VALLEYVIEW(dev_priv->dev))
587 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
588 status_mask);
589 else
590 enable_mask = status_mask << 16;
591 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
592}
593
594/**
595 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
596 */
597static void i915_enable_asle_pipestat(struct drm_device *dev)
598{
599 struct drm_i915_private *dev_priv = dev->dev_private;
600 unsigned long irqflags;
601
602 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
603 return;
604
605 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
606
607 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
608 if (INTEL_INFO(dev)->gen >= 4)
609 i915_enable_pipestat(dev_priv, PIPE_A,
610 PIPE_LEGACY_BLC_EVENT_STATUS);
611
612 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
613}
614
615/**
616 * i915_pipe_enabled - check if a pipe is enabled
617 * @dev: DRM device
618 * @pipe: pipe to check
619 *
620 * Reading certain registers when the pipe is disabled can hang the chip.
621 * Use this routine to make sure the PLL is running and the pipe is active
622 * before reading such registers if unsure.
623 */
624static int
625i915_pipe_enabled(struct drm_device *dev, int pipe)
626{
627 struct drm_i915_private *dev_priv = dev->dev_private;
628
629 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
630 /* Locking is horribly broken here, but whatever. */
631 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
632 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
633
634 return intel_crtc->active;
635 } else {
636 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
637 }
638}
639
640static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
641{
642 /* Gen2 doesn't have a hardware frame counter */
643 return 0;
644}
645
646/* Called from drm generic code, passed a 'crtc', which
647 * we use as a pipe index
648 */
649static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
650{
651 struct drm_i915_private *dev_priv = dev->dev_private;
652 unsigned long high_frame;
653 unsigned long low_frame;
654 u32 high1, high2, low, pixel, vbl_start;
655
656 if (!i915_pipe_enabled(dev, pipe)) {
657 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
658 "pipe %c\n", pipe_name(pipe));
659 return 0;
660 }
661
662 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
663 struct intel_crtc *intel_crtc =
664 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
665 const struct drm_display_mode *mode =
666 &intel_crtc->config.adjusted_mode;
667
668 vbl_start = mode->crtc_vblank_start * mode->crtc_htotal;
669 } else {
670 enum transcoder cpu_transcoder = (enum transcoder) pipe;
671 u32 htotal;
672
673 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
674 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
675
676 vbl_start *= htotal;
677 }
678
679 high_frame = PIPEFRAME(pipe);
680 low_frame = PIPEFRAMEPIXEL(pipe);
681
682 /*
683 * High & low register fields aren't synchronized, so make sure
684 * we get a low value that's stable across two reads of the high
685 * register.
686 */
687 do {
688 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
689 low = I915_READ(low_frame);
690 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
691 } while (high1 != high2);
692
693 high1 >>= PIPE_FRAME_HIGH_SHIFT;
694 pixel = low & PIPE_PIXEL_MASK;
695 low >>= PIPE_FRAME_LOW_SHIFT;
696
697 /*
698 * The frame counter increments at beginning of active.
699 * Cook up a vblank counter by also checking the pixel
700 * counter against vblank start.
701 */
702 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
703}
704
705static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
706{
707 struct drm_i915_private *dev_priv = dev->dev_private;
708 int reg = PIPE_FRMCOUNT_GM45(pipe);
709
710 if (!i915_pipe_enabled(dev, pipe)) {
711 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
712 "pipe %c\n", pipe_name(pipe));
713 return 0;
714 }
715
716 return I915_READ(reg);
717}
718
719/* raw reads, only for fast reads of display block, no need for forcewake etc. */
720#define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
721
722static bool ilk_pipe_in_vblank_locked(struct drm_device *dev, enum pipe pipe)
723{
724 struct drm_i915_private *dev_priv = dev->dev_private;
725 uint32_t status;
726 int reg;
727
728 if (INTEL_INFO(dev)->gen >= 8) {
729 status = GEN8_PIPE_VBLANK;
730 reg = GEN8_DE_PIPE_ISR(pipe);
731 } else if (INTEL_INFO(dev)->gen >= 7) {
732 status = DE_PIPE_VBLANK_IVB(pipe);
733 reg = DEISR;
734 } else {
735 status = DE_PIPE_VBLANK(pipe);
736 reg = DEISR;
737 }
738
739 return __raw_i915_read32(dev_priv, reg) & status;
740}
741
742static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
743 unsigned int flags, int *vpos, int *hpos,
744 ktime_t *stime, ktime_t *etime)
745{
746 struct drm_i915_private *dev_priv = dev->dev_private;
747 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
748 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
749 const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
750 int position;
751 int vbl_start, vbl_end, htotal, vtotal;
752 bool in_vbl = true;
753 int ret = 0;
754 unsigned long irqflags;
755
756 if (!intel_crtc->active) {
757 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
758 "pipe %c\n", pipe_name(pipe));
759 return 0;
760 }
761
762 htotal = mode->crtc_htotal;
763 vtotal = mode->crtc_vtotal;
764 vbl_start = mode->crtc_vblank_start;
765 vbl_end = mode->crtc_vblank_end;
766
767 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
768 vbl_start = DIV_ROUND_UP(vbl_start, 2);
769 vbl_end /= 2;
770 vtotal /= 2;
771 }
772
773 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
774
775 /*
776 * Lock uncore.lock, as we will do multiple timing critical raw
777 * register reads, potentially with preemption disabled, so the
778 * following code must not block on uncore.lock.
779 */
780 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
781
782 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
783
784 /* Get optional system timestamp before query. */
785 if (stime)
786 *stime = ktime_get();
787
788 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
789 /* No obvious pixelcount register. Only query vertical
790 * scanout position from Display scan line register.
791 */
792 if (IS_GEN2(dev))
793 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
794 else
795 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
796
797 if (HAS_DDI(dev)) {
798 /*
799 * On HSW HDMI outputs there seems to be a 2 line
800 * difference, whereas eDP has the normal 1 line
801 * difference that earlier platforms have. External
802 * DP is unknown. For now just check for the 2 line
803 * difference case on all output types on HSW+.
804 *
805 * This might misinterpret the scanline counter being
806 * one line too far along on eDP, but that's less
807 * dangerous than the alternative since that would lead
808 * the vblank timestamp code astray when it sees a
809 * scanline count before vblank_start during a vblank
810 * interrupt.
811 */
812 in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
813 if ((in_vbl && (position == vbl_start - 2 ||
814 position == vbl_start - 1)) ||
815 (!in_vbl && (position == vbl_end - 2 ||
816 position == vbl_end - 1)))
817 position = (position + 2) % vtotal;
818 } else if (HAS_PCH_SPLIT(dev)) {
819 /*
820 * The scanline counter increments at the leading edge
821 * of hsync, ie. it completely misses the active portion
822 * of the line. Fix up the counter at both edges of vblank
823 * to get a more accurate picture whether we're in vblank
824 * or not.
825 */
826 in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
827 if ((in_vbl && position == vbl_start - 1) ||
828 (!in_vbl && position == vbl_end - 1))
829 position = (position + 1) % vtotal;
830 } else {
831 /*
832 * ISR vblank status bits don't work the way we'd want
833 * them to work on non-PCH platforms (for
834 * ilk_pipe_in_vblank_locked()), and there doesn't
835 * appear any other way to determine if we're currently
836 * in vblank.
837 *
838 * Instead let's assume that we're already in vblank if
839 * we got called from the vblank interrupt and the
840 * scanline counter value indicates that we're on the
841 * line just prior to vblank start. This should result
842 * in the correct answer, unless the vblank interrupt
843 * delivery really got delayed for almost exactly one
844 * full frame/field.
845 */
846 if (flags & DRM_CALLED_FROM_VBLIRQ &&
847 position == vbl_start - 1) {
848 position = (position + 1) % vtotal;
849
850 /* Signal this correction as "applied". */
851 ret |= 0x8;
852 }
853 }
854 } else {
855 /* Have access to pixelcount since start of frame.
856 * We can split this into vertical and horizontal
857 * scanout position.
858 */
859 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
860
861 /* convert to pixel counts */
862 vbl_start *= htotal;
863 vbl_end *= htotal;
864 vtotal *= htotal;
865 }
866
867 /* Get optional system timestamp after query. */
868 if (etime)
869 *etime = ktime_get();
870
871 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
872
873 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
874
875 in_vbl = position >= vbl_start && position < vbl_end;
876
877 /*
878 * While in vblank, position will be negative
879 * counting up towards 0 at vbl_end. And outside
880 * vblank, position will be positive counting
881 * up since vbl_end.
882 */
883 if (position >= vbl_start)
884 position -= vbl_end;
885 else
886 position += vtotal - vbl_end;
887
888 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
889 *vpos = position;
890 *hpos = 0;
891 } else {
892 *vpos = position / htotal;
893 *hpos = position - (*vpos * htotal);
894 }
895
896 /* In vblank? */
897 if (in_vbl)
898 ret |= DRM_SCANOUTPOS_INVBL;
899
900 return ret;
901}
902
903static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
904 int *max_error,
905 struct timeval *vblank_time,
906 unsigned flags)
907{
908 struct drm_crtc *crtc;
909
910 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
911 DRM_ERROR("Invalid crtc %d\n", pipe);
912 return -EINVAL;
913 }
914
915 /* Get drm_crtc to timestamp: */
916 crtc = intel_get_crtc_for_pipe(dev, pipe);
917 if (crtc == NULL) {
918 DRM_ERROR("Invalid crtc %d\n", pipe);
919 return -EINVAL;
920 }
921
922 if (!crtc->enabled) {
923 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
924 return -EBUSY;
925 }
926
927 /* Helper routine in DRM core does all the work: */
928 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
929 vblank_time, flags,
930 crtc,
931 &to_intel_crtc(crtc)->config.adjusted_mode);
932}
933
934static bool intel_hpd_irq_event(struct drm_device *dev,
935 struct drm_connector *connector)
936{
937 enum drm_connector_status old_status;
938
939 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
940 old_status = connector->status;
941
942 connector->status = connector->funcs->detect(connector, false);
943 if (old_status == connector->status)
944 return false;
945
946 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
947 connector->base.id,
948 drm_get_connector_name(connector),
949 drm_get_connector_status_name(old_status),
950 drm_get_connector_status_name(connector->status));
951
952 return true;
953}
954
955/*
956 * Handle hotplug events outside the interrupt handler proper.
957 */
958#define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
959
960static void i915_hotplug_work_func(struct work_struct *work)
961{
962 struct drm_i915_private *dev_priv =
963 container_of(work, struct drm_i915_private, hotplug_work);
964 struct drm_device *dev = dev_priv->dev;
965 struct drm_mode_config *mode_config = &dev->mode_config;
966 struct intel_connector *intel_connector;
967 struct intel_encoder *intel_encoder;
968 struct drm_connector *connector;
969 unsigned long irqflags;
970 bool hpd_disabled = false;
971 bool changed = false;
972 u32 hpd_event_bits;
973
974 /* HPD irq before everything is fully set up. */
975 if (!dev_priv->enable_hotplug_processing)
976 return;
977
978 mutex_lock(&mode_config->mutex);
979 DRM_DEBUG_KMS("running encoder hotplug functions\n");
980
981 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
982
983 hpd_event_bits = dev_priv->hpd_event_bits;
984 dev_priv->hpd_event_bits = 0;
985 list_for_each_entry(connector, &mode_config->connector_list, head) {
986 intel_connector = to_intel_connector(connector);
987 intel_encoder = intel_connector->encoder;
988 if (intel_encoder->hpd_pin > HPD_NONE &&
989 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
990 connector->polled == DRM_CONNECTOR_POLL_HPD) {
991 DRM_INFO("HPD interrupt storm detected on connector %s: "
992 "switching from hotplug detection to polling\n",
993 drm_get_connector_name(connector));
994 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
995 connector->polled = DRM_CONNECTOR_POLL_CONNECT
996 | DRM_CONNECTOR_POLL_DISCONNECT;
997 hpd_disabled = true;
998 }
999 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1000 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1001 drm_get_connector_name(connector), intel_encoder->hpd_pin);
1002 }
1003 }
1004 /* if there were no outputs to poll, poll was disabled,
1005 * therefore make sure it's enabled when disabling HPD on
1006 * some connectors */
1007 if (hpd_disabled) {
1008 drm_kms_helper_poll_enable(dev);
1009 mod_timer(&dev_priv->hotplug_reenable_timer,
1010 jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1011 }
1012
1013 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1014
1015 list_for_each_entry(connector, &mode_config->connector_list, head) {
1016 intel_connector = to_intel_connector(connector);
1017 intel_encoder = intel_connector->encoder;
1018 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1019 if (intel_encoder->hot_plug)
1020 intel_encoder->hot_plug(intel_encoder);
1021 if (intel_hpd_irq_event(dev, connector))
1022 changed = true;
1023 }
1024 }
1025 mutex_unlock(&mode_config->mutex);
1026
1027 if (changed)
1028 drm_kms_helper_hotplug_event(dev);
1029}
1030
1031static void intel_hpd_irq_uninstall(struct drm_i915_private *dev_priv)
1032{
1033 del_timer_sync(&dev_priv->hotplug_reenable_timer);
1034}
1035
1036static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1037{
1038 struct drm_i915_private *dev_priv = dev->dev_private;
1039 u32 busy_up, busy_down, max_avg, min_avg;
1040 u8 new_delay;
1041
1042 spin_lock(&mchdev_lock);
1043
1044 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1045
1046 new_delay = dev_priv->ips.cur_delay;
1047
1048 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1049 busy_up = I915_READ(RCPREVBSYTUPAVG);
1050 busy_down = I915_READ(RCPREVBSYTDNAVG);
1051 max_avg = I915_READ(RCBMAXAVG);
1052 min_avg = I915_READ(RCBMINAVG);
1053
1054 /* Handle RCS change request from hw */
1055 if (busy_up > max_avg) {
1056 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1057 new_delay = dev_priv->ips.cur_delay - 1;
1058 if (new_delay < dev_priv->ips.max_delay)
1059 new_delay = dev_priv->ips.max_delay;
1060 } else if (busy_down < min_avg) {
1061 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1062 new_delay = dev_priv->ips.cur_delay + 1;
1063 if (new_delay > dev_priv->ips.min_delay)
1064 new_delay = dev_priv->ips.min_delay;
1065 }
1066
1067 if (ironlake_set_drps(dev, new_delay))
1068 dev_priv->ips.cur_delay = new_delay;
1069
1070 spin_unlock(&mchdev_lock);
1071
1072 return;
1073}
1074
1075static void notify_ring(struct drm_device *dev,
1076 struct intel_ring_buffer *ring)
1077{
1078 if (ring->obj == NULL)
1079 return;
1080
1081 trace_i915_gem_request_complete(ring);
1082
1083 wake_up_all(&ring->irq_queue);
1084 i915_queue_hangcheck(dev);
1085}
1086
1087static void gen6_pm_rps_work(struct work_struct *work)
1088{
1089 struct drm_i915_private *dev_priv =
1090 container_of(work, struct drm_i915_private, rps.work);
1091 u32 pm_iir;
1092 int new_delay, adj;
1093
1094 spin_lock_irq(&dev_priv->irq_lock);
1095 pm_iir = dev_priv->rps.pm_iir;
1096 dev_priv->rps.pm_iir = 0;
1097 /* Make sure not to corrupt PMIMR state used by ringbuffer code */
1098 snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1099 spin_unlock_irq(&dev_priv->irq_lock);
1100
1101 /* Make sure we didn't queue anything we're not going to process. */
1102 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1103
1104 if ((pm_iir & dev_priv->pm_rps_events) == 0)
1105 return;
1106
1107 mutex_lock(&dev_priv->rps.hw_lock);
1108
1109 adj = dev_priv->rps.last_adj;
1110 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1111 if (adj > 0)
1112 adj *= 2;
1113 else
1114 adj = 1;
1115 new_delay = dev_priv->rps.cur_freq + adj;
1116
1117 /*
1118 * For better performance, jump directly
1119 * to RPe if we're below it.
1120 */
1121 if (new_delay < dev_priv->rps.efficient_freq)
1122 new_delay = dev_priv->rps.efficient_freq;
1123 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1124 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1125 new_delay = dev_priv->rps.efficient_freq;
1126 else
1127 new_delay = dev_priv->rps.min_freq_softlimit;
1128 adj = 0;
1129 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1130 if (adj < 0)
1131 adj *= 2;
1132 else
1133 adj = -1;
1134 new_delay = dev_priv->rps.cur_freq + adj;
1135 } else { /* unknown event */
1136 new_delay = dev_priv->rps.cur_freq;
1137 }
1138
1139 /* sysfs frequency interfaces may have snuck in while servicing the
1140 * interrupt
1141 */
1142 new_delay = clamp_t(int, new_delay,
1143 dev_priv->rps.min_freq_softlimit,
1144 dev_priv->rps.max_freq_softlimit);
1145
1146 dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1147
1148 if (IS_VALLEYVIEW(dev_priv->dev))
1149 valleyview_set_rps(dev_priv->dev, new_delay);
1150 else
1151 gen6_set_rps(dev_priv->dev, new_delay);
1152
1153 mutex_unlock(&dev_priv->rps.hw_lock);
1154}
1155
1156
1157/**
1158 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1159 * occurred.
1160 * @work: workqueue struct
1161 *
1162 * Doesn't actually do anything except notify userspace. As a consequence of
1163 * this event, userspace should try to remap the bad rows since statistically
1164 * it is likely the same row is more likely to go bad again.
1165 */
1166static void ivybridge_parity_work(struct work_struct *work)
1167{
1168 struct drm_i915_private *dev_priv =
1169 container_of(work, struct drm_i915_private, l3_parity.error_work);
1170 u32 error_status, row, bank, subbank;
1171 char *parity_event[6];
1172 uint32_t misccpctl;
1173 unsigned long flags;
1174 uint8_t slice = 0;
1175
1176 /* We must turn off DOP level clock gating to access the L3 registers.
1177 * In order to prevent a get/put style interface, acquire struct mutex
1178 * any time we access those registers.
1179 */
1180 mutex_lock(&dev_priv->dev->struct_mutex);
1181
1182 /* If we've screwed up tracking, just let the interrupt fire again */
1183 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1184 goto out;
1185
1186 misccpctl = I915_READ(GEN7_MISCCPCTL);
1187 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1188 POSTING_READ(GEN7_MISCCPCTL);
1189
1190 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1191 u32 reg;
1192
1193 slice--;
1194 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1195 break;
1196
1197 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1198
1199 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1200
1201 error_status = I915_READ(reg);
1202 row = GEN7_PARITY_ERROR_ROW(error_status);
1203 bank = GEN7_PARITY_ERROR_BANK(error_status);
1204 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1205
1206 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1207 POSTING_READ(reg);
1208
1209 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1210 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1211 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1212 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1213 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1214 parity_event[5] = NULL;
1215
1216 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1217 KOBJ_CHANGE, parity_event);
1218
1219 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1220 slice, row, bank, subbank);
1221
1222 kfree(parity_event[4]);
1223 kfree(parity_event[3]);
1224 kfree(parity_event[2]);
1225 kfree(parity_event[1]);
1226 }
1227
1228 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1229
1230out:
1231 WARN_ON(dev_priv->l3_parity.which_slice);
1232 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1233 ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1234 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1235
1236 mutex_unlock(&dev_priv->dev->struct_mutex);
1237}
1238
1239static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1240{
1241 struct drm_i915_private *dev_priv = dev->dev_private;
1242
1243 if (!HAS_L3_DPF(dev))
1244 return;
1245
1246 spin_lock(&dev_priv->irq_lock);
1247 ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1248 spin_unlock(&dev_priv->irq_lock);
1249
1250 iir &= GT_PARITY_ERROR(dev);
1251 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1252 dev_priv->l3_parity.which_slice |= 1 << 1;
1253
1254 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1255 dev_priv->l3_parity.which_slice |= 1 << 0;
1256
1257 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1258}
1259
1260static void ilk_gt_irq_handler(struct drm_device *dev,
1261 struct drm_i915_private *dev_priv,
1262 u32 gt_iir)
1263{
1264 if (gt_iir &
1265 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1266 notify_ring(dev, &dev_priv->ring[RCS]);
1267 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1268 notify_ring(dev, &dev_priv->ring[VCS]);
1269}
1270
1271static void snb_gt_irq_handler(struct drm_device *dev,
1272 struct drm_i915_private *dev_priv,
1273 u32 gt_iir)
1274{
1275
1276 if (gt_iir &
1277 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1278 notify_ring(dev, &dev_priv->ring[RCS]);
1279 if (gt_iir & GT_BSD_USER_INTERRUPT)
1280 notify_ring(dev, &dev_priv->ring[VCS]);
1281 if (gt_iir & GT_BLT_USER_INTERRUPT)
1282 notify_ring(dev, &dev_priv->ring[BCS]);
1283
1284 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1285 GT_BSD_CS_ERROR_INTERRUPT |
1286 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1287 i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1288 gt_iir);
1289 }
1290
1291 if (gt_iir & GT_PARITY_ERROR(dev))
1292 ivybridge_parity_error_irq_handler(dev, gt_iir);
1293}
1294
1295static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1296 struct drm_i915_private *dev_priv,
1297 u32 master_ctl)
1298{
1299 u32 rcs, bcs, vcs;
1300 uint32_t tmp = 0;
1301 irqreturn_t ret = IRQ_NONE;
1302
1303 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1304 tmp = I915_READ(GEN8_GT_IIR(0));
1305 if (tmp) {
1306 ret = IRQ_HANDLED;
1307 rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1308 bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1309 if (rcs & GT_RENDER_USER_INTERRUPT)
1310 notify_ring(dev, &dev_priv->ring[RCS]);
1311 if (bcs & GT_RENDER_USER_INTERRUPT)
1312 notify_ring(dev, &dev_priv->ring[BCS]);
1313 I915_WRITE(GEN8_GT_IIR(0), tmp);
1314 } else
1315 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1316 }
1317
1318 if (master_ctl & GEN8_GT_VCS1_IRQ) {
1319 tmp = I915_READ(GEN8_GT_IIR(1));
1320 if (tmp) {
1321 ret = IRQ_HANDLED;
1322 vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1323 if (vcs & GT_RENDER_USER_INTERRUPT)
1324 notify_ring(dev, &dev_priv->ring[VCS]);
1325 I915_WRITE(GEN8_GT_IIR(1), tmp);
1326 } else
1327 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1328 }
1329
1330 if (master_ctl & GEN8_GT_VECS_IRQ) {
1331 tmp = I915_READ(GEN8_GT_IIR(3));
1332 if (tmp) {
1333 ret = IRQ_HANDLED;
1334 vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1335 if (vcs & GT_RENDER_USER_INTERRUPT)
1336 notify_ring(dev, &dev_priv->ring[VECS]);
1337 I915_WRITE(GEN8_GT_IIR(3), tmp);
1338 } else
1339 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1340 }
1341
1342 return ret;
1343}
1344
1345#define HPD_STORM_DETECT_PERIOD 1000
1346#define HPD_STORM_THRESHOLD 5
1347
1348static inline void intel_hpd_irq_handler(struct drm_device *dev,
1349 u32 hotplug_trigger,
1350 const u32 *hpd)
1351{
1352 struct drm_i915_private *dev_priv = dev->dev_private;
1353 int i;
1354 bool storm_detected = false;
1355
1356 if (!hotplug_trigger)
1357 return;
1358
1359 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1360 hotplug_trigger);
1361
1362 spin_lock(&dev_priv->irq_lock);
1363 for (i = 1; i < HPD_NUM_PINS; i++) {
1364
1365 if (hpd[i] & hotplug_trigger &&
1366 dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1367 /*
1368 * On GMCH platforms the interrupt mask bits only
1369 * prevent irq generation, not the setting of the
1370 * hotplug bits itself. So only WARN about unexpected
1371 * interrupts on saner platforms.
1372 */
1373 WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1374 "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1375 hotplug_trigger, i, hpd[i]);
1376
1377 continue;
1378 }
1379
1380 if (!(hpd[i] & hotplug_trigger) ||
1381 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1382 continue;
1383
1384 dev_priv->hpd_event_bits |= (1 << i);
1385 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1386 dev_priv->hpd_stats[i].hpd_last_jiffies
1387 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1388 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1389 dev_priv->hpd_stats[i].hpd_cnt = 0;
1390 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1391 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1392 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1393 dev_priv->hpd_event_bits &= ~(1 << i);
1394 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1395 storm_detected = true;
1396 } else {
1397 dev_priv->hpd_stats[i].hpd_cnt++;
1398 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1399 dev_priv->hpd_stats[i].hpd_cnt);
1400 }
1401 }
1402
1403 if (storm_detected)
1404 dev_priv->display.hpd_irq_setup(dev);
1405 spin_unlock(&dev_priv->irq_lock);
1406
1407 /*
1408 * Our hotplug handler can grab modeset locks (by calling down into the
1409 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1410 * queue for otherwise the flush_work in the pageflip code will
1411 * deadlock.
1412 */
1413 schedule_work(&dev_priv->hotplug_work);
1414}
1415
1416static void gmbus_irq_handler(struct drm_device *dev)
1417{
1418 struct drm_i915_private *dev_priv = dev->dev_private;
1419
1420 wake_up_all(&dev_priv->gmbus_wait_queue);
1421}
1422
1423static void dp_aux_irq_handler(struct drm_device *dev)
1424{
1425 struct drm_i915_private *dev_priv = dev->dev_private;
1426
1427 wake_up_all(&dev_priv->gmbus_wait_queue);
1428}
1429
1430#if defined(CONFIG_DEBUG_FS)
1431static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1432 uint32_t crc0, uint32_t crc1,
1433 uint32_t crc2, uint32_t crc3,
1434 uint32_t crc4)
1435{
1436 struct drm_i915_private *dev_priv = dev->dev_private;
1437 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1438 struct intel_pipe_crc_entry *entry;
1439 int head, tail;
1440
1441 spin_lock(&pipe_crc->lock);
1442
1443 if (!pipe_crc->entries) {
1444 spin_unlock(&pipe_crc->lock);
1445 DRM_ERROR("spurious interrupt\n");
1446 return;
1447 }
1448
1449 head = pipe_crc->head;
1450 tail = pipe_crc->tail;
1451
1452 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1453 spin_unlock(&pipe_crc->lock);
1454 DRM_ERROR("CRC buffer overflowing\n");
1455 return;
1456 }
1457
1458 entry = &pipe_crc->entries[head];
1459
1460 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1461 entry->crc[0] = crc0;
1462 entry->crc[1] = crc1;
1463 entry->crc[2] = crc2;
1464 entry->crc[3] = crc3;
1465 entry->crc[4] = crc4;
1466
1467 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1468 pipe_crc->head = head;
1469
1470 spin_unlock(&pipe_crc->lock);
1471
1472 wake_up_interruptible(&pipe_crc->wq);
1473}
1474#else
1475static inline void
1476display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1477 uint32_t crc0, uint32_t crc1,
1478 uint32_t crc2, uint32_t crc3,
1479 uint32_t crc4) {}
1480#endif
1481
1482
1483static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1484{
1485 struct drm_i915_private *dev_priv = dev->dev_private;
1486
1487 display_pipe_crc_irq_handler(dev, pipe,
1488 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1489 0, 0, 0, 0);
1490}
1491
1492static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1493{
1494 struct drm_i915_private *dev_priv = dev->dev_private;
1495
1496 display_pipe_crc_irq_handler(dev, pipe,
1497 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1498 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1499 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1500 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1501 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1502}
1503
1504static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1505{
1506 struct drm_i915_private *dev_priv = dev->dev_private;
1507 uint32_t res1, res2;
1508
1509 if (INTEL_INFO(dev)->gen >= 3)
1510 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1511 else
1512 res1 = 0;
1513
1514 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1515 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1516 else
1517 res2 = 0;
1518
1519 display_pipe_crc_irq_handler(dev, pipe,
1520 I915_READ(PIPE_CRC_RES_RED(pipe)),
1521 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1522 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1523 res1, res2);
1524}
1525
1526/* The RPS events need forcewake, so we add them to a work queue and mask their
1527 * IMR bits until the work is done. Other interrupts can be processed without
1528 * the work queue. */
1529static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1530{
1531 if (pm_iir & dev_priv->pm_rps_events) {
1532 spin_lock(&dev_priv->irq_lock);
1533 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1534 snb_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1535 spin_unlock(&dev_priv->irq_lock);
1536
1537 queue_work(dev_priv->wq, &dev_priv->rps.work);
1538 }
1539
1540 if (HAS_VEBOX(dev_priv->dev)) {
1541 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1542 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1543
1544 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1545 i915_handle_error(dev_priv->dev, false,
1546 "VEBOX CS error interrupt 0x%08x",
1547 pm_iir);
1548 }
1549 }
1550}
1551
1552static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1553{
1554 struct drm_i915_private *dev_priv = dev->dev_private;
1555 u32 pipe_stats[I915_MAX_PIPES] = { };
1556 int pipe;
1557
1558 spin_lock(&dev_priv->irq_lock);
1559 for_each_pipe(pipe) {
1560 int reg;
1561 u32 mask, iir_bit = 0;
1562
1563 /*
1564 * PIPESTAT bits get signalled even when the interrupt is
1565 * disabled with the mask bits, and some of the status bits do
1566 * not generate interrupts at all (like the underrun bit). Hence
1567 * we need to be careful that we only handle what we want to
1568 * handle.
1569 */
1570 mask = 0;
1571 if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
1572 mask |= PIPE_FIFO_UNDERRUN_STATUS;
1573
1574 switch (pipe) {
1575 case PIPE_A:
1576 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1577 break;
1578 case PIPE_B:
1579 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1580 break;
1581 }
1582 if (iir & iir_bit)
1583 mask |= dev_priv->pipestat_irq_mask[pipe];
1584
1585 if (!mask)
1586 continue;
1587
1588 reg = PIPESTAT(pipe);
1589 mask |= PIPESTAT_INT_ENABLE_MASK;
1590 pipe_stats[pipe] = I915_READ(reg) & mask;
1591
1592 /*
1593 * Clear the PIPE*STAT regs before the IIR
1594 */
1595 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1596 PIPESTAT_INT_STATUS_MASK))
1597 I915_WRITE(reg, pipe_stats[pipe]);
1598 }
1599 spin_unlock(&dev_priv->irq_lock);
1600
1601 for_each_pipe(pipe) {
1602 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1603 drm_handle_vblank(dev, pipe);
1604
1605 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1606 intel_prepare_page_flip(dev, pipe);
1607 intel_finish_page_flip(dev, pipe);
1608 }
1609
1610 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1611 i9xx_pipe_crc_irq_handler(dev, pipe);
1612
1613 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
1614 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1615 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
1616 }
1617
1618 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1619 gmbus_irq_handler(dev);
1620}
1621
1622static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1623{
1624 struct drm_device *dev = (struct drm_device *) arg;
1625 struct drm_i915_private *dev_priv = dev->dev_private;
1626 u32 iir, gt_iir, pm_iir;
1627 irqreturn_t ret = IRQ_NONE;
1628
1629 while (true) {
1630 iir = I915_READ(VLV_IIR);
1631 gt_iir = I915_READ(GTIIR);
1632 pm_iir = I915_READ(GEN6_PMIIR);
1633
1634 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1635 goto out;
1636
1637 ret = IRQ_HANDLED;
1638
1639 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1640
1641 valleyview_pipestat_irq_handler(dev, iir);
1642
1643 /* Consume port. Then clear IIR or we'll miss events */
1644 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1645 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1646 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1647
1648 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1649
1650 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1651 dp_aux_irq_handler(dev);
1652
1653 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1654 I915_READ(PORT_HOTPLUG_STAT);
1655 }
1656
1657
1658 if (pm_iir)
1659 gen6_rps_irq_handler(dev_priv, pm_iir);
1660
1661 I915_WRITE(GTIIR, gt_iir);
1662 I915_WRITE(GEN6_PMIIR, pm_iir);
1663 I915_WRITE(VLV_IIR, iir);
1664 }
1665
1666out:
1667 return ret;
1668}
1669
1670static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1671{
1672 struct drm_i915_private *dev_priv = dev->dev_private;
1673 int pipe;
1674 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1675
1676 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1677
1678 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1679 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1680 SDE_AUDIO_POWER_SHIFT);
1681 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1682 port_name(port));
1683 }
1684
1685 if (pch_iir & SDE_AUX_MASK)
1686 dp_aux_irq_handler(dev);
1687
1688 if (pch_iir & SDE_GMBUS)
1689 gmbus_irq_handler(dev);
1690
1691 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1692 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1693
1694 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1695 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1696
1697 if (pch_iir & SDE_POISON)
1698 DRM_ERROR("PCH poison interrupt\n");
1699
1700 if (pch_iir & SDE_FDI_MASK)
1701 for_each_pipe(pipe)
1702 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1703 pipe_name(pipe),
1704 I915_READ(FDI_RX_IIR(pipe)));
1705
1706 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1707 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1708
1709 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1710 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1711
1712 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1713 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1714 false))
1715 DRM_ERROR("PCH transcoder A FIFO underrun\n");
1716
1717 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1718 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1719 false))
1720 DRM_ERROR("PCH transcoder B FIFO underrun\n");
1721}
1722
1723static void ivb_err_int_handler(struct drm_device *dev)
1724{
1725 struct drm_i915_private *dev_priv = dev->dev_private;
1726 u32 err_int = I915_READ(GEN7_ERR_INT);
1727 enum pipe pipe;
1728
1729 if (err_int & ERR_INT_POISON)
1730 DRM_ERROR("Poison interrupt\n");
1731
1732 for_each_pipe(pipe) {
1733 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
1734 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1735 false))
1736 DRM_ERROR("Pipe %c FIFO underrun\n",
1737 pipe_name(pipe));
1738 }
1739
1740 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1741 if (IS_IVYBRIDGE(dev))
1742 ivb_pipe_crc_irq_handler(dev, pipe);
1743 else
1744 hsw_pipe_crc_irq_handler(dev, pipe);
1745 }
1746 }
1747
1748 I915_WRITE(GEN7_ERR_INT, err_int);
1749}
1750
1751static void cpt_serr_int_handler(struct drm_device *dev)
1752{
1753 struct drm_i915_private *dev_priv = dev->dev_private;
1754 u32 serr_int = I915_READ(SERR_INT);
1755
1756 if (serr_int & SERR_INT_POISON)
1757 DRM_ERROR("PCH poison interrupt\n");
1758
1759 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1760 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1761 false))
1762 DRM_ERROR("PCH transcoder A FIFO underrun\n");
1763
1764 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1765 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1766 false))
1767 DRM_ERROR("PCH transcoder B FIFO underrun\n");
1768
1769 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1770 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1771 false))
1772 DRM_ERROR("PCH transcoder C FIFO underrun\n");
1773
1774 I915_WRITE(SERR_INT, serr_int);
1775}
1776
1777static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1778{
1779 struct drm_i915_private *dev_priv = dev->dev_private;
1780 int pipe;
1781 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1782
1783 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1784
1785 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1786 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1787 SDE_AUDIO_POWER_SHIFT_CPT);
1788 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1789 port_name(port));
1790 }
1791
1792 if (pch_iir & SDE_AUX_MASK_CPT)
1793 dp_aux_irq_handler(dev);
1794
1795 if (pch_iir & SDE_GMBUS_CPT)
1796 gmbus_irq_handler(dev);
1797
1798 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1799 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1800
1801 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1802 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1803
1804 if (pch_iir & SDE_FDI_MASK_CPT)
1805 for_each_pipe(pipe)
1806 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1807 pipe_name(pipe),
1808 I915_READ(FDI_RX_IIR(pipe)));
1809
1810 if (pch_iir & SDE_ERROR_CPT)
1811 cpt_serr_int_handler(dev);
1812}
1813
1814static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1815{
1816 struct drm_i915_private *dev_priv = dev->dev_private;
1817 enum pipe pipe;
1818
1819 if (de_iir & DE_AUX_CHANNEL_A)
1820 dp_aux_irq_handler(dev);
1821
1822 if (de_iir & DE_GSE)
1823 intel_opregion_asle_intr(dev);
1824
1825 if (de_iir & DE_POISON)
1826 DRM_ERROR("Poison interrupt\n");
1827
1828 for_each_pipe(pipe) {
1829 if (de_iir & DE_PIPE_VBLANK(pipe))
1830 drm_handle_vblank(dev, pipe);
1831
1832 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1833 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1834 DRM_ERROR("Pipe %c FIFO underrun\n",
1835 pipe_name(pipe));
1836
1837 if (de_iir & DE_PIPE_CRC_DONE(pipe))
1838 i9xx_pipe_crc_irq_handler(dev, pipe);
1839
1840 /* plane/pipes map 1:1 on ilk+ */
1841 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
1842 intel_prepare_page_flip(dev, pipe);
1843 intel_finish_page_flip_plane(dev, pipe);
1844 }
1845 }
1846
1847 /* check event from PCH */
1848 if (de_iir & DE_PCH_EVENT) {
1849 u32 pch_iir = I915_READ(SDEIIR);
1850
1851 if (HAS_PCH_CPT(dev))
1852 cpt_irq_handler(dev, pch_iir);
1853 else
1854 ibx_irq_handler(dev, pch_iir);
1855
1856 /* should clear PCH hotplug event before clear CPU irq */
1857 I915_WRITE(SDEIIR, pch_iir);
1858 }
1859
1860 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1861 ironlake_rps_change_irq_handler(dev);
1862}
1863
1864static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1865{
1866 struct drm_i915_private *dev_priv = dev->dev_private;
1867 enum pipe pipe;
1868
1869 if (de_iir & DE_ERR_INT_IVB)
1870 ivb_err_int_handler(dev);
1871
1872 if (de_iir & DE_AUX_CHANNEL_A_IVB)
1873 dp_aux_irq_handler(dev);
1874
1875 if (de_iir & DE_GSE_IVB)
1876 intel_opregion_asle_intr(dev);
1877
1878 for_each_pipe(pipe) {
1879 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
1880 drm_handle_vblank(dev, pipe);
1881
1882 /* plane/pipes map 1:1 on ilk+ */
1883 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
1884 intel_prepare_page_flip(dev, pipe);
1885 intel_finish_page_flip_plane(dev, pipe);
1886 }
1887 }
1888
1889 /* check event from PCH */
1890 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1891 u32 pch_iir = I915_READ(SDEIIR);
1892
1893 cpt_irq_handler(dev, pch_iir);
1894
1895 /* clear PCH hotplug event before clear CPU irq */
1896 I915_WRITE(SDEIIR, pch_iir);
1897 }
1898}
1899
1900static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1901{
1902 struct drm_device *dev = (struct drm_device *) arg;
1903 struct drm_i915_private *dev_priv = dev->dev_private;
1904 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1905 irqreturn_t ret = IRQ_NONE;
1906
1907 /* We get interrupts on unclaimed registers, so check for this before we
1908 * do any I915_{READ,WRITE}. */
1909 intel_uncore_check_errors(dev);
1910
1911 /* disable master interrupt before clearing iir */
1912 de_ier = I915_READ(DEIER);
1913 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1914 POSTING_READ(DEIER);
1915
1916 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1917 * interrupts will will be stored on its back queue, and then we'll be
1918 * able to process them after we restore SDEIER (as soon as we restore
1919 * it, we'll get an interrupt if SDEIIR still has something to process
1920 * due to its back queue). */
1921 if (!HAS_PCH_NOP(dev)) {
1922 sde_ier = I915_READ(SDEIER);
1923 I915_WRITE(SDEIER, 0);
1924 POSTING_READ(SDEIER);
1925 }
1926
1927 gt_iir = I915_READ(GTIIR);
1928 if (gt_iir) {
1929 if (INTEL_INFO(dev)->gen >= 6)
1930 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1931 else
1932 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1933 I915_WRITE(GTIIR, gt_iir);
1934 ret = IRQ_HANDLED;
1935 }
1936
1937 de_iir = I915_READ(DEIIR);
1938 if (de_iir) {
1939 if (INTEL_INFO(dev)->gen >= 7)
1940 ivb_display_irq_handler(dev, de_iir);
1941 else
1942 ilk_display_irq_handler(dev, de_iir);
1943 I915_WRITE(DEIIR, de_iir);
1944 ret = IRQ_HANDLED;
1945 }
1946
1947 if (INTEL_INFO(dev)->gen >= 6) {
1948 u32 pm_iir = I915_READ(GEN6_PMIIR);
1949 if (pm_iir) {
1950 gen6_rps_irq_handler(dev_priv, pm_iir);
1951 I915_WRITE(GEN6_PMIIR, pm_iir);
1952 ret = IRQ_HANDLED;
1953 }
1954 }
1955
1956 I915_WRITE(DEIER, de_ier);
1957 POSTING_READ(DEIER);
1958 if (!HAS_PCH_NOP(dev)) {
1959 I915_WRITE(SDEIER, sde_ier);
1960 POSTING_READ(SDEIER);
1961 }
1962
1963 return ret;
1964}
1965
1966static irqreturn_t gen8_irq_handler(int irq, void *arg)
1967{
1968 struct drm_device *dev = arg;
1969 struct drm_i915_private *dev_priv = dev->dev_private;
1970 u32 master_ctl;
1971 irqreturn_t ret = IRQ_NONE;
1972 uint32_t tmp = 0;
1973 enum pipe pipe;
1974
1975 master_ctl = I915_READ(GEN8_MASTER_IRQ);
1976 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
1977 if (!master_ctl)
1978 return IRQ_NONE;
1979
1980 I915_WRITE(GEN8_MASTER_IRQ, 0);
1981 POSTING_READ(GEN8_MASTER_IRQ);
1982
1983 ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1984
1985 if (master_ctl & GEN8_DE_MISC_IRQ) {
1986 tmp = I915_READ(GEN8_DE_MISC_IIR);
1987 if (tmp & GEN8_DE_MISC_GSE)
1988 intel_opregion_asle_intr(dev);
1989 else if (tmp)
1990 DRM_ERROR("Unexpected DE Misc interrupt\n");
1991 else
1992 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
1993
1994 if (tmp) {
1995 I915_WRITE(GEN8_DE_MISC_IIR, tmp);
1996 ret = IRQ_HANDLED;
1997 }
1998 }
1999
2000 if (master_ctl & GEN8_DE_PORT_IRQ) {
2001 tmp = I915_READ(GEN8_DE_PORT_IIR);
2002 if (tmp & GEN8_AUX_CHANNEL_A)
2003 dp_aux_irq_handler(dev);
2004 else if (tmp)
2005 DRM_ERROR("Unexpected DE Port interrupt\n");
2006 else
2007 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2008
2009 if (tmp) {
2010 I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2011 ret = IRQ_HANDLED;
2012 }
2013 }
2014
2015 for_each_pipe(pipe) {
2016 uint32_t pipe_iir;
2017
2018 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2019 continue;
2020
2021 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2022 if (pipe_iir & GEN8_PIPE_VBLANK)
2023 drm_handle_vblank(dev, pipe);
2024
2025 if (pipe_iir & GEN8_PIPE_FLIP_DONE) {
2026 intel_prepare_page_flip(dev, pipe);
2027 intel_finish_page_flip_plane(dev, pipe);
2028 }
2029
2030 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2031 hsw_pipe_crc_irq_handler(dev, pipe);
2032
2033 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2034 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2035 false))
2036 DRM_ERROR("Pipe %c FIFO underrun\n",
2037 pipe_name(pipe));
2038 }
2039
2040 if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2041 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2042 pipe_name(pipe),
2043 pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2044 }
2045
2046 if (pipe_iir) {
2047 ret = IRQ_HANDLED;
2048 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2049 } else
2050 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2051 }
2052
2053 if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2054 /*
2055 * FIXME(BDW): Assume for now that the new interrupt handling
2056 * scheme also closed the SDE interrupt handling race we've seen
2057 * on older pch-split platforms. But this needs testing.
2058 */
2059 u32 pch_iir = I915_READ(SDEIIR);
2060
2061 cpt_irq_handler(dev, pch_iir);
2062
2063 if (pch_iir) {
2064 I915_WRITE(SDEIIR, pch_iir);
2065 ret = IRQ_HANDLED;
2066 }
2067 }
2068
2069 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2070 POSTING_READ(GEN8_MASTER_IRQ);
2071
2072 return ret;
2073}
2074
2075static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2076 bool reset_completed)
2077{
2078 struct intel_ring_buffer *ring;
2079 int i;
2080
2081 /*
2082 * Notify all waiters for GPU completion events that reset state has
2083 * been changed, and that they need to restart their wait after
2084 * checking for potential errors (and bail out to drop locks if there is
2085 * a gpu reset pending so that i915_error_work_func can acquire them).
2086 */
2087
2088 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2089 for_each_ring(ring, dev_priv, i)
2090 wake_up_all(&ring->irq_queue);
2091
2092 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2093 wake_up_all(&dev_priv->pending_flip_queue);
2094
2095 /*
2096 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2097 * reset state is cleared.
2098 */
2099 if (reset_completed)
2100 wake_up_all(&dev_priv->gpu_error.reset_queue);
2101}
2102
2103/**
2104 * i915_error_work_func - do process context error handling work
2105 * @work: work struct
2106 *
2107 * Fire an error uevent so userspace can see that a hang or error
2108 * was detected.
2109 */
2110static void i915_error_work_func(struct work_struct *work)
2111{
2112 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2113 work);
2114 struct drm_i915_private *dev_priv =
2115 container_of(error, struct drm_i915_private, gpu_error);
2116 struct drm_device *dev = dev_priv->dev;
2117 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2118 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2119 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2120 int ret;
2121
2122 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2123
2124 /*
2125 * Note that there's only one work item which does gpu resets, so we
2126 * need not worry about concurrent gpu resets potentially incrementing
2127 * error->reset_counter twice. We only need to take care of another
2128 * racing irq/hangcheck declaring the gpu dead for a second time. A
2129 * quick check for that is good enough: schedule_work ensures the
2130 * correct ordering between hang detection and this work item, and since
2131 * the reset in-progress bit is only ever set by code outside of this
2132 * work we don't need to worry about any other races.
2133 */
2134 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2135 DRM_DEBUG_DRIVER("resetting chip\n");
2136 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2137 reset_event);
2138
2139 /*
2140 * All state reset _must_ be completed before we update the
2141 * reset counter, for otherwise waiters might miss the reset
2142 * pending state and not properly drop locks, resulting in
2143 * deadlocks with the reset work.
2144 */
2145 ret = i915_reset(dev);
2146
2147 intel_display_handle_reset(dev);
2148
2149 if (ret == 0) {
2150 /*
2151 * After all the gem state is reset, increment the reset
2152 * counter and wake up everyone waiting for the reset to
2153 * complete.
2154 *
2155 * Since unlock operations are a one-sided barrier only,
2156 * we need to insert a barrier here to order any seqno
2157 * updates before
2158 * the counter increment.
2159 */
2160 smp_mb__before_atomic_inc();
2161 atomic_inc(&dev_priv->gpu_error.reset_counter);
2162
2163 kobject_uevent_env(&dev->primary->kdev->kobj,
2164 KOBJ_CHANGE, reset_done_event);
2165 } else {
2166 atomic_set_mask(I915_WEDGED, &error->reset_counter);
2167 }
2168
2169 /*
2170 * Note: The wake_up also serves as a memory barrier so that
2171 * waiters see the update value of the reset counter atomic_t.
2172 */
2173 i915_error_wake_up(dev_priv, true);
2174 }
2175}
2176
2177static void i915_report_and_clear_eir(struct drm_device *dev)
2178{
2179 struct drm_i915_private *dev_priv = dev->dev_private;
2180 uint32_t instdone[I915_NUM_INSTDONE_REG];
2181 u32 eir = I915_READ(EIR);
2182 int pipe, i;
2183
2184 if (!eir)
2185 return;
2186
2187 pr_err("render error detected, EIR: 0x%08x\n", eir);
2188
2189 i915_get_extra_instdone(dev, instdone);
2190
2191 if (IS_G4X(dev)) {
2192 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2193 u32 ipeir = I915_READ(IPEIR_I965);
2194
2195 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2196 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2197 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2198 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2199 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2200 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2201 I915_WRITE(IPEIR_I965, ipeir);
2202 POSTING_READ(IPEIR_I965);
2203 }
2204 if (eir & GM45_ERROR_PAGE_TABLE) {
2205 u32 pgtbl_err = I915_READ(PGTBL_ER);
2206 pr_err("page table error\n");
2207 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2208 I915_WRITE(PGTBL_ER, pgtbl_err);
2209 POSTING_READ(PGTBL_ER);
2210 }
2211 }
2212
2213 if (!IS_GEN2(dev)) {
2214 if (eir & I915_ERROR_PAGE_TABLE) {
2215 u32 pgtbl_err = I915_READ(PGTBL_ER);
2216 pr_err("page table error\n");
2217 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2218 I915_WRITE(PGTBL_ER, pgtbl_err);
2219 POSTING_READ(PGTBL_ER);
2220 }
2221 }
2222
2223 if (eir & I915_ERROR_MEMORY_REFRESH) {
2224 pr_err("memory refresh error:\n");
2225 for_each_pipe(pipe)
2226 pr_err("pipe %c stat: 0x%08x\n",
2227 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2228 /* pipestat has already been acked */
2229 }
2230 if (eir & I915_ERROR_INSTRUCTION) {
2231 pr_err("instruction error\n");
2232 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2233 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2234 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2235 if (INTEL_INFO(dev)->gen < 4) {
2236 u32 ipeir = I915_READ(IPEIR);
2237
2238 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2239 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2240 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2241 I915_WRITE(IPEIR, ipeir);
2242 POSTING_READ(IPEIR);
2243 } else {
2244 u32 ipeir = I915_READ(IPEIR_I965);
2245
2246 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2247 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2248 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2249 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2250 I915_WRITE(IPEIR_I965, ipeir);
2251 POSTING_READ(IPEIR_I965);
2252 }
2253 }
2254
2255 I915_WRITE(EIR, eir);
2256 POSTING_READ(EIR);
2257 eir = I915_READ(EIR);
2258 if (eir) {
2259 /*
2260 * some errors might have become stuck,
2261 * mask them.
2262 */
2263 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2264 I915_WRITE(EMR, I915_READ(EMR) | eir);
2265 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2266 }
2267}
2268
2269/**
2270 * i915_handle_error - handle an error interrupt
2271 * @dev: drm device
2272 *
2273 * Do some basic checking of regsiter state at error interrupt time and
2274 * dump it to the syslog. Also call i915_capture_error_state() to make
2275 * sure we get a record and make it available in debugfs. Fire a uevent
2276 * so userspace knows something bad happened (should trigger collection
2277 * of a ring dump etc.).
2278 */
2279void i915_handle_error(struct drm_device *dev, bool wedged,
2280 const char *fmt, ...)
2281{
2282 struct drm_i915_private *dev_priv = dev->dev_private;
2283 va_list args;
2284 char error_msg[80];
2285
2286 va_start(args, fmt);
2287 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2288 va_end(args);
2289
2290 i915_capture_error_state(dev, wedged, error_msg);
2291 i915_report_and_clear_eir(dev);
2292
2293 if (wedged) {
2294 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2295 &dev_priv->gpu_error.reset_counter);
2296
2297 /*
2298 * Wakeup waiting processes so that the reset work function
2299 * i915_error_work_func doesn't deadlock trying to grab various
2300 * locks. By bumping the reset counter first, the woken
2301 * processes will see a reset in progress and back off,
2302 * releasing their locks and then wait for the reset completion.
2303 * We must do this for _all_ gpu waiters that might hold locks
2304 * that the reset work needs to acquire.
2305 *
2306 * Note: The wake_up serves as the required memory barrier to
2307 * ensure that the waiters see the updated value of the reset
2308 * counter atomic_t.
2309 */
2310 i915_error_wake_up(dev_priv, false);
2311 }
2312
2313 /*
2314 * Our reset work can grab modeset locks (since it needs to reset the
2315 * state of outstanding pagelips). Hence it must not be run on our own
2316 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2317 * code will deadlock.
2318 */
2319 schedule_work(&dev_priv->gpu_error.work);
2320}
2321
2322static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2323{
2324 struct drm_i915_private *dev_priv = dev->dev_private;
2325 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2326 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2327 struct drm_i915_gem_object *obj;
2328 struct intel_unpin_work *work;
2329 unsigned long flags;
2330 bool stall_detected;
2331
2332 /* Ignore early vblank irqs */
2333 if (intel_crtc == NULL)
2334 return;
2335
2336 spin_lock_irqsave(&dev->event_lock, flags);
2337 work = intel_crtc->unpin_work;
2338
2339 if (work == NULL ||
2340 atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2341 !work->enable_stall_check) {
2342 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
2343 spin_unlock_irqrestore(&dev->event_lock, flags);
2344 return;
2345 }
2346
2347 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2348 obj = work->pending_flip_obj;
2349 if (INTEL_INFO(dev)->gen >= 4) {
2350 int dspsurf = DSPSURF(intel_crtc->plane);
2351 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2352 i915_gem_obj_ggtt_offset(obj);
2353 } else {
2354 int dspaddr = DSPADDR(intel_crtc->plane);
2355 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2356 crtc->y * crtc->primary->fb->pitches[0] +
2357 crtc->x * crtc->primary->fb->bits_per_pixel/8);
2358 }
2359
2360 spin_unlock_irqrestore(&dev->event_lock, flags);
2361
2362 if (stall_detected) {
2363 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2364 intel_prepare_page_flip(dev, intel_crtc->plane);
2365 }
2366}
2367
2368/* Called from drm generic code, passed 'crtc' which
2369 * we use as a pipe index
2370 */
2371static int i915_enable_vblank(struct drm_device *dev, int pipe)
2372{
2373 struct drm_i915_private *dev_priv = dev->dev_private;
2374 unsigned long irqflags;
2375
2376 if (!i915_pipe_enabled(dev, pipe))
2377 return -EINVAL;
2378
2379 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2380 if (INTEL_INFO(dev)->gen >= 4)
2381 i915_enable_pipestat(dev_priv, pipe,
2382 PIPE_START_VBLANK_INTERRUPT_STATUS);
2383 else
2384 i915_enable_pipestat(dev_priv, pipe,
2385 PIPE_VBLANK_INTERRUPT_STATUS);
2386
2387 /* maintain vblank delivery even in deep C-states */
2388 if (INTEL_INFO(dev)->gen == 3)
2389 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
2390 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2391
2392 return 0;
2393}
2394
2395static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2396{
2397 struct drm_i915_private *dev_priv = dev->dev_private;
2398 unsigned long irqflags;
2399 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2400 DE_PIPE_VBLANK(pipe);
2401
2402 if (!i915_pipe_enabled(dev, pipe))
2403 return -EINVAL;
2404
2405 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2406 ironlake_enable_display_irq(dev_priv, bit);
2407 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2408
2409 return 0;
2410}
2411
2412static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2413{
2414 struct drm_i915_private *dev_priv = dev->dev_private;
2415 unsigned long irqflags;
2416
2417 if (!i915_pipe_enabled(dev, pipe))
2418 return -EINVAL;
2419
2420 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2421 i915_enable_pipestat(dev_priv, pipe,
2422 PIPE_START_VBLANK_INTERRUPT_STATUS);
2423 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2424
2425 return 0;
2426}
2427
2428static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2429{
2430 struct drm_i915_private *dev_priv = dev->dev_private;
2431 unsigned long irqflags;
2432
2433 if (!i915_pipe_enabled(dev, pipe))
2434 return -EINVAL;
2435
2436 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2437 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2438 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2439 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2440 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2441 return 0;
2442}
2443
2444/* Called from drm generic code, passed 'crtc' which
2445 * we use as a pipe index
2446 */
2447static void i915_disable_vblank(struct drm_device *dev, int pipe)
2448{
2449 struct drm_i915_private *dev_priv = dev->dev_private;
2450 unsigned long irqflags;
2451
2452 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2453 if (INTEL_INFO(dev)->gen == 3)
2454 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
2455
2456 i915_disable_pipestat(dev_priv, pipe,
2457 PIPE_VBLANK_INTERRUPT_STATUS |
2458 PIPE_START_VBLANK_INTERRUPT_STATUS);
2459 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2460}
2461
2462static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2463{
2464 struct drm_i915_private *dev_priv = dev->dev_private;
2465 unsigned long irqflags;
2466 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2467 DE_PIPE_VBLANK(pipe);
2468
2469 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2470 ironlake_disable_display_irq(dev_priv, bit);
2471 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2472}
2473
2474static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2475{
2476 struct drm_i915_private *dev_priv = dev->dev_private;
2477 unsigned long irqflags;
2478
2479 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2480 i915_disable_pipestat(dev_priv, pipe,
2481 PIPE_START_VBLANK_INTERRUPT_STATUS);
2482 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2483}
2484
2485static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2486{
2487 struct drm_i915_private *dev_priv = dev->dev_private;
2488 unsigned long irqflags;
2489
2490 if (!i915_pipe_enabled(dev, pipe))
2491 return;
2492
2493 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2494 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2495 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2496 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2497 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2498}
2499
2500static u32
2501ring_last_seqno(struct intel_ring_buffer *ring)
2502{
2503 return list_entry(ring->request_list.prev,
2504 struct drm_i915_gem_request, list)->seqno;
2505}
2506
2507static bool
2508ring_idle(struct intel_ring_buffer *ring, u32 seqno)
2509{
2510 return (list_empty(&ring->request_list) ||
2511 i915_seqno_passed(seqno, ring_last_seqno(ring)));
2512}
2513
2514static struct intel_ring_buffer *
2515semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
2516{
2517 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2518 u32 cmd, ipehr, head;
2519 int i;
2520
2521 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2522 if ((ipehr & ~(0x3 << 16)) !=
2523 (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
2524 return NULL;
2525
2526 /*
2527 * HEAD is likely pointing to the dword after the actual command,
2528 * so scan backwards until we find the MBOX. But limit it to just 3
2529 * dwords. Note that we don't care about ACTHD here since that might
2530 * point at at batch, and semaphores are always emitted into the
2531 * ringbuffer itself.
2532 */
2533 head = I915_READ_HEAD(ring) & HEAD_ADDR;
2534
2535 for (i = 4; i; --i) {
2536 /*
2537 * Be paranoid and presume the hw has gone off into the wild -
2538 * our ring is smaller than what the hardware (and hence
2539 * HEAD_ADDR) allows. Also handles wrap-around.
2540 */
2541 head &= ring->size - 1;
2542
2543 /* This here seems to blow up */
2544 cmd = ioread32(ring->virtual_start + head);
2545 if (cmd == ipehr)
2546 break;
2547
2548 head -= 4;
2549 }
2550
2551 if (!i)
2552 return NULL;
2553
2554 *seqno = ioread32(ring->virtual_start + head + 4) + 1;
2555 return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
2556}
2557
2558static int semaphore_passed(struct intel_ring_buffer *ring)
2559{
2560 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2561 struct intel_ring_buffer *signaller;
2562 u32 seqno, ctl;
2563
2564 ring->hangcheck.deadlock = true;
2565
2566 signaller = semaphore_waits_for(ring, &seqno);
2567 if (signaller == NULL || signaller->hangcheck.deadlock)
2568 return -1;
2569
2570 /* cursory check for an unkickable deadlock */
2571 ctl = I915_READ_CTL(signaller);
2572 if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
2573 return -1;
2574
2575 return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
2576}
2577
2578static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2579{
2580 struct intel_ring_buffer *ring;
2581 int i;
2582
2583 for_each_ring(ring, dev_priv, i)
2584 ring->hangcheck.deadlock = false;
2585}
2586
2587static enum intel_ring_hangcheck_action
2588ring_stuck(struct intel_ring_buffer *ring, u64 acthd)
2589{
2590 struct drm_device *dev = ring->dev;
2591 struct drm_i915_private *dev_priv = dev->dev_private;
2592 u32 tmp;
2593
2594 if (ring->hangcheck.acthd != acthd)
2595 return HANGCHECK_ACTIVE;
2596
2597 if (IS_GEN2(dev))
2598 return HANGCHECK_HUNG;
2599
2600 /* Is the chip hanging on a WAIT_FOR_EVENT?
2601 * If so we can simply poke the RB_WAIT bit
2602 * and break the hang. This should work on
2603 * all but the second generation chipsets.
2604 */
2605 tmp = I915_READ_CTL(ring);
2606 if (tmp & RING_WAIT) {
2607 i915_handle_error(dev, false,
2608 "Kicking stuck wait on %s",
2609 ring->name);
2610 I915_WRITE_CTL(ring, tmp);
2611 return HANGCHECK_KICK;
2612 }
2613
2614 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2615 switch (semaphore_passed(ring)) {
2616 default:
2617 return HANGCHECK_HUNG;
2618 case 1:
2619 i915_handle_error(dev, false,
2620 "Kicking stuck semaphore on %s",
2621 ring->name);
2622 I915_WRITE_CTL(ring, tmp);
2623 return HANGCHECK_KICK;
2624 case 0:
2625 return HANGCHECK_WAIT;
2626 }
2627 }
2628
2629 return HANGCHECK_HUNG;
2630}
2631
2632/**
2633 * This is called when the chip hasn't reported back with completed
2634 * batchbuffers in a long time. We keep track per ring seqno progress and
2635 * if there are no progress, hangcheck score for that ring is increased.
2636 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2637 * we kick the ring. If we see no progress on three subsequent calls
2638 * we assume chip is wedged and try to fix it by resetting the chip.
2639 */
2640static void i915_hangcheck_elapsed(unsigned long data)
2641{
2642 struct drm_device *dev = (struct drm_device *)data;
2643 struct drm_i915_private *dev_priv = dev->dev_private;
2644 struct intel_ring_buffer *ring;
2645 int i;
2646 int busy_count = 0, rings_hung = 0;
2647 bool stuck[I915_NUM_RINGS] = { 0 };
2648#define BUSY 1
2649#define KICK 5
2650#define HUNG 20
2651
2652 if (!i915.enable_hangcheck)
2653 return;
2654
2655 for_each_ring(ring, dev_priv, i) {
2656 u64 acthd;
2657 u32 seqno;
2658 bool busy = true;
2659
2660 semaphore_clear_deadlocks(dev_priv);
2661
2662 seqno = ring->get_seqno(ring, false);
2663 acthd = intel_ring_get_active_head(ring);
2664
2665 if (ring->hangcheck.seqno == seqno) {
2666 if (ring_idle(ring, seqno)) {
2667 ring->hangcheck.action = HANGCHECK_IDLE;
2668
2669 if (waitqueue_active(&ring->irq_queue)) {
2670 /* Issue a wake-up to catch stuck h/w. */
2671 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2672 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2673 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2674 ring->name);
2675 else
2676 DRM_INFO("Fake missed irq on %s\n",
2677 ring->name);
2678 wake_up_all(&ring->irq_queue);
2679 }
2680 /* Safeguard against driver failure */
2681 ring->hangcheck.score += BUSY;
2682 } else
2683 busy = false;
2684 } else {
2685 /* We always increment the hangcheck score
2686 * if the ring is busy and still processing
2687 * the same request, so that no single request
2688 * can run indefinitely (such as a chain of
2689 * batches). The only time we do not increment
2690 * the hangcheck score on this ring, if this
2691 * ring is in a legitimate wait for another
2692 * ring. In that case the waiting ring is a
2693 * victim and we want to be sure we catch the
2694 * right culprit. Then every time we do kick
2695 * the ring, add a small increment to the
2696 * score so that we can catch a batch that is
2697 * being repeatedly kicked and so responsible
2698 * for stalling the machine.
2699 */
2700 ring->hangcheck.action = ring_stuck(ring,
2701 acthd);
2702
2703 switch (ring->hangcheck.action) {
2704 case HANGCHECK_IDLE:
2705 case HANGCHECK_WAIT:
2706 break;
2707 case HANGCHECK_ACTIVE:
2708 ring->hangcheck.score += BUSY;
2709 break;
2710 case HANGCHECK_KICK:
2711 ring->hangcheck.score += KICK;
2712 break;
2713 case HANGCHECK_HUNG:
2714 ring->hangcheck.score += HUNG;
2715 stuck[i] = true;
2716 break;
2717 }
2718 }
2719 } else {
2720 ring->hangcheck.action = HANGCHECK_ACTIVE;
2721
2722 /* Gradually reduce the count so that we catch DoS
2723 * attempts across multiple batches.
2724 */
2725 if (ring->hangcheck.score > 0)
2726 ring->hangcheck.score--;
2727 }
2728
2729 ring->hangcheck.seqno = seqno;
2730 ring->hangcheck.acthd = acthd;
2731 busy_count += busy;
2732 }
2733
2734 for_each_ring(ring, dev_priv, i) {
2735 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
2736 DRM_INFO("%s on %s\n",
2737 stuck[i] ? "stuck" : "no progress",
2738 ring->name);
2739 rings_hung++;
2740 }
2741 }
2742
2743 if (rings_hung)
2744 return i915_handle_error(dev, true, "Ring hung");
2745
2746 if (busy_count)
2747 /* Reset timer case chip hangs without another request
2748 * being added */
2749 i915_queue_hangcheck(dev);
2750}
2751
2752void i915_queue_hangcheck(struct drm_device *dev)
2753{
2754 struct drm_i915_private *dev_priv = dev->dev_private;
2755 if (!i915.enable_hangcheck)
2756 return;
2757
2758 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2759 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2760}
2761
2762static void ibx_irq_preinstall(struct drm_device *dev)
2763{
2764 struct drm_i915_private *dev_priv = dev->dev_private;
2765
2766 if (HAS_PCH_NOP(dev))
2767 return;
2768
2769 /* south display irq */
2770 I915_WRITE(SDEIMR, 0xffffffff);
2771 /*
2772 * SDEIER is also touched by the interrupt handler to work around missed
2773 * PCH interrupts. Hence we can't update it after the interrupt handler
2774 * is enabled - instead we unconditionally enable all PCH interrupt
2775 * sources here, but then only unmask them as needed with SDEIMR.
2776 */
2777 I915_WRITE(SDEIER, 0xffffffff);
2778 POSTING_READ(SDEIER);
2779}
2780
2781static void gen5_gt_irq_preinstall(struct drm_device *dev)
2782{
2783 struct drm_i915_private *dev_priv = dev->dev_private;
2784
2785 /* and GT */
2786 I915_WRITE(GTIMR, 0xffffffff);
2787 I915_WRITE(GTIER, 0x0);
2788 POSTING_READ(GTIER);
2789
2790 if (INTEL_INFO(dev)->gen >= 6) {
2791 /* and PM */
2792 I915_WRITE(GEN6_PMIMR, 0xffffffff);
2793 I915_WRITE(GEN6_PMIER, 0x0);
2794 POSTING_READ(GEN6_PMIER);
2795 }
2796}
2797
2798/* drm_dma.h hooks
2799*/
2800static void ironlake_irq_preinstall(struct drm_device *dev)
2801{
2802 struct drm_i915_private *dev_priv = dev->dev_private;
2803
2804 I915_WRITE(HWSTAM, 0xeffe);
2805
2806 I915_WRITE(DEIMR, 0xffffffff);
2807 I915_WRITE(DEIER, 0x0);
2808 POSTING_READ(DEIER);
2809
2810 gen5_gt_irq_preinstall(dev);
2811
2812 ibx_irq_preinstall(dev);
2813}
2814
2815static void valleyview_irq_preinstall(struct drm_device *dev)
2816{
2817 struct drm_i915_private *dev_priv = dev->dev_private;
2818 int pipe;
2819
2820 /* VLV magic */
2821 I915_WRITE(VLV_IMR, 0);
2822 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2823 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2824 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2825
2826 /* and GT */
2827 I915_WRITE(GTIIR, I915_READ(GTIIR));
2828 I915_WRITE(GTIIR, I915_READ(GTIIR));
2829
2830 gen5_gt_irq_preinstall(dev);
2831
2832 I915_WRITE(DPINVGTT, 0xff);
2833
2834 I915_WRITE(PORT_HOTPLUG_EN, 0);
2835 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2836 for_each_pipe(pipe)
2837 I915_WRITE(PIPESTAT(pipe), 0xffff);
2838 I915_WRITE(VLV_IIR, 0xffffffff);
2839 I915_WRITE(VLV_IMR, 0xffffffff);
2840 I915_WRITE(VLV_IER, 0x0);
2841 POSTING_READ(VLV_IER);
2842}
2843
2844static void gen8_irq_preinstall(struct drm_device *dev)
2845{
2846 struct drm_i915_private *dev_priv = dev->dev_private;
2847 int pipe;
2848
2849 I915_WRITE(GEN8_MASTER_IRQ, 0);
2850 POSTING_READ(GEN8_MASTER_IRQ);
2851
2852 /* IIR can theoretically queue up two events. Be paranoid */
2853#define GEN8_IRQ_INIT_NDX(type, which) do { \
2854 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
2855 POSTING_READ(GEN8_##type##_IMR(which)); \
2856 I915_WRITE(GEN8_##type##_IER(which), 0); \
2857 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
2858 POSTING_READ(GEN8_##type##_IIR(which)); \
2859 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
2860 } while (0)
2861
2862#define GEN8_IRQ_INIT(type) do { \
2863 I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
2864 POSTING_READ(GEN8_##type##_IMR); \
2865 I915_WRITE(GEN8_##type##_IER, 0); \
2866 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
2867 POSTING_READ(GEN8_##type##_IIR); \
2868 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
2869 } while (0)
2870
2871 GEN8_IRQ_INIT_NDX(GT, 0);
2872 GEN8_IRQ_INIT_NDX(GT, 1);
2873 GEN8_IRQ_INIT_NDX(GT, 2);
2874 GEN8_IRQ_INIT_NDX(GT, 3);
2875
2876 for_each_pipe(pipe) {
2877 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe);
2878 }
2879
2880 GEN8_IRQ_INIT(DE_PORT);
2881 GEN8_IRQ_INIT(DE_MISC);
2882 GEN8_IRQ_INIT(PCU);
2883#undef GEN8_IRQ_INIT
2884#undef GEN8_IRQ_INIT_NDX
2885
2886 POSTING_READ(GEN8_PCU_IIR);
2887
2888 ibx_irq_preinstall(dev);
2889}
2890
2891static void ibx_hpd_irq_setup(struct drm_device *dev)
2892{
2893 struct drm_i915_private *dev_priv = dev->dev_private;
2894 struct drm_mode_config *mode_config = &dev->mode_config;
2895 struct intel_encoder *intel_encoder;
2896 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2897
2898 if (HAS_PCH_IBX(dev)) {
2899 hotplug_irqs = SDE_HOTPLUG_MASK;
2900 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2901 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2902 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2903 } else {
2904 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2905 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2906 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2907 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2908 }
2909
2910 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2911
2912 /*
2913 * Enable digital hotplug on the PCH, and configure the DP short pulse
2914 * duration to 2ms (which is the minimum in the Display Port spec)
2915 *
2916 * This register is the same on all known PCH chips.
2917 */
2918 hotplug = I915_READ(PCH_PORT_HOTPLUG);
2919 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2920 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2921 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2922 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2923 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2924}
2925
2926static void ibx_irq_postinstall(struct drm_device *dev)
2927{
2928 struct drm_i915_private *dev_priv = dev->dev_private;
2929 u32 mask;
2930
2931 if (HAS_PCH_NOP(dev))
2932 return;
2933
2934 if (HAS_PCH_IBX(dev)) {
2935 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
2936 } else {
2937 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
2938
2939 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2940 }
2941
2942 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2943 I915_WRITE(SDEIMR, ~mask);
2944}
2945
2946static void gen5_gt_irq_postinstall(struct drm_device *dev)
2947{
2948 struct drm_i915_private *dev_priv = dev->dev_private;
2949 u32 pm_irqs, gt_irqs;
2950
2951 pm_irqs = gt_irqs = 0;
2952
2953 dev_priv->gt_irq_mask = ~0;
2954 if (HAS_L3_DPF(dev)) {
2955 /* L3 parity interrupt is always unmasked. */
2956 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
2957 gt_irqs |= GT_PARITY_ERROR(dev);
2958 }
2959
2960 gt_irqs |= GT_RENDER_USER_INTERRUPT;
2961 if (IS_GEN5(dev)) {
2962 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2963 ILK_BSD_USER_INTERRUPT;
2964 } else {
2965 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2966 }
2967
2968 I915_WRITE(GTIIR, I915_READ(GTIIR));
2969 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2970 I915_WRITE(GTIER, gt_irqs);
2971 POSTING_READ(GTIER);
2972
2973 if (INTEL_INFO(dev)->gen >= 6) {
2974 pm_irqs |= dev_priv->pm_rps_events;
2975
2976 if (HAS_VEBOX(dev))
2977 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
2978
2979 dev_priv->pm_irq_mask = 0xffffffff;
2980 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2981 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
2982 I915_WRITE(GEN6_PMIER, pm_irqs);
2983 POSTING_READ(GEN6_PMIER);
2984 }
2985}
2986
2987static int ironlake_irq_postinstall(struct drm_device *dev)
2988{
2989 unsigned long irqflags;
2990 struct drm_i915_private *dev_priv = dev->dev_private;
2991 u32 display_mask, extra_mask;
2992
2993 if (INTEL_INFO(dev)->gen >= 7) {
2994 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
2995 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
2996 DE_PLANEB_FLIP_DONE_IVB |
2997 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
2998 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
2999 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3000
3001 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
3002 } else {
3003 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3004 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3005 DE_AUX_CHANNEL_A |
3006 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3007 DE_POISON);
3008 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3009 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3010 }
3011
3012 dev_priv->irq_mask = ~display_mask;
3013
3014 /* should always can generate irq */
3015 I915_WRITE(DEIIR, I915_READ(DEIIR));
3016 I915_WRITE(DEIMR, dev_priv->irq_mask);
3017 I915_WRITE(DEIER, display_mask | extra_mask);
3018 POSTING_READ(DEIER);
3019
3020 gen5_gt_irq_postinstall(dev);
3021
3022 ibx_irq_postinstall(dev);
3023
3024 if (IS_IRONLAKE_M(dev)) {
3025 /* Enable PCU event interrupts
3026 *
3027 * spinlocking not required here for correctness since interrupt
3028 * setup is guaranteed to run in single-threaded context. But we
3029 * need it to make the assert_spin_locked happy. */
3030 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3031 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3032 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3033 }
3034
3035 return 0;
3036}
3037
3038static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3039{
3040 u32 pipestat_mask;
3041 u32 iir_mask;
3042
3043 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3044 PIPE_FIFO_UNDERRUN_STATUS;
3045
3046 I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3047 I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3048 POSTING_READ(PIPESTAT(PIPE_A));
3049
3050 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3051 PIPE_CRC_DONE_INTERRUPT_STATUS;
3052
3053 i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3054 PIPE_GMBUS_INTERRUPT_STATUS);
3055 i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3056
3057 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3058 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3059 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3060 dev_priv->irq_mask &= ~iir_mask;
3061
3062 I915_WRITE(VLV_IIR, iir_mask);
3063 I915_WRITE(VLV_IIR, iir_mask);
3064 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3065 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3066 POSTING_READ(VLV_IER);
3067}
3068
3069static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3070{
3071 u32 pipestat_mask;
3072 u32 iir_mask;
3073
3074 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3075 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3076 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3077
3078 dev_priv->irq_mask |= iir_mask;
3079 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3080 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3081 I915_WRITE(VLV_IIR, iir_mask);
3082 I915_WRITE(VLV_IIR, iir_mask);
3083 POSTING_READ(VLV_IIR);
3084
3085 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3086 PIPE_CRC_DONE_INTERRUPT_STATUS;
3087
3088 i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3089 PIPE_GMBUS_INTERRUPT_STATUS);
3090 i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3091
3092 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3093 PIPE_FIFO_UNDERRUN_STATUS;
3094 I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3095 I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3096 POSTING_READ(PIPESTAT(PIPE_A));
3097}
3098
3099void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3100{
3101 assert_spin_locked(&dev_priv->irq_lock);
3102
3103 if (dev_priv->display_irqs_enabled)
3104 return;
3105
3106 dev_priv->display_irqs_enabled = true;
3107
3108 if (dev_priv->dev->irq_enabled)
3109 valleyview_display_irqs_install(dev_priv);
3110}
3111
3112void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3113{
3114 assert_spin_locked(&dev_priv->irq_lock);
3115
3116 if (!dev_priv->display_irqs_enabled)
3117 return;
3118
3119 dev_priv->display_irqs_enabled = false;
3120
3121 if (dev_priv->dev->irq_enabled)
3122 valleyview_display_irqs_uninstall(dev_priv);
3123}
3124
3125static int valleyview_irq_postinstall(struct drm_device *dev)
3126{
3127 struct drm_i915_private *dev_priv = dev->dev_private;
3128 unsigned long irqflags;
3129
3130 dev_priv->irq_mask = ~0;
3131
3132 I915_WRITE(PORT_HOTPLUG_EN, 0);
3133 POSTING_READ(PORT_HOTPLUG_EN);
3134
3135 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3136 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3137 I915_WRITE(VLV_IIR, 0xffffffff);
3138 POSTING_READ(VLV_IER);
3139
3140 /* Interrupt setup is already guaranteed to be single-threaded, this is
3141 * just to make the assert_spin_locked check happy. */
3142 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3143 if (dev_priv->display_irqs_enabled)
3144 valleyview_display_irqs_install(dev_priv);
3145 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3146
3147 I915_WRITE(VLV_IIR, 0xffffffff);
3148 I915_WRITE(VLV_IIR, 0xffffffff);
3149
3150 gen5_gt_irq_postinstall(dev);
3151
3152 /* ack & enable invalid PTE error interrupts */
3153#if 0 /* FIXME: add support to irq handler for checking these bits */
3154 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3155 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3156#endif
3157
3158 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3159
3160 return 0;
3161}
3162
3163static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3164{
3165 int i;
3166
3167 /* These are interrupts we'll toggle with the ring mask register */
3168 uint32_t gt_interrupts[] = {
3169 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3170 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3171 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3172 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3173 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3174 0,
3175 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3176 };
3177
3178 for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++) {
3179 u32 tmp = I915_READ(GEN8_GT_IIR(i));
3180 if (tmp)
3181 DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n",
3182 i, tmp);
3183 I915_WRITE(GEN8_GT_IMR(i), ~gt_interrupts[i]);
3184 I915_WRITE(GEN8_GT_IER(i), gt_interrupts[i]);
3185 }
3186 POSTING_READ(GEN8_GT_IER(0));
3187}
3188
3189static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3190{
3191 struct drm_device *dev = dev_priv->dev;
3192 uint32_t de_pipe_masked = GEN8_PIPE_FLIP_DONE |
3193 GEN8_PIPE_CDCLK_CRC_DONE |
3194 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3195 uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3196 GEN8_PIPE_FIFO_UNDERRUN;
3197 int pipe;
3198 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3199 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3200 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3201
3202 for_each_pipe(pipe) {
3203 u32 tmp = I915_READ(GEN8_DE_PIPE_IIR(pipe));
3204 if (tmp)
3205 DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n",
3206 pipe, tmp);
3207 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
3208 I915_WRITE(GEN8_DE_PIPE_IER(pipe), de_pipe_enables);
3209 }
3210 POSTING_READ(GEN8_DE_PIPE_ISR(0));
3211
3212 I915_WRITE(GEN8_DE_PORT_IMR, ~GEN8_AUX_CHANNEL_A);
3213 I915_WRITE(GEN8_DE_PORT_IER, GEN8_AUX_CHANNEL_A);
3214 POSTING_READ(GEN8_DE_PORT_IER);
3215}
3216
3217static int gen8_irq_postinstall(struct drm_device *dev)
3218{
3219 struct drm_i915_private *dev_priv = dev->dev_private;
3220
3221 gen8_gt_irq_postinstall(dev_priv);
3222 gen8_de_irq_postinstall(dev_priv);
3223
3224 ibx_irq_postinstall(dev);
3225
3226 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3227 POSTING_READ(GEN8_MASTER_IRQ);
3228
3229 return 0;
3230}
3231
3232static void gen8_irq_uninstall(struct drm_device *dev)
3233{
3234 struct drm_i915_private *dev_priv = dev->dev_private;
3235 int pipe;
3236
3237 if (!dev_priv)
3238 return;
3239
3240 I915_WRITE(GEN8_MASTER_IRQ, 0);
3241
3242#define GEN8_IRQ_FINI_NDX(type, which) do { \
3243 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
3244 I915_WRITE(GEN8_##type##_IER(which), 0); \
3245 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
3246 } while (0)
3247
3248#define GEN8_IRQ_FINI(type) do { \
3249 I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
3250 I915_WRITE(GEN8_##type##_IER, 0); \
3251 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
3252 } while (0)
3253
3254 GEN8_IRQ_FINI_NDX(GT, 0);
3255 GEN8_IRQ_FINI_NDX(GT, 1);
3256 GEN8_IRQ_FINI_NDX(GT, 2);
3257 GEN8_IRQ_FINI_NDX(GT, 3);
3258
3259 for_each_pipe(pipe) {
3260 GEN8_IRQ_FINI_NDX(DE_PIPE, pipe);
3261 }
3262
3263 GEN8_IRQ_FINI(DE_PORT);
3264 GEN8_IRQ_FINI(DE_MISC);
3265 GEN8_IRQ_FINI(PCU);
3266#undef GEN8_IRQ_FINI
3267#undef GEN8_IRQ_FINI_NDX
3268
3269 POSTING_READ(GEN8_PCU_IIR);
3270}
3271
3272static void valleyview_irq_uninstall(struct drm_device *dev)
3273{
3274 struct drm_i915_private *dev_priv = dev->dev_private;
3275 unsigned long irqflags;
3276 int pipe;
3277
3278 if (!dev_priv)
3279 return;
3280
3281 intel_hpd_irq_uninstall(dev_priv);
3282
3283 for_each_pipe(pipe)
3284 I915_WRITE(PIPESTAT(pipe), 0xffff);
3285
3286 I915_WRITE(HWSTAM, 0xffffffff);
3287 I915_WRITE(PORT_HOTPLUG_EN, 0);
3288 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3289
3290 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3291 if (dev_priv->display_irqs_enabled)
3292 valleyview_display_irqs_uninstall(dev_priv);
3293 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3294
3295 dev_priv->irq_mask = 0;
3296
3297 I915_WRITE(VLV_IIR, 0xffffffff);
3298 I915_WRITE(VLV_IMR, 0xffffffff);
3299 I915_WRITE(VLV_IER, 0x0);
3300 POSTING_READ(VLV_IER);
3301}
3302
3303static void ironlake_irq_uninstall(struct drm_device *dev)
3304{
3305 struct drm_i915_private *dev_priv = dev->dev_private;
3306
3307 if (!dev_priv)
3308 return;
3309
3310 intel_hpd_irq_uninstall(dev_priv);
3311
3312 I915_WRITE(HWSTAM, 0xffffffff);
3313
3314 I915_WRITE(DEIMR, 0xffffffff);
3315 I915_WRITE(DEIER, 0x0);
3316 I915_WRITE(DEIIR, I915_READ(DEIIR));
3317 if (IS_GEN7(dev))
3318 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
3319
3320 I915_WRITE(GTIMR, 0xffffffff);
3321 I915_WRITE(GTIER, 0x0);
3322 I915_WRITE(GTIIR, I915_READ(GTIIR));
3323
3324 if (HAS_PCH_NOP(dev))
3325 return;
3326
3327 I915_WRITE(SDEIMR, 0xffffffff);
3328 I915_WRITE(SDEIER, 0x0);
3329 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
3330 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3331 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
3332}
3333
3334static void i8xx_irq_preinstall(struct drm_device * dev)
3335{
3336 struct drm_i915_private *dev_priv = dev->dev_private;
3337 int pipe;
3338
3339 for_each_pipe(pipe)
3340 I915_WRITE(PIPESTAT(pipe), 0);
3341 I915_WRITE16(IMR, 0xffff);
3342 I915_WRITE16(IER, 0x0);
3343 POSTING_READ16(IER);
3344}
3345
3346static int i8xx_irq_postinstall(struct drm_device *dev)
3347{
3348 struct drm_i915_private *dev_priv = dev->dev_private;
3349 unsigned long irqflags;
3350
3351 I915_WRITE16(EMR,
3352 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3353
3354 /* Unmask the interrupts that we always want on. */
3355 dev_priv->irq_mask =
3356 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3357 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3358 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3359 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3360 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3361 I915_WRITE16(IMR, dev_priv->irq_mask);
3362
3363 I915_WRITE16(IER,
3364 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3365 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3366 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3367 I915_USER_INTERRUPT);
3368 POSTING_READ16(IER);
3369
3370 /* Interrupt setup is already guaranteed to be single-threaded, this is
3371 * just to make the assert_spin_locked check happy. */
3372 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3373 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3374 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3375 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3376
3377 return 0;
3378}
3379
3380/*
3381 * Returns true when a page flip has completed.
3382 */
3383static bool i8xx_handle_vblank(struct drm_device *dev,
3384 int plane, int pipe, u32 iir)
3385{
3386 struct drm_i915_private *dev_priv = dev->dev_private;
3387 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3388
3389 if (!drm_handle_vblank(dev, pipe))
3390 return false;
3391
3392 if ((iir & flip_pending) == 0)
3393 return false;
3394
3395 intel_prepare_page_flip(dev, plane);
3396
3397 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3398 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3399 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3400 * the flip is completed (no longer pending). Since this doesn't raise
3401 * an interrupt per se, we watch for the change at vblank.
3402 */
3403 if (I915_READ16(ISR) & flip_pending)
3404 return false;
3405
3406 intel_finish_page_flip(dev, pipe);
3407
3408 return true;
3409}
3410
3411static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3412{
3413 struct drm_device *dev = (struct drm_device *) arg;
3414 struct drm_i915_private *dev_priv = dev->dev_private;
3415 u16 iir, new_iir;
3416 u32 pipe_stats[2];
3417 unsigned long irqflags;
3418 int pipe;
3419 u16 flip_mask =
3420 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3421 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3422
3423 iir = I915_READ16(IIR);
3424 if (iir == 0)
3425 return IRQ_NONE;
3426
3427 while (iir & ~flip_mask) {
3428 /* Can't rely on pipestat interrupt bit in iir as it might
3429 * have been cleared after the pipestat interrupt was received.
3430 * It doesn't set the bit in iir again, but it still produces
3431 * interrupts (for non-MSI).
3432 */
3433 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3434 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3435 i915_handle_error(dev, false,
3436 "Command parser error, iir 0x%08x",
3437 iir);
3438
3439 for_each_pipe(pipe) {
3440 int reg = PIPESTAT(pipe);
3441 pipe_stats[pipe] = I915_READ(reg);
3442
3443 /*
3444 * Clear the PIPE*STAT regs before the IIR
3445 */
3446 if (pipe_stats[pipe] & 0x8000ffff)
3447 I915_WRITE(reg, pipe_stats[pipe]);
3448 }
3449 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3450
3451 I915_WRITE16(IIR, iir & ~flip_mask);
3452 new_iir = I915_READ16(IIR); /* Flush posted writes */
3453
3454 i915_update_dri1_breadcrumb(dev);
3455
3456 if (iir & I915_USER_INTERRUPT)
3457 notify_ring(dev, &dev_priv->ring[RCS]);
3458
3459 for_each_pipe(pipe) {
3460 int plane = pipe;
3461 if (HAS_FBC(dev))
3462 plane = !plane;
3463
3464 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3465 i8xx_handle_vblank(dev, plane, pipe, iir))
3466 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3467
3468 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3469 i9xx_pipe_crc_irq_handler(dev, pipe);
3470
3471 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3472 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3473 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3474 }
3475
3476 iir = new_iir;
3477 }
3478
3479 return IRQ_HANDLED;
3480}
3481
3482static void i8xx_irq_uninstall(struct drm_device * dev)
3483{
3484 struct drm_i915_private *dev_priv = dev->dev_private;
3485 int pipe;
3486
3487 for_each_pipe(pipe) {
3488 /* Clear enable bits; then clear status bits */
3489 I915_WRITE(PIPESTAT(pipe), 0);
3490 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3491 }
3492 I915_WRITE16(IMR, 0xffff);
3493 I915_WRITE16(IER, 0x0);
3494 I915_WRITE16(IIR, I915_READ16(IIR));
3495}
3496
3497static void i915_irq_preinstall(struct drm_device * dev)
3498{
3499 struct drm_i915_private *dev_priv = dev->dev_private;
3500 int pipe;
3501
3502 if (I915_HAS_HOTPLUG(dev)) {
3503 I915_WRITE(PORT_HOTPLUG_EN, 0);
3504 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3505 }
3506
3507 I915_WRITE16(HWSTAM, 0xeffe);
3508 for_each_pipe(pipe)
3509 I915_WRITE(PIPESTAT(pipe), 0);
3510 I915_WRITE(IMR, 0xffffffff);
3511 I915_WRITE(IER, 0x0);
3512 POSTING_READ(IER);
3513}
3514
3515static int i915_irq_postinstall(struct drm_device *dev)
3516{
3517 struct drm_i915_private *dev_priv = dev->dev_private;
3518 u32 enable_mask;
3519 unsigned long irqflags;
3520
3521 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3522
3523 /* Unmask the interrupts that we always want on. */
3524 dev_priv->irq_mask =
3525 ~(I915_ASLE_INTERRUPT |
3526 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3527 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3528 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3529 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3530 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3531
3532 enable_mask =
3533 I915_ASLE_INTERRUPT |
3534 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3535 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3536 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3537 I915_USER_INTERRUPT;
3538
3539 if (I915_HAS_HOTPLUG(dev)) {
3540 I915_WRITE(PORT_HOTPLUG_EN, 0);
3541 POSTING_READ(PORT_HOTPLUG_EN);
3542
3543 /* Enable in IER... */
3544 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3545 /* and unmask in IMR */
3546 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3547 }
3548
3549 I915_WRITE(IMR, dev_priv->irq_mask);
3550 I915_WRITE(IER, enable_mask);
3551 POSTING_READ(IER);
3552
3553 i915_enable_asle_pipestat(dev);
3554
3555 /* Interrupt setup is already guaranteed to be single-threaded, this is
3556 * just to make the assert_spin_locked check happy. */
3557 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3558 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3559 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3560 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3561
3562 return 0;
3563}
3564
3565/*
3566 * Returns true when a page flip has completed.
3567 */
3568static bool i915_handle_vblank(struct drm_device *dev,
3569 int plane, int pipe, u32 iir)
3570{
3571 struct drm_i915_private *dev_priv = dev->dev_private;
3572 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3573
3574 if (!drm_handle_vblank(dev, pipe))
3575 return false;
3576
3577 if ((iir & flip_pending) == 0)
3578 return false;
3579
3580 intel_prepare_page_flip(dev, plane);
3581
3582 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3583 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3584 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3585 * the flip is completed (no longer pending). Since this doesn't raise
3586 * an interrupt per se, we watch for the change at vblank.
3587 */
3588 if (I915_READ(ISR) & flip_pending)
3589 return false;
3590
3591 intel_finish_page_flip(dev, pipe);
3592
3593 return true;
3594}
3595
3596static irqreturn_t i915_irq_handler(int irq, void *arg)
3597{
3598 struct drm_device *dev = (struct drm_device *) arg;
3599 struct drm_i915_private *dev_priv = dev->dev_private;
3600 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3601 unsigned long irqflags;
3602 u32 flip_mask =
3603 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3604 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3605 int pipe, ret = IRQ_NONE;
3606
3607 iir = I915_READ(IIR);
3608 do {
3609 bool irq_received = (iir & ~flip_mask) != 0;
3610 bool blc_event = false;
3611
3612 /* Can't rely on pipestat interrupt bit in iir as it might
3613 * have been cleared after the pipestat interrupt was received.
3614 * It doesn't set the bit in iir again, but it still produces
3615 * interrupts (for non-MSI).
3616 */
3617 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3618 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3619 i915_handle_error(dev, false,
3620 "Command parser error, iir 0x%08x",
3621 iir);
3622
3623 for_each_pipe(pipe) {
3624 int reg = PIPESTAT(pipe);
3625 pipe_stats[pipe] = I915_READ(reg);
3626
3627 /* Clear the PIPE*STAT regs before the IIR */
3628 if (pipe_stats[pipe] & 0x8000ffff) {
3629 I915_WRITE(reg, pipe_stats[pipe]);
3630 irq_received = true;
3631 }
3632 }
3633 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3634
3635 if (!irq_received)
3636 break;
3637
3638 /* Consume port. Then clear IIR or we'll miss events */
3639 if ((I915_HAS_HOTPLUG(dev)) &&
3640 (iir & I915_DISPLAY_PORT_INTERRUPT)) {
3641 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3642 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
3643
3644 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
3645
3646 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3647 POSTING_READ(PORT_HOTPLUG_STAT);
3648 }
3649
3650 I915_WRITE(IIR, iir & ~flip_mask);
3651 new_iir = I915_READ(IIR); /* Flush posted writes */
3652
3653 if (iir & I915_USER_INTERRUPT)
3654 notify_ring(dev, &dev_priv->ring[RCS]);
3655
3656 for_each_pipe(pipe) {
3657 int plane = pipe;
3658 if (HAS_FBC(dev))
3659 plane = !plane;
3660
3661 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3662 i915_handle_vblank(dev, plane, pipe, iir))
3663 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3664
3665 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3666 blc_event = true;
3667
3668 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3669 i9xx_pipe_crc_irq_handler(dev, pipe);
3670
3671 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3672 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3673 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3674 }
3675
3676 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3677 intel_opregion_asle_intr(dev);
3678
3679 /* With MSI, interrupts are only generated when iir
3680 * transitions from zero to nonzero. If another bit got
3681 * set while we were handling the existing iir bits, then
3682 * we would never get another interrupt.
3683 *
3684 * This is fine on non-MSI as well, as if we hit this path
3685 * we avoid exiting the interrupt handler only to generate
3686 * another one.
3687 *
3688 * Note that for MSI this could cause a stray interrupt report
3689 * if an interrupt landed in the time between writing IIR and
3690 * the posting read. This should be rare enough to never
3691 * trigger the 99% of 100,000 interrupts test for disabling
3692 * stray interrupts.
3693 */
3694 ret = IRQ_HANDLED;
3695 iir = new_iir;
3696 } while (iir & ~flip_mask);
3697
3698 i915_update_dri1_breadcrumb(dev);
3699
3700 return ret;
3701}
3702
3703static void i915_irq_uninstall(struct drm_device * dev)
3704{
3705 struct drm_i915_private *dev_priv = dev->dev_private;
3706 int pipe;
3707
3708 intel_hpd_irq_uninstall(dev_priv);
3709
3710 if (I915_HAS_HOTPLUG(dev)) {
3711 I915_WRITE(PORT_HOTPLUG_EN, 0);
3712 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3713 }
3714
3715 I915_WRITE16(HWSTAM, 0xffff);
3716 for_each_pipe(pipe) {
3717 /* Clear enable bits; then clear status bits */
3718 I915_WRITE(PIPESTAT(pipe), 0);
3719 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3720 }
3721 I915_WRITE(IMR, 0xffffffff);
3722 I915_WRITE(IER, 0x0);
3723
3724 I915_WRITE(IIR, I915_READ(IIR));
3725}
3726
3727static void i965_irq_preinstall(struct drm_device * dev)
3728{
3729 struct drm_i915_private *dev_priv = dev->dev_private;
3730 int pipe;
3731
3732 I915_WRITE(PORT_HOTPLUG_EN, 0);
3733 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3734
3735 I915_WRITE(HWSTAM, 0xeffe);
3736 for_each_pipe(pipe)
3737 I915_WRITE(PIPESTAT(pipe), 0);
3738 I915_WRITE(IMR, 0xffffffff);
3739 I915_WRITE(IER, 0x0);
3740 POSTING_READ(IER);
3741}
3742
3743static int i965_irq_postinstall(struct drm_device *dev)
3744{
3745 struct drm_i915_private *dev_priv = dev->dev_private;
3746 u32 enable_mask;
3747 u32 error_mask;
3748 unsigned long irqflags;
3749
3750 /* Unmask the interrupts that we always want on. */
3751 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3752 I915_DISPLAY_PORT_INTERRUPT |
3753 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3754 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3755 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3756 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3757 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3758
3759 enable_mask = ~dev_priv->irq_mask;
3760 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3761 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3762 enable_mask |= I915_USER_INTERRUPT;
3763
3764 if (IS_G4X(dev))
3765 enable_mask |= I915_BSD_USER_INTERRUPT;
3766
3767 /* Interrupt setup is already guaranteed to be single-threaded, this is
3768 * just to make the assert_spin_locked check happy. */
3769 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3770 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3771 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3772 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3773 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3774
3775 /*
3776 * Enable some error detection, note the instruction error mask
3777 * bit is reserved, so we leave it masked.
3778 */
3779 if (IS_G4X(dev)) {
3780 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3781 GM45_ERROR_MEM_PRIV |
3782 GM45_ERROR_CP_PRIV |
3783 I915_ERROR_MEMORY_REFRESH);
3784 } else {
3785 error_mask = ~(I915_ERROR_PAGE_TABLE |
3786 I915_ERROR_MEMORY_REFRESH);
3787 }
3788 I915_WRITE(EMR, error_mask);
3789
3790 I915_WRITE(IMR, dev_priv->irq_mask);
3791 I915_WRITE(IER, enable_mask);
3792 POSTING_READ(IER);
3793
3794 I915_WRITE(PORT_HOTPLUG_EN, 0);
3795 POSTING_READ(PORT_HOTPLUG_EN);
3796
3797 i915_enable_asle_pipestat(dev);
3798
3799 return 0;
3800}
3801
3802static void i915_hpd_irq_setup(struct drm_device *dev)
3803{
3804 struct drm_i915_private *dev_priv = dev->dev_private;
3805 struct drm_mode_config *mode_config = &dev->mode_config;
3806 struct intel_encoder *intel_encoder;
3807 u32 hotplug_en;
3808
3809 assert_spin_locked(&dev_priv->irq_lock);
3810
3811 if (I915_HAS_HOTPLUG(dev)) {
3812 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3813 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3814 /* Note HDMI and DP share hotplug bits */
3815 /* enable bits are the same for all generations */
3816 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3817 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3818 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3819 /* Programming the CRT detection parameters tends
3820 to generate a spurious hotplug event about three
3821 seconds later. So just do it once.
3822 */
3823 if (IS_G4X(dev))
3824 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3825 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3826 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3827
3828 /* Ignore TV since it's buggy */
3829 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3830 }
3831}
3832
3833static irqreturn_t i965_irq_handler(int irq, void *arg)
3834{
3835 struct drm_device *dev = (struct drm_device *) arg;
3836 struct drm_i915_private *dev_priv = dev->dev_private;
3837 u32 iir, new_iir;
3838 u32 pipe_stats[I915_MAX_PIPES];
3839 unsigned long irqflags;
3840 int ret = IRQ_NONE, pipe;
3841 u32 flip_mask =
3842 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3843 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3844
3845 iir = I915_READ(IIR);
3846
3847 for (;;) {
3848 bool irq_received = (iir & ~flip_mask) != 0;
3849 bool blc_event = false;
3850
3851 /* Can't rely on pipestat interrupt bit in iir as it might
3852 * have been cleared after the pipestat interrupt was received.
3853 * It doesn't set the bit in iir again, but it still produces
3854 * interrupts (for non-MSI).
3855 */
3856 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3857 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3858 i915_handle_error(dev, false,
3859 "Command parser error, iir 0x%08x",
3860 iir);
3861
3862 for_each_pipe(pipe) {
3863 int reg = PIPESTAT(pipe);
3864 pipe_stats[pipe] = I915_READ(reg);
3865
3866 /*
3867 * Clear the PIPE*STAT regs before the IIR
3868 */
3869 if (pipe_stats[pipe] & 0x8000ffff) {
3870 I915_WRITE(reg, pipe_stats[pipe]);
3871 irq_received = true;
3872 }
3873 }
3874 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3875
3876 if (!irq_received)
3877 break;
3878
3879 ret = IRQ_HANDLED;
3880
3881 /* Consume port. Then clear IIR or we'll miss events */
3882 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
3883 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3884 u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
3885 HOTPLUG_INT_STATUS_G4X :
3886 HOTPLUG_INT_STATUS_I915);
3887
3888 intel_hpd_irq_handler(dev, hotplug_trigger,
3889 IS_G4X(dev) ? hpd_status_g4x : hpd_status_i915);
3890
3891 if (IS_G4X(dev) &&
3892 (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X))
3893 dp_aux_irq_handler(dev);
3894
3895 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3896 I915_READ(PORT_HOTPLUG_STAT);
3897 }
3898
3899 I915_WRITE(IIR, iir & ~flip_mask);
3900 new_iir = I915_READ(IIR); /* Flush posted writes */
3901
3902 if (iir & I915_USER_INTERRUPT)
3903 notify_ring(dev, &dev_priv->ring[RCS]);
3904 if (iir & I915_BSD_USER_INTERRUPT)
3905 notify_ring(dev, &dev_priv->ring[VCS]);
3906
3907 for_each_pipe(pipe) {
3908 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3909 i915_handle_vblank(dev, pipe, pipe, iir))
3910 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3911
3912 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3913 blc_event = true;
3914
3915 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3916 i9xx_pipe_crc_irq_handler(dev, pipe);
3917
3918 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3919 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3920 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3921 }
3922
3923 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3924 intel_opregion_asle_intr(dev);
3925
3926 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3927 gmbus_irq_handler(dev);
3928
3929 /* With MSI, interrupts are only generated when iir
3930 * transitions from zero to nonzero. If another bit got
3931 * set while we were handling the existing iir bits, then
3932 * we would never get another interrupt.
3933 *
3934 * This is fine on non-MSI as well, as if we hit this path
3935 * we avoid exiting the interrupt handler only to generate
3936 * another one.
3937 *
3938 * Note that for MSI this could cause a stray interrupt report
3939 * if an interrupt landed in the time between writing IIR and
3940 * the posting read. This should be rare enough to never
3941 * trigger the 99% of 100,000 interrupts test for disabling
3942 * stray interrupts.
3943 */
3944 iir = new_iir;
3945 }
3946
3947 i915_update_dri1_breadcrumb(dev);
3948
3949 return ret;
3950}
3951
3952static void i965_irq_uninstall(struct drm_device * dev)
3953{
3954 struct drm_i915_private *dev_priv = dev->dev_private;
3955 int pipe;
3956
3957 if (!dev_priv)
3958 return;
3959
3960 intel_hpd_irq_uninstall(dev_priv);
3961
3962 I915_WRITE(PORT_HOTPLUG_EN, 0);
3963 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3964
3965 I915_WRITE(HWSTAM, 0xffffffff);
3966 for_each_pipe(pipe)
3967 I915_WRITE(PIPESTAT(pipe), 0);
3968 I915_WRITE(IMR, 0xffffffff);
3969 I915_WRITE(IER, 0x0);
3970
3971 for_each_pipe(pipe)
3972 I915_WRITE(PIPESTAT(pipe),
3973 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3974 I915_WRITE(IIR, I915_READ(IIR));
3975}
3976
3977static void intel_hpd_irq_reenable(unsigned long data)
3978{
3979 struct drm_i915_private *dev_priv = (struct drm_i915_private *)data;
3980 struct drm_device *dev = dev_priv->dev;
3981 struct drm_mode_config *mode_config = &dev->mode_config;
3982 unsigned long irqflags;
3983 int i;
3984
3985 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3986 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3987 struct drm_connector *connector;
3988
3989 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3990 continue;
3991
3992 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3993
3994 list_for_each_entry(connector, &mode_config->connector_list, head) {
3995 struct intel_connector *intel_connector = to_intel_connector(connector);
3996
3997 if (intel_connector->encoder->hpd_pin == i) {
3998 if (connector->polled != intel_connector->polled)
3999 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4000 drm_get_connector_name(connector));
4001 connector->polled = intel_connector->polled;
4002 if (!connector->polled)
4003 connector->polled = DRM_CONNECTOR_POLL_HPD;
4004 }
4005 }
4006 }
4007 if (dev_priv->display.hpd_irq_setup)
4008 dev_priv->display.hpd_irq_setup(dev);
4009 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4010}
4011
4012void intel_irq_init(struct drm_device *dev)
4013{
4014 struct drm_i915_private *dev_priv = dev->dev_private;
4015
4016 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4017 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4018 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4019 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4020
4021 /* Let's track the enabled rps events */
4022 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4023
4024 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4025 i915_hangcheck_elapsed,
4026 (unsigned long) dev);
4027 setup_timer(&dev_priv->hotplug_reenable_timer, intel_hpd_irq_reenable,
4028 (unsigned long) dev_priv);
4029
4030 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4031
4032 if (IS_GEN2(dev)) {
4033 dev->max_vblank_count = 0;
4034 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4035 } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4036 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4037 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4038 } else {
4039 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4040 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4041 }
4042
4043 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4044 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4045 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4046 }
4047
4048 if (IS_VALLEYVIEW(dev)) {
4049 dev->driver->irq_handler = valleyview_irq_handler;
4050 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4051 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4052 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4053 dev->driver->enable_vblank = valleyview_enable_vblank;
4054 dev->driver->disable_vblank = valleyview_disable_vblank;
4055 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4056 } else if (IS_GEN8(dev)) {
4057 dev->driver->irq_handler = gen8_irq_handler;
4058 dev->driver->irq_preinstall = gen8_irq_preinstall;
4059 dev->driver->irq_postinstall = gen8_irq_postinstall;
4060 dev->driver->irq_uninstall = gen8_irq_uninstall;
4061 dev->driver->enable_vblank = gen8_enable_vblank;
4062 dev->driver->disable_vblank = gen8_disable_vblank;
4063 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4064 } else if (HAS_PCH_SPLIT(dev)) {
4065 dev->driver->irq_handler = ironlake_irq_handler;
4066 dev->driver->irq_preinstall = ironlake_irq_preinstall;
4067 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4068 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4069 dev->driver->enable_vblank = ironlake_enable_vblank;
4070 dev->driver->disable_vblank = ironlake_disable_vblank;
4071 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4072 } else {
4073 if (INTEL_INFO(dev)->gen == 2) {
4074 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4075 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4076 dev->driver->irq_handler = i8xx_irq_handler;
4077 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4078 } else if (INTEL_INFO(dev)->gen == 3) {
4079 dev->driver->irq_preinstall = i915_irq_preinstall;
4080 dev->driver->irq_postinstall = i915_irq_postinstall;
4081 dev->driver->irq_uninstall = i915_irq_uninstall;
4082 dev->driver->irq_handler = i915_irq_handler;
4083 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4084 } else {
4085 dev->driver->irq_preinstall = i965_irq_preinstall;
4086 dev->driver->irq_postinstall = i965_irq_postinstall;
4087 dev->driver->irq_uninstall = i965_irq_uninstall;
4088 dev->driver->irq_handler = i965_irq_handler;
4089 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4090 }
4091 dev->driver->enable_vblank = i915_enable_vblank;
4092 dev->driver->disable_vblank = i915_disable_vblank;
4093 }
4094}
4095
4096void intel_hpd_init(struct drm_device *dev)
4097{
4098 struct drm_i915_private *dev_priv = dev->dev_private;
4099 struct drm_mode_config *mode_config = &dev->mode_config;
4100 struct drm_connector *connector;
4101 unsigned long irqflags;
4102 int i;
4103
4104 for (i = 1; i < HPD_NUM_PINS; i++) {
4105 dev_priv->hpd_stats[i].hpd_cnt = 0;
4106 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4107 }
4108 list_for_each_entry(connector, &mode_config->connector_list, head) {
4109 struct intel_connector *intel_connector = to_intel_connector(connector);
4110 connector->polled = intel_connector->polled;
4111 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4112 connector->polled = DRM_CONNECTOR_POLL_HPD;
4113 }
4114
4115 /* Interrupt setup is already guaranteed to be single-threaded, this is
4116 * just to make the assert_spin_locked checks happy. */
4117 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4118 if (dev_priv->display.hpd_irq_setup)
4119 dev_priv->display.hpd_irq_setup(dev);
4120 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4121}
4122
4123/* Disable interrupts so we can allow runtime PM. */
4124void hsw_runtime_pm_disable_interrupts(struct drm_device *dev)
4125{
4126 struct drm_i915_private *dev_priv = dev->dev_private;
4127 unsigned long irqflags;
4128
4129 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4130
4131 dev_priv->pm.regsave.deimr = I915_READ(DEIMR);
4132 dev_priv->pm.regsave.sdeimr = I915_READ(SDEIMR);
4133 dev_priv->pm.regsave.gtimr = I915_READ(GTIMR);
4134 dev_priv->pm.regsave.gtier = I915_READ(GTIER);
4135 dev_priv->pm.regsave.gen6_pmimr = I915_READ(GEN6_PMIMR);
4136
4137 ironlake_disable_display_irq(dev_priv, 0xffffffff);
4138 ibx_disable_display_interrupt(dev_priv, 0xffffffff);
4139 ilk_disable_gt_irq(dev_priv, 0xffffffff);
4140 snb_disable_pm_irq(dev_priv, 0xffffffff);
4141
4142 dev_priv->pm.irqs_disabled = true;
4143
4144 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4145}
4146
4147/* Restore interrupts so we can recover from runtime PM. */
4148void hsw_runtime_pm_restore_interrupts(struct drm_device *dev)
4149{
4150 struct drm_i915_private *dev_priv = dev->dev_private;
4151 unsigned long irqflags;
4152 uint32_t val;
4153
4154 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4155
4156 val = I915_READ(DEIMR);
4157 WARN(val != 0xffffffff, "DEIMR is 0x%08x\n", val);
4158
4159 val = I915_READ(SDEIMR);
4160 WARN(val != 0xffffffff, "SDEIMR is 0x%08x\n", val);
4161
4162 val = I915_READ(GTIMR);
4163 WARN(val != 0xffffffff, "GTIMR is 0x%08x\n", val);
4164
4165 val = I915_READ(GEN6_PMIMR);
4166 WARN(val != 0xffffffff, "GEN6_PMIMR is 0x%08x\n", val);
4167
4168 dev_priv->pm.irqs_disabled = false;
4169
4170 ironlake_enable_display_irq(dev_priv, ~dev_priv->pm.regsave.deimr);
4171 ibx_enable_display_interrupt(dev_priv, ~dev_priv->pm.regsave.sdeimr);
4172 ilk_enable_gt_irq(dev_priv, ~dev_priv->pm.regsave.gtimr);
4173 snb_enable_pm_irq(dev_priv, ~dev_priv->pm.regsave.gen6_pmimr);
4174 I915_WRITE(GTIER, dev_priv->pm.regsave.gtier);
4175
4176 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4177}