Linux Audio

Check our new training course

Loading...
v5.4
   1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
   2 */
   3/*
   4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include <linux/circ_buf.h>
  32#include <linux/cpuidle.h>
  33#include <linux/slab.h>
  34#include <linux/sysrq.h>
  35
  36#include <drm/drm_drv.h>
  37#include <drm/drm_irq.h>
  38#include <drm/i915_drm.h>
  39
  40#include "display/intel_display_types.h"
  41#include "display/intel_fifo_underrun.h"
  42#include "display/intel_hotplug.h"
  43#include "display/intel_lpe_audio.h"
  44#include "display/intel_psr.h"
  45
  46#include "gt/intel_gt.h"
  47#include "gt/intel_gt_irq.h"
  48#include "gt/intel_gt_pm_irq.h"
  49
  50#include "i915_drv.h"
  51#include "i915_irq.h"
  52#include "i915_trace.h"
  53#include "intel_pm.h"
  54
  55/**
  56 * DOC: interrupt handling
  57 *
  58 * These functions provide the basic support for enabling and disabling the
  59 * interrupt handling support. There's a lot more functionality in i915_irq.c
  60 * and related files, but that will be described in separate chapters.
  61 */
  62
  63typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
  64
  65static const u32 hpd_ilk[HPD_NUM_PINS] = {
  66	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
  67};
  68
  69static const u32 hpd_ivb[HPD_NUM_PINS] = {
  70	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
  71};
  72
  73static const u32 hpd_bdw[HPD_NUM_PINS] = {
  74	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
  75};
  76
  77static const u32 hpd_ibx[HPD_NUM_PINS] = {
  78	[HPD_CRT] = SDE_CRT_HOTPLUG,
  79	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
  80	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
  81	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
  82	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
  83};
  84
  85static const u32 hpd_cpt[HPD_NUM_PINS] = {
  86	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
  87	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
  88	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  89	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  90	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
  91};
  92
  93static const u32 hpd_spt[HPD_NUM_PINS] = {
  94	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
  95	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  96	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  97	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
  98	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
  99};
 100
 101static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
 102	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
 103	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
 104	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
 105	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
 106	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
 107	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
 108};
 109
 110static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
 111	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
 112	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
 113	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
 114	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
 115	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
 116	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
 117};
 118
 119static const u32 hpd_status_i915[HPD_NUM_PINS] = {
 120	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
 121	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
 122	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
 123	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
 124	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
 125	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
 126};
 127
 128/* BXT hpd list */
 129static const u32 hpd_bxt[HPD_NUM_PINS] = {
 130	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
 131	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
 132	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
 133};
 134
 135static const u32 hpd_gen11[HPD_NUM_PINS] = {
 136	[HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
 137	[HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
 138	[HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
 139	[HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG
 140};
 141
 142static const u32 hpd_gen12[HPD_NUM_PINS] = {
 143	[HPD_PORT_D] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
 144	[HPD_PORT_E] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
 145	[HPD_PORT_F] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
 146	[HPD_PORT_G] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG,
 147	[HPD_PORT_H] = GEN12_TC5_HOTPLUG | GEN12_TBT5_HOTPLUG,
 148	[HPD_PORT_I] = GEN12_TC6_HOTPLUG | GEN12_TBT6_HOTPLUG
 149};
 150
 151static const u32 hpd_icp[HPD_NUM_PINS] = {
 152	[HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
 153	[HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
 154	[HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP,
 155	[HPD_PORT_D] = SDE_TC2_HOTPLUG_ICP,
 156	[HPD_PORT_E] = SDE_TC3_HOTPLUG_ICP,
 157	[HPD_PORT_F] = SDE_TC4_HOTPLUG_ICP
 158};
 159
 160static const u32 hpd_mcc[HPD_NUM_PINS] = {
 161	[HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
 162	[HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
 163	[HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP
 164};
 165
 166static const u32 hpd_tgp[HPD_NUM_PINS] = {
 167	[HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
 168	[HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
 169	[HPD_PORT_C] = SDE_DDIC_HOTPLUG_TGP,
 170	[HPD_PORT_D] = SDE_TC1_HOTPLUG_ICP,
 171	[HPD_PORT_E] = SDE_TC2_HOTPLUG_ICP,
 172	[HPD_PORT_F] = SDE_TC3_HOTPLUG_ICP,
 173	[HPD_PORT_G] = SDE_TC4_HOTPLUG_ICP,
 174	[HPD_PORT_H] = SDE_TC5_HOTPLUG_TGP,
 175	[HPD_PORT_I] = SDE_TC6_HOTPLUG_TGP,
 176};
 177
 178void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
 179		    i915_reg_t iir, i915_reg_t ier)
 180{
 181	intel_uncore_write(uncore, imr, 0xffffffff);
 182	intel_uncore_posting_read(uncore, imr);
 183
 184	intel_uncore_write(uncore, ier, 0);
 185
 186	/* IIR can theoretically queue up two events. Be paranoid. */
 187	intel_uncore_write(uncore, iir, 0xffffffff);
 188	intel_uncore_posting_read(uncore, iir);
 189	intel_uncore_write(uncore, iir, 0xffffffff);
 190	intel_uncore_posting_read(uncore, iir);
 191}
 192
 193void gen2_irq_reset(struct intel_uncore *uncore)
 194{
 195	intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
 196	intel_uncore_posting_read16(uncore, GEN2_IMR);
 197
 198	intel_uncore_write16(uncore, GEN2_IER, 0);
 199
 200	/* IIR can theoretically queue up two events. Be paranoid. */
 201	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 202	intel_uncore_posting_read16(uncore, GEN2_IIR);
 203	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 204	intel_uncore_posting_read16(uncore, GEN2_IIR);
 205}
 206
 207/*
 208 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
 209 */
 210static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
 211{
 212	u32 val = intel_uncore_read(uncore, reg);
 213
 214	if (val == 0)
 
 
 215		return;
 
 216
 217	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
 218	     i915_mmio_reg_offset(reg), val);
 219	intel_uncore_write(uncore, reg, 0xffffffff);
 220	intel_uncore_posting_read(uncore, reg);
 221	intel_uncore_write(uncore, reg, 0xffffffff);
 222	intel_uncore_posting_read(uncore, reg);
 223}
 224
 225static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
 
 226{
 227	u16 val = intel_uncore_read16(uncore, GEN2_IIR);
 228
 229	if (val == 0)
 
 
 230		return;
 
 231
 232	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
 233	     i915_mmio_reg_offset(GEN2_IIR), val);
 234	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 235	intel_uncore_posting_read16(uncore, GEN2_IIR);
 236	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 237	intel_uncore_posting_read16(uncore, GEN2_IIR);
 238}
 239
 240void gen3_irq_init(struct intel_uncore *uncore,
 241		   i915_reg_t imr, u32 imr_val,
 242		   i915_reg_t ier, u32 ier_val,
 243		   i915_reg_t iir)
 244{
 245	gen3_assert_iir_is_zero(uncore, iir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 246
 247	intel_uncore_write(uncore, ier, ier_val);
 248	intel_uncore_write(uncore, imr, imr_val);
 249	intel_uncore_posting_read(uncore, imr);
 
 250}
 251
 252void gen2_irq_init(struct intel_uncore *uncore,
 253		   u32 imr_val, u32 ier_val)
 254{
 255	gen2_assert_iir_is_zero(uncore);
 256
 257	intel_uncore_write16(uncore, GEN2_IER, ier_val);
 258	intel_uncore_write16(uncore, GEN2_IMR, imr_val);
 259	intel_uncore_posting_read16(uncore, GEN2_IMR);
 260}
 261
 262/* For display hotplug interrupt */
 263static inline void
 264i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
 265				     u32 mask,
 266				     u32 bits)
 267{
 268	u32 val;
 269
 270	lockdep_assert_held(&dev_priv->irq_lock);
 271	WARN_ON(bits & ~mask);
 272
 273	val = I915_READ(PORT_HOTPLUG_EN);
 274	val &= ~mask;
 275	val |= bits;
 276	I915_WRITE(PORT_HOTPLUG_EN, val);
 277}
 278
 279/**
 280 * i915_hotplug_interrupt_update - update hotplug interrupt enable
 281 * @dev_priv: driver private
 282 * @mask: bits to update
 283 * @bits: bits to enable
 284 * NOTE: the HPD enable bits are modified both inside and outside
 285 * of an interrupt context. To avoid that read-modify-write cycles
 286 * interfer, these bits are protected by a spinlock. Since this
 287 * function is usually not called from a context where the lock is
 288 * held already, this function acquires the lock itself. A non-locking
 289 * version is also available.
 290 */
 291void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
 292				   u32 mask,
 293				   u32 bits)
 294{
 295	spin_lock_irq(&dev_priv->irq_lock);
 296	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
 297	spin_unlock_irq(&dev_priv->irq_lock);
 298}
 299
 300/**
 301 * ilk_update_display_irq - update DEIMR
 302 * @dev_priv: driver private
 303 * @interrupt_mask: mask of interrupt bits to update
 304 * @enabled_irq_mask: mask of interrupt bits to enable
 305 */
 306void ilk_update_display_irq(struct drm_i915_private *dev_priv,
 307			    u32 interrupt_mask,
 308			    u32 enabled_irq_mask)
 309{
 310	u32 new_val;
 311
 312	lockdep_assert_held(&dev_priv->irq_lock);
 313
 314	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 315
 316	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 
 
 317		return;
 
 318
 319	new_val = dev_priv->irq_mask;
 320	new_val &= ~interrupt_mask;
 321	new_val |= (~enabled_irq_mask & interrupt_mask);
 322
 323	if (new_val != dev_priv->irq_mask) {
 324		dev_priv->irq_mask = new_val;
 325		I915_WRITE(DEIMR, dev_priv->irq_mask);
 326		POSTING_READ(DEIMR);
 327	}
 328}
 329
 330static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
 331{
 332	WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11);
 
 333
 334	return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
 
 
 335}
 336
 337void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv)
 338{
 339	struct intel_gt *gt = &dev_priv->gt;
 
 
 340
 341	spin_lock_irq(&gt->irq_lock);
 342
 343	while (gen11_gt_reset_one_iir(gt, 0, GEN11_GTPM))
 344		;
 345
 346	dev_priv->gt_pm.rps.pm_iir = 0;
 
 
 347
 348	spin_unlock_irq(&gt->irq_lock);
 349}
 350
 351void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
 352{
 353	struct intel_gt *gt = &dev_priv->gt;
 
 
 354
 355	spin_lock_irq(&gt->irq_lock);
 356	gen6_gt_pm_reset_iir(gt, GEN6_PM_RPS_EVENTS);
 357	dev_priv->gt_pm.rps.pm_iir = 0;
 358	spin_unlock_irq(&gt->irq_lock);
 359}
 360
 361void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
 362{
 363	struct intel_gt *gt = &dev_priv->gt;
 364	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 365
 366	if (READ_ONCE(rps->interrupts_enabled))
 367		return;
 
 368
 369	spin_lock_irq(&gt->irq_lock);
 370	WARN_ON_ONCE(rps->pm_iir);
 371
 372	if (INTEL_GEN(dev_priv) >= 11)
 373		WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GTPM));
 374	else
 375		WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
 
 376
 377	rps->interrupts_enabled = true;
 378	gen6_gt_pm_enable_irq(gt, dev_priv->pm_rps_events);
 379
 380	spin_unlock_irq(&gt->irq_lock);
 
 381}
 382
 383u32 gen6_sanitize_rps_pm_mask(const struct drm_i915_private *i915, u32 mask)
 
 384{
 385	return mask & ~i915->gt_pm.rps.pm_intrmsk_mbz;
 
 
 
 
 
 
 
 386}
 387
 388void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
 
 389{
 390	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 391	struct intel_gt *gt = &dev_priv->gt;
 392
 393	if (!READ_ONCE(rps->interrupts_enabled))
 394		return;
 395
 396	spin_lock_irq(&gt->irq_lock);
 397	rps->interrupts_enabled = false;
 398
 399	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
 400
 401	gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
 402
 403	spin_unlock_irq(&gt->irq_lock);
 404	intel_synchronize_irq(dev_priv);
 405
 406	/* Now that we will not be generating any more work, flush any
 407	 * outstanding tasks. As we are called on the RPS idle path,
 408	 * we will reset the GPU to minimum frequencies, so the current
 409	 * state of the worker can be discarded.
 410	 */
 411	cancel_work_sync(&rps->work);
 412	if (INTEL_GEN(dev_priv) >= 11)
 413		gen11_reset_rps_interrupts(dev_priv);
 414	else
 415		gen6_reset_rps_interrupts(dev_priv);
 416}
 417
 418void gen9_reset_guc_interrupts(struct intel_guc *guc)
 
 419{
 420	struct intel_gt *gt = guc_to_gt(guc);
 421
 422	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
 423
 424	spin_lock_irq(&gt->irq_lock);
 425	gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
 426	spin_unlock_irq(&gt->irq_lock);
 
 
 
 427}
 428
 429void gen9_enable_guc_interrupts(struct intel_guc *guc)
 
 
 
 
 
 
 
 
 430{
 431	struct intel_gt *gt = guc_to_gt(guc);
 
 
 432
 433	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
 434
 435	spin_lock_irq(&gt->irq_lock);
 436	if (!guc->interrupts.enabled) {
 437		WARN_ON_ONCE(intel_uncore_read(gt->uncore,
 438					       gen6_pm_iir(gt->i915)) &
 439			     gt->pm_guc_events);
 440		guc->interrupts.enabled = true;
 441		gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
 442	}
 443	spin_unlock_irq(&gt->irq_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 444}
 445
 446void gen9_disable_guc_interrupts(struct intel_guc *guc)
 
 
 447{
 448	struct intel_gt *gt = guc_to_gt(guc);
 449
 450	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
 
 
 451
 452	spin_lock_irq(&gt->irq_lock);
 453	guc->interrupts.enabled = false;
 454
 455	gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
 
 
 
 456
 457	spin_unlock_irq(&gt->irq_lock);
 458	intel_synchronize_irq(gt->i915);
 459
 460	gen9_reset_guc_interrupts(guc);
 
 
 
 
 
 461}
 462
 463void gen11_reset_guc_interrupts(struct intel_guc *guc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 464{
 465	struct intel_gt *gt = guc_to_gt(guc);
 
 
 
 466
 467	spin_lock_irq(&gt->irq_lock);
 468	gen11_gt_reset_one_iir(gt, 0, GEN11_GUC);
 469	spin_unlock_irq(&gt->irq_lock);
 470}
 471
 472void gen11_enable_guc_interrupts(struct intel_guc *guc)
 473{
 474	struct intel_gt *gt = guc_to_gt(guc);
 475
 476	spin_lock_irq(&gt->irq_lock);
 477	if (!guc->interrupts.enabled) {
 478		u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
 479
 480		WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC));
 481		intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, events);
 482		intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~events);
 483		guc->interrupts.enabled = true;
 484	}
 485	spin_unlock_irq(&gt->irq_lock);
 
 
 
 
 
 
 
 486}
 487
 488void gen11_disable_guc_interrupts(struct intel_guc *guc)
 
 489{
 490	struct intel_gt *gt = guc_to_gt(guc);
 
 
 
 
 
 
 491
 492	spin_lock_irq(&gt->irq_lock);
 493	guc->interrupts.enabled = false;
 494
 495	intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0);
 496	intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
 497
 498	spin_unlock_irq(&gt->irq_lock);
 499	intel_synchronize_irq(gt->i915);
 
 
 
 
 500
 501	gen11_reset_guc_interrupts(guc);
 502}
 503
 504/**
 505 * bdw_update_port_irq - update DE port interrupt
 506 * @dev_priv: driver private
 507 * @interrupt_mask: mask of interrupt bits to update
 508 * @enabled_irq_mask: mask of interrupt bits to enable
 
 
 
 
 
 
 
 
 509 */
 510static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
 511				u32 interrupt_mask,
 512				u32 enabled_irq_mask)
 513{
 514	u32 new_val;
 515	u32 old_val;
 
 
 
 516
 517	lockdep_assert_held(&dev_priv->irq_lock);
 
 
 
 
 
 
 
 518
 519	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 520
 521	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 522		return;
 523
 524	old_val = I915_READ(GEN8_DE_PORT_IMR);
 
 525
 526	new_val = old_val;
 527	new_val &= ~interrupt_mask;
 528	new_val |= (~enabled_irq_mask & interrupt_mask);
 529
 530	if (new_val != old_val) {
 531		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
 532		POSTING_READ(GEN8_DE_PORT_IMR);
 533	}
 
 
 
 
 534}
 535
 536/**
 537 * bdw_update_pipe_irq - update DE pipe interrupt
 538 * @dev_priv: driver private
 539 * @pipe: pipe whose interrupt to update
 540 * @interrupt_mask: mask of interrupt bits to update
 541 * @enabled_irq_mask: mask of interrupt bits to enable
 542 */
 543void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
 544			 enum pipe pipe,
 545			 u32 interrupt_mask,
 546			 u32 enabled_irq_mask)
 547{
 548	u32 new_val;
 
 549
 550	lockdep_assert_held(&dev_priv->irq_lock);
 551
 552	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 
 
 553
 554	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 555		return;
 556
 557	new_val = dev_priv->de_irq_mask[pipe];
 558	new_val &= ~interrupt_mask;
 559	new_val |= (~enabled_irq_mask & interrupt_mask);
 560
 561	if (new_val != dev_priv->de_irq_mask[pipe]) {
 562		dev_priv->de_irq_mask[pipe] = new_val;
 563		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
 564		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
 565	}
 566}
 567
 568/**
 569 * ibx_display_interrupt_update - update SDEIMR
 570 * @dev_priv: driver private
 571 * @interrupt_mask: mask of interrupt bits to update
 572 * @enabled_irq_mask: mask of interrupt bits to enable
 573 */
 574void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
 575				  u32 interrupt_mask,
 576				  u32 enabled_irq_mask)
 577{
 578	u32 sdeimr = I915_READ(SDEIMR);
 579	sdeimr &= ~interrupt_mask;
 580	sdeimr |= (~enabled_irq_mask & interrupt_mask);
 581
 582	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 583
 584	lockdep_assert_held(&dev_priv->irq_lock);
 
 
 585
 586	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 587		return;
 588
 589	I915_WRITE(SDEIMR, sdeimr);
 590	POSTING_READ(SDEIMR);
 
 
 
 591}
 592
 593u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
 594			      enum pipe pipe)
 595{
 596	u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
 597	u32 enable_mask = status_mask << 16;
 598
 599	lockdep_assert_held(&dev_priv->irq_lock);
 600
 601	if (INTEL_GEN(dev_priv) < 5)
 602		goto out;
 603
 604	/*
 605	 * On pipe A we don't support the PSR interrupt yet,
 606	 * on pipe B and C the same bit MBZ.
 607	 */
 608	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
 609		return 0;
 610	/*
 611	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
 612	 * A the same bit is for perf counters which we don't use either.
 613	 */
 614	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
 615		return 0;
 616
 617	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
 618			 SPRITE0_FLIP_DONE_INT_EN_VLV |
 619			 SPRITE1_FLIP_DONE_INT_EN_VLV);
 620	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
 621		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
 622	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
 623		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
 624
 625out:
 626	WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
 627		  status_mask & ~PIPESTAT_INT_STATUS_MASK,
 628		  "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
 629		  pipe_name(pipe), enable_mask, status_mask);
 630
 631	return enable_mask;
 632}
 633
 634void i915_enable_pipestat(struct drm_i915_private *dev_priv,
 635			  enum pipe pipe, u32 status_mask)
 
 636{
 637	i915_reg_t reg = PIPESTAT(pipe);
 638	u32 enable_mask;
 639
 640	WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
 641		  "pipe %c: status_mask=0x%x\n",
 642		  pipe_name(pipe), status_mask);
 643
 644	lockdep_assert_held(&dev_priv->irq_lock);
 645	WARN_ON(!intel_irqs_enabled(dev_priv));
 646
 647	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
 648		return;
 649
 650	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
 651	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
 652
 653	I915_WRITE(reg, enable_mask | status_mask);
 654	POSTING_READ(reg);
 655}
 656
 657void i915_disable_pipestat(struct drm_i915_private *dev_priv,
 658			   enum pipe pipe, u32 status_mask)
 
 659{
 660	i915_reg_t reg = PIPESTAT(pipe);
 661	u32 enable_mask;
 662
 663	WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
 664		  "pipe %c: status_mask=0x%x\n",
 665		  pipe_name(pipe), status_mask);
 666
 667	lockdep_assert_held(&dev_priv->irq_lock);
 668	WARN_ON(!intel_irqs_enabled(dev_priv));
 669
 670	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
 671		return;
 672
 673	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
 674	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
 675
 676	I915_WRITE(reg, enable_mask | status_mask);
 677	POSTING_READ(reg);
 678}
 679
 680static bool i915_has_asle(struct drm_i915_private *dev_priv)
 681{
 682	if (!dev_priv->opregion.asle)
 683		return false;
 684
 685	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
 686}
 687
 688/**
 689 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
 690 * @dev_priv: i915 device private
 691 */
 692static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
 693{
 694	if (!i915_has_asle(dev_priv))
 
 
 
 695		return;
 696
 697	spin_lock_irq(&dev_priv->irq_lock);
 698
 699	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
 700	if (INTEL_GEN(dev_priv) >= 4)
 701		i915_enable_pipestat(dev_priv, PIPE_A,
 702				     PIPE_LEGACY_BLC_EVENT_STATUS);
 703
 704	spin_unlock_irq(&dev_priv->irq_lock);
 705}
 706
 707/*
 708 * This timing diagram depicts the video signal in and
 709 * around the vertical blanking period.
 710 *
 711 * Assumptions about the fictitious mode used in this example:
 712 *  vblank_start >= 3
 713 *  vsync_start = vblank_start + 1
 714 *  vsync_end = vblank_start + 2
 715 *  vtotal = vblank_start + 3
 716 *
 717 *           start of vblank:
 718 *           latch double buffered registers
 719 *           increment frame counter (ctg+)
 720 *           generate start of vblank interrupt (gen4+)
 721 *           |
 722 *           |          frame start:
 723 *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
 724 *           |          may be shifted forward 1-3 extra lines via PIPECONF
 725 *           |          |
 726 *           |          |  start of vsync:
 727 *           |          |  generate vsync interrupt
 728 *           |          |  |
 729 * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
 730 *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
 731 * ----va---> <-----------------vb--------------------> <--------va-------------
 732 *       |          |       <----vs----->                     |
 733 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
 734 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
 735 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
 736 *       |          |                                         |
 737 *       last visible pixel                                   first visible pixel
 738 *                  |                                         increment frame counter (gen3/4)
 739 *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
 740 *
 741 * x  = horizontal active
 742 * _  = horizontal blanking
 743 * hs = horizontal sync
 744 * va = vertical active
 745 * vb = vertical blanking
 746 * vs = vertical sync
 747 * vbs = vblank_start (number)
 748 *
 749 * Summary:
 750 * - most events happen at the start of horizontal sync
 751 * - frame start happens at the start of horizontal blank, 1-4 lines
 752 *   (depending on PIPECONF settings) after the start of vblank
 753 * - gen3/4 pixel and frame counter are synchronized with the start
 754 *   of horizontal active on the first line of vertical active
 755 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 756
 757/* Called from drm generic code, passed a 'crtc', which
 758 * we use as a pipe index
 759 */
 760u32 i915_get_vblank_counter(struct drm_crtc *crtc)
 761{
 762	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 763	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
 764	const struct drm_display_mode *mode = &vblank->hwmode;
 765	enum pipe pipe = to_intel_crtc(crtc)->pipe;
 766	i915_reg_t high_frame, low_frame;
 767	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
 768	unsigned long irqflags;
 769
 770	/*
 771	 * On i965gm TV output the frame counter only works up to
 772	 * the point when we enable the TV encoder. After that the
 773	 * frame counter ceases to work and reads zero. We need a
 774	 * vblank wait before enabling the TV encoder and so we
 775	 * have to enable vblank interrupts while the frame counter
 776	 * is still in a working state. However the core vblank code
 777	 * does not like us returning non-zero frame counter values
 778	 * when we've told it that we don't have a working frame
 779	 * counter. Thus we must stop non-zero values leaking out.
 780	 */
 781	if (!vblank->max_vblank_count)
 782		return 0;
 
 783
 784	htotal = mode->crtc_htotal;
 785	hsync_start = mode->crtc_hsync_start;
 786	vbl_start = mode->crtc_vblank_start;
 787	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 788		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 
 
 
 
 
 789
 790	/* Convert to pixel count */
 791	vbl_start *= htotal;
 792
 793	/* Start of vblank event occurs at start of hsync */
 794	vbl_start -= htotal - hsync_start;
 795
 796	high_frame = PIPEFRAME(pipe);
 797	low_frame = PIPEFRAMEPIXEL(pipe);
 798
 799	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 800
 801	/*
 802	 * High & low register fields aren't synchronized, so make sure
 803	 * we get a low value that's stable across two reads of the high
 804	 * register.
 805	 */
 806	do {
 807		high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
 808		low   = I915_READ_FW(low_frame);
 809		high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
 810	} while (high1 != high2);
 811
 812	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 813
 814	high1 >>= PIPE_FRAME_HIGH_SHIFT;
 815	pixel = low & PIPE_PIXEL_MASK;
 816	low >>= PIPE_FRAME_LOW_SHIFT;
 817
 818	/*
 819	 * The frame counter increments at beginning of active.
 820	 * Cook up a vblank counter by also checking the pixel
 821	 * counter against vblank start.
 822	 */
 823	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
 824}
 825
 826u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
 827{
 828	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 829	enum pipe pipe = to_intel_crtc(crtc)->pipe;
 830
 831	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
 832}
 833
 834/*
 835 * On certain encoders on certain platforms, pipe
 836 * scanline register will not work to get the scanline,
 837 * since the timings are driven from the PORT or issues
 838 * with scanline register updates.
 839 * This function will use Framestamp and current
 840 * timestamp registers to calculate the scanline.
 841 */
 842static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
 843{
 844	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 845	struct drm_vblank_crtc *vblank =
 846		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
 847	const struct drm_display_mode *mode = &vblank->hwmode;
 848	u32 vblank_start = mode->crtc_vblank_start;
 849	u32 vtotal = mode->crtc_vtotal;
 850	u32 htotal = mode->crtc_htotal;
 851	u32 clock = mode->crtc_clock;
 852	u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
 853
 854	/*
 855	 * To avoid the race condition where we might cross into the
 856	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
 857	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
 858	 * during the same frame.
 859	 */
 860	do {
 861		/*
 862		 * This field provides read back of the display
 863		 * pipe frame time stamp. The time stamp value
 864		 * is sampled at every start of vertical blank.
 865		 */
 866		scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
 867
 868		/*
 869		 * The TIMESTAMP_CTR register has the current
 870		 * time stamp value.
 871		 */
 872		scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
 873
 874		scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
 875	} while (scan_post_time != scan_prev_time);
 876
 877	scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
 878					clock), 1000 * htotal);
 879	scanline = min(scanline, vtotal - 1);
 880	scanline = (scanline + vblank_start) % vtotal;
 881
 882	return scanline;
 883}
 884
 885/* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
 886static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
 887{
 888	struct drm_device *dev = crtc->base.dev;
 889	struct drm_i915_private *dev_priv = to_i915(dev);
 890	const struct drm_display_mode *mode;
 891	struct drm_vblank_crtc *vblank;
 892	enum pipe pipe = crtc->pipe;
 893	int position, vtotal;
 894
 895	if (!crtc->active)
 896		return -1;
 897
 898	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
 899	mode = &vblank->hwmode;
 900
 901	if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
 902		return __intel_get_crtc_scanline_from_timestamp(crtc);
 903
 904	vtotal = mode->crtc_vtotal;
 905	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 906		vtotal /= 2;
 907
 908	if (IS_GEN(dev_priv, 2))
 909		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
 910	else
 911		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
 912
 913	/*
 914	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
 915	 * read it just before the start of vblank.  So try it again
 916	 * so we don't accidentally end up spanning a vblank frame
 917	 * increment, causing the pipe_update_end() code to squak at us.
 918	 *
 919	 * The nature of this problem means we can't simply check the ISR
 920	 * bit and return the vblank start value; nor can we use the scanline
 921	 * debug register in the transcoder as it appears to have the same
 922	 * problem.  We may need to extend this to include other platforms,
 923	 * but so far testing only shows the problem on HSW.
 924	 */
 925	if (HAS_DDI(dev_priv) && !position) {
 926		int i, temp;
 927
 928		for (i = 0; i < 100; i++) {
 929			udelay(1);
 930			temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
 931			if (temp != position) {
 932				position = temp;
 933				break;
 934			}
 935		}
 
 936	}
 937
 938	/*
 939	 * See update_scanline_offset() for the details on the
 940	 * scanline_offset adjustment.
 941	 */
 942	return (position + crtc->scanline_offset) % vtotal;
 943}
 944
 945bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
 946			      bool in_vblank_irq, int *vpos, int *hpos,
 947			      ktime_t *stime, ktime_t *etime,
 948			      const struct drm_display_mode *mode)
 949{
 950	struct drm_i915_private *dev_priv = to_i915(dev);
 951	struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
 952								pipe);
 
 953	int position;
 954	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
 
 
 955	unsigned long irqflags;
 956	bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
 957		IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
 958		mode->private_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
 959
 960	if (WARN_ON(!mode->crtc_clock)) {
 961		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
 962				 "pipe %c\n", pipe_name(pipe));
 963		return false;
 964	}
 965
 966	htotal = mode->crtc_htotal;
 967	hsync_start = mode->crtc_hsync_start;
 968	vtotal = mode->crtc_vtotal;
 969	vbl_start = mode->crtc_vblank_start;
 970	vbl_end = mode->crtc_vblank_end;
 971
 972	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 973		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 974		vbl_end /= 2;
 975		vtotal /= 2;
 976	}
 977
 
 
 978	/*
 979	 * Lock uncore.lock, as we will do multiple timing critical raw
 980	 * register reads, potentially with preemption disabled, so the
 981	 * following code must not block on uncore.lock.
 982	 */
 983	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 984
 985	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
 986
 987	/* Get optional system timestamp before query. */
 988	if (stime)
 989		*stime = ktime_get();
 990
 991	if (use_scanline_counter) {
 992		/* No obvious pixelcount register. Only query vertical
 993		 * scanout position from Display scan line register.
 994		 */
 995		position = __intel_get_crtc_scanline(intel_crtc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 996	} else {
 997		/* Have access to pixelcount since start of frame.
 998		 * We can split this into vertical and horizontal
 999		 * scanout position.
1000		 */
1001		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
1002
1003		/* convert to pixel counts */
1004		vbl_start *= htotal;
1005		vbl_end *= htotal;
1006		vtotal *= htotal;
1007
1008		/*
1009		 * In interlaced modes, the pixel counter counts all pixels,
1010		 * so one field will have htotal more pixels. In order to avoid
1011		 * the reported position from jumping backwards when the pixel
1012		 * counter is beyond the length of the shorter field, just
1013		 * clamp the position the length of the shorter field. This
1014		 * matches how the scanline counter based position works since
1015		 * the scanline counter doesn't count the two half lines.
1016		 */
1017		if (position >= vtotal)
1018			position = vtotal - 1;
1019
1020		/*
1021		 * Start of vblank interrupt is triggered at start of hsync,
1022		 * just prior to the first active line of vblank. However we
1023		 * consider lines to start at the leading edge of horizontal
1024		 * active. So, should we get here before we've crossed into
1025		 * the horizontal active of the first line in vblank, we would
1026		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
1027		 * always add htotal-hsync_start to the current pixel position.
1028		 */
1029		position = (position + htotal - hsync_start) % vtotal;
1030	}
1031
1032	/* Get optional system timestamp after query. */
1033	if (etime)
1034		*etime = ktime_get();
1035
1036	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1037
1038	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1039
 
 
1040	/*
1041	 * While in vblank, position will be negative
1042	 * counting up towards 0 at vbl_end. And outside
1043	 * vblank, position will be positive counting
1044	 * up since vbl_end.
1045	 */
1046	if (position >= vbl_start)
1047		position -= vbl_end;
1048	else
1049		position += vtotal - vbl_end;
1050
1051	if (use_scanline_counter) {
1052		*vpos = position;
1053		*hpos = 0;
1054	} else {
1055		*vpos = position / htotal;
1056		*hpos = position - (*vpos * htotal);
1057	}
1058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1059	return true;
1060}
1061
1062int intel_get_crtc_scanline(struct intel_crtc *crtc)
 
 
 
 
 
1063{
1064	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 
 
 
 
 
 
1065	unsigned long irqflags;
1066	int position;
 
 
1067
1068	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1069	position = __intel_get_crtc_scanline(crtc);
1070	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1071
1072	return position;
 
 
1073}
1074
1075static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1076{
1077	struct intel_uncore *uncore = &dev_priv->uncore;
1078	u32 busy_up, busy_down, max_avg, min_avg;
1079	u8 new_delay;
1080
1081	spin_lock(&mchdev_lock);
1082
1083	intel_uncore_write16(uncore,
1084			     MEMINTRSTS,
1085			     intel_uncore_read(uncore, MEMINTRSTS));
1086
1087	new_delay = dev_priv->ips.cur_delay;
1088
1089	intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1090	busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1091	busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1092	max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1093	min_avg = intel_uncore_read(uncore, RCBMINAVG);
1094
1095	/* Handle RCS change request from hw */
1096	if (busy_up > max_avg) {
1097		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1098			new_delay = dev_priv->ips.cur_delay - 1;
1099		if (new_delay < dev_priv->ips.max_delay)
1100			new_delay = dev_priv->ips.max_delay;
1101	} else if (busy_down < min_avg) {
1102		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1103			new_delay = dev_priv->ips.cur_delay + 1;
1104		if (new_delay > dev_priv->ips.min_delay)
1105			new_delay = dev_priv->ips.min_delay;
1106	}
1107
1108	if (ironlake_set_drps(dev_priv, new_delay))
1109		dev_priv->ips.cur_delay = new_delay;
1110
1111	spin_unlock(&mchdev_lock);
1112
1113	return;
1114}
1115
1116static void vlv_c0_read(struct drm_i915_private *dev_priv,
1117			struct intel_rps_ei *ei)
1118{
1119	ei->ktime = ktime_get_raw();
1120	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1121	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1122}
1123
1124void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1125{
1126	memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1127}
1128
1129static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1130{
1131	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1132	const struct intel_rps_ei *prev = &rps->ei;
1133	struct intel_rps_ei now;
1134	u32 events = 0;
1135
1136	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1137		return 0;
1138
1139	vlv_c0_read(dev_priv, &now);
1140
1141	if (prev->ktime) {
1142		u64 time, c0;
1143		u32 render, media;
1144
1145		time = ktime_us_delta(now.ktime, prev->ktime);
1146
1147		time *= dev_priv->czclk_freq;
1148
1149		/* Workload can be split between render + media,
1150		 * e.g. SwapBuffers being blitted in X after being rendered in
1151		 * mesa. To account for this we need to combine both engines
1152		 * into our activity counter.
1153		 */
1154		render = now.render_c0 - prev->render_c0;
1155		media = now.media_c0 - prev->media_c0;
1156		c0 = max(render, media);
1157		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1158
1159		if (c0 > time * rps->power.up_threshold)
1160			events = GEN6_PM_RP_UP_THRESHOLD;
1161		else if (c0 < time * rps->power.down_threshold)
1162			events = GEN6_PM_RP_DOWN_THRESHOLD;
1163	}
1164
1165	rps->ei = now;
1166	return events;
1167}
1168
1169static void gen6_pm_rps_work(struct work_struct *work)
1170{
1171	struct drm_i915_private *dev_priv =
1172		container_of(work, struct drm_i915_private, gt_pm.rps.work);
1173	struct intel_gt *gt = &dev_priv->gt;
1174	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1175	bool client_boost = false;
1176	int new_delay, adj, min, max;
1177	u32 pm_iir = 0;
1178
1179	spin_lock_irq(&gt->irq_lock);
1180	if (rps->interrupts_enabled) {
1181		pm_iir = fetch_and_zero(&rps->pm_iir);
1182		client_boost = atomic_read(&rps->num_waiters);
1183	}
1184	spin_unlock_irq(&gt->irq_lock);
1185
1186	/* Make sure we didn't queue anything we're not going to process. */
1187	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1188	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1189		goto out;
1190
1191	mutex_lock(&rps->lock);
 
1192
1193	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1194
1195	adj = rps->last_adj;
1196	new_delay = rps->cur_freq;
1197	min = rps->min_freq_softlimit;
1198	max = rps->max_freq_softlimit;
1199	if (client_boost)
1200		max = rps->max_freq;
1201	if (client_boost && new_delay < rps->boost_freq) {
1202		new_delay = rps->boost_freq;
1203		adj = 0;
1204	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1205		if (adj > 0)
1206			adj *= 2;
1207		else /* CHV needs even encode values */
1208			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
 
1209
1210		if (new_delay >= rps->max_freq_softlimit)
1211			adj = 0;
1212	} else if (client_boost) {
1213		adj = 0;
 
 
1214	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1215		if (rps->cur_freq > rps->efficient_freq)
1216			new_delay = rps->efficient_freq;
1217		else if (rps->cur_freq > rps->min_freq_softlimit)
1218			new_delay = rps->min_freq_softlimit;
1219		adj = 0;
1220	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1221		if (adj < 0)
1222			adj *= 2;
1223		else /* CHV needs even encode values */
1224			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1225
1226		if (new_delay <= rps->min_freq_softlimit)
1227			adj = 0;
1228	} else { /* unknown event */
1229		adj = 0;
1230	}
1231
1232	rps->last_adj = adj;
1233
1234	/*
1235	 * Limit deboosting and boosting to keep ourselves at the extremes
1236	 * when in the respective power modes (i.e. slowly decrease frequencies
1237	 * while in the HIGH_POWER zone and slowly increase frequencies while
1238	 * in the LOW_POWER zone). On idle, we will hit the timeout and drop
1239	 * to the next level quickly, and conversely if busy we expect to
1240	 * hit a waitboost and rapidly switch into max power.
1241	 */
1242	if ((adj < 0 && rps->power.mode == HIGH_POWER) ||
1243	    (adj > 0 && rps->power.mode == LOW_POWER))
1244		rps->last_adj = 0;
1245
1246	/* sysfs frequency interfaces may have snuck in while servicing the
1247	 * interrupt
1248	 */
1249	new_delay += adj;
1250	new_delay = clamp_t(int, new_delay, min, max);
 
1251
1252	if (intel_set_rps(dev_priv, new_delay)) {
1253		DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1254		rps->last_adj = 0;
1255	}
1256
1257	mutex_unlock(&rps->lock);
 
 
 
1258
1259out:
1260	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1261	spin_lock_irq(&gt->irq_lock);
1262	if (rps->interrupts_enabled)
1263		gen6_gt_pm_unmask_irq(gt, dev_priv->pm_rps_events);
1264	spin_unlock_irq(&gt->irq_lock);
1265}
1266
1267
1268/**
1269 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1270 * occurred.
1271 * @work: workqueue struct
1272 *
1273 * Doesn't actually do anything except notify userspace. As a consequence of
1274 * this event, userspace should try to remap the bad rows since statistically
1275 * it is likely the same row is more likely to go bad again.
1276 */
1277static void ivybridge_parity_work(struct work_struct *work)
1278{
1279	struct drm_i915_private *dev_priv =
1280		container_of(work, typeof(*dev_priv), l3_parity.error_work);
1281	struct intel_gt *gt = &dev_priv->gt;
1282	u32 error_status, row, bank, subbank;
1283	char *parity_event[6];
1284	u32 misccpctl;
1285	u8 slice = 0;
 
1286
1287	/* We must turn off DOP level clock gating to access the L3 registers.
1288	 * In order to prevent a get/put style interface, acquire struct mutex
1289	 * any time we access those registers.
1290	 */
1291	mutex_lock(&dev_priv->drm.struct_mutex);
1292
1293	/* If we've screwed up tracking, just let the interrupt fire again */
1294	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1295		goto out;
1296
1297	misccpctl = I915_READ(GEN7_MISCCPCTL);
1298	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1299	POSTING_READ(GEN7_MISCCPCTL);
1300
1301	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1302		i915_reg_t reg;
1303
1304		slice--;
1305		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1306			break;
1307
1308		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1309
1310		reg = GEN7_L3CDERRST1(slice);
1311
1312		error_status = I915_READ(reg);
1313		row = GEN7_PARITY_ERROR_ROW(error_status);
1314		bank = GEN7_PARITY_ERROR_BANK(error_status);
1315		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1316
1317		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1318		POSTING_READ(reg);
1319
1320		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1321		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1322		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1323		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1324		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1325		parity_event[5] = NULL;
1326
1327		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1328				   KOBJ_CHANGE, parity_event);
1329
1330		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1331			  slice, row, bank, subbank);
1332
1333		kfree(parity_event[4]);
1334		kfree(parity_event[3]);
1335		kfree(parity_event[2]);
1336		kfree(parity_event[1]);
1337	}
1338
1339	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1340
1341out:
1342	WARN_ON(dev_priv->l3_parity.which_slice);
1343	spin_lock_irq(&gt->irq_lock);
1344	gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1345	spin_unlock_irq(&gt->irq_lock);
1346
1347	mutex_unlock(&dev_priv->drm.struct_mutex);
1348}
1349
1350static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1351{
1352	switch (pin) {
1353	case HPD_PORT_C:
1354		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1355	case HPD_PORT_D:
1356		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1357	case HPD_PORT_E:
1358		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1359	case HPD_PORT_F:
1360		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1361	default:
1362		return false;
1363	}
1364}
1365
1366static bool gen12_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1367{
1368	switch (pin) {
1369	case HPD_PORT_D:
1370		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1371	case HPD_PORT_E:
1372		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1373	case HPD_PORT_F:
1374		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1375	case HPD_PORT_G:
1376		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1377	case HPD_PORT_H:
1378		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC5);
1379	case HPD_PORT_I:
1380		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC6);
1381	default:
1382		return false;
1383	}
1384}
1385
1386static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1387{
1388	switch (pin) {
1389	case HPD_PORT_A:
1390		return val & PORTA_HOTPLUG_LONG_DETECT;
1391	case HPD_PORT_B:
1392		return val & PORTB_HOTPLUG_LONG_DETECT;
1393	case HPD_PORT_C:
1394		return val & PORTC_HOTPLUG_LONG_DETECT;
1395	default:
1396		return false;
1397	}
1398}
1399
1400static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1401{
1402	switch (pin) {
1403	case HPD_PORT_A:
1404		return val & ICP_DDIA_HPD_LONG_DETECT;
1405	case HPD_PORT_B:
1406		return val & ICP_DDIB_HPD_LONG_DETECT;
1407	case HPD_PORT_C:
1408		return val & TGP_DDIC_HPD_LONG_DETECT;
1409	default:
1410		return false;
1411	}
1412}
1413
1414static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1415{
1416	switch (pin) {
1417	case HPD_PORT_C:
1418		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1419	case HPD_PORT_D:
1420		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1421	case HPD_PORT_E:
1422		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1423	case HPD_PORT_F:
1424		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1425	default:
1426		return false;
1427	}
1428}
1429
1430static bool tgp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1431{
1432	switch (pin) {
1433	case HPD_PORT_A:
1434		return val & ICP_DDIA_HPD_LONG_DETECT;
1435	case HPD_PORT_B:
1436		return val & ICP_DDIB_HPD_LONG_DETECT;
1437	case HPD_PORT_C:
1438		return val & TGP_DDIC_HPD_LONG_DETECT;
1439	default:
1440		return false;
1441	}
1442}
1443
1444static bool tgp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1445{
1446	switch (pin) {
1447	case HPD_PORT_D:
1448		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1449	case HPD_PORT_E:
1450		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1451	case HPD_PORT_F:
1452		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1453	case HPD_PORT_G:
1454		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1455	case HPD_PORT_H:
1456		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC5);
1457	case HPD_PORT_I:
1458		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC6);
1459	default:
1460		return false;
1461	}
1462}
1463
1464static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
 
 
1465{
1466	switch (pin) {
1467	case HPD_PORT_E:
1468		return val & PORTE_HOTPLUG_LONG_DETECT;
1469	default:
1470		return false;
1471	}
1472}
1473
1474static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
 
 
1475{
1476	switch (pin) {
1477	case HPD_PORT_A:
1478		return val & PORTA_HOTPLUG_LONG_DETECT;
1479	case HPD_PORT_B:
1480		return val & PORTB_HOTPLUG_LONG_DETECT;
1481	case HPD_PORT_C:
1482		return val & PORTC_HOTPLUG_LONG_DETECT;
1483	case HPD_PORT_D:
1484		return val & PORTD_HOTPLUG_LONG_DETECT;
1485	default:
1486		return false;
 
 
 
1487	}
 
 
 
1488}
1489
1490static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
 
 
1491{
1492	switch (pin) {
1493	case HPD_PORT_A:
1494		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1495	default:
1496		return false;
 
 
 
 
 
 
 
 
 
 
 
 
1497	}
1498}
1499
1500static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1501{
1502	switch (pin) {
1503	case HPD_PORT_B:
1504		return val & PORTB_HOTPLUG_LONG_DETECT;
1505	case HPD_PORT_C:
1506		return val & PORTC_HOTPLUG_LONG_DETECT;
1507	case HPD_PORT_D:
1508		return val & PORTD_HOTPLUG_LONG_DETECT;
1509	default:
1510		return false;
1511	}
1512}
1513
1514static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1515{
1516	switch (pin) {
1517	case HPD_PORT_B:
1518		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1519	case HPD_PORT_C:
1520		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1521	case HPD_PORT_D:
1522		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1523	default:
1524		return false;
1525	}
 
 
1526}
1527
1528/*
1529 * Get a bit mask of pins that have triggered, and which ones may be long.
1530 * This can be called multiple times with the same masks to accumulate
1531 * hotplug detection results from several registers.
1532 *
1533 * Note that the caller is expected to zero out the masks initially.
1534 */
1535static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1536			       u32 *pin_mask, u32 *long_mask,
1537			       u32 hotplug_trigger, u32 dig_hotplug_reg,
1538			       const u32 hpd[HPD_NUM_PINS],
1539			       bool long_pulse_detect(enum hpd_pin pin, u32 val))
1540{
1541	enum hpd_pin pin;
 
 
 
 
 
 
 
 
1542
1543	BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
 
 
 
 
 
 
 
 
 
 
 
 
 
1544
1545	for_each_hpd_pin(pin) {
1546		if ((hpd[pin] & hotplug_trigger) == 0)
1547			continue;
 
1548
1549		*pin_mask |= BIT(pin);
 
 
1550
1551		if (long_pulse_detect(pin, dig_hotplug_reg))
1552			*long_mask |= BIT(pin);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1553	}
1554
1555	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1556			 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
 
1557
 
 
 
 
 
 
 
1558}
1559
1560static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1561{
 
 
1562	wake_up_all(&dev_priv->gmbus_wait_queue);
1563}
1564
1565static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1566{
 
 
1567	wake_up_all(&dev_priv->gmbus_wait_queue);
1568}
1569
1570#if defined(CONFIG_DEBUG_FS)
1571static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1572					 enum pipe pipe,
1573					 u32 crc0, u32 crc1,
1574					 u32 crc2, u32 crc3,
1575					 u32 crc4)
1576{
 
1577	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1578	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1579	u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1580
1581	trace_intel_pipe_crc(crtc, crcs);
1582
1583	spin_lock(&pipe_crc->lock);
1584	/*
1585	 * For some not yet identified reason, the first CRC is
1586	 * bonkers. So let's just wait for the next vblank and read
1587	 * out the buggy result.
1588	 *
1589	 * On GEN8+ sometimes the second CRC is bonkers as well, so
1590	 * don't trust that one either.
1591	 */
1592	if (pipe_crc->skipped <= 0 ||
1593	    (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1594		pipe_crc->skipped++;
1595		spin_unlock(&pipe_crc->lock);
 
1596		return;
1597	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1598	spin_unlock(&pipe_crc->lock);
1599
1600	drm_crtc_add_crc_entry(&crtc->base, true,
1601				drm_crtc_accurate_vblank_count(&crtc->base),
1602				crcs);
1603}
1604#else
1605static inline void
1606display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1607			     enum pipe pipe,
1608			     u32 crc0, u32 crc1,
1609			     u32 crc2, u32 crc3,
1610			     u32 crc4) {}
1611#endif
1612
1613
1614static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1615				     enum pipe pipe)
1616{
1617	display_pipe_crc_irq_handler(dev_priv, pipe,
 
 
1618				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1619				     0, 0, 0, 0);
1620}
1621
1622static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1623				     enum pipe pipe)
1624{
1625	display_pipe_crc_irq_handler(dev_priv, pipe,
 
 
1626				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1627				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1628				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1629				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1630				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1631}
1632
1633static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1634				      enum pipe pipe)
1635{
1636	u32 res1, res2;
 
1637
1638	if (INTEL_GEN(dev_priv) >= 3)
1639		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1640	else
1641		res1 = 0;
1642
1643	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1644		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1645	else
1646		res2 = 0;
1647
1648	display_pipe_crc_irq_handler(dev_priv, pipe,
1649				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1650				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1651				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1652				     res1, res2);
1653}
1654
1655/* The RPS events need forcewake, so we add them to a work queue and mask their
1656 * IMR bits until the work is done. Other interrupts can be processed without
1657 * the work queue. */
1658void gen11_rps_irq_handler(struct intel_gt *gt, u32 pm_iir)
1659{
1660	struct drm_i915_private *i915 = gt->i915;
1661	struct intel_rps *rps = &i915->gt_pm.rps;
1662	const u32 events = i915->pm_rps_events & pm_iir;
1663
1664	lockdep_assert_held(&gt->irq_lock);
1665
1666	if (unlikely(!events))
1667		return;
1668
1669	gen6_gt_pm_mask_irq(gt, events);
1670
1671	if (!rps->interrupts_enabled)
1672		return;
1673
1674	rps->pm_iir |= events;
1675	schedule_work(&rps->work);
1676}
1677
1678void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1679{
1680	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1681	struct intel_gt *gt = &dev_priv->gt;
1682
1683	if (pm_iir & dev_priv->pm_rps_events) {
1684		spin_lock(&gt->irq_lock);
1685		gen6_gt_pm_mask_irq(gt, pm_iir & dev_priv->pm_rps_events);
1686		if (rps->interrupts_enabled) {
1687			rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1688			schedule_work(&rps->work);
1689		}
1690		spin_unlock(&gt->irq_lock);
1691	}
1692
1693	if (INTEL_GEN(dev_priv) >= 8)
1694		return;
1695
1696	if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1697		intel_engine_breadcrumbs_irq(dev_priv->engine[VECS0]);
1698
1699	if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1700		DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1701}
1702
1703static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1704{
1705	enum pipe pipe;
1706
1707	for_each_pipe(dev_priv, pipe) {
1708		I915_WRITE(PIPESTAT(pipe),
1709			   PIPESTAT_INT_STATUS_MASK |
1710			   PIPE_FIFO_UNDERRUN_STATUS);
1711
1712		dev_priv->pipestat_irq_mask[pipe] = 0;
 
 
 
 
1713	}
1714}
1715
1716static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1717				  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1718{
 
 
1719	int pipe;
1720
1721	spin_lock(&dev_priv->irq_lock);
1722
1723	if (!dev_priv->display_irqs_enabled) {
1724		spin_unlock(&dev_priv->irq_lock);
1725		return;
1726	}
1727
1728	for_each_pipe(dev_priv, pipe) {
1729		i915_reg_t reg;
1730		u32 status_mask, enable_mask, iir_bit = 0;
1731
1732		/*
1733		 * PIPESTAT bits get signalled even when the interrupt is
1734		 * disabled with the mask bits, and some of the status bits do
1735		 * not generate interrupts at all (like the underrun bit). Hence
1736		 * we need to be careful that we only handle what we want to
1737		 * handle.
1738		 */
1739
1740		/* fifo underruns are filterered in the underrun handler. */
1741		status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1742
1743		switch (pipe) {
1744		case PIPE_A:
1745			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1746			break;
1747		case PIPE_B:
1748			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1749			break;
1750		case PIPE_C:
1751			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1752			break;
1753		}
1754		if (iir & iir_bit)
1755			status_mask |= dev_priv->pipestat_irq_mask[pipe];
1756
1757		if (!status_mask)
1758			continue;
1759
1760		reg = PIPESTAT(pipe);
1761		pipe_stats[pipe] = I915_READ(reg) & status_mask;
1762		enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1763
1764		/*
1765		 * Clear the PIPE*STAT regs before the IIR
1766		 *
1767		 * Toggle the enable bits to make sure we get an
1768		 * edge in the ISR pipe event bit if we don't clear
1769		 * all the enabled status bits. Otherwise the edge
1770		 * triggered IIR on i965/g4x wouldn't notice that
1771		 * an interrupt is still pending.
1772		 */
1773		if (pipe_stats[pipe]) {
 
1774			I915_WRITE(reg, pipe_stats[pipe]);
1775			I915_WRITE(reg, enable_mask);
1776		}
1777	}
1778	spin_unlock(&dev_priv->irq_lock);
1779}
1780
1781static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1782				      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1783{
1784	enum pipe pipe;
1785
1786	for_each_pipe(dev_priv, pipe) {
1787		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1788			drm_handle_vblank(&dev_priv->drm, pipe);
1789
1790		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1791			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1792
1793		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1794			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1795	}
1796}
1797
1798static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1799				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1800{
1801	bool blc_event = false;
1802	enum pipe pipe;
1803
1804	for_each_pipe(dev_priv, pipe) {
1805		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1806			drm_handle_vblank(&dev_priv->drm, pipe);
1807
1808		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1809			blc_event = true;
1810
1811		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1812			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1813
1814		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1815			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1816	}
1817
1818	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1819		intel_opregion_asle_intr(dev_priv);
1820}
1821
1822static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1823				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1824{
1825	bool blc_event = false;
1826	enum pipe pipe;
1827
1828	for_each_pipe(dev_priv, pipe) {
1829		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1830			drm_handle_vblank(&dev_priv->drm, pipe);
1831
1832		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1833			blc_event = true;
1834
1835		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1836			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1837
1838		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1839			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1840	}
1841
1842	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1843		intel_opregion_asle_intr(dev_priv);
1844
1845	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1846		gmbus_irq_handler(dev_priv);
1847}
1848
1849static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1850					    u32 pipe_stats[I915_MAX_PIPES])
1851{
1852	enum pipe pipe;
1853
1854	for_each_pipe(dev_priv, pipe) {
1855		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1856			drm_handle_vblank(&dev_priv->drm, pipe);
1857
1858		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1859			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1860
1861		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1862			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
 
1863	}
1864
1865	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1866		gmbus_irq_handler(dev_priv);
1867}
1868
1869static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1870{
1871	u32 hotplug_status = 0, hotplug_status_mask;
1872	int i;
1873
1874	if (IS_G4X(dev_priv) ||
1875	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1876		hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1877			DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1878	else
1879		hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1880
1881	/*
1882	 * We absolutely have to clear all the pending interrupt
1883	 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1884	 * interrupt bit won't have an edge, and the i965/g4x
1885	 * edge triggered IIR will not notice that an interrupt
1886	 * is still pending. We can't use PORT_HOTPLUG_EN to
1887	 * guarantee the edge as the act of toggling the enable
1888	 * bits can itself generate a new hotplug interrupt :(
1889	 */
1890	for (i = 0; i < 10; i++) {
1891		u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
1892
1893		if (tmp == 0)
1894			return hotplug_status;
1895
1896		hotplug_status |= tmp;
1897		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1898	}
1899
1900	WARN_ONCE(1,
1901		  "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1902		  I915_READ(PORT_HOTPLUG_STAT));
1903
1904	return hotplug_status;
1905}
1906
1907static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1908				 u32 hotplug_status)
1909{
1910	u32 pin_mask = 0, long_mask = 0;
1911
1912	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1913	    IS_CHERRYVIEW(dev_priv)) {
1914		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1915
1916		if (hotplug_trigger) {
1917			intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1918					   hotplug_trigger, hotplug_trigger,
1919					   hpd_status_g4x,
1920					   i9xx_port_hotplug_long_detect);
1921
1922			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1923		}
1924
1925		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1926			dp_aux_irq_handler(dev_priv);
1927	} else {
1928		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1929
1930		if (hotplug_trigger) {
1931			intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1932					   hotplug_trigger, hotplug_trigger,
1933					   hpd_status_i915,
1934					   i9xx_port_hotplug_long_detect);
1935			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1936		}
1937	}
1938}
1939
1940static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1941{
1942	struct drm_i915_private *dev_priv = arg;
 
 
1943	irqreturn_t ret = IRQ_NONE;
1944
1945	if (!intel_irqs_enabled(dev_priv))
1946		return IRQ_NONE;
1947
1948	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1949	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1950
1951	do {
1952		u32 iir, gt_iir, pm_iir;
1953		u32 pipe_stats[I915_MAX_PIPES] = {};
1954		u32 hotplug_status = 0;
1955		u32 ier = 0;
1956
1957		gt_iir = I915_READ(GTIIR);
1958		pm_iir = I915_READ(GEN6_PMIIR);
1959		iir = I915_READ(VLV_IIR);
1960
1961		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1962			break;
1963
1964		ret = IRQ_HANDLED;
1965
1966		/*
1967		 * Theory on interrupt generation, based on empirical evidence:
1968		 *
1969		 * x = ((VLV_IIR & VLV_IER) ||
1970		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1971		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1972		 *
1973		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1974		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1975		 * guarantee the CPU interrupt will be raised again even if we
1976		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1977		 * bits this time around.
1978		 */
1979		I915_WRITE(VLV_MASTER_IER, 0);
1980		ier = I915_READ(VLV_IER);
1981		I915_WRITE(VLV_IER, 0);
1982
1983		if (gt_iir)
1984			I915_WRITE(GTIIR, gt_iir);
1985		if (pm_iir)
1986			I915_WRITE(GEN6_PMIIR, pm_iir);
1987
1988		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1989			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
 
 
1990
1991		/* Call regardless, as some status bits might not be
1992		 * signalled in iir */
1993		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1994
1995		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1996			   I915_LPE_PIPE_B_INTERRUPT))
1997			intel_lpe_audio_irq_handler(dev_priv);
1998
1999		/*
2000		 * VLV_IIR is single buffered, and reflects the level
2001		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2002		 */
2003		if (iir)
2004			I915_WRITE(VLV_IIR, iir);
2005
2006		I915_WRITE(VLV_IER, ier);
2007		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2008
2009		if (gt_iir)
2010			gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
2011		if (pm_iir)
2012			gen6_rps_irq_handler(dev_priv, pm_iir);
2013
2014		if (hotplug_status)
2015			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2016
2017		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2018	} while (0);
2019
2020	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2021
2022	return ret;
2023}
2024
2025static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2026{
2027	struct drm_i915_private *dev_priv = arg;
2028	irqreturn_t ret = IRQ_NONE;
2029
2030	if (!intel_irqs_enabled(dev_priv))
2031		return IRQ_NONE;
2032
2033	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2034	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2035
2036	do {
2037		u32 master_ctl, iir;
2038		u32 pipe_stats[I915_MAX_PIPES] = {};
2039		u32 hotplug_status = 0;
2040		u32 gt_iir[4];
2041		u32 ier = 0;
2042
2043		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2044		iir = I915_READ(VLV_IIR);
2045
2046		if (master_ctl == 0 && iir == 0)
2047			break;
2048
2049		ret = IRQ_HANDLED;
2050
2051		/*
2052		 * Theory on interrupt generation, based on empirical evidence:
2053		 *
2054		 * x = ((VLV_IIR & VLV_IER) ||
2055		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2056		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2057		 *
2058		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2059		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2060		 * guarantee the CPU interrupt will be raised again even if we
2061		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2062		 * bits this time around.
2063		 */
2064		I915_WRITE(GEN8_MASTER_IRQ, 0);
2065		ier = I915_READ(VLV_IER);
2066		I915_WRITE(VLV_IER, 0);
2067
2068		gen8_gt_irq_ack(&dev_priv->gt, master_ctl, gt_iir);
2069
2070		if (iir & I915_DISPLAY_PORT_INTERRUPT)
2071			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2072
2073		/* Call regardless, as some status bits might not be
2074		 * signalled in iir */
2075		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2076
2077		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2078			   I915_LPE_PIPE_B_INTERRUPT |
2079			   I915_LPE_PIPE_C_INTERRUPT))
2080			intel_lpe_audio_irq_handler(dev_priv);
2081
2082		/*
2083		 * VLV_IIR is single buffered, and reflects the level
2084		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2085		 */
2086		if (iir)
2087			I915_WRITE(VLV_IIR, iir);
2088
2089		I915_WRITE(VLV_IER, ier);
2090		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2091
2092		gen8_gt_irq_handler(&dev_priv->gt, master_ctl, gt_iir);
2093
2094		if (hotplug_status)
2095			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2096
2097		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2098	} while (0);
2099
2100	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2101
2102	return ret;
2103}
2104
2105static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2106				u32 hotplug_trigger,
2107				const u32 hpd[HPD_NUM_PINS])
2108{
2109	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2110
2111	/*
2112	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2113	 * unless we touch the hotplug register, even if hotplug_trigger is
2114	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2115	 * errors.
2116	 */
2117	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2118	if (!hotplug_trigger) {
2119		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2120			PORTD_HOTPLUG_STATUS_MASK |
2121			PORTC_HOTPLUG_STATUS_MASK |
2122			PORTB_HOTPLUG_STATUS_MASK;
2123		dig_hotplug_reg &= ~mask;
2124	}
2125
2126	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2127	if (!hotplug_trigger)
2128		return;
2129
2130	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2131			   dig_hotplug_reg, hpd,
2132			   pch_port_hotplug_long_detect);
2133
2134	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2135}
2136
2137static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2138{
 
2139	int pipe;
2140	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2141
2142	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2143
2144	if (pch_iir & SDE_AUDIO_POWER_MASK) {
2145		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2146			       SDE_AUDIO_POWER_SHIFT);
2147		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2148				 port_name(port));
2149	}
2150
2151	if (pch_iir & SDE_AUX_MASK)
2152		dp_aux_irq_handler(dev_priv);
2153
2154	if (pch_iir & SDE_GMBUS)
2155		gmbus_irq_handler(dev_priv);
2156
2157	if (pch_iir & SDE_AUDIO_HDCP_MASK)
2158		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2159
2160	if (pch_iir & SDE_AUDIO_TRANS_MASK)
2161		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2162
2163	if (pch_iir & SDE_POISON)
2164		DRM_ERROR("PCH poison interrupt\n");
2165
2166	if (pch_iir & SDE_FDI_MASK)
2167		for_each_pipe(dev_priv, pipe)
2168			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2169					 pipe_name(pipe),
2170					 I915_READ(FDI_RX_IIR(pipe)));
2171
2172	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2173		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2174
2175	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2176		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2177
2178	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2179		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
 
 
2180
2181	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2182		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
 
 
2183}
2184
2185static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2186{
 
2187	u32 err_int = I915_READ(GEN7_ERR_INT);
2188	enum pipe pipe;
2189
2190	if (err_int & ERR_INT_POISON)
2191		DRM_ERROR("Poison interrupt\n");
2192
2193	for_each_pipe(dev_priv, pipe) {
2194		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2195			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
 
 
 
 
2196
2197		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2198			if (IS_IVYBRIDGE(dev_priv))
2199				ivb_pipe_crc_irq_handler(dev_priv, pipe);
2200			else
2201				hsw_pipe_crc_irq_handler(dev_priv, pipe);
2202		}
2203	}
2204
2205	I915_WRITE(GEN7_ERR_INT, err_int);
2206}
2207
2208static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2209{
 
2210	u32 serr_int = I915_READ(SERR_INT);
2211	enum pipe pipe;
2212
2213	if (serr_int & SERR_INT_POISON)
2214		DRM_ERROR("PCH poison interrupt\n");
2215
2216	for_each_pipe(dev_priv, pipe)
2217		if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2218			intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
 
 
 
 
 
 
 
 
 
 
 
2219
2220	I915_WRITE(SERR_INT, serr_int);
2221}
2222
2223static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2224{
 
2225	int pipe;
2226	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2227
2228	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2229
2230	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2231		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2232			       SDE_AUDIO_POWER_SHIFT_CPT);
2233		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2234				 port_name(port));
2235	}
2236
2237	if (pch_iir & SDE_AUX_MASK_CPT)
2238		dp_aux_irq_handler(dev_priv);
2239
2240	if (pch_iir & SDE_GMBUS_CPT)
2241		gmbus_irq_handler(dev_priv);
2242
2243	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2244		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2245
2246	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2247		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2248
2249	if (pch_iir & SDE_FDI_MASK_CPT)
2250		for_each_pipe(dev_priv, pipe)
2251			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2252					 pipe_name(pipe),
2253					 I915_READ(FDI_RX_IIR(pipe)));
2254
2255	if (pch_iir & SDE_ERROR_CPT)
2256		cpt_serr_int_handler(dev_priv);
2257}
2258
2259static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir,
2260			    const u32 *pins)
2261{
2262	u32 ddi_hotplug_trigger;
2263	u32 tc_hotplug_trigger;
2264	u32 pin_mask = 0, long_mask = 0;
2265
2266	if (HAS_PCH_MCC(dev_priv)) {
2267		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
2268		tc_hotplug_trigger = 0;
2269	} else {
2270		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
2271		tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
2272	}
2273
2274	if (ddi_hotplug_trigger) {
2275		u32 dig_hotplug_reg;
2276
2277		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2278		I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2279
2280		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2281				   ddi_hotplug_trigger,
2282				   dig_hotplug_reg, pins,
2283				   icp_ddi_port_hotplug_long_detect);
2284	}
2285
2286	if (tc_hotplug_trigger) {
2287		u32 dig_hotplug_reg;
2288
2289		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2290		I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2291
2292		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2293				   tc_hotplug_trigger,
2294				   dig_hotplug_reg, pins,
2295				   icp_tc_port_hotplug_long_detect);
2296	}
2297
2298	if (pin_mask)
2299		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2300
2301	if (pch_iir & SDE_GMBUS_ICP)
2302		gmbus_irq_handler(dev_priv);
2303}
2304
2305static void tgp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2306{
2307	u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
2308	u32 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_TGP;
2309	u32 pin_mask = 0, long_mask = 0;
2310
2311	if (ddi_hotplug_trigger) {
2312		u32 dig_hotplug_reg;
2313
2314		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2315		I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2316
2317		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2318				   ddi_hotplug_trigger,
2319				   dig_hotplug_reg, hpd_tgp,
2320				   tgp_ddi_port_hotplug_long_detect);
2321	}
2322
2323	if (tc_hotplug_trigger) {
2324		u32 dig_hotplug_reg;
2325
2326		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2327		I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2328
2329		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2330				   tc_hotplug_trigger,
2331				   dig_hotplug_reg, hpd_tgp,
2332				   tgp_tc_port_hotplug_long_detect);
2333	}
2334
2335	if (pin_mask)
2336		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2337
2338	if (pch_iir & SDE_GMBUS_ICP)
2339		gmbus_irq_handler(dev_priv);
2340}
2341
2342static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2343{
2344	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2345		~SDE_PORTE_HOTPLUG_SPT;
2346	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2347	u32 pin_mask = 0, long_mask = 0;
2348
2349	if (hotplug_trigger) {
2350		u32 dig_hotplug_reg;
2351
2352		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2353		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2354
2355		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2356				   hotplug_trigger, dig_hotplug_reg, hpd_spt,
2357				   spt_port_hotplug_long_detect);
2358	}
2359
2360	if (hotplug2_trigger) {
2361		u32 dig_hotplug_reg;
2362
2363		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2364		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2365
2366		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2367				   hotplug2_trigger, dig_hotplug_reg, hpd_spt,
2368				   spt_port_hotplug2_long_detect);
2369	}
2370
2371	if (pin_mask)
2372		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2373
2374	if (pch_iir & SDE_GMBUS_CPT)
2375		gmbus_irq_handler(dev_priv);
2376}
2377
2378static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2379				u32 hotplug_trigger,
2380				const u32 hpd[HPD_NUM_PINS])
2381{
2382	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2383
2384	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2385	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2386
2387	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2388			   dig_hotplug_reg, hpd,
2389			   ilk_port_hotplug_long_detect);
2390
2391	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2392}
2393
2394static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2395				    u32 de_iir)
2396{
 
2397	enum pipe pipe;
2398	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2399
2400	if (hotplug_trigger)
2401		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2402
2403	if (de_iir & DE_AUX_CHANNEL_A)
2404		dp_aux_irq_handler(dev_priv);
2405
2406	if (de_iir & DE_GSE)
2407		intel_opregion_asle_intr(dev_priv);
2408
2409	if (de_iir & DE_POISON)
2410		DRM_ERROR("Poison interrupt\n");
2411
2412	for_each_pipe(dev_priv, pipe) {
2413		if (de_iir & DE_PIPE_VBLANK(pipe))
2414			drm_handle_vblank(&dev_priv->drm, pipe);
2415
2416		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2417			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
 
 
2418
2419		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2420			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
 
 
 
 
 
 
2421	}
2422
2423	/* check event from PCH */
2424	if (de_iir & DE_PCH_EVENT) {
2425		u32 pch_iir = I915_READ(SDEIIR);
2426
2427		if (HAS_PCH_CPT(dev_priv))
2428			cpt_irq_handler(dev_priv, pch_iir);
2429		else
2430			ibx_irq_handler(dev_priv, pch_iir);
2431
2432		/* should clear PCH hotplug event before clear CPU irq */
2433		I915_WRITE(SDEIIR, pch_iir);
2434	}
2435
2436	if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2437		ironlake_rps_change_irq_handler(dev_priv);
2438}
2439
2440static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2441				    u32 de_iir)
2442{
 
2443	enum pipe pipe;
2444	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2445
2446	if (hotplug_trigger)
2447		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2448
2449	if (de_iir & DE_ERR_INT_IVB)
2450		ivb_err_int_handler(dev_priv);
2451
2452	if (de_iir & DE_EDP_PSR_INT_HSW) {
2453		u32 psr_iir = I915_READ(EDP_PSR_IIR);
2454
2455		intel_psr_irq_handler(dev_priv, psr_iir);
2456		I915_WRITE(EDP_PSR_IIR, psr_iir);
2457	}
2458
2459	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2460		dp_aux_irq_handler(dev_priv);
2461
2462	if (de_iir & DE_GSE_IVB)
2463		intel_opregion_asle_intr(dev_priv);
2464
2465	for_each_pipe(dev_priv, pipe) {
2466		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2467			drm_handle_vblank(&dev_priv->drm, pipe);
 
 
 
 
 
 
2468	}
2469
2470	/* check event from PCH */
2471	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2472		u32 pch_iir = I915_READ(SDEIIR);
2473
2474		cpt_irq_handler(dev_priv, pch_iir);
2475
2476		/* clear PCH hotplug event before clear CPU irq */
2477		I915_WRITE(SDEIIR, pch_iir);
2478	}
2479}
2480
2481/*
2482 * To handle irqs with the minimum potential races with fresh interrupts, we:
2483 * 1 - Disable Master Interrupt Control.
2484 * 2 - Find the source(s) of the interrupt.
2485 * 3 - Clear the Interrupt Identity bits (IIR).
2486 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2487 * 5 - Re-enable Master Interrupt Control.
2488 */
2489static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2490{
2491	struct drm_i915_private *dev_priv = arg;
 
2492	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2493	irqreturn_t ret = IRQ_NONE;
2494
2495	if (!intel_irqs_enabled(dev_priv))
2496		return IRQ_NONE;
2497
2498	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2499	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2500
2501	/* disable master interrupt before clearing iir  */
2502	de_ier = I915_READ(DEIER);
2503	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
 
2504
2505	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2506	 * interrupts will will be stored on its back queue, and then we'll be
2507	 * able to process them after we restore SDEIER (as soon as we restore
2508	 * it, we'll get an interrupt if SDEIIR still has something to process
2509	 * due to its back queue). */
2510	if (!HAS_PCH_NOP(dev_priv)) {
2511		sde_ier = I915_READ(SDEIER);
2512		I915_WRITE(SDEIER, 0);
 
2513	}
2514
2515	/* Find, clear, then process each source of interrupt */
2516
2517	gt_iir = I915_READ(GTIIR);
2518	if (gt_iir) {
 
 
 
 
2519		I915_WRITE(GTIIR, gt_iir);
2520		ret = IRQ_HANDLED;
2521		if (INTEL_GEN(dev_priv) >= 6)
2522			gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
2523		else
2524			gen5_gt_irq_handler(&dev_priv->gt, gt_iir);
2525	}
2526
2527	de_iir = I915_READ(DEIIR);
2528	if (de_iir) {
 
 
 
 
2529		I915_WRITE(DEIIR, de_iir);
2530		ret = IRQ_HANDLED;
2531		if (INTEL_GEN(dev_priv) >= 7)
2532			ivb_display_irq_handler(dev_priv, de_iir);
2533		else
2534			ilk_display_irq_handler(dev_priv, de_iir);
2535	}
2536
2537	if (INTEL_GEN(dev_priv) >= 6) {
2538		u32 pm_iir = I915_READ(GEN6_PMIIR);
2539		if (pm_iir) {
 
2540			I915_WRITE(GEN6_PMIIR, pm_iir);
2541			ret = IRQ_HANDLED;
2542			gen6_rps_irq_handler(dev_priv, pm_iir);
2543		}
2544	}
2545
2546	I915_WRITE(DEIER, de_ier);
2547	if (!HAS_PCH_NOP(dev_priv))
 
2548		I915_WRITE(SDEIER, sde_ier);
2549
2550	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2551	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2552
2553	return ret;
2554}
2555
2556static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2557				u32 hotplug_trigger,
2558				const u32 hpd[HPD_NUM_PINS])
2559{
2560	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2561
2562	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2563	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2564
2565	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2566			   dig_hotplug_reg, hpd,
2567			   bxt_port_hotplug_long_detect);
2568
2569	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2570}
2571
2572static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2573{
2574	u32 pin_mask = 0, long_mask = 0;
2575	u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2576	u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2577	long_pulse_detect_func long_pulse_detect;
2578	const u32 *hpd;
2579
2580	if (INTEL_GEN(dev_priv) >= 12) {
2581		long_pulse_detect = gen12_port_hotplug_long_detect;
2582		hpd = hpd_gen12;
2583	} else {
2584		long_pulse_detect = gen11_port_hotplug_long_detect;
2585		hpd = hpd_gen11;
2586	}
2587
2588	if (trigger_tc) {
2589		u32 dig_hotplug_reg;
2590
2591		dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2592		I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2593
2594		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2595				   dig_hotplug_reg, hpd, long_pulse_detect);
2596	}
2597
2598	if (trigger_tbt) {
2599		u32 dig_hotplug_reg;
2600
2601		dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2602		I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2603
2604		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2605				   dig_hotplug_reg, hpd, long_pulse_detect);
2606	}
2607
2608	if (pin_mask)
2609		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2610	else
2611		DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir);
2612}
2613
2614static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2615{
2616	u32 mask;
2617
2618	if (INTEL_GEN(dev_priv) >= 12)
2619		/* TODO: Add AUX entries for USBC */
2620		return TGL_DE_PORT_AUX_DDIA |
2621			TGL_DE_PORT_AUX_DDIB |
2622			TGL_DE_PORT_AUX_DDIC;
2623
2624	mask = GEN8_AUX_CHANNEL_A;
2625	if (INTEL_GEN(dev_priv) >= 9)
2626		mask |= GEN9_AUX_CHANNEL_B |
2627			GEN9_AUX_CHANNEL_C |
2628			GEN9_AUX_CHANNEL_D;
2629
2630	if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11))
2631		mask |= CNL_AUX_CHANNEL_F;
2632
2633	if (IS_GEN(dev_priv, 11))
2634		mask |= ICL_AUX_CHANNEL_E;
2635
2636	return mask;
2637}
2638
2639static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2640{
2641	if (INTEL_GEN(dev_priv) >= 9)
2642		return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2643	else
2644		return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2645}
2646
2647static void
2648gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2649{
2650	bool found = false;
2651
2652	if (iir & GEN8_DE_MISC_GSE) {
2653		intel_opregion_asle_intr(dev_priv);
2654		found = true;
2655	}
2656
2657	if (iir & GEN8_DE_EDP_PSR) {
2658		u32 psr_iir = I915_READ(EDP_PSR_IIR);
2659
2660		intel_psr_irq_handler(dev_priv, psr_iir);
2661		I915_WRITE(EDP_PSR_IIR, psr_iir);
2662		found = true;
2663	}
2664
2665	if (!found)
2666		DRM_ERROR("Unexpected DE Misc interrupt\n");
2667}
2668
2669static irqreturn_t
2670gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2671{
2672	irqreturn_t ret = IRQ_NONE;
2673	u32 iir;
2674	enum pipe pipe;
2675
2676	if (master_ctl & GEN8_DE_MISC_IRQ) {
2677		iir = I915_READ(GEN8_DE_MISC_IIR);
2678		if (iir) {
2679			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2680			ret = IRQ_HANDLED;
2681			gen8_de_misc_irq_handler(dev_priv, iir);
2682		} else {
2683			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2684		}
2685	}
2686
2687	if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2688		iir = I915_READ(GEN11_DE_HPD_IIR);
2689		if (iir) {
2690			I915_WRITE(GEN11_DE_HPD_IIR, iir);
2691			ret = IRQ_HANDLED;
2692			gen11_hpd_irq_handler(dev_priv, iir);
2693		} else {
2694			DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
2695		}
2696	}
2697
2698	if (master_ctl & GEN8_DE_PORT_IRQ) {
2699		iir = I915_READ(GEN8_DE_PORT_IIR);
2700		if (iir) {
2701			u32 tmp_mask;
2702			bool found = false;
 
 
 
2703
2704			I915_WRITE(GEN8_DE_PORT_IIR, iir);
 
2705			ret = IRQ_HANDLED;
2706
2707			if (iir & gen8_de_port_aux_mask(dev_priv)) {
2708				dp_aux_irq_handler(dev_priv);
2709				found = true;
2710			}
2711
2712			if (IS_GEN9_LP(dev_priv)) {
2713				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2714				if (tmp_mask) {
2715					bxt_hpd_irq_handler(dev_priv, tmp_mask,
2716							    hpd_bxt);
2717					found = true;
2718				}
2719			} else if (IS_BROADWELL(dev_priv)) {
2720				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2721				if (tmp_mask) {
2722					ilk_hpd_irq_handler(dev_priv,
2723							    tmp_mask, hpd_bdw);
2724					found = true;
2725				}
2726			}
2727
2728			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2729				gmbus_irq_handler(dev_priv);
2730				found = true;
2731			}
2732
2733			if (!found)
2734				DRM_ERROR("Unexpected DE Port interrupt\n");
2735		}
2736		else
2737			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2738	}
2739
2740	for_each_pipe(dev_priv, pipe) {
2741		u32 fault_errors;
2742
2743		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2744			continue;
2745
2746		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2747		if (!iir) {
2748			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2749			continue;
 
 
 
2750		}
2751
2752		ret = IRQ_HANDLED;
2753		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2754
2755		if (iir & GEN8_PIPE_VBLANK)
2756			drm_handle_vblank(&dev_priv->drm, pipe);
2757
2758		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2759			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2760
2761		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2762			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
 
2763
2764		fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2765		if (fault_errors)
2766			DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2767				  pipe_name(pipe),
2768				  fault_errors);
 
 
 
 
 
 
 
2769	}
2770
2771	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2772	    master_ctl & GEN8_DE_PCH_IRQ) {
2773		/*
2774		 * FIXME(BDW): Assume for now that the new interrupt handling
2775		 * scheme also closed the SDE interrupt handling race we've seen
2776		 * on older pch-split platforms. But this needs testing.
2777		 */
2778		iir = I915_READ(SDEIIR);
2779		if (iir) {
2780			I915_WRITE(SDEIIR, iir);
2781			ret = IRQ_HANDLED;
2782
2783			if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
2784				tgp_irq_handler(dev_priv, iir);
2785			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_MCC)
2786				icp_irq_handler(dev_priv, iir, hpd_mcc);
2787			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2788				icp_irq_handler(dev_priv, iir, hpd_icp);
2789			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2790				spt_irq_handler(dev_priv, iir);
2791			else
2792				cpt_irq_handler(dev_priv, iir);
2793		} else {
2794			/*
2795			 * Like on previous PCH there seems to be something
2796			 * fishy going on with forwarding PCH interrupts.
2797			 */
2798			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2799		}
2800	}
2801
 
 
 
2802	return ret;
2803}
2804
2805static inline u32 gen8_master_intr_disable(void __iomem * const regs)
 
2806{
2807	raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
 
2808
2809	/*
2810	 * Now with master disabled, get a sample of level indications
2811	 * for this interrupt. Indications will be cleared on related acks.
2812	 * New indications can and will light up during processing,
2813	 * and will generate new interrupt after enabling master.
2814	 */
2815	return raw_reg_read(regs, GEN8_MASTER_IRQ);
2816}
2817
2818static inline void gen8_master_intr_enable(void __iomem * const regs)
2819{
2820	raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
 
 
 
 
 
 
 
 
 
 
2821}
2822
2823static irqreturn_t gen8_irq_handler(int irq, void *arg)
 
 
 
 
 
 
 
2824{
2825	struct drm_i915_private *dev_priv = arg;
2826	void __iomem * const regs = dev_priv->uncore.regs;
2827	u32 master_ctl;
2828	u32 gt_iir[4];
 
 
 
 
 
2829
2830	if (!intel_irqs_enabled(dev_priv))
2831		return IRQ_NONE;
2832
2833	master_ctl = gen8_master_intr_disable(regs);
2834	if (!master_ctl) {
2835		gen8_master_intr_enable(regs);
2836		return IRQ_NONE;
2837	}
 
 
 
 
 
 
 
 
 
2838
2839	/* Find, clear, then process each source of interrupt */
2840	gen8_gt_irq_ack(&dev_priv->gt, master_ctl, gt_iir);
 
 
 
 
 
2841
2842	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2843	if (master_ctl & ~GEN8_GT_IRQS) {
2844		disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2845		gen8_de_irq_handler(dev_priv, master_ctl);
2846		enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2847	}
2848
2849	gen8_master_intr_enable(regs);
 
 
 
 
 
 
 
 
 
 
 
 
2850
2851	gen8_gt_irq_handler(&dev_priv->gt, master_ctl, gt_iir);
 
 
 
 
2852
2853	return IRQ_HANDLED;
 
 
 
 
 
2854}
2855
2856static u32
2857gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2858{
2859	void __iomem * const regs = gt->uncore->regs;
2860	u32 iir;
 
 
2861
2862	if (!(master_ctl & GEN11_GU_MISC_IRQ))
2863		return 0;
2864
2865	iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2866	if (likely(iir))
2867		raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2868
2869	return iir;
2870}
2871
2872static void
2873gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2874{
2875	if (iir & GEN11_GU_MISC_GSE)
2876		intel_opregion_asle_intr(gt->i915);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2877}
2878
2879static inline u32 gen11_master_intr_disable(void __iomem * const regs)
 
 
 
 
 
 
 
 
 
 
 
2880{
2881	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2882
2883	/*
2884	 * Now with master disabled, get a sample of level indications
2885	 * for this interrupt. Indications will be cleared on related acks.
2886	 * New indications can and will light up during processing,
2887	 * and will generate new interrupt after enabling master.
2888	 */
2889	return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2890}
2891
2892static inline void gen11_master_intr_enable(void __iomem * const regs)
2893{
2894	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2895}
 
 
 
 
 
2896
2897static irqreturn_t gen11_irq_handler(int irq, void *arg)
2898{
2899	struct drm_i915_private * const i915 = arg;
2900	void __iomem * const regs = i915->uncore.regs;
2901	struct intel_gt *gt = &i915->gt;
2902	u32 master_ctl;
2903	u32 gu_misc_iir;
2904
2905	if (!intel_irqs_enabled(i915))
2906		return IRQ_NONE;
2907
2908	master_ctl = gen11_master_intr_disable(regs);
2909	if (!master_ctl) {
2910		gen11_master_intr_enable(regs);
2911		return IRQ_NONE;
 
 
2912	}
2913
2914	/* Find, clear, then process each source of interrupt. */
2915	gen11_gt_irq_handler(gt, master_ctl);
2916
2917	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2918	if (master_ctl & GEN11_DISPLAY_IRQ) {
2919		const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2920
2921		disable_rpm_wakeref_asserts(&i915->runtime_pm);
2922		/*
2923		 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2924		 * for the display related bits.
2925		 */
2926		gen8_de_irq_handler(i915, disp_ctl);
2927		enable_rpm_wakeref_asserts(&i915->runtime_pm);
2928	}
2929
2930	gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2931
2932	gen11_master_intr_enable(regs);
2933
2934	gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2935
2936	return IRQ_HANDLED;
2937}
2938
2939/* Called from drm generic code, passed 'crtc' which
2940 * we use as a pipe index
2941 */
2942int i8xx_enable_vblank(struct drm_crtc *crtc)
2943{
2944	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2945	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2946	unsigned long irqflags;
2947
 
 
 
2948	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2949	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
 
 
 
 
 
 
 
 
 
2950	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2951
2952	return 0;
2953}
2954
2955int i945gm_enable_vblank(struct drm_crtc *crtc)
2956{
2957	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2958
2959	if (dev_priv->i945gm_vblank.enabled++ == 0)
2960		schedule_work(&dev_priv->i945gm_vblank.work);
2961
2962	return i8xx_enable_vblank(crtc);
2963}
2964
2965int i965_enable_vblank(struct drm_crtc *crtc)
2966{
2967	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2968	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2969	unsigned long irqflags;
 
 
 
 
 
2970
2971	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2972	i915_enable_pipestat(dev_priv, pipe,
2973			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2974	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2975
2976	return 0;
2977}
2978
2979int ilk_enable_vblank(struct drm_crtc *crtc)
2980{
2981	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2982	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2983	unsigned long irqflags;
2984	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2985		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
 
2986
2987	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2988	ilk_enable_display_irq(dev_priv, bit);
 
2989	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2990
2991	/* Even though there is no DMC, frame counter can get stuck when
2992	 * PSR is active as no frames are generated.
2993	 */
2994	if (HAS_PSR(dev_priv))
2995		drm_crtc_vblank_restore(crtc);
2996
2997	return 0;
2998}
2999
3000int bdw_enable_vblank(struct drm_crtc *crtc)
3001{
3002	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3003	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3004	unsigned long irqflags;
3005
 
 
 
3006	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3007	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
 
 
3008	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3009
3010	/* Even if there is no DMC, frame counter can get stuck when
3011	 * PSR is active as no frames are generated, so check only for PSR.
3012	 */
3013	if (HAS_PSR(dev_priv))
3014		drm_crtc_vblank_restore(crtc);
3015
3016	return 0;
3017}
3018
3019/* Called from drm generic code, passed 'crtc' which
3020 * we use as a pipe index
3021 */
3022void i8xx_disable_vblank(struct drm_crtc *crtc)
3023{
3024	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3025	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3026	unsigned long irqflags;
3027
3028	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3029	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
 
 
 
 
 
3030	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3031}
3032
3033void i945gm_disable_vblank(struct drm_crtc *crtc)
3034{
3035	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3036
3037	i8xx_disable_vblank(crtc);
 
3038
3039	if (--dev_priv->i945gm_vblank.enabled == 0)
3040		schedule_work(&dev_priv->i945gm_vblank.work);
 
3041}
3042
3043void i965_disable_vblank(struct drm_crtc *crtc)
3044{
3045	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3046	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3047	unsigned long irqflags;
3048
3049	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3050	i915_disable_pipestat(dev_priv, pipe,
3051			      PIPE_START_VBLANK_INTERRUPT_STATUS);
3052	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3053}
3054
3055void ilk_disable_vblank(struct drm_crtc *crtc)
3056{
3057	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3058	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3059	unsigned long irqflags;
3060	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
3061		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
 
3062
3063	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3064	ilk_disable_display_irq(dev_priv, bit);
 
 
3065	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3066}
3067
3068void bdw_disable_vblank(struct drm_crtc *crtc)
 
3069{
3070	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3071	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3072	unsigned long irqflags;
3073
3074	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3075	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3076	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3077}
3078
3079static void i945gm_vblank_work_func(struct work_struct *work)
 
3080{
3081	struct drm_i915_private *dev_priv =
3082		container_of(work, struct drm_i915_private, i945gm_vblank.work);
3083
3084	/*
3085	 * Vblank interrupts fail to wake up the device from C3,
3086	 * hence we want to prevent C3 usage while vblank interrupts
3087	 * are enabled.
3088	 */
3089	pm_qos_update_request(&dev_priv->i945gm_vblank.pm_qos,
3090			      READ_ONCE(dev_priv->i945gm_vblank.enabled) ?
3091			      dev_priv->i945gm_vblank.c3_disable_latency :
3092			      PM_QOS_DEFAULT_VALUE);
3093}
3094
3095static int cstate_disable_latency(const char *name)
 
3096{
3097	const struct cpuidle_driver *drv;
 
3098	int i;
3099
3100	drv = cpuidle_get_driver();
3101	if (!drv)
3102		return 0;
 
3103
3104	for (i = 0; i < drv->state_count; i++) {
3105		const struct cpuidle_state *state = &drv->states[i];
 
 
 
 
 
 
3106
3107		if (!strcmp(state->name, name))
3108			return state->exit_latency ?
3109				state->exit_latency - 1 : 0;
3110	}
 
 
 
3111
3112	return 0;
3113}
 
 
3114
3115static void i945gm_vblank_work_init(struct drm_i915_private *dev_priv)
3116{
3117	INIT_WORK(&dev_priv->i945gm_vblank.work,
3118		  i945gm_vblank_work_func);
3119
3120	dev_priv->i945gm_vblank.c3_disable_latency =
3121		cstate_disable_latency("C3");
3122	pm_qos_add_request(&dev_priv->i945gm_vblank.pm_qos,
3123			   PM_QOS_CPU_DMA_LATENCY,
3124			   PM_QOS_DEFAULT_VALUE);
3125}
3126
3127static void i945gm_vblank_work_fini(struct drm_i915_private *dev_priv)
3128{
3129	cancel_work_sync(&dev_priv->i945gm_vblank.work);
3130	pm_qos_remove_request(&dev_priv->i945gm_vblank.pm_qos);
3131}
3132
3133static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3134{
3135	struct intel_uncore *uncore = &dev_priv->uncore;
 
 
3136
3137	if (HAS_PCH_NOP(dev_priv))
3138		return;
 
 
 
3139
3140	GEN3_IRQ_RESET(uncore, SDE);
 
 
 
3141
3142	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3143		I915_WRITE(SERR_INT, 0xffffffff);
3144}
3145
3146/*
3147 * SDEIER is also touched by the interrupt handler to work around missed PCH
3148 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3149 * instead we unconditionally enable all PCH interrupt sources here, but then
3150 * only unmask them as needed with SDEIMR.
3151 *
3152 * This function needs to be called before interrupts are enabled.
3153 */
3154static void ibx_irq_pre_postinstall(struct drm_i915_private *dev_priv)
3155{
3156	if (HAS_PCH_NOP(dev_priv))
3157		return;
3158
3159	WARN_ON(I915_READ(SDEIER) != 0);
3160	I915_WRITE(SDEIER, 0xffffffff);
3161	POSTING_READ(SDEIER);
3162}
3163
3164static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
 
3165{
3166	struct intel_uncore *uncore = &dev_priv->uncore;
 
 
3167
3168	if (IS_CHERRYVIEW(dev_priv))
3169		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3170	else
3171		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
3172
3173	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3174	intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3175
3176	i9xx_pipestat_irq_reset(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3177
3178	GEN3_IRQ_RESET(uncore, VLV_);
3179	dev_priv->irq_mask = ~0u;
3180}
3181
3182static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
 
 
 
 
 
 
 
 
3183{
3184	struct intel_uncore *uncore = &dev_priv->uncore;
3185
3186	u32 pipestat_mask;
3187	u32 enable_mask;
3188	enum pipe pipe;
3189
3190	pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3191
3192	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3193	for_each_pipe(dev_priv, pipe)
3194		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3195
3196	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3197		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3198		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3199		I915_LPE_PIPE_A_INTERRUPT |
3200		I915_LPE_PIPE_B_INTERRUPT;
3201
3202	if (IS_CHERRYVIEW(dev_priv))
3203		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3204			I915_LPE_PIPE_C_INTERRUPT;
3205
3206	WARN_ON(dev_priv->irq_mask != ~0u);
3207
3208	dev_priv->irq_mask = ~enable_mask;
 
3209
3210	GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
3211}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3212
3213/* drm_dma.h hooks
3214*/
3215static void ironlake_irq_reset(struct drm_i915_private *dev_priv)
3216{
3217	struct intel_uncore *uncore = &dev_priv->uncore;
 
3218
3219	GEN3_IRQ_RESET(uncore, DE);
3220	if (IS_GEN(dev_priv, 7))
3221		intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
 
3222
3223	if (IS_HASWELL(dev_priv)) {
3224		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3225		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
 
 
 
 
3226	}
3227
3228	gen5_gt_irq_reset(&dev_priv->gt);
 
3229
3230	ibx_irq_reset(dev_priv);
 
 
 
3231}
3232
3233static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
3234{
3235	I915_WRITE(VLV_MASTER_IER, 0);
3236	POSTING_READ(VLV_MASTER_IER);
3237
3238	gen5_gt_irq_reset(&dev_priv->gt);
3239
3240	spin_lock_irq(&dev_priv->irq_lock);
3241	if (dev_priv->display_irqs_enabled)
3242		vlv_display_irq_reset(dev_priv);
3243	spin_unlock_irq(&dev_priv->irq_lock);
3244}
3245
3246static void gen8_irq_reset(struct drm_i915_private *dev_priv)
3247{
3248	struct intel_uncore *uncore = &dev_priv->uncore;
3249	int pipe;
3250
3251	gen8_master_intr_disable(dev_priv->uncore.regs);
3252
3253	gen8_gt_irq_reset(&dev_priv->gt);
3254
3255	intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3256	intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3257
3258	for_each_pipe(dev_priv, pipe)
3259		if (intel_display_power_is_enabled(dev_priv,
3260						   POWER_DOMAIN_PIPE(pipe)))
3261			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3262
3263	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3264	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3265	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3266
3267	if (HAS_PCH_SPLIT(dev_priv))
3268		ibx_irq_reset(dev_priv);
 
 
 
 
 
 
 
 
3269}
3270
3271static void gen11_irq_reset(struct drm_i915_private *dev_priv)
3272{
3273	struct intel_uncore *uncore = &dev_priv->uncore;
3274	int pipe;
3275
3276	gen11_master_intr_disable(dev_priv->uncore.regs);
3277
3278	gen11_gt_irq_reset(&dev_priv->gt);
3279
3280	intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
3281
3282	intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3283	intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3284
3285	for_each_pipe(dev_priv, pipe)
3286		if (intel_display_power_is_enabled(dev_priv,
3287						   POWER_DOMAIN_PIPE(pipe)))
3288			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3289
3290	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3291	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3292	GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
3293	GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
3294	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3295
3296	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3297		GEN3_IRQ_RESET(uncore, SDE);
3298}
3299
3300void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3301				     u8 pipe_mask)
 
3302{
3303	struct intel_uncore *uncore = &dev_priv->uncore;
3304
3305	u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3306	enum pipe pipe;
3307
3308	spin_lock_irq(&dev_priv->irq_lock);
3309
3310	if (!intel_irqs_enabled(dev_priv)) {
3311		spin_unlock_irq(&dev_priv->irq_lock);
3312		return;
3313	}
3314
3315	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3316		GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3317				  dev_priv->de_irq_mask[pipe],
3318				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3319
3320	spin_unlock_irq(&dev_priv->irq_lock);
3321}
3322
3323void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3324				     u8 pipe_mask)
3325{
3326	struct intel_uncore *uncore = &dev_priv->uncore;
3327	enum pipe pipe;
3328
3329	spin_lock_irq(&dev_priv->irq_lock);
 
 
 
 
3330
3331	if (!intel_irqs_enabled(dev_priv)) {
3332		spin_unlock_irq(&dev_priv->irq_lock);
3333		return;
3334	}
3335
3336	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3337		GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3338
3339	spin_unlock_irq(&dev_priv->irq_lock);
3340
3341	/* make sure we're done processing display irqs */
3342	intel_synchronize_irq(dev_priv);
 
 
 
 
 
 
3343}
3344
3345static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
3346{
3347	struct intel_uncore *uncore = &dev_priv->uncore;
 
3348
3349	I915_WRITE(GEN8_MASTER_IRQ, 0);
3350	POSTING_READ(GEN8_MASTER_IRQ);
3351
3352	gen8_gt_irq_reset(&dev_priv->gt);
3353
3354	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3355
3356	spin_lock_irq(&dev_priv->irq_lock);
3357	if (dev_priv->display_irqs_enabled)
3358		vlv_display_irq_reset(dev_priv);
3359	spin_unlock_irq(&dev_priv->irq_lock);
3360}
3361
3362static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3363				  const u32 hpd[HPD_NUM_PINS])
3364{
3365	struct intel_encoder *encoder;
3366	u32 enabled_irqs = 0;
3367
3368	for_each_intel_encoder(&dev_priv->drm, encoder)
3369		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3370			enabled_irqs |= hpd[encoder->hpd_pin];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3371
3372	return enabled_irqs;
3373}
 
 
 
 
 
 
 
 
 
3374
3375static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3376{
3377	u32 hotplug;
3378
3379	/*
3380	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3381	 * duration to 2ms (which is the minimum in the Display Port spec).
3382	 * The pulse duration bits are reserved on LPT+.
 
3383	 */
3384	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3385	hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3386		     PORTC_PULSE_DURATION_MASK |
3387		     PORTD_PULSE_DURATION_MASK);
3388	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3389	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3390	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3391	/*
3392	 * When CPU and PCH are on the same package, port A
3393	 * HPD must be enabled in both north and south.
3394	 */
3395	if (HAS_PCH_LPT_LP(dev_priv))
3396		hotplug |= PORTA_HOTPLUG_ENABLE;
3397	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3398}
3399
3400static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3401{
3402	u32 hotplug_irqs, enabled_irqs;
3403
3404	if (HAS_PCH_IBX(dev_priv)) {
3405		hotplug_irqs = SDE_HOTPLUG_MASK;
3406		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3407	} else {
3408		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3409		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3410	}
3411
3412	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3413
3414	ibx_hpd_detection_setup(dev_priv);
3415}
3416
3417static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv,
3418				    u32 ddi_hotplug_enable_mask,
3419				    u32 tc_hotplug_enable_mask)
3420{
3421	u32 hotplug;
3422
3423	hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3424	hotplug |= ddi_hotplug_enable_mask;
3425	I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
 
3426
3427	if (tc_hotplug_enable_mask) {
3428		hotplug = I915_READ(SHOTPLUG_CTL_TC);
3429		hotplug |= tc_hotplug_enable_mask;
3430		I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3431	}
3432}
3433
3434static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3435{
3436	u32 hotplug_irqs, enabled_irqs;
3437
3438	hotplug_irqs = SDE_DDI_MASK_ICP | SDE_TC_MASK_ICP;
3439	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_icp);
3440
3441	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3442
3443	icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3444				ICP_TC_HPD_ENABLE_MASK);
3445}
3446
3447static void mcc_hpd_irq_setup(struct drm_i915_private *dev_priv)
3448{
3449	u32 hotplug_irqs, enabled_irqs;
3450
3451	hotplug_irqs = SDE_DDI_MASK_TGP;
3452	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_mcc);
3453
3454	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3455
3456	icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
3457}
3458
3459static void tgp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3460{
3461	u32 hotplug_irqs, enabled_irqs;
3462
3463	hotplug_irqs = SDE_DDI_MASK_TGP | SDE_TC_MASK_TGP;
3464	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_tgp);
3465
3466	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
 
 
 
 
 
 
3467
3468	icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
3469				TGP_TC_HPD_ENABLE_MASK);
3470}
 
3471
3472static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3473{
3474	u32 hotplug;
3475
3476	hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3477	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3478		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3479		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3480		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3481	I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3482
3483	hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3484	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3485		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3486		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3487		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3488	I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3489}
3490
3491static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3492{
3493	u32 hotplug_irqs, enabled_irqs;
3494	const u32 *hpd;
3495	u32 val;
3496
3497	hpd = INTEL_GEN(dev_priv) >= 12 ? hpd_gen12 : hpd_gen11;
3498	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd);
3499	hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3500
3501	val = I915_READ(GEN11_DE_HPD_IMR);
3502	val &= ~hotplug_irqs;
3503	I915_WRITE(GEN11_DE_HPD_IMR, val);
3504	POSTING_READ(GEN11_DE_HPD_IMR);
3505
3506	gen11_hpd_detection_setup(dev_priv);
3507
3508	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
3509		tgp_hpd_irq_setup(dev_priv);
3510	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3511		icp_hpd_irq_setup(dev_priv);
3512}
3513
3514static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3515{
3516	u32 val, hotplug;
 
 
 
 
3517
3518	/* Display WA #1179 WaHardHangonHotPlug: cnp */
3519	if (HAS_PCH_CNP(dev_priv)) {
3520		val = I915_READ(SOUTH_CHICKEN1);
3521		val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3522		val |= CHASSIS_CLK_REQ_DURATION(0xf);
3523		I915_WRITE(SOUTH_CHICKEN1, val);
 
 
 
3524	}
3525
3526	/* Enable digital hotplug on the PCH */
3527	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3528	hotplug |= PORTA_HOTPLUG_ENABLE |
3529		   PORTB_HOTPLUG_ENABLE |
3530		   PORTC_HOTPLUG_ENABLE |
3531		   PORTD_HOTPLUG_ENABLE;
3532	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3533
3534	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3535	hotplug |= PORTE_HOTPLUG_ENABLE;
3536	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3537}
3538
3539static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3540{
3541	u32 hotplug_irqs, enabled_irqs;
3542
3543	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3544	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
 
 
 
3545
3546	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3547
3548	spt_hpd_detection_setup(dev_priv);
3549}
3550
3551static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3552{
3553	u32 hotplug;
 
 
 
 
 
 
 
3554
3555	/*
3556	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3557	 * duration to 2ms (which is the minimum in the Display Port spec)
3558	 * The pulse duration bits are reserved on HSW+.
3559	 */
3560	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3561	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3562	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3563		   DIGITAL_PORTA_PULSE_DURATION_2ms;
3564	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3565}
3566
3567static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3568{
3569	u32 hotplug_irqs, enabled_irqs;
 
3570
3571	if (INTEL_GEN(dev_priv) >= 8) {
3572		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3573		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3574
3575		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3576	} else if (INTEL_GEN(dev_priv) >= 7) {
3577		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3578		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3579
3580		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3581	} else {
3582		hotplug_irqs = DE_DP_A_HOTPLUG;
3583		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3584
3585		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3586	}
 
3587
3588	ilk_hpd_detection_setup(dev_priv);
 
 
 
3589
3590	ibx_hpd_irq_setup(dev_priv);
 
 
 
 
3591}
3592
3593static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3594				      u32 enabled_irqs)
3595{
3596	u32 hotplug;
3597
3598	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3599	hotplug |= PORTA_HOTPLUG_ENABLE |
3600		   PORTB_HOTPLUG_ENABLE |
3601		   PORTC_HOTPLUG_ENABLE;
3602
3603	DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3604		      hotplug, enabled_irqs);
3605	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3606
3607	/*
3608	 * For BXT invert bit has to be set based on AOB design
3609	 * for HPD detection logic, update it based on VBT fields.
3610	 */
3611	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3612	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3613		hotplug |= BXT_DDIA_HPD_INVERT;
3614	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3615	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3616		hotplug |= BXT_DDIB_HPD_INVERT;
3617	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3618	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3619		hotplug |= BXT_DDIC_HPD_INVERT;
3620
3621	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3622}
3623
3624static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3625{
3626	__bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3627}
3628
3629static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3630{
3631	u32 hotplug_irqs, enabled_irqs;
3632
3633	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3634	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3635
3636	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3637
3638	__bxt_hpd_detection_setup(dev_priv, enabled_irqs);
 
3639}
3640
3641static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3642{
3643	u32 mask;
3644
3645	if (HAS_PCH_NOP(dev_priv))
3646		return;
3647
3648	if (HAS_PCH_IBX(dev_priv))
3649		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3650	else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3651		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3652	else
3653		mask = SDE_GMBUS_CPT;
3654
3655	gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3656	I915_WRITE(SDEIMR, ~mask);
3657
3658	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3659	    HAS_PCH_LPT(dev_priv))
3660		ibx_hpd_detection_setup(dev_priv);
3661	else
3662		spt_hpd_detection_setup(dev_priv);
3663}
3664
3665static void ironlake_irq_postinstall(struct drm_i915_private *dev_priv)
3666{
3667	struct intel_uncore *uncore = &dev_priv->uncore;
3668	u32 display_mask, extra_mask;
3669
3670	if (INTEL_GEN(dev_priv) >= 7) {
3671		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3672				DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3673		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3674			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3675			      DE_DP_A_HOTPLUG_IVB);
3676	} else {
3677		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3678				DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3679				DE_PIPEA_CRC_DONE | DE_POISON);
3680		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3681			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3682			      DE_DP_A_HOTPLUG);
3683	}
3684
3685	if (IS_HASWELL(dev_priv)) {
3686		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3687		intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
3688		display_mask |= DE_EDP_PSR_INT_HSW;
3689	}
3690
3691	dev_priv->irq_mask = ~display_mask;
 
 
 
3692
3693	ibx_irq_pre_postinstall(dev_priv);
 
 
 
 
 
3694
3695	GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3696		      display_mask | extra_mask);
3697
3698	gen5_gt_irq_postinstall(&dev_priv->gt);
3699
3700	ilk_hpd_detection_setup(dev_priv);
 
 
 
 
3701
3702	ibx_irq_postinstall(dev_priv);
3703
3704	if (IS_IRONLAKE_M(dev_priv)) {
3705		/* Enable PCU event interrupts
3706		 *
3707		 * spinlocking not required here for correctness since interrupt
3708		 * setup is guaranteed to run in single-threaded context. But we
3709		 * need it to make the assert_spin_locked happy. */
3710		spin_lock_irq(&dev_priv->irq_lock);
3711		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3712		spin_unlock_irq(&dev_priv->irq_lock);
3713	}
3714}
3715
3716void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3717{
3718	lockdep_assert_held(&dev_priv->irq_lock);
3719
3720	if (dev_priv->display_irqs_enabled)
3721		return;
3722
3723	dev_priv->display_irqs_enabled = true;
3724
3725	if (intel_irqs_enabled(dev_priv)) {
3726		vlv_display_irq_reset(dev_priv);
3727		vlv_display_irq_postinstall(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3728	}
 
3729}
3730
3731void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3732{
3733	lockdep_assert_held(&dev_priv->irq_lock);
3734
3735	if (!dev_priv->display_irqs_enabled)
3736		return;
3737
3738	dev_priv->display_irqs_enabled = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3739
3740	if (intel_irqs_enabled(dev_priv))
3741		vlv_display_irq_reset(dev_priv);
 
3742}
3743
3744
3745static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3746{
3747	gen5_gt_irq_postinstall(&dev_priv->gt);
3748
3749	spin_lock_irq(&dev_priv->irq_lock);
3750	if (dev_priv->display_irqs_enabled)
3751		vlv_display_irq_postinstall(dev_priv);
3752	spin_unlock_irq(&dev_priv->irq_lock);
3753
3754	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3755	POSTING_READ(VLV_MASTER_IER);
3756}
3757
3758static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3759{
3760	struct intel_uncore *uncore = &dev_priv->uncore;
3761
3762	u32 de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3763	u32 de_pipe_enables;
3764	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3765	u32 de_port_enables;
3766	u32 de_misc_masked = GEN8_DE_EDP_PSR;
3767	enum pipe pipe;
3768
3769	if (INTEL_GEN(dev_priv) <= 10)
3770		de_misc_masked |= GEN8_DE_MISC_GSE;
3771
3772	if (INTEL_GEN(dev_priv) >= 9) {
3773		de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3774		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3775				  GEN9_AUX_CHANNEL_D;
3776		if (IS_GEN9_LP(dev_priv))
3777			de_port_masked |= BXT_DE_PORT_GMBUS;
3778	} else {
3779		de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3780	}
3781
3782	if (INTEL_GEN(dev_priv) >= 11)
3783		de_port_masked |= ICL_AUX_CHANNEL_E;
 
 
3784
3785	if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11)
3786		de_port_masked |= CNL_AUX_CHANNEL_F;
3787
3788	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3789					   GEN8_PIPE_FIFO_UNDERRUN;
3790
3791	de_port_enables = de_port_masked;
3792	if (IS_GEN9_LP(dev_priv))
3793		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3794	else if (IS_BROADWELL(dev_priv))
3795		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3796
3797	gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3798	intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
 
 
 
3799
3800	for_each_pipe(dev_priv, pipe) {
3801		dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
 
 
3802
3803		if (intel_display_power_is_enabled(dev_priv,
3804				POWER_DOMAIN_PIPE(pipe)))
3805			GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3806					  dev_priv->de_irq_mask[pipe],
3807					  de_pipe_enables);
3808	}
3809
3810	GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3811	GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3812
3813	if (INTEL_GEN(dev_priv) >= 11) {
3814		u32 de_hpd_masked = 0;
3815		u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3816				     GEN11_DE_TBT_HOTPLUG_MASK;
3817
3818		GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3819			      de_hpd_enables);
3820		gen11_hpd_detection_setup(dev_priv);
3821	} else if (IS_GEN9_LP(dev_priv)) {
3822		bxt_hpd_detection_setup(dev_priv);
3823	} else if (IS_BROADWELL(dev_priv)) {
3824		ilk_hpd_detection_setup(dev_priv);
3825	}
3826}
3827
3828static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3829{
3830	if (HAS_PCH_SPLIT(dev_priv))
3831		ibx_irq_pre_postinstall(dev_priv);
 
3832
3833	gen8_gt_irq_postinstall(&dev_priv->gt);
3834	gen8_de_irq_postinstall(dev_priv);
3835
3836	if (HAS_PCH_SPLIT(dev_priv))
3837		ibx_irq_postinstall(dev_priv);
3838
3839	gen8_master_intr_enable(dev_priv->uncore.regs);
3840}
3841
3842static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3843{
3844	u32 mask = SDE_GMBUS_ICP;
3845
3846	WARN_ON(I915_READ(SDEIER) != 0);
3847	I915_WRITE(SDEIER, 0xffffffff);
3848	POSTING_READ(SDEIER);
 
3849
3850	gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3851	I915_WRITE(SDEIMR, ~mask);
3852
3853	if (HAS_PCH_TGP(dev_priv))
3854		icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
3855					TGP_TC_HPD_ENABLE_MASK);
3856	else if (HAS_PCH_MCC(dev_priv))
3857		icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
3858	else
3859		icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3860					ICP_TC_HPD_ENABLE_MASK);
3861}
3862
3863static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3864{
3865	struct intel_uncore *uncore = &dev_priv->uncore;
3866	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3867
3868	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3869		icp_irq_postinstall(dev_priv);
3870
3871	gen11_gt_irq_postinstall(&dev_priv->gt);
3872	gen8_de_irq_postinstall(dev_priv);
3873
3874	GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3875
3876	I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3877
3878	gen11_master_intr_enable(uncore->regs);
3879	POSTING_READ(GEN11_GFX_MSTR_IRQ);
3880}
 
 
3881
3882static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3883{
3884	gen8_gt_irq_postinstall(&dev_priv->gt);
3885
3886	spin_lock_irq(&dev_priv->irq_lock);
3887	if (dev_priv->display_irqs_enabled)
3888		vlv_display_irq_postinstall(dev_priv);
3889	spin_unlock_irq(&dev_priv->irq_lock);
3890
3891	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3892	POSTING_READ(GEN8_MASTER_IRQ);
 
 
 
3893}
3894
3895static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3896{
3897	struct intel_uncore *uncore = &dev_priv->uncore;
3898
3899	i9xx_pipestat_irq_reset(dev_priv);
3900
3901	GEN2_IRQ_RESET(uncore);
 
 
 
 
3902}
3903
3904static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3905{
3906	struct intel_uncore *uncore = &dev_priv->uncore;
3907	u16 enable_mask;
3908
3909	intel_uncore_write16(uncore,
3910			     EMR,
3911			     ~(I915_ERROR_PAGE_TABLE |
3912			       I915_ERROR_MEMORY_REFRESH));
3913
3914	/* Unmask the interrupts that we always want on. */
3915	dev_priv->irq_mask =
3916		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3917		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3918		  I915_MASTER_ERROR_INTERRUPT);
3919
3920	enable_mask =
3921		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3922		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3923		I915_MASTER_ERROR_INTERRUPT |
3924		I915_USER_INTERRUPT;
3925
3926	GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
 
 
3927
3928	/* Interrupt setup is already guaranteed to be single-threaded, this is
3929	 * just to make the assert_spin_locked check happy. */
3930	spin_lock_irq(&dev_priv->irq_lock);
3931	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3932	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3933	spin_unlock_irq(&dev_priv->irq_lock);
3934}
3935
3936static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3937			       u16 *eir, u16 *eir_stuck)
3938{
3939	struct intel_uncore *uncore = &i915->uncore;
3940	u16 emr;
3941
3942	*eir = intel_uncore_read16(uncore, EIR);
3943
3944	if (*eir)
3945		intel_uncore_write16(uncore, EIR, *eir);
3946
3947	*eir_stuck = intel_uncore_read16(uncore, EIR);
3948	if (*eir_stuck == 0)
3949		return;
3950
3951	/*
3952	 * Toggle all EMR bits to make sure we get an edge
3953	 * in the ISR master error bit if we don't clear
3954	 * all the EIR bits. Otherwise the edge triggered
3955	 * IIR on i965/g4x wouldn't notice that an interrupt
3956	 * is still pending. Also some EIR bits can't be
3957	 * cleared except by handling the underlying error
3958	 * (or by a GPU reset) so we mask any bit that
3959	 * remains set.
3960	 */
3961	emr = intel_uncore_read16(uncore, EMR);
3962	intel_uncore_write16(uncore, EMR, 0xffff);
3963	intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3964}
3965
3966static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3967				   u16 eir, u16 eir_stuck)
3968{
3969	DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3970
3971	if (eir_stuck)
3972		DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck);
3973}
3974
3975static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3976			       u32 *eir, u32 *eir_stuck)
 
 
 
3977{
3978	u32 emr;
 
3979
3980	*eir = I915_READ(EIR);
 
3981
3982	I915_WRITE(EIR, *eir);
 
3983
3984	*eir_stuck = I915_READ(EIR);
3985	if (*eir_stuck == 0)
3986		return;
3987
3988	/*
3989	 * Toggle all EMR bits to make sure we get an edge
3990	 * in the ISR master error bit if we don't clear
3991	 * all the EIR bits. Otherwise the edge triggered
3992	 * IIR on i965/g4x wouldn't notice that an interrupt
3993	 * is still pending. Also some EIR bits can't be
3994	 * cleared except by handling the underlying error
3995	 * (or by a GPU reset) so we mask any bit that
3996	 * remains set.
3997	 */
3998	emr = I915_READ(EMR);
3999	I915_WRITE(EMR, 0xffffffff);
4000	I915_WRITE(EMR, emr | *eir_stuck);
4001}
4002
4003static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
4004				   u32 eir, u32 eir_stuck)
4005{
4006	DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
4007
4008	if (eir_stuck)
4009		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck);
4010}
4011
4012static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4013{
4014	struct drm_i915_private *dev_priv = arg;
4015	irqreturn_t ret = IRQ_NONE;
 
 
 
 
 
 
 
4016
4017	if (!intel_irqs_enabled(dev_priv))
 
4018		return IRQ_NONE;
4019
4020	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4021	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4022
4023	do {
4024		u32 pipe_stats[I915_MAX_PIPES] = {};
4025		u16 eir = 0, eir_stuck = 0;
4026		u16 iir;
4027
4028		iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
4029		if (iir == 0)
4030			break;
4031
4032		ret = IRQ_HANDLED;
 
 
4033
4034		/* Call regardless, as some status bits might not be
4035		 * signalled in iir */
4036		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
 
 
 
 
4037
4038		if (iir & I915_MASTER_ERROR_INTERRUPT)
4039			i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4040
4041		intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
4042
4043		if (iir & I915_USER_INTERRUPT)
4044			intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4045
4046		if (iir & I915_MASTER_ERROR_INTERRUPT)
4047			i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4048
4049		i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4050	} while (0);
4051
4052	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 
4053
4054	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
4055}
4056
4057static void i915_irq_reset(struct drm_i915_private *dev_priv)
4058{
4059	struct intel_uncore *uncore = &dev_priv->uncore;
 
4060
4061	if (I915_HAS_HOTPLUG(dev_priv)) {
4062		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4063		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4064	}
4065
4066	i9xx_pipestat_irq_reset(dev_priv);
4067
4068	GEN3_IRQ_RESET(uncore, GEN2_);
 
 
 
4069}
4070
4071static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
4072{
4073	struct intel_uncore *uncore = &dev_priv->uncore;
4074	u32 enable_mask;
 
4075
4076	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
4077			  I915_ERROR_MEMORY_REFRESH));
4078
4079	/* Unmask the interrupts that we always want on. */
4080	dev_priv->irq_mask =
4081		~(I915_ASLE_INTERRUPT |
4082		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4083		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4084		  I915_MASTER_ERROR_INTERRUPT);
 
 
4085
4086	enable_mask =
4087		I915_ASLE_INTERRUPT |
4088		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4089		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4090		I915_MASTER_ERROR_INTERRUPT |
4091		I915_USER_INTERRUPT;
4092
4093	if (I915_HAS_HOTPLUG(dev_priv)) {
 
 
 
4094		/* Enable in IER... */
4095		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4096		/* and unmask in IMR */
4097		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4098	}
4099
4100	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
 
 
 
 
4101
4102	/* Interrupt setup is already guaranteed to be single-threaded, this is
4103	 * just to make the assert_spin_locked check happy. */
4104	spin_lock_irq(&dev_priv->irq_lock);
4105	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4106	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4107	spin_unlock_irq(&dev_priv->irq_lock);
4108
4109	i915_enable_asle_pipestat(dev_priv);
4110}
4111
4112static irqreturn_t i915_irq_handler(int irq, void *arg)
 
 
 
 
4113{
4114	struct drm_i915_private *dev_priv = arg;
4115	irqreturn_t ret = IRQ_NONE;
4116
4117	if (!intel_irqs_enabled(dev_priv))
4118		return IRQ_NONE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4119
4120	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4121	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4123	do {
4124		u32 pipe_stats[I915_MAX_PIPES] = {};
4125		u32 eir = 0, eir_stuck = 0;
4126		u32 hotplug_status = 0;
4127		u32 iir;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4128
4129		iir = I915_READ(GEN2_IIR);
4130		if (iir == 0)
4131			break;
4132
4133		ret = IRQ_HANDLED;
 
 
 
 
4134
4135		if (I915_HAS_HOTPLUG(dev_priv) &&
4136		    iir & I915_DISPLAY_PORT_INTERRUPT)
4137			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4138
4139		/* Call regardless, as some status bits might not be
4140		 * signalled in iir */
4141		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4142
4143		if (iir & I915_MASTER_ERROR_INTERRUPT)
4144			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
 
4145
4146		I915_WRITE(GEN2_IIR, iir);
 
4147
4148		if (iir & I915_USER_INTERRUPT)
4149			intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4150
4151		if (iir & I915_MASTER_ERROR_INTERRUPT)
4152			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4153
4154		if (hotplug_status)
4155			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4156
4157		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4158	} while (0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4159
4160	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4161
4162	return ret;
4163}
4164
4165static void i965_irq_reset(struct drm_i915_private *dev_priv)
4166{
4167	struct intel_uncore *uncore = &dev_priv->uncore;
 
4168
4169	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4170	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
 
 
 
 
4171
4172	i9xx_pipestat_irq_reset(dev_priv);
 
 
 
 
 
 
 
4173
4174	GEN3_IRQ_RESET(uncore, GEN2_);
4175}
4176
4177static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
4178{
4179	struct intel_uncore *uncore = &dev_priv->uncore;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4180	u32 enable_mask;
4181	u32 error_mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4182
4183	/*
4184	 * Enable some error detection, note the instruction error mask
4185	 * bit is reserved, so we leave it masked.
4186	 */
4187	if (IS_G4X(dev_priv)) {
4188		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4189			       GM45_ERROR_MEM_PRIV |
4190			       GM45_ERROR_CP_PRIV |
4191			       I915_ERROR_MEMORY_REFRESH);
4192	} else {
4193		error_mask = ~(I915_ERROR_PAGE_TABLE |
4194			       I915_ERROR_MEMORY_REFRESH);
4195	}
4196	I915_WRITE(EMR, error_mask);
4197
4198	/* Unmask the interrupts that we always want on. */
4199	dev_priv->irq_mask =
4200		~(I915_ASLE_INTERRUPT |
4201		  I915_DISPLAY_PORT_INTERRUPT |
4202		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4203		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4204		  I915_MASTER_ERROR_INTERRUPT);
4205
4206	enable_mask =
4207		I915_ASLE_INTERRUPT |
4208		I915_DISPLAY_PORT_INTERRUPT |
4209		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4210		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4211		I915_MASTER_ERROR_INTERRUPT |
4212		I915_USER_INTERRUPT;
4213
4214	if (IS_G4X(dev_priv))
4215		enable_mask |= I915_BSD_USER_INTERRUPT;
4216
4217	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4218
4219	/* Interrupt setup is already guaranteed to be single-threaded, this is
4220	 * just to make the assert_spin_locked check happy. */
4221	spin_lock_irq(&dev_priv->irq_lock);
4222	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4223	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4224	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4225	spin_unlock_irq(&dev_priv->irq_lock);
4226
4227	i915_enable_asle_pipestat(dev_priv);
4228}
4229
4230static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4231{
 
 
 
4232	u32 hotplug_en;
4233
4234	lockdep_assert_held(&dev_priv->irq_lock);
4235
4236	/* Note HDMI and DP share hotplug bits */
4237	/* enable bits are the same for all generations */
4238	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4239	/* Programming the CRT detection parameters tends
4240	   to generate a spurious hotplug event about three
4241	   seconds later.  So just do it once.
4242	*/
4243	if (IS_G4X(dev_priv))
4244		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4245	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4246
4247	/* Ignore TV since it's buggy */
4248	i915_hotplug_interrupt_update_locked(dev_priv,
4249					     HOTPLUG_INT_EN_MASK |
4250					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4251					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4252					     hotplug_en);
 
 
 
4253}
4254
4255static irqreturn_t i965_irq_handler(int irq, void *arg)
4256{
4257	struct drm_i915_private *dev_priv = arg;
4258	irqreturn_t ret = IRQ_NONE;
4259
4260	if (!intel_irqs_enabled(dev_priv))
4261		return IRQ_NONE;
4262
4263	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4264	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4265
4266	do {
4267		u32 pipe_stats[I915_MAX_PIPES] = {};
4268		u32 eir = 0, eir_stuck = 0;
4269		u32 hotplug_status = 0;
4270		u32 iir;
 
 
 
 
4271
4272		iir = I915_READ(GEN2_IIR);
4273		if (iir == 0)
4274			break;
4275
4276		ret = IRQ_HANDLED;
4277
4278		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4279			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4280
4281		/* Call regardless, as some status bits might not be
4282		 * signalled in iir */
4283		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
 
 
 
 
 
 
 
4284
4285		if (iir & I915_MASTER_ERROR_INTERRUPT)
4286			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
 
4287
4288		I915_WRITE(GEN2_IIR, iir);
 
4289
4290		if (iir & I915_USER_INTERRUPT)
4291			intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4292
4293		if (iir & I915_BSD_USER_INTERRUPT)
4294			intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]);
4295
4296		if (iir & I915_MASTER_ERROR_INTERRUPT)
4297			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
 
 
 
 
 
 
 
 
 
 
 
 
 
4298
4299		if (hotplug_status)
4300			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4301
4302		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4303	} while (0);
4304
4305	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4306
4307	return ret;
4308}
4309
4310/**
4311 * intel_irq_init - initializes irq support
4312 * @dev_priv: i915 device instance
4313 *
4314 * This function initializes all the irq support including work items, timers
4315 * and all the vtables. It does not setup the interrupt itself though.
4316 */
4317void intel_irq_init(struct drm_i915_private *dev_priv)
4318{
4319	struct drm_device *dev = &dev_priv->drm;
4320	struct intel_rps *rps = &dev_priv->gt_pm.rps;
4321	int i;
4322
4323	if (IS_I945GM(dev_priv))
4324		i945gm_vblank_work_init(dev_priv);
4325
4326	intel_hpd_init_work(dev_priv);
4327
4328	INIT_WORK(&rps->work, gen6_pm_rps_work);
 
4329
4330	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4331	for (i = 0; i < MAX_L3_SLICES; ++i)
4332		dev_priv->l3_parity.remap_info[i] = NULL;
4333
4334	/* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
4335	if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
4336		dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
4337
4338	/* Let's track the enabled rps events */
4339	if (IS_VALLEYVIEW(dev_priv))
4340		/* WaGsvRC0ResidencyMethod:vlv */
4341		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4342	else
4343		dev_priv->pm_rps_events = (GEN6_PM_RP_UP_THRESHOLD |
4344					   GEN6_PM_RP_DOWN_THRESHOLD |
4345					   GEN6_PM_RP_DOWN_TIMEOUT);
4346
4347	/* We share the register with other engine */
4348	if (INTEL_GEN(dev_priv) > 9)
4349		GEM_WARN_ON(dev_priv->pm_rps_events & 0xffff0000);
4350
4351	rps->pm_intrmsk_mbz = 0;
 
 
 
 
4352
4353	/*
4354	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4355	 * if GEN6_PM_UP_EI_EXPIRED is masked.
4356	 *
4357	 * TODO: verify if this can be reproduced on VLV,CHV.
4358	 */
4359	if (INTEL_GEN(dev_priv) <= 7)
4360		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4361
4362	if (INTEL_GEN(dev_priv) >= 8)
4363		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
 
4364
4365	dev->vblank_disable_immediate = true;
 
4366
4367	/* Most platforms treat the display irq block as an always-on
4368	 * power domain. vlv/chv can disable it at runtime and need
4369	 * special care to avoid writing any of the display block registers
4370	 * outside of the power domain. We defer setting up the display irqs
4371	 * in this case to the runtime pm.
4372	 */
4373	dev_priv->display_irqs_enabled = true;
4374	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4375		dev_priv->display_irqs_enabled = false;
4376
4377	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4378	/* If we have MST support, we want to avoid doing short HPD IRQ storm
4379	 * detection, as short HPD storms will occur as a natural part of
4380	 * sideband messaging with MST.
4381	 * On older platforms however, IRQ storms can occur with both long and
4382	 * short pulses, as seen on some G4x systems.
4383	 */
4384	dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4385
4386	if (HAS_GMCH(dev_priv)) {
4387		if (I915_HAS_HOTPLUG(dev_priv))
4388			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4389	} else {
4390		if (HAS_PCH_MCC(dev_priv))
4391			/* EHL doesn't need most of gen11_hpd_irq_setup */
4392			dev_priv->display.hpd_irq_setup = mcc_hpd_irq_setup;
4393		else if (INTEL_GEN(dev_priv) >= 11)
4394			dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4395		else if (IS_GEN9_LP(dev_priv))
4396			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4397		else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4398			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4399		else
4400			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4401	}
 
 
 
4402}
4403
4404/**
4405 * intel_irq_fini - deinitializes IRQ support
4406 * @i915: i915 device instance
4407 *
4408 * This function deinitializes all the IRQ support.
4409 */
4410void intel_irq_fini(struct drm_i915_private *i915)
4411{
4412	int i;
4413
4414	if (IS_I945GM(i915))
4415		i945gm_vblank_work_fini(i915);
 
 
4416
4417	for (i = 0; i < MAX_L3_SLICES; ++i)
4418		kfree(i915->l3_parity.remap_info[i]);
4419}
4420
4421static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
4422{
4423	if (HAS_GMCH(dev_priv)) {
4424		if (IS_CHERRYVIEW(dev_priv))
4425			return cherryview_irq_handler;
4426		else if (IS_VALLEYVIEW(dev_priv))
4427			return valleyview_irq_handler;
4428		else if (IS_GEN(dev_priv, 4))
4429			return i965_irq_handler;
4430		else if (IS_GEN(dev_priv, 3))
4431			return i915_irq_handler;
4432		else
4433			return i8xx_irq_handler;
 
4434	} else {
4435		if (INTEL_GEN(dev_priv) >= 11)
4436			return gen11_irq_handler;
4437		else if (INTEL_GEN(dev_priv) >= 8)
4438			return gen8_irq_handler;
4439		else
4440			return ironlake_irq_handler;
4441	}
4442}
4443
4444static void intel_irq_reset(struct drm_i915_private *dev_priv)
4445{
4446	if (HAS_GMCH(dev_priv)) {
4447		if (IS_CHERRYVIEW(dev_priv))
4448			cherryview_irq_reset(dev_priv);
4449		else if (IS_VALLEYVIEW(dev_priv))
4450			valleyview_irq_reset(dev_priv);
4451		else if (IS_GEN(dev_priv, 4))
4452			i965_irq_reset(dev_priv);
4453		else if (IS_GEN(dev_priv, 3))
4454			i915_irq_reset(dev_priv);
4455		else
4456			i8xx_irq_reset(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4457	} else {
4458		if (INTEL_GEN(dev_priv) >= 11)
4459			gen11_irq_reset(dev_priv);
4460		else if (INTEL_GEN(dev_priv) >= 8)
4461			gen8_irq_reset(dev_priv);
4462		else
4463			ironlake_irq_reset(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4464	}
4465}
4466
4467static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4468{
4469	if (HAS_GMCH(dev_priv)) {
4470		if (IS_CHERRYVIEW(dev_priv))
4471			cherryview_irq_postinstall(dev_priv);
4472		else if (IS_VALLEYVIEW(dev_priv))
4473			valleyview_irq_postinstall(dev_priv);
4474		else if (IS_GEN(dev_priv, 4))
4475			i965_irq_postinstall(dev_priv);
4476		else if (IS_GEN(dev_priv, 3))
4477			i915_irq_postinstall(dev_priv);
4478		else
4479			i8xx_irq_postinstall(dev_priv);
4480	} else {
4481		if (INTEL_GEN(dev_priv) >= 11)
4482			gen11_irq_postinstall(dev_priv);
4483		else if (INTEL_GEN(dev_priv) >= 8)
4484			gen8_irq_postinstall(dev_priv);
4485		else
4486			ironlake_irq_postinstall(dev_priv);
4487	}
 
 
 
 
 
 
 
4488}
4489
4490/**
4491 * intel_irq_install - enables the hardware interrupt
4492 * @dev_priv: i915 device instance
4493 *
4494 * This function enables the hardware interrupt handling, but leaves the hotplug
4495 * handling still disabled. It is called after intel_irq_init().
4496 *
4497 * In the driver load and resume code we need working interrupts in a few places
4498 * but don't want to deal with the hassle of concurrent probe and hotplug
4499 * workers. Hence the split into this two-stage approach.
4500 */
4501int intel_irq_install(struct drm_i915_private *dev_priv)
4502{
4503	int irq = dev_priv->drm.pdev->irq;
4504	int ret;
4505
4506	/*
4507	 * We enable some interrupt sources in our postinstall hooks, so mark
4508	 * interrupts as enabled _before_ actually enabling them to avoid
4509	 * special cases in our ordering checks.
4510	 */
4511	dev_priv->runtime_pm.irqs_enabled = true;
4512
4513	dev_priv->drm.irq_enabled = true;
4514
4515	intel_irq_reset(dev_priv);
4516
4517	ret = request_irq(irq, intel_irq_handler(dev_priv),
4518			  IRQF_SHARED, DRIVER_NAME, dev_priv);
4519	if (ret < 0) {
4520		dev_priv->drm.irq_enabled = false;
4521		return ret;
4522	}
 
 
 
 
4523
4524	intel_irq_postinstall(dev_priv);
4525
4526	return ret;
4527}
4528
4529/**
4530 * intel_irq_uninstall - finilizes all irq handling
4531 * @dev_priv: i915 device instance
4532 *
4533 * This stops interrupt and hotplug handling and unregisters and frees all
4534 * resources acquired in the init functions.
4535 */
4536void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4537{
4538	int irq = dev_priv->drm.pdev->irq;
 
 
4539
4540	/*
4541	 * FIXME we can get called twice during driver load
4542	 * error handling due to intel_modeset_cleanup()
4543	 * calling us out of sequence. Would be nice if
4544	 * it didn't do that...
4545	 */
4546	if (!dev_priv->drm.irq_enabled)
4547		return;
4548
4549	dev_priv->drm.irq_enabled = false;
 
4550
4551	intel_irq_reset(dev_priv);
 
4552
4553	free_irq(irq, dev_priv);
 
4554
4555	intel_hpd_cancel_work(dev_priv);
4556	dev_priv->runtime_pm.irqs_enabled = false;
4557}
4558
4559/**
4560 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4561 * @dev_priv: i915 device instance
4562 *
4563 * This function is used to disable interrupts at runtime, both in the runtime
4564 * pm and the system suspend/resume code.
4565 */
4566void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4567{
4568	intel_irq_reset(dev_priv);
4569	dev_priv->runtime_pm.irqs_enabled = false;
4570	intel_synchronize_irq(dev_priv);
4571}
4572
4573/**
4574 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4575 * @dev_priv: i915 device instance
4576 *
4577 * This function is used to enable interrupts at runtime, both in the runtime
4578 * pm and the system suspend/resume code.
4579 */
4580void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4581{
4582	dev_priv->runtime_pm.irqs_enabled = true;
4583	intel_irq_reset(dev_priv);
4584	intel_irq_postinstall(dev_priv);
4585}
4586
4587bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4588{
4589	/*
4590	 * We only use drm_irq_uninstall() at unload and VT switch, so
4591	 * this is the only thing we need to check.
4592	 */
4593	return dev_priv->runtime_pm.irqs_enabled;
4594}
4595
4596void intel_synchronize_irq(struct drm_i915_private *i915)
4597{
4598	synchronize_irq(i915->drm.pdev->irq);
4599}
v3.15
   1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
   2 */
   3/*
   4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
 
 
 
  31#include <linux/sysrq.h>
  32#include <linux/slab.h>
  33#include <linux/circ_buf.h>
  34#include <drm/drmP.h>
  35#include <drm/i915_drm.h>
 
 
 
 
 
 
 
 
 
 
 
  36#include "i915_drv.h"
 
  37#include "i915_trace.h"
  38#include "intel_drv.h"
 
 
 
 
 
 
 
 
 
 
  39
  40static const u32 hpd_ibx[] = {
 
 
 
 
 
 
 
 
 
 
 
 
  41	[HPD_CRT] = SDE_CRT_HOTPLUG,
  42	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
  43	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
  44	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
  45	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
  46};
  47
  48static const u32 hpd_cpt[] = {
  49	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
  50	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
  51	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  52	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  53	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
  54};
  55
  56static const u32 hpd_mask_i915[] = {
 
 
 
 
 
 
 
 
  57	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
  58	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
  59	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
  60	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
  61	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
  62	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
  63};
  64
  65static const u32 hpd_status_g4x[] = {
  66	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
  67	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
  68	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
  69	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
  70	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
  71	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
  72};
  73
  74static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
  75	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
  76	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
  77	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
  78	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
  79	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
  80	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
  81};
  82
  83/* For display hotplug interrupt */
  84static void
  85ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  86{
  87	assert_spin_locked(&dev_priv->irq_lock);
  88
  89	if (dev_priv->pm.irqs_disabled) {
  90		WARN(1, "IRQs disabled\n");
  91		dev_priv->pm.regsave.deimr &= ~mask;
  92		return;
  93	}
  94
  95	if ((dev_priv->irq_mask & mask) != 0) {
  96		dev_priv->irq_mask &= ~mask;
  97		I915_WRITE(DEIMR, dev_priv->irq_mask);
  98		POSTING_READ(DEIMR);
  99	}
 
 100}
 101
 102static void
 103ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
 104{
 105	assert_spin_locked(&dev_priv->irq_lock);
 106
 107	if (dev_priv->pm.irqs_disabled) {
 108		WARN(1, "IRQs disabled\n");
 109		dev_priv->pm.regsave.deimr |= mask;
 110		return;
 111	}
 112
 113	if ((dev_priv->irq_mask & mask) != mask) {
 114		dev_priv->irq_mask |= mask;
 115		I915_WRITE(DEIMR, dev_priv->irq_mask);
 116		POSTING_READ(DEIMR);
 117	}
 
 118}
 119
 120/**
 121 * ilk_update_gt_irq - update GTIMR
 122 * @dev_priv: driver private
 123 * @interrupt_mask: mask of interrupt bits to update
 124 * @enabled_irq_mask: mask of interrupt bits to enable
 125 */
 126static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
 127			      uint32_t interrupt_mask,
 128			      uint32_t enabled_irq_mask)
 129{
 130	assert_spin_locked(&dev_priv->irq_lock);
 131
 132	if (dev_priv->pm.irqs_disabled) {
 133		WARN(1, "IRQs disabled\n");
 134		dev_priv->pm.regsave.gtimr &= ~interrupt_mask;
 135		dev_priv->pm.regsave.gtimr |= (~enabled_irq_mask &
 136						interrupt_mask);
 137		return;
 138	}
 139
 140	dev_priv->gt_irq_mask &= ~interrupt_mask;
 141	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
 142	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
 143	POSTING_READ(GTIMR);
 144}
 145
 146void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
 
 147{
 148	ilk_update_gt_irq(dev_priv, mask, mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 149}
 150
 151void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152{
 153	ilk_update_gt_irq(dev_priv, mask, 0);
 
 
 154}
 155
 156/**
 157  * snb_update_pm_irq - update GEN6_PMIMR
 158  * @dev_priv: driver private
 159  * @interrupt_mask: mask of interrupt bits to update
 160  * @enabled_irq_mask: mask of interrupt bits to enable
 161  */
 162static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
 163			      uint32_t interrupt_mask,
 164			      uint32_t enabled_irq_mask)
 165{
 166	uint32_t new_val;
 167
 168	assert_spin_locked(&dev_priv->irq_lock);
 169
 170	if (dev_priv->pm.irqs_disabled) {
 171		WARN(1, "IRQs disabled\n");
 172		dev_priv->pm.regsave.gen6_pmimr &= ~interrupt_mask;
 173		dev_priv->pm.regsave.gen6_pmimr |= (~enabled_irq_mask &
 174						     interrupt_mask);
 175		return;
 176	}
 177
 178	new_val = dev_priv->pm_irq_mask;
 179	new_val &= ~interrupt_mask;
 180	new_val |= (~enabled_irq_mask & interrupt_mask);
 181
 182	if (new_val != dev_priv->pm_irq_mask) {
 183		dev_priv->pm_irq_mask = new_val;
 184		I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
 185		POSTING_READ(GEN6_PMIMR);
 186	}
 187}
 188
 189void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
 190{
 191	snb_update_pm_irq(dev_priv, mask, mask);
 192}
 193
 194void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
 195{
 196	snb_update_pm_irq(dev_priv, mask, 0);
 197}
 198
 199static bool ivb_can_enable_err_int(struct drm_device *dev)
 200{
 201	struct drm_i915_private *dev_priv = dev->dev_private;
 202	struct intel_crtc *crtc;
 203	enum pipe pipe;
 204
 205	assert_spin_locked(&dev_priv->irq_lock);
 206
 207	for_each_pipe(pipe) {
 208		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
 209
 210		if (crtc->cpu_fifo_underrun_disabled)
 211			return false;
 212	}
 213
 214	return true;
 215}
 216
 217static bool cpt_can_enable_serr_int(struct drm_device *dev)
 218{
 219	struct drm_i915_private *dev_priv = dev->dev_private;
 220	enum pipe pipe;
 221	struct intel_crtc *crtc;
 222
 223	assert_spin_locked(&dev_priv->irq_lock);
 
 
 
 
 224
 225	for_each_pipe(pipe) {
 226		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
 
 
 227
 228		if (crtc->pch_fifo_underrun_disabled)
 229			return false;
 230	}
 231
 232	return true;
 233}
 234
 235static void i9xx_clear_fifo_underrun(struct drm_device *dev, enum pipe pipe)
 236{
 237	struct drm_i915_private *dev_priv = dev->dev_private;
 238	u32 reg = PIPESTAT(pipe);
 239	u32 pipestat = I915_READ(reg) & 0x7fff0000;
 240
 241	assert_spin_locked(&dev_priv->irq_lock);
 
 242
 243	I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
 244	POSTING_READ(reg);
 245}
 246
 247static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
 248						 enum pipe pipe, bool enable)
 249{
 250	struct drm_i915_private *dev_priv = dev->dev_private;
 251	uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
 252					  DE_PIPEB_FIFO_UNDERRUN;
 253
 254	if (enable)
 255		ironlake_enable_display_irq(dev_priv, bit);
 256	else
 257		ironlake_disable_display_irq(dev_priv, bit);
 258}
 259
 260static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
 261						  enum pipe pipe, bool enable)
 262{
 263	struct drm_i915_private *dev_priv = dev->dev_private;
 264	if (enable) {
 265		I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
 
 
 266
 267		if (!ivb_can_enable_err_int(dev))
 268			return;
 269
 270		ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
 271	} else {
 272		bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
 273
 274		/* Change the state _after_ we've read out the current one. */
 275		ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
 276
 277		if (!was_enabled &&
 278		    (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
 279			DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
 280				      pipe_name(pipe));
 281		}
 282	}
 
 
 
 
 283}
 284
 285static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
 286						  enum pipe pipe, bool enable)
 287{
 288	struct drm_i915_private *dev_priv = dev->dev_private;
 289
 290	assert_spin_locked(&dev_priv->irq_lock);
 291
 292	if (enable)
 293		dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
 294	else
 295		dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
 296	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
 297	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
 298}
 299
 300/**
 301 * ibx_display_interrupt_update - update SDEIMR
 302 * @dev_priv: driver private
 303 * @interrupt_mask: mask of interrupt bits to update
 304 * @enabled_irq_mask: mask of interrupt bits to enable
 305 */
 306static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
 307					 uint32_t interrupt_mask,
 308					 uint32_t enabled_irq_mask)
 309{
 310	uint32_t sdeimr = I915_READ(SDEIMR);
 311	sdeimr &= ~interrupt_mask;
 312	sdeimr |= (~enabled_irq_mask & interrupt_mask);
 313
 314	assert_spin_locked(&dev_priv->irq_lock);
 315
 316	if (dev_priv->pm.irqs_disabled &&
 317	    (interrupt_mask & SDE_HOTPLUG_MASK_CPT)) {
 318		WARN(1, "IRQs disabled\n");
 319		dev_priv->pm.regsave.sdeimr &= ~interrupt_mask;
 320		dev_priv->pm.regsave.sdeimr |= (~enabled_irq_mask &
 321						 interrupt_mask);
 322		return;
 323	}
 324
 325	I915_WRITE(SDEIMR, sdeimr);
 326	POSTING_READ(SDEIMR);
 327}
 328#define ibx_enable_display_interrupt(dev_priv, bits) \
 329	ibx_display_interrupt_update((dev_priv), (bits), (bits))
 330#define ibx_disable_display_interrupt(dev_priv, bits) \
 331	ibx_display_interrupt_update((dev_priv), (bits), 0)
 332
 333static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
 334					    enum transcoder pch_transcoder,
 335					    bool enable)
 336{
 337	struct drm_i915_private *dev_priv = dev->dev_private;
 338	uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
 339		       SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
 340
 341	if (enable)
 342		ibx_enable_display_interrupt(dev_priv, bit);
 343	else
 344		ibx_disable_display_interrupt(dev_priv, bit);
 345}
 346
 347static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
 348					    enum transcoder pch_transcoder,
 349					    bool enable)
 350{
 351	struct drm_i915_private *dev_priv = dev->dev_private;
 352
 353	if (enable) {
 354		I915_WRITE(SERR_INT,
 355			   SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
 356
 357		if (!cpt_can_enable_serr_int(dev))
 358			return;
 359
 360		ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
 361	} else {
 362		uint32_t tmp = I915_READ(SERR_INT);
 363		bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
 364
 365		/* Change the state _after_ we've read out the current one. */
 366		ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
 367
 368		if (!was_enabled &&
 369		    (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
 370			DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
 371				      transcoder_name(pch_transcoder));
 372		}
 373	}
 374}
 375
 376/**
 377 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
 378 * @dev: drm device
 379 * @pipe: pipe
 380 * @enable: true if we want to report FIFO underrun errors, false otherwise
 381 *
 382 * This function makes us disable or enable CPU fifo underruns for a specific
 383 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
 384 * reporting for one pipe may also disable all the other CPU error interruts for
 385 * the other pipes, due to the fact that there's just one interrupt mask/enable
 386 * bit for all the pipes.
 387 *
 388 * Returns the previous state of underrun reporting.
 389 */
 390bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
 391					     enum pipe pipe, bool enable)
 392{
 393	struct drm_i915_private *dev_priv = dev->dev_private;
 394	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
 395	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 396	bool ret;
 397
 398	assert_spin_locked(&dev_priv->irq_lock);
 
 
 
 399
 400	ret = !intel_crtc->cpu_fifo_underrun_disabled;
 
 
 401
 402	if (enable == ret)
 403		goto done;
 
 404
 405	intel_crtc->cpu_fifo_underrun_disabled = !enable;
 406
 407	if (enable && (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev)))
 408		i9xx_clear_fifo_underrun(dev, pipe);
 409	else if (IS_GEN5(dev) || IS_GEN6(dev))
 410		ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
 411	else if (IS_GEN7(dev))
 412		ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
 413	else if (IS_GEN8(dev))
 414		broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
 415
 416done:
 417	return ret;
 418}
 419
 420bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
 421					   enum pipe pipe, bool enable)
 422{
 423	struct drm_i915_private *dev_priv = dev->dev_private;
 424	unsigned long flags;
 425	bool ret;
 426
 427	spin_lock_irqsave(&dev_priv->irq_lock, flags);
 428	ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
 429	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
 430
 431	return ret;
 432}
 
 
 
 433
 434static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
 435						  enum pipe pipe)
 436{
 437	struct drm_i915_private *dev_priv = dev->dev_private;
 438	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
 439	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 440
 441	return !intel_crtc->cpu_fifo_underrun_disabled;
 442}
 443
 444/**
 445 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
 446 * @dev: drm device
 447 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
 448 * @enable: true if we want to report FIFO underrun errors, false otherwise
 449 *
 450 * This function makes us disable or enable PCH fifo underruns for a specific
 451 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
 452 * underrun reporting for one transcoder may also disable all the other PCH
 453 * error interruts for the other transcoders, due to the fact that there's just
 454 * one interrupt mask/enable bit for all the transcoders.
 455 *
 456 * Returns the previous state of underrun reporting.
 457 */
 458bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
 459					   enum transcoder pch_transcoder,
 460					   bool enable)
 461{
 462	struct drm_i915_private *dev_priv = dev->dev_private;
 463	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
 464	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 465	unsigned long flags;
 466	bool ret;
 467
 468	/*
 469	 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
 470	 * has only one pch transcoder A that all pipes can use. To avoid racy
 471	 * pch transcoder -> pipe lookups from interrupt code simply store the
 472	 * underrun statistics in crtc A. Since we never expose this anywhere
 473	 * nor use it outside of the fifo underrun code here using the "wrong"
 474	 * crtc on LPT won't cause issues.
 475	 */
 476
 477	spin_lock_irqsave(&dev_priv->irq_lock, flags);
 478
 479	ret = !intel_crtc->pch_fifo_underrun_disabled;
 
 480
 481	if (enable == ret)
 482		goto done;
 483
 484	intel_crtc->pch_fifo_underrun_disabled = !enable;
 
 
 485
 486	if (HAS_PCH_IBX(dev))
 487		ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
 488	else
 489		cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
 490
 491done:
 492	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
 493	return ret;
 494}
 495
 496
 497static void
 498__i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
 499		       u32 enable_mask, u32 status_mask)
 
 
 
 
 
 
 
 500{
 501	u32 reg = PIPESTAT(pipe);
 502	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
 503
 504	assert_spin_locked(&dev_priv->irq_lock);
 505
 506	if (WARN_ON_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
 507	                 status_mask & ~PIPESTAT_INT_STATUS_MASK))
 508		return;
 509
 510	if ((pipestat & enable_mask) == enable_mask)
 511		return;
 512
 513	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
 
 
 514
 515	/* Enable the interrupt, clear any pending status */
 516	pipestat |= enable_mask | status_mask;
 517	I915_WRITE(reg, pipestat);
 518	POSTING_READ(reg);
 
 519}
 520
 521static void
 522__i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
 523		        u32 enable_mask, u32 status_mask)
 
 
 
 
 
 
 524{
 525	u32 reg = PIPESTAT(pipe);
 526	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
 
 527
 528	assert_spin_locked(&dev_priv->irq_lock);
 529
 530	if (WARN_ON_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
 531	                 status_mask & ~PIPESTAT_INT_STATUS_MASK))
 532		return;
 533
 534	if ((pipestat & enable_mask) == 0)
 535		return;
 536
 537	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
 538
 539	pipestat &= ~enable_mask;
 540	I915_WRITE(reg, pipestat);
 541	POSTING_READ(reg);
 542}
 543
 544static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
 
 545{
 
 546	u32 enable_mask = status_mask << 16;
 547
 
 
 
 
 
 548	/*
 549	 * On pipe A we don't support the PSR interrupt yet, on pipe B the
 550	 * same bit MBZ.
 551	 */
 552	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
 553		return 0;
 
 
 
 
 
 
 554
 555	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
 556			 SPRITE0_FLIP_DONE_INT_EN_VLV |
 557			 SPRITE1_FLIP_DONE_INT_EN_VLV);
 558	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
 559		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
 560	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
 561		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
 562
 
 
 
 
 
 
 563	return enable_mask;
 564}
 565
 566void
 567i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
 568		     u32 status_mask)
 569{
 
 570	u32 enable_mask;
 571
 572	if (IS_VALLEYVIEW(dev_priv->dev))
 573		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
 574							   status_mask);
 575	else
 576		enable_mask = status_mask << 16;
 577	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
 
 
 
 
 
 
 
 
 
 578}
 579
 580void
 581i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
 582		      u32 status_mask)
 583{
 
 584	u32 enable_mask;
 585
 586	if (IS_VALLEYVIEW(dev_priv->dev))
 587		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
 588							   status_mask);
 589	else
 590		enable_mask = status_mask << 16;
 591	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 592}
 593
 594/**
 595 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
 
 596 */
 597static void i915_enable_asle_pipestat(struct drm_device *dev)
 598{
 599	struct drm_i915_private *dev_priv = dev->dev_private;
 600	unsigned long irqflags;
 601
 602	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
 603		return;
 604
 605	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
 606
 607	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
 608	if (INTEL_INFO(dev)->gen >= 4)
 609		i915_enable_pipestat(dev_priv, PIPE_A,
 610				     PIPE_LEGACY_BLC_EVENT_STATUS);
 611
 612	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
 613}
 614
 615/**
 616 * i915_pipe_enabled - check if a pipe is enabled
 617 * @dev: DRM device
 618 * @pipe: pipe to check
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619 *
 620 * Reading certain registers when the pipe is disabled can hang the chip.
 621 * Use this routine to make sure the PLL is running and the pipe is active
 622 * before reading such registers if unsure.
 
 
 
 623 */
 624static int
 625i915_pipe_enabled(struct drm_device *dev, int pipe)
 626{
 627	struct drm_i915_private *dev_priv = dev->dev_private;
 628
 629	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
 630		/* Locking is horribly broken here, but whatever. */
 631		struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
 632		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 633
 634		return intel_crtc->active;
 635	} else {
 636		return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
 637	}
 638}
 639
 640static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
 641{
 642	/* Gen2 doesn't have a hardware frame counter */
 643	return 0;
 644}
 645
 646/* Called from drm generic code, passed a 'crtc', which
 647 * we use as a pipe index
 648 */
 649static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
 650{
 651	struct drm_i915_private *dev_priv = dev->dev_private;
 652	unsigned long high_frame;
 653	unsigned long low_frame;
 654	u32 high1, high2, low, pixel, vbl_start;
 655
 656	if (!i915_pipe_enabled(dev, pipe)) {
 657		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
 658				"pipe %c\n", pipe_name(pipe));
 
 
 
 
 
 
 
 
 
 
 
 
 659		return 0;
 660	}
 661
 662	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
 663		struct intel_crtc *intel_crtc =
 664			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
 665		const struct drm_display_mode *mode =
 666			&intel_crtc->config.adjusted_mode;
 667
 668		vbl_start = mode->crtc_vblank_start * mode->crtc_htotal;
 669	} else {
 670		enum transcoder cpu_transcoder = (enum transcoder) pipe;
 671		u32 htotal;
 672
 673		htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
 674		vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
 675
 676		vbl_start *= htotal;
 677	}
 678
 679	high_frame = PIPEFRAME(pipe);
 680	low_frame = PIPEFRAMEPIXEL(pipe);
 681
 
 
 682	/*
 683	 * High & low register fields aren't synchronized, so make sure
 684	 * we get a low value that's stable across two reads of the high
 685	 * register.
 686	 */
 687	do {
 688		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
 689		low   = I915_READ(low_frame);
 690		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
 691	} while (high1 != high2);
 692
 
 
 693	high1 >>= PIPE_FRAME_HIGH_SHIFT;
 694	pixel = low & PIPE_PIXEL_MASK;
 695	low >>= PIPE_FRAME_LOW_SHIFT;
 696
 697	/*
 698	 * The frame counter increments at beginning of active.
 699	 * Cook up a vblank counter by also checking the pixel
 700	 * counter against vblank start.
 701	 */
 702	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
 703}
 704
 705static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 706{
 707	struct drm_i915_private *dev_priv = dev->dev_private;
 708	int reg = PIPE_FRMCOUNT_GM45(pipe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 709
 710	if (!i915_pipe_enabled(dev, pipe)) {
 711		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
 712				 "pipe %c\n", pipe_name(pipe));
 713		return 0;
 714	}
 
 
 
 
 
 
 
 
 715
 716	return I915_READ(reg);
 717}
 718
 719/* raw reads, only for fast reads of display block, no need for forcewake etc. */
 720#define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 721
 722static bool ilk_pipe_in_vblank_locked(struct drm_device *dev, enum pipe pipe)
 723{
 724	struct drm_i915_private *dev_priv = dev->dev_private;
 725	uint32_t status;
 726	int reg;
 
 
 
 
 
 
 
 
 
 727
 728	if (INTEL_INFO(dev)->gen >= 8) {
 729		status = GEN8_PIPE_VBLANK;
 730		reg = GEN8_DE_PIPE_ISR(pipe);
 731	} else if (INTEL_INFO(dev)->gen >= 7) {
 732		status = DE_PIPE_VBLANK_IVB(pipe);
 733		reg = DEISR;
 734	} else {
 735		status = DE_PIPE_VBLANK(pipe);
 736		reg = DEISR;
 737	}
 738
 739	return __raw_i915_read32(dev_priv, reg) & status;
 
 
 
 
 740}
 741
 742static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
 743				    unsigned int flags, int *vpos, int *hpos,
 744				    ktime_t *stime, ktime_t *etime)
 
 745{
 746	struct drm_i915_private *dev_priv = dev->dev_private;
 747	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
 748	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 749	const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
 750	int position;
 751	int vbl_start, vbl_end, htotal, vtotal;
 752	bool in_vbl = true;
 753	int ret = 0;
 754	unsigned long irqflags;
 
 
 
 755
 756	if (!intel_crtc->active) {
 757		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
 758				 "pipe %c\n", pipe_name(pipe));
 759		return 0;
 760	}
 761
 762	htotal = mode->crtc_htotal;
 
 763	vtotal = mode->crtc_vtotal;
 764	vbl_start = mode->crtc_vblank_start;
 765	vbl_end = mode->crtc_vblank_end;
 766
 767	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 768		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 769		vbl_end /= 2;
 770		vtotal /= 2;
 771	}
 772
 773	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
 774
 775	/*
 776	 * Lock uncore.lock, as we will do multiple timing critical raw
 777	 * register reads, potentially with preemption disabled, so the
 778	 * following code must not block on uncore.lock.
 779	 */
 780	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 781	
 782	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
 783
 784	/* Get optional system timestamp before query. */
 785	if (stime)
 786		*stime = ktime_get();
 787
 788	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
 789		/* No obvious pixelcount register. Only query vertical
 790		 * scanout position from Display scan line register.
 791		 */
 792		if (IS_GEN2(dev))
 793			position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
 794		else
 795			position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
 796
 797		if (HAS_DDI(dev)) {
 798			/*
 799			 * On HSW HDMI outputs there seems to be a 2 line
 800			 * difference, whereas eDP has the normal 1 line
 801			 * difference that earlier platforms have. External
 802			 * DP is unknown. For now just check for the 2 line
 803			 * difference case on all output types on HSW+.
 804			 *
 805			 * This might misinterpret the scanline counter being
 806			 * one line too far along on eDP, but that's less
 807			 * dangerous than the alternative since that would lead
 808			 * the vblank timestamp code astray when it sees a
 809			 * scanline count before vblank_start during a vblank
 810			 * interrupt.
 811			 */
 812			in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
 813			if ((in_vbl && (position == vbl_start - 2 ||
 814					position == vbl_start - 1)) ||
 815			    (!in_vbl && (position == vbl_end - 2 ||
 816					 position == vbl_end - 1)))
 817				position = (position + 2) % vtotal;
 818		} else if (HAS_PCH_SPLIT(dev)) {
 819			/*
 820			 * The scanline counter increments at the leading edge
 821			 * of hsync, ie. it completely misses the active portion
 822			 * of the line. Fix up the counter at both edges of vblank
 823			 * to get a more accurate picture whether we're in vblank
 824			 * or not.
 825			 */
 826			in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
 827			if ((in_vbl && position == vbl_start - 1) ||
 828			    (!in_vbl && position == vbl_end - 1))
 829				position = (position + 1) % vtotal;
 830		} else {
 831			/*
 832			 * ISR vblank status bits don't work the way we'd want
 833			 * them to work on non-PCH platforms (for
 834			 * ilk_pipe_in_vblank_locked()), and there doesn't
 835			 * appear any other way to determine if we're currently
 836			 * in vblank.
 837			 *
 838			 * Instead let's assume that we're already in vblank if
 839			 * we got called from the vblank interrupt and the
 840			 * scanline counter value indicates that we're on the
 841			 * line just prior to vblank start. This should result
 842			 * in the correct answer, unless the vblank interrupt
 843			 * delivery really got delayed for almost exactly one
 844			 * full frame/field.
 845			 */
 846			if (flags & DRM_CALLED_FROM_VBLIRQ &&
 847			    position == vbl_start - 1) {
 848				position = (position + 1) % vtotal;
 849
 850				/* Signal this correction as "applied". */
 851				ret |= 0x8;
 852			}
 853		}
 854	} else {
 855		/* Have access to pixelcount since start of frame.
 856		 * We can split this into vertical and horizontal
 857		 * scanout position.
 858		 */
 859		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
 860
 861		/* convert to pixel counts */
 862		vbl_start *= htotal;
 863		vbl_end *= htotal;
 864		vtotal *= htotal;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 865	}
 866
 867	/* Get optional system timestamp after query. */
 868	if (etime)
 869		*etime = ktime_get();
 870
 871	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
 872
 873	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 874
 875	in_vbl = position >= vbl_start && position < vbl_end;
 876
 877	/*
 878	 * While in vblank, position will be negative
 879	 * counting up towards 0 at vbl_end. And outside
 880	 * vblank, position will be positive counting
 881	 * up since vbl_end.
 882	 */
 883	if (position >= vbl_start)
 884		position -= vbl_end;
 885	else
 886		position += vtotal - vbl_end;
 887
 888	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
 889		*vpos = position;
 890		*hpos = 0;
 891	} else {
 892		*vpos = position / htotal;
 893		*hpos = position - (*vpos * htotal);
 894	}
 895
 896	/* In vblank? */
 897	if (in_vbl)
 898		ret |= DRM_SCANOUTPOS_INVBL;
 899
 900	return ret;
 901}
 902
 903static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
 904			      int *max_error,
 905			      struct timeval *vblank_time,
 906			      unsigned flags)
 907{
 908	struct drm_crtc *crtc;
 909
 910	if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
 911		DRM_ERROR("Invalid crtc %d\n", pipe);
 912		return -EINVAL;
 913	}
 914
 915	/* Get drm_crtc to timestamp: */
 916	crtc = intel_get_crtc_for_pipe(dev, pipe);
 917	if (crtc == NULL) {
 918		DRM_ERROR("Invalid crtc %d\n", pipe);
 919		return -EINVAL;
 920	}
 921
 922	if (!crtc->enabled) {
 923		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
 924		return -EBUSY;
 925	}
 926
 927	/* Helper routine in DRM core does all the work: */
 928	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
 929						     vblank_time, flags,
 930						     crtc,
 931						     &to_intel_crtc(crtc)->config.adjusted_mode);
 932}
 933
 934static bool intel_hpd_irq_event(struct drm_device *dev,
 935				struct drm_connector *connector)
 936{
 937	enum drm_connector_status old_status;
 938
 939	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
 940	old_status = connector->status;
 941
 942	connector->status = connector->funcs->detect(connector, false);
 943	if (old_status == connector->status)
 944		return false;
 945
 946	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
 947		      connector->base.id,
 948		      drm_get_connector_name(connector),
 949		      drm_get_connector_status_name(old_status),
 950		      drm_get_connector_status_name(connector->status));
 951
 952	return true;
 953}
 954
 955/*
 956 * Handle hotplug events outside the interrupt handler proper.
 957 */
 958#define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
 959
 960static void i915_hotplug_work_func(struct work_struct *work)
 961{
 962	struct drm_i915_private *dev_priv =
 963		container_of(work, struct drm_i915_private, hotplug_work);
 964	struct drm_device *dev = dev_priv->dev;
 965	struct drm_mode_config *mode_config = &dev->mode_config;
 966	struct intel_connector *intel_connector;
 967	struct intel_encoder *intel_encoder;
 968	struct drm_connector *connector;
 969	unsigned long irqflags;
 970	bool hpd_disabled = false;
 971	bool changed = false;
 972	u32 hpd_event_bits;
 973
 974	/* HPD irq before everything is fully set up. */
 975	if (!dev_priv->enable_hotplug_processing)
 976		return;
 977
 978	mutex_lock(&mode_config->mutex);
 979	DRM_DEBUG_KMS("running encoder hotplug functions\n");
 980
 981	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
 982
 983	hpd_event_bits = dev_priv->hpd_event_bits;
 984	dev_priv->hpd_event_bits = 0;
 985	list_for_each_entry(connector, &mode_config->connector_list, head) {
 986		intel_connector = to_intel_connector(connector);
 987		intel_encoder = intel_connector->encoder;
 988		if (intel_encoder->hpd_pin > HPD_NONE &&
 989		    dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
 990		    connector->polled == DRM_CONNECTOR_POLL_HPD) {
 991			DRM_INFO("HPD interrupt storm detected on connector %s: "
 992				 "switching from hotplug detection to polling\n",
 993				drm_get_connector_name(connector));
 994			dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
 995			connector->polled = DRM_CONNECTOR_POLL_CONNECT
 996				| DRM_CONNECTOR_POLL_DISCONNECT;
 997			hpd_disabled = true;
 998		}
 999		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1000			DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1001				      drm_get_connector_name(connector), intel_encoder->hpd_pin);
1002		}
1003	}
1004	 /* if there were no outputs to poll, poll was disabled,
1005	  * therefore make sure it's enabled when disabling HPD on
1006	  * some connectors */
1007	if (hpd_disabled) {
1008		drm_kms_helper_poll_enable(dev);
1009		mod_timer(&dev_priv->hotplug_reenable_timer,
1010			  jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1011	}
1012
1013	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1014
1015	list_for_each_entry(connector, &mode_config->connector_list, head) {
1016		intel_connector = to_intel_connector(connector);
1017		intel_encoder = intel_connector->encoder;
1018		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1019			if (intel_encoder->hot_plug)
1020				intel_encoder->hot_plug(intel_encoder);
1021			if (intel_hpd_irq_event(dev, connector))
1022				changed = true;
1023		}
1024	}
1025	mutex_unlock(&mode_config->mutex);
1026
1027	if (changed)
1028		drm_kms_helper_hotplug_event(dev);
1029}
1030
1031static void intel_hpd_irq_uninstall(struct drm_i915_private *dev_priv)
1032{
1033	del_timer_sync(&dev_priv->hotplug_reenable_timer);
1034}
1035
1036static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1037{
1038	struct drm_i915_private *dev_priv = dev->dev_private;
1039	u32 busy_up, busy_down, max_avg, min_avg;
1040	u8 new_delay;
1041
1042	spin_lock(&mchdev_lock);
1043
1044	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
 
 
1045
1046	new_delay = dev_priv->ips.cur_delay;
1047
1048	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1049	busy_up = I915_READ(RCPREVBSYTUPAVG);
1050	busy_down = I915_READ(RCPREVBSYTDNAVG);
1051	max_avg = I915_READ(RCBMAXAVG);
1052	min_avg = I915_READ(RCBMINAVG);
1053
1054	/* Handle RCS change request from hw */
1055	if (busy_up > max_avg) {
1056		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1057			new_delay = dev_priv->ips.cur_delay - 1;
1058		if (new_delay < dev_priv->ips.max_delay)
1059			new_delay = dev_priv->ips.max_delay;
1060	} else if (busy_down < min_avg) {
1061		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1062			new_delay = dev_priv->ips.cur_delay + 1;
1063		if (new_delay > dev_priv->ips.min_delay)
1064			new_delay = dev_priv->ips.min_delay;
1065	}
1066
1067	if (ironlake_set_drps(dev, new_delay))
1068		dev_priv->ips.cur_delay = new_delay;
1069
1070	spin_unlock(&mchdev_lock);
1071
1072	return;
1073}
1074
1075static void notify_ring(struct drm_device *dev,
1076			struct intel_ring_buffer *ring)
1077{
1078	if (ring->obj == NULL)
1079		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1080
1081	trace_i915_gem_request_complete(ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1082
1083	wake_up_all(&ring->irq_queue);
1084	i915_queue_hangcheck(dev);
1085}
1086
1087static void gen6_pm_rps_work(struct work_struct *work)
1088{
1089	struct drm_i915_private *dev_priv =
1090		container_of(work, struct drm_i915_private, rps.work);
1091	u32 pm_iir;
1092	int new_delay, adj;
1093
1094	spin_lock_irq(&dev_priv->irq_lock);
1095	pm_iir = dev_priv->rps.pm_iir;
1096	dev_priv->rps.pm_iir = 0;
1097	/* Make sure not to corrupt PMIMR state used by ringbuffer code */
1098	snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1099	spin_unlock_irq(&dev_priv->irq_lock);
 
 
 
1100
1101	/* Make sure we didn't queue anything we're not going to process. */
1102	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
 
 
1103
1104	if ((pm_iir & dev_priv->pm_rps_events) == 0)
1105		return;
1106
1107	mutex_lock(&dev_priv->rps.hw_lock);
1108
1109	adj = dev_priv->rps.last_adj;
1110	if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
 
 
 
 
 
 
 
 
1111		if (adj > 0)
1112			adj *= 2;
1113		else
1114			adj = 1;
1115		new_delay = dev_priv->rps.cur_freq + adj;
1116
1117		/*
1118		 * For better performance, jump directly
1119		 * to RPe if we're below it.
1120		 */
1121		if (new_delay < dev_priv->rps.efficient_freq)
1122			new_delay = dev_priv->rps.efficient_freq;
1123	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1124		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1125			new_delay = dev_priv->rps.efficient_freq;
1126		else
1127			new_delay = dev_priv->rps.min_freq_softlimit;
1128		adj = 0;
1129	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1130		if (adj < 0)
1131			adj *= 2;
1132		else
1133			adj = -1;
1134		new_delay = dev_priv->rps.cur_freq + adj;
 
 
1135	} else { /* unknown event */
1136		new_delay = dev_priv->rps.cur_freq;
1137	}
1138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139	/* sysfs frequency interfaces may have snuck in while servicing the
1140	 * interrupt
1141	 */
1142	new_delay = clamp_t(int, new_delay,
1143			    dev_priv->rps.min_freq_softlimit,
1144			    dev_priv->rps.max_freq_softlimit);
1145
1146	dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
 
 
 
1147
1148	if (IS_VALLEYVIEW(dev_priv->dev))
1149		valleyview_set_rps(dev_priv->dev, new_delay);
1150	else
1151		gen6_set_rps(dev_priv->dev, new_delay);
1152
1153	mutex_unlock(&dev_priv->rps.hw_lock);
 
 
 
 
 
1154}
1155
1156
1157/**
1158 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1159 * occurred.
1160 * @work: workqueue struct
1161 *
1162 * Doesn't actually do anything except notify userspace. As a consequence of
1163 * this event, userspace should try to remap the bad rows since statistically
1164 * it is likely the same row is more likely to go bad again.
1165 */
1166static void ivybridge_parity_work(struct work_struct *work)
1167{
1168	struct drm_i915_private *dev_priv =
1169		container_of(work, struct drm_i915_private, l3_parity.error_work);
 
1170	u32 error_status, row, bank, subbank;
1171	char *parity_event[6];
1172	uint32_t misccpctl;
1173	unsigned long flags;
1174	uint8_t slice = 0;
1175
1176	/* We must turn off DOP level clock gating to access the L3 registers.
1177	 * In order to prevent a get/put style interface, acquire struct mutex
1178	 * any time we access those registers.
1179	 */
1180	mutex_lock(&dev_priv->dev->struct_mutex);
1181
1182	/* If we've screwed up tracking, just let the interrupt fire again */
1183	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1184		goto out;
1185
1186	misccpctl = I915_READ(GEN7_MISCCPCTL);
1187	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1188	POSTING_READ(GEN7_MISCCPCTL);
1189
1190	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1191		u32 reg;
1192
1193		slice--;
1194		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1195			break;
1196
1197		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1198
1199		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1200
1201		error_status = I915_READ(reg);
1202		row = GEN7_PARITY_ERROR_ROW(error_status);
1203		bank = GEN7_PARITY_ERROR_BANK(error_status);
1204		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1205
1206		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1207		POSTING_READ(reg);
1208
1209		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1210		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1211		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1212		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1213		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1214		parity_event[5] = NULL;
1215
1216		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1217				   KOBJ_CHANGE, parity_event);
1218
1219		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1220			  slice, row, bank, subbank);
1221
1222		kfree(parity_event[4]);
1223		kfree(parity_event[3]);
1224		kfree(parity_event[2]);
1225		kfree(parity_event[1]);
1226	}
1227
1228	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1229
1230out:
1231	WARN_ON(dev_priv->l3_parity.which_slice);
1232	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1233	ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1234	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1235
1236	mutex_unlock(&dev_priv->dev->struct_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237}
1238
1239static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1240{
1241	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 
 
 
 
 
 
1242
1243	if (!HAS_L3_DPF(dev))
1244		return;
 
 
 
 
 
 
 
 
 
 
 
1245
1246	spin_lock(&dev_priv->irq_lock);
1247	ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1248	spin_unlock(&dev_priv->irq_lock);
 
 
 
 
 
 
 
 
 
 
 
 
1249
1250	iir &= GT_PARITY_ERROR(dev);
1251	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1252		dev_priv->l3_parity.which_slice |= 1 << 1;
 
 
 
 
 
 
 
 
 
 
1253
1254	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1255		dev_priv->l3_parity.which_slice |= 1 << 0;
1256
1257	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1258}
1259
1260static void ilk_gt_irq_handler(struct drm_device *dev,
1261			       struct drm_i915_private *dev_priv,
1262			       u32 gt_iir)
1263{
1264	if (gt_iir &
1265	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1266		notify_ring(dev, &dev_priv->ring[RCS]);
1267	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1268		notify_ring(dev, &dev_priv->ring[VCS]);
 
1269}
1270
1271static void snb_gt_irq_handler(struct drm_device *dev,
1272			       struct drm_i915_private *dev_priv,
1273			       u32 gt_iir)
1274{
1275
1276	if (gt_iir &
1277	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1278		notify_ring(dev, &dev_priv->ring[RCS]);
1279	if (gt_iir & GT_BSD_USER_INTERRUPT)
1280		notify_ring(dev, &dev_priv->ring[VCS]);
1281	if (gt_iir & GT_BLT_USER_INTERRUPT)
1282		notify_ring(dev, &dev_priv->ring[BCS]);
1283
1284	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1285		      GT_BSD_CS_ERROR_INTERRUPT |
1286		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1287		i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1288				  gt_iir);
1289	}
1290
1291	if (gt_iir & GT_PARITY_ERROR(dev))
1292		ivybridge_parity_error_irq_handler(dev, gt_iir);
1293}
1294
1295static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1296				       struct drm_i915_private *dev_priv,
1297				       u32 master_ctl)
1298{
1299	u32 rcs, bcs, vcs;
1300	uint32_t tmp = 0;
1301	irqreturn_t ret = IRQ_NONE;
1302
1303	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1304		tmp = I915_READ(GEN8_GT_IIR(0));
1305		if (tmp) {
1306			ret = IRQ_HANDLED;
1307			rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1308			bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1309			if (rcs & GT_RENDER_USER_INTERRUPT)
1310				notify_ring(dev, &dev_priv->ring[RCS]);
1311			if (bcs & GT_RENDER_USER_INTERRUPT)
1312				notify_ring(dev, &dev_priv->ring[BCS]);
1313			I915_WRITE(GEN8_GT_IIR(0), tmp);
1314		} else
1315			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1316	}
 
1317
1318	if (master_ctl & GEN8_GT_VCS1_IRQ) {
1319		tmp = I915_READ(GEN8_GT_IIR(1));
1320		if (tmp) {
1321			ret = IRQ_HANDLED;
1322			vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1323			if (vcs & GT_RENDER_USER_INTERRUPT)
1324				notify_ring(dev, &dev_priv->ring[VCS]);
1325			I915_WRITE(GEN8_GT_IIR(1), tmp);
1326		} else
1327			DRM_ERROR("The master control interrupt lied (GT1)!\n");
 
1328	}
 
1329
1330	if (master_ctl & GEN8_GT_VECS_IRQ) {
1331		tmp = I915_READ(GEN8_GT_IIR(3));
1332		if (tmp) {
1333			ret = IRQ_HANDLED;
1334			vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1335			if (vcs & GT_RENDER_USER_INTERRUPT)
1336				notify_ring(dev, &dev_priv->ring[VECS]);
1337			I915_WRITE(GEN8_GT_IIR(3), tmp);
1338		} else
1339			DRM_ERROR("The master control interrupt lied (GT3)!\n");
 
1340	}
1341
1342	return ret;
1343}
1344
1345#define HPD_STORM_DETECT_PERIOD 1000
1346#define HPD_STORM_THRESHOLD 5
1347
1348static inline void intel_hpd_irq_handler(struct drm_device *dev,
1349					 u32 hotplug_trigger,
1350					 const u32 *hpd)
 
 
 
 
 
 
1351{
1352	struct drm_i915_private *dev_priv = dev->dev_private;
1353	int i;
1354	bool storm_detected = false;
1355
1356	if (!hotplug_trigger)
1357		return;
1358
1359	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1360			  hotplug_trigger);
1361
1362	spin_lock(&dev_priv->irq_lock);
1363	for (i = 1; i < HPD_NUM_PINS; i++) {
1364
1365		if (hpd[i] & hotplug_trigger &&
1366		    dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1367			/*
1368			 * On GMCH platforms the interrupt mask bits only
1369			 * prevent irq generation, not the setting of the
1370			 * hotplug bits itself. So only WARN about unexpected
1371			 * interrupts on saner platforms.
1372			 */
1373			WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1374				  "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1375				  hotplug_trigger, i, hpd[i]);
1376
 
 
1377			continue;
1378		}
1379
1380		if (!(hpd[i] & hotplug_trigger) ||
1381		    dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1382			continue;
1383
1384		dev_priv->hpd_event_bits |= (1 << i);
1385		if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1386				   dev_priv->hpd_stats[i].hpd_last_jiffies
1387				   + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1388			dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1389			dev_priv->hpd_stats[i].hpd_cnt = 0;
1390			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1391		} else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1392			dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1393			dev_priv->hpd_event_bits &= ~(1 << i);
1394			DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1395			storm_detected = true;
1396		} else {
1397			dev_priv->hpd_stats[i].hpd_cnt++;
1398			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1399				      dev_priv->hpd_stats[i].hpd_cnt);
1400		}
1401	}
1402
1403	if (storm_detected)
1404		dev_priv->display.hpd_irq_setup(dev);
1405	spin_unlock(&dev_priv->irq_lock);
1406
1407	/*
1408	 * Our hotplug handler can grab modeset locks (by calling down into the
1409	 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1410	 * queue for otherwise the flush_work in the pageflip code will
1411	 * deadlock.
1412	 */
1413	schedule_work(&dev_priv->hotplug_work);
1414}
1415
1416static void gmbus_irq_handler(struct drm_device *dev)
1417{
1418	struct drm_i915_private *dev_priv = dev->dev_private;
1419
1420	wake_up_all(&dev_priv->gmbus_wait_queue);
1421}
1422
1423static void dp_aux_irq_handler(struct drm_device *dev)
1424{
1425	struct drm_i915_private *dev_priv = dev->dev_private;
1426
1427	wake_up_all(&dev_priv->gmbus_wait_queue);
1428}
1429
1430#if defined(CONFIG_DEBUG_FS)
1431static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1432					 uint32_t crc0, uint32_t crc1,
1433					 uint32_t crc2, uint32_t crc3,
1434					 uint32_t crc4)
 
1435{
1436	struct drm_i915_private *dev_priv = dev->dev_private;
1437	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1438	struct intel_pipe_crc_entry *entry;
1439	int head, tail;
 
 
1440
1441	spin_lock(&pipe_crc->lock);
1442
1443	if (!pipe_crc->entries) {
 
 
 
 
 
 
 
 
 
1444		spin_unlock(&pipe_crc->lock);
1445		DRM_ERROR("spurious interrupt\n");
1446		return;
1447	}
1448
1449	head = pipe_crc->head;
1450	tail = pipe_crc->tail;
1451
1452	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1453		spin_unlock(&pipe_crc->lock);
1454		DRM_ERROR("CRC buffer overflowing\n");
1455		return;
1456	}
1457
1458	entry = &pipe_crc->entries[head];
1459
1460	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1461	entry->crc[0] = crc0;
1462	entry->crc[1] = crc1;
1463	entry->crc[2] = crc2;
1464	entry->crc[3] = crc3;
1465	entry->crc[4] = crc4;
1466
1467	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1468	pipe_crc->head = head;
1469
1470	spin_unlock(&pipe_crc->lock);
1471
1472	wake_up_interruptible(&pipe_crc->wq);
 
 
1473}
1474#else
1475static inline void
1476display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1477			     uint32_t crc0, uint32_t crc1,
1478			     uint32_t crc2, uint32_t crc3,
1479			     uint32_t crc4) {}
 
1480#endif
1481
1482
1483static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
 
1484{
1485	struct drm_i915_private *dev_priv = dev->dev_private;
1486
1487	display_pipe_crc_irq_handler(dev, pipe,
1488				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1489				     0, 0, 0, 0);
1490}
1491
1492static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
 
1493{
1494	struct drm_i915_private *dev_priv = dev->dev_private;
1495
1496	display_pipe_crc_irq_handler(dev, pipe,
1497				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1498				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1499				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1500				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1501				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1502}
1503
1504static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
 
1505{
1506	struct drm_i915_private *dev_priv = dev->dev_private;
1507	uint32_t res1, res2;
1508
1509	if (INTEL_INFO(dev)->gen >= 3)
1510		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1511	else
1512		res1 = 0;
1513
1514	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1515		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1516	else
1517		res2 = 0;
1518
1519	display_pipe_crc_irq_handler(dev, pipe,
1520				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1521				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1522				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1523				     res1, res2);
1524}
1525
1526/* The RPS events need forcewake, so we add them to a work queue and mask their
1527 * IMR bits until the work is done. Other interrupts can be processed without
1528 * the work queue. */
1529static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1530{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1531	if (pm_iir & dev_priv->pm_rps_events) {
1532		spin_lock(&dev_priv->irq_lock);
1533		dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1534		snb_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1535		spin_unlock(&dev_priv->irq_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1536
1537		queue_work(dev_priv->wq, &dev_priv->rps.work);
1538	}
 
1539
1540	if (HAS_VEBOX(dev_priv->dev)) {
1541		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1542			notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
 
1543
1544		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1545			i915_handle_error(dev_priv->dev, false,
1546					  "VEBOX CS error interrupt 0x%08x",
1547					  pm_iir);
1548		}
1549	}
1550}
1551
1552static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
 
1553{
1554	struct drm_i915_private *dev_priv = dev->dev_private;
1555	u32 pipe_stats[I915_MAX_PIPES] = { };
1556	int pipe;
1557
1558	spin_lock(&dev_priv->irq_lock);
1559	for_each_pipe(pipe) {
1560		int reg;
1561		u32 mask, iir_bit = 0;
 
 
 
 
 
 
1562
1563		/*
1564		 * PIPESTAT bits get signalled even when the interrupt is
1565		 * disabled with the mask bits, and some of the status bits do
1566		 * not generate interrupts at all (like the underrun bit). Hence
1567		 * we need to be careful that we only handle what we want to
1568		 * handle.
1569		 */
1570		mask = 0;
1571		if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
1572			mask |= PIPE_FIFO_UNDERRUN_STATUS;
1573
1574		switch (pipe) {
1575		case PIPE_A:
1576			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1577			break;
1578		case PIPE_B:
1579			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1580			break;
 
 
 
1581		}
1582		if (iir & iir_bit)
1583			mask |= dev_priv->pipestat_irq_mask[pipe];
1584
1585		if (!mask)
1586			continue;
1587
1588		reg = PIPESTAT(pipe);
1589		mask |= PIPESTAT_INT_ENABLE_MASK;
1590		pipe_stats[pipe] = I915_READ(reg) & mask;
1591
1592		/*
1593		 * Clear the PIPE*STAT regs before the IIR
 
 
 
 
 
 
1594		 */
1595		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1596					PIPESTAT_INT_STATUS_MASK))
1597			I915_WRITE(reg, pipe_stats[pipe]);
 
 
1598	}
1599	spin_unlock(&dev_priv->irq_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1600
1601	for_each_pipe(pipe) {
1602		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1603			drm_handle_vblank(dev, pipe);
 
 
 
 
 
 
 
 
 
 
1604
1605		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1606			intel_prepare_page_flip(dev, pipe);
1607			intel_finish_page_flip(dev, pipe);
1608		}
 
 
 
 
 
 
 
 
 
 
 
1609
1610		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1611			i9xx_pipe_crc_irq_handler(dev, pipe);
1612
1613		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
1614		    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1615			DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
1616	}
1617
1618	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1619		gmbus_irq_handler(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1620}
1621
1622static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1623{
1624	struct drm_device *dev = (struct drm_device *) arg;
1625	struct drm_i915_private *dev_priv = dev->dev_private;
1626	u32 iir, gt_iir, pm_iir;
1627	irqreturn_t ret = IRQ_NONE;
1628
1629	while (true) {
1630		iir = I915_READ(VLV_IIR);
 
 
 
 
 
 
 
 
 
 
1631		gt_iir = I915_READ(GTIIR);
1632		pm_iir = I915_READ(GEN6_PMIIR);
 
1633
1634		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1635			goto out;
1636
1637		ret = IRQ_HANDLED;
1638
1639		snb_gt_irq_handler(dev, dev_priv, gt_iir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1640
1641		valleyview_pipestat_irq_handler(dev, iir);
 
 
 
1642
1643		/* Consume port.  Then clear IIR or we'll miss events */
1644		if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1645			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1646			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1647
1648			intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
 
 
 
 
 
 
1649
1650			if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1651				dp_aux_irq_handler(dev);
1652
1653			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1654			I915_READ(PORT_HOTPLUG_STAT);
1655		}
1656
 
 
1657
 
 
1658		if (pm_iir)
1659			gen6_rps_irq_handler(dev_priv, pm_iir);
1660
1661		I915_WRITE(GTIIR, gt_iir);
1662		I915_WRITE(GEN6_PMIIR, pm_iir);
1663		I915_WRITE(VLV_IIR, iir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1664	}
1665
1666out:
1667	return ret;
 
 
 
 
 
 
 
1668}
1669
1670static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1671{
1672	struct drm_i915_private *dev_priv = dev->dev_private;
1673	int pipe;
1674	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1675
1676	intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1677
1678	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1679		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1680			       SDE_AUDIO_POWER_SHIFT);
1681		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1682				 port_name(port));
1683	}
1684
1685	if (pch_iir & SDE_AUX_MASK)
1686		dp_aux_irq_handler(dev);
1687
1688	if (pch_iir & SDE_GMBUS)
1689		gmbus_irq_handler(dev);
1690
1691	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1692		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1693
1694	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1695		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1696
1697	if (pch_iir & SDE_POISON)
1698		DRM_ERROR("PCH poison interrupt\n");
1699
1700	if (pch_iir & SDE_FDI_MASK)
1701		for_each_pipe(pipe)
1702			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1703					 pipe_name(pipe),
1704					 I915_READ(FDI_RX_IIR(pipe)));
1705
1706	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1707		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1708
1709	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1710		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1711
1712	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1713		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1714							  false))
1715			DRM_ERROR("PCH transcoder A FIFO underrun\n");
1716
1717	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1718		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1719							  false))
1720			DRM_ERROR("PCH transcoder B FIFO underrun\n");
1721}
1722
1723static void ivb_err_int_handler(struct drm_device *dev)
1724{
1725	struct drm_i915_private *dev_priv = dev->dev_private;
1726	u32 err_int = I915_READ(GEN7_ERR_INT);
1727	enum pipe pipe;
1728
1729	if (err_int & ERR_INT_POISON)
1730		DRM_ERROR("Poison interrupt\n");
1731
1732	for_each_pipe(pipe) {
1733		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
1734			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1735								  false))
1736				DRM_ERROR("Pipe %c FIFO underrun\n",
1737					  pipe_name(pipe));
1738		}
1739
1740		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1741			if (IS_IVYBRIDGE(dev))
1742				ivb_pipe_crc_irq_handler(dev, pipe);
1743			else
1744				hsw_pipe_crc_irq_handler(dev, pipe);
1745		}
1746	}
1747
1748	I915_WRITE(GEN7_ERR_INT, err_int);
1749}
1750
1751static void cpt_serr_int_handler(struct drm_device *dev)
1752{
1753	struct drm_i915_private *dev_priv = dev->dev_private;
1754	u32 serr_int = I915_READ(SERR_INT);
 
1755
1756	if (serr_int & SERR_INT_POISON)
1757		DRM_ERROR("PCH poison interrupt\n");
1758
1759	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1760		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1761							  false))
1762			DRM_ERROR("PCH transcoder A FIFO underrun\n");
1763
1764	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1765		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1766							  false))
1767			DRM_ERROR("PCH transcoder B FIFO underrun\n");
1768
1769	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1770		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1771							  false))
1772			DRM_ERROR("PCH transcoder C FIFO underrun\n");
1773
1774	I915_WRITE(SERR_INT, serr_int);
1775}
1776
1777static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1778{
1779	struct drm_i915_private *dev_priv = dev->dev_private;
1780	int pipe;
1781	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1782
1783	intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1784
1785	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1786		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1787			       SDE_AUDIO_POWER_SHIFT_CPT);
1788		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1789				 port_name(port));
1790	}
1791
1792	if (pch_iir & SDE_AUX_MASK_CPT)
1793		dp_aux_irq_handler(dev);
1794
1795	if (pch_iir & SDE_GMBUS_CPT)
1796		gmbus_irq_handler(dev);
1797
1798	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1799		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1800
1801	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1802		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1803
1804	if (pch_iir & SDE_FDI_MASK_CPT)
1805		for_each_pipe(pipe)
1806			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1807					 pipe_name(pipe),
1808					 I915_READ(FDI_RX_IIR(pipe)));
1809
1810	if (pch_iir & SDE_ERROR_CPT)
1811		cpt_serr_int_handler(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1812}
1813
1814static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1815{
1816	struct drm_i915_private *dev_priv = dev->dev_private;
1817	enum pipe pipe;
 
 
 
 
1818
1819	if (de_iir & DE_AUX_CHANNEL_A)
1820		dp_aux_irq_handler(dev);
1821
1822	if (de_iir & DE_GSE)
1823		intel_opregion_asle_intr(dev);
1824
1825	if (de_iir & DE_POISON)
1826		DRM_ERROR("Poison interrupt\n");
1827
1828	for_each_pipe(pipe) {
1829		if (de_iir & DE_PIPE_VBLANK(pipe))
1830			drm_handle_vblank(dev, pipe);
1831
1832		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1833			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1834				DRM_ERROR("Pipe %c FIFO underrun\n",
1835					  pipe_name(pipe));
1836
1837		if (de_iir & DE_PIPE_CRC_DONE(pipe))
1838			i9xx_pipe_crc_irq_handler(dev, pipe);
1839
1840		/* plane/pipes map 1:1 on ilk+ */
1841		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
1842			intel_prepare_page_flip(dev, pipe);
1843			intel_finish_page_flip_plane(dev, pipe);
1844		}
1845	}
1846
1847	/* check event from PCH */
1848	if (de_iir & DE_PCH_EVENT) {
1849		u32 pch_iir = I915_READ(SDEIIR);
1850
1851		if (HAS_PCH_CPT(dev))
1852			cpt_irq_handler(dev, pch_iir);
1853		else
1854			ibx_irq_handler(dev, pch_iir);
1855
1856		/* should clear PCH hotplug event before clear CPU irq */
1857		I915_WRITE(SDEIIR, pch_iir);
1858	}
1859
1860	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1861		ironlake_rps_change_irq_handler(dev);
1862}
1863
1864static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
 
1865{
1866	struct drm_i915_private *dev_priv = dev->dev_private;
1867	enum pipe pipe;
 
 
 
 
1868
1869	if (de_iir & DE_ERR_INT_IVB)
1870		ivb_err_int_handler(dev);
 
 
 
 
 
 
 
1871
1872	if (de_iir & DE_AUX_CHANNEL_A_IVB)
1873		dp_aux_irq_handler(dev);
1874
1875	if (de_iir & DE_GSE_IVB)
1876		intel_opregion_asle_intr(dev);
1877
1878	for_each_pipe(pipe) {
1879		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
1880			drm_handle_vblank(dev, pipe);
1881
1882		/* plane/pipes map 1:1 on ilk+ */
1883		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
1884			intel_prepare_page_flip(dev, pipe);
1885			intel_finish_page_flip_plane(dev, pipe);
1886		}
1887	}
1888
1889	/* check event from PCH */
1890	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1891		u32 pch_iir = I915_READ(SDEIIR);
1892
1893		cpt_irq_handler(dev, pch_iir);
1894
1895		/* clear PCH hotplug event before clear CPU irq */
1896		I915_WRITE(SDEIIR, pch_iir);
1897	}
1898}
1899
 
 
 
 
 
 
 
 
1900static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1901{
1902	struct drm_device *dev = (struct drm_device *) arg;
1903	struct drm_i915_private *dev_priv = dev->dev_private;
1904	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1905	irqreturn_t ret = IRQ_NONE;
1906
1907	/* We get interrupts on unclaimed registers, so check for this before we
1908	 * do any I915_{READ,WRITE}. */
1909	intel_uncore_check_errors(dev);
 
 
1910
1911	/* disable master interrupt before clearing iir  */
1912	de_ier = I915_READ(DEIER);
1913	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1914	POSTING_READ(DEIER);
1915
1916	/* Disable south interrupts. We'll only write to SDEIIR once, so further
1917	 * interrupts will will be stored on its back queue, and then we'll be
1918	 * able to process them after we restore SDEIER (as soon as we restore
1919	 * it, we'll get an interrupt if SDEIIR still has something to process
1920	 * due to its back queue). */
1921	if (!HAS_PCH_NOP(dev)) {
1922		sde_ier = I915_READ(SDEIER);
1923		I915_WRITE(SDEIER, 0);
1924		POSTING_READ(SDEIER);
1925	}
1926
 
 
1927	gt_iir = I915_READ(GTIIR);
1928	if (gt_iir) {
1929		if (INTEL_INFO(dev)->gen >= 6)
1930			snb_gt_irq_handler(dev, dev_priv, gt_iir);
1931		else
1932			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1933		I915_WRITE(GTIIR, gt_iir);
1934		ret = IRQ_HANDLED;
 
 
 
 
1935	}
1936
1937	de_iir = I915_READ(DEIIR);
1938	if (de_iir) {
1939		if (INTEL_INFO(dev)->gen >= 7)
1940			ivb_display_irq_handler(dev, de_iir);
1941		else
1942			ilk_display_irq_handler(dev, de_iir);
1943		I915_WRITE(DEIIR, de_iir);
1944		ret = IRQ_HANDLED;
 
 
 
 
1945	}
1946
1947	if (INTEL_INFO(dev)->gen >= 6) {
1948		u32 pm_iir = I915_READ(GEN6_PMIIR);
1949		if (pm_iir) {
1950			gen6_rps_irq_handler(dev_priv, pm_iir);
1951			I915_WRITE(GEN6_PMIIR, pm_iir);
1952			ret = IRQ_HANDLED;
 
1953		}
1954	}
1955
1956	I915_WRITE(DEIER, de_ier);
1957	POSTING_READ(DEIER);
1958	if (!HAS_PCH_NOP(dev)) {
1959		I915_WRITE(SDEIER, sde_ier);
1960		POSTING_READ(SDEIER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1961	}
1962
1963	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1964}
1965
1966static irqreturn_t gen8_irq_handler(int irq, void *arg)
 
1967{
1968	struct drm_device *dev = arg;
1969	struct drm_i915_private *dev_priv = dev->dev_private;
1970	u32 master_ctl;
1971	irqreturn_t ret = IRQ_NONE;
1972	uint32_t tmp = 0;
1973	enum pipe pipe;
 
 
 
1974
1975	master_ctl = I915_READ(GEN8_MASTER_IRQ);
1976	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
1977	if (!master_ctl)
1978		return IRQ_NONE;
1979
1980	I915_WRITE(GEN8_MASTER_IRQ, 0);
1981	POSTING_READ(GEN8_MASTER_IRQ);
 
1982
1983	ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
 
 
 
 
 
1984
1985	if (master_ctl & GEN8_DE_MISC_IRQ) {
1986		tmp = I915_READ(GEN8_DE_MISC_IIR);
1987		if (tmp & GEN8_DE_MISC_GSE)
1988			intel_opregion_asle_intr(dev);
1989		else if (tmp)
1990			DRM_ERROR("Unexpected DE Misc interrupt\n");
1991		else
1992			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
 
 
1993
1994		if (tmp) {
1995			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
 
 
1996			ret = IRQ_HANDLED;
 
 
 
1997		}
1998	}
1999
2000	if (master_ctl & GEN8_DE_PORT_IRQ) {
2001		tmp = I915_READ(GEN8_DE_PORT_IIR);
2002		if (tmp & GEN8_AUX_CHANNEL_A)
2003			dp_aux_irq_handler(dev);
2004		else if (tmp)
2005			DRM_ERROR("Unexpected DE Port interrupt\n");
2006		else
2007			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2008
2009		if (tmp) {
2010			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2011			ret = IRQ_HANDLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2012		}
 
 
2013	}
2014
2015	for_each_pipe(pipe) {
2016		uint32_t pipe_iir;
2017
2018		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2019			continue;
2020
2021		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2022		if (pipe_iir & GEN8_PIPE_VBLANK)
2023			drm_handle_vblank(dev, pipe);
2024
2025		if (pipe_iir & GEN8_PIPE_FLIP_DONE) {
2026			intel_prepare_page_flip(dev, pipe);
2027			intel_finish_page_flip_plane(dev, pipe);
2028		}
2029
2030		if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2031			hsw_pipe_crc_irq_handler(dev, pipe);
 
 
 
2032
2033		if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2034			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2035								  false))
2036				DRM_ERROR("Pipe %c FIFO underrun\n",
2037					  pipe_name(pipe));
2038		}
2039
2040		if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2041			DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
 
2042				  pipe_name(pipe),
2043				  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2044		}
2045
2046		if (pipe_iir) {
2047			ret = IRQ_HANDLED;
2048			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2049		} else
2050			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2051	}
2052
2053	if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
 
2054		/*
2055		 * FIXME(BDW): Assume for now that the new interrupt handling
2056		 * scheme also closed the SDE interrupt handling race we've seen
2057		 * on older pch-split platforms. But this needs testing.
2058		 */
2059		u32 pch_iir = I915_READ(SDEIIR);
 
 
 
2060
2061		cpt_irq_handler(dev, pch_iir);
2062
2063		if (pch_iir) {
2064			I915_WRITE(SDEIIR, pch_iir);
2065			ret = IRQ_HANDLED;
 
 
 
 
 
 
 
 
 
 
 
2066		}
2067	}
2068
2069	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2070	POSTING_READ(GEN8_MASTER_IRQ);
2071
2072	return ret;
2073}
2074
2075static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2076			       bool reset_completed)
2077{
2078	struct intel_ring_buffer *ring;
2079	int i;
2080
2081	/*
2082	 * Notify all waiters for GPU completion events that reset state has
2083	 * been changed, and that they need to restart their wait after
2084	 * checking for potential errors (and bail out to drop locks if there is
2085	 * a gpu reset pending so that i915_error_work_func can acquire them).
2086	 */
 
 
2087
2088	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2089	for_each_ring(ring, dev_priv, i)
2090		wake_up_all(&ring->irq_queue);
2091
2092	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2093	wake_up_all(&dev_priv->pending_flip_queue);
2094
2095	/*
2096	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2097	 * reset state is cleared.
2098	 */
2099	if (reset_completed)
2100		wake_up_all(&dev_priv->gpu_error.reset_queue);
2101}
2102
2103/**
2104 * i915_error_work_func - do process context error handling work
2105 * @work: work struct
2106 *
2107 * Fire an error uevent so userspace can see that a hang or error
2108 * was detected.
2109 */
2110static void i915_error_work_func(struct work_struct *work)
2111{
2112	struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2113						    work);
2114	struct drm_i915_private *dev_priv =
2115		container_of(error, struct drm_i915_private, gpu_error);
2116	struct drm_device *dev = dev_priv->dev;
2117	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2118	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2119	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2120	int ret;
2121
2122	kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
 
2123
2124	/*
2125	 * Note that there's only one work item which does gpu resets, so we
2126	 * need not worry about concurrent gpu resets potentially incrementing
2127	 * error->reset_counter twice. We only need to take care of another
2128	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2129	 * quick check for that is good enough: schedule_work ensures the
2130	 * correct ordering between hang detection and this work item, and since
2131	 * the reset in-progress bit is only ever set by code outside of this
2132	 * work we don't need to worry about any other races.
2133	 */
2134	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2135		DRM_DEBUG_DRIVER("resetting chip\n");
2136		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2137				   reset_event);
2138
2139		/*
2140		 * All state reset _must_ be completed before we update the
2141		 * reset counter, for otherwise waiters might miss the reset
2142		 * pending state and not properly drop locks, resulting in
2143		 * deadlocks with the reset work.
2144		 */
2145		ret = i915_reset(dev);
2146
2147		intel_display_handle_reset(dev);
 
 
 
 
 
2148
2149		if (ret == 0) {
2150			/*
2151			 * After all the gem state is reset, increment the reset
2152			 * counter and wake up everyone waiting for the reset to
2153			 * complete.
2154			 *
2155			 * Since unlock operations are a one-sided barrier only,
2156			 * we need to insert a barrier here to order any seqno
2157			 * updates before
2158			 * the counter increment.
2159			 */
2160			smp_mb__before_atomic_inc();
2161			atomic_inc(&dev_priv->gpu_error.reset_counter);
2162
2163			kobject_uevent_env(&dev->primary->kdev->kobj,
2164					   KOBJ_CHANGE, reset_done_event);
2165		} else {
2166			atomic_set_mask(I915_WEDGED, &error->reset_counter);
2167		}
2168
2169		/*
2170		 * Note: The wake_up also serves as a memory barrier so that
2171		 * waiters see the update value of the reset counter atomic_t.
2172		 */
2173		i915_error_wake_up(dev_priv, true);
2174	}
2175}
2176
2177static void i915_report_and_clear_eir(struct drm_device *dev)
 
2178{
2179	struct drm_i915_private *dev_priv = dev->dev_private;
2180	uint32_t instdone[I915_NUM_INSTDONE_REG];
2181	u32 eir = I915_READ(EIR);
2182	int pipe, i;
2183
2184	if (!eir)
2185		return;
2186
2187	pr_err("render error detected, EIR: 0x%08x\n", eir);
 
 
2188
2189	i915_get_extra_instdone(dev, instdone);
 
2190
2191	if (IS_G4X(dev)) {
2192		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2193			u32 ipeir = I915_READ(IPEIR_I965);
2194
2195			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2196			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2197			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2198				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2199			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2200			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2201			I915_WRITE(IPEIR_I965, ipeir);
2202			POSTING_READ(IPEIR_I965);
2203		}
2204		if (eir & GM45_ERROR_PAGE_TABLE) {
2205			u32 pgtbl_err = I915_READ(PGTBL_ER);
2206			pr_err("page table error\n");
2207			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2208			I915_WRITE(PGTBL_ER, pgtbl_err);
2209			POSTING_READ(PGTBL_ER);
2210		}
2211	}
2212
2213	if (!IS_GEN2(dev)) {
2214		if (eir & I915_ERROR_PAGE_TABLE) {
2215			u32 pgtbl_err = I915_READ(PGTBL_ER);
2216			pr_err("page table error\n");
2217			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2218			I915_WRITE(PGTBL_ER, pgtbl_err);
2219			POSTING_READ(PGTBL_ER);
2220		}
2221	}
2222
2223	if (eir & I915_ERROR_MEMORY_REFRESH) {
2224		pr_err("memory refresh error:\n");
2225		for_each_pipe(pipe)
2226			pr_err("pipe %c stat: 0x%08x\n",
2227			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2228		/* pipestat has already been acked */
2229	}
2230	if (eir & I915_ERROR_INSTRUCTION) {
2231		pr_err("instruction error\n");
2232		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2233		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2234			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2235		if (INTEL_INFO(dev)->gen < 4) {
2236			u32 ipeir = I915_READ(IPEIR);
2237
2238			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2239			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2240			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2241			I915_WRITE(IPEIR, ipeir);
2242			POSTING_READ(IPEIR);
2243		} else {
2244			u32 ipeir = I915_READ(IPEIR_I965);
2245
2246			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2247			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2248			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2249			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2250			I915_WRITE(IPEIR_I965, ipeir);
2251			POSTING_READ(IPEIR_I965);
2252		}
2253	}
2254
2255	I915_WRITE(EIR, eir);
2256	POSTING_READ(EIR);
2257	eir = I915_READ(EIR);
2258	if (eir) {
2259		/*
2260		 * some errors might have become stuck,
2261		 * mask them.
2262		 */
2263		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2264		I915_WRITE(EMR, I915_READ(EMR) | eir);
2265		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2266	}
2267}
2268
2269/**
2270 * i915_handle_error - handle an error interrupt
2271 * @dev: drm device
2272 *
2273 * Do some basic checking of regsiter state at error interrupt time and
2274 * dump it to the syslog.  Also call i915_capture_error_state() to make
2275 * sure we get a record and make it available in debugfs.  Fire a uevent
2276 * so userspace knows something bad happened (should trigger collection
2277 * of a ring dump etc.).
2278 */
2279void i915_handle_error(struct drm_device *dev, bool wedged,
2280		       const char *fmt, ...)
2281{
2282	struct drm_i915_private *dev_priv = dev->dev_private;
2283	va_list args;
2284	char error_msg[80];
2285
2286	va_start(args, fmt);
2287	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2288	va_end(args);
2289
2290	i915_capture_error_state(dev, wedged, error_msg);
2291	i915_report_and_clear_eir(dev);
2292
2293	if (wedged) {
2294		atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2295				&dev_priv->gpu_error.reset_counter);
2296
2297		/*
2298		 * Wakeup waiting processes so that the reset work function
2299		 * i915_error_work_func doesn't deadlock trying to grab various
2300		 * locks. By bumping the reset counter first, the woken
2301		 * processes will see a reset in progress and back off,
2302		 * releasing their locks and then wait for the reset completion.
2303		 * We must do this for _all_ gpu waiters that might hold locks
2304		 * that the reset work needs to acquire.
2305		 *
2306		 * Note: The wake_up serves as the required memory barrier to
2307		 * ensure that the waiters see the updated value of the reset
2308		 * counter atomic_t.
2309		 */
2310		i915_error_wake_up(dev_priv, false);
2311	}
2312
2313	/*
2314	 * Our reset work can grab modeset locks (since it needs to reset the
2315	 * state of outstanding pagelips). Hence it must not be run on our own
2316	 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2317	 * code will deadlock.
2318	 */
2319	schedule_work(&dev_priv->gpu_error.work);
2320}
2321
2322static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2323{
2324	struct drm_i915_private *dev_priv = dev->dev_private;
2325	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2326	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2327	struct drm_i915_gem_object *obj;
2328	struct intel_unpin_work *work;
2329	unsigned long flags;
2330	bool stall_detected;
2331
2332	/* Ignore early vblank irqs */
2333	if (intel_crtc == NULL)
2334		return;
 
 
 
 
2335
2336	spin_lock_irqsave(&dev->event_lock, flags);
2337	work = intel_crtc->unpin_work;
2338
2339	if (work == NULL ||
2340	    atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2341	    !work->enable_stall_check) {
2342		/* Either the pending flip IRQ arrived, or we're too early. Don't check */
2343		spin_unlock_irqrestore(&dev->event_lock, flags);
2344		return;
2345	}
2346
2347	/* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2348	obj = work->pending_flip_obj;
2349	if (INTEL_INFO(dev)->gen >= 4) {
2350		int dspsurf = DSPSURF(intel_crtc->plane);
2351		stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2352					i915_gem_obj_ggtt_offset(obj);
2353	} else {
2354		int dspaddr = DSPADDR(intel_crtc->plane);
2355		stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2356							crtc->y * crtc->primary->fb->pitches[0] +
2357							crtc->x * crtc->primary->fb->bits_per_pixel/8);
 
 
 
2358	}
2359
2360	spin_unlock_irqrestore(&dev->event_lock, flags);
2361
2362	if (stall_detected) {
2363		DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2364		intel_prepare_page_flip(dev, intel_crtc->plane);
2365	}
 
2366}
2367
2368/* Called from drm generic code, passed 'crtc' which
2369 * we use as a pipe index
2370 */
2371static int i915_enable_vblank(struct drm_device *dev, int pipe)
2372{
2373	struct drm_i915_private *dev_priv = dev->dev_private;
 
2374	unsigned long irqflags;
2375
2376	if (!i915_pipe_enabled(dev, pipe))
2377		return -EINVAL;
2378
2379	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2380	if (INTEL_INFO(dev)->gen >= 4)
2381		i915_enable_pipestat(dev_priv, pipe,
2382				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2383	else
2384		i915_enable_pipestat(dev_priv, pipe,
2385				     PIPE_VBLANK_INTERRUPT_STATUS);
2386
2387	/* maintain vblank delivery even in deep C-states */
2388	if (INTEL_INFO(dev)->gen == 3)
2389		I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
2390	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2391
2392	return 0;
2393}
2394
2395static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
 
 
 
 
 
 
 
 
 
 
2396{
2397	struct drm_i915_private *dev_priv = dev->dev_private;
 
2398	unsigned long irqflags;
2399	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2400						     DE_PIPE_VBLANK(pipe);
2401
2402	if (!i915_pipe_enabled(dev, pipe))
2403		return -EINVAL;
2404
2405	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2406	ironlake_enable_display_irq(dev_priv, bit);
 
2407	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2408
2409	return 0;
2410}
2411
2412static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2413{
2414	struct drm_i915_private *dev_priv = dev->dev_private;
 
2415	unsigned long irqflags;
2416
2417	if (!i915_pipe_enabled(dev, pipe))
2418		return -EINVAL;
2419
2420	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2421	i915_enable_pipestat(dev_priv, pipe,
2422			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2423	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2424
 
 
 
 
 
 
2425	return 0;
2426}
2427
2428static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2429{
2430	struct drm_i915_private *dev_priv = dev->dev_private;
 
2431	unsigned long irqflags;
2432
2433	if (!i915_pipe_enabled(dev, pipe))
2434		return -EINVAL;
2435
2436	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2437	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2438	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2439	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2440	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
 
 
 
 
 
 
 
2441	return 0;
2442}
2443
2444/* Called from drm generic code, passed 'crtc' which
2445 * we use as a pipe index
2446 */
2447static void i915_disable_vblank(struct drm_device *dev, int pipe)
2448{
2449	struct drm_i915_private *dev_priv = dev->dev_private;
 
2450	unsigned long irqflags;
2451
2452	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2453	if (INTEL_INFO(dev)->gen == 3)
2454		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
2455
2456	i915_disable_pipestat(dev_priv, pipe,
2457			      PIPE_VBLANK_INTERRUPT_STATUS |
2458			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2459	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2460}
2461
2462static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2463{
2464	struct drm_i915_private *dev_priv = dev->dev_private;
2465	unsigned long irqflags;
2466	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2467						     DE_PIPE_VBLANK(pipe);
2468
2469	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2470	ironlake_disable_display_irq(dev_priv, bit);
2471	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2472}
2473
2474static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2475{
2476	struct drm_i915_private *dev_priv = dev->dev_private;
 
2477	unsigned long irqflags;
2478
2479	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2480	i915_disable_pipestat(dev_priv, pipe,
2481			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2482	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2483}
2484
2485static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2486{
2487	struct drm_i915_private *dev_priv = dev->dev_private;
 
2488	unsigned long irqflags;
2489
2490	if (!i915_pipe_enabled(dev, pipe))
2491		return;
2492
2493	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2494	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2495	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2496	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2497	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2498}
2499
2500static u32
2501ring_last_seqno(struct intel_ring_buffer *ring)
2502{
2503	return list_entry(ring->request_list.prev,
2504			  struct drm_i915_gem_request, list)->seqno;
 
 
 
 
 
2505}
2506
2507static bool
2508ring_idle(struct intel_ring_buffer *ring, u32 seqno)
2509{
2510	return (list_empty(&ring->request_list) ||
2511		i915_seqno_passed(seqno, ring_last_seqno(ring)));
 
 
 
 
 
 
 
 
 
 
2512}
2513
2514static struct intel_ring_buffer *
2515semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
2516{
2517	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2518	u32 cmd, ipehr, head;
2519	int i;
2520
2521	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2522	if ((ipehr & ~(0x3 << 16)) !=
2523	    (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
2524		return NULL;
2525
2526	/*
2527	 * HEAD is likely pointing to the dword after the actual command,
2528	 * so scan backwards until we find the MBOX. But limit it to just 3
2529	 * dwords. Note that we don't care about ACTHD here since that might
2530	 * point at at batch, and semaphores are always emitted into the
2531	 * ringbuffer itself.
2532	 */
2533	head = I915_READ_HEAD(ring) & HEAD_ADDR;
2534
2535	for (i = 4; i; --i) {
2536		/*
2537		 * Be paranoid and presume the hw has gone off into the wild -
2538		 * our ring is smaller than what the hardware (and hence
2539		 * HEAD_ADDR) allows. Also handles wrap-around.
2540		 */
2541		head &= ring->size - 1;
2542
2543		/* This here seems to blow up */
2544		cmd = ioread32(ring->virtual_start + head);
2545		if (cmd == ipehr)
2546			break;
2547
2548		head -= 4;
2549	}
 
 
2550
2551	if (!i)
2552		return NULL;
 
 
 
 
2553
2554	*seqno = ioread32(ring->virtual_start + head + 4) + 1;
2555	return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
 
 
2556}
2557
2558static int semaphore_passed(struct intel_ring_buffer *ring)
2559{
2560	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2561	struct intel_ring_buffer *signaller;
2562	u32 seqno, ctl;
2563
2564	ring->hangcheck.deadlock = true;
2565
2566	signaller = semaphore_waits_for(ring, &seqno);
2567	if (signaller == NULL || signaller->hangcheck.deadlock)
2568		return -1;
2569
2570	/* cursory check for an unkickable deadlock */
2571	ctl = I915_READ_CTL(signaller);
2572	if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
2573		return -1;
2574
2575	return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
 
2576}
2577
2578static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
 
 
 
 
 
 
 
 
2579{
2580	struct intel_ring_buffer *ring;
2581	int i;
2582
2583	for_each_ring(ring, dev_priv, i)
2584		ring->hangcheck.deadlock = false;
 
2585}
2586
2587static enum intel_ring_hangcheck_action
2588ring_stuck(struct intel_ring_buffer *ring, u64 acthd)
2589{
2590	struct drm_device *dev = ring->dev;
2591	struct drm_i915_private *dev_priv = dev->dev_private;
2592	u32 tmp;
2593
2594	if (ring->hangcheck.acthd != acthd)
2595		return HANGCHECK_ACTIVE;
 
 
2596
2597	if (IS_GEN2(dev))
2598		return HANGCHECK_HUNG;
2599
2600	/* Is the chip hanging on a WAIT_FOR_EVENT?
2601	 * If so we can simply poke the RB_WAIT bit
2602	 * and break the hang. This should work on
2603	 * all but the second generation chipsets.
2604	 */
2605	tmp = I915_READ_CTL(ring);
2606	if (tmp & RING_WAIT) {
2607		i915_handle_error(dev, false,
2608				  "Kicking stuck wait on %s",
2609				  ring->name);
2610		I915_WRITE_CTL(ring, tmp);
2611		return HANGCHECK_KICK;
2612	}
2613
2614	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2615		switch (semaphore_passed(ring)) {
2616		default:
2617			return HANGCHECK_HUNG;
2618		case 1:
2619			i915_handle_error(dev, false,
2620					  "Kicking stuck semaphore on %s",
2621					  ring->name);
2622			I915_WRITE_CTL(ring, tmp);
2623			return HANGCHECK_KICK;
2624		case 0:
2625			return HANGCHECK_WAIT;
2626		}
2627	}
2628
2629	return HANGCHECK_HUNG;
 
2630}
2631
2632/**
2633 * This is called when the chip hasn't reported back with completed
2634 * batchbuffers in a long time. We keep track per ring seqno progress and
2635 * if there are no progress, hangcheck score for that ring is increased.
2636 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2637 * we kick the ring. If we see no progress on three subsequent calls
2638 * we assume chip is wedged and try to fix it by resetting the chip.
2639 */
2640static void i915_hangcheck_elapsed(unsigned long data)
2641{
2642	struct drm_device *dev = (struct drm_device *)data;
2643	struct drm_i915_private *dev_priv = dev->dev_private;
2644	struct intel_ring_buffer *ring;
2645	int i;
2646	int busy_count = 0, rings_hung = 0;
2647	bool stuck[I915_NUM_RINGS] = { 0 };
2648#define BUSY 1
2649#define KICK 5
2650#define HUNG 20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2651
2652	if (!i915.enable_hangcheck)
2653		return;
2654
2655	for_each_ring(ring, dev_priv, i) {
2656		u64 acthd;
2657		u32 seqno;
2658		bool busy = true;
2659
2660		semaphore_clear_deadlocks(dev_priv);
2661
2662		seqno = ring->get_seqno(ring, false);
2663		acthd = intel_ring_get_active_head(ring);
2664
2665		if (ring->hangcheck.seqno == seqno) {
2666			if (ring_idle(ring, seqno)) {
2667				ring->hangcheck.action = HANGCHECK_IDLE;
2668
2669				if (waitqueue_active(&ring->irq_queue)) {
2670					/* Issue a wake-up to catch stuck h/w. */
2671					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2672						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2673							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2674								  ring->name);
2675						else
2676							DRM_INFO("Fake missed irq on %s\n",
2677								 ring->name);
2678						wake_up_all(&ring->irq_queue);
2679					}
2680					/* Safeguard against driver failure */
2681					ring->hangcheck.score += BUSY;
2682				} else
2683					busy = false;
2684			} else {
2685				/* We always increment the hangcheck score
2686				 * if the ring is busy and still processing
2687				 * the same request, so that no single request
2688				 * can run indefinitely (such as a chain of
2689				 * batches). The only time we do not increment
2690				 * the hangcheck score on this ring, if this
2691				 * ring is in a legitimate wait for another
2692				 * ring. In that case the waiting ring is a
2693				 * victim and we want to be sure we catch the
2694				 * right culprit. Then every time we do kick
2695				 * the ring, add a small increment to the
2696				 * score so that we can catch a batch that is
2697				 * being repeatedly kicked and so responsible
2698				 * for stalling the machine.
2699				 */
2700				ring->hangcheck.action = ring_stuck(ring,
2701								    acthd);
2702
2703				switch (ring->hangcheck.action) {
2704				case HANGCHECK_IDLE:
2705				case HANGCHECK_WAIT:
2706					break;
2707				case HANGCHECK_ACTIVE:
2708					ring->hangcheck.score += BUSY;
2709					break;
2710				case HANGCHECK_KICK:
2711					ring->hangcheck.score += KICK;
2712					break;
2713				case HANGCHECK_HUNG:
2714					ring->hangcheck.score += HUNG;
2715					stuck[i] = true;
2716					break;
2717				}
2718			}
2719		} else {
2720			ring->hangcheck.action = HANGCHECK_ACTIVE;
2721
2722			/* Gradually reduce the count so that we catch DoS
2723			 * attempts across multiple batches.
2724			 */
2725			if (ring->hangcheck.score > 0)
2726				ring->hangcheck.score--;
2727		}
2728
2729		ring->hangcheck.seqno = seqno;
2730		ring->hangcheck.acthd = acthd;
2731		busy_count += busy;
2732	}
2733
2734	for_each_ring(ring, dev_priv, i) {
2735		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
2736			DRM_INFO("%s on %s\n",
2737				 stuck[i] ? "stuck" : "no progress",
2738				 ring->name);
2739			rings_hung++;
2740		}
2741	}
2742
2743	if (rings_hung)
2744		return i915_handle_error(dev, true, "Ring hung");
2745
2746	if (busy_count)
2747		/* Reset timer case chip hangs without another request
2748		 * being added */
2749		i915_queue_hangcheck(dev);
2750}
2751
2752void i915_queue_hangcheck(struct drm_device *dev)
2753{
2754	struct drm_i915_private *dev_priv = dev->dev_private;
2755	if (!i915.enable_hangcheck)
2756		return;
 
2757
2758	mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2759		  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
 
 
2760}
2761
2762static void ibx_irq_preinstall(struct drm_device *dev)
2763{
2764	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
2765
2766	if (HAS_PCH_NOP(dev))
2767		return;
 
 
 
 
 
 
 
 
 
 
 
2768
2769	/* south display irq */
2770	I915_WRITE(SDEIMR, 0xffffffff);
2771	/*
2772	 * SDEIER is also touched by the interrupt handler to work around missed
2773	 * PCH interrupts. Hence we can't update it after the interrupt handler
2774	 * is enabled - instead we unconditionally enable all PCH interrupt
2775	 * sources here, but then only unmask them as needed with SDEIMR.
2776	 */
2777	I915_WRITE(SDEIER, 0xffffffff);
2778	POSTING_READ(SDEIER);
2779}
2780
2781static void gen5_gt_irq_preinstall(struct drm_device *dev)
2782{
2783	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 
 
 
2784
2785	/* and GT */
2786	I915_WRITE(GTIMR, 0xffffffff);
2787	I915_WRITE(GTIER, 0x0);
2788	POSTING_READ(GTIER);
2789
2790	if (INTEL_INFO(dev)->gen >= 6) {
2791		/* and PM */
2792		I915_WRITE(GEN6_PMIMR, 0xffffffff);
2793		I915_WRITE(GEN6_PMIER, 0x0);
2794		POSTING_READ(GEN6_PMIER);
2795	}
 
 
 
 
 
2796}
2797
2798/* drm_dma.h hooks
2799*/
2800static void ironlake_irq_preinstall(struct drm_device *dev)
2801{
2802	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
2803
2804	I915_WRITE(HWSTAM, 0xeffe);
2805
2806	I915_WRITE(DEIMR, 0xffffffff);
2807	I915_WRITE(DEIER, 0x0);
2808	POSTING_READ(DEIER);
 
2809
2810	gen5_gt_irq_preinstall(dev);
 
 
 
2811
2812	ibx_irq_preinstall(dev);
2813}
2814
2815static void valleyview_irq_preinstall(struct drm_device *dev)
 
2816{
2817	struct drm_i915_private *dev_priv = dev->dev_private;
2818	int pipe;
2819
2820	/* VLV magic */
2821	I915_WRITE(VLV_IMR, 0);
2822	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2823	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2824	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2825
2826	/* and GT */
2827	I915_WRITE(GTIIR, I915_READ(GTIIR));
2828	I915_WRITE(GTIIR, I915_READ(GTIIR));
 
2829
2830	gen5_gt_irq_preinstall(dev);
 
2831
2832	I915_WRITE(DPINVGTT, 0xff);
2833
2834	I915_WRITE(PORT_HOTPLUG_EN, 0);
2835	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2836	for_each_pipe(pipe)
2837		I915_WRITE(PIPESTAT(pipe), 0xffff);
2838	I915_WRITE(VLV_IIR, 0xffffffff);
2839	I915_WRITE(VLV_IMR, 0xffffffff);
2840	I915_WRITE(VLV_IER, 0x0);
2841	POSTING_READ(VLV_IER);
2842}
2843
2844static void gen8_irq_preinstall(struct drm_device *dev)
2845{
2846	struct drm_i915_private *dev_priv = dev->dev_private;
2847	int pipe;
2848
2849	I915_WRITE(GEN8_MASTER_IRQ, 0);
2850	POSTING_READ(GEN8_MASTER_IRQ);
2851
2852	/* IIR can theoretically queue up two events. Be paranoid */
2853#define GEN8_IRQ_INIT_NDX(type, which) do { \
2854		I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
2855		POSTING_READ(GEN8_##type##_IMR(which)); \
2856		I915_WRITE(GEN8_##type##_IER(which), 0); \
2857		I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
2858		POSTING_READ(GEN8_##type##_IIR(which)); \
2859		I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
2860	} while (0)
2861
2862#define GEN8_IRQ_INIT(type) do { \
2863		I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
2864		POSTING_READ(GEN8_##type##_IMR); \
2865		I915_WRITE(GEN8_##type##_IER, 0); \
2866		I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
2867		POSTING_READ(GEN8_##type##_IIR); \
2868		I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
2869	} while (0)
2870
2871	GEN8_IRQ_INIT_NDX(GT, 0);
2872	GEN8_IRQ_INIT_NDX(GT, 1);
2873	GEN8_IRQ_INIT_NDX(GT, 2);
2874	GEN8_IRQ_INIT_NDX(GT, 3);
2875
2876	for_each_pipe(pipe) {
2877		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe);
2878	}
2879
2880	GEN8_IRQ_INIT(DE_PORT);
2881	GEN8_IRQ_INIT(DE_MISC);
2882	GEN8_IRQ_INIT(PCU);
2883#undef GEN8_IRQ_INIT
2884#undef GEN8_IRQ_INIT_NDX
2885
2886	POSTING_READ(GEN8_PCU_IIR);
2887
2888	ibx_irq_preinstall(dev);
2889}
2890
2891static void ibx_hpd_irq_setup(struct drm_device *dev)
2892{
2893	struct drm_i915_private *dev_priv = dev->dev_private;
2894	struct drm_mode_config *mode_config = &dev->mode_config;
2895	struct intel_encoder *intel_encoder;
2896	u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2897
2898	if (HAS_PCH_IBX(dev)) {
2899		hotplug_irqs = SDE_HOTPLUG_MASK;
2900		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2901			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2902				enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2903	} else {
2904		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2905		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2906			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2907				enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2908	}
2909
2910	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
 
 
2911
2912	/*
2913	 * Enable digital hotplug on the PCH, and configure the DP short pulse
2914	 * duration to 2ms (which is the minimum in the Display Port spec)
2915	 *
2916	 * This register is the same on all known PCH chips.
2917	 */
2918	hotplug = I915_READ(PCH_PORT_HOTPLUG);
2919	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
 
 
 
 
2920	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2921	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2922	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
 
 
 
 
2923	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2924}
2925
2926static void ibx_irq_postinstall(struct drm_device *dev)
2927{
2928	struct drm_i915_private *dev_priv = dev->dev_private;
2929	u32 mask;
 
 
 
 
 
 
 
 
 
 
 
 
2930
2931	if (HAS_PCH_NOP(dev))
2932		return;
 
 
 
2933
2934	if (HAS_PCH_IBX(dev)) {
2935		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
2936	} else {
2937		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
2938
2939		I915_WRITE(SERR_INT, I915_READ(SERR_INT));
 
 
 
2940	}
 
 
 
 
 
 
 
 
2941
2942	I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2943	I915_WRITE(SDEIMR, ~mask);
 
 
2944}
2945
2946static void gen5_gt_irq_postinstall(struct drm_device *dev)
2947{
2948	struct drm_i915_private *dev_priv = dev->dev_private;
2949	u32 pm_irqs, gt_irqs;
 
 
2950
2951	pm_irqs = gt_irqs = 0;
 
 
 
2952
2953	dev_priv->gt_irq_mask = ~0;
2954	if (HAS_L3_DPF(dev)) {
2955		/* L3 parity interrupt is always unmasked. */
2956		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
2957		gt_irqs |= GT_PARITY_ERROR(dev);
2958	}
2959
2960	gt_irqs |= GT_RENDER_USER_INTERRUPT;
2961	if (IS_GEN5(dev)) {
2962		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2963			   ILK_BSD_USER_INTERRUPT;
2964	} else {
2965		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2966	}
2967
2968	I915_WRITE(GTIIR, I915_READ(GTIIR));
2969	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2970	I915_WRITE(GTIER, gt_irqs);
2971	POSTING_READ(GTIER);
2972
2973	if (INTEL_INFO(dev)->gen >= 6) {
2974		pm_irqs |= dev_priv->pm_rps_events;
 
2975
2976		if (HAS_VEBOX(dev))
2977			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
 
 
 
 
2978
2979		dev_priv->pm_irq_mask = 0xffffffff;
2980		I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2981		I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
2982		I915_WRITE(GEN6_PMIER, pm_irqs);
2983		POSTING_READ(GEN6_PMIER);
2984	}
2985}
2986
2987static int ironlake_irq_postinstall(struct drm_device *dev)
2988{
2989	unsigned long irqflags;
2990	struct drm_i915_private *dev_priv = dev->dev_private;
2991	u32 display_mask, extra_mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2992
2993	if (INTEL_INFO(dev)->gen >= 7) {
2994		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
2995				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
2996				DE_PLANEB_FLIP_DONE_IVB |
2997				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
2998		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
2999			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3000
3001		I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
3002	} else {
3003		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3004				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3005				DE_AUX_CHANNEL_A |
3006				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3007				DE_POISON);
3008		extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3009				DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3010	}
3011
3012	dev_priv->irq_mask = ~display_mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3013
3014	/* should always can generate irq */
3015	I915_WRITE(DEIIR, I915_READ(DEIIR));
3016	I915_WRITE(DEIMR, dev_priv->irq_mask);
3017	I915_WRITE(DEIER, display_mask | extra_mask);
3018	POSTING_READ(DEIER);
3019
3020	gen5_gt_irq_postinstall(dev);
3021
3022	ibx_irq_postinstall(dev);
 
3023
3024	if (IS_IRONLAKE_M(dev)) {
3025		/* Enable PCU event interrupts
3026		 *
3027		 * spinlocking not required here for correctness since interrupt
3028		 * setup is guaranteed to run in single-threaded context. But we
3029		 * need it to make the assert_spin_locked happy. */
3030		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3031		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3032		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3033	}
3034
3035	return 0;
 
 
 
 
 
 
 
 
 
3036}
3037
3038static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3039{
3040	u32 pipestat_mask;
3041	u32 iir_mask;
3042
3043	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3044			PIPE_FIFO_UNDERRUN_STATUS;
 
3045
3046	I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3047	I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3048	POSTING_READ(PIPESTAT(PIPE_A));
 
3049
3050	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3051			PIPE_CRC_DONE_INTERRUPT_STATUS;
 
 
3052
3053	i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3054					       PIPE_GMBUS_INTERRUPT_STATUS);
3055	i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3056
3057	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3058		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3059		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3060	dev_priv->irq_mask &= ~iir_mask;
3061
3062	I915_WRITE(VLV_IIR, iir_mask);
3063	I915_WRITE(VLV_IIR, iir_mask);
3064	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3065	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3066	POSTING_READ(VLV_IER);
3067}
3068
3069static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
 
3070{
3071	u32 pipestat_mask;
3072	u32 iir_mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3073
3074	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3075		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3076		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3077
3078	dev_priv->irq_mask |= iir_mask;
3079	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3080	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3081	I915_WRITE(VLV_IIR, iir_mask);
3082	I915_WRITE(VLV_IIR, iir_mask);
3083	POSTING_READ(VLV_IIR);
3084
3085	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3086			PIPE_CRC_DONE_INTERRUPT_STATUS;
3087
3088	i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3089					        PIPE_GMBUS_INTERRUPT_STATUS);
3090	i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3091
3092	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3093			PIPE_FIFO_UNDERRUN_STATUS;
3094	I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3095	I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3096	POSTING_READ(PIPESTAT(PIPE_A));
3097}
3098
3099void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3100{
3101	assert_spin_locked(&dev_priv->irq_lock);
3102
3103	if (dev_priv->display_irqs_enabled)
3104		return;
3105
3106	dev_priv->display_irqs_enabled = true;
3107
3108	if (dev_priv->dev->irq_enabled)
3109		valleyview_display_irqs_install(dev_priv);
3110}
3111
3112void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3113{
3114	assert_spin_locked(&dev_priv->irq_lock);
3115
3116	if (!dev_priv->display_irqs_enabled)
3117		return;
3118
3119	dev_priv->display_irqs_enabled = false;
 
 
 
 
 
 
 
 
3120
3121	if (dev_priv->dev->irq_enabled)
3122		valleyview_display_irqs_uninstall(dev_priv);
 
 
 
3123}
3124
3125static int valleyview_irq_postinstall(struct drm_device *dev)
3126{
3127	struct drm_i915_private *dev_priv = dev->dev_private;
3128	unsigned long irqflags;
3129
3130	dev_priv->irq_mask = ~0;
 
 
 
 
 
 
 
 
 
 
 
 
 
3131
3132	I915_WRITE(PORT_HOTPLUG_EN, 0);
3133	POSTING_READ(PORT_HOTPLUG_EN);
 
 
 
3134
3135	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3136	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3137	I915_WRITE(VLV_IIR, 0xffffffff);
3138	POSTING_READ(VLV_IER);
3139
3140	/* Interrupt setup is already guaranteed to be single-threaded, this is
3141	 * just to make the assert_spin_locked check happy. */
3142	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3143	if (dev_priv->display_irqs_enabled)
3144		valleyview_display_irqs_install(dev_priv);
3145	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3146
3147	I915_WRITE(VLV_IIR, 0xffffffff);
3148	I915_WRITE(VLV_IIR, 0xffffffff);
3149
3150	gen5_gt_irq_postinstall(dev);
3151
3152	/* ack & enable invalid PTE error interrupts */
3153#if 0 /* FIXME: add support to irq handler for checking these bits */
3154	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3155	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3156#endif
3157
3158	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3159
3160	return 0;
 
 
 
 
 
 
 
 
 
3161}
3162
3163static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3164{
3165	int i;
 
 
 
 
 
3166
3167	/* These are interrupts we'll toggle with the ring mask register */
3168	uint32_t gt_interrupts[] = {
3169		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3170			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3171			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3172		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3173			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3174		0,
3175		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3176		};
3177
3178	for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++) {
3179		u32 tmp = I915_READ(GEN8_GT_IIR(i));
3180		if (tmp)
3181			DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n",
3182				  i, tmp);
3183		I915_WRITE(GEN8_GT_IMR(i), ~gt_interrupts[i]);
3184		I915_WRITE(GEN8_GT_IER(i), gt_interrupts[i]);
3185	}
3186	POSTING_READ(GEN8_GT_IER(0));
3187}
3188
3189static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3190{
3191	struct drm_device *dev = dev_priv->dev;
3192	uint32_t de_pipe_masked = GEN8_PIPE_FLIP_DONE |
3193		GEN8_PIPE_CDCLK_CRC_DONE |
3194		GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3195	uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3196		GEN8_PIPE_FIFO_UNDERRUN;
3197	int pipe;
3198	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3199	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3200	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3201
3202	for_each_pipe(pipe) {
3203		u32 tmp = I915_READ(GEN8_DE_PIPE_IIR(pipe));
3204		if (tmp)
3205			DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n",
3206				  pipe, tmp);
3207		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
3208		I915_WRITE(GEN8_DE_PIPE_IER(pipe), de_pipe_enables);
3209	}
3210	POSTING_READ(GEN8_DE_PIPE_ISR(0));
3211
3212	I915_WRITE(GEN8_DE_PORT_IMR, ~GEN8_AUX_CHANNEL_A);
3213	I915_WRITE(GEN8_DE_PORT_IER, GEN8_AUX_CHANNEL_A);
3214	POSTING_READ(GEN8_DE_PORT_IER);
3215}
3216
3217static int gen8_irq_postinstall(struct drm_device *dev)
 
3218{
3219	struct drm_i915_private *dev_priv = dev->dev_private;
3220
3221	gen8_gt_irq_postinstall(dev_priv);
3222	gen8_de_irq_postinstall(dev_priv);
 
 
 
 
 
 
 
 
 
 
3223
3224	ibx_irq_postinstall(dev);
 
 
 
 
 
3225
3226	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3227	POSTING_READ(GEN8_MASTER_IRQ);
3228
3229	return 0;
3230}
 
 
 
 
 
 
 
3231
3232static void gen8_irq_uninstall(struct drm_device *dev)
3233{
3234	struct drm_i915_private *dev_priv = dev->dev_private;
3235	int pipe;
3236
3237	if (!dev_priv)
3238		return;
3239
3240	I915_WRITE(GEN8_MASTER_IRQ, 0);
 
3241
3242#define GEN8_IRQ_FINI_NDX(type, which) do { \
3243		I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
3244		I915_WRITE(GEN8_##type##_IER(which), 0); \
3245		I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
3246	} while (0)
3247
3248#define GEN8_IRQ_FINI(type) do { \
3249		I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
3250		I915_WRITE(GEN8_##type##_IER, 0); \
3251		I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
3252	} while (0)
3253
3254	GEN8_IRQ_FINI_NDX(GT, 0);
3255	GEN8_IRQ_FINI_NDX(GT, 1);
3256	GEN8_IRQ_FINI_NDX(GT, 2);
3257	GEN8_IRQ_FINI_NDX(GT, 3);
3258
3259	for_each_pipe(pipe) {
3260		GEN8_IRQ_FINI_NDX(DE_PIPE, pipe);
 
 
 
3261	}
3262
3263	GEN8_IRQ_FINI(DE_PORT);
3264	GEN8_IRQ_FINI(DE_MISC);
3265	GEN8_IRQ_FINI(PCU);
3266#undef GEN8_IRQ_FINI
3267#undef GEN8_IRQ_FINI_NDX
 
 
3268
3269	POSTING_READ(GEN8_PCU_IIR);
 
 
 
 
 
 
 
3270}
3271
3272static void valleyview_irq_uninstall(struct drm_device *dev)
3273{
3274	struct drm_i915_private *dev_priv = dev->dev_private;
3275	unsigned long irqflags;
3276	int pipe;
3277
3278	if (!dev_priv)
3279		return;
3280
3281	intel_hpd_irq_uninstall(dev_priv);
 
3282
3283	for_each_pipe(pipe)
3284		I915_WRITE(PIPESTAT(pipe), 0xffff);
3285
3286	I915_WRITE(HWSTAM, 0xffffffff);
3287	I915_WRITE(PORT_HOTPLUG_EN, 0);
3288	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3289
3290	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3291	if (dev_priv->display_irqs_enabled)
3292		valleyview_display_irqs_uninstall(dev_priv);
3293	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3294
3295	dev_priv->irq_mask = 0;
 
3296
3297	I915_WRITE(VLV_IIR, 0xffffffff);
3298	I915_WRITE(VLV_IMR, 0xffffffff);
3299	I915_WRITE(VLV_IER, 0x0);
3300	POSTING_READ(VLV_IER);
 
 
 
 
3301}
3302
3303static void ironlake_irq_uninstall(struct drm_device *dev)
3304{
3305	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
3306
3307	if (!dev_priv)
3308		return;
3309
3310	intel_hpd_irq_uninstall(dev_priv);
3311
3312	I915_WRITE(HWSTAM, 0xffffffff);
3313
3314	I915_WRITE(DEIMR, 0xffffffff);
3315	I915_WRITE(DEIER, 0x0);
3316	I915_WRITE(DEIIR, I915_READ(DEIIR));
3317	if (IS_GEN7(dev))
3318		I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
3319
3320	I915_WRITE(GTIMR, 0xffffffff);
3321	I915_WRITE(GTIER, 0x0);
3322	I915_WRITE(GTIIR, I915_READ(GTIIR));
3323
3324	if (HAS_PCH_NOP(dev))
3325		return;
 
 
3326
3327	I915_WRITE(SDEIMR, 0xffffffff);
3328	I915_WRITE(SDEIER, 0x0);
3329	I915_WRITE(SDEIIR, I915_READ(SDEIIR));
3330	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3331		I915_WRITE(SERR_INT, I915_READ(SERR_INT));
3332}
3333
3334static void i8xx_irq_preinstall(struct drm_device * dev)
3335{
3336	struct drm_i915_private *dev_priv = dev->dev_private;
3337	int pipe;
 
3338
3339	for_each_pipe(pipe)
3340		I915_WRITE(PIPESTAT(pipe), 0);
3341	I915_WRITE16(IMR, 0xffff);
3342	I915_WRITE16(IER, 0x0);
3343	POSTING_READ16(IER);
3344}
3345
3346static int i8xx_irq_postinstall(struct drm_device *dev)
3347{
3348	struct drm_i915_private *dev_priv = dev->dev_private;
3349	unsigned long irqflags;
3350
3351	I915_WRITE16(EMR,
3352		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
 
 
3353
3354	/* Unmask the interrupts that we always want on. */
3355	dev_priv->irq_mask =
3356		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3357		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3358		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3359		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3360		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3361	I915_WRITE16(IMR, dev_priv->irq_mask);
3362
3363	I915_WRITE16(IER,
3364		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3365		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3366		     I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3367		     I915_USER_INTERRUPT);
3368	POSTING_READ16(IER);
3369
3370	/* Interrupt setup is already guaranteed to be single-threaded, this is
3371	 * just to make the assert_spin_locked check happy. */
3372	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3373	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3374	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3375	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3376
3377	return 0;
 
3378}
3379
3380/*
3381 * Returns true when a page flip has completed.
3382 */
3383static bool i8xx_handle_vblank(struct drm_device *dev,
3384			       int plane, int pipe, u32 iir)
3385{
3386	struct drm_i915_private *dev_priv = dev->dev_private;
3387	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3388
3389	if (!drm_handle_vblank(dev, pipe))
3390		return false;
3391
3392	if ((iir & flip_pending) == 0)
3393		return false;
3394
3395	intel_prepare_page_flip(dev, plane);
 
 
3396
3397	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3398	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3399	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3400	 * the flip is completed (no longer pending). Since this doesn't raise
3401	 * an interrupt per se, we watch for the change at vblank.
 
 
 
 
3402	 */
3403	if (I915_READ16(ISR) & flip_pending)
3404		return false;
 
 
3405
3406	intel_finish_page_flip(dev, pipe);
 
 
 
3407
3408	return true;
 
3409}
3410
3411static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3412{
3413	struct drm_device *dev = (struct drm_device *) arg;
3414	struct drm_i915_private *dev_priv = dev->dev_private;
3415	u16 iir, new_iir;
3416	u32 pipe_stats[2];
3417	unsigned long irqflags;
3418	int pipe;
3419	u16 flip_mask =
3420		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3421		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3422
3423	iir = I915_READ16(IIR);
3424	if (iir == 0)
3425		return IRQ_NONE;
3426
3427	while (iir & ~flip_mask) {
3428		/* Can't rely on pipestat interrupt bit in iir as it might
3429		 * have been cleared after the pipestat interrupt was received.
3430		 * It doesn't set the bit in iir again, but it still produces
3431		 * interrupts (for non-MSI).
3432		 */
3433		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3434		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3435			i915_handle_error(dev, false,
3436					  "Command parser error, iir 0x%08x",
3437					  iir);
3438
3439		for_each_pipe(pipe) {
3440			int reg = PIPESTAT(pipe);
3441			pipe_stats[pipe] = I915_READ(reg);
3442
3443			/*
3444			 * Clear the PIPE*STAT regs before the IIR
3445			 */
3446			if (pipe_stats[pipe] & 0x8000ffff)
3447				I915_WRITE(reg, pipe_stats[pipe]);
3448		}
3449		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3450
3451		I915_WRITE16(IIR, iir & ~flip_mask);
3452		new_iir = I915_READ16(IIR); /* Flush posted writes */
3453
3454		i915_update_dri1_breadcrumb(dev);
3455
3456		if (iir & I915_USER_INTERRUPT)
3457			notify_ring(dev, &dev_priv->ring[RCS]);
3458
3459		for_each_pipe(pipe) {
3460			int plane = pipe;
3461			if (HAS_FBC(dev))
3462				plane = !plane;
3463
3464			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3465			    i8xx_handle_vblank(dev, plane, pipe, iir))
3466				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3467
3468			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3469				i9xx_pipe_crc_irq_handler(dev, pipe);
3470
3471			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3472			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3473				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3474		}
3475
3476		iir = new_iir;
3477	}
3478
3479	return IRQ_HANDLED;
3480}
3481
3482static void i8xx_irq_uninstall(struct drm_device * dev)
3483{
3484	struct drm_i915_private *dev_priv = dev->dev_private;
3485	int pipe;
3486
3487	for_each_pipe(pipe) {
3488		/* Clear enable bits; then clear status bits */
3489		I915_WRITE(PIPESTAT(pipe), 0);
3490		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3491	}
3492	I915_WRITE16(IMR, 0xffff);
3493	I915_WRITE16(IER, 0x0);
3494	I915_WRITE16(IIR, I915_READ16(IIR));
3495}
3496
3497static void i915_irq_preinstall(struct drm_device * dev)
3498{
3499	struct drm_i915_private *dev_priv = dev->dev_private;
3500	int pipe;
3501
3502	if (I915_HAS_HOTPLUG(dev)) {
3503		I915_WRITE(PORT_HOTPLUG_EN, 0);
3504		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3505	}
3506
3507	I915_WRITE16(HWSTAM, 0xeffe);
3508	for_each_pipe(pipe)
3509		I915_WRITE(PIPESTAT(pipe), 0);
3510	I915_WRITE(IMR, 0xffffffff);
3511	I915_WRITE(IER, 0x0);
3512	POSTING_READ(IER);
3513}
3514
3515static int i915_irq_postinstall(struct drm_device *dev)
3516{
3517	struct drm_i915_private *dev_priv = dev->dev_private;
3518	u32 enable_mask;
3519	unsigned long irqflags;
3520
3521	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
 
3522
3523	/* Unmask the interrupts that we always want on. */
3524	dev_priv->irq_mask =
3525		~(I915_ASLE_INTERRUPT |
3526		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3527		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3528		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3529		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3530		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3531
3532	enable_mask =
3533		I915_ASLE_INTERRUPT |
3534		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3535		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3536		I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3537		I915_USER_INTERRUPT;
3538
3539	if (I915_HAS_HOTPLUG(dev)) {
3540		I915_WRITE(PORT_HOTPLUG_EN, 0);
3541		POSTING_READ(PORT_HOTPLUG_EN);
3542
3543		/* Enable in IER... */
3544		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3545		/* and unmask in IMR */
3546		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3547	}
3548
3549	I915_WRITE(IMR, dev_priv->irq_mask);
3550	I915_WRITE(IER, enable_mask);
3551	POSTING_READ(IER);
3552
3553	i915_enable_asle_pipestat(dev);
3554
3555	/* Interrupt setup is already guaranteed to be single-threaded, this is
3556	 * just to make the assert_spin_locked check happy. */
3557	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3558	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3559	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3560	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3561
3562	return 0;
3563}
3564
3565/*
3566 * Returns true when a page flip has completed.
3567 */
3568static bool i915_handle_vblank(struct drm_device *dev,
3569			       int plane, int pipe, u32 iir)
3570{
3571	struct drm_i915_private *dev_priv = dev->dev_private;
3572	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3573
3574	if (!drm_handle_vblank(dev, pipe))
3575		return false;
3576
3577	if ((iir & flip_pending) == 0)
3578		return false;
3579
3580	intel_prepare_page_flip(dev, plane);
3581
3582	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3583	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3584	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3585	 * the flip is completed (no longer pending). Since this doesn't raise
3586	 * an interrupt per se, we watch for the change at vblank.
3587	 */
3588	if (I915_READ(ISR) & flip_pending)
3589		return false;
3590
3591	intel_finish_page_flip(dev, pipe);
 
3592
3593	return true;
3594}
3595
3596static irqreturn_t i915_irq_handler(int irq, void *arg)
3597{
3598	struct drm_device *dev = (struct drm_device *) arg;
3599	struct drm_i915_private *dev_priv = dev->dev_private;
3600	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3601	unsigned long irqflags;
3602	u32 flip_mask =
3603		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3604		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3605	int pipe, ret = IRQ_NONE;
3606
3607	iir = I915_READ(IIR);
3608	do {
3609		bool irq_received = (iir & ~flip_mask) != 0;
3610		bool blc_event = false;
3611
3612		/* Can't rely on pipestat interrupt bit in iir as it might
3613		 * have been cleared after the pipestat interrupt was received.
3614		 * It doesn't set the bit in iir again, but it still produces
3615		 * interrupts (for non-MSI).
3616		 */
3617		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3618		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3619			i915_handle_error(dev, false,
3620					  "Command parser error, iir 0x%08x",
3621					  iir);
3622
3623		for_each_pipe(pipe) {
3624			int reg = PIPESTAT(pipe);
3625			pipe_stats[pipe] = I915_READ(reg);
3626
3627			/* Clear the PIPE*STAT regs before the IIR */
3628			if (pipe_stats[pipe] & 0x8000ffff) {
3629				I915_WRITE(reg, pipe_stats[pipe]);
3630				irq_received = true;
3631			}
3632		}
3633		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3634
3635		if (!irq_received)
 
3636			break;
3637
3638		/* Consume port.  Then clear IIR or we'll miss events */
3639		if ((I915_HAS_HOTPLUG(dev)) &&
3640		    (iir & I915_DISPLAY_PORT_INTERRUPT)) {
3641			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3642			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
3643
3644			intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
 
 
 
 
 
 
3645
3646			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3647			POSTING_READ(PORT_HOTPLUG_STAT);
3648		}
3649
3650		I915_WRITE(IIR, iir & ~flip_mask);
3651		new_iir = I915_READ(IIR); /* Flush posted writes */
3652
3653		if (iir & I915_USER_INTERRUPT)
3654			notify_ring(dev, &dev_priv->ring[RCS]);
3655
3656		for_each_pipe(pipe) {
3657			int plane = pipe;
3658			if (HAS_FBC(dev))
3659				plane = !plane;
3660
3661			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3662			    i915_handle_vblank(dev, plane, pipe, iir))
3663				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3664
3665			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3666				blc_event = true;
3667
3668			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3669				i9xx_pipe_crc_irq_handler(dev, pipe);
3670
3671			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3672			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3673				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3674		}
3675
3676		if (blc_event || (iir & I915_ASLE_INTERRUPT))
3677			intel_opregion_asle_intr(dev);
3678
3679		/* With MSI, interrupts are only generated when iir
3680		 * transitions from zero to nonzero.  If another bit got
3681		 * set while we were handling the existing iir bits, then
3682		 * we would never get another interrupt.
3683		 *
3684		 * This is fine on non-MSI as well, as if we hit this path
3685		 * we avoid exiting the interrupt handler only to generate
3686		 * another one.
3687		 *
3688		 * Note that for MSI this could cause a stray interrupt report
3689		 * if an interrupt landed in the time between writing IIR and
3690		 * the posting read.  This should be rare enough to never
3691		 * trigger the 99% of 100,000 interrupts test for disabling
3692		 * stray interrupts.
3693		 */
3694		ret = IRQ_HANDLED;
3695		iir = new_iir;
3696	} while (iir & ~flip_mask);
3697
3698	i915_update_dri1_breadcrumb(dev);
3699
3700	return ret;
3701}
3702
3703static void i915_irq_uninstall(struct drm_device * dev)
3704{
3705	struct drm_i915_private *dev_priv = dev->dev_private;
3706	int pipe;
3707
3708	intel_hpd_irq_uninstall(dev_priv);
3709
3710	if (I915_HAS_HOTPLUG(dev)) {
3711		I915_WRITE(PORT_HOTPLUG_EN, 0);
3712		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3713	}
3714
3715	I915_WRITE16(HWSTAM, 0xffff);
3716	for_each_pipe(pipe) {
3717		/* Clear enable bits; then clear status bits */
3718		I915_WRITE(PIPESTAT(pipe), 0);
3719		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3720	}
3721	I915_WRITE(IMR, 0xffffffff);
3722	I915_WRITE(IER, 0x0);
3723
3724	I915_WRITE(IIR, I915_READ(IIR));
3725}
3726
3727static void i965_irq_preinstall(struct drm_device * dev)
3728{
3729	struct drm_i915_private *dev_priv = dev->dev_private;
3730	int pipe;
3731
3732	I915_WRITE(PORT_HOTPLUG_EN, 0);
3733	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3734
3735	I915_WRITE(HWSTAM, 0xeffe);
3736	for_each_pipe(pipe)
3737		I915_WRITE(PIPESTAT(pipe), 0);
3738	I915_WRITE(IMR, 0xffffffff);
3739	I915_WRITE(IER, 0x0);
3740	POSTING_READ(IER);
3741}
3742
3743static int i965_irq_postinstall(struct drm_device *dev)
3744{
3745	struct drm_i915_private *dev_priv = dev->dev_private;
3746	u32 enable_mask;
3747	u32 error_mask;
3748	unsigned long irqflags;
3749
3750	/* Unmask the interrupts that we always want on. */
3751	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3752			       I915_DISPLAY_PORT_INTERRUPT |
3753			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3754			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3755			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3756			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3757			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3758
3759	enable_mask = ~dev_priv->irq_mask;
3760	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3761			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3762	enable_mask |= I915_USER_INTERRUPT;
3763
3764	if (IS_G4X(dev))
3765		enable_mask |= I915_BSD_USER_INTERRUPT;
3766
3767	/* Interrupt setup is already guaranteed to be single-threaded, this is
3768	 * just to make the assert_spin_locked check happy. */
3769	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3770	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3771	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3772	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3773	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3774
3775	/*
3776	 * Enable some error detection, note the instruction error mask
3777	 * bit is reserved, so we leave it masked.
3778	 */
3779	if (IS_G4X(dev)) {
3780		error_mask = ~(GM45_ERROR_PAGE_TABLE |
3781			       GM45_ERROR_MEM_PRIV |
3782			       GM45_ERROR_CP_PRIV |
3783			       I915_ERROR_MEMORY_REFRESH);
3784	} else {
3785		error_mask = ~(I915_ERROR_PAGE_TABLE |
3786			       I915_ERROR_MEMORY_REFRESH);
3787	}
3788	I915_WRITE(EMR, error_mask);
3789
3790	I915_WRITE(IMR, dev_priv->irq_mask);
3791	I915_WRITE(IER, enable_mask);
3792	POSTING_READ(IER);
 
 
 
 
 
 
 
 
 
 
 
 
3793
3794	I915_WRITE(PORT_HOTPLUG_EN, 0);
3795	POSTING_READ(PORT_HOTPLUG_EN);
3796
3797	i915_enable_asle_pipestat(dev);
3798
3799	return 0;
 
 
 
 
 
 
 
 
3800}
3801
3802static void i915_hpd_irq_setup(struct drm_device *dev)
3803{
3804	struct drm_i915_private *dev_priv = dev->dev_private;
3805	struct drm_mode_config *mode_config = &dev->mode_config;
3806	struct intel_encoder *intel_encoder;
3807	u32 hotplug_en;
3808
3809	assert_spin_locked(&dev_priv->irq_lock);
3810
3811	if (I915_HAS_HOTPLUG(dev)) {
3812		hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3813		hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3814		/* Note HDMI and DP share hotplug bits */
3815		/* enable bits are the same for all generations */
3816		list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3817			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3818				hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3819		/* Programming the CRT detection parameters tends
3820		   to generate a spurious hotplug event about three
3821		   seconds later.  So just do it once.
3822		*/
3823		if (IS_G4X(dev))
3824			hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3825		hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3826		hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3827
3828		/* Ignore TV since it's buggy */
3829		I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3830	}
3831}
3832
3833static irqreturn_t i965_irq_handler(int irq, void *arg)
3834{
3835	struct drm_device *dev = (struct drm_device *) arg;
3836	struct drm_i915_private *dev_priv = dev->dev_private;
3837	u32 iir, new_iir;
3838	u32 pipe_stats[I915_MAX_PIPES];
3839	unsigned long irqflags;
3840	int ret = IRQ_NONE, pipe;
3841	u32 flip_mask =
3842		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3843		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3844
3845	iir = I915_READ(IIR);
3846
3847	for (;;) {
3848		bool irq_received = (iir & ~flip_mask) != 0;
3849		bool blc_event = false;
3850
3851		/* Can't rely on pipestat interrupt bit in iir as it might
3852		 * have been cleared after the pipestat interrupt was received.
3853		 * It doesn't set the bit in iir again, but it still produces
3854		 * interrupts (for non-MSI).
3855		 */
3856		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3857		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3858			i915_handle_error(dev, false,
3859					  "Command parser error, iir 0x%08x",
3860					  iir);
3861
3862		for_each_pipe(pipe) {
3863			int reg = PIPESTAT(pipe);
3864			pipe_stats[pipe] = I915_READ(reg);
3865
3866			/*
3867			 * Clear the PIPE*STAT regs before the IIR
3868			 */
3869			if (pipe_stats[pipe] & 0x8000ffff) {
3870				I915_WRITE(reg, pipe_stats[pipe]);
3871				irq_received = true;
3872			}
3873		}
3874		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3875
3876		if (!irq_received)
 
3877			break;
3878
3879		ret = IRQ_HANDLED;
3880
3881		/* Consume port.  Then clear IIR or we'll miss events */
3882		if (iir & I915_DISPLAY_PORT_INTERRUPT) {
3883			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3884			u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
3885								  HOTPLUG_INT_STATUS_G4X :
3886								  HOTPLUG_INT_STATUS_I915);
3887
3888			intel_hpd_irq_handler(dev, hotplug_trigger,
3889					      IS_G4X(dev) ? hpd_status_g4x : hpd_status_i915);
3890
3891			if (IS_G4X(dev) &&
3892			    (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X))
3893				dp_aux_irq_handler(dev);
3894
3895			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3896			I915_READ(PORT_HOTPLUG_STAT);
3897		}
3898
3899		I915_WRITE(IIR, iir & ~flip_mask);
3900		new_iir = I915_READ(IIR); /* Flush posted writes */
3901
3902		if (iir & I915_USER_INTERRUPT)
3903			notify_ring(dev, &dev_priv->ring[RCS]);
 
3904		if (iir & I915_BSD_USER_INTERRUPT)
3905			notify_ring(dev, &dev_priv->ring[VCS]);
3906
3907		for_each_pipe(pipe) {
3908			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3909			    i915_handle_vblank(dev, pipe, pipe, iir))
3910				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3911
3912			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3913				blc_event = true;
3914
3915			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3916				i9xx_pipe_crc_irq_handler(dev, pipe);
3917
3918			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3919			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3920				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3921		}
3922
3923		if (blc_event || (iir & I915_ASLE_INTERRUPT))
3924			intel_opregion_asle_intr(dev);
3925
3926		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3927			gmbus_irq_handler(dev);
3928
3929		/* With MSI, interrupts are only generated when iir
3930		 * transitions from zero to nonzero.  If another bit got
3931		 * set while we were handling the existing iir bits, then
3932		 * we would never get another interrupt.
3933		 *
3934		 * This is fine on non-MSI as well, as if we hit this path
3935		 * we avoid exiting the interrupt handler only to generate
3936		 * another one.
3937		 *
3938		 * Note that for MSI this could cause a stray interrupt report
3939		 * if an interrupt landed in the time between writing IIR and
3940		 * the posting read.  This should be rare enough to never
3941		 * trigger the 99% of 100,000 interrupts test for disabling
3942		 * stray interrupts.
3943		 */
3944		iir = new_iir;
3945	}
3946
3947	i915_update_dri1_breadcrumb(dev);
3948
3949	return ret;
3950}
3951
3952static void i965_irq_uninstall(struct drm_device * dev)
 
 
 
 
 
 
 
3953{
3954	struct drm_i915_private *dev_priv = dev->dev_private;
3955	int pipe;
 
 
 
 
 
 
3956
3957	if (!dev_priv)
3958		return;
3959
3960	intel_hpd_irq_uninstall(dev_priv);
 
 
3961
3962	I915_WRITE(PORT_HOTPLUG_EN, 0);
3963	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
 
3964
3965	I915_WRITE(HWSTAM, 0xffffffff);
3966	for_each_pipe(pipe)
3967		I915_WRITE(PIPESTAT(pipe), 0);
3968	I915_WRITE(IMR, 0xffffffff);
3969	I915_WRITE(IER, 0x0);
 
 
 
 
 
 
 
3970
3971	for_each_pipe(pipe)
3972		I915_WRITE(PIPESTAT(pipe),
3973			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3974	I915_WRITE(IIR, I915_READ(IIR));
3975}
3976
3977static void intel_hpd_irq_reenable(unsigned long data)
3978{
3979	struct drm_i915_private *dev_priv = (struct drm_i915_private *)data;
3980	struct drm_device *dev = dev_priv->dev;
3981	struct drm_mode_config *mode_config = &dev->mode_config;
3982	unsigned long irqflags;
3983	int i;
 
3984
3985	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3986	for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3987		struct drm_connector *connector;
3988
3989		if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3990			continue;
3991
3992		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
 
 
 
 
 
 
 
 
3993
3994		list_for_each_entry(connector, &mode_config->connector_list, head) {
3995			struct intel_connector *intel_connector = to_intel_connector(connector);
 
 
 
 
 
 
3996
3997			if (intel_connector->encoder->hpd_pin == i) {
3998				if (connector->polled != intel_connector->polled)
3999					DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4000							 drm_get_connector_name(connector));
4001				connector->polled = intel_connector->polled;
4002				if (!connector->polled)
4003					connector->polled = DRM_CONNECTOR_POLL_HPD;
4004			}
4005		}
 
 
 
 
 
 
4006	}
4007	if (dev_priv->display.hpd_irq_setup)
4008		dev_priv->display.hpd_irq_setup(dev);
4009	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4010}
4011
4012void intel_irq_init(struct drm_device *dev)
 
 
 
 
 
 
4013{
4014	struct drm_i915_private *dev_priv = dev->dev_private;
4015
4016	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4017	INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4018	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4019	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4020
4021	/* Let's track the enabled rps events */
4022	dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
 
4023
4024	setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4025		    i915_hangcheck_elapsed,
4026		    (unsigned long) dev);
4027	setup_timer(&dev_priv->hotplug_reenable_timer, intel_hpd_irq_reenable,
4028		    (unsigned long) dev_priv);
4029
4030	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4031
4032	if (IS_GEN2(dev)) {
4033		dev->max_vblank_count = 0;
4034		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4035	} else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4036		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4037		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4038	} else {
4039		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4040		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
 
 
 
 
4041	}
 
4042
4043	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4044		dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4045		dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4046	}
4047
4048	if (IS_VALLEYVIEW(dev)) {
4049		dev->driver->irq_handler = valleyview_irq_handler;
4050		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4051		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4052		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4053		dev->driver->enable_vblank = valleyview_enable_vblank;
4054		dev->driver->disable_vblank = valleyview_disable_vblank;
4055		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4056	} else if (IS_GEN8(dev)) {
4057		dev->driver->irq_handler = gen8_irq_handler;
4058		dev->driver->irq_preinstall = gen8_irq_preinstall;
4059		dev->driver->irq_postinstall = gen8_irq_postinstall;
4060		dev->driver->irq_uninstall = gen8_irq_uninstall;
4061		dev->driver->enable_vblank = gen8_enable_vblank;
4062		dev->driver->disable_vblank = gen8_disable_vblank;
4063		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4064	} else if (HAS_PCH_SPLIT(dev)) {
4065		dev->driver->irq_handler = ironlake_irq_handler;
4066		dev->driver->irq_preinstall = ironlake_irq_preinstall;
4067		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4068		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4069		dev->driver->enable_vblank = ironlake_enable_vblank;
4070		dev->driver->disable_vblank = ironlake_disable_vblank;
4071		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4072	} else {
4073		if (INTEL_INFO(dev)->gen == 2) {
4074			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4075			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4076			dev->driver->irq_handler = i8xx_irq_handler;
4077			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4078		} else if (INTEL_INFO(dev)->gen == 3) {
4079			dev->driver->irq_preinstall = i915_irq_preinstall;
4080			dev->driver->irq_postinstall = i915_irq_postinstall;
4081			dev->driver->irq_uninstall = i915_irq_uninstall;
4082			dev->driver->irq_handler = i915_irq_handler;
4083			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4084		} else {
4085			dev->driver->irq_preinstall = i965_irq_preinstall;
4086			dev->driver->irq_postinstall = i965_irq_postinstall;
4087			dev->driver->irq_uninstall = i965_irq_uninstall;
4088			dev->driver->irq_handler = i965_irq_handler;
4089			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4090		}
4091		dev->driver->enable_vblank = i915_enable_vblank;
4092		dev->driver->disable_vblank = i915_disable_vblank;
4093	}
4094}
4095
4096void intel_hpd_init(struct drm_device *dev)
4097{
4098	struct drm_i915_private *dev_priv = dev->dev_private;
4099	struct drm_mode_config *mode_config = &dev->mode_config;
4100	struct drm_connector *connector;
4101	unsigned long irqflags;
4102	int i;
4103
4104	for (i = 1; i < HPD_NUM_PINS; i++) {
4105		dev_priv->hpd_stats[i].hpd_cnt = 0;
4106		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4107	}
4108	list_for_each_entry(connector, &mode_config->connector_list, head) {
4109		struct intel_connector *intel_connector = to_intel_connector(connector);
4110		connector->polled = intel_connector->polled;
4111		if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4112			connector->polled = DRM_CONNECTOR_POLL_HPD;
 
 
 
4113	}
4114
4115	/* Interrupt setup is already guaranteed to be single-threaded, this is
4116	 * just to make the assert_spin_locked checks happy. */
4117	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4118	if (dev_priv->display.hpd_irq_setup)
4119		dev_priv->display.hpd_irq_setup(dev);
4120	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4121}
4122
4123/* Disable interrupts so we can allow runtime PM. */
4124void hsw_runtime_pm_disable_interrupts(struct drm_device *dev)
 
 
 
 
 
 
 
 
 
 
4125{
4126	struct drm_i915_private *dev_priv = dev->dev_private;
4127	unsigned long irqflags;
 
 
 
 
 
 
 
 
 
4128
4129	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4130
4131	dev_priv->pm.regsave.deimr = I915_READ(DEIMR);
4132	dev_priv->pm.regsave.sdeimr = I915_READ(SDEIMR);
4133	dev_priv->pm.regsave.gtimr = I915_READ(GTIMR);
4134	dev_priv->pm.regsave.gtier = I915_READ(GTIER);
4135	dev_priv->pm.regsave.gen6_pmimr = I915_READ(GEN6_PMIMR);
4136
4137	ironlake_disable_display_irq(dev_priv, 0xffffffff);
4138	ibx_disable_display_interrupt(dev_priv, 0xffffffff);
4139	ilk_disable_gt_irq(dev_priv, 0xffffffff);
4140	snb_disable_pm_irq(dev_priv, 0xffffffff);
4141
4142	dev_priv->pm.irqs_disabled = true;
4143
4144	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4145}
4146
4147/* Restore interrupts so we can recover from runtime PM. */
4148void hsw_runtime_pm_restore_interrupts(struct drm_device *dev)
 
 
 
 
 
 
4149{
4150	struct drm_i915_private *dev_priv = dev->dev_private;
4151	unsigned long irqflags;
4152	uint32_t val;
4153
4154	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
 
 
 
 
 
 
 
4155
4156	val = I915_READ(DEIMR);
4157	WARN(val != 0xffffffff, "DEIMR is 0x%08x\n", val);
4158
4159	val = I915_READ(SDEIMR);
4160	WARN(val != 0xffffffff, "SDEIMR is 0x%08x\n", val);
4161
4162	val = I915_READ(GTIMR);
4163	WARN(val != 0xffffffff, "GTIMR is 0x%08x\n", val);
4164
4165	val = I915_READ(GEN6_PMIMR);
4166	WARN(val != 0xffffffff, "GEN6_PMIMR is 0x%08x\n", val);
 
4167
4168	dev_priv->pm.irqs_disabled = false;
 
 
 
 
 
 
 
 
 
 
 
 
4169
4170	ironlake_enable_display_irq(dev_priv, ~dev_priv->pm.regsave.deimr);
4171	ibx_enable_display_interrupt(dev_priv, ~dev_priv->pm.regsave.sdeimr);
4172	ilk_enable_gt_irq(dev_priv, ~dev_priv->pm.regsave.gtimr);
4173	snb_enable_pm_irq(dev_priv, ~dev_priv->pm.regsave.gen6_pmimr);
4174	I915_WRITE(GTIER, dev_priv->pm.regsave.gtier);
 
 
 
 
 
 
 
 
4175
4176	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
 
 
 
 
 
 
 
 
 
 
 
4177}