Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Componentized device handling.
  4 *
 
 
 
 
  5 * This is work in progress.  We gather up the component devices into a list,
  6 * and bind them when instructed.  At the moment, we're specific to the DRM
  7 * subsystem, and only handles one master device, but this doesn't have to be
  8 * the case.
  9 */
 10#include <linux/component.h>
 11#include <linux/device.h>
 12#include <linux/kref.h>
 13#include <linux/list.h>
 14#include <linux/module.h>
 15#include <linux/mutex.h>
 16#include <linux/slab.h>
 17#include <linux/debugfs.h>
 18
 19/**
 20 * DOC: overview
 21 *
 22 * The component helper allows drivers to collect a pile of sub-devices,
 23 * including their bound drivers, into an aggregate driver. Various subsystems
 24 * already provide functions to get hold of such components, e.g.
 25 * of_clk_get_by_name(). The component helper can be used when such a
 26 * subsystem-specific way to find a device is not available: The component
 27 * helper fills the niche of aggregate drivers for specific hardware, where
 28 * further standardization into a subsystem would not be practical. The common
 29 * example is when a logical device (e.g. a DRM display driver) is spread around
 30 * the SoC on various components (scanout engines, blending blocks, transcoders
 31 * for various outputs and so on).
 32 *
 33 * The component helper also doesn't solve runtime dependencies, e.g. for system
 34 * suspend and resume operations. See also :ref:`device links<device_link>`.
 35 *
 36 * Components are registered using component_add() and unregistered with
 37 * component_del(), usually from the driver's probe and disconnect functions.
 38 *
 39 * Aggregate drivers first assemble a component match list of what they need
 40 * using component_match_add(). This is then registered as an aggregate driver
 41 * using component_master_add_with_match(), and unregistered using
 42 * component_master_del().
 43 */
 44
 45struct component;
 46
 47struct component_match_array {
 48	void *data;
 49	int (*compare)(struct device *, void *);
 50	int (*compare_typed)(struct device *, int, void *);
 51	void (*release)(struct device *, void *);
 52	struct component *component;
 53	bool duplicate;
 54};
 55
 56struct component_match {
 57	size_t alloc;
 58	size_t num;
 59	struct component_match_array *compare;
 60};
 61
 62struct master {
 63	struct list_head node;
 
 64	bool bound;
 65
 66	const struct component_master_ops *ops;
 67	struct device *dev;
 68	struct component_match *match;
 69	struct dentry *dentry;
 70};
 71
 72struct component {
 73	struct list_head node;
 
 74	struct master *master;
 75	bool bound;
 76
 77	const struct component_ops *ops;
 78	int subcomponent;
 79	struct device *dev;
 80};
 81
 82static DEFINE_MUTEX(component_mutex);
 83static LIST_HEAD(component_list);
 84static LIST_HEAD(masters);
 85
 86#ifdef CONFIG_DEBUG_FS
 87
 88static struct dentry *component_debugfs_dir;
 89
 90static int component_devices_show(struct seq_file *s, void *data)
 91{
 92	struct master *m = s->private;
 93	struct component_match *match = m->match;
 94	size_t i;
 95
 96	mutex_lock(&component_mutex);
 97	seq_printf(s, "%-40s %20s\n", "master name", "status");
 98	seq_puts(s, "-------------------------------------------------------------\n");
 99	seq_printf(s, "%-40s %20s\n\n",
100		   dev_name(m->dev), m->bound ? "bound" : "not bound");
101
102	seq_printf(s, "%-40s %20s\n", "device name", "status");
103	seq_puts(s, "-------------------------------------------------------------\n");
104	for (i = 0; i < match->num; i++) {
105		struct device *d = (struct device *)match->compare[i].data;
106
107		seq_printf(s, "%-40s %20s\n", dev_name(d),
108			   match->compare[i].component ?
109			   "registered" : "not registered");
110	}
111	mutex_unlock(&component_mutex);
112
113	return 0;
114}
115
116DEFINE_SHOW_ATTRIBUTE(component_devices);
117
118static int __init component_debug_init(void)
119{
120	component_debugfs_dir = debugfs_create_dir("device_component", NULL);
121
122	return 0;
123}
124
125core_initcall(component_debug_init);
126
127static void component_master_debugfs_add(struct master *m)
128{
129	m->dentry = debugfs_create_file(dev_name(m->dev), 0444,
130					component_debugfs_dir,
131					m, &component_devices_fops);
132}
133
134static void component_master_debugfs_del(struct master *m)
135{
136	debugfs_remove(m->dentry);
137	m->dentry = NULL;
138}
139
140#else
141
142static void component_master_debugfs_add(struct master *m)
143{ }
144
145static void component_master_debugfs_del(struct master *m)
146{ }
147
148#endif
149
150static struct master *__master_find(struct device *dev,
151	const struct component_master_ops *ops)
152{
153	struct master *m;
154
155	list_for_each_entry(m, &masters, node)
156		if (m->dev == dev && (!ops || m->ops == ops))
157			return m;
158
159	return NULL;
160}
161
162static struct component *find_component(struct master *master,
163	struct component_match_array *mc)
164{
165	struct component *c;
166
167	list_for_each_entry(c, &component_list, node) {
168		if (c->master && c->master != master)
169			continue;
170
171		if (mc->compare && mc->compare(c->dev, mc->data))
172			return c;
173
174		if (mc->compare_typed &&
175		    mc->compare_typed(c->dev, c->subcomponent, mc->data))
176			return c;
177	}
178
179	return NULL;
180}
181
182static int find_components(struct master *master)
 
183{
184	struct component_match *match = master->match;
185	size_t i;
186	int ret = 0;
187
188	/*
189	 * Scan the array of match functions and attach
190	 * any components which are found to this master.
191	 */
192	for (i = 0; i < match->num; i++) {
193		struct component_match_array *mc = &match->compare[i];
194		struct component *c;
195
196		dev_dbg(master->dev, "Looking for component %zu\n", i);
 
 
 
 
197
198		if (match->compare[i].component)
 
199			continue;
200
201		c = find_component(master, mc);
202		if (!c) {
203			ret = -ENXIO;
204			break;
205		}
206
207		dev_dbg(master->dev, "found component %s, duplicate %u\n", dev_name(c->dev), !!c->master);
208
209		/* Attach this component to the master */
210		match->compare[i].duplicate = !!c->master;
211		match->compare[i].component = c;
212		c->master = master;
213	}
 
214	return ret;
215}
 
216
217/* Detach component from associated master */
218static void remove_component(struct master *master, struct component *c)
219{
220	size_t i;
 
 
221
222	/* Detach the component from this master. */
223	for (i = 0; i < master->match->num; i++)
224		if (master->match->compare[i].component == c)
225			master->match->compare[i].component = NULL;
226}
227
228/*
229 * Try to bring up a master.  If component is NULL, we're interested in
230 * this master, otherwise it's a component which must be present to try
231 * and bring up the master.
232 *
233 * Returns 1 for successful bringup, 0 if not ready, or -ve errno.
234 */
235static int try_to_bring_up_master(struct master *master,
236	struct component *component)
237{
238	int ret;
239
240	dev_dbg(master->dev, "trying to bring up master\n");
 
 
 
 
 
 
 
 
 
 
241
242	if (find_components(master)) {
243		dev_dbg(master->dev, "master has incomplete components\n");
244		return 0;
245	}
 
246
247	if (component && component->master != master) {
248		dev_dbg(master->dev, "master is not for this component (%s)\n",
249			dev_name(component->dev));
250		return 0;
251	}
252
253	if (!devres_open_group(master->dev, NULL, GFP_KERNEL))
254		return -ENOMEM;
 
 
 
 
 
 
255
256	/* Found all components */
257	ret = master->ops->bind(master->dev);
258	if (ret < 0) {
259		devres_release_group(master->dev, NULL);
260		dev_info(master->dev, "master bind failed: %d\n", ret);
261		return ret;
262	}
 
263
264	master->bound = true;
265	return 1;
266}
267
268static int try_to_bring_up_masters(struct component *component)
269{
270	struct master *m;
271	int ret = 0;
272
273	list_for_each_entry(m, &masters, node) {
274		if (!m->bound) {
275			ret = try_to_bring_up_master(m, component);
276			if (ret != 0)
277				break;
278		}
279	}
280
281	return ret;
282}
283
284static void take_down_master(struct master *master)
285{
286	if (master->bound) {
287		master->ops->unbind(master->dev);
288		devres_release_group(master->dev, NULL);
289		master->bound = false;
290	}
291}
292
293static void component_match_release(struct device *master,
294	struct component_match *match)
295{
296	unsigned int i;
297
298	for (i = 0; i < match->num; i++) {
299		struct component_match_array *mc = &match->compare[i];
300
301		if (mc->release)
302			mc->release(master, mc->data);
303	}
304
305	kfree(match->compare);
306}
307
308static void devm_component_match_release(struct device *dev, void *res)
309{
310	component_match_release(dev, res);
311}
312
313static int component_match_realloc(struct device *dev,
314	struct component_match *match, size_t num)
315{
316	struct component_match_array *new;
317
318	if (match->alloc == num)
319		return 0;
320
321	new = kmalloc_array(num, sizeof(*new), GFP_KERNEL);
322	if (!new)
323		return -ENOMEM;
324
325	if (match->compare) {
326		memcpy(new, match->compare, sizeof(*new) *
327					    min(match->num, num));
328		kfree(match->compare);
329	}
330	match->compare = new;
331	match->alloc = num;
332
333	return 0;
334}
335
336static void __component_match_add(struct device *master,
337	struct component_match **matchptr,
338	void (*release)(struct device *, void *),
339	int (*compare)(struct device *, void *),
340	int (*compare_typed)(struct device *, int, void *),
341	void *compare_data)
342{
343	struct component_match *match = *matchptr;
344
345	if (IS_ERR(match))
346		return;
347
348	if (!match) {
349		match = devres_alloc(devm_component_match_release,
350				     sizeof(*match), GFP_KERNEL);
351		if (!match) {
352			*matchptr = ERR_PTR(-ENOMEM);
353			return;
354		}
355
356		devres_add(master, match);
357
358		*matchptr = match;
359	}
360
361	if (match->num == match->alloc) {
362		size_t new_size = match->alloc + 16;
363		int ret;
364
365		ret = component_match_realloc(master, match, new_size);
366		if (ret) {
367			*matchptr = ERR_PTR(ret);
368			return;
369		}
370	}
371
372	match->compare[match->num].compare = compare;
373	match->compare[match->num].compare_typed = compare_typed;
374	match->compare[match->num].release = release;
375	match->compare[match->num].data = compare_data;
376	match->compare[match->num].component = NULL;
377	match->num++;
378}
379
380/**
381 * component_match_add_release - add a component match entry with release callback
382 * @master: device with the aggregate driver
383 * @matchptr: pointer to the list of component matches
384 * @release: release function for @compare_data
385 * @compare: compare function to match against all components
386 * @compare_data: opaque pointer passed to the @compare function
387 *
388 * Adds a new component match to the list stored in @matchptr, which the @master
389 * aggregate driver needs to function. The list of component matches pointed to
390 * by @matchptr must be initialized to NULL before adding the first match. This
391 * only matches against components added with component_add().
392 *
393 * The allocated match list in @matchptr is automatically released using devm
394 * actions, where upon @release will be called to free any references held by
395 * @compare_data, e.g. when @compare_data is a &device_node that must be
396 * released with of_node_put().
397 *
398 * See also component_match_add() and component_match_add_typed().
399 */
400void component_match_add_release(struct device *master,
401	struct component_match **matchptr,
402	void (*release)(struct device *, void *),
403	int (*compare)(struct device *, void *), void *compare_data)
404{
405	__component_match_add(master, matchptr, release, compare, NULL,
406			      compare_data);
407}
408EXPORT_SYMBOL(component_match_add_release);
409
410/**
411 * component_match_add_typed - add a component match entry for a typed component
412 * @master: device with the aggregate driver
413 * @matchptr: pointer to the list of component matches
414 * @compare_typed: compare function to match against all typed components
415 * @compare_data: opaque pointer passed to the @compare function
416 *
417 * Adds a new component match to the list stored in @matchptr, which the @master
418 * aggregate driver needs to function. The list of component matches pointed to
419 * by @matchptr must be initialized to NULL before adding the first match. This
420 * only matches against components added with component_add_typed().
421 *
422 * The allocated match list in @matchptr is automatically released using devm
423 * actions.
424 *
425 * See also component_match_add_release() and component_match_add_typed().
426 */
427void component_match_add_typed(struct device *master,
428	struct component_match **matchptr,
429	int (*compare_typed)(struct device *, int, void *), void *compare_data)
430{
431	__component_match_add(master, matchptr, NULL, NULL, compare_typed,
432			      compare_data);
433}
434EXPORT_SYMBOL(component_match_add_typed);
435
436static void free_master(struct master *master)
437{
438	struct component_match *match = master->match;
439	int i;
440
441	component_master_debugfs_del(master);
442	list_del(&master->node);
443
444	if (match) {
445		for (i = 0; i < match->num; i++) {
446			struct component *c = match->compare[i].component;
447			if (c)
448				c->master = NULL;
449		}
450	}
451
452	kfree(master);
453}
454
455/**
456 * component_master_add_with_match - register an aggregate driver
457 * @dev: device with the aggregate driver
458 * @ops: callbacks for the aggregate driver
459 * @match: component match list for the aggregate driver
460 *
461 * Registers a new aggregate driver consisting of the components added to @match
462 * by calling one of the component_match_add() functions. Once all components in
463 * @match are available, it will be assembled by calling
464 * &component_master_ops.bind from @ops. Must be unregistered by calling
465 * component_master_del().
466 */
467int component_master_add_with_match(struct device *dev,
468	const struct component_master_ops *ops,
469	struct component_match *match)
470{
471	struct master *master;
472	int ret;
473
474	/* Reallocate the match array for its true size */
475	ret = component_match_realloc(dev, match, match->num);
476	if (ret)
477		return ret;
478
479	master = kzalloc(sizeof(*master), GFP_KERNEL);
480	if (!master)
481		return -ENOMEM;
482
483	master->dev = dev;
484	master->ops = ops;
485	master->match = match;
486
487	component_master_debugfs_add(master);
488	/* Add to the list of available masters. */
489	mutex_lock(&component_mutex);
490	list_add(&master->node, &masters);
491
492	ret = try_to_bring_up_master(master, NULL);
493
494	if (ret < 0)
495		free_master(master);
496
 
 
497	mutex_unlock(&component_mutex);
498
499	return ret < 0 ? ret : 0;
500}
501EXPORT_SYMBOL_GPL(component_master_add_with_match);
502
503/**
504 * component_master_del - unregister an aggregate driver
505 * @dev: device with the aggregate driver
506 * @ops: callbacks for the aggregate driver
507 *
508 * Unregisters an aggregate driver registered with
509 * component_master_add_with_match(). If necessary the aggregate driver is first
510 * disassembled by calling &component_master_ops.unbind from @ops.
511 */
512void component_master_del(struct device *dev,
513	const struct component_master_ops *ops)
514{
515	struct master *master;
516
517	mutex_lock(&component_mutex);
518	master = __master_find(dev, ops);
519	if (master) {
520		take_down_master(master);
521		free_master(master);
 
 
522	}
523	mutex_unlock(&component_mutex);
524}
525EXPORT_SYMBOL_GPL(component_master_del);
526
527static void component_unbind(struct component *component,
528	struct master *master, void *data)
529{
530	WARN_ON(!component->bound);
531
532	component->ops->unbind(component->dev, master->dev, data);
533	component->bound = false;
534
535	/* Release all resources claimed in the binding of this component */
536	devres_release_group(component->dev, component);
537}
538
539/**
540 * component_unbind_all - unbind all components of an aggregate driver
541 * @master_dev: device with the aggregate driver
542 * @data: opaque pointer, passed to all components
543 *
544 * Unbinds all components of the aggregate @dev by passing @data to their
545 * &component_ops.unbind functions. Should be called from
546 * &component_master_ops.unbind.
547 */
548void component_unbind_all(struct device *master_dev, void *data)
549{
550	struct master *master;
551	struct component *c;
552	size_t i;
553
554	WARN_ON(!mutex_is_locked(&component_mutex));
555
556	master = __master_find(master_dev, NULL);
557	if (!master)
558		return;
559
560	/* Unbind components in reverse order */
561	for (i = master->match->num; i--; )
562		if (!master->match->compare[i].duplicate) {
563			c = master->match->compare[i].component;
564			component_unbind(c, master, data);
565		}
566}
567EXPORT_SYMBOL_GPL(component_unbind_all);
568
569static int component_bind(struct component *component, struct master *master,
570	void *data)
571{
572	int ret;
573
574	/*
575	 * Each component initialises inside its own devres group.
576	 * This allows us to roll-back a failed component without
577	 * affecting anything else.
578	 */
579	if (!devres_open_group(master->dev, NULL, GFP_KERNEL))
580		return -ENOMEM;
581
582	/*
583	 * Also open a group for the device itself: this allows us
584	 * to release the resources claimed against the sub-device
585	 * at the appropriate moment.
586	 */
587	if (!devres_open_group(component->dev, component, GFP_KERNEL)) {
588		devres_release_group(master->dev, NULL);
589		return -ENOMEM;
590	}
591
592	dev_dbg(master->dev, "binding %s (ops %ps)\n",
593		dev_name(component->dev), component->ops);
594
595	ret = component->ops->bind(component->dev, master->dev, data);
596	if (!ret) {
597		component->bound = true;
598
599		/*
600		 * Close the component device's group so that resources
601		 * allocated in the binding are encapsulated for removal
602		 * at unbind.  Remove the group on the DRM device as we
603		 * can clean those resources up independently.
604		 */
605		devres_close_group(component->dev, NULL);
606		devres_remove_group(master->dev, NULL);
607
608		dev_info(master->dev, "bound %s (ops %ps)\n",
609			 dev_name(component->dev), component->ops);
610	} else {
611		devres_release_group(component->dev, NULL);
612		devres_release_group(master->dev, NULL);
613
614		dev_err(master->dev, "failed to bind %s (ops %ps): %d\n",
615			dev_name(component->dev), component->ops, ret);
616	}
617
618	return ret;
619}
620
621/**
622 * component_bind_all - bind all components of an aggregate driver
623 * @master_dev: device with the aggregate driver
624 * @data: opaque pointer, passed to all components
625 *
626 * Binds all components of the aggregate @dev by passing @data to their
627 * &component_ops.bind functions. Should be called from
628 * &component_master_ops.bind.
629 */
630int component_bind_all(struct device *master_dev, void *data)
631{
632	struct master *master;
633	struct component *c;
634	size_t i;
635	int ret = 0;
636
637	WARN_ON(!mutex_is_locked(&component_mutex));
638
639	master = __master_find(master_dev, NULL);
640	if (!master)
641		return -EINVAL;
642
643	/* Bind components in match order */
644	for (i = 0; i < master->match->num; i++)
645		if (!master->match->compare[i].duplicate) {
646			c = master->match->compare[i].component;
647			ret = component_bind(c, master, data);
648			if (ret)
649				break;
650		}
651
652	if (ret != 0) {
653		for (; i > 0; i--)
654			if (!master->match->compare[i - 1].duplicate) {
655				c = master->match->compare[i - 1].component;
656				component_unbind(c, master, data);
657			}
658	}
659
660	return ret;
661}
662EXPORT_SYMBOL_GPL(component_bind_all);
663
664static int __component_add(struct device *dev, const struct component_ops *ops,
665	int subcomponent)
666{
667	struct component *component;
668	int ret;
669
670	component = kzalloc(sizeof(*component), GFP_KERNEL);
671	if (!component)
672		return -ENOMEM;
673
674	component->ops = ops;
675	component->dev = dev;
676	component->subcomponent = subcomponent;
677
678	dev_dbg(dev, "adding component (ops %ps)\n", ops);
679
680	mutex_lock(&component_mutex);
681	list_add_tail(&component->node, &component_list);
682
683	ret = try_to_bring_up_masters(component);
684	if (ret < 0) {
685		if (component->master)
686			remove_component(component->master, component);
687		list_del(&component->node);
688
689		kfree(component);
690	}
691	mutex_unlock(&component_mutex);
692
693	return ret < 0 ? ret : 0;
694}
695
696/**
697 * component_add_typed - register a component
698 * @dev: component device
699 * @ops: component callbacks
700 * @subcomponent: nonzero identifier for subcomponents
701 *
702 * Register a new component for @dev. Functions in @ops will be call when the
703 * aggregate driver is ready to bind the overall driver by calling
704 * component_bind_all(). See also &struct component_ops.
705 *
706 * @subcomponent must be nonzero and is used to differentiate between multiple
707 * components registerd on the same device @dev. These components are match
708 * using component_match_add_typed().
709 *
710 * The component needs to be unregistered at driver unload/disconnect by
711 * calling component_del().
712 *
713 * See also component_add().
714 */
715int component_add_typed(struct device *dev, const struct component_ops *ops,
716	int subcomponent)
717{
718	if (WARN_ON(subcomponent == 0))
719		return -EINVAL;
720
721	return __component_add(dev, ops, subcomponent);
722}
723EXPORT_SYMBOL_GPL(component_add_typed);
724
725/**
726 * component_add - register a component
727 * @dev: component device
728 * @ops: component callbacks
729 *
730 * Register a new component for @dev. Functions in @ops will be called when the
731 * aggregate driver is ready to bind the overall driver by calling
732 * component_bind_all(). See also &struct component_ops.
733 *
734 * The component needs to be unregistered at driver unload/disconnect by
735 * calling component_del().
736 *
737 * See also component_add_typed() for a variant that allows multipled different
738 * components on the same device.
739 */
740int component_add(struct device *dev, const struct component_ops *ops)
741{
742	return __component_add(dev, ops, 0);
743}
744EXPORT_SYMBOL_GPL(component_add);
745
746/**
747 * component_del - unregister a component
748 * @dev: component device
749 * @ops: component callbacks
750 *
751 * Unregister a component added with component_add(). If the component is bound
752 * into an aggregate driver, this will force the entire aggregate driver, including
753 * all its components, to be unbound.
754 */
755void component_del(struct device *dev, const struct component_ops *ops)
756{
757	struct component *c, *component = NULL;
758
759	mutex_lock(&component_mutex);
760	list_for_each_entry(c, &component_list, node)
761		if (c->dev == dev && c->ops == ops) {
762			list_del(&c->node);
763			component = c;
764			break;
765		}
766
767	if (component && component->master) {
768		take_down_master(component->master);
769		remove_component(component->master, component);
770	}
771
772	mutex_unlock(&component_mutex);
773
774	WARN_ON(!component);
775	kfree(component);
776}
777EXPORT_SYMBOL_GPL(component_del);
778
779MODULE_LICENSE("GPL v2");
v3.15
 
  1/*
  2 * Componentized device handling.
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License version 2 as
  6 * published by the Free Software Foundation.
  7 *
  8 * This is work in progress.  We gather up the component devices into a list,
  9 * and bind them when instructed.  At the moment, we're specific to the DRM
 10 * subsystem, and only handles one master device, but this doesn't have to be
 11 * the case.
 12 */
 13#include <linux/component.h>
 14#include <linux/device.h>
 15#include <linux/kref.h>
 16#include <linux/list.h>
 17#include <linux/module.h>
 18#include <linux/mutex.h>
 19#include <linux/slab.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 20
 21struct master {
 22	struct list_head node;
 23	struct list_head components;
 24	bool bound;
 25
 26	const struct component_master_ops *ops;
 27	struct device *dev;
 
 
 28};
 29
 30struct component {
 31	struct list_head node;
 32	struct list_head master_node;
 33	struct master *master;
 34	bool bound;
 35
 36	const struct component_ops *ops;
 
 37	struct device *dev;
 38};
 39
 40static DEFINE_MUTEX(component_mutex);
 41static LIST_HEAD(component_list);
 42static LIST_HEAD(masters);
 43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 44static struct master *__master_find(struct device *dev,
 45	const struct component_master_ops *ops)
 46{
 47	struct master *m;
 48
 49	list_for_each_entry(m, &masters, node)
 50		if (m->dev == dev && (!ops || m->ops == ops))
 51			return m;
 52
 53	return NULL;
 54}
 55
 56/* Attach an unattached component to a master. */
 57static void component_attach_master(struct master *master, struct component *c)
 58{
 59	c->master = master;
 
 
 
 
 
 
 
 60
 61	list_add_tail(&c->master_node, &master->components);
 
 
 
 
 
 62}
 63
 64/* Detach a component from a master. */
 65static void component_detach_master(struct master *master, struct component *c)
 66{
 67	list_del(&c->master_node);
 
 
 68
 69	c->master = NULL;
 70}
 
 
 
 
 
 71
 72int component_master_add_child(struct master *master,
 73	int (*compare)(struct device *, void *), void *compare_data)
 74{
 75	struct component *c;
 76	int ret = -ENXIO;
 77
 78	list_for_each_entry(c, &component_list, node) {
 79		if (c->master)
 80			continue;
 81
 82		if (compare(c->dev, compare_data)) {
 83			component_attach_master(master, c);
 84			ret = 0;
 85			break;
 86		}
 
 
 
 
 
 
 
 87	}
 88
 89	return ret;
 90}
 91EXPORT_SYMBOL_GPL(component_master_add_child);
 92
 93/* Detach all attached components from this master */
 94static void master_remove_components(struct master *master)
 95{
 96	while (!list_empty(&master->components)) {
 97		struct component *c = list_first_entry(&master->components,
 98					struct component, master_node);
 99
100		WARN_ON(c->master != master);
101
102		component_detach_master(master, c);
103	}
104}
105
106/*
107 * Try to bring up a master.  If component is NULL, we're interested in
108 * this master, otherwise it's a component which must be present to try
109 * and bring up the master.
110 *
111 * Returns 1 for successful bringup, 0 if not ready, or -ve errno.
112 */
113static int try_to_bring_up_master(struct master *master,
114	struct component *component)
115{
116	int ret = 0;
117
118	if (!master->bound) {
119		/*
120		 * Search the list of components, looking for components that
121		 * belong to this master, and attach them to the master.
122		 */
123		if (master->ops->add_components(master->dev, master)) {
124			/* Failed to find all components */
125			master_remove_components(master);
126			ret = 0;
127			goto out;
128		}
129
130		if (component && component->master != master) {
131			master_remove_components(master);
132			ret = 0;
133			goto out;
134		}
135
136		if (!devres_open_group(master->dev, NULL, GFP_KERNEL)) {
137			ret = -ENOMEM;
138			goto out;
139		}
 
140
141		/* Found all components */
142		ret = master->ops->bind(master->dev);
143		if (ret < 0) {
144			devres_release_group(master->dev, NULL);
145			dev_info(master->dev, "master bind failed: %d\n", ret);
146			master_remove_components(master);
147			goto out;
148		}
149
150		master->bound = true;
151		ret = 1;
 
 
 
 
152	}
153out:
154
155	return ret;
 
156}
157
158static int try_to_bring_up_masters(struct component *component)
159{
160	struct master *m;
161	int ret = 0;
162
163	list_for_each_entry(m, &masters, node) {
164		ret = try_to_bring_up_master(m, component);
165		if (ret != 0)
166			break;
 
 
167	}
168
169	return ret;
170}
171
172static void take_down_master(struct master *master)
173{
174	if (master->bound) {
175		master->ops->unbind(master->dev);
176		devres_release_group(master->dev, NULL);
177		master->bound = false;
178	}
 
 
 
 
 
 
 
 
 
 
 
 
 
179
180	master_remove_components(master);
181}
182
183int component_master_add(struct device *dev,
184	const struct component_master_ops *ops)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
185{
186	struct master *master;
187	int ret;
188
 
 
 
 
 
189	master = kzalloc(sizeof(*master), GFP_KERNEL);
190	if (!master)
191		return -ENOMEM;
192
193	master->dev = dev;
194	master->ops = ops;
195	INIT_LIST_HEAD(&master->components);
196
 
197	/* Add to the list of available masters. */
198	mutex_lock(&component_mutex);
199	list_add(&master->node, &masters);
200
201	ret = try_to_bring_up_master(master, NULL);
202
203	if (ret < 0) {
204		/* Delete off the list if we weren't successful */
205		list_del(&master->node);
206		kfree(master);
207	}
208	mutex_unlock(&component_mutex);
209
210	return ret < 0 ? ret : 0;
211}
212EXPORT_SYMBOL_GPL(component_master_add);
213
 
 
 
 
 
 
 
 
 
214void component_master_del(struct device *dev,
215	const struct component_master_ops *ops)
216{
217	struct master *master;
218
219	mutex_lock(&component_mutex);
220	master = __master_find(dev, ops);
221	if (master) {
222		take_down_master(master);
223
224		list_del(&master->node);
225		kfree(master);
226	}
227	mutex_unlock(&component_mutex);
228}
229EXPORT_SYMBOL_GPL(component_master_del);
230
231static void component_unbind(struct component *component,
232	struct master *master, void *data)
233{
234	WARN_ON(!component->bound);
235
236	component->ops->unbind(component->dev, master->dev, data);
237	component->bound = false;
238
239	/* Release all resources claimed in the binding of this component */
240	devres_release_group(component->dev, component);
241}
242
 
 
 
 
 
 
 
 
 
243void component_unbind_all(struct device *master_dev, void *data)
244{
245	struct master *master;
246	struct component *c;
 
247
248	WARN_ON(!mutex_is_locked(&component_mutex));
249
250	master = __master_find(master_dev, NULL);
251	if (!master)
252		return;
253
254	list_for_each_entry_reverse(c, &master->components, master_node)
255		component_unbind(c, master, data);
 
 
 
 
256}
257EXPORT_SYMBOL_GPL(component_unbind_all);
258
259static int component_bind(struct component *component, struct master *master,
260	void *data)
261{
262	int ret;
263
264	/*
265	 * Each component initialises inside its own devres group.
266	 * This allows us to roll-back a failed component without
267	 * affecting anything else.
268	 */
269	if (!devres_open_group(master->dev, NULL, GFP_KERNEL))
270		return -ENOMEM;
271
272	/*
273	 * Also open a group for the device itself: this allows us
274	 * to release the resources claimed against the sub-device
275	 * at the appropriate moment.
276	 */
277	if (!devres_open_group(component->dev, component, GFP_KERNEL)) {
278		devres_release_group(master->dev, NULL);
279		return -ENOMEM;
280	}
281
282	dev_dbg(master->dev, "binding %s (ops %ps)\n",
283		dev_name(component->dev), component->ops);
284
285	ret = component->ops->bind(component->dev, master->dev, data);
286	if (!ret) {
287		component->bound = true;
288
289		/*
290		 * Close the component device's group so that resources
291		 * allocated in the binding are encapsulated for removal
292		 * at unbind.  Remove the group on the DRM device as we
293		 * can clean those resources up independently.
294		 */
295		devres_close_group(component->dev, NULL);
296		devres_remove_group(master->dev, NULL);
297
298		dev_info(master->dev, "bound %s (ops %ps)\n",
299			 dev_name(component->dev), component->ops);
300	} else {
301		devres_release_group(component->dev, NULL);
302		devres_release_group(master->dev, NULL);
303
304		dev_err(master->dev, "failed to bind %s (ops %ps): %d\n",
305			dev_name(component->dev), component->ops, ret);
306	}
307
308	return ret;
309}
310
 
 
 
 
 
 
 
 
 
311int component_bind_all(struct device *master_dev, void *data)
312{
313	struct master *master;
314	struct component *c;
 
315	int ret = 0;
316
317	WARN_ON(!mutex_is_locked(&component_mutex));
318
319	master = __master_find(master_dev, NULL);
320	if (!master)
321		return -EINVAL;
322
323	list_for_each_entry(c, &master->components, master_node) {
324		ret = component_bind(c, master, data);
325		if (ret)
326			break;
327	}
 
 
 
328
329	if (ret != 0) {
330		list_for_each_entry_continue_reverse(c, &master->components,
331						     master_node)
332			component_unbind(c, master, data);
 
 
333	}
334
335	return ret;
336}
337EXPORT_SYMBOL_GPL(component_bind_all);
338
339int component_add(struct device *dev, const struct component_ops *ops)
 
340{
341	struct component *component;
342	int ret;
343
344	component = kzalloc(sizeof(*component), GFP_KERNEL);
345	if (!component)
346		return -ENOMEM;
347
348	component->ops = ops;
349	component->dev = dev;
 
350
351	dev_dbg(dev, "adding component (ops %ps)\n", ops);
352
353	mutex_lock(&component_mutex);
354	list_add_tail(&component->node, &component_list);
355
356	ret = try_to_bring_up_masters(component);
357	if (ret < 0) {
 
 
358		list_del(&component->node);
359
360		kfree(component);
361	}
362	mutex_unlock(&component_mutex);
363
364	return ret < 0 ? ret : 0;
365}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
366EXPORT_SYMBOL_GPL(component_add);
367
 
 
 
 
 
 
 
 
 
368void component_del(struct device *dev, const struct component_ops *ops)
369{
370	struct component *c, *component = NULL;
371
372	mutex_lock(&component_mutex);
373	list_for_each_entry(c, &component_list, node)
374		if (c->dev == dev && c->ops == ops) {
375			list_del(&c->node);
376			component = c;
377			break;
378		}
379
380	if (component && component->master)
381		take_down_master(component->master);
 
 
382
383	mutex_unlock(&component_mutex);
384
385	WARN_ON(!component);
386	kfree(component);
387}
388EXPORT_SYMBOL_GPL(component_del);
389
390MODULE_LICENSE("GPL v2");