Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/* Support for MMIO probes.
  3 * Benfit many code from kprobes
  4 * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
  5 *     2007 Alexander Eichner
  6 *     2008 Pekka Paalanen <pq@iki.fi>
  7 */
  8
  9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 10
 11#include <linux/list.h>
 12#include <linux/rculist.h>
 13#include <linux/spinlock.h>
 14#include <linux/hash.h>
 15#include <linux/export.h>
 16#include <linux/kernel.h>
 17#include <linux/uaccess.h>
 18#include <linux/ptrace.h>
 19#include <linux/preempt.h>
 20#include <linux/percpu.h>
 21#include <linux/kdebug.h>
 22#include <linux/mutex.h>
 23#include <linux/io.h>
 24#include <linux/slab.h>
 25#include <asm/cacheflush.h>
 26#include <asm/tlbflush.h>
 27#include <linux/errno.h>
 28#include <asm/debugreg.h>
 29#include <linux/mmiotrace.h>
 30
 31#define KMMIO_PAGE_HASH_BITS 4
 32#define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
 33
 34struct kmmio_fault_page {
 35	struct list_head list;
 36	struct kmmio_fault_page *release_next;
 37	unsigned long addr; /* the requested address */
 38	pteval_t old_presence; /* page presence prior to arming */
 39	bool armed;
 40
 41	/*
 42	 * Number of times this page has been registered as a part
 43	 * of a probe. If zero, page is disarmed and this may be freed.
 44	 * Used only by writers (RCU) and post_kmmio_handler().
 45	 * Protected by kmmio_lock, when linked into kmmio_page_table.
 46	 */
 47	int count;
 48
 49	bool scheduled_for_release;
 50};
 51
 52struct kmmio_delayed_release {
 53	struct rcu_head rcu;
 54	struct kmmio_fault_page *release_list;
 55};
 56
 57struct kmmio_context {
 58	struct kmmio_fault_page *fpage;
 59	struct kmmio_probe *probe;
 60	unsigned long saved_flags;
 61	unsigned long addr;
 62	int active;
 63};
 64
 65static DEFINE_SPINLOCK(kmmio_lock);
 66
 67/* Protected by kmmio_lock */
 68unsigned int kmmio_count;
 69
 70/* Read-protected by RCU, write-protected by kmmio_lock. */
 71static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
 72static LIST_HEAD(kmmio_probes);
 73
 74static struct list_head *kmmio_page_list(unsigned long addr)
 75{
 76	unsigned int l;
 77	pte_t *pte = lookup_address(addr, &l);
 78
 79	if (!pte)
 80		return NULL;
 81	addr &= page_level_mask(l);
 82
 83	return &kmmio_page_table[hash_long(addr, KMMIO_PAGE_HASH_BITS)];
 84}
 85
 86/* Accessed per-cpu */
 87static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
 88
 89/*
 90 * this is basically a dynamic stabbing problem:
 91 * Could use the existing prio tree code or
 92 * Possible better implementations:
 93 * The Interval Skip List: A Data Structure for Finding All Intervals That
 94 * Overlap a Point (might be simple)
 95 * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
 96 */
 97/* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
 98static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
 99{
100	struct kmmio_probe *p;
101	list_for_each_entry_rcu(p, &kmmio_probes, list) {
102		if (addr >= p->addr && addr < (p->addr + p->len))
103			return p;
104	}
105	return NULL;
106}
107
108/* You must be holding RCU read lock. */
109static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long addr)
110{
111	struct list_head *head;
112	struct kmmio_fault_page *f;
113	unsigned int l;
114	pte_t *pte = lookup_address(addr, &l);
115
116	if (!pte)
117		return NULL;
118	addr &= page_level_mask(l);
119	head = kmmio_page_list(addr);
120	list_for_each_entry_rcu(f, head, list) {
121		if (f->addr == addr)
122			return f;
123	}
124	return NULL;
125}
126
127static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old)
128{
129	pmd_t new_pmd;
130	pmdval_t v = pmd_val(*pmd);
131	if (clear) {
132		*old = v;
133		new_pmd = pmd_mknotpresent(*pmd);
134	} else {
135		/* Presume this has been called with clear==true previously */
136		new_pmd = __pmd(*old);
137	}
138	set_pmd(pmd, new_pmd);
139}
140
141static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old)
142{
143	pteval_t v = pte_val(*pte);
144	if (clear) {
145		*old = v;
146		/* Nothing should care about address */
147		pte_clear(&init_mm, 0, pte);
148	} else {
149		/* Presume this has been called with clear==true previously */
150		set_pte_atomic(pte, __pte(*old));
151	}
152}
153
154static int clear_page_presence(struct kmmio_fault_page *f, bool clear)
155{
156	unsigned int level;
157	pte_t *pte = lookup_address(f->addr, &level);
158
159	if (!pte) {
160		pr_err("no pte for addr 0x%08lx\n", f->addr);
161		return -1;
162	}
163
164	switch (level) {
165	case PG_LEVEL_2M:
166		clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence);
167		break;
168	case PG_LEVEL_4K:
169		clear_pte_presence(pte, clear, &f->old_presence);
170		break;
171	default:
172		pr_err("unexpected page level 0x%x.\n", level);
173		return -1;
174	}
175
176	__flush_tlb_one_kernel(f->addr);
177	return 0;
178}
179
180/*
181 * Mark the given page as not present. Access to it will trigger a fault.
182 *
183 * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
184 * protection is ignored here. RCU read lock is assumed held, so the struct
185 * will not disappear unexpectedly. Furthermore, the caller must guarantee,
186 * that double arming the same virtual address (page) cannot occur.
187 *
188 * Double disarming on the other hand is allowed, and may occur when a fault
189 * and mmiotrace shutdown happen simultaneously.
190 */
191static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
192{
193	int ret;
194	WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n"));
195	if (f->armed) {
196		pr_warning("double-arm: addr 0x%08lx, ref %d, old %d\n",
197			   f->addr, f->count, !!f->old_presence);
198	}
199	ret = clear_page_presence(f, true);
200	WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming at 0x%08lx failed.\n"),
201		  f->addr);
202	f->armed = true;
203	return ret;
204}
205
206/** Restore the given page to saved presence state. */
207static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
208{
209	int ret = clear_page_presence(f, false);
210	WARN_ONCE(ret < 0,
211			KERN_ERR "kmmio disarming at 0x%08lx failed.\n", f->addr);
212	f->armed = false;
213}
214
215/*
216 * This is being called from do_page_fault().
217 *
218 * We may be in an interrupt or a critical section. Also prefecthing may
219 * trigger a page fault. We may be in the middle of process switch.
220 * We cannot take any locks, because we could be executing especially
221 * within a kmmio critical section.
222 *
223 * Local interrupts are disabled, so preemption cannot happen.
224 * Do not enable interrupts, do not sleep, and watch out for other CPUs.
225 */
226/*
227 * Interrupts are disabled on entry as trap3 is an interrupt gate
228 * and they remain disabled throughout this function.
229 */
230int kmmio_handler(struct pt_regs *regs, unsigned long addr)
231{
232	struct kmmio_context *ctx;
233	struct kmmio_fault_page *faultpage;
234	int ret = 0; /* default to fault not handled */
235	unsigned long page_base = addr;
236	unsigned int l;
237	pte_t *pte = lookup_address(addr, &l);
238	if (!pte)
239		return -EINVAL;
240	page_base &= page_level_mask(l);
241
242	/*
243	 * Preemption is now disabled to prevent process switch during
244	 * single stepping. We can only handle one active kmmio trace
245	 * per cpu, so ensure that we finish it before something else
246	 * gets to run. We also hold the RCU read lock over single
247	 * stepping to avoid looking up the probe and kmmio_fault_page
248	 * again.
249	 */
250	preempt_disable();
251	rcu_read_lock();
252
253	faultpage = get_kmmio_fault_page(page_base);
254	if (!faultpage) {
255		/*
256		 * Either this page fault is not caused by kmmio, or
257		 * another CPU just pulled the kmmio probe from under
258		 * our feet. The latter case should not be possible.
259		 */
260		goto no_kmmio;
261	}
262
263	ctx = &get_cpu_var(kmmio_ctx);
264	if (ctx->active) {
265		if (page_base == ctx->addr) {
266			/*
267			 * A second fault on the same page means some other
268			 * condition needs handling by do_page_fault(), the
269			 * page really not being present is the most common.
270			 */
271			pr_debug("secondary hit for 0x%08lx CPU %d.\n",
272				 addr, smp_processor_id());
273
274			if (!faultpage->old_presence)
275				pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
276					addr, smp_processor_id());
277		} else {
278			/*
279			 * Prevent overwriting already in-flight context.
280			 * This should not happen, let's hope disarming at
281			 * least prevents a panic.
282			 */
283			pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
284				 smp_processor_id(), addr);
285			pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr);
286			disarm_kmmio_fault_page(faultpage);
287		}
288		goto no_kmmio_ctx;
289	}
290	ctx->active++;
291
292	ctx->fpage = faultpage;
293	ctx->probe = get_kmmio_probe(page_base);
294	ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
295	ctx->addr = page_base;
296
297	if (ctx->probe && ctx->probe->pre_handler)
298		ctx->probe->pre_handler(ctx->probe, regs, addr);
299
300	/*
301	 * Enable single-stepping and disable interrupts for the faulting
302	 * context. Local interrupts must not get enabled during stepping.
303	 */
304	regs->flags |= X86_EFLAGS_TF;
305	regs->flags &= ~X86_EFLAGS_IF;
306
307	/* Now we set present bit in PTE and single step. */
308	disarm_kmmio_fault_page(ctx->fpage);
309
310	/*
311	 * If another cpu accesses the same page while we are stepping,
312	 * the access will not be caught. It will simply succeed and the
313	 * only downside is we lose the event. If this becomes a problem,
314	 * the user should drop to single cpu before tracing.
315	 */
316
317	put_cpu_var(kmmio_ctx);
318	return 1; /* fault handled */
319
320no_kmmio_ctx:
321	put_cpu_var(kmmio_ctx);
322no_kmmio:
323	rcu_read_unlock();
324	preempt_enable_no_resched();
325	return ret;
326}
327
328/*
329 * Interrupts are disabled on entry as trap1 is an interrupt gate
330 * and they remain disabled throughout this function.
331 * This must always get called as the pair to kmmio_handler().
332 */
333static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
334{
335	int ret = 0;
336	struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx);
337
338	if (!ctx->active) {
339		/*
340		 * debug traps without an active context are due to either
341		 * something external causing them (f.e. using a debugger while
342		 * mmio tracing enabled), or erroneous behaviour
343		 */
344		pr_warning("unexpected debug trap on CPU %d.\n",
345			   smp_processor_id());
346		goto out;
347	}
348
349	if (ctx->probe && ctx->probe->post_handler)
350		ctx->probe->post_handler(ctx->probe, condition, regs);
351
352	/* Prevent racing against release_kmmio_fault_page(). */
353	spin_lock(&kmmio_lock);
354	if (ctx->fpage->count)
355		arm_kmmio_fault_page(ctx->fpage);
356	spin_unlock(&kmmio_lock);
357
358	regs->flags &= ~X86_EFLAGS_TF;
359	regs->flags |= ctx->saved_flags;
360
361	/* These were acquired in kmmio_handler(). */
362	ctx->active--;
363	BUG_ON(ctx->active);
364	rcu_read_unlock();
365	preempt_enable_no_resched();
366
367	/*
368	 * if somebody else is singlestepping across a probe point, flags
369	 * will have TF set, in which case, continue the remaining processing
370	 * of do_debug, as if this is not a probe hit.
371	 */
372	if (!(regs->flags & X86_EFLAGS_TF))
373		ret = 1;
374out:
375	put_cpu_var(kmmio_ctx);
376	return ret;
377}
378
379/* You must be holding kmmio_lock. */
380static int add_kmmio_fault_page(unsigned long addr)
381{
382	struct kmmio_fault_page *f;
383
384	f = get_kmmio_fault_page(addr);
 
385	if (f) {
386		if (!f->count)
387			arm_kmmio_fault_page(f);
388		f->count++;
389		return 0;
390	}
391
392	f = kzalloc(sizeof(*f), GFP_ATOMIC);
393	if (!f)
394		return -1;
395
396	f->count = 1;
397	f->addr = addr;
398
399	if (arm_kmmio_fault_page(f)) {
400		kfree(f);
401		return -1;
402	}
403
404	list_add_rcu(&f->list, kmmio_page_list(f->addr));
405
406	return 0;
407}
408
409/* You must be holding kmmio_lock. */
410static void release_kmmio_fault_page(unsigned long addr,
411				struct kmmio_fault_page **release_list)
412{
413	struct kmmio_fault_page *f;
414
415	f = get_kmmio_fault_page(addr);
 
416	if (!f)
417		return;
418
419	f->count--;
420	BUG_ON(f->count < 0);
421	if (!f->count) {
422		disarm_kmmio_fault_page(f);
423		if (!f->scheduled_for_release) {
424			f->release_next = *release_list;
425			*release_list = f;
426			f->scheduled_for_release = true;
427		}
428	}
429}
430
431/*
432 * With page-unaligned ioremaps, one or two armed pages may contain
433 * addresses from outside the intended mapping. Events for these addresses
434 * are currently silently dropped. The events may result only from programming
435 * mistakes by accessing addresses before the beginning or past the end of a
436 * mapping.
437 */
438int register_kmmio_probe(struct kmmio_probe *p)
439{
440	unsigned long flags;
441	int ret = 0;
442	unsigned long size = 0;
443	unsigned long addr = p->addr & PAGE_MASK;
444	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
445	unsigned int l;
446	pte_t *pte;
447
448	spin_lock_irqsave(&kmmio_lock, flags);
449	if (get_kmmio_probe(addr)) {
450		ret = -EEXIST;
451		goto out;
452	}
453
454	pte = lookup_address(addr, &l);
455	if (!pte) {
456		ret = -EINVAL;
457		goto out;
458	}
459
460	kmmio_count++;
461	list_add_rcu(&p->list, &kmmio_probes);
462	while (size < size_lim) {
463		if (add_kmmio_fault_page(addr + size))
464			pr_err("Unable to set page fault.\n");
465		size += page_level_size(l);
466	}
467out:
468	spin_unlock_irqrestore(&kmmio_lock, flags);
469	/*
470	 * XXX: What should I do here?
471	 * Here was a call to global_flush_tlb(), but it does not exist
472	 * anymore. It seems it's not needed after all.
473	 */
474	return ret;
475}
476EXPORT_SYMBOL(register_kmmio_probe);
477
478static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
479{
480	struct kmmio_delayed_release *dr = container_of(
481						head,
482						struct kmmio_delayed_release,
483						rcu);
484	struct kmmio_fault_page *f = dr->release_list;
485	while (f) {
486		struct kmmio_fault_page *next = f->release_next;
487		BUG_ON(f->count);
488		kfree(f);
489		f = next;
490	}
491	kfree(dr);
492}
493
494static void remove_kmmio_fault_pages(struct rcu_head *head)
495{
496	struct kmmio_delayed_release *dr =
497		container_of(head, struct kmmio_delayed_release, rcu);
498	struct kmmio_fault_page *f = dr->release_list;
499	struct kmmio_fault_page **prevp = &dr->release_list;
500	unsigned long flags;
501
502	spin_lock_irqsave(&kmmio_lock, flags);
503	while (f) {
504		if (!f->count) {
505			list_del_rcu(&f->list);
506			prevp = &f->release_next;
507		} else {
508			*prevp = f->release_next;
509			f->release_next = NULL;
510			f->scheduled_for_release = false;
511		}
512		f = *prevp;
513	}
514	spin_unlock_irqrestore(&kmmio_lock, flags);
515
516	/* This is the real RCU destroy call. */
517	call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
518}
519
520/*
521 * Remove a kmmio probe. You have to synchronize_rcu() before you can be
522 * sure that the callbacks will not be called anymore. Only after that
523 * you may actually release your struct kmmio_probe.
524 *
525 * Unregistering a kmmio fault page has three steps:
526 * 1. release_kmmio_fault_page()
527 *    Disarm the page, wait a grace period to let all faults finish.
528 * 2. remove_kmmio_fault_pages()
529 *    Remove the pages from kmmio_page_table.
530 * 3. rcu_free_kmmio_fault_pages()
531 *    Actually free the kmmio_fault_page structs as with RCU.
532 */
533void unregister_kmmio_probe(struct kmmio_probe *p)
534{
535	unsigned long flags;
536	unsigned long size = 0;
537	unsigned long addr = p->addr & PAGE_MASK;
538	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
539	struct kmmio_fault_page *release_list = NULL;
540	struct kmmio_delayed_release *drelease;
541	unsigned int l;
542	pte_t *pte;
543
544	pte = lookup_address(addr, &l);
545	if (!pte)
546		return;
547
548	spin_lock_irqsave(&kmmio_lock, flags);
549	while (size < size_lim) {
550		release_kmmio_fault_page(addr + size, &release_list);
551		size += page_level_size(l);
552	}
553	list_del_rcu(&p->list);
554	kmmio_count--;
555	spin_unlock_irqrestore(&kmmio_lock, flags);
556
557	if (!release_list)
558		return;
559
560	drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
561	if (!drelease) {
562		pr_crit("leaking kmmio_fault_page objects.\n");
563		return;
564	}
565	drelease->release_list = release_list;
566
567	/*
568	 * This is not really RCU here. We have just disarmed a set of
569	 * pages so that they cannot trigger page faults anymore. However,
570	 * we cannot remove the pages from kmmio_page_table,
571	 * because a probe hit might be in flight on another CPU. The
572	 * pages are collected into a list, and they will be removed from
573	 * kmmio_page_table when it is certain that no probe hit related to
574	 * these pages can be in flight. RCU grace period sounds like a
575	 * good choice.
576	 *
577	 * If we removed the pages too early, kmmio page fault handler might
578	 * not find the respective kmmio_fault_page and determine it's not
579	 * a kmmio fault, when it actually is. This would lead to madness.
580	 */
581	call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
582}
583EXPORT_SYMBOL(unregister_kmmio_probe);
584
585static int
586kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args)
587{
588	struct die_args *arg = args;
589	unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err);
590
591	if (val == DIE_DEBUG && (*dr6_p & DR_STEP))
592		if (post_kmmio_handler(*dr6_p, arg->regs) == 1) {
593			/*
594			 * Reset the BS bit in dr6 (pointed by args->err) to
595			 * denote completion of processing
596			 */
597			*dr6_p &= ~DR_STEP;
598			return NOTIFY_STOP;
599		}
600
601	return NOTIFY_DONE;
602}
603
604static struct notifier_block nb_die = {
605	.notifier_call = kmmio_die_notifier
606};
607
608int kmmio_init(void)
609{
610	int i;
611
612	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
613		INIT_LIST_HEAD(&kmmio_page_table[i]);
614
615	return register_die_notifier(&nb_die);
616}
617
618void kmmio_cleanup(void)
619{
620	int i;
621
622	unregister_die_notifier(&nb_die);
623	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) {
624		WARN_ONCE(!list_empty(&kmmio_page_table[i]),
625			KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");
626	}
627}
v3.15
 
  1/* Support for MMIO probes.
  2 * Benfit many code from kprobes
  3 * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
  4 *     2007 Alexander Eichner
  5 *     2008 Pekka Paalanen <pq@iki.fi>
  6 */
  7
  8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9
 10#include <linux/list.h>
 11#include <linux/rculist.h>
 12#include <linux/spinlock.h>
 13#include <linux/hash.h>
 14#include <linux/module.h>
 15#include <linux/kernel.h>
 16#include <linux/uaccess.h>
 17#include <linux/ptrace.h>
 18#include <linux/preempt.h>
 19#include <linux/percpu.h>
 20#include <linux/kdebug.h>
 21#include <linux/mutex.h>
 22#include <linux/io.h>
 23#include <linux/slab.h>
 24#include <asm/cacheflush.h>
 25#include <asm/tlbflush.h>
 26#include <linux/errno.h>
 27#include <asm/debugreg.h>
 28#include <linux/mmiotrace.h>
 29
 30#define KMMIO_PAGE_HASH_BITS 4
 31#define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
 32
 33struct kmmio_fault_page {
 34	struct list_head list;
 35	struct kmmio_fault_page *release_next;
 36	unsigned long page; /* location of the fault page */
 37	pteval_t old_presence; /* page presence prior to arming */
 38	bool armed;
 39
 40	/*
 41	 * Number of times this page has been registered as a part
 42	 * of a probe. If zero, page is disarmed and this may be freed.
 43	 * Used only by writers (RCU) and post_kmmio_handler().
 44	 * Protected by kmmio_lock, when linked into kmmio_page_table.
 45	 */
 46	int count;
 47
 48	bool scheduled_for_release;
 49};
 50
 51struct kmmio_delayed_release {
 52	struct rcu_head rcu;
 53	struct kmmio_fault_page *release_list;
 54};
 55
 56struct kmmio_context {
 57	struct kmmio_fault_page *fpage;
 58	struct kmmio_probe *probe;
 59	unsigned long saved_flags;
 60	unsigned long addr;
 61	int active;
 62};
 63
 64static DEFINE_SPINLOCK(kmmio_lock);
 65
 66/* Protected by kmmio_lock */
 67unsigned int kmmio_count;
 68
 69/* Read-protected by RCU, write-protected by kmmio_lock. */
 70static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
 71static LIST_HEAD(kmmio_probes);
 72
 73static struct list_head *kmmio_page_list(unsigned long page)
 74{
 75	return &kmmio_page_table[hash_long(page, KMMIO_PAGE_HASH_BITS)];
 
 
 
 
 
 
 
 76}
 77
 78/* Accessed per-cpu */
 79static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
 80
 81/*
 82 * this is basically a dynamic stabbing problem:
 83 * Could use the existing prio tree code or
 84 * Possible better implementations:
 85 * The Interval Skip List: A Data Structure for Finding All Intervals That
 86 * Overlap a Point (might be simple)
 87 * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
 88 */
 89/* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
 90static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
 91{
 92	struct kmmio_probe *p;
 93	list_for_each_entry_rcu(p, &kmmio_probes, list) {
 94		if (addr >= p->addr && addr < (p->addr + p->len))
 95			return p;
 96	}
 97	return NULL;
 98}
 99
100/* You must be holding RCU read lock. */
101static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long page)
102{
103	struct list_head *head;
104	struct kmmio_fault_page *f;
 
 
105
106	page &= PAGE_MASK;
107	head = kmmio_page_list(page);
 
 
108	list_for_each_entry_rcu(f, head, list) {
109		if (f->page == page)
110			return f;
111	}
112	return NULL;
113}
114
115static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old)
116{
 
117	pmdval_t v = pmd_val(*pmd);
118	if (clear) {
119		*old = v & _PAGE_PRESENT;
120		v &= ~_PAGE_PRESENT;
121	} else	/* presume this has been called with clear==true previously */
122		v |= *old;
123	set_pmd(pmd, __pmd(v));
 
 
124}
125
126static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old)
127{
128	pteval_t v = pte_val(*pte);
129	if (clear) {
130		*old = v & _PAGE_PRESENT;
131		v &= ~_PAGE_PRESENT;
132	} else	/* presume this has been called with clear==true previously */
133		v |= *old;
134	set_pte_atomic(pte, __pte(v));
 
 
135}
136
137static int clear_page_presence(struct kmmio_fault_page *f, bool clear)
138{
139	unsigned int level;
140	pte_t *pte = lookup_address(f->page, &level);
141
142	if (!pte) {
143		pr_err("no pte for page 0x%08lx\n", f->page);
144		return -1;
145	}
146
147	switch (level) {
148	case PG_LEVEL_2M:
149		clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence);
150		break;
151	case PG_LEVEL_4K:
152		clear_pte_presence(pte, clear, &f->old_presence);
153		break;
154	default:
155		pr_err("unexpected page level 0x%x.\n", level);
156		return -1;
157	}
158
159	__flush_tlb_one(f->page);
160	return 0;
161}
162
163/*
164 * Mark the given page as not present. Access to it will trigger a fault.
165 *
166 * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
167 * protection is ignored here. RCU read lock is assumed held, so the struct
168 * will not disappear unexpectedly. Furthermore, the caller must guarantee,
169 * that double arming the same virtual address (page) cannot occur.
170 *
171 * Double disarming on the other hand is allowed, and may occur when a fault
172 * and mmiotrace shutdown happen simultaneously.
173 */
174static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
175{
176	int ret;
177	WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n"));
178	if (f->armed) {
179		pr_warning("double-arm: page 0x%08lx, ref %d, old %d\n",
180			   f->page, f->count, !!f->old_presence);
181	}
182	ret = clear_page_presence(f, true);
183	WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming 0x%08lx failed.\n"),
184		  f->page);
185	f->armed = true;
186	return ret;
187}
188
189/** Restore the given page to saved presence state. */
190static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
191{
192	int ret = clear_page_presence(f, false);
193	WARN_ONCE(ret < 0,
194			KERN_ERR "kmmio disarming 0x%08lx failed.\n", f->page);
195	f->armed = false;
196}
197
198/*
199 * This is being called from do_page_fault().
200 *
201 * We may be in an interrupt or a critical section. Also prefecthing may
202 * trigger a page fault. We may be in the middle of process switch.
203 * We cannot take any locks, because we could be executing especially
204 * within a kmmio critical section.
205 *
206 * Local interrupts are disabled, so preemption cannot happen.
207 * Do not enable interrupts, do not sleep, and watch out for other CPUs.
208 */
209/*
210 * Interrupts are disabled on entry as trap3 is an interrupt gate
211 * and they remain disabled throughout this function.
212 */
213int kmmio_handler(struct pt_regs *regs, unsigned long addr)
214{
215	struct kmmio_context *ctx;
216	struct kmmio_fault_page *faultpage;
217	int ret = 0; /* default to fault not handled */
 
 
 
 
 
 
218
219	/*
220	 * Preemption is now disabled to prevent process switch during
221	 * single stepping. We can only handle one active kmmio trace
222	 * per cpu, so ensure that we finish it before something else
223	 * gets to run. We also hold the RCU read lock over single
224	 * stepping to avoid looking up the probe and kmmio_fault_page
225	 * again.
226	 */
227	preempt_disable();
228	rcu_read_lock();
229
230	faultpage = get_kmmio_fault_page(addr);
231	if (!faultpage) {
232		/*
233		 * Either this page fault is not caused by kmmio, or
234		 * another CPU just pulled the kmmio probe from under
235		 * our feet. The latter case should not be possible.
236		 */
237		goto no_kmmio;
238	}
239
240	ctx = &get_cpu_var(kmmio_ctx);
241	if (ctx->active) {
242		if (addr == ctx->addr) {
243			/*
244			 * A second fault on the same page means some other
245			 * condition needs handling by do_page_fault(), the
246			 * page really not being present is the most common.
247			 */
248			pr_debug("secondary hit for 0x%08lx CPU %d.\n",
249				 addr, smp_processor_id());
250
251			if (!faultpage->old_presence)
252				pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
253					addr, smp_processor_id());
254		} else {
255			/*
256			 * Prevent overwriting already in-flight context.
257			 * This should not happen, let's hope disarming at
258			 * least prevents a panic.
259			 */
260			pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
261				 smp_processor_id(), addr);
262			pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr);
263			disarm_kmmio_fault_page(faultpage);
264		}
265		goto no_kmmio_ctx;
266	}
267	ctx->active++;
268
269	ctx->fpage = faultpage;
270	ctx->probe = get_kmmio_probe(addr);
271	ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
272	ctx->addr = addr;
273
274	if (ctx->probe && ctx->probe->pre_handler)
275		ctx->probe->pre_handler(ctx->probe, regs, addr);
276
277	/*
278	 * Enable single-stepping and disable interrupts for the faulting
279	 * context. Local interrupts must not get enabled during stepping.
280	 */
281	regs->flags |= X86_EFLAGS_TF;
282	regs->flags &= ~X86_EFLAGS_IF;
283
284	/* Now we set present bit in PTE and single step. */
285	disarm_kmmio_fault_page(ctx->fpage);
286
287	/*
288	 * If another cpu accesses the same page while we are stepping,
289	 * the access will not be caught. It will simply succeed and the
290	 * only downside is we lose the event. If this becomes a problem,
291	 * the user should drop to single cpu before tracing.
292	 */
293
294	put_cpu_var(kmmio_ctx);
295	return 1; /* fault handled */
296
297no_kmmio_ctx:
298	put_cpu_var(kmmio_ctx);
299no_kmmio:
300	rcu_read_unlock();
301	preempt_enable_no_resched();
302	return ret;
303}
304
305/*
306 * Interrupts are disabled on entry as trap1 is an interrupt gate
307 * and they remain disabled throughout this function.
308 * This must always get called as the pair to kmmio_handler().
309 */
310static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
311{
312	int ret = 0;
313	struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx);
314
315	if (!ctx->active) {
316		/*
317		 * debug traps without an active context are due to either
318		 * something external causing them (f.e. using a debugger while
319		 * mmio tracing enabled), or erroneous behaviour
320		 */
321		pr_warning("unexpected debug trap on CPU %d.\n",
322			   smp_processor_id());
323		goto out;
324	}
325
326	if (ctx->probe && ctx->probe->post_handler)
327		ctx->probe->post_handler(ctx->probe, condition, regs);
328
329	/* Prevent racing against release_kmmio_fault_page(). */
330	spin_lock(&kmmio_lock);
331	if (ctx->fpage->count)
332		arm_kmmio_fault_page(ctx->fpage);
333	spin_unlock(&kmmio_lock);
334
335	regs->flags &= ~X86_EFLAGS_TF;
336	regs->flags |= ctx->saved_flags;
337
338	/* These were acquired in kmmio_handler(). */
339	ctx->active--;
340	BUG_ON(ctx->active);
341	rcu_read_unlock();
342	preempt_enable_no_resched();
343
344	/*
345	 * if somebody else is singlestepping across a probe point, flags
346	 * will have TF set, in which case, continue the remaining processing
347	 * of do_debug, as if this is not a probe hit.
348	 */
349	if (!(regs->flags & X86_EFLAGS_TF))
350		ret = 1;
351out:
352	put_cpu_var(kmmio_ctx);
353	return ret;
354}
355
356/* You must be holding kmmio_lock. */
357static int add_kmmio_fault_page(unsigned long page)
358{
359	struct kmmio_fault_page *f;
360
361	page &= PAGE_MASK;
362	f = get_kmmio_fault_page(page);
363	if (f) {
364		if (!f->count)
365			arm_kmmio_fault_page(f);
366		f->count++;
367		return 0;
368	}
369
370	f = kzalloc(sizeof(*f), GFP_ATOMIC);
371	if (!f)
372		return -1;
373
374	f->count = 1;
375	f->page = page;
376
377	if (arm_kmmio_fault_page(f)) {
378		kfree(f);
379		return -1;
380	}
381
382	list_add_rcu(&f->list, kmmio_page_list(f->page));
383
384	return 0;
385}
386
387/* You must be holding kmmio_lock. */
388static void release_kmmio_fault_page(unsigned long page,
389				struct kmmio_fault_page **release_list)
390{
391	struct kmmio_fault_page *f;
392
393	page &= PAGE_MASK;
394	f = get_kmmio_fault_page(page);
395	if (!f)
396		return;
397
398	f->count--;
399	BUG_ON(f->count < 0);
400	if (!f->count) {
401		disarm_kmmio_fault_page(f);
402		if (!f->scheduled_for_release) {
403			f->release_next = *release_list;
404			*release_list = f;
405			f->scheduled_for_release = true;
406		}
407	}
408}
409
410/*
411 * With page-unaligned ioremaps, one or two armed pages may contain
412 * addresses from outside the intended mapping. Events for these addresses
413 * are currently silently dropped. The events may result only from programming
414 * mistakes by accessing addresses before the beginning or past the end of a
415 * mapping.
416 */
417int register_kmmio_probe(struct kmmio_probe *p)
418{
419	unsigned long flags;
420	int ret = 0;
421	unsigned long size = 0;
 
422	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
 
 
423
424	spin_lock_irqsave(&kmmio_lock, flags);
425	if (get_kmmio_probe(p->addr)) {
426		ret = -EEXIST;
427		goto out;
428	}
 
 
 
 
 
 
 
429	kmmio_count++;
430	list_add_rcu(&p->list, &kmmio_probes);
431	while (size < size_lim) {
432		if (add_kmmio_fault_page(p->addr + size))
433			pr_err("Unable to set page fault.\n");
434		size += PAGE_SIZE;
435	}
436out:
437	spin_unlock_irqrestore(&kmmio_lock, flags);
438	/*
439	 * XXX: What should I do here?
440	 * Here was a call to global_flush_tlb(), but it does not exist
441	 * anymore. It seems it's not needed after all.
442	 */
443	return ret;
444}
445EXPORT_SYMBOL(register_kmmio_probe);
446
447static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
448{
449	struct kmmio_delayed_release *dr = container_of(
450						head,
451						struct kmmio_delayed_release,
452						rcu);
453	struct kmmio_fault_page *f = dr->release_list;
454	while (f) {
455		struct kmmio_fault_page *next = f->release_next;
456		BUG_ON(f->count);
457		kfree(f);
458		f = next;
459	}
460	kfree(dr);
461}
462
463static void remove_kmmio_fault_pages(struct rcu_head *head)
464{
465	struct kmmio_delayed_release *dr =
466		container_of(head, struct kmmio_delayed_release, rcu);
467	struct kmmio_fault_page *f = dr->release_list;
468	struct kmmio_fault_page **prevp = &dr->release_list;
469	unsigned long flags;
470
471	spin_lock_irqsave(&kmmio_lock, flags);
472	while (f) {
473		if (!f->count) {
474			list_del_rcu(&f->list);
475			prevp = &f->release_next;
476		} else {
477			*prevp = f->release_next;
478			f->release_next = NULL;
479			f->scheduled_for_release = false;
480		}
481		f = *prevp;
482	}
483	spin_unlock_irqrestore(&kmmio_lock, flags);
484
485	/* This is the real RCU destroy call. */
486	call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
487}
488
489/*
490 * Remove a kmmio probe. You have to synchronize_rcu() before you can be
491 * sure that the callbacks will not be called anymore. Only after that
492 * you may actually release your struct kmmio_probe.
493 *
494 * Unregistering a kmmio fault page has three steps:
495 * 1. release_kmmio_fault_page()
496 *    Disarm the page, wait a grace period to let all faults finish.
497 * 2. remove_kmmio_fault_pages()
498 *    Remove the pages from kmmio_page_table.
499 * 3. rcu_free_kmmio_fault_pages()
500 *    Actually free the kmmio_fault_page structs as with RCU.
501 */
502void unregister_kmmio_probe(struct kmmio_probe *p)
503{
504	unsigned long flags;
505	unsigned long size = 0;
 
506	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
507	struct kmmio_fault_page *release_list = NULL;
508	struct kmmio_delayed_release *drelease;
 
 
 
 
 
 
509
510	spin_lock_irqsave(&kmmio_lock, flags);
511	while (size < size_lim) {
512		release_kmmio_fault_page(p->addr + size, &release_list);
513		size += PAGE_SIZE;
514	}
515	list_del_rcu(&p->list);
516	kmmio_count--;
517	spin_unlock_irqrestore(&kmmio_lock, flags);
518
519	if (!release_list)
520		return;
521
522	drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
523	if (!drelease) {
524		pr_crit("leaking kmmio_fault_page objects.\n");
525		return;
526	}
527	drelease->release_list = release_list;
528
529	/*
530	 * This is not really RCU here. We have just disarmed a set of
531	 * pages so that they cannot trigger page faults anymore. However,
532	 * we cannot remove the pages from kmmio_page_table,
533	 * because a probe hit might be in flight on another CPU. The
534	 * pages are collected into a list, and they will be removed from
535	 * kmmio_page_table when it is certain that no probe hit related to
536	 * these pages can be in flight. RCU grace period sounds like a
537	 * good choice.
538	 *
539	 * If we removed the pages too early, kmmio page fault handler might
540	 * not find the respective kmmio_fault_page and determine it's not
541	 * a kmmio fault, when it actually is. This would lead to madness.
542	 */
543	call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
544}
545EXPORT_SYMBOL(unregister_kmmio_probe);
546
547static int
548kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args)
549{
550	struct die_args *arg = args;
551	unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err);
552
553	if (val == DIE_DEBUG && (*dr6_p & DR_STEP))
554		if (post_kmmio_handler(*dr6_p, arg->regs) == 1) {
555			/*
556			 * Reset the BS bit in dr6 (pointed by args->err) to
557			 * denote completion of processing
558			 */
559			*dr6_p &= ~DR_STEP;
560			return NOTIFY_STOP;
561		}
562
563	return NOTIFY_DONE;
564}
565
566static struct notifier_block nb_die = {
567	.notifier_call = kmmio_die_notifier
568};
569
570int kmmio_init(void)
571{
572	int i;
573
574	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
575		INIT_LIST_HEAD(&kmmio_page_table[i]);
576
577	return register_die_notifier(&nb_die);
578}
579
580void kmmio_cleanup(void)
581{
582	int i;
583
584	unregister_die_notifier(&nb_die);
585	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) {
586		WARN_ONCE(!list_empty(&kmmio_page_table[i]),
587			KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");
588	}
589}