Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/arch/parisc/traps.c
  4 *
  5 *  Copyright (C) 1991, 1992  Linus Torvalds
  6 *  Copyright (C) 1999, 2000  Philipp Rumpf <prumpf@tux.org>
  7 */
  8
  9/*
 10 * 'Traps.c' handles hardware traps and faults after we have saved some
 11 * state in 'asm.s'.
 12 */
 13
 14#include <linux/sched.h>
 15#include <linux/sched/debug.h>
 16#include <linux/kernel.h>
 17#include <linux/string.h>
 18#include <linux/errno.h>
 19#include <linux/ptrace.h>
 20#include <linux/timer.h>
 21#include <linux/delay.h>
 22#include <linux/mm.h>
 23#include <linux/module.h>
 24#include <linux/smp.h>
 25#include <linux/spinlock.h>
 26#include <linux/init.h>
 27#include <linux/interrupt.h>
 28#include <linux/console.h>
 29#include <linux/bug.h>
 30#include <linux/ratelimit.h>
 31#include <linux/uaccess.h>
 32#include <linux/kdebug.h>
 33
 34#include <asm/assembly.h>
 
 35#include <asm/io.h>
 36#include <asm/irq.h>
 37#include <asm/traps.h>
 38#include <asm/unaligned.h>
 39#include <linux/atomic.h>
 40#include <asm/smp.h>
 41#include <asm/pdc.h>
 42#include <asm/pdc_chassis.h>
 43#include <asm/unwind.h>
 44#include <asm/tlbflush.h>
 45#include <asm/cacheflush.h>
 46#include <linux/kgdb.h>
 47#include <linux/kprobes.h>
 48
 49#include "../math-emu/math-emu.h"	/* for handle_fpe() */
 50
 51static void parisc_show_stack(struct task_struct *task,
 
 
 
 
 52	struct pt_regs *regs);
 53
 54static int printbinary(char *buf, unsigned long x, int nbits)
 55{
 56	unsigned long mask = 1UL << (nbits - 1);
 57	while (mask != 0) {
 58		*buf++ = (mask & x ? '1' : '0');
 59		mask >>= 1;
 60	}
 61	*buf = '\0';
 62
 63	return nbits;
 64}
 65
 66#ifdef CONFIG_64BIT
 67#define RFMT "%016lx"
 68#else
 69#define RFMT "%08lx"
 70#endif
 71#define FFMT "%016llx"	/* fpregs are 64-bit always */
 72
 73#define PRINTREGS(lvl,r,f,fmt,x)	\
 74	printk("%s%s%02d-%02d  " fmt " " fmt " " fmt " " fmt "\n",	\
 75		lvl, f, (x), (x+3), (r)[(x)+0], (r)[(x)+1],		\
 76		(r)[(x)+2], (r)[(x)+3])
 77
 78static void print_gr(char *level, struct pt_regs *regs)
 79{
 80	int i;
 81	char buf[64];
 82
 83	printk("%s\n", level);
 84	printk("%s     YZrvWESTHLNXBCVMcbcbcbcbOGFRQPDI\n", level);
 85	printbinary(buf, regs->gr[0], 32);
 86	printk("%sPSW: %s %s\n", level, buf, print_tainted());
 87
 88	for (i = 0; i < 32; i += 4)
 89		PRINTREGS(level, regs->gr, "r", RFMT, i);
 90}
 91
 92static void print_fr(char *level, struct pt_regs *regs)
 93{
 94	int i;
 95	char buf[64];
 96	struct { u32 sw[2]; } s;
 97
 98	/* FR are 64bit everywhere. Need to use asm to get the content
 99	 * of fpsr/fper1, and we assume that we won't have a FP Identify
100	 * in our way, otherwise we're screwed.
101	 * The fldd is used to restore the T-bit if there was one, as the
102	 * store clears it anyway.
103	 * PA2.0 book says "thou shall not use fstw on FPSR/FPERs" - T-Bone */
104	asm volatile ("fstd %%fr0,0(%1)	\n\t"
105		      "fldd 0(%1),%%fr0	\n\t"
106		      : "=m" (s) : "r" (&s) : "r0");
107
108	printk("%s\n", level);
109	printk("%s      VZOUICununcqcqcqcqcqcrmunTDVZOUI\n", level);
110	printbinary(buf, s.sw[0], 32);
111	printk("%sFPSR: %s\n", level, buf);
112	printk("%sFPER1: %08x\n", level, s.sw[1]);
113
114	/* here we'll print fr0 again, tho it'll be meaningless */
115	for (i = 0; i < 32; i += 4)
116		PRINTREGS(level, regs->fr, "fr", FFMT, i);
117}
118
119void show_regs(struct pt_regs *regs)
120{
121	int i, user;
122	char *level;
123	unsigned long cr30, cr31;
124
125	user = user_mode(regs);
126	level = user ? KERN_DEBUG : KERN_CRIT;
127
128	show_regs_print_info(level);
129
130	print_gr(level, regs);
131
132	for (i = 0; i < 8; i += 4)
133		PRINTREGS(level, regs->sr, "sr", RFMT, i);
134
135	if (user)
136		print_fr(level, regs);
137
138	cr30 = mfctl(30);
139	cr31 = mfctl(31);
140	printk("%s\n", level);
141	printk("%sIASQ: " RFMT " " RFMT " IAOQ: " RFMT " " RFMT "\n",
142	       level, regs->iasq[0], regs->iasq[1], regs->iaoq[0], regs->iaoq[1]);
143	printk("%s IIR: %08lx    ISR: " RFMT "  IOR: " RFMT "\n",
144	       level, regs->iir, regs->isr, regs->ior);
145	printk("%s CPU: %8d   CR30: " RFMT " CR31: " RFMT "\n",
146	       level, current_thread_info()->cpu, cr30, cr31);
147	printk("%s ORIG_R28: " RFMT "\n", level, regs->orig_r28);
148
149	if (user) {
150		printk("%s IAOQ[0]: " RFMT "\n", level, regs->iaoq[0]);
151		printk("%s IAOQ[1]: " RFMT "\n", level, regs->iaoq[1]);
152		printk("%s RP(r2): " RFMT "\n", level, regs->gr[2]);
153	} else {
154		printk("%s IAOQ[0]: %pS\n", level, (void *) regs->iaoq[0]);
155		printk("%s IAOQ[1]: %pS\n", level, (void *) regs->iaoq[1]);
156		printk("%s RP(r2): %pS\n", level, (void *) regs->gr[2]);
157
158		parisc_show_stack(current, regs);
159	}
160}
161
162static DEFINE_RATELIMIT_STATE(_hppa_rs,
163	DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST);
164
165#define parisc_printk_ratelimited(critical, regs, fmt, ...)	{	      \
166	if ((critical || show_unhandled_signals) && __ratelimit(&_hppa_rs)) { \
167		printk(fmt, ##__VA_ARGS__);				      \
168		show_regs(regs);					      \
169	}								      \
170}
171
172
173static void do_show_stack(struct unwind_frame_info *info)
174{
175	int i = 1;
176
177	printk(KERN_CRIT "Backtrace:\n");
178	while (i <= MAX_UNWIND_ENTRIES) {
179		if (unwind_once(info) < 0 || info->ip == 0)
180			break;
181
182		if (__kernel_text_address(info->ip)) {
183			printk(KERN_CRIT " [<" RFMT ">] %pS\n",
184				info->ip, (void *) info->ip);
185			i++;
186		}
187	}
188	printk(KERN_CRIT "\n");
189}
190
191static void parisc_show_stack(struct task_struct *task,
192	struct pt_regs *regs)
193{
194	struct unwind_frame_info info;
 
 
 
 
 
 
 
195
196	unwind_frame_init_task(&info, task, regs);
 
197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198	do_show_stack(&info);
199}
200
201void show_stack(struct task_struct *t, unsigned long *sp)
202{
203	parisc_show_stack(t, NULL);
204}
205
206int is_valid_bugaddr(unsigned long iaoq)
207{
208	return 1;
209}
210
211void die_if_kernel(char *str, struct pt_regs *regs, long err)
212{
213	if (user_mode(regs)) {
214		if (err == 0)
215			return; /* STFU */
216
217		parisc_printk_ratelimited(1, regs,
218			KERN_CRIT "%s (pid %d): %s (code %ld) at " RFMT "\n",
219			current->comm, task_pid_nr(current), str, err, regs->iaoq[0]);
220
221		return;
222	}
223
224	bust_spinlocks(1);
225
226	oops_enter();
227
228	/* Amuse the user in a SPARC fashion */
229	if (err) printk(KERN_CRIT
230			"      _______________________________ \n"
231			"     < Your System ate a SPARC! Gah! >\n"
232			"      ------------------------------- \n"
233			"             \\   ^__^\n"
234			"                 (__)\\       )\\/\\\n"
235			"                  U  ||----w |\n"
236			"                     ||     ||\n");
237	
238	/* unlock the pdc lock if necessary */
239	pdc_emergency_unlock();
240
241	/* maybe the kernel hasn't booted very far yet and hasn't been able 
242	 * to initialize the serial or STI console. In that case we should 
243	 * re-enable the pdc console, so that the user will be able to 
244	 * identify the problem. */
245	if (!console_drivers)
246		pdc_console_restart();
247	
248	if (err)
249		printk(KERN_CRIT "%s (pid %d): %s (code %ld)\n",
250			current->comm, task_pid_nr(current), str, err);
251
252	/* Wot's wrong wif bein' racy? */
253	if (current->thread.flags & PARISC_KERNEL_DEATH) {
254		printk(KERN_CRIT "%s() recursion detected.\n", __func__);
255		local_irq_enable();
256		while (1);
257	}
258	current->thread.flags |= PARISC_KERNEL_DEATH;
259
260	show_regs(regs);
261	dump_stack();
262	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
263
264	if (in_interrupt())
265		panic("Fatal exception in interrupt");
266
267	if (panic_on_oops)
 
 
268		panic("Fatal exception");
 
269
270	oops_exit();
271	do_exit(SIGSEGV);
272}
273
274/* gdb uses break 4,8 */
275#define GDB_BREAK_INSN 0x10004
276static void handle_gdb_break(struct pt_regs *regs, int wot)
277{
278	force_sig_fault(SIGTRAP, wot,
279			(void __user *) (regs->iaoq[0] & ~3));
 
 
 
 
 
280}
281
282static void handle_break(struct pt_regs *regs)
283{
284	unsigned iir = regs->iir;
285
286	if (unlikely(iir == PARISC_BUG_BREAK_INSN && !user_mode(regs))) {
287		/* check if a BUG() or WARN() trapped here.  */
288		enum bug_trap_type tt;
289		tt = report_bug(regs->iaoq[0] & ~3, regs);
290		if (tt == BUG_TRAP_TYPE_WARN) {
291			regs->iaoq[0] += 4;
292			regs->iaoq[1] += 4;
293			return; /* return to next instruction when WARN_ON().  */
294		}
295		die_if_kernel("Unknown kernel breakpoint", regs,
296			(tt == BUG_TRAP_TYPE_NONE) ? 9 : 0);
297	}
298
299#ifdef CONFIG_KPROBES
300	if (unlikely(iir == PARISC_KPROBES_BREAK_INSN)) {
301		parisc_kprobe_break_handler(regs);
302		return;
303	}
304
305#endif
306
307#ifdef CONFIG_KGDB
308	if (unlikely(iir == PARISC_KGDB_COMPILED_BREAK_INSN ||
309		iir == PARISC_KGDB_BREAK_INSN)) {
310		kgdb_handle_exception(9, SIGTRAP, 0, regs);
311		return;
312	}
313#endif
314
315	if (unlikely(iir != GDB_BREAK_INSN))
316		parisc_printk_ratelimited(0, regs,
317			KERN_DEBUG "break %d,%d: pid=%d command='%s'\n",
318			iir & 31, (iir>>13) & ((1<<13)-1),
319			task_pid_nr(current), current->comm);
320
321	/* send standard GDB signal */
322	handle_gdb_break(regs, TRAP_BRKPT);
323}
324
325static void default_trap(int code, struct pt_regs *regs)
326{
327	printk(KERN_ERR "Trap %d on CPU %d\n", code, smp_processor_id());
328	show_regs(regs);
329}
330
331void (*cpu_lpmc) (int code, struct pt_regs *regs) __read_mostly = default_trap;
332
333
334void transfer_pim_to_trap_frame(struct pt_regs *regs)
335{
336    register int i;
337    extern unsigned int hpmc_pim_data[];
338    struct pdc_hpmc_pim_11 *pim_narrow;
339    struct pdc_hpmc_pim_20 *pim_wide;
340
341    if (boot_cpu_data.cpu_type >= pcxu) {
342
343	pim_wide = (struct pdc_hpmc_pim_20 *)hpmc_pim_data;
344
345	/*
346	 * Note: The following code will probably generate a
347	 * bunch of truncation error warnings from the compiler.
348	 * Could be handled with an ifdef, but perhaps there
349	 * is a better way.
350	 */
351
352	regs->gr[0] = pim_wide->cr[22];
353
354	for (i = 1; i < 32; i++)
355	    regs->gr[i] = pim_wide->gr[i];
356
357	for (i = 0; i < 32; i++)
358	    regs->fr[i] = pim_wide->fr[i];
359
360	for (i = 0; i < 8; i++)
361	    regs->sr[i] = pim_wide->sr[i];
362
363	regs->iasq[0] = pim_wide->cr[17];
364	regs->iasq[1] = pim_wide->iasq_back;
365	regs->iaoq[0] = pim_wide->cr[18];
366	regs->iaoq[1] = pim_wide->iaoq_back;
367
368	regs->sar  = pim_wide->cr[11];
369	regs->iir  = pim_wide->cr[19];
370	regs->isr  = pim_wide->cr[20];
371	regs->ior  = pim_wide->cr[21];
372    }
373    else {
374	pim_narrow = (struct pdc_hpmc_pim_11 *)hpmc_pim_data;
375
376	regs->gr[0] = pim_narrow->cr[22];
377
378	for (i = 1; i < 32; i++)
379	    regs->gr[i] = pim_narrow->gr[i];
380
381	for (i = 0; i < 32; i++)
382	    regs->fr[i] = pim_narrow->fr[i];
383
384	for (i = 0; i < 8; i++)
385	    regs->sr[i] = pim_narrow->sr[i];
386
387	regs->iasq[0] = pim_narrow->cr[17];
388	regs->iasq[1] = pim_narrow->iasq_back;
389	regs->iaoq[0] = pim_narrow->cr[18];
390	regs->iaoq[1] = pim_narrow->iaoq_back;
391
392	regs->sar  = pim_narrow->cr[11];
393	regs->iir  = pim_narrow->cr[19];
394	regs->isr  = pim_narrow->cr[20];
395	regs->ior  = pim_narrow->cr[21];
396    }
397
398    /*
399     * The following fields only have meaning if we came through
400     * another path. So just zero them here.
401     */
402
403    regs->ksp = 0;
404    regs->kpc = 0;
405    regs->orig_r28 = 0;
406}
407
408
409/*
410 * This routine is called as a last resort when everything else
411 * has gone clearly wrong. We get called for faults in kernel space,
412 * and HPMC's.
413 */
414void parisc_terminate(char *msg, struct pt_regs *regs, int code, unsigned long offset)
415{
416	static DEFINE_SPINLOCK(terminate_lock);
417
418	(void)notify_die(DIE_OOPS, msg, regs, 0, code, SIGTRAP);
419	bust_spinlocks(1);
420
421	set_eiem(0);
422	local_irq_disable();
423	spin_lock(&terminate_lock);
424
425	/* unlock the pdc lock if necessary */
426	pdc_emergency_unlock();
427
428	/* restart pdc console if necessary */
429	if (!console_drivers)
430		pdc_console_restart();
431
432	/* Not all paths will gutter the processor... */
433	switch(code){
434
435	case 1:
436		transfer_pim_to_trap_frame(regs);
437		break;
438
439	default:
440		/* Fall through */
441		break;
442
443	}
444	    
445	{
446		/* show_stack(NULL, (unsigned long *)regs->gr[30]); */
447		struct unwind_frame_info info;
448		unwind_frame_init(&info, current, regs);
449		do_show_stack(&info);
450	}
451
452	printk("\n");
453	pr_crit("%s: Code=%d (%s) at addr " RFMT "\n",
454		msg, code, trap_name(code), offset);
455	show_regs(regs);
456
457	spin_unlock(&terminate_lock);
458
459	/* put soft power button back under hardware control;
460	 * if the user had pressed it once at any time, the 
461	 * system will shut down immediately right here. */
462	pdc_soft_power_button(0);
463	
464	/* Call kernel panic() so reboot timeouts work properly 
465	 * FIXME: This function should be on the list of
466	 * panic notifiers, and we should call panic
467	 * directly from the location that we wish. 
468	 * e.g. We should not call panic from
469	 * parisc_terminate, but rather the oter way around.
470	 * This hack works, prints the panic message twice,
471	 * and it enables reboot timers!
472	 */
473	panic(msg);
474}
475
476void notrace handle_interruption(int code, struct pt_regs *regs)
477{
478	unsigned long fault_address = 0;
479	unsigned long fault_space = 0;
480	int si_code;
481
482	if (code == 1)
483	    pdc_console_restart();  /* switch back to pdc if HPMC */
484	else
485	    local_irq_enable();
486
487	/* Security check:
488	 * If the priority level is still user, and the
489	 * faulting space is not equal to the active space
490	 * then the user is attempting something in a space
491	 * that does not belong to them. Kill the process.
492	 *
493	 * This is normally the situation when the user
494	 * attempts to jump into the kernel space at the
495	 * wrong offset, be it at the gateway page or a
496	 * random location.
497	 *
498	 * We cannot normally signal the process because it
499	 * could *be* on the gateway page, and processes
500	 * executing on the gateway page can't have signals
501	 * delivered.
502	 * 
503	 * We merely readjust the address into the users
504	 * space, at a destination address of zero, and
505	 * allow processing to continue.
506	 */
507	if (((unsigned long)regs->iaoq[0] & 3) &&
508	    ((unsigned long)regs->iasq[0] != (unsigned long)regs->sr[7])) { 
509		/* Kill the user process later */
510		regs->iaoq[0] = 0 | 3;
511		regs->iaoq[1] = regs->iaoq[0] + 4;
512		regs->iasq[0] = regs->iasq[1] = regs->sr[7];
513		regs->gr[0] &= ~PSW_B;
514		return;
515	}
516	
517#if 0
518	printk(KERN_CRIT "Interruption # %d\n", code);
519#endif
520
521	switch(code) {
522
523	case  1:
524		/* High-priority machine check (HPMC) */
525		
526		/* set up a new led state on systems shipped with a LED State panel */
527		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_HPMC);
528
529		parisc_terminate("High Priority Machine Check (HPMC)",
530				regs, code, 0);
531		/* NOT REACHED */
532		
533	case  2:
534		/* Power failure interrupt */
535		printk(KERN_CRIT "Power failure interrupt !\n");
536		return;
537
538	case  3:
539		/* Recovery counter trap */
540		regs->gr[0] &= ~PSW_R;
541
542#ifdef CONFIG_KPROBES
543		if (parisc_kprobe_ss_handler(regs))
544			return;
545#endif
546
547#ifdef CONFIG_KGDB
548		if (kgdb_single_step) {
549			kgdb_handle_exception(0, SIGTRAP, 0, regs);
550			return;
551		}
552#endif
553
554		if (user_space(regs))
555			handle_gdb_break(regs, TRAP_TRACE);
556		/* else this must be the start of a syscall - just let it run */
557		return;
558
559	case  5:
560		/* Low-priority machine check */
561		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_LPMC);
562		
563		flush_cache_all();
564		flush_tlb_all();
565		cpu_lpmc(5, regs);
566		return;
567
568	case  PARISC_ITLB_TRAP:
569		/* Instruction TLB miss fault/Instruction page fault */
570		fault_address = regs->iaoq[0];
571		fault_space   = regs->iasq[0];
572		break;
573
574	case  8:
575		/* Illegal instruction trap */
576		die_if_kernel("Illegal instruction", regs, code);
577		si_code = ILL_ILLOPC;
578		goto give_sigill;
579
580	case  9:
581		/* Break instruction trap */
582		handle_break(regs);
583		return;
584
585	case 10:
586		/* Privileged operation trap */
587		die_if_kernel("Privileged operation", regs, code);
588		si_code = ILL_PRVOPC;
589		goto give_sigill;
590
591	case 11:
592		/* Privileged register trap */
593		if ((regs->iir & 0xffdfffe0) == 0x034008a0) {
594
595			/* This is a MFCTL cr26/cr27 to gr instruction.
596			 * PCXS traps on this, so we need to emulate it.
597			 */
598
599			if (regs->iir & 0x00200000)
600				regs->gr[regs->iir & 0x1f] = mfctl(27);
601			else
602				regs->gr[regs->iir & 0x1f] = mfctl(26);
603
604			regs->iaoq[0] = regs->iaoq[1];
605			regs->iaoq[1] += 4;
606			regs->iasq[0] = regs->iasq[1];
607			return;
608		}
609
610		die_if_kernel("Privileged register usage", regs, code);
611		si_code = ILL_PRVREG;
612	give_sigill:
613		force_sig_fault(SIGILL, si_code,
614				(void __user *) regs->iaoq[0]);
 
 
615		return;
616
617	case 12:
618		/* Overflow Trap, let the userland signal handler do the cleanup */
619		force_sig_fault(SIGFPE, FPE_INTOVF,
620				(void __user *) regs->iaoq[0]);
 
 
621		return;
622		
623	case 13:
624		/* Conditional Trap
625		   The condition succeeds in an instruction which traps
626		   on condition  */
627		if(user_mode(regs)){
628			/* Let userspace app figure it out from the insn pointed
629			 * to by si_addr.
630			 */
631			force_sig_fault(SIGFPE, FPE_CONDTRAP,
632					(void __user *) regs->iaoq[0]);
 
633			return;
634		} 
635		/* The kernel doesn't want to handle condition codes */
636		break;
637		
638	case 14:
639		/* Assist Exception Trap, i.e. floating point exception. */
640		die_if_kernel("Floating point exception", regs, 0); /* quiet */
641		__inc_irq_stat(irq_fpassist_count);
642		handle_fpe(regs);
643		return;
644
645	case 15:
646		/* Data TLB miss fault/Data page fault */
647		/* Fall through */
648	case 16:
649		/* Non-access instruction TLB miss fault */
650		/* The instruction TLB entry needed for the target address of the FIC
651		   is absent, and hardware can't find it, so we get to cleanup */
652		/* Fall through */
653	case 17:
654		/* Non-access data TLB miss fault/Non-access data page fault */
655		/* FIXME: 
656			 Still need to add slow path emulation code here!
657			 If the insn used a non-shadow register, then the tlb
658			 handlers could not have their side-effect (e.g. probe
659			 writing to a target register) emulated since rfir would
660			 erase the changes to said register. Instead we have to
661			 setup everything, call this function we are in, and emulate
662			 by hand. Technically we need to emulate:
663			 fdc,fdce,pdc,"fic,4f",prober,probeir,probew, probeiw
664		*/
665		fault_address = regs->ior;
666		fault_space = regs->isr;
667		break;
668
669	case 18:
670		/* PCXS only -- later cpu's split this into types 26,27 & 28 */
671		/* Check for unaligned access */
672		if (check_unaligned(regs)) {
673			handle_unaligned(regs);
674			return;
675		}
676		/* Fall Through */
677	case 26: 
678		/* PCXL: Data memory access rights trap */
679		fault_address = regs->ior;
680		fault_space   = regs->isr;
681		break;
682
683	case 19:
684		/* Data memory break trap */
685		regs->gr[0] |= PSW_X; /* So we can single-step over the trap */
686		/* fall thru */
687	case 21:
688		/* Page reference trap */
689		handle_gdb_break(regs, TRAP_HWBKPT);
690		return;
691
692	case 25:
693		/* Taken branch trap */
694		regs->gr[0] &= ~PSW_T;
695		if (user_space(regs))
696			handle_gdb_break(regs, TRAP_BRANCH);
697		/* else this must be the start of a syscall - just let it
698		 * run.
699		 */
700		return;
701
702	case  7:  
703		/* Instruction access rights */
704		/* PCXL: Instruction memory protection trap */
705
706		/*
707		 * This could be caused by either: 1) a process attempting
708		 * to execute within a vma that does not have execute
709		 * permission, or 2) an access rights violation caused by a
710		 * flush only translation set up by ptep_get_and_clear().
711		 * So we check the vma permissions to differentiate the two.
712		 * If the vma indicates we have execute permission, then
713		 * the cause is the latter one. In this case, we need to
714		 * call do_page_fault() to fix the problem.
715		 */
716
717		if (user_mode(regs)) {
718			struct vm_area_struct *vma;
719
720			down_read(&current->mm->mmap_sem);
721			vma = find_vma(current->mm,regs->iaoq[0]);
722			if (vma && (regs->iaoq[0] >= vma->vm_start)
723				&& (vma->vm_flags & VM_EXEC)) {
724
725				fault_address = regs->iaoq[0];
726				fault_space = regs->iasq[0];
727
728				up_read(&current->mm->mmap_sem);
729				break; /* call do_page_fault() */
730			}
731			up_read(&current->mm->mmap_sem);
732		}
733		/* Fall Through */
734	case 27: 
735		/* Data memory protection ID trap */
736		if (code == 27 && !user_mode(regs) &&
737			fixup_exception(regs))
738			return;
739
740		die_if_kernel("Protection id trap", regs, code);
741		force_sig_fault(SIGSEGV, SEGV_MAPERR,
742				(code == 7)?
743				((void __user *) regs->iaoq[0]) :
744				((void __user *) regs->ior));
 
 
 
 
745		return;
746
747	case 28: 
748		/* Unaligned data reference trap */
749		handle_unaligned(regs);
750		return;
751
752	default:
753		if (user_mode(regs)) {
754			parisc_printk_ratelimited(0, regs, KERN_DEBUG
755				"handle_interruption() pid=%d command='%s'\n",
756				task_pid_nr(current), current->comm);
757			/* SIGBUS, for lack of a better one. */
758			force_sig_fault(SIGBUS, BUS_OBJERR,
759					(void __user *)regs->ior);
 
 
 
760			return;
761		}
762		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC);
763		
764		parisc_terminate("Unexpected interruption", regs, code, 0);
765		/* NOT REACHED */
766	}
767
768	if (user_mode(regs)) {
769	    if ((fault_space >> SPACEID_SHIFT) != (regs->sr[7] >> SPACEID_SHIFT)) {
770		parisc_printk_ratelimited(0, regs, KERN_DEBUG
771				"User fault %d on space 0x%08lx, pid=%d command='%s'\n",
772				code, fault_space,
773				task_pid_nr(current), current->comm);
774		force_sig_fault(SIGSEGV, SEGV_MAPERR,
775				(void __user *)regs->ior);
 
 
 
776		return;
777	    }
778	}
779	else {
780
781	    /*
782	     * The kernel should never fault on its own address space,
783	     * unless pagefault_disable() was called before.
784	     */
785
786	    if (fault_space == 0 && !faulthandler_disabled())
787	    {
788		/* Clean up and return if in exception table. */
789		if (fixup_exception(regs))
790			return;
791		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC);
792		parisc_terminate("Kernel Fault", regs, code, fault_address);
793	    }
794	}
795
796	do_page_fault(regs, code, fault_address);
797}
798
799
800void __init initialize_ivt(const void *iva)
801{
802	extern u32 os_hpmc_size;
803	extern const u32 os_hpmc[];
804
805	int i;
806	u32 check = 0;
807	u32 *ivap;
808	u32 *hpmcp;
809	u32 length, instr;
810
811	if (strcmp((const char *)iva, "cows can fly"))
812		panic("IVT invalid");
813
814	ivap = (u32 *)iva;
815
816	for (i = 0; i < 8; i++)
817	    *ivap++ = 0;
818
819	/*
820	 * Use PDC_INSTR firmware function to get instruction that invokes
821	 * PDCE_CHECK in HPMC handler.  See programming note at page 1-31 of
822	 * the PA 1.1 Firmware Architecture document.
823	 */
824	if (pdc_instr(&instr) == PDC_OK)
825		ivap[0] = instr;
826
827	/*
828	 * Rules for the checksum of the HPMC handler:
829	 * 1. The IVA does not point to PDC/PDH space (ie: the OS has installed
830	 *    its own IVA).
831	 * 2. The word at IVA + 32 is nonzero.
832	 * 3. If Length (IVA + 60) is not zero, then Length (IVA + 60) and
833	 *    Address (IVA + 56) are word-aligned.
834	 * 4. The checksum of the 8 words starting at IVA + 32 plus the sum of
835	 *    the Length/4 words starting at Address is zero.
836	 */
837
838	/* Setup IVA and compute checksum for HPMC handler */
839	ivap[6] = (u32)__pa(os_hpmc);
840	length = os_hpmc_size;
841	ivap[7] = length;
842
843	hpmcp = (u32 *)os_hpmc;
844
845	for (i=0; i<length/4; i++)
846	    check += *hpmcp++;
847
848	for (i=0; i<8; i++)
849	    check += ivap[i];
850
851	ivap[5] = -check;
 
 
852}
853	
854
855/* early_trap_init() is called before we set up kernel mappings and
856 * write-protect the kernel */
857void  __init early_trap_init(void)
858{
859	extern const void fault_vector_20;
860
861#ifndef CONFIG_64BIT
862	extern const void fault_vector_11;
863	initialize_ivt(&fault_vector_11);
864#endif
865
866	initialize_ivt(&fault_vector_20);
867}
868
869void __init trap_init(void)
870{
 
 
 
 
 
 
 
 
 
 
 
 
 
871}
v3.15
 
  1/*
  2 *  linux/arch/parisc/traps.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
  5 *  Copyright (C) 1999, 2000  Philipp Rumpf <prumpf@tux.org>
  6 */
  7
  8/*
  9 * 'Traps.c' handles hardware traps and faults after we have saved some
 10 * state in 'asm.s'.
 11 */
 12
 13#include <linux/sched.h>
 
 14#include <linux/kernel.h>
 15#include <linux/string.h>
 16#include <linux/errno.h>
 17#include <linux/ptrace.h>
 18#include <linux/timer.h>
 19#include <linux/delay.h>
 20#include <linux/mm.h>
 21#include <linux/module.h>
 22#include <linux/smp.h>
 23#include <linux/spinlock.h>
 24#include <linux/init.h>
 25#include <linux/interrupt.h>
 26#include <linux/console.h>
 27#include <linux/bug.h>
 28#include <linux/ratelimit.h>
 
 
 29
 30#include <asm/assembly.h>
 31#include <asm/uaccess.h>
 32#include <asm/io.h>
 33#include <asm/irq.h>
 34#include <asm/traps.h>
 35#include <asm/unaligned.h>
 36#include <linux/atomic.h>
 37#include <asm/smp.h>
 38#include <asm/pdc.h>
 39#include <asm/pdc_chassis.h>
 40#include <asm/unwind.h>
 41#include <asm/tlbflush.h>
 42#include <asm/cacheflush.h>
 
 
 43
 44#include "../math-emu/math-emu.h"	/* for handle_fpe() */
 45
 46#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
 47DEFINE_SPINLOCK(pa_dbit_lock);
 48#endif
 49
 50static void parisc_show_stack(struct task_struct *task, unsigned long *sp,
 51	struct pt_regs *regs);
 52
 53static int printbinary(char *buf, unsigned long x, int nbits)
 54{
 55	unsigned long mask = 1UL << (nbits - 1);
 56	while (mask != 0) {
 57		*buf++ = (mask & x ? '1' : '0');
 58		mask >>= 1;
 59	}
 60	*buf = '\0';
 61
 62	return nbits;
 63}
 64
 65#ifdef CONFIG_64BIT
 66#define RFMT "%016lx"
 67#else
 68#define RFMT "%08lx"
 69#endif
 70#define FFMT "%016llx"	/* fpregs are 64-bit always */
 71
 72#define PRINTREGS(lvl,r,f,fmt,x)	\
 73	printk("%s%s%02d-%02d  " fmt " " fmt " " fmt " " fmt "\n",	\
 74		lvl, f, (x), (x+3), (r)[(x)+0], (r)[(x)+1],		\
 75		(r)[(x)+2], (r)[(x)+3])
 76
 77static void print_gr(char *level, struct pt_regs *regs)
 78{
 79	int i;
 80	char buf[64];
 81
 82	printk("%s\n", level);
 83	printk("%s     YZrvWESTHLNXBCVMcbcbcbcbOGFRQPDI\n", level);
 84	printbinary(buf, regs->gr[0], 32);
 85	printk("%sPSW: %s %s\n", level, buf, print_tainted());
 86
 87	for (i = 0; i < 32; i += 4)
 88		PRINTREGS(level, regs->gr, "r", RFMT, i);
 89}
 90
 91static void print_fr(char *level, struct pt_regs *regs)
 92{
 93	int i;
 94	char buf[64];
 95	struct { u32 sw[2]; } s;
 96
 97	/* FR are 64bit everywhere. Need to use asm to get the content
 98	 * of fpsr/fper1, and we assume that we won't have a FP Identify
 99	 * in our way, otherwise we're screwed.
100	 * The fldd is used to restore the T-bit if there was one, as the
101	 * store clears it anyway.
102	 * PA2.0 book says "thou shall not use fstw on FPSR/FPERs" - T-Bone */
103	asm volatile ("fstd %%fr0,0(%1)	\n\t"
104		      "fldd 0(%1),%%fr0	\n\t"
105		      : "=m" (s) : "r" (&s) : "r0");
106
107	printk("%s\n", level);
108	printk("%s      VZOUICununcqcqcqcqcqcrmunTDVZOUI\n", level);
109	printbinary(buf, s.sw[0], 32);
110	printk("%sFPSR: %s\n", level, buf);
111	printk("%sFPER1: %08x\n", level, s.sw[1]);
112
113	/* here we'll print fr0 again, tho it'll be meaningless */
114	for (i = 0; i < 32; i += 4)
115		PRINTREGS(level, regs->fr, "fr", FFMT, i);
116}
117
118void show_regs(struct pt_regs *regs)
119{
120	int i, user;
121	char *level;
122	unsigned long cr30, cr31;
123
124	user = user_mode(regs);
125	level = user ? KERN_DEBUG : KERN_CRIT;
126
127	show_regs_print_info(level);
128
129	print_gr(level, regs);
130
131	for (i = 0; i < 8; i += 4)
132		PRINTREGS(level, regs->sr, "sr", RFMT, i);
133
134	if (user)
135		print_fr(level, regs);
136
137	cr30 = mfctl(30);
138	cr31 = mfctl(31);
139	printk("%s\n", level);
140	printk("%sIASQ: " RFMT " " RFMT " IAOQ: " RFMT " " RFMT "\n",
141	       level, regs->iasq[0], regs->iasq[1], regs->iaoq[0], regs->iaoq[1]);
142	printk("%s IIR: %08lx    ISR: " RFMT "  IOR: " RFMT "\n",
143	       level, regs->iir, regs->isr, regs->ior);
144	printk("%s CPU: %8d   CR30: " RFMT " CR31: " RFMT "\n",
145	       level, current_thread_info()->cpu, cr30, cr31);
146	printk("%s ORIG_R28: " RFMT "\n", level, regs->orig_r28);
147
148	if (user) {
149		printk("%s IAOQ[0]: " RFMT "\n", level, regs->iaoq[0]);
150		printk("%s IAOQ[1]: " RFMT "\n", level, regs->iaoq[1]);
151		printk("%s RP(r2): " RFMT "\n", level, regs->gr[2]);
152	} else {
153		printk("%s IAOQ[0]: %pS\n", level, (void *) regs->iaoq[0]);
154		printk("%s IAOQ[1]: %pS\n", level, (void *) regs->iaoq[1]);
155		printk("%s RP(r2): %pS\n", level, (void *) regs->gr[2]);
156
157		parisc_show_stack(current, NULL, regs);
158	}
159}
160
161static DEFINE_RATELIMIT_STATE(_hppa_rs,
162	DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST);
163
164#define parisc_printk_ratelimited(critical, regs, fmt, ...)	{	      \
165	if ((critical || show_unhandled_signals) && __ratelimit(&_hppa_rs)) { \
166		printk(fmt, ##__VA_ARGS__);				      \
167		show_regs(regs);					      \
168	}								      \
169}
170
171
172static void do_show_stack(struct unwind_frame_info *info)
173{
174	int i = 1;
175
176	printk(KERN_CRIT "Backtrace:\n");
177	while (i <= 16) {
178		if (unwind_once(info) < 0 || info->ip == 0)
179			break;
180
181		if (__kernel_text_address(info->ip)) {
182			printk(KERN_CRIT " [<" RFMT ">] %pS\n",
183				info->ip, (void *) info->ip);
184			i++;
185		}
186	}
187	printk(KERN_CRIT "\n");
188}
189
190static void parisc_show_stack(struct task_struct *task, unsigned long *sp,
191	struct pt_regs *regs)
192{
193	struct unwind_frame_info info;
194	struct task_struct *t;
195
196	t = task ? task : current;
197	if (regs) {
198		unwind_frame_init(&info, t, regs);
199		goto show_stack;
200	}
201
202	if (t == current) {
203		unsigned long sp;
204
205HERE:
206		asm volatile ("copy %%r30, %0" : "=r"(sp));
207		{
208			struct pt_regs r;
209
210			memset(&r, 0, sizeof(struct pt_regs));
211			r.iaoq[0] = (unsigned long)&&HERE;
212			r.gr[2] = (unsigned long)__builtin_return_address(0);
213			r.gr[30] = sp;
214
215			unwind_frame_init(&info, current, &r);
216		}
217	} else {
218		unwind_frame_init_from_blocked_task(&info, t);
219	}
220
221show_stack:
222	do_show_stack(&info);
223}
224
225void show_stack(struct task_struct *t, unsigned long *sp)
226{
227	return parisc_show_stack(t, sp, NULL);
228}
229
230int is_valid_bugaddr(unsigned long iaoq)
231{
232	return 1;
233}
234
235void die_if_kernel(char *str, struct pt_regs *regs, long err)
236{
237	if (user_mode(regs)) {
238		if (err == 0)
239			return; /* STFU */
240
241		parisc_printk_ratelimited(1, regs,
242			KERN_CRIT "%s (pid %d): %s (code %ld) at " RFMT "\n",
243			current->comm, task_pid_nr(current), str, err, regs->iaoq[0]);
244
245		return;
246	}
247
248	oops_in_progress = 1;
249
250	oops_enter();
251
252	/* Amuse the user in a SPARC fashion */
253	if (err) printk(KERN_CRIT
254			"      _______________________________ \n"
255			"     < Your System ate a SPARC! Gah! >\n"
256			"      ------------------------------- \n"
257			"             \\   ^__^\n"
258			"                 (__)\\       )\\/\\\n"
259			"                  U  ||----w |\n"
260			"                     ||     ||\n");
261	
262	/* unlock the pdc lock if necessary */
263	pdc_emergency_unlock();
264
265	/* maybe the kernel hasn't booted very far yet and hasn't been able 
266	 * to initialize the serial or STI console. In that case we should 
267	 * re-enable the pdc console, so that the user will be able to 
268	 * identify the problem. */
269	if (!console_drivers)
270		pdc_console_restart();
271	
272	if (err)
273		printk(KERN_CRIT "%s (pid %d): %s (code %ld)\n",
274			current->comm, task_pid_nr(current), str, err);
275
276	/* Wot's wrong wif bein' racy? */
277	if (current->thread.flags & PARISC_KERNEL_DEATH) {
278		printk(KERN_CRIT "%s() recursion detected.\n", __func__);
279		local_irq_enable();
280		while (1);
281	}
282	current->thread.flags |= PARISC_KERNEL_DEATH;
283
284	show_regs(regs);
285	dump_stack();
286	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
287
288	if (in_interrupt())
289		panic("Fatal exception in interrupt");
290
291	if (panic_on_oops) {
292		printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
293		ssleep(5);
294		panic("Fatal exception");
295	}
296
297	oops_exit();
298	do_exit(SIGSEGV);
299}
300
301/* gdb uses break 4,8 */
302#define GDB_BREAK_INSN 0x10004
303static void handle_gdb_break(struct pt_regs *regs, int wot)
304{
305	struct siginfo si;
306
307	si.si_signo = SIGTRAP;
308	si.si_errno = 0;
309	si.si_code = wot;
310	si.si_addr = (void __user *) (regs->iaoq[0] & ~3);
311	force_sig_info(SIGTRAP, &si, current);
312}
313
314static void handle_break(struct pt_regs *regs)
315{
316	unsigned iir = regs->iir;
317
318	if (unlikely(iir == PARISC_BUG_BREAK_INSN && !user_mode(regs))) {
319		/* check if a BUG() or WARN() trapped here.  */
320		enum bug_trap_type tt;
321		tt = report_bug(regs->iaoq[0] & ~3, regs);
322		if (tt == BUG_TRAP_TYPE_WARN) {
323			regs->iaoq[0] += 4;
324			regs->iaoq[1] += 4;
325			return; /* return to next instruction when WARN_ON().  */
326		}
327		die_if_kernel("Unknown kernel breakpoint", regs,
328			(tt == BUG_TRAP_TYPE_NONE) ? 9 : 0);
329	}
330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
331	if (unlikely(iir != GDB_BREAK_INSN))
332		parisc_printk_ratelimited(0, regs,
333			KERN_DEBUG "break %d,%d: pid=%d command='%s'\n",
334			iir & 31, (iir>>13) & ((1<<13)-1),
335			task_pid_nr(current), current->comm);
336
337	/* send standard GDB signal */
338	handle_gdb_break(regs, TRAP_BRKPT);
339}
340
341static void default_trap(int code, struct pt_regs *regs)
342{
343	printk(KERN_ERR "Trap %d on CPU %d\n", code, smp_processor_id());
344	show_regs(regs);
345}
346
347void (*cpu_lpmc) (int code, struct pt_regs *regs) __read_mostly = default_trap;
348
349
350void transfer_pim_to_trap_frame(struct pt_regs *regs)
351{
352    register int i;
353    extern unsigned int hpmc_pim_data[];
354    struct pdc_hpmc_pim_11 *pim_narrow;
355    struct pdc_hpmc_pim_20 *pim_wide;
356
357    if (boot_cpu_data.cpu_type >= pcxu) {
358
359	pim_wide = (struct pdc_hpmc_pim_20 *)hpmc_pim_data;
360
361	/*
362	 * Note: The following code will probably generate a
363	 * bunch of truncation error warnings from the compiler.
364	 * Could be handled with an ifdef, but perhaps there
365	 * is a better way.
366	 */
367
368	regs->gr[0] = pim_wide->cr[22];
369
370	for (i = 1; i < 32; i++)
371	    regs->gr[i] = pim_wide->gr[i];
372
373	for (i = 0; i < 32; i++)
374	    regs->fr[i] = pim_wide->fr[i];
375
376	for (i = 0; i < 8; i++)
377	    regs->sr[i] = pim_wide->sr[i];
378
379	regs->iasq[0] = pim_wide->cr[17];
380	regs->iasq[1] = pim_wide->iasq_back;
381	regs->iaoq[0] = pim_wide->cr[18];
382	regs->iaoq[1] = pim_wide->iaoq_back;
383
384	regs->sar  = pim_wide->cr[11];
385	regs->iir  = pim_wide->cr[19];
386	regs->isr  = pim_wide->cr[20];
387	regs->ior  = pim_wide->cr[21];
388    }
389    else {
390	pim_narrow = (struct pdc_hpmc_pim_11 *)hpmc_pim_data;
391
392	regs->gr[0] = pim_narrow->cr[22];
393
394	for (i = 1; i < 32; i++)
395	    regs->gr[i] = pim_narrow->gr[i];
396
397	for (i = 0; i < 32; i++)
398	    regs->fr[i] = pim_narrow->fr[i];
399
400	for (i = 0; i < 8; i++)
401	    regs->sr[i] = pim_narrow->sr[i];
402
403	regs->iasq[0] = pim_narrow->cr[17];
404	regs->iasq[1] = pim_narrow->iasq_back;
405	regs->iaoq[0] = pim_narrow->cr[18];
406	regs->iaoq[1] = pim_narrow->iaoq_back;
407
408	regs->sar  = pim_narrow->cr[11];
409	regs->iir  = pim_narrow->cr[19];
410	regs->isr  = pim_narrow->cr[20];
411	regs->ior  = pim_narrow->cr[21];
412    }
413
414    /*
415     * The following fields only have meaning if we came through
416     * another path. So just zero them here.
417     */
418
419    regs->ksp = 0;
420    regs->kpc = 0;
421    regs->orig_r28 = 0;
422}
423
424
425/*
426 * This routine is called as a last resort when everything else
427 * has gone clearly wrong. We get called for faults in kernel space,
428 * and HPMC's.
429 */
430void parisc_terminate(char *msg, struct pt_regs *regs, int code, unsigned long offset)
431{
432	static DEFINE_SPINLOCK(terminate_lock);
433
434	oops_in_progress = 1;
 
435
436	set_eiem(0);
437	local_irq_disable();
438	spin_lock(&terminate_lock);
439
440	/* unlock the pdc lock if necessary */
441	pdc_emergency_unlock();
442
443	/* restart pdc console if necessary */
444	if (!console_drivers)
445		pdc_console_restart();
446
447	/* Not all paths will gutter the processor... */
448	switch(code){
449
450	case 1:
451		transfer_pim_to_trap_frame(regs);
452		break;
453
454	default:
455		/* Fall through */
456		break;
457
458	}
459	    
460	{
461		/* show_stack(NULL, (unsigned long *)regs->gr[30]); */
462		struct unwind_frame_info info;
463		unwind_frame_init(&info, current, regs);
464		do_show_stack(&info);
465	}
466
467	printk("\n");
468	printk(KERN_CRIT "%s: Code=%d regs=%p (Addr=" RFMT ")\n",
469			msg, code, regs, offset);
470	show_regs(regs);
471
472	spin_unlock(&terminate_lock);
473
474	/* put soft power button back under hardware control;
475	 * if the user had pressed it once at any time, the 
476	 * system will shut down immediately right here. */
477	pdc_soft_power_button(0);
478	
479	/* Call kernel panic() so reboot timeouts work properly 
480	 * FIXME: This function should be on the list of
481	 * panic notifiers, and we should call panic
482	 * directly from the location that we wish. 
483	 * e.g. We should not call panic from
484	 * parisc_terminate, but rather the oter way around.
485	 * This hack works, prints the panic message twice,
486	 * and it enables reboot timers!
487	 */
488	panic(msg);
489}
490
491void notrace handle_interruption(int code, struct pt_regs *regs)
492{
493	unsigned long fault_address = 0;
494	unsigned long fault_space = 0;
495	struct siginfo si;
496
497	if (code == 1)
498	    pdc_console_restart();  /* switch back to pdc if HPMC */
499	else
500	    local_irq_enable();
501
502	/* Security check:
503	 * If the priority level is still user, and the
504	 * faulting space is not equal to the active space
505	 * then the user is attempting something in a space
506	 * that does not belong to them. Kill the process.
507	 *
508	 * This is normally the situation when the user
509	 * attempts to jump into the kernel space at the
510	 * wrong offset, be it at the gateway page or a
511	 * random location.
512	 *
513	 * We cannot normally signal the process because it
514	 * could *be* on the gateway page, and processes
515	 * executing on the gateway page can't have signals
516	 * delivered.
517	 * 
518	 * We merely readjust the address into the users
519	 * space, at a destination address of zero, and
520	 * allow processing to continue.
521	 */
522	if (((unsigned long)regs->iaoq[0] & 3) &&
523	    ((unsigned long)regs->iasq[0] != (unsigned long)regs->sr[7])) { 
524		/* Kill the user process later */
525		regs->iaoq[0] = 0 | 3;
526		regs->iaoq[1] = regs->iaoq[0] + 4;
527		regs->iasq[0] = regs->iasq[1] = regs->sr[7];
528		regs->gr[0] &= ~PSW_B;
529		return;
530	}
531	
532#if 0
533	printk(KERN_CRIT "Interruption # %d\n", code);
534#endif
535
536	switch(code) {
537
538	case  1:
539		/* High-priority machine check (HPMC) */
540		
541		/* set up a new led state on systems shipped with a LED State panel */
542		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_HPMC);
543
544		parisc_terminate("High Priority Machine Check (HPMC)",
545				regs, code, 0);
546		/* NOT REACHED */
547		
548	case  2:
549		/* Power failure interrupt */
550		printk(KERN_CRIT "Power failure interrupt !\n");
551		return;
552
553	case  3:
554		/* Recovery counter trap */
555		regs->gr[0] &= ~PSW_R;
 
 
 
 
 
 
 
 
 
 
 
 
 
556		if (user_space(regs))
557			handle_gdb_break(regs, TRAP_TRACE);
558		/* else this must be the start of a syscall - just let it run */
559		return;
560
561	case  5:
562		/* Low-priority machine check */
563		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_LPMC);
564		
565		flush_cache_all();
566		flush_tlb_all();
567		cpu_lpmc(5, regs);
568		return;
569
570	case  6:
571		/* Instruction TLB miss fault/Instruction page fault */
572		fault_address = regs->iaoq[0];
573		fault_space   = regs->iasq[0];
574		break;
575
576	case  8:
577		/* Illegal instruction trap */
578		die_if_kernel("Illegal instruction", regs, code);
579		si.si_code = ILL_ILLOPC;
580		goto give_sigill;
581
582	case  9:
583		/* Break instruction trap */
584		handle_break(regs);
585		return;
586
587	case 10:
588		/* Privileged operation trap */
589		die_if_kernel("Privileged operation", regs, code);
590		si.si_code = ILL_PRVOPC;
591		goto give_sigill;
592
593	case 11:
594		/* Privileged register trap */
595		if ((regs->iir & 0xffdfffe0) == 0x034008a0) {
596
597			/* This is a MFCTL cr26/cr27 to gr instruction.
598			 * PCXS traps on this, so we need to emulate it.
599			 */
600
601			if (regs->iir & 0x00200000)
602				regs->gr[regs->iir & 0x1f] = mfctl(27);
603			else
604				regs->gr[regs->iir & 0x1f] = mfctl(26);
605
606			regs->iaoq[0] = regs->iaoq[1];
607			regs->iaoq[1] += 4;
608			regs->iasq[0] = regs->iasq[1];
609			return;
610		}
611
612		die_if_kernel("Privileged register usage", regs, code);
613		si.si_code = ILL_PRVREG;
614	give_sigill:
615		si.si_signo = SIGILL;
616		si.si_errno = 0;
617		si.si_addr = (void __user *) regs->iaoq[0];
618		force_sig_info(SIGILL, &si, current);
619		return;
620
621	case 12:
622		/* Overflow Trap, let the userland signal handler do the cleanup */
623		si.si_signo = SIGFPE;
624		si.si_code = FPE_INTOVF;
625		si.si_addr = (void __user *) regs->iaoq[0];
626		force_sig_info(SIGFPE, &si, current);
627		return;
628		
629	case 13:
630		/* Conditional Trap
631		   The condition succeeds in an instruction which traps
632		   on condition  */
633		if(user_mode(regs)){
634			si.si_signo = SIGFPE;
635			/* Set to zero, and let the userspace app figure it out from
636			   the insn pointed to by si_addr */
637			si.si_code = 0;
638			si.si_addr = (void __user *) regs->iaoq[0];
639			force_sig_info(SIGFPE, &si, current);
640			return;
641		} 
642		/* The kernel doesn't want to handle condition codes */
643		break;
644		
645	case 14:
646		/* Assist Exception Trap, i.e. floating point exception. */
647		die_if_kernel("Floating point exception", regs, 0); /* quiet */
648		__inc_irq_stat(irq_fpassist_count);
649		handle_fpe(regs);
650		return;
651
652	case 15:
653		/* Data TLB miss fault/Data page fault */
654		/* Fall through */
655	case 16:
656		/* Non-access instruction TLB miss fault */
657		/* The instruction TLB entry needed for the target address of the FIC
658		   is absent, and hardware can't find it, so we get to cleanup */
659		/* Fall through */
660	case 17:
661		/* Non-access data TLB miss fault/Non-access data page fault */
662		/* FIXME: 
663			 Still need to add slow path emulation code here!
664			 If the insn used a non-shadow register, then the tlb
665			 handlers could not have their side-effect (e.g. probe
666			 writing to a target register) emulated since rfir would
667			 erase the changes to said register. Instead we have to
668			 setup everything, call this function we are in, and emulate
669			 by hand. Technically we need to emulate:
670			 fdc,fdce,pdc,"fic,4f",prober,probeir,probew, probeiw
671		*/
672		fault_address = regs->ior;
673		fault_space = regs->isr;
674		break;
675
676	case 18:
677		/* PCXS only -- later cpu's split this into types 26,27 & 28 */
678		/* Check for unaligned access */
679		if (check_unaligned(regs)) {
680			handle_unaligned(regs);
681			return;
682		}
683		/* Fall Through */
684	case 26: 
685		/* PCXL: Data memory access rights trap */
686		fault_address = regs->ior;
687		fault_space   = regs->isr;
688		break;
689
690	case 19:
691		/* Data memory break trap */
692		regs->gr[0] |= PSW_X; /* So we can single-step over the trap */
693		/* fall thru */
694	case 21:
695		/* Page reference trap */
696		handle_gdb_break(regs, TRAP_HWBKPT);
697		return;
698
699	case 25:
700		/* Taken branch trap */
701		regs->gr[0] &= ~PSW_T;
702		if (user_space(regs))
703			handle_gdb_break(regs, TRAP_BRANCH);
704		/* else this must be the start of a syscall - just let it
705		 * run.
706		 */
707		return;
708
709	case  7:  
710		/* Instruction access rights */
711		/* PCXL: Instruction memory protection trap */
712
713		/*
714		 * This could be caused by either: 1) a process attempting
715		 * to execute within a vma that does not have execute
716		 * permission, or 2) an access rights violation caused by a
717		 * flush only translation set up by ptep_get_and_clear().
718		 * So we check the vma permissions to differentiate the two.
719		 * If the vma indicates we have execute permission, then
720		 * the cause is the latter one. In this case, we need to
721		 * call do_page_fault() to fix the problem.
722		 */
723
724		if (user_mode(regs)) {
725			struct vm_area_struct *vma;
726
727			down_read(&current->mm->mmap_sem);
728			vma = find_vma(current->mm,regs->iaoq[0]);
729			if (vma && (regs->iaoq[0] >= vma->vm_start)
730				&& (vma->vm_flags & VM_EXEC)) {
731
732				fault_address = regs->iaoq[0];
733				fault_space = regs->iasq[0];
734
735				up_read(&current->mm->mmap_sem);
736				break; /* call do_page_fault() */
737			}
738			up_read(&current->mm->mmap_sem);
739		}
740		/* Fall Through */
741	case 27: 
742		/* Data memory protection ID trap */
743		if (code == 27 && !user_mode(regs) &&
744			fixup_exception(regs))
745			return;
746
747		die_if_kernel("Protection id trap", regs, code);
748		si.si_code = SEGV_MAPERR;
749		si.si_signo = SIGSEGV;
750		si.si_errno = 0;
751		if (code == 7)
752		    si.si_addr = (void __user *) regs->iaoq[0];
753		else
754		    si.si_addr = (void __user *) regs->ior;
755		force_sig_info(SIGSEGV, &si, current);
756		return;
757
758	case 28: 
759		/* Unaligned data reference trap */
760		handle_unaligned(regs);
761		return;
762
763	default:
764		if (user_mode(regs)) {
765			parisc_printk_ratelimited(0, regs, KERN_DEBUG
766				"handle_interruption() pid=%d command='%s'\n",
767				task_pid_nr(current), current->comm);
768			/* SIGBUS, for lack of a better one. */
769			si.si_signo = SIGBUS;
770			si.si_code = BUS_OBJERR;
771			si.si_errno = 0;
772			si.si_addr = (void __user *) regs->ior;
773			force_sig_info(SIGBUS, &si, current);
774			return;
775		}
776		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC);
777		
778		parisc_terminate("Unexpected interruption", regs, code, 0);
779		/* NOT REACHED */
780	}
781
782	if (user_mode(regs)) {
783	    if ((fault_space >> SPACEID_SHIFT) != (regs->sr[7] >> SPACEID_SHIFT)) {
784		parisc_printk_ratelimited(0, regs, KERN_DEBUG
785				"User fault %d on space 0x%08lx, pid=%d command='%s'\n",
786				code, fault_space,
787				task_pid_nr(current), current->comm);
788		si.si_signo = SIGSEGV;
789		si.si_errno = 0;
790		si.si_code = SEGV_MAPERR;
791		si.si_addr = (void __user *) regs->ior;
792		force_sig_info(SIGSEGV, &si, current);
793		return;
794	    }
795	}
796	else {
797
798	    /*
799	     * The kernel should never fault on its own address space,
800	     * unless pagefault_disable() was called before.
801	     */
802
803	    if (fault_space == 0 && !in_atomic())
804	    {
 
 
 
805		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC);
806		parisc_terminate("Kernel Fault", regs, code, fault_address);
807	    }
808	}
809
810	do_page_fault(regs, code, fault_address);
811}
812
813
814int __init check_ivt(void *iva)
815{
816	extern u32 os_hpmc_size;
817	extern const u32 os_hpmc[];
818
819	int i;
820	u32 check = 0;
821	u32 *ivap;
822	u32 *hpmcp;
823	u32 length;
824
825	if (strcmp((char *)iva, "cows can fly"))
826		return -1;
827
828	ivap = (u32 *)iva;
829
830	for (i = 0; i < 8; i++)
831	    *ivap++ = 0;
832
833	/* Compute Checksum for HPMC handler */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
834	length = os_hpmc_size;
835	ivap[7] = length;
836
837	hpmcp = (u32 *)os_hpmc;
838
839	for (i=0; i<length/4; i++)
840	    check += *hpmcp++;
841
842	for (i=0; i<8; i++)
843	    check += ivap[i];
844
845	ivap[5] = -check;
846
847	return 0;
848}
849	
 
 
 
 
 
 
 
850#ifndef CONFIG_64BIT
851extern const void fault_vector_11;
 
852#endif
853extern const void fault_vector_20;
 
 
854
855void __init trap_init(void)
856{
857	void *iva;
858
859	if (boot_cpu_data.cpu_type >= pcxu)
860		iva = (void *) &fault_vector_20;
861	else
862#ifdef CONFIG_64BIT
863		panic("Can't boot 64-bit OS on PA1.1 processor!");
864#else
865		iva = (void *) &fault_vector_11;
866#endif
867
868	if (check_ivt(iva))
869		panic("IVT invalid");
870}