Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/arch/arm/mm/ioremap.c
4 *
5 * Re-map IO memory to kernel address space so that we can access it.
6 *
7 * (C) Copyright 1995 1996 Linus Torvalds
8 *
9 * Hacked for ARM by Phil Blundell <philb@gnu.org>
10 * Hacked to allow all architectures to build, and various cleanups
11 * by Russell King
12 *
13 * This allows a driver to remap an arbitrary region of bus memory into
14 * virtual space. One should *only* use readl, writel, memcpy_toio and
15 * so on with such remapped areas.
16 *
17 * Because the ARM only has a 32-bit address space we can't address the
18 * whole of the (physical) PCI space at once. PCI huge-mode addressing
19 * allows us to circumvent this restriction by splitting PCI space into
20 * two 2GB chunks and mapping only one at a time into processor memory.
21 * We use MMU protection domains to trap any attempt to access the bank
22 * that is not currently mapped. (This isn't fully implemented yet.)
23 */
24#include <linux/module.h>
25#include <linux/errno.h>
26#include <linux/mm.h>
27#include <linux/vmalloc.h>
28#include <linux/io.h>
29#include <linux/sizes.h>
30
31#include <asm/cp15.h>
32#include <asm/cputype.h>
33#include <asm/cacheflush.h>
34#include <asm/early_ioremap.h>
35#include <asm/mmu_context.h>
36#include <asm/pgalloc.h>
37#include <asm/tlbflush.h>
38#include <asm/system_info.h>
39
40#include <asm/mach/map.h>
41#include <asm/mach/pci.h>
42#include "mm.h"
43
44
45LIST_HEAD(static_vmlist);
46
47static struct static_vm *find_static_vm_paddr(phys_addr_t paddr,
48 size_t size, unsigned int mtype)
49{
50 struct static_vm *svm;
51 struct vm_struct *vm;
52
53 list_for_each_entry(svm, &static_vmlist, list) {
54 vm = &svm->vm;
55 if (!(vm->flags & VM_ARM_STATIC_MAPPING))
56 continue;
57 if ((vm->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))
58 continue;
59
60 if (vm->phys_addr > paddr ||
61 paddr + size - 1 > vm->phys_addr + vm->size - 1)
62 continue;
63
64 return svm;
65 }
66
67 return NULL;
68}
69
70struct static_vm *find_static_vm_vaddr(void *vaddr)
71{
72 struct static_vm *svm;
73 struct vm_struct *vm;
74
75 list_for_each_entry(svm, &static_vmlist, list) {
76 vm = &svm->vm;
77
78 /* static_vmlist is ascending order */
79 if (vm->addr > vaddr)
80 break;
81
82 if (vm->addr <= vaddr && vm->addr + vm->size > vaddr)
83 return svm;
84 }
85
86 return NULL;
87}
88
89void __init add_static_vm_early(struct static_vm *svm)
90{
91 struct static_vm *curr_svm;
92 struct vm_struct *vm;
93 void *vaddr;
94
95 vm = &svm->vm;
96 vm_area_add_early(vm);
97 vaddr = vm->addr;
98
99 list_for_each_entry(curr_svm, &static_vmlist, list) {
100 vm = &curr_svm->vm;
101
102 if (vm->addr > vaddr)
103 break;
104 }
105 list_add_tail(&svm->list, &curr_svm->list);
106}
107
108int ioremap_page(unsigned long virt, unsigned long phys,
109 const struct mem_type *mtype)
110{
111 return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
112 __pgprot(mtype->prot_pte));
113}
114EXPORT_SYMBOL(ioremap_page);
115
116void __check_vmalloc_seq(struct mm_struct *mm)
117{
118 unsigned int seq;
119
120 do {
121 seq = init_mm.context.vmalloc_seq;
122 memcpy(pgd_offset(mm, VMALLOC_START),
123 pgd_offset_k(VMALLOC_START),
124 sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
125 pgd_index(VMALLOC_START)));
126 mm->context.vmalloc_seq = seq;
127 } while (seq != init_mm.context.vmalloc_seq);
128}
129
130#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
131/*
132 * Section support is unsafe on SMP - If you iounmap and ioremap a region,
133 * the other CPUs will not see this change until their next context switch.
134 * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
135 * which requires the new ioremap'd region to be referenced, the CPU will
136 * reference the _old_ region.
137 *
138 * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
139 * mask the size back to 1MB aligned or we will overflow in the loop below.
140 */
141static void unmap_area_sections(unsigned long virt, unsigned long size)
142{
143 unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
144 pgd_t *pgd;
145 pud_t *pud;
146 pmd_t *pmdp;
147
148 flush_cache_vunmap(addr, end);
149 pgd = pgd_offset_k(addr);
150 pud = pud_offset(pgd, addr);
151 pmdp = pmd_offset(pud, addr);
152 do {
153 pmd_t pmd = *pmdp;
154
155 if (!pmd_none(pmd)) {
156 /*
157 * Clear the PMD from the page table, and
158 * increment the vmalloc sequence so others
159 * notice this change.
160 *
161 * Note: this is still racy on SMP machines.
162 */
163 pmd_clear(pmdp);
164 init_mm.context.vmalloc_seq++;
165
166 /*
167 * Free the page table, if there was one.
168 */
169 if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
170 pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
171 }
172
173 addr += PMD_SIZE;
174 pmdp += 2;
175 } while (addr < end);
176
177 /*
178 * Ensure that the active_mm is up to date - we want to
179 * catch any use-after-iounmap cases.
180 */
181 if (current->active_mm->context.vmalloc_seq != init_mm.context.vmalloc_seq)
182 __check_vmalloc_seq(current->active_mm);
183
184 flush_tlb_kernel_range(virt, end);
185}
186
187static int
188remap_area_sections(unsigned long virt, unsigned long pfn,
189 size_t size, const struct mem_type *type)
190{
191 unsigned long addr = virt, end = virt + size;
192 pgd_t *pgd;
193 pud_t *pud;
194 pmd_t *pmd;
195
196 /*
197 * Remove and free any PTE-based mapping, and
198 * sync the current kernel mapping.
199 */
200 unmap_area_sections(virt, size);
201
202 pgd = pgd_offset_k(addr);
203 pud = pud_offset(pgd, addr);
204 pmd = pmd_offset(pud, addr);
205 do {
206 pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
207 pfn += SZ_1M >> PAGE_SHIFT;
208 pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
209 pfn += SZ_1M >> PAGE_SHIFT;
210 flush_pmd_entry(pmd);
211
212 addr += PMD_SIZE;
213 pmd += 2;
214 } while (addr < end);
215
216 return 0;
217}
218
219static int
220remap_area_supersections(unsigned long virt, unsigned long pfn,
221 size_t size, const struct mem_type *type)
222{
223 unsigned long addr = virt, end = virt + size;
224 pgd_t *pgd;
225 pud_t *pud;
226 pmd_t *pmd;
227
228 /*
229 * Remove and free any PTE-based mapping, and
230 * sync the current kernel mapping.
231 */
232 unmap_area_sections(virt, size);
233
234 pgd = pgd_offset_k(virt);
235 pud = pud_offset(pgd, addr);
236 pmd = pmd_offset(pud, addr);
237 do {
238 unsigned long super_pmd_val, i;
239
240 super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
241 PMD_SECT_SUPER;
242 super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
243
244 for (i = 0; i < 8; i++) {
245 pmd[0] = __pmd(super_pmd_val);
246 pmd[1] = __pmd(super_pmd_val);
247 flush_pmd_entry(pmd);
248
249 addr += PMD_SIZE;
250 pmd += 2;
251 }
252
253 pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
254 } while (addr < end);
255
256 return 0;
257}
258#endif
259
260static void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
261 unsigned long offset, size_t size, unsigned int mtype, void *caller)
262{
263 const struct mem_type *type;
264 int err;
265 unsigned long addr;
266 struct vm_struct *area;
267 phys_addr_t paddr = __pfn_to_phys(pfn);
268
269#ifndef CONFIG_ARM_LPAE
270 /*
271 * High mappings must be supersection aligned
272 */
273 if (pfn >= 0x100000 && (paddr & ~SUPERSECTION_MASK))
274 return NULL;
275#endif
276
277 type = get_mem_type(mtype);
278 if (!type)
279 return NULL;
280
281 /*
282 * Page align the mapping size, taking account of any offset.
283 */
284 size = PAGE_ALIGN(offset + size);
285
286 /*
287 * Try to reuse one of the static mapping whenever possible.
288 */
289 if (size && !(sizeof(phys_addr_t) == 4 && pfn >= 0x100000)) {
290 struct static_vm *svm;
291
292 svm = find_static_vm_paddr(paddr, size, mtype);
293 if (svm) {
294 addr = (unsigned long)svm->vm.addr;
295 addr += paddr - svm->vm.phys_addr;
296 return (void __iomem *) (offset + addr);
297 }
298 }
299
300 /*
301 * Don't allow RAM to be mapped with mismatched attributes - this
302 * causes problems with ARMv6+
303 */
304 if (WARN_ON(pfn_valid(pfn) && mtype != MT_MEMORY_RW))
305 return NULL;
306
307 area = get_vm_area_caller(size, VM_IOREMAP, caller);
308 if (!area)
309 return NULL;
310 addr = (unsigned long)area->addr;
311 area->phys_addr = paddr;
312
313#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
314 if (DOMAIN_IO == 0 &&
315 (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
316 cpu_is_xsc3()) && pfn >= 0x100000 &&
317 !((paddr | size | addr) & ~SUPERSECTION_MASK)) {
318 area->flags |= VM_ARM_SECTION_MAPPING;
319 err = remap_area_supersections(addr, pfn, size, type);
320 } else if (!((paddr | size | addr) & ~PMD_MASK)) {
321 area->flags |= VM_ARM_SECTION_MAPPING;
322 err = remap_area_sections(addr, pfn, size, type);
323 } else
324#endif
325 err = ioremap_page_range(addr, addr + size, paddr,
326 __pgprot(type->prot_pte));
327
328 if (err) {
329 vunmap((void *)addr);
330 return NULL;
331 }
332
333 flush_cache_vmap(addr, addr + size);
334 return (void __iomem *) (offset + addr);
335}
336
337void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
338 unsigned int mtype, void *caller)
339{
340 phys_addr_t last_addr;
341 unsigned long offset = phys_addr & ~PAGE_MASK;
342 unsigned long pfn = __phys_to_pfn(phys_addr);
343
344 /*
345 * Don't allow wraparound or zero size
346 */
347 last_addr = phys_addr + size - 1;
348 if (!size || last_addr < phys_addr)
349 return NULL;
350
351 return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
352 caller);
353}
354
355/*
356 * Remap an arbitrary physical address space into the kernel virtual
357 * address space. Needed when the kernel wants to access high addresses
358 * directly.
359 *
360 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
361 * have to convert them into an offset in a page-aligned mapping, but the
362 * caller shouldn't need to know that small detail.
363 */
364void __iomem *
365__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
366 unsigned int mtype)
367{
368 return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
369 __builtin_return_address(0));
370}
371EXPORT_SYMBOL(__arm_ioremap_pfn);
372
373void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
374 unsigned int, void *) =
375 __arm_ioremap_caller;
376
377void __iomem *ioremap(resource_size_t res_cookie, size_t size)
378{
379 return arch_ioremap_caller(res_cookie, size, MT_DEVICE,
380 __builtin_return_address(0));
381}
382EXPORT_SYMBOL(ioremap);
383
384void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
385 __alias(ioremap_cached);
386
387void __iomem *ioremap_cached(resource_size_t res_cookie, size_t size)
388{
389 return arch_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
390 __builtin_return_address(0));
391}
392EXPORT_SYMBOL(ioremap_cache);
393EXPORT_SYMBOL(ioremap_cached);
394
395void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
396{
397 return arch_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
398 __builtin_return_address(0));
399}
400EXPORT_SYMBOL(ioremap_wc);
401
402/*
403 * Remap an arbitrary physical address space into the kernel virtual
404 * address space as memory. Needed when the kernel wants to execute
405 * code in external memory. This is needed for reprogramming source
406 * clocks that would affect normal memory for example. Please see
407 * CONFIG_GENERIC_ALLOCATOR for allocating external memory.
408 */
409void __iomem *
410__arm_ioremap_exec(phys_addr_t phys_addr, size_t size, bool cached)
411{
412 unsigned int mtype;
413
414 if (cached)
415 mtype = MT_MEMORY_RWX;
416 else
417 mtype = MT_MEMORY_RWX_NONCACHED;
418
419 return __arm_ioremap_caller(phys_addr, size, mtype,
420 __builtin_return_address(0));
421}
422
423void *arch_memremap_wb(phys_addr_t phys_addr, size_t size)
424{
425 return (__force void *)arch_ioremap_caller(phys_addr, size,
426 MT_MEMORY_RW,
427 __builtin_return_address(0));
428}
429
430void __iounmap(volatile void __iomem *io_addr)
431{
432 void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
433 struct static_vm *svm;
434
435 /* If this is a static mapping, we must leave it alone */
436 svm = find_static_vm_vaddr(addr);
437 if (svm)
438 return;
439
440#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
441 {
442 struct vm_struct *vm;
443
444 vm = find_vm_area(addr);
445
446 /*
447 * If this is a section based mapping we need to handle it
448 * specially as the VM subsystem does not know how to handle
449 * such a beast.
450 */
451 if (vm && (vm->flags & VM_ARM_SECTION_MAPPING))
452 unmap_area_sections((unsigned long)vm->addr, vm->size);
453 }
454#endif
455
456 vunmap(addr);
457}
458
459void (*arch_iounmap)(volatile void __iomem *) = __iounmap;
460
461void iounmap(volatile void __iomem *cookie)
462{
463 arch_iounmap(cookie);
464}
465EXPORT_SYMBOL(iounmap);
466
467#ifdef CONFIG_PCI
468static int pci_ioremap_mem_type = MT_DEVICE;
469
470void pci_ioremap_set_mem_type(int mem_type)
471{
472 pci_ioremap_mem_type = mem_type;
473}
474
475int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr)
476{
477 BUG_ON(offset + SZ_64K - 1 > IO_SPACE_LIMIT);
478
479 return ioremap_page_range(PCI_IO_VIRT_BASE + offset,
480 PCI_IO_VIRT_BASE + offset + SZ_64K,
481 phys_addr,
482 __pgprot(get_mem_type(pci_ioremap_mem_type)->prot_pte));
483}
484EXPORT_SYMBOL_GPL(pci_ioremap_io);
485
486void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size)
487{
488 return arch_ioremap_caller(res_cookie, size, MT_UNCACHED,
489 __builtin_return_address(0));
490}
491EXPORT_SYMBOL_GPL(pci_remap_cfgspace);
492#endif
493
494/*
495 * Must be called after early_fixmap_init
496 */
497void __init early_ioremap_init(void)
498{
499 early_ioremap_setup();
500}
1/*
2 * linux/arch/arm/mm/ioremap.c
3 *
4 * Re-map IO memory to kernel address space so that we can access it.
5 *
6 * (C) Copyright 1995 1996 Linus Torvalds
7 *
8 * Hacked for ARM by Phil Blundell <philb@gnu.org>
9 * Hacked to allow all architectures to build, and various cleanups
10 * by Russell King
11 *
12 * This allows a driver to remap an arbitrary region of bus memory into
13 * virtual space. One should *only* use readl, writel, memcpy_toio and
14 * so on with such remapped areas.
15 *
16 * Because the ARM only has a 32-bit address space we can't address the
17 * whole of the (physical) PCI space at once. PCI huge-mode addressing
18 * allows us to circumvent this restriction by splitting PCI space into
19 * two 2GB chunks and mapping only one at a time into processor memory.
20 * We use MMU protection domains to trap any attempt to access the bank
21 * that is not currently mapped. (This isn't fully implemented yet.)
22 */
23#include <linux/module.h>
24#include <linux/errno.h>
25#include <linux/mm.h>
26#include <linux/vmalloc.h>
27#include <linux/io.h>
28#include <linux/sizes.h>
29
30#include <asm/cp15.h>
31#include <asm/cputype.h>
32#include <asm/cacheflush.h>
33#include <asm/mmu_context.h>
34#include <asm/pgalloc.h>
35#include <asm/tlbflush.h>
36#include <asm/system_info.h>
37
38#include <asm/mach/map.h>
39#include <asm/mach/pci.h>
40#include "mm.h"
41
42
43LIST_HEAD(static_vmlist);
44
45static struct static_vm *find_static_vm_paddr(phys_addr_t paddr,
46 size_t size, unsigned int mtype)
47{
48 struct static_vm *svm;
49 struct vm_struct *vm;
50
51 list_for_each_entry(svm, &static_vmlist, list) {
52 vm = &svm->vm;
53 if (!(vm->flags & VM_ARM_STATIC_MAPPING))
54 continue;
55 if ((vm->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))
56 continue;
57
58 if (vm->phys_addr > paddr ||
59 paddr + size - 1 > vm->phys_addr + vm->size - 1)
60 continue;
61
62 return svm;
63 }
64
65 return NULL;
66}
67
68struct static_vm *find_static_vm_vaddr(void *vaddr)
69{
70 struct static_vm *svm;
71 struct vm_struct *vm;
72
73 list_for_each_entry(svm, &static_vmlist, list) {
74 vm = &svm->vm;
75
76 /* static_vmlist is ascending order */
77 if (vm->addr > vaddr)
78 break;
79
80 if (vm->addr <= vaddr && vm->addr + vm->size > vaddr)
81 return svm;
82 }
83
84 return NULL;
85}
86
87void __init add_static_vm_early(struct static_vm *svm)
88{
89 struct static_vm *curr_svm;
90 struct vm_struct *vm;
91 void *vaddr;
92
93 vm = &svm->vm;
94 vm_area_add_early(vm);
95 vaddr = vm->addr;
96
97 list_for_each_entry(curr_svm, &static_vmlist, list) {
98 vm = &curr_svm->vm;
99
100 if (vm->addr > vaddr)
101 break;
102 }
103 list_add_tail(&svm->list, &curr_svm->list);
104}
105
106int ioremap_page(unsigned long virt, unsigned long phys,
107 const struct mem_type *mtype)
108{
109 return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
110 __pgprot(mtype->prot_pte));
111}
112EXPORT_SYMBOL(ioremap_page);
113
114void __check_vmalloc_seq(struct mm_struct *mm)
115{
116 unsigned int seq;
117
118 do {
119 seq = init_mm.context.vmalloc_seq;
120 memcpy(pgd_offset(mm, VMALLOC_START),
121 pgd_offset_k(VMALLOC_START),
122 sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
123 pgd_index(VMALLOC_START)));
124 mm->context.vmalloc_seq = seq;
125 } while (seq != init_mm.context.vmalloc_seq);
126}
127
128#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
129/*
130 * Section support is unsafe on SMP - If you iounmap and ioremap a region,
131 * the other CPUs will not see this change until their next context switch.
132 * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
133 * which requires the new ioremap'd region to be referenced, the CPU will
134 * reference the _old_ region.
135 *
136 * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
137 * mask the size back to 1MB aligned or we will overflow in the loop below.
138 */
139static void unmap_area_sections(unsigned long virt, unsigned long size)
140{
141 unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
142 pgd_t *pgd;
143 pud_t *pud;
144 pmd_t *pmdp;
145
146 flush_cache_vunmap(addr, end);
147 pgd = pgd_offset_k(addr);
148 pud = pud_offset(pgd, addr);
149 pmdp = pmd_offset(pud, addr);
150 do {
151 pmd_t pmd = *pmdp;
152
153 if (!pmd_none(pmd)) {
154 /*
155 * Clear the PMD from the page table, and
156 * increment the vmalloc sequence so others
157 * notice this change.
158 *
159 * Note: this is still racy on SMP machines.
160 */
161 pmd_clear(pmdp);
162 init_mm.context.vmalloc_seq++;
163
164 /*
165 * Free the page table, if there was one.
166 */
167 if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
168 pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
169 }
170
171 addr += PMD_SIZE;
172 pmdp += 2;
173 } while (addr < end);
174
175 /*
176 * Ensure that the active_mm is up to date - we want to
177 * catch any use-after-iounmap cases.
178 */
179 if (current->active_mm->context.vmalloc_seq != init_mm.context.vmalloc_seq)
180 __check_vmalloc_seq(current->active_mm);
181
182 flush_tlb_kernel_range(virt, end);
183}
184
185static int
186remap_area_sections(unsigned long virt, unsigned long pfn,
187 size_t size, const struct mem_type *type)
188{
189 unsigned long addr = virt, end = virt + size;
190 pgd_t *pgd;
191 pud_t *pud;
192 pmd_t *pmd;
193
194 /*
195 * Remove and free any PTE-based mapping, and
196 * sync the current kernel mapping.
197 */
198 unmap_area_sections(virt, size);
199
200 pgd = pgd_offset_k(addr);
201 pud = pud_offset(pgd, addr);
202 pmd = pmd_offset(pud, addr);
203 do {
204 pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
205 pfn += SZ_1M >> PAGE_SHIFT;
206 pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
207 pfn += SZ_1M >> PAGE_SHIFT;
208 flush_pmd_entry(pmd);
209
210 addr += PMD_SIZE;
211 pmd += 2;
212 } while (addr < end);
213
214 return 0;
215}
216
217static int
218remap_area_supersections(unsigned long virt, unsigned long pfn,
219 size_t size, const struct mem_type *type)
220{
221 unsigned long addr = virt, end = virt + size;
222 pgd_t *pgd;
223 pud_t *pud;
224 pmd_t *pmd;
225
226 /*
227 * Remove and free any PTE-based mapping, and
228 * sync the current kernel mapping.
229 */
230 unmap_area_sections(virt, size);
231
232 pgd = pgd_offset_k(virt);
233 pud = pud_offset(pgd, addr);
234 pmd = pmd_offset(pud, addr);
235 do {
236 unsigned long super_pmd_val, i;
237
238 super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
239 PMD_SECT_SUPER;
240 super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
241
242 for (i = 0; i < 8; i++) {
243 pmd[0] = __pmd(super_pmd_val);
244 pmd[1] = __pmd(super_pmd_val);
245 flush_pmd_entry(pmd);
246
247 addr += PMD_SIZE;
248 pmd += 2;
249 }
250
251 pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
252 } while (addr < end);
253
254 return 0;
255}
256#endif
257
258void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
259 unsigned long offset, size_t size, unsigned int mtype, void *caller)
260{
261 const struct mem_type *type;
262 int err;
263 unsigned long addr;
264 struct vm_struct *area;
265 phys_addr_t paddr = __pfn_to_phys(pfn);
266
267#ifndef CONFIG_ARM_LPAE
268 /*
269 * High mappings must be supersection aligned
270 */
271 if (pfn >= 0x100000 && (paddr & ~SUPERSECTION_MASK))
272 return NULL;
273#endif
274
275 type = get_mem_type(mtype);
276 if (!type)
277 return NULL;
278
279 /*
280 * Page align the mapping size, taking account of any offset.
281 */
282 size = PAGE_ALIGN(offset + size);
283
284 /*
285 * Try to reuse one of the static mapping whenever possible.
286 */
287 if (size && !(sizeof(phys_addr_t) == 4 && pfn >= 0x100000)) {
288 struct static_vm *svm;
289
290 svm = find_static_vm_paddr(paddr, size, mtype);
291 if (svm) {
292 addr = (unsigned long)svm->vm.addr;
293 addr += paddr - svm->vm.phys_addr;
294 return (void __iomem *) (offset + addr);
295 }
296 }
297
298 /*
299 * Don't allow RAM to be mapped - this causes problems with ARMv6+
300 */
301 if (WARN_ON(pfn_valid(pfn)))
302 return NULL;
303
304 area = get_vm_area_caller(size, VM_IOREMAP, caller);
305 if (!area)
306 return NULL;
307 addr = (unsigned long)area->addr;
308 area->phys_addr = paddr;
309
310#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
311 if (DOMAIN_IO == 0 &&
312 (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
313 cpu_is_xsc3()) && pfn >= 0x100000 &&
314 !((paddr | size | addr) & ~SUPERSECTION_MASK)) {
315 area->flags |= VM_ARM_SECTION_MAPPING;
316 err = remap_area_supersections(addr, pfn, size, type);
317 } else if (!((paddr | size | addr) & ~PMD_MASK)) {
318 area->flags |= VM_ARM_SECTION_MAPPING;
319 err = remap_area_sections(addr, pfn, size, type);
320 } else
321#endif
322 err = ioremap_page_range(addr, addr + size, paddr,
323 __pgprot(type->prot_pte));
324
325 if (err) {
326 vunmap((void *)addr);
327 return NULL;
328 }
329
330 flush_cache_vmap(addr, addr + size);
331 return (void __iomem *) (offset + addr);
332}
333
334void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
335 unsigned int mtype, void *caller)
336{
337 phys_addr_t last_addr;
338 unsigned long offset = phys_addr & ~PAGE_MASK;
339 unsigned long pfn = __phys_to_pfn(phys_addr);
340
341 /*
342 * Don't allow wraparound or zero size
343 */
344 last_addr = phys_addr + size - 1;
345 if (!size || last_addr < phys_addr)
346 return NULL;
347
348 return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
349 caller);
350}
351
352/*
353 * Remap an arbitrary physical address space into the kernel virtual
354 * address space. Needed when the kernel wants to access high addresses
355 * directly.
356 *
357 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
358 * have to convert them into an offset in a page-aligned mapping, but the
359 * caller shouldn't need to know that small detail.
360 */
361void __iomem *
362__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
363 unsigned int mtype)
364{
365 return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
366 __builtin_return_address(0));
367}
368EXPORT_SYMBOL(__arm_ioremap_pfn);
369
370void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
371 unsigned int, void *) =
372 __arm_ioremap_caller;
373
374void __iomem *
375__arm_ioremap(phys_addr_t phys_addr, size_t size, unsigned int mtype)
376{
377 return arch_ioremap_caller(phys_addr, size, mtype,
378 __builtin_return_address(0));
379}
380EXPORT_SYMBOL(__arm_ioremap);
381
382/*
383 * Remap an arbitrary physical address space into the kernel virtual
384 * address space as memory. Needed when the kernel wants to execute
385 * code in external memory. This is needed for reprogramming source
386 * clocks that would affect normal memory for example. Please see
387 * CONFIG_GENERIC_ALLOCATOR for allocating external memory.
388 */
389void __iomem *
390__arm_ioremap_exec(phys_addr_t phys_addr, size_t size, bool cached)
391{
392 unsigned int mtype;
393
394 if (cached)
395 mtype = MT_MEMORY_RWX;
396 else
397 mtype = MT_MEMORY_RWX_NONCACHED;
398
399 return __arm_ioremap_caller(phys_addr, size, mtype,
400 __builtin_return_address(0));
401}
402
403void __iounmap(volatile void __iomem *io_addr)
404{
405 void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
406 struct static_vm *svm;
407
408 /* If this is a static mapping, we must leave it alone */
409 svm = find_static_vm_vaddr(addr);
410 if (svm)
411 return;
412
413#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
414 {
415 struct vm_struct *vm;
416
417 vm = find_vm_area(addr);
418
419 /*
420 * If this is a section based mapping we need to handle it
421 * specially as the VM subsystem does not know how to handle
422 * such a beast.
423 */
424 if (vm && (vm->flags & VM_ARM_SECTION_MAPPING))
425 unmap_area_sections((unsigned long)vm->addr, vm->size);
426 }
427#endif
428
429 vunmap(addr);
430}
431
432void (*arch_iounmap)(volatile void __iomem *) = __iounmap;
433
434void __arm_iounmap(volatile void __iomem *io_addr)
435{
436 arch_iounmap(io_addr);
437}
438EXPORT_SYMBOL(__arm_iounmap);
439
440#ifdef CONFIG_PCI
441int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr)
442{
443 BUG_ON(offset + SZ_64K > IO_SPACE_LIMIT);
444
445 return ioremap_page_range(PCI_IO_VIRT_BASE + offset,
446 PCI_IO_VIRT_BASE + offset + SZ_64K,
447 phys_addr,
448 __pgprot(get_mem_type(MT_DEVICE)->prot_pte));
449}
450EXPORT_SYMBOL_GPL(pci_ioremap_io);
451#endif