Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/net/sunrpc/svc_xprt.c
   4 *
   5 * Author: Tom Tucker <tom@opengridcomputing.com>
   6 */
   7
   8#include <linux/sched.h>
   9#include <linux/errno.h>
  10#include <linux/freezer.h>
  11#include <linux/kthread.h>
  12#include <linux/slab.h>
  13#include <net/sock.h>
  14#include <linux/sunrpc/addr.h>
  15#include <linux/sunrpc/stats.h>
  16#include <linux/sunrpc/svc_xprt.h>
  17#include <linux/sunrpc/svcsock.h>
  18#include <linux/sunrpc/xprt.h>
  19#include <linux/module.h>
  20#include <linux/netdevice.h>
  21#include <trace/events/sunrpc.h>
  22
  23#define RPCDBG_FACILITY	RPCDBG_SVCXPRT
  24
  25static unsigned int svc_rpc_per_connection_limit __read_mostly;
  26module_param(svc_rpc_per_connection_limit, uint, 0644);
  27
  28
  29static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
  30static int svc_deferred_recv(struct svc_rqst *rqstp);
  31static struct cache_deferred_req *svc_defer(struct cache_req *req);
  32static void svc_age_temp_xprts(struct timer_list *t);
  33static void svc_delete_xprt(struct svc_xprt *xprt);
  34
  35/* apparently the "standard" is that clients close
  36 * idle connections after 5 minutes, servers after
  37 * 6 minutes
  38 *   http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
  39 */
  40static int svc_conn_age_period = 6*60;
  41
  42/* List of registered transport classes */
  43static DEFINE_SPINLOCK(svc_xprt_class_lock);
  44static LIST_HEAD(svc_xprt_class_list);
  45
  46/* SMP locking strategy:
  47 *
  48 *	svc_pool->sp_lock protects most of the fields of that pool.
  49 *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
  50 *	when both need to be taken (rare), svc_serv->sv_lock is first.
  51 *	The "service mutex" protects svc_serv->sv_nrthread.
  52 *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
  53 *             and the ->sk_info_authunix cache.
  54 *
  55 *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
  56 *	enqueued multiply. During normal transport processing this bit
  57 *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
  58 *	Providers should not manipulate this bit directly.
  59 *
  60 *	Some flags can be set to certain values at any time
  61 *	providing that certain rules are followed:
  62 *
  63 *	XPT_CONN, XPT_DATA:
  64 *		- Can be set or cleared at any time.
  65 *		- After a set, svc_xprt_enqueue must be called to enqueue
  66 *		  the transport for processing.
  67 *		- After a clear, the transport must be read/accepted.
  68 *		  If this succeeds, it must be set again.
  69 *	XPT_CLOSE:
  70 *		- Can set at any time. It is never cleared.
  71 *      XPT_DEAD:
  72 *		- Can only be set while XPT_BUSY is held which ensures
  73 *		  that no other thread will be using the transport or will
  74 *		  try to set XPT_DEAD.
  75 */
 
  76int svc_reg_xprt_class(struct svc_xprt_class *xcl)
  77{
  78	struct svc_xprt_class *cl;
  79	int res = -EEXIST;
  80
  81	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
  82
  83	INIT_LIST_HEAD(&xcl->xcl_list);
  84	spin_lock(&svc_xprt_class_lock);
  85	/* Make sure there isn't already a class with the same name */
  86	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
  87		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
  88			goto out;
  89	}
  90	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
  91	res = 0;
  92out:
  93	spin_unlock(&svc_xprt_class_lock);
  94	return res;
  95}
  96EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
  97
  98void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
  99{
 100	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
 101	spin_lock(&svc_xprt_class_lock);
 102	list_del_init(&xcl->xcl_list);
 103	spin_unlock(&svc_xprt_class_lock);
 104}
 105EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
 106
 107/*
 108 * Format the transport list for printing
 109 */
 110int svc_print_xprts(char *buf, int maxlen)
 111{
 112	struct svc_xprt_class *xcl;
 113	char tmpstr[80];
 114	int len = 0;
 115	buf[0] = '\0';
 116
 117	spin_lock(&svc_xprt_class_lock);
 118	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
 119		int slen;
 120
 121		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
 122		slen = strlen(tmpstr);
 123		if (len + slen > maxlen)
 124			break;
 125		len += slen;
 126		strcat(buf, tmpstr);
 127	}
 128	spin_unlock(&svc_xprt_class_lock);
 129
 130	return len;
 131}
 132
 133static void svc_xprt_free(struct kref *kref)
 134{
 135	struct svc_xprt *xprt =
 136		container_of(kref, struct svc_xprt, xpt_ref);
 137	struct module *owner = xprt->xpt_class->xcl_owner;
 138	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
 139		svcauth_unix_info_release(xprt);
 140	put_cred(xprt->xpt_cred);
 141	put_net(xprt->xpt_net);
 142	/* See comment on corresponding get in xs_setup_bc_tcp(): */
 143	if (xprt->xpt_bc_xprt)
 144		xprt_put(xprt->xpt_bc_xprt);
 145	if (xprt->xpt_bc_xps)
 146		xprt_switch_put(xprt->xpt_bc_xps);
 147	xprt->xpt_ops->xpo_free(xprt);
 148	module_put(owner);
 149}
 150
 151void svc_xprt_put(struct svc_xprt *xprt)
 152{
 153	kref_put(&xprt->xpt_ref, svc_xprt_free);
 154}
 155EXPORT_SYMBOL_GPL(svc_xprt_put);
 156
 157/*
 158 * Called by transport drivers to initialize the transport independent
 159 * portion of the transport instance.
 160 */
 161void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
 162		   struct svc_xprt *xprt, struct svc_serv *serv)
 163{
 164	memset(xprt, 0, sizeof(*xprt));
 165	xprt->xpt_class = xcl;
 166	xprt->xpt_ops = xcl->xcl_ops;
 167	kref_init(&xprt->xpt_ref);
 168	xprt->xpt_server = serv;
 169	INIT_LIST_HEAD(&xprt->xpt_list);
 170	INIT_LIST_HEAD(&xprt->xpt_ready);
 171	INIT_LIST_HEAD(&xprt->xpt_deferred);
 172	INIT_LIST_HEAD(&xprt->xpt_users);
 173	mutex_init(&xprt->xpt_mutex);
 174	spin_lock_init(&xprt->xpt_lock);
 175	set_bit(XPT_BUSY, &xprt->xpt_flags);
 176	xprt->xpt_net = get_net(net);
 177	strcpy(xprt->xpt_remotebuf, "uninitialized");
 178}
 179EXPORT_SYMBOL_GPL(svc_xprt_init);
 180
 181static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
 182					 struct svc_serv *serv,
 183					 struct net *net,
 184					 const int family,
 185					 const unsigned short port,
 186					 int flags)
 187{
 188	struct sockaddr_in sin = {
 189		.sin_family		= AF_INET,
 190		.sin_addr.s_addr	= htonl(INADDR_ANY),
 191		.sin_port		= htons(port),
 192	};
 193#if IS_ENABLED(CONFIG_IPV6)
 194	struct sockaddr_in6 sin6 = {
 195		.sin6_family		= AF_INET6,
 196		.sin6_addr		= IN6ADDR_ANY_INIT,
 197		.sin6_port		= htons(port),
 198	};
 199#endif
 200	struct sockaddr *sap;
 201	size_t len;
 202
 203	switch (family) {
 204	case PF_INET:
 205		sap = (struct sockaddr *)&sin;
 206		len = sizeof(sin);
 207		break;
 208#if IS_ENABLED(CONFIG_IPV6)
 209	case PF_INET6:
 210		sap = (struct sockaddr *)&sin6;
 211		len = sizeof(sin6);
 212		break;
 213#endif
 214	default:
 215		return ERR_PTR(-EAFNOSUPPORT);
 216	}
 217
 218	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
 219}
 220
 221/*
 222 * svc_xprt_received conditionally queues the transport for processing
 223 * by another thread. The caller must hold the XPT_BUSY bit and must
 224 * not thereafter touch transport data.
 225 *
 226 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
 227 * insufficient) data.
 228 */
 229static void svc_xprt_received(struct svc_xprt *xprt)
 230{
 231	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
 232		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
 233		return;
 234	}
 235
 236	/* As soon as we clear busy, the xprt could be closed and
 237	 * 'put', so we need a reference to call svc_enqueue_xprt with:
 238	 */
 239	svc_xprt_get(xprt);
 240	smp_mb__before_atomic();
 241	clear_bit(XPT_BUSY, &xprt->xpt_flags);
 242	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
 243	svc_xprt_put(xprt);
 244}
 245
 246void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
 247{
 248	clear_bit(XPT_TEMP, &new->xpt_flags);
 249	spin_lock_bh(&serv->sv_lock);
 250	list_add(&new->xpt_list, &serv->sv_permsocks);
 251	spin_unlock_bh(&serv->sv_lock);
 252	svc_xprt_received(new);
 253}
 254
 255static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
 256			    struct net *net, const int family,
 257			    const unsigned short port, int flags,
 258			    const struct cred *cred)
 259{
 260	struct svc_xprt_class *xcl;
 261
 
 262	spin_lock(&svc_xprt_class_lock);
 263	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
 264		struct svc_xprt *newxprt;
 265		unsigned short newport;
 266
 267		if (strcmp(xprt_name, xcl->xcl_name))
 268			continue;
 269
 270		if (!try_module_get(xcl->xcl_owner))
 271			goto err;
 272
 273		spin_unlock(&svc_xprt_class_lock);
 274		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
 275		if (IS_ERR(newxprt)) {
 276			module_put(xcl->xcl_owner);
 277			return PTR_ERR(newxprt);
 278		}
 279		newxprt->xpt_cred = get_cred(cred);
 280		svc_add_new_perm_xprt(serv, newxprt);
 
 
 
 281		newport = svc_xprt_local_port(newxprt);
 
 282		return newport;
 283	}
 284 err:
 285	spin_unlock(&svc_xprt_class_lock);
 
 
 286	/* This errno is exposed to user space.  Provide a reasonable
 287	 * perror msg for a bad transport. */
 288	return -EPROTONOSUPPORT;
 289}
 290
 291int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
 292		    struct net *net, const int family,
 293		    const unsigned short port, int flags,
 294		    const struct cred *cred)
 295{
 296	int err;
 297
 298	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
 299	err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred);
 300	if (err == -EPROTONOSUPPORT) {
 301		request_module("svc%s", xprt_name);
 302		err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred);
 303	}
 304	if (err < 0)
 305		dprintk("svc: transport %s not found, err %d\n",
 306			xprt_name, -err);
 307	return err;
 308}
 309EXPORT_SYMBOL_GPL(svc_create_xprt);
 310
 311/*
 312 * Copy the local and remote xprt addresses to the rqstp structure
 313 */
 314void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 315{
 
 
 316	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
 317	rqstp->rq_addrlen = xprt->xpt_remotelen;
 318
 319	/*
 320	 * Destination address in request is needed for binding the
 321	 * source address in RPC replies/callbacks later.
 322	 */
 323	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
 324	rqstp->rq_daddrlen = xprt->xpt_locallen;
 
 
 
 
 
 
 
 325}
 326EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
 327
 328/**
 329 * svc_print_addr - Format rq_addr field for printing
 330 * @rqstp: svc_rqst struct containing address to print
 331 * @buf: target buffer for formatted address
 332 * @len: length of target buffer
 333 *
 334 */
 335char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
 336{
 337	return __svc_print_addr(svc_addr(rqstp), buf, len);
 338}
 339EXPORT_SYMBOL_GPL(svc_print_addr);
 340
 341static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
 
 
 
 
 
 
 342{
 343	unsigned int limit = svc_rpc_per_connection_limit;
 344	int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
 345
 346	return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
 347}
 348
 349static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 350{
 351	if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
 352		if (!svc_xprt_slots_in_range(xprt))
 353			return false;
 354		atomic_inc(&xprt->xpt_nr_rqsts);
 355		set_bit(RQ_DATA, &rqstp->rq_flags);
 356	}
 357	return true;
 358}
 359
 360static void svc_xprt_release_slot(struct svc_rqst *rqstp)
 361{
 362	struct svc_xprt	*xprt = rqstp->rq_xprt;
 363	if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
 364		atomic_dec(&xprt->xpt_nr_rqsts);
 365		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
 366		svc_xprt_enqueue(xprt);
 367	}
 368}
 369
 370static bool svc_xprt_ready(struct svc_xprt *xprt)
 371{
 372	unsigned long xpt_flags;
 373
 374	/*
 375	 * If another cpu has recently updated xpt_flags,
 376	 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
 377	 * know about it; otherwise it's possible that both that cpu and
 378	 * this one could call svc_xprt_enqueue() without either
 379	 * svc_xprt_enqueue() recognizing that the conditions below
 380	 * are satisfied, and we could stall indefinitely:
 381	 */
 382	smp_rmb();
 383	xpt_flags = READ_ONCE(xprt->xpt_flags);
 384
 385	if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE)))
 386		return true;
 387	if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
 388		if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
 389		    svc_xprt_slots_in_range(xprt))
 390			return true;
 391		trace_svc_xprt_no_write_space(xprt);
 392		return false;
 393	}
 394	return false;
 395}
 396
 397void svc_xprt_do_enqueue(struct svc_xprt *xprt)
 
 
 
 
 
 398{
 
 399	struct svc_pool *pool;
 400	struct svc_rqst	*rqstp = NULL;
 401	int cpu;
 402
 403	if (!svc_xprt_ready(xprt))
 404		return;
 405
 406	/* Mark transport as busy. It will remain in this state until
 407	 * the provider calls svc_xprt_received. We update XPT_BUSY
 408	 * atomically because it also guards against trying to enqueue
 409	 * the transport twice.
 410	 */
 411	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
 412		return;
 413
 414	cpu = get_cpu();
 415	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
 416
 417	atomic_long_inc(&pool->sp_stats.packets);
 418
 419	spin_lock_bh(&pool->sp_lock);
 420	list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
 421	pool->sp_stats.sockets_queued++;
 422	spin_unlock_bh(&pool->sp_lock);
 423
 424	/* find a thread for this xprt */
 425	rcu_read_lock();
 426	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
 427		if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
 428			continue;
 429		atomic_long_inc(&pool->sp_stats.threads_woken);
 430		rqstp->rq_qtime = ktime_get();
 431		wake_up_process(rqstp->rq_task);
 
 
 
 
 
 
 
 
 432		goto out_unlock;
 433	}
 434	set_bit(SP_CONGESTED, &pool->sp_flags);
 435	rqstp = NULL;
 436out_unlock:
 437	rcu_read_unlock();
 438	put_cpu();
 439	trace_svc_xprt_do_enqueue(xprt, rqstp);
 440}
 441EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
 442
 443/*
 444 * Queue up a transport with data pending. If there are idle nfsd
 445 * processes, wake 'em up.
 446 *
 447 */
 448void svc_xprt_enqueue(struct svc_xprt *xprt)
 449{
 450	if (test_bit(XPT_BUSY, &xprt->xpt_flags))
 451		return;
 452	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 453}
 454EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
 455
 456/*
 457 * Dequeue the first transport, if there is one.
 458 */
 459static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
 460{
 461	struct svc_xprt	*xprt = NULL;
 462
 463	if (list_empty(&pool->sp_sockets))
 464		goto out;
 
 
 
 
 
 
 
 465
 466	spin_lock_bh(&pool->sp_lock);
 467	if (likely(!list_empty(&pool->sp_sockets))) {
 468		xprt = list_first_entry(&pool->sp_sockets,
 469					struct svc_xprt, xpt_ready);
 470		list_del_init(&xprt->xpt_ready);
 471		svc_xprt_get(xprt);
 472	}
 473	spin_unlock_bh(&pool->sp_lock);
 474out:
 475	return xprt;
 476}
 477
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 478/**
 479 * svc_reserve - change the space reserved for the reply to a request.
 480 * @rqstp:  The request in question
 481 * @space: new max space to reserve
 482 *
 483 * Each request reserves some space on the output queue of the transport
 484 * to make sure the reply fits.  This function reduces that reserved
 485 * space to be the amount of space used already, plus @space.
 486 *
 487 */
 488void svc_reserve(struct svc_rqst *rqstp, int space)
 489{
 490	struct svc_xprt *xprt = rqstp->rq_xprt;
 491
 492	space += rqstp->rq_res.head[0].iov_len;
 493
 494	if (xprt && space < rqstp->rq_reserved) {
 
 495		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
 496		rqstp->rq_reserved = space;
 497		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
 498		svc_xprt_enqueue(xprt);
 499	}
 500}
 501EXPORT_SYMBOL_GPL(svc_reserve);
 502
 503static void svc_xprt_release(struct svc_rqst *rqstp)
 504{
 505	struct svc_xprt	*xprt = rqstp->rq_xprt;
 506
 507	xprt->xpt_ops->xpo_release_rqst(rqstp);
 508
 509	kfree(rqstp->rq_deferred);
 510	rqstp->rq_deferred = NULL;
 511
 512	svc_free_res_pages(rqstp);
 513	rqstp->rq_res.page_len = 0;
 514	rqstp->rq_res.page_base = 0;
 515
 516	/* Reset response buffer and release
 517	 * the reservation.
 518	 * But first, check that enough space was reserved
 519	 * for the reply, otherwise we have a bug!
 520	 */
 521	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
 522		printk(KERN_ERR "RPC request reserved %d but used %d\n",
 523		       rqstp->rq_reserved,
 524		       rqstp->rq_res.len);
 525
 526	rqstp->rq_res.head[0].iov_len = 0;
 527	svc_reserve(rqstp, 0);
 528	svc_xprt_release_slot(rqstp);
 529	rqstp->rq_xprt = NULL;
 
 530	svc_xprt_put(xprt);
 531}
 532
 533/*
 534 * Some svc_serv's will have occasional work to do, even when a xprt is not
 535 * waiting to be serviced. This function is there to "kick" a task in one of
 536 * those services so that it can wake up and do that work. Note that we only
 537 * bother with pool 0 as we don't need to wake up more than one thread for
 538 * this purpose.
 539 */
 540void svc_wake_up(struct svc_serv *serv)
 541{
 542	struct svc_rqst	*rqstp;
 
 543	struct svc_pool *pool;
 544
 545	pool = &serv->sv_pools[0];
 
 546
 547	rcu_read_lock();
 548	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
 549		/* skip any that aren't queued */
 550		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
 551			continue;
 552		rcu_read_unlock();
 553		wake_up_process(rqstp->rq_task);
 554		trace_svc_wake_up(rqstp->rq_task->pid);
 555		return;
 
 
 
 
 556	}
 557	rcu_read_unlock();
 558
 559	/* No free entries available */
 560	set_bit(SP_TASK_PENDING, &pool->sp_flags);
 561	smp_wmb();
 562	trace_svc_wake_up(0);
 563}
 564EXPORT_SYMBOL_GPL(svc_wake_up);
 565
 566int svc_port_is_privileged(struct sockaddr *sin)
 567{
 568	switch (sin->sa_family) {
 569	case AF_INET:
 570		return ntohs(((struct sockaddr_in *)sin)->sin_port)
 571			< PROT_SOCK;
 572	case AF_INET6:
 573		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
 574			< PROT_SOCK;
 575	default:
 576		return 0;
 577	}
 578}
 579
 580/*
 581 * Make sure that we don't have too many active connections. If we have,
 582 * something must be dropped. It's not clear what will happen if we allow
 583 * "too many" connections, but when dealing with network-facing software,
 584 * we have to code defensively. Here we do that by imposing hard limits.
 585 *
 586 * There's no point in trying to do random drop here for DoS
 587 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
 588 * attacker can easily beat that.
 589 *
 590 * The only somewhat efficient mechanism would be if drop old
 591 * connections from the same IP first. But right now we don't even
 592 * record the client IP in svc_sock.
 593 *
 594 * single-threaded services that expect a lot of clients will probably
 595 * need to set sv_maxconn to override the default value which is based
 596 * on the number of threads
 597 */
 598static void svc_check_conn_limits(struct svc_serv *serv)
 599{
 600	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
 601				(serv->sv_nrthreads+3) * 20;
 602
 603	if (serv->sv_tmpcnt > limit) {
 604		struct svc_xprt *xprt = NULL;
 605		spin_lock_bh(&serv->sv_lock);
 606		if (!list_empty(&serv->sv_tempsocks)) {
 607			/* Try to help the admin */
 608			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
 609					       serv->sv_name, serv->sv_maxconn ?
 610					       "max number of connections" :
 611					       "number of threads");
 
 
 
 612			/*
 613			 * Always select the oldest connection. It's not fair,
 614			 * but so is life
 615			 */
 616			xprt = list_entry(serv->sv_tempsocks.prev,
 617					  struct svc_xprt,
 618					  xpt_list);
 619			set_bit(XPT_CLOSE, &xprt->xpt_flags);
 620			svc_xprt_get(xprt);
 621		}
 622		spin_unlock_bh(&serv->sv_lock);
 623
 624		if (xprt) {
 625			svc_xprt_enqueue(xprt);
 626			svc_xprt_put(xprt);
 627		}
 628	}
 629}
 630
 631static int svc_alloc_arg(struct svc_rqst *rqstp)
 
 
 
 
 
 632{
 633	struct svc_serv *serv = rqstp->rq_server;
 634	struct xdr_buf *arg;
 635	int pages;
 636	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 637
 638	/* now allocate needed pages.  If we get a failure, sleep briefly */
 639	pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
 640	if (pages > RPCSVC_MAXPAGES) {
 641		pr_warn_once("svc: warning: pages=%u > RPCSVC_MAXPAGES=%lu\n",
 642			     pages, RPCSVC_MAXPAGES);
 643		/* use as many pages as possible */
 644		pages = RPCSVC_MAXPAGES;
 645	}
 646	for (i = 0; i < pages ; i++)
 647		while (rqstp->rq_pages[i] == NULL) {
 648			struct page *p = alloc_page(GFP_KERNEL);
 649			if (!p) {
 650				set_current_state(TASK_INTERRUPTIBLE);
 651				if (signalled() || kthread_should_stop()) {
 652					set_current_state(TASK_RUNNING);
 653					return -EINTR;
 654				}
 655				schedule_timeout(msecs_to_jiffies(500));
 656			}
 657			rqstp->rq_pages[i] = p;
 658		}
 659	rqstp->rq_page_end = &rqstp->rq_pages[i];
 660	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
 
 661
 662	/* Make arg->head point to first page and arg->pages point to rest */
 663	arg = &rqstp->rq_arg;
 664	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
 665	arg->head[0].iov_len = PAGE_SIZE;
 666	arg->pages = rqstp->rq_pages + 1;
 667	arg->page_base = 0;
 668	/* save at least one page for response */
 669	arg->page_len = (pages-2)*PAGE_SIZE;
 670	arg->len = (pages-1)*PAGE_SIZE;
 671	arg->tail[0].iov_len = 0;
 672	return 0;
 673}
 674
 675static bool
 676rqst_should_sleep(struct svc_rqst *rqstp)
 677{
 678	struct svc_pool		*pool = rqstp->rq_pool;
 679
 680	/* did someone call svc_wake_up? */
 681	if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
 682		return false;
 683
 684	/* was a socket queued? */
 685	if (!list_empty(&pool->sp_sockets))
 686		return false;
 687
 688	/* are we shutting down? */
 689	if (signalled() || kthread_should_stop())
 690		return false;
 691
 692	/* are we freezing? */
 693	if (freezing(current))
 694		return false;
 
 695
 696	return true;
 697}
 
 
 
 
 
 698
 699static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
 700{
 701	struct svc_pool		*pool = rqstp->rq_pool;
 702	long			time_left = 0;
 
 
 
 
 703
 704	/* rq_xprt should be clear on entry */
 705	WARN_ON_ONCE(rqstp->rq_xprt);
 
 
 
 706
 707	rqstp->rq_xprt = svc_xprt_dequeue(pool);
 708	if (rqstp->rq_xprt)
 709		goto out_found;
 
 
 
 
 
 
 
 
 
 710
 711	/*
 712	 * We have to be able to interrupt this wait
 713	 * to bring down the daemons ...
 714	 */
 715	set_current_state(TASK_INTERRUPTIBLE);
 716	smp_mb__before_atomic();
 717	clear_bit(SP_CONGESTED, &pool->sp_flags);
 718	clear_bit(RQ_BUSY, &rqstp->rq_flags);
 719	smp_mb__after_atomic();
 720
 721	if (likely(rqst_should_sleep(rqstp)))
 722		time_left = schedule_timeout(timeout);
 723	else
 724		__set_current_state(TASK_RUNNING);
 725
 726	try_to_freeze();
 727
 728	set_bit(RQ_BUSY, &rqstp->rq_flags);
 729	smp_mb__after_atomic();
 730	rqstp->rq_xprt = svc_xprt_dequeue(pool);
 731	if (rqstp->rq_xprt)
 732		goto out_found;
 733
 734	if (!time_left)
 735		atomic_long_inc(&pool->sp_stats.threads_timedout);
 736
 737	if (signalled() || kthread_should_stop())
 738		return ERR_PTR(-EINTR);
 739	return ERR_PTR(-EAGAIN);
 740out_found:
 741	/* Normally we will wait up to 5 seconds for any required
 742	 * cache information to be provided.
 743	 */
 744	if (!test_bit(SP_CONGESTED, &pool->sp_flags))
 745		rqstp->rq_chandle.thread_wait = 5*HZ;
 746	else
 747		rqstp->rq_chandle.thread_wait = 1*HZ;
 748	trace_svc_xprt_dequeue(rqstp);
 749	return rqstp->rq_xprt;
 750}
 751
 752static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
 753{
 754	spin_lock_bh(&serv->sv_lock);
 755	set_bit(XPT_TEMP, &newxpt->xpt_flags);
 756	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
 757	serv->sv_tmpcnt++;
 758	if (serv->sv_temptimer.function == NULL) {
 759		/* setup timer to age temp transports */
 760		serv->sv_temptimer.function = svc_age_temp_xprts;
 761		mod_timer(&serv->sv_temptimer,
 762			  jiffies + svc_conn_age_period * HZ);
 763	}
 764	spin_unlock_bh(&serv->sv_lock);
 765	svc_xprt_received(newxpt);
 766}
 767
 768static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 769{
 770	struct svc_serv *serv = rqstp->rq_server;
 771	int len = 0;
 772
 
 773	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
 774		dprintk("svc_recv: found XPT_CLOSE\n");
 775		if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
 776			xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
 777		svc_delete_xprt(xprt);
 778		/* Leave XPT_BUSY set on the dead xprt: */
 779		goto out;
 780	}
 781	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
 782		struct svc_xprt *newxpt;
 783		/*
 784		 * We know this module_get will succeed because the
 785		 * listener holds a reference too
 786		 */
 787		__module_get(xprt->xpt_class->xcl_owner);
 788		svc_check_conn_limits(xprt->xpt_server);
 789		newxpt = xprt->xpt_ops->xpo_accept(xprt);
 790		if (newxpt) {
 791			newxpt->xpt_cred = get_cred(xprt->xpt_cred);
 792			svc_add_new_temp_xprt(serv, newxpt);
 793		} else
 794			module_put(xprt->xpt_class->xcl_owner);
 795	} else if (svc_xprt_reserve_slot(rqstp, xprt)) {
 796		/* XPT_DATA|XPT_DEFERRED case: */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 797		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
 798			rqstp, rqstp->rq_pool->sp_id, xprt,
 799			kref_read(&xprt->xpt_ref));
 800		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
 801		if (rqstp->rq_deferred)
 802			len = svc_deferred_recv(rqstp);
 803		else
 804			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
 805		rqstp->rq_stime = ktime_get();
 806		rqstp->rq_reserved = serv->sv_max_mesg;
 807		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
 808	}
 809	/* clear XPT_BUSY: */
 810	svc_xprt_received(xprt);
 811out:
 812	trace_svc_handle_xprt(xprt, len);
 813	return len;
 814}
 815
 816/*
 817 * Receive the next request on any transport.  This code is carefully
 818 * organised not to touch any cachelines in the shared svc_serv
 819 * structure, only cachelines in the local svc_pool.
 820 */
 821int svc_recv(struct svc_rqst *rqstp, long timeout)
 822{
 823	struct svc_xprt		*xprt = NULL;
 824	struct svc_serv		*serv = rqstp->rq_server;
 825	int			len, err;
 826
 827	dprintk("svc: server %p waiting for data (to = %ld)\n",
 828		rqstp, timeout);
 829
 830	if (rqstp->rq_xprt)
 831		printk(KERN_ERR
 832			"svc_recv: service %p, transport not NULL!\n",
 833			 rqstp);
 834
 835	err = svc_alloc_arg(rqstp);
 836	if (err)
 837		goto out;
 838
 839	try_to_freeze();
 840	cond_resched();
 841	err = -EINTR;
 842	if (signalled() || kthread_should_stop())
 843		goto out;
 844
 845	xprt = svc_get_next_xprt(rqstp, timeout);
 846	if (IS_ERR(xprt)) {
 847		err = PTR_ERR(xprt);
 848		goto out;
 849	}
 850
 851	len = svc_handle_xprt(rqstp, xprt);
 852
 853	/* No data, incomplete (TCP) read, or accept() */
 854	err = -EAGAIN;
 855	if (len <= 0)
 856		goto out_release;
 857
 858	clear_bit(XPT_OLD, &xprt->xpt_flags);
 859
 860	xprt->xpt_ops->xpo_secure_port(rqstp);
 861	rqstp->rq_chandle.defer = svc_defer;
 862	rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
 863
 864	if (serv->sv_stats)
 865		serv->sv_stats->netcnt++;
 866	trace_svc_recv(rqstp, len);
 867	return len;
 868out_release:
 869	rqstp->rq_res.len = 0;
 870	svc_xprt_release(rqstp);
 871out:
 872	return err;
 873}
 874EXPORT_SYMBOL_GPL(svc_recv);
 875
 876/*
 877 * Drop request
 878 */
 879void svc_drop(struct svc_rqst *rqstp)
 880{
 881	trace_svc_drop(rqstp);
 882	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
 883	svc_xprt_release(rqstp);
 884}
 885EXPORT_SYMBOL_GPL(svc_drop);
 886
 887/*
 888 * Return reply to client.
 889 */
 890int svc_send(struct svc_rqst *rqstp)
 891{
 892	struct svc_xprt	*xprt;
 893	int		len = -EFAULT;
 894	struct xdr_buf	*xb;
 895
 896	xprt = rqstp->rq_xprt;
 897	if (!xprt)
 898		goto out;
 899
 900	/* release the receive skb before sending the reply */
 901	xprt->xpt_ops->xpo_release_rqst(rqstp);
 902
 903	/* calculate over-all length */
 904	xb = &rqstp->rq_res;
 905	xb->len = xb->head[0].iov_len +
 906		xb->page_len +
 907		xb->tail[0].iov_len;
 908
 909	/* Grab mutex to serialize outgoing data. */
 910	mutex_lock(&xprt->xpt_mutex);
 911	trace_svc_stats_latency(rqstp);
 912	if (test_bit(XPT_DEAD, &xprt->xpt_flags)
 913			|| test_bit(XPT_CLOSE, &xprt->xpt_flags))
 914		len = -ENOTCONN;
 915	else
 916		len = xprt->xpt_ops->xpo_sendto(rqstp);
 917	mutex_unlock(&xprt->xpt_mutex);
 918	trace_svc_send(rqstp, len);
 919	svc_xprt_release(rqstp);
 920
 921	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
 922		len = 0;
 923out:
 924	return len;
 925}
 926
 927/*
 928 * Timer function to close old temporary transports, using
 929 * a mark-and-sweep algorithm.
 930 */
 931static void svc_age_temp_xprts(struct timer_list *t)
 932{
 933	struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
 934	struct svc_xprt *xprt;
 935	struct list_head *le, *next;
 
 936
 937	dprintk("svc_age_temp_xprts\n");
 938
 939	if (!spin_trylock_bh(&serv->sv_lock)) {
 940		/* busy, try again 1 sec later */
 941		dprintk("svc_age_temp_xprts: busy\n");
 942		mod_timer(&serv->sv_temptimer, jiffies + HZ);
 943		return;
 944	}
 945
 946	list_for_each_safe(le, next, &serv->sv_tempsocks) {
 947		xprt = list_entry(le, struct svc_xprt, xpt_list);
 948
 949		/* First time through, just mark it OLD. Second time
 950		 * through, close it. */
 951		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
 952			continue;
 953		if (kref_read(&xprt->xpt_ref) > 1 ||
 954		    test_bit(XPT_BUSY, &xprt->xpt_flags))
 955			continue;
 956		list_del_init(le);
 
 957		set_bit(XPT_CLOSE, &xprt->xpt_flags);
 958		dprintk("queuing xprt %p for closing\n", xprt);
 959
 960		/* a thread will dequeue and close it soon */
 961		svc_xprt_enqueue(xprt);
 962	}
 963	spin_unlock_bh(&serv->sv_lock);
 964
 965	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
 966}
 967
 968/* Close temporary transports whose xpt_local matches server_addr immediately
 969 * instead of waiting for them to be picked up by the timer.
 970 *
 971 * This is meant to be called from a notifier_block that runs when an ip
 972 * address is deleted.
 973 */
 974void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
 975{
 976	struct svc_xprt *xprt;
 977	struct list_head *le, *next;
 978	LIST_HEAD(to_be_closed);
 979
 980	spin_lock_bh(&serv->sv_lock);
 981	list_for_each_safe(le, next, &serv->sv_tempsocks) {
 982		xprt = list_entry(le, struct svc_xprt, xpt_list);
 983		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
 984				&xprt->xpt_local)) {
 985			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
 986			list_move(le, &to_be_closed);
 987		}
 988	}
 989	spin_unlock_bh(&serv->sv_lock);
 990
 991	while (!list_empty(&to_be_closed)) {
 992		le = to_be_closed.next;
 993		list_del_init(le);
 994		xprt = list_entry(le, struct svc_xprt, xpt_list);
 995		set_bit(XPT_CLOSE, &xprt->xpt_flags);
 996		set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
 997		dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
 998				xprt);
 999		svc_xprt_enqueue(xprt);
 
1000	}
 
 
1001}
1002EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1003
1004static void call_xpt_users(struct svc_xprt *xprt)
1005{
1006	struct svc_xpt_user *u;
1007
1008	spin_lock(&xprt->xpt_lock);
1009	while (!list_empty(&xprt->xpt_users)) {
1010		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1011		list_del_init(&u->list);
1012		u->callback(u);
1013	}
1014	spin_unlock(&xprt->xpt_lock);
1015}
1016
1017/*
1018 * Remove a dead transport
1019 */
1020static void svc_delete_xprt(struct svc_xprt *xprt)
1021{
1022	struct svc_serv	*serv = xprt->xpt_server;
1023	struct svc_deferred_req *dr;
1024
1025	/* Only do this once */
1026	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1027		BUG();
1028
1029	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1030	xprt->xpt_ops->xpo_detach(xprt);
1031
1032	spin_lock_bh(&serv->sv_lock);
1033	list_del_init(&xprt->xpt_list);
1034	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
 
 
 
 
 
 
 
 
1035	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1036		serv->sv_tmpcnt--;
1037	spin_unlock_bh(&serv->sv_lock);
1038
1039	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1040		kfree(dr);
1041
1042	call_xpt_users(xprt);
1043	svc_xprt_put(xprt);
1044}
1045
1046void svc_close_xprt(struct svc_xprt *xprt)
1047{
1048	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1049	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1050		/* someone else will have to effect the close */
1051		return;
1052	/*
1053	 * We expect svc_close_xprt() to work even when no threads are
1054	 * running (e.g., while configuring the server before starting
1055	 * any threads), so if the transport isn't busy, we delete
1056	 * it ourself:
1057	 */
1058	svc_delete_xprt(xprt);
1059}
1060EXPORT_SYMBOL_GPL(svc_close_xprt);
1061
1062static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1063{
1064	struct svc_xprt *xprt;
1065	int ret = 0;
1066
1067	spin_lock(&serv->sv_lock);
1068	list_for_each_entry(xprt, xprt_list, xpt_list) {
1069		if (xprt->xpt_net != net)
1070			continue;
1071		ret++;
1072		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1073		svc_xprt_enqueue(xprt);
1074	}
1075	spin_unlock(&serv->sv_lock);
1076	return ret;
1077}
1078
1079static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1080{
1081	struct svc_pool *pool;
1082	struct svc_xprt *xprt;
1083	struct svc_xprt *tmp;
1084	int i;
1085
1086	for (i = 0; i < serv->sv_nrpools; i++) {
1087		pool = &serv->sv_pools[i];
1088
1089		spin_lock_bh(&pool->sp_lock);
1090		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1091			if (xprt->xpt_net != net)
1092				continue;
1093			list_del_init(&xprt->xpt_ready);
1094			spin_unlock_bh(&pool->sp_lock);
1095			return xprt;
1096		}
1097		spin_unlock_bh(&pool->sp_lock);
1098	}
1099	return NULL;
1100}
1101
1102static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1103{
1104	struct svc_xprt *xprt;
1105
1106	while ((xprt = svc_dequeue_net(serv, net))) {
1107		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1108		svc_delete_xprt(xprt);
1109	}
1110}
1111
1112/*
1113 * Server threads may still be running (especially in the case where the
1114 * service is still running in other network namespaces).
1115 *
1116 * So we shut down sockets the same way we would on a running server, by
1117 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1118 * the close.  In the case there are no such other threads,
1119 * threads running, svc_clean_up_xprts() does a simple version of a
1120 * server's main event loop, and in the case where there are other
1121 * threads, we may need to wait a little while and then check again to
1122 * see if they're done.
1123 */
1124void svc_close_net(struct svc_serv *serv, struct net *net)
1125{
1126	int delay = 0;
1127
1128	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1129	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1130
1131		svc_clean_up_xprts(serv, net);
1132		msleep(delay++);
1133	}
1134}
1135
1136/*
1137 * Handle defer and revisit of requests
1138 */
1139
1140static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1141{
1142	struct svc_deferred_req *dr =
1143		container_of(dreq, struct svc_deferred_req, handle);
1144	struct svc_xprt *xprt = dr->xprt;
1145
1146	spin_lock(&xprt->xpt_lock);
1147	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1148	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1149		spin_unlock(&xprt->xpt_lock);
1150		dprintk("revisit canceled\n");
1151		svc_xprt_put(xprt);
1152		trace_svc_drop_deferred(dr);
1153		kfree(dr);
1154		return;
1155	}
1156	dprintk("revisit queued\n");
1157	dr->xprt = NULL;
1158	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1159	spin_unlock(&xprt->xpt_lock);
1160	svc_xprt_enqueue(xprt);
1161	svc_xprt_put(xprt);
1162}
1163
1164/*
1165 * Save the request off for later processing. The request buffer looks
1166 * like this:
1167 *
1168 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1169 *
1170 * This code can only handle requests that consist of an xprt-header
1171 * and rpc-header.
1172 */
1173static struct cache_deferred_req *svc_defer(struct cache_req *req)
1174{
1175	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1176	struct svc_deferred_req *dr;
1177
1178	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1179		return NULL; /* if more than a page, give up FIXME */
1180	if (rqstp->rq_deferred) {
1181		dr = rqstp->rq_deferred;
1182		rqstp->rq_deferred = NULL;
1183	} else {
1184		size_t skip;
1185		size_t size;
1186		/* FIXME maybe discard if size too large */
1187		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1188		dr = kmalloc(size, GFP_KERNEL);
1189		if (dr == NULL)
1190			return NULL;
1191
1192		dr->handle.owner = rqstp->rq_server;
1193		dr->prot = rqstp->rq_prot;
1194		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1195		dr->addrlen = rqstp->rq_addrlen;
1196		dr->daddr = rqstp->rq_daddr;
1197		dr->argslen = rqstp->rq_arg.len >> 2;
1198		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1199
1200		/* back up head to the start of the buffer and copy */
1201		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1202		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1203		       dr->argslen << 2);
1204	}
1205	svc_xprt_get(rqstp->rq_xprt);
1206	dr->xprt = rqstp->rq_xprt;
1207	set_bit(RQ_DROPME, &rqstp->rq_flags);
1208
1209	dr->handle.revisit = svc_revisit;
1210	trace_svc_defer(rqstp);
1211	return &dr->handle;
1212}
1213
1214/*
1215 * recv data from a deferred request into an active one
1216 */
1217static int svc_deferred_recv(struct svc_rqst *rqstp)
1218{
1219	struct svc_deferred_req *dr = rqstp->rq_deferred;
1220
1221	/* setup iov_base past transport header */
1222	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1223	/* The iov_len does not include the transport header bytes */
1224	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1225	rqstp->rq_arg.page_len = 0;
1226	/* The rq_arg.len includes the transport header bytes */
1227	rqstp->rq_arg.len     = dr->argslen<<2;
1228	rqstp->rq_prot        = dr->prot;
1229	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1230	rqstp->rq_addrlen     = dr->addrlen;
1231	/* Save off transport header len in case we get deferred again */
1232	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1233	rqstp->rq_daddr       = dr->daddr;
1234	rqstp->rq_respages    = rqstp->rq_pages;
1235	return (dr->argslen<<2) - dr->xprt_hlen;
1236}
1237
1238
1239static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1240{
1241	struct svc_deferred_req *dr = NULL;
1242
1243	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1244		return NULL;
1245	spin_lock(&xprt->xpt_lock);
1246	if (!list_empty(&xprt->xpt_deferred)) {
1247		dr = list_entry(xprt->xpt_deferred.next,
1248				struct svc_deferred_req,
1249				handle.recent);
1250		list_del_init(&dr->handle.recent);
1251		trace_svc_revisit_deferred(dr);
1252	} else
1253		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1254	spin_unlock(&xprt->xpt_lock);
1255	return dr;
1256}
1257
1258/**
1259 * svc_find_xprt - find an RPC transport instance
1260 * @serv: pointer to svc_serv to search
1261 * @xcl_name: C string containing transport's class name
1262 * @net: owner net pointer
1263 * @af: Address family of transport's local address
1264 * @port: transport's IP port number
1265 *
1266 * Return the transport instance pointer for the endpoint accepting
1267 * connections/peer traffic from the specified transport class,
1268 * address family and port.
1269 *
1270 * Specifying 0 for the address family or port is effectively a
1271 * wild-card, and will result in matching the first transport in the
1272 * service's list that has a matching class name.
1273 */
1274struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1275			       struct net *net, const sa_family_t af,
1276			       const unsigned short port)
1277{
1278	struct svc_xprt *xprt;
1279	struct svc_xprt *found = NULL;
1280
1281	/* Sanity check the args */
1282	if (serv == NULL || xcl_name == NULL)
1283		return found;
1284
1285	spin_lock_bh(&serv->sv_lock);
1286	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1287		if (xprt->xpt_net != net)
1288			continue;
1289		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1290			continue;
1291		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1292			continue;
1293		if (port != 0 && port != svc_xprt_local_port(xprt))
1294			continue;
1295		found = xprt;
1296		svc_xprt_get(xprt);
1297		break;
1298	}
1299	spin_unlock_bh(&serv->sv_lock);
1300	return found;
1301}
1302EXPORT_SYMBOL_GPL(svc_find_xprt);
1303
1304static int svc_one_xprt_name(const struct svc_xprt *xprt,
1305			     char *pos, int remaining)
1306{
1307	int len;
1308
1309	len = snprintf(pos, remaining, "%s %u\n",
1310			xprt->xpt_class->xcl_name,
1311			svc_xprt_local_port(xprt));
1312	if (len >= remaining)
1313		return -ENAMETOOLONG;
1314	return len;
1315}
1316
1317/**
1318 * svc_xprt_names - format a buffer with a list of transport names
1319 * @serv: pointer to an RPC service
1320 * @buf: pointer to a buffer to be filled in
1321 * @buflen: length of buffer to be filled in
1322 *
1323 * Fills in @buf with a string containing a list of transport names,
1324 * each name terminated with '\n'.
1325 *
1326 * Returns positive length of the filled-in string on success; otherwise
1327 * a negative errno value is returned if an error occurs.
1328 */
1329int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1330{
1331	struct svc_xprt *xprt;
1332	int len, totlen;
1333	char *pos;
1334
1335	/* Sanity check args */
1336	if (!serv)
1337		return 0;
1338
1339	spin_lock_bh(&serv->sv_lock);
1340
1341	pos = buf;
1342	totlen = 0;
1343	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1344		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1345		if (len < 0) {
1346			*buf = '\0';
1347			totlen = len;
1348		}
1349		if (len <= 0)
1350			break;
1351
1352		pos += len;
1353		totlen += len;
1354	}
1355
1356	spin_unlock_bh(&serv->sv_lock);
1357	return totlen;
1358}
1359EXPORT_SYMBOL_GPL(svc_xprt_names);
1360
1361
1362/*----------------------------------------------------------------------------*/
1363
1364static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1365{
1366	unsigned int pidx = (unsigned int)*pos;
1367	struct svc_serv *serv = m->private;
1368
1369	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1370
1371	if (!pidx)
1372		return SEQ_START_TOKEN;
1373	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1374}
1375
1376static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1377{
1378	struct svc_pool *pool = p;
1379	struct svc_serv *serv = m->private;
1380
1381	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1382
1383	if (p == SEQ_START_TOKEN) {
1384		pool = &serv->sv_pools[0];
1385	} else {
1386		unsigned int pidx = (pool - &serv->sv_pools[0]);
1387		if (pidx < serv->sv_nrpools-1)
1388			pool = &serv->sv_pools[pidx+1];
1389		else
1390			pool = NULL;
1391	}
1392	++*pos;
1393	return pool;
1394}
1395
1396static void svc_pool_stats_stop(struct seq_file *m, void *p)
1397{
1398}
1399
1400static int svc_pool_stats_show(struct seq_file *m, void *p)
1401{
1402	struct svc_pool *pool = p;
1403
1404	if (p == SEQ_START_TOKEN) {
1405		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1406		return 0;
1407	}
1408
1409	seq_printf(m, "%u %lu %lu %lu %lu\n",
1410		pool->sp_id,
1411		(unsigned long)atomic_long_read(&pool->sp_stats.packets),
1412		pool->sp_stats.sockets_queued,
1413		(unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1414		(unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1415
1416	return 0;
1417}
1418
1419static const struct seq_operations svc_pool_stats_seq_ops = {
1420	.start	= svc_pool_stats_start,
1421	.next	= svc_pool_stats_next,
1422	.stop	= svc_pool_stats_stop,
1423	.show	= svc_pool_stats_show,
1424};
1425
1426int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1427{
1428	int err;
1429
1430	err = seq_open(file, &svc_pool_stats_seq_ops);
1431	if (!err)
1432		((struct seq_file *) file->private_data)->private = serv;
1433	return err;
1434}
1435EXPORT_SYMBOL(svc_pool_stats_open);
1436
1437/*----------------------------------------------------------------------------*/
v3.1
 
   1/*
   2 * linux/net/sunrpc/svc_xprt.c
   3 *
   4 * Author: Tom Tucker <tom@opengridcomputing.com>
   5 */
   6
   7#include <linux/sched.h>
   8#include <linux/errno.h>
   9#include <linux/freezer.h>
  10#include <linux/kthread.h>
  11#include <linux/slab.h>
  12#include <net/sock.h>
 
  13#include <linux/sunrpc/stats.h>
  14#include <linux/sunrpc/svc_xprt.h>
  15#include <linux/sunrpc/svcsock.h>
  16#include <linux/sunrpc/xprt.h>
 
 
 
  17
  18#define RPCDBG_FACILITY	RPCDBG_SVCXPRT
  19
 
 
 
 
  20static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
  21static int svc_deferred_recv(struct svc_rqst *rqstp);
  22static struct cache_deferred_req *svc_defer(struct cache_req *req);
  23static void svc_age_temp_xprts(unsigned long closure);
 
  24
  25/* apparently the "standard" is that clients close
  26 * idle connections after 5 minutes, servers after
  27 * 6 minutes
  28 *   http://www.connectathon.org/talks96/nfstcp.pdf
  29 */
  30static int svc_conn_age_period = 6*60;
  31
  32/* List of registered transport classes */
  33static DEFINE_SPINLOCK(svc_xprt_class_lock);
  34static LIST_HEAD(svc_xprt_class_list);
  35
  36/* SMP locking strategy:
  37 *
  38 *	svc_pool->sp_lock protects most of the fields of that pool.
  39 *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
  40 *	when both need to be taken (rare), svc_serv->sv_lock is first.
  41 *	BKL protects svc_serv->sv_nrthread.
  42 *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
  43 *             and the ->sk_info_authunix cache.
  44 *
  45 *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
  46 *	enqueued multiply. During normal transport processing this bit
  47 *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
  48 *	Providers should not manipulate this bit directly.
  49 *
  50 *	Some flags can be set to certain values at any time
  51 *	providing that certain rules are followed:
  52 *
  53 *	XPT_CONN, XPT_DATA:
  54 *		- Can be set or cleared at any time.
  55 *		- After a set, svc_xprt_enqueue must be called to enqueue
  56 *		  the transport for processing.
  57 *		- After a clear, the transport must be read/accepted.
  58 *		  If this succeeds, it must be set again.
  59 *	XPT_CLOSE:
  60 *		- Can set at any time. It is never cleared.
  61 *      XPT_DEAD:
  62 *		- Can only be set while XPT_BUSY is held which ensures
  63 *		  that no other thread will be using the transport or will
  64 *		  try to set XPT_DEAD.
  65 */
  66
  67int svc_reg_xprt_class(struct svc_xprt_class *xcl)
  68{
  69	struct svc_xprt_class *cl;
  70	int res = -EEXIST;
  71
  72	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
  73
  74	INIT_LIST_HEAD(&xcl->xcl_list);
  75	spin_lock(&svc_xprt_class_lock);
  76	/* Make sure there isn't already a class with the same name */
  77	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
  78		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
  79			goto out;
  80	}
  81	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
  82	res = 0;
  83out:
  84	spin_unlock(&svc_xprt_class_lock);
  85	return res;
  86}
  87EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
  88
  89void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
  90{
  91	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
  92	spin_lock(&svc_xprt_class_lock);
  93	list_del_init(&xcl->xcl_list);
  94	spin_unlock(&svc_xprt_class_lock);
  95}
  96EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
  97
  98/*
  99 * Format the transport list for printing
 100 */
 101int svc_print_xprts(char *buf, int maxlen)
 102{
 103	struct svc_xprt_class *xcl;
 104	char tmpstr[80];
 105	int len = 0;
 106	buf[0] = '\0';
 107
 108	spin_lock(&svc_xprt_class_lock);
 109	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
 110		int slen;
 111
 112		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
 113		slen = strlen(tmpstr);
 114		if (len + slen > maxlen)
 115			break;
 116		len += slen;
 117		strcat(buf, tmpstr);
 118	}
 119	spin_unlock(&svc_xprt_class_lock);
 120
 121	return len;
 122}
 123
 124static void svc_xprt_free(struct kref *kref)
 125{
 126	struct svc_xprt *xprt =
 127		container_of(kref, struct svc_xprt, xpt_ref);
 128	struct module *owner = xprt->xpt_class->xcl_owner;
 129	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
 130		svcauth_unix_info_release(xprt);
 
 131	put_net(xprt->xpt_net);
 132	/* See comment on corresponding get in xs_setup_bc_tcp(): */
 133	if (xprt->xpt_bc_xprt)
 134		xprt_put(xprt->xpt_bc_xprt);
 
 
 135	xprt->xpt_ops->xpo_free(xprt);
 136	module_put(owner);
 137}
 138
 139void svc_xprt_put(struct svc_xprt *xprt)
 140{
 141	kref_put(&xprt->xpt_ref, svc_xprt_free);
 142}
 143EXPORT_SYMBOL_GPL(svc_xprt_put);
 144
 145/*
 146 * Called by transport drivers to initialize the transport independent
 147 * portion of the transport instance.
 148 */
 149void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt,
 150		   struct svc_serv *serv)
 151{
 152	memset(xprt, 0, sizeof(*xprt));
 153	xprt->xpt_class = xcl;
 154	xprt->xpt_ops = xcl->xcl_ops;
 155	kref_init(&xprt->xpt_ref);
 156	xprt->xpt_server = serv;
 157	INIT_LIST_HEAD(&xprt->xpt_list);
 158	INIT_LIST_HEAD(&xprt->xpt_ready);
 159	INIT_LIST_HEAD(&xprt->xpt_deferred);
 160	INIT_LIST_HEAD(&xprt->xpt_users);
 161	mutex_init(&xprt->xpt_mutex);
 162	spin_lock_init(&xprt->xpt_lock);
 163	set_bit(XPT_BUSY, &xprt->xpt_flags);
 164	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
 165	xprt->xpt_net = get_net(&init_net);
 166}
 167EXPORT_SYMBOL_GPL(svc_xprt_init);
 168
 169static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
 170					 struct svc_serv *serv,
 171					 struct net *net,
 172					 const int family,
 173					 const unsigned short port,
 174					 int flags)
 175{
 176	struct sockaddr_in sin = {
 177		.sin_family		= AF_INET,
 178		.sin_addr.s_addr	= htonl(INADDR_ANY),
 179		.sin_port		= htons(port),
 180	};
 181#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
 182	struct sockaddr_in6 sin6 = {
 183		.sin6_family		= AF_INET6,
 184		.sin6_addr		= IN6ADDR_ANY_INIT,
 185		.sin6_port		= htons(port),
 186	};
 187#endif	/* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
 188	struct sockaddr *sap;
 189	size_t len;
 190
 191	switch (family) {
 192	case PF_INET:
 193		sap = (struct sockaddr *)&sin;
 194		len = sizeof(sin);
 195		break;
 196#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
 197	case PF_INET6:
 198		sap = (struct sockaddr *)&sin6;
 199		len = sizeof(sin6);
 200		break;
 201#endif	/* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
 202	default:
 203		return ERR_PTR(-EAFNOSUPPORT);
 204	}
 205
 206	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
 207}
 208
 209int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
 210		    struct net *net, const int family,
 211		    const unsigned short port, int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 212{
 213	struct svc_xprt_class *xcl;
 214
 215	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
 216	spin_lock(&svc_xprt_class_lock);
 217	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
 218		struct svc_xprt *newxprt;
 219		unsigned short newport;
 220
 221		if (strcmp(xprt_name, xcl->xcl_name))
 222			continue;
 223
 224		if (!try_module_get(xcl->xcl_owner))
 225			goto err;
 226
 227		spin_unlock(&svc_xprt_class_lock);
 228		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
 229		if (IS_ERR(newxprt)) {
 230			module_put(xcl->xcl_owner);
 231			return PTR_ERR(newxprt);
 232		}
 233
 234		clear_bit(XPT_TEMP, &newxprt->xpt_flags);
 235		spin_lock_bh(&serv->sv_lock);
 236		list_add(&newxprt->xpt_list, &serv->sv_permsocks);
 237		spin_unlock_bh(&serv->sv_lock);
 238		newport = svc_xprt_local_port(newxprt);
 239		clear_bit(XPT_BUSY, &newxprt->xpt_flags);
 240		return newport;
 241	}
 242 err:
 243	spin_unlock(&svc_xprt_class_lock);
 244	dprintk("svc: transport %s not found\n", xprt_name);
 245
 246	/* This errno is exposed to user space.  Provide a reasonable
 247	 * perror msg for a bad transport. */
 248	return -EPROTONOSUPPORT;
 249}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 250EXPORT_SYMBOL_GPL(svc_create_xprt);
 251
 252/*
 253 * Copy the local and remote xprt addresses to the rqstp structure
 254 */
 255void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 256{
 257	struct sockaddr *sin;
 258
 259	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
 260	rqstp->rq_addrlen = xprt->xpt_remotelen;
 261
 262	/*
 263	 * Destination address in request is needed for binding the
 264	 * source address in RPC replies/callbacks later.
 265	 */
 266	sin = (struct sockaddr *)&xprt->xpt_local;
 267	switch (sin->sa_family) {
 268	case AF_INET:
 269		rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
 270		break;
 271	case AF_INET6:
 272		rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
 273		break;
 274	}
 275}
 276EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
 277
 278/**
 279 * svc_print_addr - Format rq_addr field for printing
 280 * @rqstp: svc_rqst struct containing address to print
 281 * @buf: target buffer for formatted address
 282 * @len: length of target buffer
 283 *
 284 */
 285char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
 286{
 287	return __svc_print_addr(svc_addr(rqstp), buf, len);
 288}
 289EXPORT_SYMBOL_GPL(svc_print_addr);
 290
 291/*
 292 * Queue up an idle server thread.  Must have pool->sp_lock held.
 293 * Note: this is really a stack rather than a queue, so that we only
 294 * use as many different threads as we need, and the rest don't pollute
 295 * the cache.
 296 */
 297static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
 298{
 299	list_add(&rqstp->rq_list, &pool->sp_threads);
 
 
 
 300}
 301
 302/*
 303 * Dequeue an nfsd thread.  Must have pool->sp_lock held.
 304 */
 305static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
 
 
 
 
 
 
 
 
 306{
 307	list_del(&rqstp->rq_list);
 
 
 
 
 
 308}
 309
 310static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
 311{
 312	if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 313		return true;
 314	if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
 315		return xprt->xpt_ops->xpo_has_wspace(xprt);
 
 
 
 
 
 316	return false;
 317}
 318
 319/*
 320 * Queue up a transport with data pending. If there are idle nfsd
 321 * processes, wake 'em up.
 322 *
 323 */
 324void svc_xprt_enqueue(struct svc_xprt *xprt)
 325{
 326	struct svc_serv	*serv = xprt->xpt_server;
 327	struct svc_pool *pool;
 328	struct svc_rqst	*rqstp;
 329	int cpu;
 330
 331	if (!svc_xprt_has_something_to_do(xprt))
 
 
 
 
 
 
 
 
 332		return;
 333
 334	cpu = get_cpu();
 335	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
 336	put_cpu();
 
 337
 338	spin_lock_bh(&pool->sp_lock);
 
 
 
 339
 340	if (!list_empty(&pool->sp_threads) &&
 341	    !list_empty(&pool->sp_sockets))
 342		printk(KERN_ERR
 343		       "svc_xprt_enqueue: "
 344		       "threads and transports both waiting??\n");
 345
 346	pool->sp_stats.packets++;
 347
 348	/* Mark transport as busy. It will remain in this state until
 349	 * the provider calls svc_xprt_received. We update XPT_BUSY
 350	 * atomically because it also guards against trying to enqueue
 351	 * the transport twice.
 352	 */
 353	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
 354		/* Don't enqueue transport while already enqueued */
 355		dprintk("svc: transport %p busy, not enqueued\n", xprt);
 356		goto out_unlock;
 357	}
 
 
 
 
 
 
 
 
 358
 359	if (!list_empty(&pool->sp_threads)) {
 360		rqstp = list_entry(pool->sp_threads.next,
 361				   struct svc_rqst,
 362				   rq_list);
 363		dprintk("svc: transport %p served by daemon %p\n",
 364			xprt, rqstp);
 365		svc_thread_dequeue(pool, rqstp);
 366		if (rqstp->rq_xprt)
 367			printk(KERN_ERR
 368				"svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
 369				rqstp, rqstp->rq_xprt);
 370		rqstp->rq_xprt = xprt;
 371		svc_xprt_get(xprt);
 372		rqstp->rq_reserved = serv->sv_max_mesg;
 373		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
 374		pool->sp_stats.threads_woken++;
 375		wake_up(&rqstp->rq_wait);
 376	} else {
 377		dprintk("svc: transport %p put into queue\n", xprt);
 378		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
 379		pool->sp_stats.sockets_queued++;
 380	}
 381
 382out_unlock:
 383	spin_unlock_bh(&pool->sp_lock);
 384}
 385EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
 386
 387/*
 388 * Dequeue the first transport.  Must be called with the pool->sp_lock held.
 389 */
 390static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
 391{
 392	struct svc_xprt	*xprt;
 393
 394	if (list_empty(&pool->sp_sockets))
 395		return NULL;
 396
 397	xprt = list_entry(pool->sp_sockets.next,
 398			  struct svc_xprt, xpt_ready);
 399	list_del_init(&xprt->xpt_ready);
 400
 401	dprintk("svc: transport %p dequeued, inuse=%d\n",
 402		xprt, atomic_read(&xprt->xpt_ref.refcount));
 403
 
 
 
 
 
 
 
 
 
 404	return xprt;
 405}
 406
 407/*
 408 * svc_xprt_received conditionally queues the transport for processing
 409 * by another thread. The caller must hold the XPT_BUSY bit and must
 410 * not thereafter touch transport data.
 411 *
 412 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
 413 * insufficient) data.
 414 */
 415void svc_xprt_received(struct svc_xprt *xprt)
 416{
 417	BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
 418	/* As soon as we clear busy, the xprt could be closed and
 419	 * 'put', so we need a reference to call svc_xprt_enqueue with:
 420	 */
 421	svc_xprt_get(xprt);
 422	clear_bit(XPT_BUSY, &xprt->xpt_flags);
 423	svc_xprt_enqueue(xprt);
 424	svc_xprt_put(xprt);
 425}
 426EXPORT_SYMBOL_GPL(svc_xprt_received);
 427
 428/**
 429 * svc_reserve - change the space reserved for the reply to a request.
 430 * @rqstp:  The request in question
 431 * @space: new max space to reserve
 432 *
 433 * Each request reserves some space on the output queue of the transport
 434 * to make sure the reply fits.  This function reduces that reserved
 435 * space to be the amount of space used already, plus @space.
 436 *
 437 */
 438void svc_reserve(struct svc_rqst *rqstp, int space)
 439{
 
 
 440	space += rqstp->rq_res.head[0].iov_len;
 441
 442	if (space < rqstp->rq_reserved) {
 443		struct svc_xprt *xprt = rqstp->rq_xprt;
 444		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
 445		rqstp->rq_reserved = space;
 446
 447		svc_xprt_enqueue(xprt);
 448	}
 449}
 450EXPORT_SYMBOL_GPL(svc_reserve);
 451
 452static void svc_xprt_release(struct svc_rqst *rqstp)
 453{
 454	struct svc_xprt	*xprt = rqstp->rq_xprt;
 455
 456	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
 457
 458	kfree(rqstp->rq_deferred);
 459	rqstp->rq_deferred = NULL;
 460
 461	svc_free_res_pages(rqstp);
 462	rqstp->rq_res.page_len = 0;
 463	rqstp->rq_res.page_base = 0;
 464
 465	/* Reset response buffer and release
 466	 * the reservation.
 467	 * But first, check that enough space was reserved
 468	 * for the reply, otherwise we have a bug!
 469	 */
 470	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
 471		printk(KERN_ERR "RPC request reserved %d but used %d\n",
 472		       rqstp->rq_reserved,
 473		       rqstp->rq_res.len);
 474
 475	rqstp->rq_res.head[0].iov_len = 0;
 476	svc_reserve(rqstp, 0);
 
 477	rqstp->rq_xprt = NULL;
 478
 479	svc_xprt_put(xprt);
 480}
 481
 482/*
 483 * External function to wake up a server waiting for data
 484 * This really only makes sense for services like lockd
 485 * which have exactly one thread anyway.
 
 
 486 */
 487void svc_wake_up(struct svc_serv *serv)
 488{
 489	struct svc_rqst	*rqstp;
 490	unsigned int i;
 491	struct svc_pool *pool;
 492
 493	for (i = 0; i < serv->sv_nrpools; i++) {
 494		pool = &serv->sv_pools[i];
 495
 496		spin_lock_bh(&pool->sp_lock);
 497		if (!list_empty(&pool->sp_threads)) {
 498			rqstp = list_entry(pool->sp_threads.next,
 499					   struct svc_rqst,
 500					   rq_list);
 501			dprintk("svc: daemon %p woken up.\n", rqstp);
 502			/*
 503			svc_thread_dequeue(pool, rqstp);
 504			rqstp->rq_xprt = NULL;
 505			 */
 506			wake_up(&rqstp->rq_wait);
 507		}
 508		spin_unlock_bh(&pool->sp_lock);
 509	}
 
 
 
 
 
 
 510}
 511EXPORT_SYMBOL_GPL(svc_wake_up);
 512
 513int svc_port_is_privileged(struct sockaddr *sin)
 514{
 515	switch (sin->sa_family) {
 516	case AF_INET:
 517		return ntohs(((struct sockaddr_in *)sin)->sin_port)
 518			< PROT_SOCK;
 519	case AF_INET6:
 520		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
 521			< PROT_SOCK;
 522	default:
 523		return 0;
 524	}
 525}
 526
 527/*
 528 * Make sure that we don't have too many active connections. If we have,
 529 * something must be dropped. It's not clear what will happen if we allow
 530 * "too many" connections, but when dealing with network-facing software,
 531 * we have to code defensively. Here we do that by imposing hard limits.
 532 *
 533 * There's no point in trying to do random drop here for DoS
 534 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
 535 * attacker can easily beat that.
 536 *
 537 * The only somewhat efficient mechanism would be if drop old
 538 * connections from the same IP first. But right now we don't even
 539 * record the client IP in svc_sock.
 540 *
 541 * single-threaded services that expect a lot of clients will probably
 542 * need to set sv_maxconn to override the default value which is based
 543 * on the number of threads
 544 */
 545static void svc_check_conn_limits(struct svc_serv *serv)
 546{
 547	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
 548				(serv->sv_nrthreads+3) * 20;
 549
 550	if (serv->sv_tmpcnt > limit) {
 551		struct svc_xprt *xprt = NULL;
 552		spin_lock_bh(&serv->sv_lock);
 553		if (!list_empty(&serv->sv_tempsocks)) {
 554			if (net_ratelimit()) {
 555				/* Try to help the admin */
 556				printk(KERN_NOTICE "%s: too many open  "
 557				       "connections, consider increasing %s\n",
 558				       serv->sv_name, serv->sv_maxconn ?
 559				       "the max number of connections." :
 560				       "the number of threads.");
 561			}
 562			/*
 563			 * Always select the oldest connection. It's not fair,
 564			 * but so is life
 565			 */
 566			xprt = list_entry(serv->sv_tempsocks.prev,
 567					  struct svc_xprt,
 568					  xpt_list);
 569			set_bit(XPT_CLOSE, &xprt->xpt_flags);
 570			svc_xprt_get(xprt);
 571		}
 572		spin_unlock_bh(&serv->sv_lock);
 573
 574		if (xprt) {
 575			svc_xprt_enqueue(xprt);
 576			svc_xprt_put(xprt);
 577		}
 578	}
 579}
 580
 581/*
 582 * Receive the next request on any transport.  This code is carefully
 583 * organised not to touch any cachelines in the shared svc_serv
 584 * structure, only cachelines in the local svc_pool.
 585 */
 586int svc_recv(struct svc_rqst *rqstp, long timeout)
 587{
 588	struct svc_xprt		*xprt = NULL;
 589	struct svc_serv		*serv = rqstp->rq_server;
 590	struct svc_pool		*pool = rqstp->rq_pool;
 591	int			len, i;
 592	int			pages;
 593	struct xdr_buf		*arg;
 594	DECLARE_WAITQUEUE(wait, current);
 595	long			time_left;
 596
 597	dprintk("svc: server %p waiting for data (to = %ld)\n",
 598		rqstp, timeout);
 599
 600	if (rqstp->rq_xprt)
 601		printk(KERN_ERR
 602			"svc_recv: service %p, transport not NULL!\n",
 603			 rqstp);
 604	if (waitqueue_active(&rqstp->rq_wait))
 605		printk(KERN_ERR
 606			"svc_recv: service %p, wait queue active!\n",
 607			 rqstp);
 608
 609	/* now allocate needed pages.  If we get a failure, sleep briefly */
 610	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
 
 
 
 
 
 
 611	for (i = 0; i < pages ; i++)
 612		while (rqstp->rq_pages[i] == NULL) {
 613			struct page *p = alloc_page(GFP_KERNEL);
 614			if (!p) {
 615				set_current_state(TASK_INTERRUPTIBLE);
 616				if (signalled() || kthread_should_stop()) {
 617					set_current_state(TASK_RUNNING);
 618					return -EINTR;
 619				}
 620				schedule_timeout(msecs_to_jiffies(500));
 621			}
 622			rqstp->rq_pages[i] = p;
 623		}
 
 624	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
 625	BUG_ON(pages >= RPCSVC_MAXPAGES);
 626
 627	/* Make arg->head point to first page and arg->pages point to rest */
 628	arg = &rqstp->rq_arg;
 629	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
 630	arg->head[0].iov_len = PAGE_SIZE;
 631	arg->pages = rqstp->rq_pages + 1;
 632	arg->page_base = 0;
 633	/* save at least one page for response */
 634	arg->page_len = (pages-2)*PAGE_SIZE;
 635	arg->len = (pages-1)*PAGE_SIZE;
 636	arg->tail[0].iov_len = 0;
 
 
 637
 638	try_to_freeze();
 639	cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 640	if (signalled() || kthread_should_stop())
 641		return -EINTR;
 642
 643	/* Normally we will wait up to 5 seconds for any required
 644	 * cache information to be provided.
 645	 */
 646	rqstp->rq_chandle.thread_wait = 5*HZ;
 647
 648	spin_lock_bh(&pool->sp_lock);
 649	xprt = svc_xprt_dequeue(pool);
 650	if (xprt) {
 651		rqstp->rq_xprt = xprt;
 652		svc_xprt_get(xprt);
 653		rqstp->rq_reserved = serv->sv_max_mesg;
 654		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
 655
 656		/* As there is a shortage of threads and this request
 657		 * had to be queued, don't allow the thread to wait so
 658		 * long for cache updates.
 659		 */
 660		rqstp->rq_chandle.thread_wait = 1*HZ;
 661	} else {
 662		/* No data pending. Go to sleep */
 663		svc_thread_enqueue(pool, rqstp);
 664
 665		/*
 666		 * We have to be able to interrupt this wait
 667		 * to bring down the daemons ...
 668		 */
 669		set_current_state(TASK_INTERRUPTIBLE);
 670
 671		/*
 672		 * checking kthread_should_stop() here allows us to avoid
 673		 * locking and signalling when stopping kthreads that call
 674		 * svc_recv. If the thread has already been woken up, then
 675		 * we can exit here without sleeping. If not, then it
 676		 * it'll be woken up quickly during the schedule_timeout
 677		 */
 678		if (kthread_should_stop()) {
 679			set_current_state(TASK_RUNNING);
 680			spin_unlock_bh(&pool->sp_lock);
 681			return -EINTR;
 682		}
 683
 684		add_wait_queue(&rqstp->rq_wait, &wait);
 685		spin_unlock_bh(&pool->sp_lock);
 
 
 
 
 
 
 
 686
 
 687		time_left = schedule_timeout(timeout);
 
 
 
 
 
 
 
 
 
 
 688
 689		try_to_freeze();
 
 690
 691		spin_lock_bh(&pool->sp_lock);
 692		remove_wait_queue(&rqstp->rq_wait, &wait);
 693		if (!time_left)
 694			pool->sp_stats.threads_timedout++;
 695
 696		xprt = rqstp->rq_xprt;
 697		if (!xprt) {
 698			svc_thread_dequeue(pool, rqstp);
 699			spin_unlock_bh(&pool->sp_lock);
 700			dprintk("svc: server %p, no data yet\n", rqstp);
 701			if (signalled() || kthread_should_stop())
 702				return -EINTR;
 703			else
 704				return -EAGAIN;
 705		}
 
 
 
 
 
 
 
 
 
 
 
 706	}
 707	spin_unlock_bh(&pool->sp_lock);
 
 
 
 
 
 
 
 708
 709	len = 0;
 710	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
 711		dprintk("svc_recv: found XPT_CLOSE\n");
 
 
 712		svc_delete_xprt(xprt);
 713		/* Leave XPT_BUSY set on the dead xprt: */
 714		goto out;
 715	}
 716	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
 717		struct svc_xprt *newxpt;
 
 
 
 
 
 
 718		newxpt = xprt->xpt_ops->xpo_accept(xprt);
 719		if (newxpt) {
 720			/*
 721			 * We know this module_get will succeed because the
 722			 * listener holds a reference too
 723			 */
 724			__module_get(newxpt->xpt_class->xcl_owner);
 725			svc_check_conn_limits(xprt->xpt_server);
 726			spin_lock_bh(&serv->sv_lock);
 727			set_bit(XPT_TEMP, &newxpt->xpt_flags);
 728			list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
 729			serv->sv_tmpcnt++;
 730			if (serv->sv_temptimer.function == NULL) {
 731				/* setup timer to age temp transports */
 732				setup_timer(&serv->sv_temptimer,
 733					    svc_age_temp_xprts,
 734					    (unsigned long)serv);
 735				mod_timer(&serv->sv_temptimer,
 736					  jiffies + svc_conn_age_period * HZ);
 737			}
 738			spin_unlock_bh(&serv->sv_lock);
 739			svc_xprt_received(newxpt);
 740		}
 741	} else if (xprt->xpt_ops->xpo_has_wspace(xprt)) {
 742		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
 743			rqstp, pool->sp_id, xprt,
 744			atomic_read(&xprt->xpt_ref.refcount));
 745		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
 746		if (rqstp->rq_deferred)
 747			len = svc_deferred_recv(rqstp);
 748		else
 749			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
 750		dprintk("svc: got len=%d\n", len);
 
 
 751	}
 
 752	svc_xprt_received(xprt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 753
 754	/* No data, incomplete (TCP) read, or accept() */
 755	if (len == 0 || len == -EAGAIN)
 756		goto out;
 
 757
 758	clear_bit(XPT_OLD, &xprt->xpt_flags);
 759
 760	rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
 761	rqstp->rq_chandle.defer = svc_defer;
 
 762
 763	if (serv->sv_stats)
 764		serv->sv_stats->netcnt++;
 
 765	return len;
 766out:
 767	rqstp->rq_res.len = 0;
 768	svc_xprt_release(rqstp);
 769	return -EAGAIN;
 
 770}
 771EXPORT_SYMBOL_GPL(svc_recv);
 772
 773/*
 774 * Drop request
 775 */
 776void svc_drop(struct svc_rqst *rqstp)
 777{
 
 778	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
 779	svc_xprt_release(rqstp);
 780}
 781EXPORT_SYMBOL_GPL(svc_drop);
 782
 783/*
 784 * Return reply to client.
 785 */
 786int svc_send(struct svc_rqst *rqstp)
 787{
 788	struct svc_xprt	*xprt;
 789	int		len;
 790	struct xdr_buf	*xb;
 791
 792	xprt = rqstp->rq_xprt;
 793	if (!xprt)
 794		return -EFAULT;
 795
 796	/* release the receive skb before sending the reply */
 797	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
 798
 799	/* calculate over-all length */
 800	xb = &rqstp->rq_res;
 801	xb->len = xb->head[0].iov_len +
 802		xb->page_len +
 803		xb->tail[0].iov_len;
 804
 805	/* Grab mutex to serialize outgoing data. */
 806	mutex_lock(&xprt->xpt_mutex);
 807	if (test_bit(XPT_DEAD, &xprt->xpt_flags))
 
 
 808		len = -ENOTCONN;
 809	else
 810		len = xprt->xpt_ops->xpo_sendto(rqstp);
 811	mutex_unlock(&xprt->xpt_mutex);
 812	rpc_wake_up(&xprt->xpt_bc_pending);
 813	svc_xprt_release(rqstp);
 814
 815	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
 816		return 0;
 
 817	return len;
 818}
 819
 820/*
 821 * Timer function to close old temporary transports, using
 822 * a mark-and-sweep algorithm.
 823 */
 824static void svc_age_temp_xprts(unsigned long closure)
 825{
 826	struct svc_serv *serv = (struct svc_serv *)closure;
 827	struct svc_xprt *xprt;
 828	struct list_head *le, *next;
 829	LIST_HEAD(to_be_aged);
 830
 831	dprintk("svc_age_temp_xprts\n");
 832
 833	if (!spin_trylock_bh(&serv->sv_lock)) {
 834		/* busy, try again 1 sec later */
 835		dprintk("svc_age_temp_xprts: busy\n");
 836		mod_timer(&serv->sv_temptimer, jiffies + HZ);
 837		return;
 838	}
 839
 840	list_for_each_safe(le, next, &serv->sv_tempsocks) {
 841		xprt = list_entry(le, struct svc_xprt, xpt_list);
 842
 843		/* First time through, just mark it OLD. Second time
 844		 * through, close it. */
 845		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
 846			continue;
 847		if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
 848		    test_bit(XPT_BUSY, &xprt->xpt_flags))
 849			continue;
 850		svc_xprt_get(xprt);
 851		list_move(le, &to_be_aged);
 852		set_bit(XPT_CLOSE, &xprt->xpt_flags);
 853		set_bit(XPT_DETACHED, &xprt->xpt_flags);
 
 
 
 854	}
 855	spin_unlock_bh(&serv->sv_lock);
 856
 857	while (!list_empty(&to_be_aged)) {
 858		le = to_be_aged.next;
 859		/* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 860		list_del_init(le);
 861		xprt = list_entry(le, struct svc_xprt, xpt_list);
 862
 863		dprintk("queuing xprt %p for closing\n", xprt);
 864
 865		/* a thread will dequeue and close it soon */
 866		svc_xprt_enqueue(xprt);
 867		svc_xprt_put(xprt);
 868	}
 869
 870	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
 871}
 
 872
 873static void call_xpt_users(struct svc_xprt *xprt)
 874{
 875	struct svc_xpt_user *u;
 876
 877	spin_lock(&xprt->xpt_lock);
 878	while (!list_empty(&xprt->xpt_users)) {
 879		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
 880		list_del(&u->list);
 881		u->callback(u);
 882	}
 883	spin_unlock(&xprt->xpt_lock);
 884}
 885
 886/*
 887 * Remove a dead transport
 888 */
 889void svc_delete_xprt(struct svc_xprt *xprt)
 890{
 891	struct svc_serv	*serv = xprt->xpt_server;
 892	struct svc_deferred_req *dr;
 893
 894	/* Only do this once */
 895	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
 896		BUG();
 897
 898	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
 899	xprt->xpt_ops->xpo_detach(xprt);
 900
 901	spin_lock_bh(&serv->sv_lock);
 902	if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
 903		list_del_init(&xprt->xpt_list);
 904	/*
 905	 * The only time we're called while xpt_ready is still on a list
 906	 * is while the list itself is about to be destroyed (in
 907	 * svc_destroy).  BUT svc_xprt_enqueue could still be attempting
 908	 * to add new entries to the sp_sockets list, so we can't leave
 909	 * a freed xprt on it.
 910	 */
 911	list_del_init(&xprt->xpt_ready);
 912	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
 913		serv->sv_tmpcnt--;
 914	spin_unlock_bh(&serv->sv_lock);
 915
 916	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
 917		kfree(dr);
 918
 919	call_xpt_users(xprt);
 920	svc_xprt_put(xprt);
 921}
 922
 923void svc_close_xprt(struct svc_xprt *xprt)
 924{
 925	set_bit(XPT_CLOSE, &xprt->xpt_flags);
 926	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
 927		/* someone else will have to effect the close */
 928		return;
 929	/*
 930	 * We expect svc_close_xprt() to work even when no threads are
 931	 * running (e.g., while configuring the server before starting
 932	 * any threads), so if the transport isn't busy, we delete
 933	 * it ourself:
 934	 */
 935	svc_delete_xprt(xprt);
 936}
 937EXPORT_SYMBOL_GPL(svc_close_xprt);
 938
 939void svc_close_all(struct list_head *xprt_list)
 940{
 941	struct svc_xprt *xprt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 942	struct svc_xprt *tmp;
 
 
 
 
 943
 944	/*
 945	 * The server is shutting down, and no more threads are running.
 946	 * svc_xprt_enqueue() might still be running, but at worst it
 947	 * will re-add the xprt to sp_sockets, which will soon get
 948	 * freed.  So we don't bother with any more locking, and don't
 949	 * leave the close to the (nonexistent) server threads:
 950	 */
 951	list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
 
 
 
 
 
 
 
 
 
 
 952		set_bit(XPT_CLOSE, &xprt->xpt_flags);
 953		svc_delete_xprt(xprt);
 954	}
 955}
 956
 957/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 958 * Handle defer and revisit of requests
 959 */
 960
 961static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
 962{
 963	struct svc_deferred_req *dr =
 964		container_of(dreq, struct svc_deferred_req, handle);
 965	struct svc_xprt *xprt = dr->xprt;
 966
 967	spin_lock(&xprt->xpt_lock);
 968	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
 969	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
 970		spin_unlock(&xprt->xpt_lock);
 971		dprintk("revisit canceled\n");
 972		svc_xprt_put(xprt);
 
 973		kfree(dr);
 974		return;
 975	}
 976	dprintk("revisit queued\n");
 977	dr->xprt = NULL;
 978	list_add(&dr->handle.recent, &xprt->xpt_deferred);
 979	spin_unlock(&xprt->xpt_lock);
 980	svc_xprt_enqueue(xprt);
 981	svc_xprt_put(xprt);
 982}
 983
 984/*
 985 * Save the request off for later processing. The request buffer looks
 986 * like this:
 987 *
 988 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
 989 *
 990 * This code can only handle requests that consist of an xprt-header
 991 * and rpc-header.
 992 */
 993static struct cache_deferred_req *svc_defer(struct cache_req *req)
 994{
 995	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
 996	struct svc_deferred_req *dr;
 997
 998	if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
 999		return NULL; /* if more than a page, give up FIXME */
1000	if (rqstp->rq_deferred) {
1001		dr = rqstp->rq_deferred;
1002		rqstp->rq_deferred = NULL;
1003	} else {
1004		size_t skip;
1005		size_t size;
1006		/* FIXME maybe discard if size too large */
1007		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1008		dr = kmalloc(size, GFP_KERNEL);
1009		if (dr == NULL)
1010			return NULL;
1011
1012		dr->handle.owner = rqstp->rq_server;
1013		dr->prot = rqstp->rq_prot;
1014		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1015		dr->addrlen = rqstp->rq_addrlen;
1016		dr->daddr = rqstp->rq_daddr;
1017		dr->argslen = rqstp->rq_arg.len >> 2;
1018		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1019
1020		/* back up head to the start of the buffer and copy */
1021		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1022		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1023		       dr->argslen << 2);
1024	}
1025	svc_xprt_get(rqstp->rq_xprt);
1026	dr->xprt = rqstp->rq_xprt;
1027	rqstp->rq_dropme = true;
1028
1029	dr->handle.revisit = svc_revisit;
 
1030	return &dr->handle;
1031}
1032
1033/*
1034 * recv data from a deferred request into an active one
1035 */
1036static int svc_deferred_recv(struct svc_rqst *rqstp)
1037{
1038	struct svc_deferred_req *dr = rqstp->rq_deferred;
1039
1040	/* setup iov_base past transport header */
1041	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1042	/* The iov_len does not include the transport header bytes */
1043	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1044	rqstp->rq_arg.page_len = 0;
1045	/* The rq_arg.len includes the transport header bytes */
1046	rqstp->rq_arg.len     = dr->argslen<<2;
1047	rqstp->rq_prot        = dr->prot;
1048	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1049	rqstp->rq_addrlen     = dr->addrlen;
1050	/* Save off transport header len in case we get deferred again */
1051	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1052	rqstp->rq_daddr       = dr->daddr;
1053	rqstp->rq_respages    = rqstp->rq_pages;
1054	return (dr->argslen<<2) - dr->xprt_hlen;
1055}
1056
1057
1058static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1059{
1060	struct svc_deferred_req *dr = NULL;
1061
1062	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1063		return NULL;
1064	spin_lock(&xprt->xpt_lock);
1065	if (!list_empty(&xprt->xpt_deferred)) {
1066		dr = list_entry(xprt->xpt_deferred.next,
1067				struct svc_deferred_req,
1068				handle.recent);
1069		list_del_init(&dr->handle.recent);
 
1070	} else
1071		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1072	spin_unlock(&xprt->xpt_lock);
1073	return dr;
1074}
1075
1076/**
1077 * svc_find_xprt - find an RPC transport instance
1078 * @serv: pointer to svc_serv to search
1079 * @xcl_name: C string containing transport's class name
 
1080 * @af: Address family of transport's local address
1081 * @port: transport's IP port number
1082 *
1083 * Return the transport instance pointer for the endpoint accepting
1084 * connections/peer traffic from the specified transport class,
1085 * address family and port.
1086 *
1087 * Specifying 0 for the address family or port is effectively a
1088 * wild-card, and will result in matching the first transport in the
1089 * service's list that has a matching class name.
1090 */
1091struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1092			       const sa_family_t af, const unsigned short port)
 
1093{
1094	struct svc_xprt *xprt;
1095	struct svc_xprt *found = NULL;
1096
1097	/* Sanity check the args */
1098	if (serv == NULL || xcl_name == NULL)
1099		return found;
1100
1101	spin_lock_bh(&serv->sv_lock);
1102	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
 
 
1103		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1104			continue;
1105		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1106			continue;
1107		if (port != 0 && port != svc_xprt_local_port(xprt))
1108			continue;
1109		found = xprt;
1110		svc_xprt_get(xprt);
1111		break;
1112	}
1113	spin_unlock_bh(&serv->sv_lock);
1114	return found;
1115}
1116EXPORT_SYMBOL_GPL(svc_find_xprt);
1117
1118static int svc_one_xprt_name(const struct svc_xprt *xprt,
1119			     char *pos, int remaining)
1120{
1121	int len;
1122
1123	len = snprintf(pos, remaining, "%s %u\n",
1124			xprt->xpt_class->xcl_name,
1125			svc_xprt_local_port(xprt));
1126	if (len >= remaining)
1127		return -ENAMETOOLONG;
1128	return len;
1129}
1130
1131/**
1132 * svc_xprt_names - format a buffer with a list of transport names
1133 * @serv: pointer to an RPC service
1134 * @buf: pointer to a buffer to be filled in
1135 * @buflen: length of buffer to be filled in
1136 *
1137 * Fills in @buf with a string containing a list of transport names,
1138 * each name terminated with '\n'.
1139 *
1140 * Returns positive length of the filled-in string on success; otherwise
1141 * a negative errno value is returned if an error occurs.
1142 */
1143int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1144{
1145	struct svc_xprt *xprt;
1146	int len, totlen;
1147	char *pos;
1148
1149	/* Sanity check args */
1150	if (!serv)
1151		return 0;
1152
1153	spin_lock_bh(&serv->sv_lock);
1154
1155	pos = buf;
1156	totlen = 0;
1157	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1158		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1159		if (len < 0) {
1160			*buf = '\0';
1161			totlen = len;
1162		}
1163		if (len <= 0)
1164			break;
1165
1166		pos += len;
1167		totlen += len;
1168	}
1169
1170	spin_unlock_bh(&serv->sv_lock);
1171	return totlen;
1172}
1173EXPORT_SYMBOL_GPL(svc_xprt_names);
1174
1175
1176/*----------------------------------------------------------------------------*/
1177
1178static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1179{
1180	unsigned int pidx = (unsigned int)*pos;
1181	struct svc_serv *serv = m->private;
1182
1183	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1184
1185	if (!pidx)
1186		return SEQ_START_TOKEN;
1187	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1188}
1189
1190static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1191{
1192	struct svc_pool *pool = p;
1193	struct svc_serv *serv = m->private;
1194
1195	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1196
1197	if (p == SEQ_START_TOKEN) {
1198		pool = &serv->sv_pools[0];
1199	} else {
1200		unsigned int pidx = (pool - &serv->sv_pools[0]);
1201		if (pidx < serv->sv_nrpools-1)
1202			pool = &serv->sv_pools[pidx+1];
1203		else
1204			pool = NULL;
1205	}
1206	++*pos;
1207	return pool;
1208}
1209
1210static void svc_pool_stats_stop(struct seq_file *m, void *p)
1211{
1212}
1213
1214static int svc_pool_stats_show(struct seq_file *m, void *p)
1215{
1216	struct svc_pool *pool = p;
1217
1218	if (p == SEQ_START_TOKEN) {
1219		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1220		return 0;
1221	}
1222
1223	seq_printf(m, "%u %lu %lu %lu %lu\n",
1224		pool->sp_id,
1225		pool->sp_stats.packets,
1226		pool->sp_stats.sockets_queued,
1227		pool->sp_stats.threads_woken,
1228		pool->sp_stats.threads_timedout);
1229
1230	return 0;
1231}
1232
1233static const struct seq_operations svc_pool_stats_seq_ops = {
1234	.start	= svc_pool_stats_start,
1235	.next	= svc_pool_stats_next,
1236	.stop	= svc_pool_stats_stop,
1237	.show	= svc_pool_stats_show,
1238};
1239
1240int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1241{
1242	int err;
1243
1244	err = seq_open(file, &svc_pool_stats_seq_ops);
1245	if (!err)
1246		((struct seq_file *) file->private_data)->private = serv;
1247	return err;
1248}
1249EXPORT_SYMBOL(svc_pool_stats_open);
1250
1251/*----------------------------------------------------------------------------*/