Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * net/sched/cls_flow.c		Generic flow classifier
  4 *
  5 * Copyright (c) 2007, 2008 Patrick McHardy <kaber@trash.net>
 
 
 
 
 
  6 */
  7
  8#include <linux/kernel.h>
  9#include <linux/init.h>
 10#include <linux/list.h>
 11#include <linux/jhash.h>
 12#include <linux/random.h>
 13#include <linux/pkt_cls.h>
 14#include <linux/skbuff.h>
 15#include <linux/in.h>
 16#include <linux/ip.h>
 17#include <linux/ipv6.h>
 18#include <linux/if_vlan.h>
 19#include <linux/slab.h>
 20#include <linux/module.h>
 21#include <net/inet_sock.h>
 22
 23#include <net/pkt_cls.h>
 24#include <net/ip.h>
 25#include <net/route.h>
 26#include <net/flow_dissector.h>
 27
 28#if IS_ENABLED(CONFIG_NF_CONNTRACK)
 29#include <net/netfilter/nf_conntrack.h>
 30#endif
 31
 32struct flow_head {
 33	struct list_head	filters;
 34	struct rcu_head		rcu;
 35};
 36
 37struct flow_filter {
 38	struct list_head	list;
 39	struct tcf_exts		exts;
 40	struct tcf_ematch_tree	ematches;
 41	struct tcf_proto	*tp;
 42	struct timer_list	perturb_timer;
 43	u32			perturb_period;
 44	u32			handle;
 45
 46	u32			nkeys;
 47	u32			keymask;
 48	u32			mode;
 49	u32			mask;
 50	u32			xor;
 51	u32			rshift;
 52	u32			addend;
 53	u32			divisor;
 54	u32			baseclass;
 55	u32			hashrnd;
 56	struct rcu_work		rwork;
 
 
 
 
 57};
 58
 59static inline u32 addr_fold(void *addr)
 60{
 61	unsigned long a = (unsigned long)addr;
 62
 63	return (a & 0xFFFFFFFF) ^ (BITS_PER_LONG > 32 ? a >> 32 : 0);
 64}
 65
 66static u32 flow_get_src(const struct sk_buff *skb, const struct flow_keys *flow)
 67{
 68	__be32 src = flow_get_u32_src(flow);
 69
 70	if (src)
 71		return ntohl(src);
 
 
 
 
 
 
 72
 73	return addr_fold(skb->sk);
 74}
 75
 76static u32 flow_get_dst(const struct sk_buff *skb, const struct flow_keys *flow)
 77{
 78	__be32 dst = flow_get_u32_dst(flow);
 79
 80	if (dst)
 81		return ntohl(dst);
 
 
 
 
 
 
 82
 83	return addr_fold(skb_dst(skb)) ^ (__force u16) tc_skb_protocol(skb);
 84}
 85
 86static u32 flow_get_proto(const struct sk_buff *skb,
 87			  const struct flow_keys *flow)
 88{
 89	return flow->basic.ip_proto;
 
 
 
 
 
 
 
 
 
 90}
 91
 92static u32 flow_get_proto_src(const struct sk_buff *skb,
 93			      const struct flow_keys *flow)
 94{
 95	if (flow->ports.ports)
 96		return ntohs(flow->ports.src);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 97
 98	return addr_fold(skb->sk);
 99}
100
101static u32 flow_get_proto_dst(const struct sk_buff *skb,
102			      const struct flow_keys *flow)
103{
104	if (flow->ports.ports)
105		return ntohs(flow->ports.dst);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106
107	return addr_fold(skb_dst(skb)) ^ (__force u16) tc_skb_protocol(skb);
108}
109
110static u32 flow_get_iif(const struct sk_buff *skb)
111{
112	return skb->skb_iif;
113}
114
115static u32 flow_get_priority(const struct sk_buff *skb)
116{
117	return skb->priority;
118}
119
120static u32 flow_get_mark(const struct sk_buff *skb)
121{
122	return skb->mark;
123}
124
125static u32 flow_get_nfct(const struct sk_buff *skb)
126{
127#if IS_ENABLED(CONFIG_NF_CONNTRACK)
128	return addr_fold(skb_nfct(skb));
129#else
130	return 0;
131#endif
132}
133
134#if IS_ENABLED(CONFIG_NF_CONNTRACK)
135#define CTTUPLE(skb, member)						\
136({									\
137	enum ip_conntrack_info ctinfo;					\
138	const struct nf_conn *ct = nf_ct_get(skb, &ctinfo);		\
139	if (ct == NULL)							\
140		goto fallback;						\
141	ct->tuplehash[CTINFO2DIR(ctinfo)].tuple.member;			\
142})
143#else
144#define CTTUPLE(skb, member)						\
145({									\
146	goto fallback;							\
147	0;								\
148})
149#endif
150
151static u32 flow_get_nfct_src(const struct sk_buff *skb,
152			     const struct flow_keys *flow)
153{
154	switch (tc_skb_protocol(skb)) {
155	case htons(ETH_P_IP):
156		return ntohl(CTTUPLE(skb, src.u3.ip));
157	case htons(ETH_P_IPV6):
158		return ntohl(CTTUPLE(skb, src.u3.ip6[3]));
159	}
160fallback:
161	return flow_get_src(skb, flow);
162}
163
164static u32 flow_get_nfct_dst(const struct sk_buff *skb,
165			     const struct flow_keys *flow)
166{
167	switch (tc_skb_protocol(skb)) {
168	case htons(ETH_P_IP):
169		return ntohl(CTTUPLE(skb, dst.u3.ip));
170	case htons(ETH_P_IPV6):
171		return ntohl(CTTUPLE(skb, dst.u3.ip6[3]));
172	}
173fallback:
174	return flow_get_dst(skb, flow);
175}
176
177static u32 flow_get_nfct_proto_src(const struct sk_buff *skb,
178				   const struct flow_keys *flow)
179{
180	return ntohs(CTTUPLE(skb, src.u.all));
181fallback:
182	return flow_get_proto_src(skb, flow);
183}
184
185static u32 flow_get_nfct_proto_dst(const struct sk_buff *skb,
186				   const struct flow_keys *flow)
187{
188	return ntohs(CTTUPLE(skb, dst.u.all));
189fallback:
190	return flow_get_proto_dst(skb, flow);
191}
192
193static u32 flow_get_rtclassid(const struct sk_buff *skb)
194{
195#ifdef CONFIG_IP_ROUTE_CLASSID
196	if (skb_dst(skb))
197		return skb_dst(skb)->tclassid;
198#endif
199	return 0;
200}
201
202static u32 flow_get_skuid(const struct sk_buff *skb)
203{
204	struct sock *sk = skb_to_full_sk(skb);
205
206	if (sk && sk->sk_socket && sk->sk_socket->file) {
207		kuid_t skuid = sk->sk_socket->file->f_cred->fsuid;
208
209		return from_kuid(&init_user_ns, skuid);
210	}
211	return 0;
212}
213
214static u32 flow_get_skgid(const struct sk_buff *skb)
215{
216	struct sock *sk = skb_to_full_sk(skb);
217
218	if (sk && sk->sk_socket && sk->sk_socket->file) {
219		kgid_t skgid = sk->sk_socket->file->f_cred->fsgid;
220
221		return from_kgid(&init_user_ns, skgid);
222	}
223	return 0;
224}
225
226static u32 flow_get_vlan_tag(const struct sk_buff *skb)
227{
228	u16 uninitialized_var(tag);
229
230	if (vlan_get_tag(skb, &tag) < 0)
231		return 0;
232	return tag & VLAN_VID_MASK;
233}
234
235static u32 flow_get_rxhash(struct sk_buff *skb)
236{
237	return skb_get_hash(skb);
238}
239
240static u32 flow_key_get(struct sk_buff *skb, int key, struct flow_keys *flow)
241{
242	switch (key) {
243	case FLOW_KEY_SRC:
244		return flow_get_src(skb, flow);
245	case FLOW_KEY_DST:
246		return flow_get_dst(skb, flow);
247	case FLOW_KEY_PROTO:
248		return flow_get_proto(skb, flow);
249	case FLOW_KEY_PROTO_SRC:
250		return flow_get_proto_src(skb, flow);
251	case FLOW_KEY_PROTO_DST:
252		return flow_get_proto_dst(skb, flow);
253	case FLOW_KEY_IIF:
254		return flow_get_iif(skb);
255	case FLOW_KEY_PRIORITY:
256		return flow_get_priority(skb);
257	case FLOW_KEY_MARK:
258		return flow_get_mark(skb);
259	case FLOW_KEY_NFCT:
260		return flow_get_nfct(skb);
261	case FLOW_KEY_NFCT_SRC:
262		return flow_get_nfct_src(skb, flow);
263	case FLOW_KEY_NFCT_DST:
264		return flow_get_nfct_dst(skb, flow);
265	case FLOW_KEY_NFCT_PROTO_SRC:
266		return flow_get_nfct_proto_src(skb, flow);
267	case FLOW_KEY_NFCT_PROTO_DST:
268		return flow_get_nfct_proto_dst(skb, flow);
269	case FLOW_KEY_RTCLASSID:
270		return flow_get_rtclassid(skb);
271	case FLOW_KEY_SKUID:
272		return flow_get_skuid(skb);
273	case FLOW_KEY_SKGID:
274		return flow_get_skgid(skb);
275	case FLOW_KEY_VLAN_TAG:
276		return flow_get_vlan_tag(skb);
277	case FLOW_KEY_RXHASH:
278		return flow_get_rxhash(skb);
279	default:
280		WARN_ON(1);
281		return 0;
282	}
283}
284
285#define FLOW_KEYS_NEEDED ((1 << FLOW_KEY_SRC) | 		\
286			  (1 << FLOW_KEY_DST) |			\
287			  (1 << FLOW_KEY_PROTO) |		\
288			  (1 << FLOW_KEY_PROTO_SRC) |		\
289			  (1 << FLOW_KEY_PROTO_DST) | 		\
290			  (1 << FLOW_KEY_NFCT_SRC) |		\
291			  (1 << FLOW_KEY_NFCT_DST) |		\
292			  (1 << FLOW_KEY_NFCT_PROTO_SRC) |	\
293			  (1 << FLOW_KEY_NFCT_PROTO_DST))
294
295static int flow_classify(struct sk_buff *skb, const struct tcf_proto *tp,
296			 struct tcf_result *res)
297{
298	struct flow_head *head = rcu_dereference_bh(tp->root);
299	struct flow_filter *f;
300	u32 keymask;
301	u32 classid;
302	unsigned int n, key;
303	int r;
304
305	list_for_each_entry_rcu(f, &head->filters, list) {
306		u32 keys[FLOW_KEY_MAX + 1];
307		struct flow_keys flow_keys;
308
309		if (!tcf_em_tree_match(skb, &f->ematches, NULL))
310			continue;
311
312		keymask = f->keymask;
313		if (keymask & FLOW_KEYS_NEEDED)
314			skb_flow_dissect_flow_keys(skb, &flow_keys, 0);
315
316		for (n = 0; n < f->nkeys; n++) {
317			key = ffs(keymask) - 1;
318			keymask &= ~(1 << key);
319			keys[n] = flow_key_get(skb, key, &flow_keys);
320		}
321
322		if (f->mode == FLOW_MODE_HASH)
323			classid = jhash2(keys, f->nkeys, f->hashrnd);
324		else {
325			classid = keys[0];
326			classid = (classid & f->mask) ^ f->xor;
327			classid = (classid >> f->rshift) + f->addend;
328		}
329
330		if (f->divisor)
331			classid %= f->divisor;
332
333		res->class   = 0;
334		res->classid = TC_H_MAKE(f->baseclass, f->baseclass + classid);
335
336		r = tcf_exts_exec(skb, &f->exts, res);
337		if (r < 0)
338			continue;
339		return r;
340	}
341	return -1;
342}
343
344static void flow_perturbation(struct timer_list *t)
345{
346	struct flow_filter *f = from_timer(f, t, perturb_timer);
347
348	get_random_bytes(&f->hashrnd, 4);
349	if (f->perturb_period)
350		mod_timer(&f->perturb_timer, jiffies + f->perturb_period);
351}
352
353static const struct nla_policy flow_policy[TCA_FLOW_MAX + 1] = {
354	[TCA_FLOW_KEYS]		= { .type = NLA_U32 },
355	[TCA_FLOW_MODE]		= { .type = NLA_U32 },
356	[TCA_FLOW_BASECLASS]	= { .type = NLA_U32 },
357	[TCA_FLOW_RSHIFT]	= { .type = NLA_U32 },
358	[TCA_FLOW_ADDEND]	= { .type = NLA_U32 },
359	[TCA_FLOW_MASK]		= { .type = NLA_U32 },
360	[TCA_FLOW_XOR]		= { .type = NLA_U32 },
361	[TCA_FLOW_DIVISOR]	= { .type = NLA_U32 },
362	[TCA_FLOW_ACT]		= { .type = NLA_NESTED },
363	[TCA_FLOW_POLICE]	= { .type = NLA_NESTED },
364	[TCA_FLOW_EMATCHES]	= { .type = NLA_NESTED },
365	[TCA_FLOW_PERTURB]	= { .type = NLA_U32 },
366};
367
368static void __flow_destroy_filter(struct flow_filter *f)
369{
370	del_timer_sync(&f->perturb_timer);
371	tcf_exts_destroy(&f->exts);
372	tcf_em_tree_destroy(&f->ematches);
373	tcf_exts_put_net(&f->exts);
374	kfree(f);
375}
376
377static void flow_destroy_filter_work(struct work_struct *work)
378{
379	struct flow_filter *f = container_of(to_rcu_work(work),
380					     struct flow_filter,
381					     rwork);
382	rtnl_lock();
383	__flow_destroy_filter(f);
384	rtnl_unlock();
385}
386
387static int flow_change(struct net *net, struct sk_buff *in_skb,
388		       struct tcf_proto *tp, unsigned long base,
389		       u32 handle, struct nlattr **tca,
390		       void **arg, bool ovr, bool rtnl_held,
391		       struct netlink_ext_ack *extack)
392{
393	struct flow_head *head = rtnl_dereference(tp->root);
394	struct flow_filter *fold, *fnew;
395	struct nlattr *opt = tca[TCA_OPTIONS];
396	struct nlattr *tb[TCA_FLOW_MAX + 1];
 
 
397	unsigned int nkeys = 0;
398	unsigned int perturb_period = 0;
399	u32 baseclass = 0;
400	u32 keymask = 0;
401	u32 mode;
402	int err;
403
404	if (opt == NULL)
405		return -EINVAL;
406
407	err = nla_parse_nested_deprecated(tb, TCA_FLOW_MAX, opt, flow_policy,
408					  NULL);
409	if (err < 0)
410		return err;
411
412	if (tb[TCA_FLOW_BASECLASS]) {
413		baseclass = nla_get_u32(tb[TCA_FLOW_BASECLASS]);
414		if (TC_H_MIN(baseclass) == 0)
415			return -EINVAL;
416	}
417
418	if (tb[TCA_FLOW_KEYS]) {
419		keymask = nla_get_u32(tb[TCA_FLOW_KEYS]);
420
421		nkeys = hweight32(keymask);
422		if (nkeys == 0)
423			return -EINVAL;
424
425		if (fls(keymask) - 1 > FLOW_KEY_MAX)
426			return -EOPNOTSUPP;
427
428		if ((keymask & (FLOW_KEY_SKUID|FLOW_KEY_SKGID)) &&
429		    sk_user_ns(NETLINK_CB(in_skb).sk) != &init_user_ns)
430			return -EOPNOTSUPP;
431	}
432
433	fnew = kzalloc(sizeof(*fnew), GFP_KERNEL);
434	if (!fnew)
435		return -ENOBUFS;
436
437	err = tcf_em_tree_validate(tp, tb[TCA_FLOW_EMATCHES], &fnew->ematches);
438	if (err < 0)
439		goto err1;
440
441	err = tcf_exts_init(&fnew->exts, net, TCA_FLOW_ACT, TCA_FLOW_POLICE);
442	if (err < 0)
443		goto err2;
444
445	err = tcf_exts_validate(net, tp, tb, tca[TCA_RATE], &fnew->exts, ovr,
446				true, extack);
447	if (err < 0)
448		goto err2;
449
450	fold = *arg;
451	if (fold) {
452		err = -EINVAL;
453		if (fold->handle != handle && handle)
454			goto err2;
455
456		/* Copy fold into fnew */
457		fnew->tp = fold->tp;
458		fnew->handle = fold->handle;
459		fnew->nkeys = fold->nkeys;
460		fnew->keymask = fold->keymask;
461		fnew->mode = fold->mode;
462		fnew->mask = fold->mask;
463		fnew->xor = fold->xor;
464		fnew->rshift = fold->rshift;
465		fnew->addend = fold->addend;
466		fnew->divisor = fold->divisor;
467		fnew->baseclass = fold->baseclass;
468		fnew->hashrnd = fold->hashrnd;
469
470		mode = fold->mode;
471		if (tb[TCA_FLOW_MODE])
472			mode = nla_get_u32(tb[TCA_FLOW_MODE]);
473		if (mode != FLOW_MODE_HASH && nkeys > 1)
474			goto err2;
475
476		if (mode == FLOW_MODE_HASH)
477			perturb_period = fold->perturb_period;
478		if (tb[TCA_FLOW_PERTURB]) {
479			if (mode != FLOW_MODE_HASH)
480				goto err2;
481			perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
482		}
483	} else {
484		err = -EINVAL;
485		if (!handle)
486			goto err2;
487		if (!tb[TCA_FLOW_KEYS])
488			goto err2;
489
490		mode = FLOW_MODE_MAP;
491		if (tb[TCA_FLOW_MODE])
492			mode = nla_get_u32(tb[TCA_FLOW_MODE]);
493		if (mode != FLOW_MODE_HASH && nkeys > 1)
494			goto err2;
495
496		if (tb[TCA_FLOW_PERTURB]) {
497			if (mode != FLOW_MODE_HASH)
498				goto err2;
499			perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
500		}
501
502		if (TC_H_MAJ(baseclass) == 0) {
503			struct Qdisc *q = tcf_block_q(tp->chain->block);
504
505			baseclass = TC_H_MAKE(q->handle, baseclass);
506		}
507		if (TC_H_MIN(baseclass) == 0)
508			baseclass = TC_H_MAKE(baseclass, 1);
509
510		fnew->handle = handle;
511		fnew->mask  = ~0U;
512		fnew->tp = tp;
513		get_random_bytes(&fnew->hashrnd, 4);
 
 
 
 
 
 
 
 
514	}
515
516	timer_setup(&fnew->perturb_timer, flow_perturbation, TIMER_DEFERRABLE);
 
517
518	tcf_block_netif_keep_dst(tp->chain->block);
519
520	if (tb[TCA_FLOW_KEYS]) {
521		fnew->keymask = keymask;
522		fnew->nkeys   = nkeys;
523	}
524
525	fnew->mode = mode;
526
527	if (tb[TCA_FLOW_MASK])
528		fnew->mask = nla_get_u32(tb[TCA_FLOW_MASK]);
529	if (tb[TCA_FLOW_XOR])
530		fnew->xor = nla_get_u32(tb[TCA_FLOW_XOR]);
531	if (tb[TCA_FLOW_RSHIFT])
532		fnew->rshift = nla_get_u32(tb[TCA_FLOW_RSHIFT]);
533	if (tb[TCA_FLOW_ADDEND])
534		fnew->addend = nla_get_u32(tb[TCA_FLOW_ADDEND]);
535
536	if (tb[TCA_FLOW_DIVISOR])
537		fnew->divisor = nla_get_u32(tb[TCA_FLOW_DIVISOR]);
538	if (baseclass)
539		fnew->baseclass = baseclass;
540
541	fnew->perturb_period = perturb_period;
 
542	if (perturb_period)
543		mod_timer(&fnew->perturb_timer, jiffies + perturb_period);
544
545	if (!*arg)
546		list_add_tail_rcu(&fnew->list, &head->filters);
547	else
548		list_replace_rcu(&fold->list, &fnew->list);
549
550	*arg = fnew;
551
552	if (fold) {
553		tcf_exts_get_net(&fold->exts);
554		tcf_queue_work(&fold->rwork, flow_destroy_filter_work);
555	}
556	return 0;
557
558err2:
559	tcf_exts_destroy(&fnew->exts);
560	tcf_em_tree_destroy(&fnew->ematches);
561err1:
562	kfree(fnew);
563	return err;
564}
565
566static int flow_delete(struct tcf_proto *tp, void *arg, bool *last,
567		       bool rtnl_held, struct netlink_ext_ack *extack)
568{
569	struct flow_head *head = rtnl_dereference(tp->root);
570	struct flow_filter *f = arg;
 
 
 
571
572	list_del_rcu(&f->list);
573	tcf_exts_get_net(&f->exts);
574	tcf_queue_work(&f->rwork, flow_destroy_filter_work);
575	*last = list_empty(&head->filters);
 
 
 
 
576	return 0;
577}
578
579static int flow_init(struct tcf_proto *tp)
580{
581	struct flow_head *head;
582
583	head = kzalloc(sizeof(*head), GFP_KERNEL);
584	if (head == NULL)
585		return -ENOBUFS;
586	INIT_LIST_HEAD(&head->filters);
587	rcu_assign_pointer(tp->root, head);
588	return 0;
589}
590
591static void flow_destroy(struct tcf_proto *tp, bool rtnl_held,
592			 struct netlink_ext_ack *extack)
593{
594	struct flow_head *head = rtnl_dereference(tp->root);
595	struct flow_filter *f, *next;
596
597	list_for_each_entry_safe(f, next, &head->filters, list) {
598		list_del_rcu(&f->list);
599		if (tcf_exts_get_net(&f->exts))
600			tcf_queue_work(&f->rwork, flow_destroy_filter_work);
601		else
602			__flow_destroy_filter(f);
603	}
604	kfree_rcu(head, rcu);
605}
606
607static void *flow_get(struct tcf_proto *tp, u32 handle)
608{
609	struct flow_head *head = rtnl_dereference(tp->root);
610	struct flow_filter *f;
611
612	list_for_each_entry(f, &head->filters, list)
613		if (f->handle == handle)
614			return f;
615	return NULL;
616}
617
618static int flow_dump(struct net *net, struct tcf_proto *tp, void *fh,
619		     struct sk_buff *skb, struct tcmsg *t, bool rtnl_held)
620{
621	struct flow_filter *f = fh;
 
 
 
 
 
622	struct nlattr *nest;
623
624	if (f == NULL)
625		return skb->len;
626
627	t->tcm_handle = f->handle;
628
629	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
630	if (nest == NULL)
631		goto nla_put_failure;
632
633	if (nla_put_u32(skb, TCA_FLOW_KEYS, f->keymask) ||
634	    nla_put_u32(skb, TCA_FLOW_MODE, f->mode))
635		goto nla_put_failure;
636
637	if (f->mask != ~0 || f->xor != 0) {
638		if (nla_put_u32(skb, TCA_FLOW_MASK, f->mask) ||
639		    nla_put_u32(skb, TCA_FLOW_XOR, f->xor))
640			goto nla_put_failure;
641	}
642	if (f->rshift &&
643	    nla_put_u32(skb, TCA_FLOW_RSHIFT, f->rshift))
644		goto nla_put_failure;
645	if (f->addend &&
646	    nla_put_u32(skb, TCA_FLOW_ADDEND, f->addend))
647		goto nla_put_failure;
 
 
 
648
649	if (f->divisor &&
650	    nla_put_u32(skb, TCA_FLOW_DIVISOR, f->divisor))
651		goto nla_put_failure;
652	if (f->baseclass &&
653	    nla_put_u32(skb, TCA_FLOW_BASECLASS, f->baseclass))
654		goto nla_put_failure;
655
656	if (f->perturb_period &&
657	    nla_put_u32(skb, TCA_FLOW_PERTURB, f->perturb_period / HZ))
658		goto nla_put_failure;
659
660	if (tcf_exts_dump(skb, &f->exts) < 0)
661		goto nla_put_failure;
662#ifdef CONFIG_NET_EMATCH
663	if (f->ematches.hdr.nmatches &&
664	    tcf_em_tree_dump(skb, &f->ematches, TCA_FLOW_EMATCHES) < 0)
665		goto nla_put_failure;
666#endif
667	nla_nest_end(skb, nest);
668
669	if (tcf_exts_dump_stats(skb, &f->exts) < 0)
670		goto nla_put_failure;
671
672	return skb->len;
673
674nla_put_failure:
675	nla_nest_cancel(skb, nest);
676	return -1;
677}
678
679static void flow_walk(struct tcf_proto *tp, struct tcf_walker *arg,
680		      bool rtnl_held)
681{
682	struct flow_head *head = rtnl_dereference(tp->root);
683	struct flow_filter *f;
684
685	list_for_each_entry(f, &head->filters, list) {
686		if (arg->count < arg->skip)
687			goto skip;
688		if (arg->fn(tp, f, arg) < 0) {
689			arg->stop = 1;
690			break;
691		}
692skip:
693		arg->count++;
694	}
695}
696
697static struct tcf_proto_ops cls_flow_ops __read_mostly = {
698	.kind		= "flow",
699	.classify	= flow_classify,
700	.init		= flow_init,
701	.destroy	= flow_destroy,
702	.change		= flow_change,
703	.delete		= flow_delete,
704	.get		= flow_get,
 
705	.dump		= flow_dump,
706	.walk		= flow_walk,
707	.owner		= THIS_MODULE,
708};
709
710static int __init cls_flow_init(void)
711{
712	return register_tcf_proto_ops(&cls_flow_ops);
713}
714
715static void __exit cls_flow_exit(void)
716{
717	unregister_tcf_proto_ops(&cls_flow_ops);
718}
719
720module_init(cls_flow_init);
721module_exit(cls_flow_exit);
722
723MODULE_LICENSE("GPL");
724MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>");
725MODULE_DESCRIPTION("TC flow classifier");
v3.1
 
  1/*
  2 * net/sched/cls_flow.c		Generic flow classifier
  3 *
  4 * Copyright (c) 2007, 2008 Patrick McHardy <kaber@trash.net>
  5 *
  6 * This program is free software; you can redistribute it and/or
  7 * modify it under the terms of the GNU General Public License
  8 * as published by the Free Software Foundation; either version 2
  9 * of the License, or (at your option) any later version.
 10 */
 11
 12#include <linux/kernel.h>
 13#include <linux/init.h>
 14#include <linux/list.h>
 15#include <linux/jhash.h>
 16#include <linux/random.h>
 17#include <linux/pkt_cls.h>
 18#include <linux/skbuff.h>
 19#include <linux/in.h>
 20#include <linux/ip.h>
 21#include <linux/ipv6.h>
 22#include <linux/if_vlan.h>
 23#include <linux/slab.h>
 
 
 24
 25#include <net/pkt_cls.h>
 26#include <net/ip.h>
 27#include <net/route.h>
 28#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 
 
 29#include <net/netfilter/nf_conntrack.h>
 30#endif
 31
 32struct flow_head {
 33	struct list_head	filters;
 
 34};
 35
 36struct flow_filter {
 37	struct list_head	list;
 38	struct tcf_exts		exts;
 39	struct tcf_ematch_tree	ematches;
 
 40	struct timer_list	perturb_timer;
 41	u32			perturb_period;
 42	u32			handle;
 43
 44	u32			nkeys;
 45	u32			keymask;
 46	u32			mode;
 47	u32			mask;
 48	u32			xor;
 49	u32			rshift;
 50	u32			addend;
 51	u32			divisor;
 52	u32			baseclass;
 53	u32			hashrnd;
 54};
 55
 56static const struct tcf_ext_map flow_ext_map = {
 57	.action	= TCA_FLOW_ACT,
 58	.police	= TCA_FLOW_POLICE,
 59};
 60
 61static inline u32 addr_fold(void *addr)
 62{
 63	unsigned long a = (unsigned long)addr;
 64
 65	return (a & 0xFFFFFFFF) ^ (BITS_PER_LONG > 32 ? a >> 32 : 0);
 66}
 67
 68static u32 flow_get_src(struct sk_buff *skb)
 69{
 70	switch (skb->protocol) {
 71	case htons(ETH_P_IP):
 72		if (pskb_network_may_pull(skb, sizeof(struct iphdr)))
 73			return ntohl(ip_hdr(skb)->saddr);
 74		break;
 75	case htons(ETH_P_IPV6):
 76		if (pskb_network_may_pull(skb, sizeof(struct ipv6hdr)))
 77			return ntohl(ipv6_hdr(skb)->saddr.s6_addr32[3]);
 78		break;
 79	}
 80
 81	return addr_fold(skb->sk);
 82}
 83
 84static u32 flow_get_dst(struct sk_buff *skb)
 85{
 86	switch (skb->protocol) {
 87	case htons(ETH_P_IP):
 88		if (pskb_network_may_pull(skb, sizeof(struct iphdr)))
 89			return ntohl(ip_hdr(skb)->daddr);
 90		break;
 91	case htons(ETH_P_IPV6):
 92		if (pskb_network_may_pull(skb, sizeof(struct ipv6hdr)))
 93			return ntohl(ipv6_hdr(skb)->daddr.s6_addr32[3]);
 94		break;
 95	}
 96
 97	return addr_fold(skb_dst(skb)) ^ (__force u16)skb->protocol;
 98}
 99
100static u32 flow_get_proto(struct sk_buff *skb)
 
101{
102	switch (skb->protocol) {
103	case htons(ETH_P_IP):
104		return pskb_network_may_pull(skb, sizeof(struct iphdr)) ?
105		       ip_hdr(skb)->protocol : 0;
106	case htons(ETH_P_IPV6):
107		return pskb_network_may_pull(skb, sizeof(struct ipv6hdr)) ?
108		       ipv6_hdr(skb)->nexthdr : 0;
109	default:
110		return 0;
111	}
112}
113
114static u32 flow_get_proto_src(struct sk_buff *skb)
 
115{
116	switch (skb->protocol) {
117	case htons(ETH_P_IP): {
118		struct iphdr *iph;
119		int poff;
120
121		if (!pskb_network_may_pull(skb, sizeof(*iph)))
122			break;
123		iph = ip_hdr(skb);
124		if (ip_is_fragment(iph))
125			break;
126		poff = proto_ports_offset(iph->protocol);
127		if (poff >= 0 &&
128		    pskb_network_may_pull(skb, iph->ihl * 4 + 2 + poff)) {
129			iph = ip_hdr(skb);
130			return ntohs(*(__be16 *)((void *)iph + iph->ihl * 4 +
131						 poff));
132		}
133		break;
134	}
135	case htons(ETH_P_IPV6): {
136		struct ipv6hdr *iph;
137		int poff;
138
139		if (!pskb_network_may_pull(skb, sizeof(*iph)))
140			break;
141		iph = ipv6_hdr(skb);
142		poff = proto_ports_offset(iph->nexthdr);
143		if (poff >= 0 &&
144		    pskb_network_may_pull(skb, sizeof(*iph) + poff + 2)) {
145			iph = ipv6_hdr(skb);
146			return ntohs(*(__be16 *)((void *)iph + sizeof(*iph) +
147						 poff));
148		}
149		break;
150	}
151	}
152
153	return addr_fold(skb->sk);
154}
155
156static u32 flow_get_proto_dst(struct sk_buff *skb)
 
157{
158	switch (skb->protocol) {
159	case htons(ETH_P_IP): {
160		struct iphdr *iph;
161		int poff;
162
163		if (!pskb_network_may_pull(skb, sizeof(*iph)))
164			break;
165		iph = ip_hdr(skb);
166		if (ip_is_fragment(iph))
167			break;
168		poff = proto_ports_offset(iph->protocol);
169		if (poff >= 0 &&
170		    pskb_network_may_pull(skb, iph->ihl * 4 + 4 + poff)) {
171			iph = ip_hdr(skb);
172			return ntohs(*(__be16 *)((void *)iph + iph->ihl * 4 +
173						 2 + poff));
174		}
175		break;
176	}
177	case htons(ETH_P_IPV6): {
178		struct ipv6hdr *iph;
179		int poff;
180
181		if (!pskb_network_may_pull(skb, sizeof(*iph)))
182			break;
183		iph = ipv6_hdr(skb);
184		poff = proto_ports_offset(iph->nexthdr);
185		if (poff >= 0 &&
186		    pskb_network_may_pull(skb, sizeof(*iph) + poff + 4)) {
187			iph = ipv6_hdr(skb);
188			return ntohs(*(__be16 *)((void *)iph + sizeof(*iph) +
189						 poff + 2));
190		}
191		break;
192	}
193	}
194
195	return addr_fold(skb_dst(skb)) ^ (__force u16)skb->protocol;
196}
197
198static u32 flow_get_iif(const struct sk_buff *skb)
199{
200	return skb->skb_iif;
201}
202
203static u32 flow_get_priority(const struct sk_buff *skb)
204{
205	return skb->priority;
206}
207
208static u32 flow_get_mark(const struct sk_buff *skb)
209{
210	return skb->mark;
211}
212
213static u32 flow_get_nfct(const struct sk_buff *skb)
214{
215#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
216	return addr_fold(skb->nfct);
217#else
218	return 0;
219#endif
220}
221
222#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
223#define CTTUPLE(skb, member)						\
224({									\
225	enum ip_conntrack_info ctinfo;					\
226	struct nf_conn *ct = nf_ct_get(skb, &ctinfo);			\
227	if (ct == NULL)							\
228		goto fallback;						\
229	ct->tuplehash[CTINFO2DIR(ctinfo)].tuple.member;			\
230})
231#else
232#define CTTUPLE(skb, member)						\
233({									\
234	goto fallback;							\
235	0;								\
236})
237#endif
238
239static u32 flow_get_nfct_src(struct sk_buff *skb)
 
240{
241	switch (skb->protocol) {
242	case htons(ETH_P_IP):
243		return ntohl(CTTUPLE(skb, src.u3.ip));
244	case htons(ETH_P_IPV6):
245		return ntohl(CTTUPLE(skb, src.u3.ip6[3]));
246	}
247fallback:
248	return flow_get_src(skb);
249}
250
251static u32 flow_get_nfct_dst(struct sk_buff *skb)
 
252{
253	switch (skb->protocol) {
254	case htons(ETH_P_IP):
255		return ntohl(CTTUPLE(skb, dst.u3.ip));
256	case htons(ETH_P_IPV6):
257		return ntohl(CTTUPLE(skb, dst.u3.ip6[3]));
258	}
259fallback:
260	return flow_get_dst(skb);
261}
262
263static u32 flow_get_nfct_proto_src(struct sk_buff *skb)
 
264{
265	return ntohs(CTTUPLE(skb, src.u.all));
266fallback:
267	return flow_get_proto_src(skb);
268}
269
270static u32 flow_get_nfct_proto_dst(struct sk_buff *skb)
 
271{
272	return ntohs(CTTUPLE(skb, dst.u.all));
273fallback:
274	return flow_get_proto_dst(skb);
275}
276
277static u32 flow_get_rtclassid(const struct sk_buff *skb)
278{
279#ifdef CONFIG_IP_ROUTE_CLASSID
280	if (skb_dst(skb))
281		return skb_dst(skb)->tclassid;
282#endif
283	return 0;
284}
285
286static u32 flow_get_skuid(const struct sk_buff *skb)
287{
288	if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file)
289		return skb->sk->sk_socket->file->f_cred->fsuid;
 
 
 
 
 
290	return 0;
291}
292
293static u32 flow_get_skgid(const struct sk_buff *skb)
294{
295	if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file)
296		return skb->sk->sk_socket->file->f_cred->fsgid;
 
 
 
 
 
297	return 0;
298}
299
300static u32 flow_get_vlan_tag(const struct sk_buff *skb)
301{
302	u16 uninitialized_var(tag);
303
304	if (vlan_get_tag(skb, &tag) < 0)
305		return 0;
306	return tag & VLAN_VID_MASK;
307}
308
309static u32 flow_get_rxhash(struct sk_buff *skb)
310{
311	return skb_get_rxhash(skb);
312}
313
314static u32 flow_key_get(struct sk_buff *skb, int key)
315{
316	switch (key) {
317	case FLOW_KEY_SRC:
318		return flow_get_src(skb);
319	case FLOW_KEY_DST:
320		return flow_get_dst(skb);
321	case FLOW_KEY_PROTO:
322		return flow_get_proto(skb);
323	case FLOW_KEY_PROTO_SRC:
324		return flow_get_proto_src(skb);
325	case FLOW_KEY_PROTO_DST:
326		return flow_get_proto_dst(skb);
327	case FLOW_KEY_IIF:
328		return flow_get_iif(skb);
329	case FLOW_KEY_PRIORITY:
330		return flow_get_priority(skb);
331	case FLOW_KEY_MARK:
332		return flow_get_mark(skb);
333	case FLOW_KEY_NFCT:
334		return flow_get_nfct(skb);
335	case FLOW_KEY_NFCT_SRC:
336		return flow_get_nfct_src(skb);
337	case FLOW_KEY_NFCT_DST:
338		return flow_get_nfct_dst(skb);
339	case FLOW_KEY_NFCT_PROTO_SRC:
340		return flow_get_nfct_proto_src(skb);
341	case FLOW_KEY_NFCT_PROTO_DST:
342		return flow_get_nfct_proto_dst(skb);
343	case FLOW_KEY_RTCLASSID:
344		return flow_get_rtclassid(skb);
345	case FLOW_KEY_SKUID:
346		return flow_get_skuid(skb);
347	case FLOW_KEY_SKGID:
348		return flow_get_skgid(skb);
349	case FLOW_KEY_VLAN_TAG:
350		return flow_get_vlan_tag(skb);
351	case FLOW_KEY_RXHASH:
352		return flow_get_rxhash(skb);
353	default:
354		WARN_ON(1);
355		return 0;
356	}
357}
358
 
 
 
 
 
 
 
 
 
 
359static int flow_classify(struct sk_buff *skb, const struct tcf_proto *tp,
360			 struct tcf_result *res)
361{
362	struct flow_head *head = tp->root;
363	struct flow_filter *f;
364	u32 keymask;
365	u32 classid;
366	unsigned int n, key;
367	int r;
368
369	list_for_each_entry(f, &head->filters, list) {
370		u32 keys[f->nkeys];
 
371
372		if (!tcf_em_tree_match(skb, &f->ematches, NULL))
373			continue;
374
375		keymask = f->keymask;
 
 
376
377		for (n = 0; n < f->nkeys; n++) {
378			key = ffs(keymask) - 1;
379			keymask &= ~(1 << key);
380			keys[n] = flow_key_get(skb, key);
381		}
382
383		if (f->mode == FLOW_MODE_HASH)
384			classid = jhash2(keys, f->nkeys, f->hashrnd);
385		else {
386			classid = keys[0];
387			classid = (classid & f->mask) ^ f->xor;
388			classid = (classid >> f->rshift) + f->addend;
389		}
390
391		if (f->divisor)
392			classid %= f->divisor;
393
394		res->class   = 0;
395		res->classid = TC_H_MAKE(f->baseclass, f->baseclass + classid);
396
397		r = tcf_exts_exec(skb, &f->exts, res);
398		if (r < 0)
399			continue;
400		return r;
401	}
402	return -1;
403}
404
405static void flow_perturbation(unsigned long arg)
406{
407	struct flow_filter *f = (struct flow_filter *)arg;
408
409	get_random_bytes(&f->hashrnd, 4);
410	if (f->perturb_period)
411		mod_timer(&f->perturb_timer, jiffies + f->perturb_period);
412}
413
414static const struct nla_policy flow_policy[TCA_FLOW_MAX + 1] = {
415	[TCA_FLOW_KEYS]		= { .type = NLA_U32 },
416	[TCA_FLOW_MODE]		= { .type = NLA_U32 },
417	[TCA_FLOW_BASECLASS]	= { .type = NLA_U32 },
418	[TCA_FLOW_RSHIFT]	= { .type = NLA_U32 },
419	[TCA_FLOW_ADDEND]	= { .type = NLA_U32 },
420	[TCA_FLOW_MASK]		= { .type = NLA_U32 },
421	[TCA_FLOW_XOR]		= { .type = NLA_U32 },
422	[TCA_FLOW_DIVISOR]	= { .type = NLA_U32 },
423	[TCA_FLOW_ACT]		= { .type = NLA_NESTED },
424	[TCA_FLOW_POLICE]	= { .type = NLA_NESTED },
425	[TCA_FLOW_EMATCHES]	= { .type = NLA_NESTED },
426	[TCA_FLOW_PERTURB]	= { .type = NLA_U32 },
427};
428
429static int flow_change(struct tcf_proto *tp, unsigned long base,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
430		       u32 handle, struct nlattr **tca,
431		       unsigned long *arg)
 
432{
433	struct flow_head *head = tp->root;
434	struct flow_filter *f;
435	struct nlattr *opt = tca[TCA_OPTIONS];
436	struct nlattr *tb[TCA_FLOW_MAX + 1];
437	struct tcf_exts e;
438	struct tcf_ematch_tree t;
439	unsigned int nkeys = 0;
440	unsigned int perturb_period = 0;
441	u32 baseclass = 0;
442	u32 keymask = 0;
443	u32 mode;
444	int err;
445
446	if (opt == NULL)
447		return -EINVAL;
448
449	err = nla_parse_nested(tb, TCA_FLOW_MAX, opt, flow_policy);
 
450	if (err < 0)
451		return err;
452
453	if (tb[TCA_FLOW_BASECLASS]) {
454		baseclass = nla_get_u32(tb[TCA_FLOW_BASECLASS]);
455		if (TC_H_MIN(baseclass) == 0)
456			return -EINVAL;
457	}
458
459	if (tb[TCA_FLOW_KEYS]) {
460		keymask = nla_get_u32(tb[TCA_FLOW_KEYS]);
461
462		nkeys = hweight32(keymask);
463		if (nkeys == 0)
464			return -EINVAL;
465
466		if (fls(keymask) - 1 > FLOW_KEY_MAX)
467			return -EOPNOTSUPP;
 
 
 
 
468	}
469
470	err = tcf_exts_validate(tp, tb, tca[TCA_RATE], &e, &flow_ext_map);
 
 
 
 
 
 
 
 
471	if (err < 0)
472		return err;
473
474	err = tcf_em_tree_validate(tp, tb[TCA_FLOW_EMATCHES], &t);
 
475	if (err < 0)
476		goto err1;
477
478	f = (struct flow_filter *)*arg;
479	if (f != NULL) {
480		err = -EINVAL;
481		if (f->handle != handle && handle)
482			goto err2;
483
484		mode = f->mode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
485		if (tb[TCA_FLOW_MODE])
486			mode = nla_get_u32(tb[TCA_FLOW_MODE]);
487		if (mode != FLOW_MODE_HASH && nkeys > 1)
488			goto err2;
489
490		if (mode == FLOW_MODE_HASH)
491			perturb_period = f->perturb_period;
492		if (tb[TCA_FLOW_PERTURB]) {
493			if (mode != FLOW_MODE_HASH)
494				goto err2;
495			perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
496		}
497	} else {
498		err = -EINVAL;
499		if (!handle)
500			goto err2;
501		if (!tb[TCA_FLOW_KEYS])
502			goto err2;
503
504		mode = FLOW_MODE_MAP;
505		if (tb[TCA_FLOW_MODE])
506			mode = nla_get_u32(tb[TCA_FLOW_MODE]);
507		if (mode != FLOW_MODE_HASH && nkeys > 1)
508			goto err2;
509
510		if (tb[TCA_FLOW_PERTURB]) {
511			if (mode != FLOW_MODE_HASH)
512				goto err2;
513			perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
514		}
515
516		if (TC_H_MAJ(baseclass) == 0)
517			baseclass = TC_H_MAKE(tp->q->handle, baseclass);
 
 
 
518		if (TC_H_MIN(baseclass) == 0)
519			baseclass = TC_H_MAKE(baseclass, 1);
520
521		err = -ENOBUFS;
522		f = kzalloc(sizeof(*f), GFP_KERNEL);
523		if (f == NULL)
524			goto err2;
525
526		f->handle = handle;
527		f->mask	  = ~0U;
528
529		get_random_bytes(&f->hashrnd, 4);
530		f->perturb_timer.function = flow_perturbation;
531		f->perturb_timer.data = (unsigned long)f;
532		init_timer_deferrable(&f->perturb_timer);
533	}
534
535	tcf_exts_change(tp, &f->exts, &e);
536	tcf_em_tree_change(tp, &f->ematches, &t);
537
538	tcf_tree_lock(tp);
539
540	if (tb[TCA_FLOW_KEYS]) {
541		f->keymask = keymask;
542		f->nkeys   = nkeys;
543	}
544
545	f->mode = mode;
546
547	if (tb[TCA_FLOW_MASK])
548		f->mask = nla_get_u32(tb[TCA_FLOW_MASK]);
549	if (tb[TCA_FLOW_XOR])
550		f->xor = nla_get_u32(tb[TCA_FLOW_XOR]);
551	if (tb[TCA_FLOW_RSHIFT])
552		f->rshift = nla_get_u32(tb[TCA_FLOW_RSHIFT]);
553	if (tb[TCA_FLOW_ADDEND])
554		f->addend = nla_get_u32(tb[TCA_FLOW_ADDEND]);
555
556	if (tb[TCA_FLOW_DIVISOR])
557		f->divisor = nla_get_u32(tb[TCA_FLOW_DIVISOR]);
558	if (baseclass)
559		f->baseclass = baseclass;
560
561	f->perturb_period = perturb_period;
562	del_timer(&f->perturb_timer);
563	if (perturb_period)
564		mod_timer(&f->perturb_timer, jiffies + perturb_period);
565
566	if (*arg == 0)
567		list_add_tail(&f->list, &head->filters);
568
569	tcf_tree_unlock(tp);
570
571	*arg = (unsigned long)f;
 
 
 
 
 
572	return 0;
573
574err2:
575	tcf_em_tree_destroy(tp, &t);
 
576err1:
577	tcf_exts_destroy(tp, &e);
578	return err;
579}
580
581static void flow_destroy_filter(struct tcf_proto *tp, struct flow_filter *f)
 
582{
583	del_timer_sync(&f->perturb_timer);
584	tcf_exts_destroy(tp, &f->exts);
585	tcf_em_tree_destroy(tp, &f->ematches);
586	kfree(f);
587}
588
589static int flow_delete(struct tcf_proto *tp, unsigned long arg)
590{
591	struct flow_filter *f = (struct flow_filter *)arg;
592
593	tcf_tree_lock(tp);
594	list_del(&f->list);
595	tcf_tree_unlock(tp);
596	flow_destroy_filter(tp, f);
597	return 0;
598}
599
600static int flow_init(struct tcf_proto *tp)
601{
602	struct flow_head *head;
603
604	head = kzalloc(sizeof(*head), GFP_KERNEL);
605	if (head == NULL)
606		return -ENOBUFS;
607	INIT_LIST_HEAD(&head->filters);
608	tp->root = head;
609	return 0;
610}
611
612static void flow_destroy(struct tcf_proto *tp)
 
613{
614	struct flow_head *head = tp->root;
615	struct flow_filter *f, *next;
616
617	list_for_each_entry_safe(f, next, &head->filters, list) {
618		list_del(&f->list);
619		flow_destroy_filter(tp, f);
 
 
 
620	}
621	kfree(head);
622}
623
624static unsigned long flow_get(struct tcf_proto *tp, u32 handle)
625{
626	struct flow_head *head = tp->root;
627	struct flow_filter *f;
628
629	list_for_each_entry(f, &head->filters, list)
630		if (f->handle == handle)
631			return (unsigned long)f;
632	return 0;
633}
634
635static void flow_put(struct tcf_proto *tp, unsigned long f)
 
636{
637}
638
639static int flow_dump(struct tcf_proto *tp, unsigned long fh,
640		     struct sk_buff *skb, struct tcmsg *t)
641{
642	struct flow_filter *f = (struct flow_filter *)fh;
643	struct nlattr *nest;
644
645	if (f == NULL)
646		return skb->len;
647
648	t->tcm_handle = f->handle;
649
650	nest = nla_nest_start(skb, TCA_OPTIONS);
651	if (nest == NULL)
652		goto nla_put_failure;
653
654	NLA_PUT_U32(skb, TCA_FLOW_KEYS, f->keymask);
655	NLA_PUT_U32(skb, TCA_FLOW_MODE, f->mode);
 
656
657	if (f->mask != ~0 || f->xor != 0) {
658		NLA_PUT_U32(skb, TCA_FLOW_MASK, f->mask);
659		NLA_PUT_U32(skb, TCA_FLOW_XOR, f->xor);
 
660	}
661	if (f->rshift)
662		NLA_PUT_U32(skb, TCA_FLOW_RSHIFT, f->rshift);
663	if (f->addend)
664		NLA_PUT_U32(skb, TCA_FLOW_ADDEND, f->addend);
665
666	if (f->divisor)
667		NLA_PUT_U32(skb, TCA_FLOW_DIVISOR, f->divisor);
668	if (f->baseclass)
669		NLA_PUT_U32(skb, TCA_FLOW_BASECLASS, f->baseclass);
670
671	if (f->perturb_period)
672		NLA_PUT_U32(skb, TCA_FLOW_PERTURB, f->perturb_period / HZ);
 
 
 
 
 
 
 
 
673
674	if (tcf_exts_dump(skb, &f->exts, &flow_ext_map) < 0)
675		goto nla_put_failure;
676#ifdef CONFIG_NET_EMATCH
677	if (f->ematches.hdr.nmatches &&
678	    tcf_em_tree_dump(skb, &f->ematches, TCA_FLOW_EMATCHES) < 0)
679		goto nla_put_failure;
680#endif
681	nla_nest_end(skb, nest);
682
683	if (tcf_exts_dump_stats(skb, &f->exts, &flow_ext_map) < 0)
684		goto nla_put_failure;
685
686	return skb->len;
687
688nla_put_failure:
689	nlmsg_trim(skb, nest);
690	return -1;
691}
692
693static void flow_walk(struct tcf_proto *tp, struct tcf_walker *arg)
 
694{
695	struct flow_head *head = tp->root;
696	struct flow_filter *f;
697
698	list_for_each_entry(f, &head->filters, list) {
699		if (arg->count < arg->skip)
700			goto skip;
701		if (arg->fn(tp, (unsigned long)f, arg) < 0) {
702			arg->stop = 1;
703			break;
704		}
705skip:
706		arg->count++;
707	}
708}
709
710static struct tcf_proto_ops cls_flow_ops __read_mostly = {
711	.kind		= "flow",
712	.classify	= flow_classify,
713	.init		= flow_init,
714	.destroy	= flow_destroy,
715	.change		= flow_change,
716	.delete		= flow_delete,
717	.get		= flow_get,
718	.put		= flow_put,
719	.dump		= flow_dump,
720	.walk		= flow_walk,
721	.owner		= THIS_MODULE,
722};
723
724static int __init cls_flow_init(void)
725{
726	return register_tcf_proto_ops(&cls_flow_ops);
727}
728
729static void __exit cls_flow_exit(void)
730{
731	unregister_tcf_proto_ops(&cls_flow_ops);
732}
733
734module_init(cls_flow_init);
735module_exit(cls_flow_exit);
736
737MODULE_LICENSE("GPL");
738MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>");
739MODULE_DESCRIPTION("TC flow classifier");