Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Linux VM pressure
  4 *
  5 * Copyright 2012 Linaro Ltd.
  6 *		  Anton Vorontsov <anton.vorontsov@linaro.org>
  7 *
  8 * Based on ideas from Andrew Morton, David Rientjes, KOSAKI Motohiro,
  9 * Leonid Moiseichuk, Mel Gorman, Minchan Kim and Pekka Enberg.
 10 */
 11
 12#include <linux/cgroup.h>
 13#include <linux/fs.h>
 14#include <linux/log2.h>
 15#include <linux/sched.h>
 16#include <linux/mm.h>
 17#include <linux/vmstat.h>
 18#include <linux/eventfd.h>
 19#include <linux/slab.h>
 20#include <linux/swap.h>
 21#include <linux/printk.h>
 22#include <linux/vmpressure.h>
 23
 24/*
 25 * The window size (vmpressure_win) is the number of scanned pages before
 26 * we try to analyze scanned/reclaimed ratio. So the window is used as a
 27 * rate-limit tunable for the "low" level notification, and also for
 28 * averaging the ratio for medium/critical levels. Using small window
 29 * sizes can cause lot of false positives, but too big window size will
 30 * delay the notifications.
 31 *
 32 * As the vmscan reclaimer logic works with chunks which are multiple of
 33 * SWAP_CLUSTER_MAX, it makes sense to use it for the window size as well.
 34 *
 35 * TODO: Make the window size depend on machine size, as we do for vmstat
 36 * thresholds. Currently we set it to 512 pages (2MB for 4KB pages).
 37 */
 38static const unsigned long vmpressure_win = SWAP_CLUSTER_MAX * 16;
 39
 40/*
 41 * These thresholds are used when we account memory pressure through
 42 * scanned/reclaimed ratio. The current values were chosen empirically. In
 43 * essence, they are percents: the higher the value, the more number
 44 * unsuccessful reclaims there were.
 45 */
 46static const unsigned int vmpressure_level_med = 60;
 47static const unsigned int vmpressure_level_critical = 95;
 48
 49/*
 50 * When there are too little pages left to scan, vmpressure() may miss the
 51 * critical pressure as number of pages will be less than "window size".
 52 * However, in that case the vmscan priority will raise fast as the
 53 * reclaimer will try to scan LRUs more deeply.
 54 *
 55 * The vmscan logic considers these special priorities:
 56 *
 57 * prio == DEF_PRIORITY (12): reclaimer starts with that value
 58 * prio <= DEF_PRIORITY - 2 : kswapd becomes somewhat overwhelmed
 59 * prio == 0                : close to OOM, kernel scans every page in an lru
 60 *
 61 * Any value in this range is acceptable for this tunable (i.e. from 12 to
 62 * 0). Current value for the vmpressure_level_critical_prio is chosen
 63 * empirically, but the number, in essence, means that we consider
 64 * critical level when scanning depth is ~10% of the lru size (vmscan
 65 * scans 'lru_size >> prio' pages, so it is actually 12.5%, or one
 66 * eights).
 67 */
 68static const unsigned int vmpressure_level_critical_prio = ilog2(100 / 10);
 69
 70static struct vmpressure *work_to_vmpressure(struct work_struct *work)
 71{
 72	return container_of(work, struct vmpressure, work);
 73}
 74
 75static struct vmpressure *vmpressure_parent(struct vmpressure *vmpr)
 76{
 77	struct cgroup_subsys_state *css = vmpressure_to_css(vmpr);
 78	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 79
 80	memcg = parent_mem_cgroup(memcg);
 81	if (!memcg)
 82		return NULL;
 83	return memcg_to_vmpressure(memcg);
 84}
 85
 86enum vmpressure_levels {
 87	VMPRESSURE_LOW = 0,
 88	VMPRESSURE_MEDIUM,
 89	VMPRESSURE_CRITICAL,
 90	VMPRESSURE_NUM_LEVELS,
 91};
 92
 93enum vmpressure_modes {
 94	VMPRESSURE_NO_PASSTHROUGH = 0,
 95	VMPRESSURE_HIERARCHY,
 96	VMPRESSURE_LOCAL,
 97	VMPRESSURE_NUM_MODES,
 98};
 99
100static const char * const vmpressure_str_levels[] = {
101	[VMPRESSURE_LOW] = "low",
102	[VMPRESSURE_MEDIUM] = "medium",
103	[VMPRESSURE_CRITICAL] = "critical",
104};
105
106static const char * const vmpressure_str_modes[] = {
107	[VMPRESSURE_NO_PASSTHROUGH] = "default",
108	[VMPRESSURE_HIERARCHY] = "hierarchy",
109	[VMPRESSURE_LOCAL] = "local",
110};
111
112static enum vmpressure_levels vmpressure_level(unsigned long pressure)
113{
114	if (pressure >= vmpressure_level_critical)
115		return VMPRESSURE_CRITICAL;
116	else if (pressure >= vmpressure_level_med)
117		return VMPRESSURE_MEDIUM;
118	return VMPRESSURE_LOW;
119}
120
121static enum vmpressure_levels vmpressure_calc_level(unsigned long scanned,
122						    unsigned long reclaimed)
123{
124	unsigned long scale = scanned + reclaimed;
125	unsigned long pressure = 0;
126
127	/*
128	 * reclaimed can be greater than scanned for things such as reclaimed
129	 * slab pages. shrink_node() just adds reclaimed pages without a
130	 * related increment to scanned pages.
131	 */
132	if (reclaimed >= scanned)
133		goto out;
134	/*
135	 * We calculate the ratio (in percents) of how many pages were
136	 * scanned vs. reclaimed in a given time frame (window). Note that
137	 * time is in VM reclaimer's "ticks", i.e. number of pages
138	 * scanned. This makes it possible to set desired reaction time
139	 * and serves as a ratelimit.
140	 */
141	pressure = scale - (reclaimed * scale / scanned);
142	pressure = pressure * 100 / scale;
143
144out:
145	pr_debug("%s: %3lu  (s: %lu  r: %lu)\n", __func__, pressure,
146		 scanned, reclaimed);
147
148	return vmpressure_level(pressure);
149}
150
151struct vmpressure_event {
152	struct eventfd_ctx *efd;
153	enum vmpressure_levels level;
154	enum vmpressure_modes mode;
155	struct list_head node;
156};
157
158static bool vmpressure_event(struct vmpressure *vmpr,
159			     const enum vmpressure_levels level,
160			     bool ancestor, bool signalled)
161{
162	struct vmpressure_event *ev;
163	bool ret = false;
164
165	mutex_lock(&vmpr->events_lock);
166	list_for_each_entry(ev, &vmpr->events, node) {
167		if (ancestor && ev->mode == VMPRESSURE_LOCAL)
168			continue;
169		if (signalled && ev->mode == VMPRESSURE_NO_PASSTHROUGH)
170			continue;
171		if (level < ev->level)
172			continue;
173		eventfd_signal(ev->efd, 1);
174		ret = true;
175	}
176	mutex_unlock(&vmpr->events_lock);
177
178	return ret;
179}
180
181static void vmpressure_work_fn(struct work_struct *work)
182{
183	struct vmpressure *vmpr = work_to_vmpressure(work);
184	unsigned long scanned;
185	unsigned long reclaimed;
186	enum vmpressure_levels level;
187	bool ancestor = false;
188	bool signalled = false;
189
190	spin_lock(&vmpr->sr_lock);
191	/*
192	 * Several contexts might be calling vmpressure(), so it is
193	 * possible that the work was rescheduled again before the old
194	 * work context cleared the counters. In that case we will run
195	 * just after the old work returns, but then scanned might be zero
196	 * here. No need for any locks here since we don't care if
197	 * vmpr->reclaimed is in sync.
198	 */
199	scanned = vmpr->tree_scanned;
200	if (!scanned) {
201		spin_unlock(&vmpr->sr_lock);
202		return;
203	}
204
205	reclaimed = vmpr->tree_reclaimed;
206	vmpr->tree_scanned = 0;
207	vmpr->tree_reclaimed = 0;
208	spin_unlock(&vmpr->sr_lock);
209
210	level = vmpressure_calc_level(scanned, reclaimed);
211
212	do {
213		if (vmpressure_event(vmpr, level, ancestor, signalled))
214			signalled = true;
215		ancestor = true;
216	} while ((vmpr = vmpressure_parent(vmpr)));
217}
218
219/**
220 * vmpressure() - Account memory pressure through scanned/reclaimed ratio
221 * @gfp:	reclaimer's gfp mask
222 * @memcg:	cgroup memory controller handle
223 * @tree:	legacy subtree mode
224 * @scanned:	number of pages scanned
225 * @reclaimed:	number of pages reclaimed
226 *
227 * This function should be called from the vmscan reclaim path to account
228 * "instantaneous" memory pressure (scanned/reclaimed ratio). The raw
229 * pressure index is then further refined and averaged over time.
230 *
231 * If @tree is set, vmpressure is in traditional userspace reporting
232 * mode: @memcg is considered the pressure root and userspace is
233 * notified of the entire subtree's reclaim efficiency.
234 *
235 * If @tree is not set, reclaim efficiency is recorded for @memcg, and
236 * only in-kernel users are notified.
237 *
238 * This function does not return any value.
239 */
240void vmpressure(gfp_t gfp, struct mem_cgroup *memcg, bool tree,
241		unsigned long scanned, unsigned long reclaimed)
242{
243	struct vmpressure *vmpr = memcg_to_vmpressure(memcg);
244
245	/*
246	 * Here we only want to account pressure that userland is able to
247	 * help us with. For example, suppose that DMA zone is under
248	 * pressure; if we notify userland about that kind of pressure,
249	 * then it will be mostly a waste as it will trigger unnecessary
250	 * freeing of memory by userland (since userland is more likely to
251	 * have HIGHMEM/MOVABLE pages instead of the DMA fallback). That
252	 * is why we include only movable, highmem and FS/IO pages.
253	 * Indirect reclaim (kswapd) sets sc->gfp_mask to GFP_KERNEL, so
254	 * we account it too.
255	 */
256	if (!(gfp & (__GFP_HIGHMEM | __GFP_MOVABLE | __GFP_IO | __GFP_FS)))
257		return;
258
259	/*
260	 * If we got here with no pages scanned, then that is an indicator
261	 * that reclaimer was unable to find any shrinkable LRUs at the
262	 * current scanning depth. But it does not mean that we should
263	 * report the critical pressure, yet. If the scanning priority
264	 * (scanning depth) goes too high (deep), we will be notified
265	 * through vmpressure_prio(). But so far, keep calm.
266	 */
267	if (!scanned)
268		return;
269
270	if (tree) {
271		spin_lock(&vmpr->sr_lock);
272		scanned = vmpr->tree_scanned += scanned;
273		vmpr->tree_reclaimed += reclaimed;
274		spin_unlock(&vmpr->sr_lock);
275
276		if (scanned < vmpressure_win)
277			return;
278		schedule_work(&vmpr->work);
279	} else {
280		enum vmpressure_levels level;
281
282		/* For now, no users for root-level efficiency */
283		if (!memcg || memcg == root_mem_cgroup)
284			return;
285
286		spin_lock(&vmpr->sr_lock);
287		scanned = vmpr->scanned += scanned;
288		reclaimed = vmpr->reclaimed += reclaimed;
289		if (scanned < vmpressure_win) {
290			spin_unlock(&vmpr->sr_lock);
291			return;
292		}
293		vmpr->scanned = vmpr->reclaimed = 0;
294		spin_unlock(&vmpr->sr_lock);
295
296		level = vmpressure_calc_level(scanned, reclaimed);
297
298		if (level > VMPRESSURE_LOW) {
299			/*
300			 * Let the socket buffer allocator know that
301			 * we are having trouble reclaiming LRU pages.
302			 *
303			 * For hysteresis keep the pressure state
304			 * asserted for a second in which subsequent
305			 * pressure events can occur.
306			 */
307			memcg->socket_pressure = jiffies + HZ;
308		}
309	}
310}
311
312/**
313 * vmpressure_prio() - Account memory pressure through reclaimer priority level
314 * @gfp:	reclaimer's gfp mask
315 * @memcg:	cgroup memory controller handle
316 * @prio:	reclaimer's priority
317 *
318 * This function should be called from the reclaim path every time when
319 * the vmscan's reclaiming priority (scanning depth) changes.
320 *
321 * This function does not return any value.
322 */
323void vmpressure_prio(gfp_t gfp, struct mem_cgroup *memcg, int prio)
324{
325	/*
326	 * We only use prio for accounting critical level. For more info
327	 * see comment for vmpressure_level_critical_prio variable above.
328	 */
329	if (prio > vmpressure_level_critical_prio)
330		return;
331
332	/*
333	 * OK, the prio is below the threshold, updating vmpressure
334	 * information before shrinker dives into long shrinking of long
335	 * range vmscan. Passing scanned = vmpressure_win, reclaimed = 0
336	 * to the vmpressure() basically means that we signal 'critical'
337	 * level.
338	 */
339	vmpressure(gfp, memcg, true, vmpressure_win, 0);
340}
341
342#define MAX_VMPRESSURE_ARGS_LEN	(strlen("critical") + strlen("hierarchy") + 2)
343
344/**
345 * vmpressure_register_event() - Bind vmpressure notifications to an eventfd
346 * @memcg:	memcg that is interested in vmpressure notifications
347 * @eventfd:	eventfd context to link notifications with
348 * @args:	event arguments (pressure level threshold, optional mode)
349 *
350 * This function associates eventfd context with the vmpressure
351 * infrastructure, so that the notifications will be delivered to the
352 * @eventfd. The @args parameter is a comma-delimited string that denotes a
353 * pressure level threshold (one of vmpressure_str_levels, i.e. "low", "medium",
354 * or "critical") and an optional mode (one of vmpressure_str_modes, i.e.
355 * "hierarchy" or "local").
356 *
357 * To be used as memcg event method.
358 *
359 * Return: 0 on success, -ENOMEM on memory failure or -EINVAL if @args could
360 * not be parsed.
361 */
362int vmpressure_register_event(struct mem_cgroup *memcg,
363			      struct eventfd_ctx *eventfd, const char *args)
364{
365	struct vmpressure *vmpr = memcg_to_vmpressure(memcg);
366	struct vmpressure_event *ev;
367	enum vmpressure_modes mode = VMPRESSURE_NO_PASSTHROUGH;
368	enum vmpressure_levels level;
369	char *spec, *spec_orig;
370	char *token;
371	int ret = 0;
372
373	spec_orig = spec = kstrndup(args, MAX_VMPRESSURE_ARGS_LEN, GFP_KERNEL);
374	if (!spec) {
375		ret = -ENOMEM;
376		goto out;
377	}
378
379	/* Find required level */
380	token = strsep(&spec, ",");
381	ret = match_string(vmpressure_str_levels, VMPRESSURE_NUM_LEVELS, token);
382	if (ret < 0)
383		goto out;
384	level = ret;
385
386	/* Find optional mode */
387	token = strsep(&spec, ",");
388	if (token) {
389		ret = match_string(vmpressure_str_modes, VMPRESSURE_NUM_MODES, token);
390		if (ret < 0)
391			goto out;
392		mode = ret;
393	}
394
395	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
396	if (!ev) {
397		ret = -ENOMEM;
398		goto out;
399	}
400
401	ev->efd = eventfd;
402	ev->level = level;
403	ev->mode = mode;
404
405	mutex_lock(&vmpr->events_lock);
406	list_add(&ev->node, &vmpr->events);
407	mutex_unlock(&vmpr->events_lock);
408	ret = 0;
409out:
410	kfree(spec_orig);
411	return ret;
412}
413
414/**
415 * vmpressure_unregister_event() - Unbind eventfd from vmpressure
416 * @memcg:	memcg handle
417 * @eventfd:	eventfd context that was used to link vmpressure with the @cg
418 *
419 * This function does internal manipulations to detach the @eventfd from
420 * the vmpressure notifications, and then frees internal resources
421 * associated with the @eventfd (but the @eventfd itself is not freed).
422 *
423 * To be used as memcg event method.
424 */
425void vmpressure_unregister_event(struct mem_cgroup *memcg,
426				 struct eventfd_ctx *eventfd)
427{
428	struct vmpressure *vmpr = memcg_to_vmpressure(memcg);
429	struct vmpressure_event *ev;
430
431	mutex_lock(&vmpr->events_lock);
432	list_for_each_entry(ev, &vmpr->events, node) {
433		if (ev->efd != eventfd)
434			continue;
435		list_del(&ev->node);
436		kfree(ev);
437		break;
438	}
439	mutex_unlock(&vmpr->events_lock);
440}
441
442/**
443 * vmpressure_init() - Initialize vmpressure control structure
444 * @vmpr:	Structure to be initialized
445 *
446 * This function should be called on every allocated vmpressure structure
447 * before any usage.
448 */
449void vmpressure_init(struct vmpressure *vmpr)
450{
451	spin_lock_init(&vmpr->sr_lock);
452	mutex_init(&vmpr->events_lock);
453	INIT_LIST_HEAD(&vmpr->events);
454	INIT_WORK(&vmpr->work, vmpressure_work_fn);
455}
456
457/**
458 * vmpressure_cleanup() - shuts down vmpressure control structure
459 * @vmpr:	Structure to be cleaned up
460 *
461 * This function should be called before the structure in which it is
462 * embedded is cleaned up.
463 */
464void vmpressure_cleanup(struct vmpressure *vmpr)
465{
466	/*
467	 * Make sure there is no pending work before eventfd infrastructure
468	 * goes away.
469	 */
470	flush_work(&vmpr->work);
471}