Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13#include <linux/mm.h>
14#include <linux/swap.h> /* struct reclaim_state */
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
20#include "slab.h"
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/kasan.h>
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
28#include <linux/debugobjects.h>
29#include <linux/kallsyms.h>
30#include <linux/memory.h>
31#include <linux/math64.h>
32#include <linux/fault-inject.h>
33#include <linux/stacktrace.h>
34#include <linux/prefetch.h>
35#include <linux/memcontrol.h>
36#include <linux/random.h>
37
38#include <trace/events/kmem.h>
39
40#include "internal.h"
41
42/*
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
47 *
48 * slab_mutex
49 *
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects:
55 * A. page->freelist -> List of object free in a page
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
96 * Overloading of page flags that are otherwise used for LRU management.
97 *
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
106 *
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
110 * freelist that allows lockless access to
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
113 *
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
116 * the fast path and disables lockless freelists.
117 */
118
119static inline int kmem_cache_debug(struct kmem_cache *s)
120{
121#ifdef CONFIG_SLUB_DEBUG
122 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
123#else
124 return 0;
125#endif
126}
127
128void *fixup_red_left(struct kmem_cache *s, void *p)
129{
130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 p += s->red_left_pad;
132
133 return p;
134}
135
136static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137{
138#ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s);
140#else
141 return false;
142#endif
143}
144
145/*
146 * Issues still to be resolved:
147 *
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
150 * - Variable sizing of the per node arrays
151 */
152
153/* Enable to test recovery from slab corruption on boot */
154#undef SLUB_RESILIENCY_TEST
155
156/* Enable to log cmpxchg failures */
157#undef SLUB_DEBUG_CMPXCHG
158
159/*
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 */
163#define MIN_PARTIAL 5
164
165/*
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
168 * sort the partial list by the number of objects in use.
169 */
170#define MAX_PARTIAL 10
171
172#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_STORE_USER)
174
175/*
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
178 */
179#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 SLAB_TRACE)
181
182
183/*
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
186 * metadata.
187 */
188#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189
190#define OO_SHIFT 16
191#define OO_MASK ((1 << OO_SHIFT) - 1)
192#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
193
194/* Internal SLUB flags */
195/* Poison object */
196#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
197/* Use cmpxchg_double */
198#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
199
200/*
201 * Tracking user of a slab.
202 */
203#define TRACK_ADDRS_COUNT 16
204struct track {
205 unsigned long addr; /* Called from address */
206#ifdef CONFIG_STACKTRACE
207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
208#endif
209 int cpu; /* Was running on cpu */
210 int pid; /* Pid context */
211 unsigned long when; /* When did the operation occur */
212};
213
214enum track_item { TRACK_ALLOC, TRACK_FREE };
215
216#ifdef CONFIG_SYSFS
217static int sysfs_slab_add(struct kmem_cache *);
218static int sysfs_slab_alias(struct kmem_cache *, const char *);
219static void memcg_propagate_slab_attrs(struct kmem_cache *s);
220static void sysfs_slab_remove(struct kmem_cache *s);
221#else
222static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
225static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
226static inline void sysfs_slab_remove(struct kmem_cache *s) { }
227#endif
228
229static inline void stat(const struct kmem_cache *s, enum stat_item si)
230{
231#ifdef CONFIG_SLUB_STATS
232 /*
233 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 * avoid this_cpu_add()'s irq-disable overhead.
235 */
236 raw_cpu_inc(s->cpu_slab->stat[si]);
237#endif
238}
239
240/********************************************************************
241 * Core slab cache functions
242 *******************************************************************/
243
244/*
245 * Returns freelist pointer (ptr). With hardening, this is obfuscated
246 * with an XOR of the address where the pointer is held and a per-cache
247 * random number.
248 */
249static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 unsigned long ptr_addr)
251{
252#ifdef CONFIG_SLAB_FREELIST_HARDENED
253 /*
254 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
255 * Normally, this doesn't cause any issues, as both set_freepointer()
256 * and get_freepointer() are called with a pointer with the same tag.
257 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
258 * example, when __free_slub() iterates over objects in a cache, it
259 * passes untagged pointers to check_object(). check_object() in turns
260 * calls get_freepointer() with an untagged pointer, which causes the
261 * freepointer to be restored incorrectly.
262 */
263 return (void *)((unsigned long)ptr ^ s->random ^
264 (unsigned long)kasan_reset_tag((void *)ptr_addr));
265#else
266 return ptr;
267#endif
268}
269
270/* Returns the freelist pointer recorded at location ptr_addr. */
271static inline void *freelist_dereference(const struct kmem_cache *s,
272 void *ptr_addr)
273{
274 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
275 (unsigned long)ptr_addr);
276}
277
278static inline void *get_freepointer(struct kmem_cache *s, void *object)
279{
280 return freelist_dereference(s, object + s->offset);
281}
282
283static void prefetch_freepointer(const struct kmem_cache *s, void *object)
284{
285 prefetch(object + s->offset);
286}
287
288static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
289{
290 unsigned long freepointer_addr;
291 void *p;
292
293 if (!debug_pagealloc_enabled())
294 return get_freepointer(s, object);
295
296 freepointer_addr = (unsigned long)object + s->offset;
297 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
298 return freelist_ptr(s, p, freepointer_addr);
299}
300
301static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
302{
303 unsigned long freeptr_addr = (unsigned long)object + s->offset;
304
305#ifdef CONFIG_SLAB_FREELIST_HARDENED
306 BUG_ON(object == fp); /* naive detection of double free or corruption */
307#endif
308
309 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
310}
311
312/* Loop over all objects in a slab */
313#define for_each_object(__p, __s, __addr, __objects) \
314 for (__p = fixup_red_left(__s, __addr); \
315 __p < (__addr) + (__objects) * (__s)->size; \
316 __p += (__s)->size)
317
318/* Determine object index from a given position */
319static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
320{
321 return (kasan_reset_tag(p) - addr) / s->size;
322}
323
324static inline unsigned int order_objects(unsigned int order, unsigned int size)
325{
326 return ((unsigned int)PAGE_SIZE << order) / size;
327}
328
329static inline struct kmem_cache_order_objects oo_make(unsigned int order,
330 unsigned int size)
331{
332 struct kmem_cache_order_objects x = {
333 (order << OO_SHIFT) + order_objects(order, size)
334 };
335
336 return x;
337}
338
339static inline unsigned int oo_order(struct kmem_cache_order_objects x)
340{
341 return x.x >> OO_SHIFT;
342}
343
344static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
345{
346 return x.x & OO_MASK;
347}
348
349/*
350 * Per slab locking using the pagelock
351 */
352static __always_inline void slab_lock(struct page *page)
353{
354 VM_BUG_ON_PAGE(PageTail(page), page);
355 bit_spin_lock(PG_locked, &page->flags);
356}
357
358static __always_inline void slab_unlock(struct page *page)
359{
360 VM_BUG_ON_PAGE(PageTail(page), page);
361 __bit_spin_unlock(PG_locked, &page->flags);
362}
363
364/* Interrupts must be disabled (for the fallback code to work right) */
365static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 void *freelist_old, unsigned long counters_old,
367 void *freelist_new, unsigned long counters_new,
368 const char *n)
369{
370 VM_BUG_ON(!irqs_disabled());
371#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
373 if (s->flags & __CMPXCHG_DOUBLE) {
374 if (cmpxchg_double(&page->freelist, &page->counters,
375 freelist_old, counters_old,
376 freelist_new, counters_new))
377 return true;
378 } else
379#endif
380 {
381 slab_lock(page);
382 if (page->freelist == freelist_old &&
383 page->counters == counters_old) {
384 page->freelist = freelist_new;
385 page->counters = counters_new;
386 slab_unlock(page);
387 return true;
388 }
389 slab_unlock(page);
390 }
391
392 cpu_relax();
393 stat(s, CMPXCHG_DOUBLE_FAIL);
394
395#ifdef SLUB_DEBUG_CMPXCHG
396 pr_info("%s %s: cmpxchg double redo ", n, s->name);
397#endif
398
399 return false;
400}
401
402static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 void *freelist_old, unsigned long counters_old,
404 void *freelist_new, unsigned long counters_new,
405 const char *n)
406{
407#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
409 if (s->flags & __CMPXCHG_DOUBLE) {
410 if (cmpxchg_double(&page->freelist, &page->counters,
411 freelist_old, counters_old,
412 freelist_new, counters_new))
413 return true;
414 } else
415#endif
416 {
417 unsigned long flags;
418
419 local_irq_save(flags);
420 slab_lock(page);
421 if (page->freelist == freelist_old &&
422 page->counters == counters_old) {
423 page->freelist = freelist_new;
424 page->counters = counters_new;
425 slab_unlock(page);
426 local_irq_restore(flags);
427 return true;
428 }
429 slab_unlock(page);
430 local_irq_restore(flags);
431 }
432
433 cpu_relax();
434 stat(s, CMPXCHG_DOUBLE_FAIL);
435
436#ifdef SLUB_DEBUG_CMPXCHG
437 pr_info("%s %s: cmpxchg double redo ", n, s->name);
438#endif
439
440 return false;
441}
442
443#ifdef CONFIG_SLUB_DEBUG
444/*
445 * Determine a map of object in use on a page.
446 *
447 * Node listlock must be held to guarantee that the page does
448 * not vanish from under us.
449 */
450static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451{
452 void *p;
453 void *addr = page_address(page);
454
455 for (p = page->freelist; p; p = get_freepointer(s, p))
456 set_bit(slab_index(p, s, addr), map);
457}
458
459static inline unsigned int size_from_object(struct kmem_cache *s)
460{
461 if (s->flags & SLAB_RED_ZONE)
462 return s->size - s->red_left_pad;
463
464 return s->size;
465}
466
467static inline void *restore_red_left(struct kmem_cache *s, void *p)
468{
469 if (s->flags & SLAB_RED_ZONE)
470 p -= s->red_left_pad;
471
472 return p;
473}
474
475/*
476 * Debug settings:
477 */
478#if defined(CONFIG_SLUB_DEBUG_ON)
479static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
480#else
481static slab_flags_t slub_debug;
482#endif
483
484static char *slub_debug_slabs;
485static int disable_higher_order_debug;
486
487/*
488 * slub is about to manipulate internal object metadata. This memory lies
489 * outside the range of the allocated object, so accessing it would normally
490 * be reported by kasan as a bounds error. metadata_access_enable() is used
491 * to tell kasan that these accesses are OK.
492 */
493static inline void metadata_access_enable(void)
494{
495 kasan_disable_current();
496}
497
498static inline void metadata_access_disable(void)
499{
500 kasan_enable_current();
501}
502
503/*
504 * Object debugging
505 */
506
507/* Verify that a pointer has an address that is valid within a slab page */
508static inline int check_valid_pointer(struct kmem_cache *s,
509 struct page *page, void *object)
510{
511 void *base;
512
513 if (!object)
514 return 1;
515
516 base = page_address(page);
517 object = kasan_reset_tag(object);
518 object = restore_red_left(s, object);
519 if (object < base || object >= base + page->objects * s->size ||
520 (object - base) % s->size) {
521 return 0;
522 }
523
524 return 1;
525}
526
527static void print_section(char *level, char *text, u8 *addr,
528 unsigned int length)
529{
530 metadata_access_enable();
531 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
532 length, 1);
533 metadata_access_disable();
534}
535
536static struct track *get_track(struct kmem_cache *s, void *object,
537 enum track_item alloc)
538{
539 struct track *p;
540
541 if (s->offset)
542 p = object + s->offset + sizeof(void *);
543 else
544 p = object + s->inuse;
545
546 return p + alloc;
547}
548
549static void set_track(struct kmem_cache *s, void *object,
550 enum track_item alloc, unsigned long addr)
551{
552 struct track *p = get_track(s, object, alloc);
553
554 if (addr) {
555#ifdef CONFIG_STACKTRACE
556 unsigned int nr_entries;
557
558 metadata_access_enable();
559 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
560 metadata_access_disable();
561
562 if (nr_entries < TRACK_ADDRS_COUNT)
563 p->addrs[nr_entries] = 0;
564#endif
565 p->addr = addr;
566 p->cpu = smp_processor_id();
567 p->pid = current->pid;
568 p->when = jiffies;
569 } else {
570 memset(p, 0, sizeof(struct track));
571 }
572}
573
574static void init_tracking(struct kmem_cache *s, void *object)
575{
576 if (!(s->flags & SLAB_STORE_USER))
577 return;
578
579 set_track(s, object, TRACK_FREE, 0UL);
580 set_track(s, object, TRACK_ALLOC, 0UL);
581}
582
583static void print_track(const char *s, struct track *t, unsigned long pr_time)
584{
585 if (!t->addr)
586 return;
587
588 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
589 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
590#ifdef CONFIG_STACKTRACE
591 {
592 int i;
593 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
594 if (t->addrs[i])
595 pr_err("\t%pS\n", (void *)t->addrs[i]);
596 else
597 break;
598 }
599#endif
600}
601
602static void print_tracking(struct kmem_cache *s, void *object)
603{
604 unsigned long pr_time = jiffies;
605 if (!(s->flags & SLAB_STORE_USER))
606 return;
607
608 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
609 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
610}
611
612static void print_page_info(struct page *page)
613{
614 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
615 page, page->objects, page->inuse, page->freelist, page->flags);
616
617}
618
619static void slab_bug(struct kmem_cache *s, char *fmt, ...)
620{
621 struct va_format vaf;
622 va_list args;
623
624 va_start(args, fmt);
625 vaf.fmt = fmt;
626 vaf.va = &args;
627 pr_err("=============================================================================\n");
628 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
629 pr_err("-----------------------------------------------------------------------------\n\n");
630
631 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
632 va_end(args);
633}
634
635static void slab_fix(struct kmem_cache *s, char *fmt, ...)
636{
637 struct va_format vaf;
638 va_list args;
639
640 va_start(args, fmt);
641 vaf.fmt = fmt;
642 vaf.va = &args;
643 pr_err("FIX %s: %pV\n", s->name, &vaf);
644 va_end(args);
645}
646
647static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
648{
649 unsigned int off; /* Offset of last byte */
650 u8 *addr = page_address(page);
651
652 print_tracking(s, p);
653
654 print_page_info(page);
655
656 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
657 p, p - addr, get_freepointer(s, p));
658
659 if (s->flags & SLAB_RED_ZONE)
660 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
661 s->red_left_pad);
662 else if (p > addr + 16)
663 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
664
665 print_section(KERN_ERR, "Object ", p,
666 min_t(unsigned int, s->object_size, PAGE_SIZE));
667 if (s->flags & SLAB_RED_ZONE)
668 print_section(KERN_ERR, "Redzone ", p + s->object_size,
669 s->inuse - s->object_size);
670
671 if (s->offset)
672 off = s->offset + sizeof(void *);
673 else
674 off = s->inuse;
675
676 if (s->flags & SLAB_STORE_USER)
677 off += 2 * sizeof(struct track);
678
679 off += kasan_metadata_size(s);
680
681 if (off != size_from_object(s))
682 /* Beginning of the filler is the free pointer */
683 print_section(KERN_ERR, "Padding ", p + off,
684 size_from_object(s) - off);
685
686 dump_stack();
687}
688
689void object_err(struct kmem_cache *s, struct page *page,
690 u8 *object, char *reason)
691{
692 slab_bug(s, "%s", reason);
693 print_trailer(s, page, object);
694}
695
696static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
697 const char *fmt, ...)
698{
699 va_list args;
700 char buf[100];
701
702 va_start(args, fmt);
703 vsnprintf(buf, sizeof(buf), fmt, args);
704 va_end(args);
705 slab_bug(s, "%s", buf);
706 print_page_info(page);
707 dump_stack();
708}
709
710static void init_object(struct kmem_cache *s, void *object, u8 val)
711{
712 u8 *p = object;
713
714 if (s->flags & SLAB_RED_ZONE)
715 memset(p - s->red_left_pad, val, s->red_left_pad);
716
717 if (s->flags & __OBJECT_POISON) {
718 memset(p, POISON_FREE, s->object_size - 1);
719 p[s->object_size - 1] = POISON_END;
720 }
721
722 if (s->flags & SLAB_RED_ZONE)
723 memset(p + s->object_size, val, s->inuse - s->object_size);
724}
725
726static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
727 void *from, void *to)
728{
729 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
730 memset(from, data, to - from);
731}
732
733static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
734 u8 *object, char *what,
735 u8 *start, unsigned int value, unsigned int bytes)
736{
737 u8 *fault;
738 u8 *end;
739
740 metadata_access_enable();
741 fault = memchr_inv(start, value, bytes);
742 metadata_access_disable();
743 if (!fault)
744 return 1;
745
746 end = start + bytes;
747 while (end > fault && end[-1] == value)
748 end--;
749
750 slab_bug(s, "%s overwritten", what);
751 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
752 fault, end - 1, fault[0], value);
753 print_trailer(s, page, object);
754
755 restore_bytes(s, what, value, fault, end);
756 return 0;
757}
758
759/*
760 * Object layout:
761 *
762 * object address
763 * Bytes of the object to be managed.
764 * If the freepointer may overlay the object then the free
765 * pointer is the first word of the object.
766 *
767 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
768 * 0xa5 (POISON_END)
769 *
770 * object + s->object_size
771 * Padding to reach word boundary. This is also used for Redzoning.
772 * Padding is extended by another word if Redzoning is enabled and
773 * object_size == inuse.
774 *
775 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
776 * 0xcc (RED_ACTIVE) for objects in use.
777 *
778 * object + s->inuse
779 * Meta data starts here.
780 *
781 * A. Free pointer (if we cannot overwrite object on free)
782 * B. Tracking data for SLAB_STORE_USER
783 * C. Padding to reach required alignment boundary or at mininum
784 * one word if debugging is on to be able to detect writes
785 * before the word boundary.
786 *
787 * Padding is done using 0x5a (POISON_INUSE)
788 *
789 * object + s->size
790 * Nothing is used beyond s->size.
791 *
792 * If slabcaches are merged then the object_size and inuse boundaries are mostly
793 * ignored. And therefore no slab options that rely on these boundaries
794 * may be used with merged slabcaches.
795 */
796
797static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
798{
799 unsigned long off = s->inuse; /* The end of info */
800
801 if (s->offset)
802 /* Freepointer is placed after the object. */
803 off += sizeof(void *);
804
805 if (s->flags & SLAB_STORE_USER)
806 /* We also have user information there */
807 off += 2 * sizeof(struct track);
808
809 off += kasan_metadata_size(s);
810
811 if (size_from_object(s) == off)
812 return 1;
813
814 return check_bytes_and_report(s, page, p, "Object padding",
815 p + off, POISON_INUSE, size_from_object(s) - off);
816}
817
818/* Check the pad bytes at the end of a slab page */
819static int slab_pad_check(struct kmem_cache *s, struct page *page)
820{
821 u8 *start;
822 u8 *fault;
823 u8 *end;
824 u8 *pad;
825 int length;
826 int remainder;
827
828 if (!(s->flags & SLAB_POISON))
829 return 1;
830
831 start = page_address(page);
832 length = page_size(page);
833 end = start + length;
834 remainder = length % s->size;
835 if (!remainder)
836 return 1;
837
838 pad = end - remainder;
839 metadata_access_enable();
840 fault = memchr_inv(pad, POISON_INUSE, remainder);
841 metadata_access_disable();
842 if (!fault)
843 return 1;
844 while (end > fault && end[-1] == POISON_INUSE)
845 end--;
846
847 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
848 print_section(KERN_ERR, "Padding ", pad, remainder);
849
850 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
851 return 0;
852}
853
854static int check_object(struct kmem_cache *s, struct page *page,
855 void *object, u8 val)
856{
857 u8 *p = object;
858 u8 *endobject = object + s->object_size;
859
860 if (s->flags & SLAB_RED_ZONE) {
861 if (!check_bytes_and_report(s, page, object, "Redzone",
862 object - s->red_left_pad, val, s->red_left_pad))
863 return 0;
864
865 if (!check_bytes_and_report(s, page, object, "Redzone",
866 endobject, val, s->inuse - s->object_size))
867 return 0;
868 } else {
869 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
870 check_bytes_and_report(s, page, p, "Alignment padding",
871 endobject, POISON_INUSE,
872 s->inuse - s->object_size);
873 }
874 }
875
876 if (s->flags & SLAB_POISON) {
877 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
878 (!check_bytes_and_report(s, page, p, "Poison", p,
879 POISON_FREE, s->object_size - 1) ||
880 !check_bytes_and_report(s, page, p, "Poison",
881 p + s->object_size - 1, POISON_END, 1)))
882 return 0;
883 /*
884 * check_pad_bytes cleans up on its own.
885 */
886 check_pad_bytes(s, page, p);
887 }
888
889 if (!s->offset && val == SLUB_RED_ACTIVE)
890 /*
891 * Object and freepointer overlap. Cannot check
892 * freepointer while object is allocated.
893 */
894 return 1;
895
896 /* Check free pointer validity */
897 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
898 object_err(s, page, p, "Freepointer corrupt");
899 /*
900 * No choice but to zap it and thus lose the remainder
901 * of the free objects in this slab. May cause
902 * another error because the object count is now wrong.
903 */
904 set_freepointer(s, p, NULL);
905 return 0;
906 }
907 return 1;
908}
909
910static int check_slab(struct kmem_cache *s, struct page *page)
911{
912 int maxobj;
913
914 VM_BUG_ON(!irqs_disabled());
915
916 if (!PageSlab(page)) {
917 slab_err(s, page, "Not a valid slab page");
918 return 0;
919 }
920
921 maxobj = order_objects(compound_order(page), s->size);
922 if (page->objects > maxobj) {
923 slab_err(s, page, "objects %u > max %u",
924 page->objects, maxobj);
925 return 0;
926 }
927 if (page->inuse > page->objects) {
928 slab_err(s, page, "inuse %u > max %u",
929 page->inuse, page->objects);
930 return 0;
931 }
932 /* Slab_pad_check fixes things up after itself */
933 slab_pad_check(s, page);
934 return 1;
935}
936
937/*
938 * Determine if a certain object on a page is on the freelist. Must hold the
939 * slab lock to guarantee that the chains are in a consistent state.
940 */
941static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
942{
943 int nr = 0;
944 void *fp;
945 void *object = NULL;
946 int max_objects;
947
948 fp = page->freelist;
949 while (fp && nr <= page->objects) {
950 if (fp == search)
951 return 1;
952 if (!check_valid_pointer(s, page, fp)) {
953 if (object) {
954 object_err(s, page, object,
955 "Freechain corrupt");
956 set_freepointer(s, object, NULL);
957 } else {
958 slab_err(s, page, "Freepointer corrupt");
959 page->freelist = NULL;
960 page->inuse = page->objects;
961 slab_fix(s, "Freelist cleared");
962 return 0;
963 }
964 break;
965 }
966 object = fp;
967 fp = get_freepointer(s, object);
968 nr++;
969 }
970
971 max_objects = order_objects(compound_order(page), s->size);
972 if (max_objects > MAX_OBJS_PER_PAGE)
973 max_objects = MAX_OBJS_PER_PAGE;
974
975 if (page->objects != max_objects) {
976 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
977 page->objects, max_objects);
978 page->objects = max_objects;
979 slab_fix(s, "Number of objects adjusted.");
980 }
981 if (page->inuse != page->objects - nr) {
982 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
983 page->inuse, page->objects - nr);
984 page->inuse = page->objects - nr;
985 slab_fix(s, "Object count adjusted.");
986 }
987 return search == NULL;
988}
989
990static void trace(struct kmem_cache *s, struct page *page, void *object,
991 int alloc)
992{
993 if (s->flags & SLAB_TRACE) {
994 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
995 s->name,
996 alloc ? "alloc" : "free",
997 object, page->inuse,
998 page->freelist);
999
1000 if (!alloc)
1001 print_section(KERN_INFO, "Object ", (void *)object,
1002 s->object_size);
1003
1004 dump_stack();
1005 }
1006}
1007
1008/*
1009 * Tracking of fully allocated slabs for debugging purposes.
1010 */
1011static void add_full(struct kmem_cache *s,
1012 struct kmem_cache_node *n, struct page *page)
1013{
1014 if (!(s->flags & SLAB_STORE_USER))
1015 return;
1016
1017 lockdep_assert_held(&n->list_lock);
1018 list_add(&page->slab_list, &n->full);
1019}
1020
1021static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1022{
1023 if (!(s->flags & SLAB_STORE_USER))
1024 return;
1025
1026 lockdep_assert_held(&n->list_lock);
1027 list_del(&page->slab_list);
1028}
1029
1030/* Tracking of the number of slabs for debugging purposes */
1031static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1032{
1033 struct kmem_cache_node *n = get_node(s, node);
1034
1035 return atomic_long_read(&n->nr_slabs);
1036}
1037
1038static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1039{
1040 return atomic_long_read(&n->nr_slabs);
1041}
1042
1043static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1044{
1045 struct kmem_cache_node *n = get_node(s, node);
1046
1047 /*
1048 * May be called early in order to allocate a slab for the
1049 * kmem_cache_node structure. Solve the chicken-egg
1050 * dilemma by deferring the increment of the count during
1051 * bootstrap (see early_kmem_cache_node_alloc).
1052 */
1053 if (likely(n)) {
1054 atomic_long_inc(&n->nr_slabs);
1055 atomic_long_add(objects, &n->total_objects);
1056 }
1057}
1058static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1059{
1060 struct kmem_cache_node *n = get_node(s, node);
1061
1062 atomic_long_dec(&n->nr_slabs);
1063 atomic_long_sub(objects, &n->total_objects);
1064}
1065
1066/* Object debug checks for alloc/free paths */
1067static void setup_object_debug(struct kmem_cache *s, struct page *page,
1068 void *object)
1069{
1070 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1071 return;
1072
1073 init_object(s, object, SLUB_RED_INACTIVE);
1074 init_tracking(s, object);
1075}
1076
1077static
1078void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1079{
1080 if (!(s->flags & SLAB_POISON))
1081 return;
1082
1083 metadata_access_enable();
1084 memset(addr, POISON_INUSE, page_size(page));
1085 metadata_access_disable();
1086}
1087
1088static inline int alloc_consistency_checks(struct kmem_cache *s,
1089 struct page *page, void *object)
1090{
1091 if (!check_slab(s, page))
1092 return 0;
1093
1094 if (!check_valid_pointer(s, page, object)) {
1095 object_err(s, page, object, "Freelist Pointer check fails");
1096 return 0;
1097 }
1098
1099 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1100 return 0;
1101
1102 return 1;
1103}
1104
1105static noinline int alloc_debug_processing(struct kmem_cache *s,
1106 struct page *page,
1107 void *object, unsigned long addr)
1108{
1109 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1110 if (!alloc_consistency_checks(s, page, object))
1111 goto bad;
1112 }
1113
1114 /* Success perform special debug activities for allocs */
1115 if (s->flags & SLAB_STORE_USER)
1116 set_track(s, object, TRACK_ALLOC, addr);
1117 trace(s, page, object, 1);
1118 init_object(s, object, SLUB_RED_ACTIVE);
1119 return 1;
1120
1121bad:
1122 if (PageSlab(page)) {
1123 /*
1124 * If this is a slab page then lets do the best we can
1125 * to avoid issues in the future. Marking all objects
1126 * as used avoids touching the remaining objects.
1127 */
1128 slab_fix(s, "Marking all objects used");
1129 page->inuse = page->objects;
1130 page->freelist = NULL;
1131 }
1132 return 0;
1133}
1134
1135static inline int free_consistency_checks(struct kmem_cache *s,
1136 struct page *page, void *object, unsigned long addr)
1137{
1138 if (!check_valid_pointer(s, page, object)) {
1139 slab_err(s, page, "Invalid object pointer 0x%p", object);
1140 return 0;
1141 }
1142
1143 if (on_freelist(s, page, object)) {
1144 object_err(s, page, object, "Object already free");
1145 return 0;
1146 }
1147
1148 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1149 return 0;
1150
1151 if (unlikely(s != page->slab_cache)) {
1152 if (!PageSlab(page)) {
1153 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1154 object);
1155 } else if (!page->slab_cache) {
1156 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1157 object);
1158 dump_stack();
1159 } else
1160 object_err(s, page, object,
1161 "page slab pointer corrupt.");
1162 return 0;
1163 }
1164 return 1;
1165}
1166
1167/* Supports checking bulk free of a constructed freelist */
1168static noinline int free_debug_processing(
1169 struct kmem_cache *s, struct page *page,
1170 void *head, void *tail, int bulk_cnt,
1171 unsigned long addr)
1172{
1173 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1174 void *object = head;
1175 int cnt = 0;
1176 unsigned long uninitialized_var(flags);
1177 int ret = 0;
1178
1179 spin_lock_irqsave(&n->list_lock, flags);
1180 slab_lock(page);
1181
1182 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1183 if (!check_slab(s, page))
1184 goto out;
1185 }
1186
1187next_object:
1188 cnt++;
1189
1190 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1191 if (!free_consistency_checks(s, page, object, addr))
1192 goto out;
1193 }
1194
1195 if (s->flags & SLAB_STORE_USER)
1196 set_track(s, object, TRACK_FREE, addr);
1197 trace(s, page, object, 0);
1198 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1199 init_object(s, object, SLUB_RED_INACTIVE);
1200
1201 /* Reached end of constructed freelist yet? */
1202 if (object != tail) {
1203 object = get_freepointer(s, object);
1204 goto next_object;
1205 }
1206 ret = 1;
1207
1208out:
1209 if (cnt != bulk_cnt)
1210 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1211 bulk_cnt, cnt);
1212
1213 slab_unlock(page);
1214 spin_unlock_irqrestore(&n->list_lock, flags);
1215 if (!ret)
1216 slab_fix(s, "Object at 0x%p not freed", object);
1217 return ret;
1218}
1219
1220static int __init setup_slub_debug(char *str)
1221{
1222 slub_debug = DEBUG_DEFAULT_FLAGS;
1223 if (*str++ != '=' || !*str)
1224 /*
1225 * No options specified. Switch on full debugging.
1226 */
1227 goto out;
1228
1229 if (*str == ',')
1230 /*
1231 * No options but restriction on slabs. This means full
1232 * debugging for slabs matching a pattern.
1233 */
1234 goto check_slabs;
1235
1236 slub_debug = 0;
1237 if (*str == '-')
1238 /*
1239 * Switch off all debugging measures.
1240 */
1241 goto out;
1242
1243 /*
1244 * Determine which debug features should be switched on
1245 */
1246 for (; *str && *str != ','; str++) {
1247 switch (tolower(*str)) {
1248 case 'f':
1249 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1250 break;
1251 case 'z':
1252 slub_debug |= SLAB_RED_ZONE;
1253 break;
1254 case 'p':
1255 slub_debug |= SLAB_POISON;
1256 break;
1257 case 'u':
1258 slub_debug |= SLAB_STORE_USER;
1259 break;
1260 case 't':
1261 slub_debug |= SLAB_TRACE;
1262 break;
1263 case 'a':
1264 slub_debug |= SLAB_FAILSLAB;
1265 break;
1266 case 'o':
1267 /*
1268 * Avoid enabling debugging on caches if its minimum
1269 * order would increase as a result.
1270 */
1271 disable_higher_order_debug = 1;
1272 break;
1273 default:
1274 pr_err("slub_debug option '%c' unknown. skipped\n",
1275 *str);
1276 }
1277 }
1278
1279check_slabs:
1280 if (*str == ',')
1281 slub_debug_slabs = str + 1;
1282out:
1283 if ((static_branch_unlikely(&init_on_alloc) ||
1284 static_branch_unlikely(&init_on_free)) &&
1285 (slub_debug & SLAB_POISON))
1286 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1287 return 1;
1288}
1289
1290__setup("slub_debug", setup_slub_debug);
1291
1292/*
1293 * kmem_cache_flags - apply debugging options to the cache
1294 * @object_size: the size of an object without meta data
1295 * @flags: flags to set
1296 * @name: name of the cache
1297 * @ctor: constructor function
1298 *
1299 * Debug option(s) are applied to @flags. In addition to the debug
1300 * option(s), if a slab name (or multiple) is specified i.e.
1301 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1302 * then only the select slabs will receive the debug option(s).
1303 */
1304slab_flags_t kmem_cache_flags(unsigned int object_size,
1305 slab_flags_t flags, const char *name,
1306 void (*ctor)(void *))
1307{
1308 char *iter;
1309 size_t len;
1310
1311 /* If slub_debug = 0, it folds into the if conditional. */
1312 if (!slub_debug_slabs)
1313 return flags | slub_debug;
1314
1315 len = strlen(name);
1316 iter = slub_debug_slabs;
1317 while (*iter) {
1318 char *end, *glob;
1319 size_t cmplen;
1320
1321 end = strchrnul(iter, ',');
1322
1323 glob = strnchr(iter, end - iter, '*');
1324 if (glob)
1325 cmplen = glob - iter;
1326 else
1327 cmplen = max_t(size_t, len, (end - iter));
1328
1329 if (!strncmp(name, iter, cmplen)) {
1330 flags |= slub_debug;
1331 break;
1332 }
1333
1334 if (!*end)
1335 break;
1336 iter = end + 1;
1337 }
1338
1339 return flags;
1340}
1341#else /* !CONFIG_SLUB_DEBUG */
1342static inline void setup_object_debug(struct kmem_cache *s,
1343 struct page *page, void *object) {}
1344static inline
1345void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1346
1347static inline int alloc_debug_processing(struct kmem_cache *s,
1348 struct page *page, void *object, unsigned long addr) { return 0; }
1349
1350static inline int free_debug_processing(
1351 struct kmem_cache *s, struct page *page,
1352 void *head, void *tail, int bulk_cnt,
1353 unsigned long addr) { return 0; }
1354
1355static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1356 { return 1; }
1357static inline int check_object(struct kmem_cache *s, struct page *page,
1358 void *object, u8 val) { return 1; }
1359static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1360 struct page *page) {}
1361static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1362 struct page *page) {}
1363slab_flags_t kmem_cache_flags(unsigned int object_size,
1364 slab_flags_t flags, const char *name,
1365 void (*ctor)(void *))
1366{
1367 return flags;
1368}
1369#define slub_debug 0
1370
1371#define disable_higher_order_debug 0
1372
1373static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1374 { return 0; }
1375static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1376 { return 0; }
1377static inline void inc_slabs_node(struct kmem_cache *s, int node,
1378 int objects) {}
1379static inline void dec_slabs_node(struct kmem_cache *s, int node,
1380 int objects) {}
1381
1382#endif /* CONFIG_SLUB_DEBUG */
1383
1384/*
1385 * Hooks for other subsystems that check memory allocations. In a typical
1386 * production configuration these hooks all should produce no code at all.
1387 */
1388static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1389{
1390 ptr = kasan_kmalloc_large(ptr, size, flags);
1391 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1392 kmemleak_alloc(ptr, size, 1, flags);
1393 return ptr;
1394}
1395
1396static __always_inline void kfree_hook(void *x)
1397{
1398 kmemleak_free(x);
1399 kasan_kfree_large(x, _RET_IP_);
1400}
1401
1402static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1403{
1404 kmemleak_free_recursive(x, s->flags);
1405
1406 /*
1407 * Trouble is that we may no longer disable interrupts in the fast path
1408 * So in order to make the debug calls that expect irqs to be
1409 * disabled we need to disable interrupts temporarily.
1410 */
1411#ifdef CONFIG_LOCKDEP
1412 {
1413 unsigned long flags;
1414
1415 local_irq_save(flags);
1416 debug_check_no_locks_freed(x, s->object_size);
1417 local_irq_restore(flags);
1418 }
1419#endif
1420 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1421 debug_check_no_obj_freed(x, s->object_size);
1422
1423 /* KASAN might put x into memory quarantine, delaying its reuse */
1424 return kasan_slab_free(s, x, _RET_IP_);
1425}
1426
1427static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1428 void **head, void **tail)
1429{
1430
1431 void *object;
1432 void *next = *head;
1433 void *old_tail = *tail ? *tail : *head;
1434 int rsize;
1435
1436 /* Head and tail of the reconstructed freelist */
1437 *head = NULL;
1438 *tail = NULL;
1439
1440 do {
1441 object = next;
1442 next = get_freepointer(s, object);
1443
1444 if (slab_want_init_on_free(s)) {
1445 /*
1446 * Clear the object and the metadata, but don't touch
1447 * the redzone.
1448 */
1449 memset(object, 0, s->object_size);
1450 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1451 : 0;
1452 memset((char *)object + s->inuse, 0,
1453 s->size - s->inuse - rsize);
1454
1455 }
1456 /* If object's reuse doesn't have to be delayed */
1457 if (!slab_free_hook(s, object)) {
1458 /* Move object to the new freelist */
1459 set_freepointer(s, object, *head);
1460 *head = object;
1461 if (!*tail)
1462 *tail = object;
1463 }
1464 } while (object != old_tail);
1465
1466 if (*head == *tail)
1467 *tail = NULL;
1468
1469 return *head != NULL;
1470}
1471
1472static void *setup_object(struct kmem_cache *s, struct page *page,
1473 void *object)
1474{
1475 setup_object_debug(s, page, object);
1476 object = kasan_init_slab_obj(s, object);
1477 if (unlikely(s->ctor)) {
1478 kasan_unpoison_object_data(s, object);
1479 s->ctor(object);
1480 kasan_poison_object_data(s, object);
1481 }
1482 return object;
1483}
1484
1485/*
1486 * Slab allocation and freeing
1487 */
1488static inline struct page *alloc_slab_page(struct kmem_cache *s,
1489 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1490{
1491 struct page *page;
1492 unsigned int order = oo_order(oo);
1493
1494 if (node == NUMA_NO_NODE)
1495 page = alloc_pages(flags, order);
1496 else
1497 page = __alloc_pages_node(node, flags, order);
1498
1499 if (page && charge_slab_page(page, flags, order, s)) {
1500 __free_pages(page, order);
1501 page = NULL;
1502 }
1503
1504 return page;
1505}
1506
1507#ifdef CONFIG_SLAB_FREELIST_RANDOM
1508/* Pre-initialize the random sequence cache */
1509static int init_cache_random_seq(struct kmem_cache *s)
1510{
1511 unsigned int count = oo_objects(s->oo);
1512 int err;
1513
1514 /* Bailout if already initialised */
1515 if (s->random_seq)
1516 return 0;
1517
1518 err = cache_random_seq_create(s, count, GFP_KERNEL);
1519 if (err) {
1520 pr_err("SLUB: Unable to initialize free list for %s\n",
1521 s->name);
1522 return err;
1523 }
1524
1525 /* Transform to an offset on the set of pages */
1526 if (s->random_seq) {
1527 unsigned int i;
1528
1529 for (i = 0; i < count; i++)
1530 s->random_seq[i] *= s->size;
1531 }
1532 return 0;
1533}
1534
1535/* Initialize each random sequence freelist per cache */
1536static void __init init_freelist_randomization(void)
1537{
1538 struct kmem_cache *s;
1539
1540 mutex_lock(&slab_mutex);
1541
1542 list_for_each_entry(s, &slab_caches, list)
1543 init_cache_random_seq(s);
1544
1545 mutex_unlock(&slab_mutex);
1546}
1547
1548/* Get the next entry on the pre-computed freelist randomized */
1549static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1550 unsigned long *pos, void *start,
1551 unsigned long page_limit,
1552 unsigned long freelist_count)
1553{
1554 unsigned int idx;
1555
1556 /*
1557 * If the target page allocation failed, the number of objects on the
1558 * page might be smaller than the usual size defined by the cache.
1559 */
1560 do {
1561 idx = s->random_seq[*pos];
1562 *pos += 1;
1563 if (*pos >= freelist_count)
1564 *pos = 0;
1565 } while (unlikely(idx >= page_limit));
1566
1567 return (char *)start + idx;
1568}
1569
1570/* Shuffle the single linked freelist based on a random pre-computed sequence */
1571static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1572{
1573 void *start;
1574 void *cur;
1575 void *next;
1576 unsigned long idx, pos, page_limit, freelist_count;
1577
1578 if (page->objects < 2 || !s->random_seq)
1579 return false;
1580
1581 freelist_count = oo_objects(s->oo);
1582 pos = get_random_int() % freelist_count;
1583
1584 page_limit = page->objects * s->size;
1585 start = fixup_red_left(s, page_address(page));
1586
1587 /* First entry is used as the base of the freelist */
1588 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1589 freelist_count);
1590 cur = setup_object(s, page, cur);
1591 page->freelist = cur;
1592
1593 for (idx = 1; idx < page->objects; idx++) {
1594 next = next_freelist_entry(s, page, &pos, start, page_limit,
1595 freelist_count);
1596 next = setup_object(s, page, next);
1597 set_freepointer(s, cur, next);
1598 cur = next;
1599 }
1600 set_freepointer(s, cur, NULL);
1601
1602 return true;
1603}
1604#else
1605static inline int init_cache_random_seq(struct kmem_cache *s)
1606{
1607 return 0;
1608}
1609static inline void init_freelist_randomization(void) { }
1610static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1611{
1612 return false;
1613}
1614#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1615
1616static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1617{
1618 struct page *page;
1619 struct kmem_cache_order_objects oo = s->oo;
1620 gfp_t alloc_gfp;
1621 void *start, *p, *next;
1622 int idx;
1623 bool shuffle;
1624
1625 flags &= gfp_allowed_mask;
1626
1627 if (gfpflags_allow_blocking(flags))
1628 local_irq_enable();
1629
1630 flags |= s->allocflags;
1631
1632 /*
1633 * Let the initial higher-order allocation fail under memory pressure
1634 * so we fall-back to the minimum order allocation.
1635 */
1636 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1637 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1638 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1639
1640 page = alloc_slab_page(s, alloc_gfp, node, oo);
1641 if (unlikely(!page)) {
1642 oo = s->min;
1643 alloc_gfp = flags;
1644 /*
1645 * Allocation may have failed due to fragmentation.
1646 * Try a lower order alloc if possible
1647 */
1648 page = alloc_slab_page(s, alloc_gfp, node, oo);
1649 if (unlikely(!page))
1650 goto out;
1651 stat(s, ORDER_FALLBACK);
1652 }
1653
1654 page->objects = oo_objects(oo);
1655
1656 page->slab_cache = s;
1657 __SetPageSlab(page);
1658 if (page_is_pfmemalloc(page))
1659 SetPageSlabPfmemalloc(page);
1660
1661 kasan_poison_slab(page);
1662
1663 start = page_address(page);
1664
1665 setup_page_debug(s, page, start);
1666
1667 shuffle = shuffle_freelist(s, page);
1668
1669 if (!shuffle) {
1670 start = fixup_red_left(s, start);
1671 start = setup_object(s, page, start);
1672 page->freelist = start;
1673 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1674 next = p + s->size;
1675 next = setup_object(s, page, next);
1676 set_freepointer(s, p, next);
1677 p = next;
1678 }
1679 set_freepointer(s, p, NULL);
1680 }
1681
1682 page->inuse = page->objects;
1683 page->frozen = 1;
1684
1685out:
1686 if (gfpflags_allow_blocking(flags))
1687 local_irq_disable();
1688 if (!page)
1689 return NULL;
1690
1691 inc_slabs_node(s, page_to_nid(page), page->objects);
1692
1693 return page;
1694}
1695
1696static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1697{
1698 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1699 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1700 flags &= ~GFP_SLAB_BUG_MASK;
1701 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1702 invalid_mask, &invalid_mask, flags, &flags);
1703 dump_stack();
1704 }
1705
1706 return allocate_slab(s,
1707 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1708}
1709
1710static void __free_slab(struct kmem_cache *s, struct page *page)
1711{
1712 int order = compound_order(page);
1713 int pages = 1 << order;
1714
1715 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1716 void *p;
1717
1718 slab_pad_check(s, page);
1719 for_each_object(p, s, page_address(page),
1720 page->objects)
1721 check_object(s, page, p, SLUB_RED_INACTIVE);
1722 }
1723
1724 __ClearPageSlabPfmemalloc(page);
1725 __ClearPageSlab(page);
1726
1727 page->mapping = NULL;
1728 if (current->reclaim_state)
1729 current->reclaim_state->reclaimed_slab += pages;
1730 uncharge_slab_page(page, order, s);
1731 __free_pages(page, order);
1732}
1733
1734static void rcu_free_slab(struct rcu_head *h)
1735{
1736 struct page *page = container_of(h, struct page, rcu_head);
1737
1738 __free_slab(page->slab_cache, page);
1739}
1740
1741static void free_slab(struct kmem_cache *s, struct page *page)
1742{
1743 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1744 call_rcu(&page->rcu_head, rcu_free_slab);
1745 } else
1746 __free_slab(s, page);
1747}
1748
1749static void discard_slab(struct kmem_cache *s, struct page *page)
1750{
1751 dec_slabs_node(s, page_to_nid(page), page->objects);
1752 free_slab(s, page);
1753}
1754
1755/*
1756 * Management of partially allocated slabs.
1757 */
1758static inline void
1759__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1760{
1761 n->nr_partial++;
1762 if (tail == DEACTIVATE_TO_TAIL)
1763 list_add_tail(&page->slab_list, &n->partial);
1764 else
1765 list_add(&page->slab_list, &n->partial);
1766}
1767
1768static inline void add_partial(struct kmem_cache_node *n,
1769 struct page *page, int tail)
1770{
1771 lockdep_assert_held(&n->list_lock);
1772 __add_partial(n, page, tail);
1773}
1774
1775static inline void remove_partial(struct kmem_cache_node *n,
1776 struct page *page)
1777{
1778 lockdep_assert_held(&n->list_lock);
1779 list_del(&page->slab_list);
1780 n->nr_partial--;
1781}
1782
1783/*
1784 * Remove slab from the partial list, freeze it and
1785 * return the pointer to the freelist.
1786 *
1787 * Returns a list of objects or NULL if it fails.
1788 */
1789static inline void *acquire_slab(struct kmem_cache *s,
1790 struct kmem_cache_node *n, struct page *page,
1791 int mode, int *objects)
1792{
1793 void *freelist;
1794 unsigned long counters;
1795 struct page new;
1796
1797 lockdep_assert_held(&n->list_lock);
1798
1799 /*
1800 * Zap the freelist and set the frozen bit.
1801 * The old freelist is the list of objects for the
1802 * per cpu allocation list.
1803 */
1804 freelist = page->freelist;
1805 counters = page->counters;
1806 new.counters = counters;
1807 *objects = new.objects - new.inuse;
1808 if (mode) {
1809 new.inuse = page->objects;
1810 new.freelist = NULL;
1811 } else {
1812 new.freelist = freelist;
1813 }
1814
1815 VM_BUG_ON(new.frozen);
1816 new.frozen = 1;
1817
1818 if (!__cmpxchg_double_slab(s, page,
1819 freelist, counters,
1820 new.freelist, new.counters,
1821 "acquire_slab"))
1822 return NULL;
1823
1824 remove_partial(n, page);
1825 WARN_ON(!freelist);
1826 return freelist;
1827}
1828
1829static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1830static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1831
1832/*
1833 * Try to allocate a partial slab from a specific node.
1834 */
1835static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1836 struct kmem_cache_cpu *c, gfp_t flags)
1837{
1838 struct page *page, *page2;
1839 void *object = NULL;
1840 unsigned int available = 0;
1841 int objects;
1842
1843 /*
1844 * Racy check. If we mistakenly see no partial slabs then we
1845 * just allocate an empty slab. If we mistakenly try to get a
1846 * partial slab and there is none available then get_partials()
1847 * will return NULL.
1848 */
1849 if (!n || !n->nr_partial)
1850 return NULL;
1851
1852 spin_lock(&n->list_lock);
1853 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1854 void *t;
1855
1856 if (!pfmemalloc_match(page, flags))
1857 continue;
1858
1859 t = acquire_slab(s, n, page, object == NULL, &objects);
1860 if (!t)
1861 break;
1862
1863 available += objects;
1864 if (!object) {
1865 c->page = page;
1866 stat(s, ALLOC_FROM_PARTIAL);
1867 object = t;
1868 } else {
1869 put_cpu_partial(s, page, 0);
1870 stat(s, CPU_PARTIAL_NODE);
1871 }
1872 if (!kmem_cache_has_cpu_partial(s)
1873 || available > slub_cpu_partial(s) / 2)
1874 break;
1875
1876 }
1877 spin_unlock(&n->list_lock);
1878 return object;
1879}
1880
1881/*
1882 * Get a page from somewhere. Search in increasing NUMA distances.
1883 */
1884static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1885 struct kmem_cache_cpu *c)
1886{
1887#ifdef CONFIG_NUMA
1888 struct zonelist *zonelist;
1889 struct zoneref *z;
1890 struct zone *zone;
1891 enum zone_type high_zoneidx = gfp_zone(flags);
1892 void *object;
1893 unsigned int cpuset_mems_cookie;
1894
1895 /*
1896 * The defrag ratio allows a configuration of the tradeoffs between
1897 * inter node defragmentation and node local allocations. A lower
1898 * defrag_ratio increases the tendency to do local allocations
1899 * instead of attempting to obtain partial slabs from other nodes.
1900 *
1901 * If the defrag_ratio is set to 0 then kmalloc() always
1902 * returns node local objects. If the ratio is higher then kmalloc()
1903 * may return off node objects because partial slabs are obtained
1904 * from other nodes and filled up.
1905 *
1906 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1907 * (which makes defrag_ratio = 1000) then every (well almost)
1908 * allocation will first attempt to defrag slab caches on other nodes.
1909 * This means scanning over all nodes to look for partial slabs which
1910 * may be expensive if we do it every time we are trying to find a slab
1911 * with available objects.
1912 */
1913 if (!s->remote_node_defrag_ratio ||
1914 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1915 return NULL;
1916
1917 do {
1918 cpuset_mems_cookie = read_mems_allowed_begin();
1919 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1920 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1921 struct kmem_cache_node *n;
1922
1923 n = get_node(s, zone_to_nid(zone));
1924
1925 if (n && cpuset_zone_allowed(zone, flags) &&
1926 n->nr_partial > s->min_partial) {
1927 object = get_partial_node(s, n, c, flags);
1928 if (object) {
1929 /*
1930 * Don't check read_mems_allowed_retry()
1931 * here - if mems_allowed was updated in
1932 * parallel, that was a harmless race
1933 * between allocation and the cpuset
1934 * update
1935 */
1936 return object;
1937 }
1938 }
1939 }
1940 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1941#endif /* CONFIG_NUMA */
1942 return NULL;
1943}
1944
1945/*
1946 * Get a partial page, lock it and return it.
1947 */
1948static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1949 struct kmem_cache_cpu *c)
1950{
1951 void *object;
1952 int searchnode = node;
1953
1954 if (node == NUMA_NO_NODE)
1955 searchnode = numa_mem_id();
1956 else if (!node_present_pages(node))
1957 searchnode = node_to_mem_node(node);
1958
1959 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1960 if (object || node != NUMA_NO_NODE)
1961 return object;
1962
1963 return get_any_partial(s, flags, c);
1964}
1965
1966#ifdef CONFIG_PREEMPT
1967/*
1968 * Calculate the next globally unique transaction for disambiguiation
1969 * during cmpxchg. The transactions start with the cpu number and are then
1970 * incremented by CONFIG_NR_CPUS.
1971 */
1972#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1973#else
1974/*
1975 * No preemption supported therefore also no need to check for
1976 * different cpus.
1977 */
1978#define TID_STEP 1
1979#endif
1980
1981static inline unsigned long next_tid(unsigned long tid)
1982{
1983 return tid + TID_STEP;
1984}
1985
1986#ifdef SLUB_DEBUG_CMPXCHG
1987static inline unsigned int tid_to_cpu(unsigned long tid)
1988{
1989 return tid % TID_STEP;
1990}
1991
1992static inline unsigned long tid_to_event(unsigned long tid)
1993{
1994 return tid / TID_STEP;
1995}
1996#endif
1997
1998static inline unsigned int init_tid(int cpu)
1999{
2000 return cpu;
2001}
2002
2003static inline void note_cmpxchg_failure(const char *n,
2004 const struct kmem_cache *s, unsigned long tid)
2005{
2006#ifdef SLUB_DEBUG_CMPXCHG
2007 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2008
2009 pr_info("%s %s: cmpxchg redo ", n, s->name);
2010
2011#ifdef CONFIG_PREEMPT
2012 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2013 pr_warn("due to cpu change %d -> %d\n",
2014 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2015 else
2016#endif
2017 if (tid_to_event(tid) != tid_to_event(actual_tid))
2018 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2019 tid_to_event(tid), tid_to_event(actual_tid));
2020 else
2021 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2022 actual_tid, tid, next_tid(tid));
2023#endif
2024 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2025}
2026
2027static void init_kmem_cache_cpus(struct kmem_cache *s)
2028{
2029 int cpu;
2030
2031 for_each_possible_cpu(cpu)
2032 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2033}
2034
2035/*
2036 * Remove the cpu slab
2037 */
2038static void deactivate_slab(struct kmem_cache *s, struct page *page,
2039 void *freelist, struct kmem_cache_cpu *c)
2040{
2041 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2042 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2043 int lock = 0;
2044 enum slab_modes l = M_NONE, m = M_NONE;
2045 void *nextfree;
2046 int tail = DEACTIVATE_TO_HEAD;
2047 struct page new;
2048 struct page old;
2049
2050 if (page->freelist) {
2051 stat(s, DEACTIVATE_REMOTE_FREES);
2052 tail = DEACTIVATE_TO_TAIL;
2053 }
2054
2055 /*
2056 * Stage one: Free all available per cpu objects back
2057 * to the page freelist while it is still frozen. Leave the
2058 * last one.
2059 *
2060 * There is no need to take the list->lock because the page
2061 * is still frozen.
2062 */
2063 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2064 void *prior;
2065 unsigned long counters;
2066
2067 do {
2068 prior = page->freelist;
2069 counters = page->counters;
2070 set_freepointer(s, freelist, prior);
2071 new.counters = counters;
2072 new.inuse--;
2073 VM_BUG_ON(!new.frozen);
2074
2075 } while (!__cmpxchg_double_slab(s, page,
2076 prior, counters,
2077 freelist, new.counters,
2078 "drain percpu freelist"));
2079
2080 freelist = nextfree;
2081 }
2082
2083 /*
2084 * Stage two: Ensure that the page is unfrozen while the
2085 * list presence reflects the actual number of objects
2086 * during unfreeze.
2087 *
2088 * We setup the list membership and then perform a cmpxchg
2089 * with the count. If there is a mismatch then the page
2090 * is not unfrozen but the page is on the wrong list.
2091 *
2092 * Then we restart the process which may have to remove
2093 * the page from the list that we just put it on again
2094 * because the number of objects in the slab may have
2095 * changed.
2096 */
2097redo:
2098
2099 old.freelist = page->freelist;
2100 old.counters = page->counters;
2101 VM_BUG_ON(!old.frozen);
2102
2103 /* Determine target state of the slab */
2104 new.counters = old.counters;
2105 if (freelist) {
2106 new.inuse--;
2107 set_freepointer(s, freelist, old.freelist);
2108 new.freelist = freelist;
2109 } else
2110 new.freelist = old.freelist;
2111
2112 new.frozen = 0;
2113
2114 if (!new.inuse && n->nr_partial >= s->min_partial)
2115 m = M_FREE;
2116 else if (new.freelist) {
2117 m = M_PARTIAL;
2118 if (!lock) {
2119 lock = 1;
2120 /*
2121 * Taking the spinlock removes the possibility
2122 * that acquire_slab() will see a slab page that
2123 * is frozen
2124 */
2125 spin_lock(&n->list_lock);
2126 }
2127 } else {
2128 m = M_FULL;
2129 if (kmem_cache_debug(s) && !lock) {
2130 lock = 1;
2131 /*
2132 * This also ensures that the scanning of full
2133 * slabs from diagnostic functions will not see
2134 * any frozen slabs.
2135 */
2136 spin_lock(&n->list_lock);
2137 }
2138 }
2139
2140 if (l != m) {
2141 if (l == M_PARTIAL)
2142 remove_partial(n, page);
2143 else if (l == M_FULL)
2144 remove_full(s, n, page);
2145
2146 if (m == M_PARTIAL)
2147 add_partial(n, page, tail);
2148 else if (m == M_FULL)
2149 add_full(s, n, page);
2150 }
2151
2152 l = m;
2153 if (!__cmpxchg_double_slab(s, page,
2154 old.freelist, old.counters,
2155 new.freelist, new.counters,
2156 "unfreezing slab"))
2157 goto redo;
2158
2159 if (lock)
2160 spin_unlock(&n->list_lock);
2161
2162 if (m == M_PARTIAL)
2163 stat(s, tail);
2164 else if (m == M_FULL)
2165 stat(s, DEACTIVATE_FULL);
2166 else if (m == M_FREE) {
2167 stat(s, DEACTIVATE_EMPTY);
2168 discard_slab(s, page);
2169 stat(s, FREE_SLAB);
2170 }
2171
2172 c->page = NULL;
2173 c->freelist = NULL;
2174}
2175
2176/*
2177 * Unfreeze all the cpu partial slabs.
2178 *
2179 * This function must be called with interrupts disabled
2180 * for the cpu using c (or some other guarantee must be there
2181 * to guarantee no concurrent accesses).
2182 */
2183static void unfreeze_partials(struct kmem_cache *s,
2184 struct kmem_cache_cpu *c)
2185{
2186#ifdef CONFIG_SLUB_CPU_PARTIAL
2187 struct kmem_cache_node *n = NULL, *n2 = NULL;
2188 struct page *page, *discard_page = NULL;
2189
2190 while ((page = c->partial)) {
2191 struct page new;
2192 struct page old;
2193
2194 c->partial = page->next;
2195
2196 n2 = get_node(s, page_to_nid(page));
2197 if (n != n2) {
2198 if (n)
2199 spin_unlock(&n->list_lock);
2200
2201 n = n2;
2202 spin_lock(&n->list_lock);
2203 }
2204
2205 do {
2206
2207 old.freelist = page->freelist;
2208 old.counters = page->counters;
2209 VM_BUG_ON(!old.frozen);
2210
2211 new.counters = old.counters;
2212 new.freelist = old.freelist;
2213
2214 new.frozen = 0;
2215
2216 } while (!__cmpxchg_double_slab(s, page,
2217 old.freelist, old.counters,
2218 new.freelist, new.counters,
2219 "unfreezing slab"));
2220
2221 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2222 page->next = discard_page;
2223 discard_page = page;
2224 } else {
2225 add_partial(n, page, DEACTIVATE_TO_TAIL);
2226 stat(s, FREE_ADD_PARTIAL);
2227 }
2228 }
2229
2230 if (n)
2231 spin_unlock(&n->list_lock);
2232
2233 while (discard_page) {
2234 page = discard_page;
2235 discard_page = discard_page->next;
2236
2237 stat(s, DEACTIVATE_EMPTY);
2238 discard_slab(s, page);
2239 stat(s, FREE_SLAB);
2240 }
2241#endif /* CONFIG_SLUB_CPU_PARTIAL */
2242}
2243
2244/*
2245 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2246 * partial page slot if available.
2247 *
2248 * If we did not find a slot then simply move all the partials to the
2249 * per node partial list.
2250 */
2251static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2252{
2253#ifdef CONFIG_SLUB_CPU_PARTIAL
2254 struct page *oldpage;
2255 int pages;
2256 int pobjects;
2257
2258 preempt_disable();
2259 do {
2260 pages = 0;
2261 pobjects = 0;
2262 oldpage = this_cpu_read(s->cpu_slab->partial);
2263
2264 if (oldpage) {
2265 pobjects = oldpage->pobjects;
2266 pages = oldpage->pages;
2267 if (drain && pobjects > s->cpu_partial) {
2268 unsigned long flags;
2269 /*
2270 * partial array is full. Move the existing
2271 * set to the per node partial list.
2272 */
2273 local_irq_save(flags);
2274 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2275 local_irq_restore(flags);
2276 oldpage = NULL;
2277 pobjects = 0;
2278 pages = 0;
2279 stat(s, CPU_PARTIAL_DRAIN);
2280 }
2281 }
2282
2283 pages++;
2284 pobjects += page->objects - page->inuse;
2285
2286 page->pages = pages;
2287 page->pobjects = pobjects;
2288 page->next = oldpage;
2289
2290 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2291 != oldpage);
2292 if (unlikely(!s->cpu_partial)) {
2293 unsigned long flags;
2294
2295 local_irq_save(flags);
2296 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2297 local_irq_restore(flags);
2298 }
2299 preempt_enable();
2300#endif /* CONFIG_SLUB_CPU_PARTIAL */
2301}
2302
2303static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2304{
2305 stat(s, CPUSLAB_FLUSH);
2306 deactivate_slab(s, c->page, c->freelist, c);
2307
2308 c->tid = next_tid(c->tid);
2309}
2310
2311/*
2312 * Flush cpu slab.
2313 *
2314 * Called from IPI handler with interrupts disabled.
2315 */
2316static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2317{
2318 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2319
2320 if (c->page)
2321 flush_slab(s, c);
2322
2323 unfreeze_partials(s, c);
2324}
2325
2326static void flush_cpu_slab(void *d)
2327{
2328 struct kmem_cache *s = d;
2329
2330 __flush_cpu_slab(s, smp_processor_id());
2331}
2332
2333static bool has_cpu_slab(int cpu, void *info)
2334{
2335 struct kmem_cache *s = info;
2336 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2337
2338 return c->page || slub_percpu_partial(c);
2339}
2340
2341static void flush_all(struct kmem_cache *s)
2342{
2343 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2344}
2345
2346/*
2347 * Use the cpu notifier to insure that the cpu slabs are flushed when
2348 * necessary.
2349 */
2350static int slub_cpu_dead(unsigned int cpu)
2351{
2352 struct kmem_cache *s;
2353 unsigned long flags;
2354
2355 mutex_lock(&slab_mutex);
2356 list_for_each_entry(s, &slab_caches, list) {
2357 local_irq_save(flags);
2358 __flush_cpu_slab(s, cpu);
2359 local_irq_restore(flags);
2360 }
2361 mutex_unlock(&slab_mutex);
2362 return 0;
2363}
2364
2365/*
2366 * Check if the objects in a per cpu structure fit numa
2367 * locality expectations.
2368 */
2369static inline int node_match(struct page *page, int node)
2370{
2371#ifdef CONFIG_NUMA
2372 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2373 return 0;
2374#endif
2375 return 1;
2376}
2377
2378#ifdef CONFIG_SLUB_DEBUG
2379static int count_free(struct page *page)
2380{
2381 return page->objects - page->inuse;
2382}
2383
2384static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2385{
2386 return atomic_long_read(&n->total_objects);
2387}
2388#endif /* CONFIG_SLUB_DEBUG */
2389
2390#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2391static unsigned long count_partial(struct kmem_cache_node *n,
2392 int (*get_count)(struct page *))
2393{
2394 unsigned long flags;
2395 unsigned long x = 0;
2396 struct page *page;
2397
2398 spin_lock_irqsave(&n->list_lock, flags);
2399 list_for_each_entry(page, &n->partial, slab_list)
2400 x += get_count(page);
2401 spin_unlock_irqrestore(&n->list_lock, flags);
2402 return x;
2403}
2404#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2405
2406static noinline void
2407slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2408{
2409#ifdef CONFIG_SLUB_DEBUG
2410 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2411 DEFAULT_RATELIMIT_BURST);
2412 int node;
2413 struct kmem_cache_node *n;
2414
2415 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2416 return;
2417
2418 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2419 nid, gfpflags, &gfpflags);
2420 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2421 s->name, s->object_size, s->size, oo_order(s->oo),
2422 oo_order(s->min));
2423
2424 if (oo_order(s->min) > get_order(s->object_size))
2425 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2426 s->name);
2427
2428 for_each_kmem_cache_node(s, node, n) {
2429 unsigned long nr_slabs;
2430 unsigned long nr_objs;
2431 unsigned long nr_free;
2432
2433 nr_free = count_partial(n, count_free);
2434 nr_slabs = node_nr_slabs(n);
2435 nr_objs = node_nr_objs(n);
2436
2437 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2438 node, nr_slabs, nr_objs, nr_free);
2439 }
2440#endif
2441}
2442
2443static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2444 int node, struct kmem_cache_cpu **pc)
2445{
2446 void *freelist;
2447 struct kmem_cache_cpu *c = *pc;
2448 struct page *page;
2449
2450 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2451
2452 freelist = get_partial(s, flags, node, c);
2453
2454 if (freelist)
2455 return freelist;
2456
2457 page = new_slab(s, flags, node);
2458 if (page) {
2459 c = raw_cpu_ptr(s->cpu_slab);
2460 if (c->page)
2461 flush_slab(s, c);
2462
2463 /*
2464 * No other reference to the page yet so we can
2465 * muck around with it freely without cmpxchg
2466 */
2467 freelist = page->freelist;
2468 page->freelist = NULL;
2469
2470 stat(s, ALLOC_SLAB);
2471 c->page = page;
2472 *pc = c;
2473 }
2474
2475 return freelist;
2476}
2477
2478static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2479{
2480 if (unlikely(PageSlabPfmemalloc(page)))
2481 return gfp_pfmemalloc_allowed(gfpflags);
2482
2483 return true;
2484}
2485
2486/*
2487 * Check the page->freelist of a page and either transfer the freelist to the
2488 * per cpu freelist or deactivate the page.
2489 *
2490 * The page is still frozen if the return value is not NULL.
2491 *
2492 * If this function returns NULL then the page has been unfrozen.
2493 *
2494 * This function must be called with interrupt disabled.
2495 */
2496static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2497{
2498 struct page new;
2499 unsigned long counters;
2500 void *freelist;
2501
2502 do {
2503 freelist = page->freelist;
2504 counters = page->counters;
2505
2506 new.counters = counters;
2507 VM_BUG_ON(!new.frozen);
2508
2509 new.inuse = page->objects;
2510 new.frozen = freelist != NULL;
2511
2512 } while (!__cmpxchg_double_slab(s, page,
2513 freelist, counters,
2514 NULL, new.counters,
2515 "get_freelist"));
2516
2517 return freelist;
2518}
2519
2520/*
2521 * Slow path. The lockless freelist is empty or we need to perform
2522 * debugging duties.
2523 *
2524 * Processing is still very fast if new objects have been freed to the
2525 * regular freelist. In that case we simply take over the regular freelist
2526 * as the lockless freelist and zap the regular freelist.
2527 *
2528 * If that is not working then we fall back to the partial lists. We take the
2529 * first element of the freelist as the object to allocate now and move the
2530 * rest of the freelist to the lockless freelist.
2531 *
2532 * And if we were unable to get a new slab from the partial slab lists then
2533 * we need to allocate a new slab. This is the slowest path since it involves
2534 * a call to the page allocator and the setup of a new slab.
2535 *
2536 * Version of __slab_alloc to use when we know that interrupts are
2537 * already disabled (which is the case for bulk allocation).
2538 */
2539static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2540 unsigned long addr, struct kmem_cache_cpu *c)
2541{
2542 void *freelist;
2543 struct page *page;
2544
2545 page = c->page;
2546 if (!page)
2547 goto new_slab;
2548redo:
2549
2550 if (unlikely(!node_match(page, node))) {
2551 int searchnode = node;
2552
2553 if (node != NUMA_NO_NODE && !node_present_pages(node))
2554 searchnode = node_to_mem_node(node);
2555
2556 if (unlikely(!node_match(page, searchnode))) {
2557 stat(s, ALLOC_NODE_MISMATCH);
2558 deactivate_slab(s, page, c->freelist, c);
2559 goto new_slab;
2560 }
2561 }
2562
2563 /*
2564 * By rights, we should be searching for a slab page that was
2565 * PFMEMALLOC but right now, we are losing the pfmemalloc
2566 * information when the page leaves the per-cpu allocator
2567 */
2568 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2569 deactivate_slab(s, page, c->freelist, c);
2570 goto new_slab;
2571 }
2572
2573 /* must check again c->freelist in case of cpu migration or IRQ */
2574 freelist = c->freelist;
2575 if (freelist)
2576 goto load_freelist;
2577
2578 freelist = get_freelist(s, page);
2579
2580 if (!freelist) {
2581 c->page = NULL;
2582 stat(s, DEACTIVATE_BYPASS);
2583 goto new_slab;
2584 }
2585
2586 stat(s, ALLOC_REFILL);
2587
2588load_freelist:
2589 /*
2590 * freelist is pointing to the list of objects to be used.
2591 * page is pointing to the page from which the objects are obtained.
2592 * That page must be frozen for per cpu allocations to work.
2593 */
2594 VM_BUG_ON(!c->page->frozen);
2595 c->freelist = get_freepointer(s, freelist);
2596 c->tid = next_tid(c->tid);
2597 return freelist;
2598
2599new_slab:
2600
2601 if (slub_percpu_partial(c)) {
2602 page = c->page = slub_percpu_partial(c);
2603 slub_set_percpu_partial(c, page);
2604 stat(s, CPU_PARTIAL_ALLOC);
2605 goto redo;
2606 }
2607
2608 freelist = new_slab_objects(s, gfpflags, node, &c);
2609
2610 if (unlikely(!freelist)) {
2611 slab_out_of_memory(s, gfpflags, node);
2612 return NULL;
2613 }
2614
2615 page = c->page;
2616 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2617 goto load_freelist;
2618
2619 /* Only entered in the debug case */
2620 if (kmem_cache_debug(s) &&
2621 !alloc_debug_processing(s, page, freelist, addr))
2622 goto new_slab; /* Slab failed checks. Next slab needed */
2623
2624 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2625 return freelist;
2626}
2627
2628/*
2629 * Another one that disabled interrupt and compensates for possible
2630 * cpu changes by refetching the per cpu area pointer.
2631 */
2632static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2633 unsigned long addr, struct kmem_cache_cpu *c)
2634{
2635 void *p;
2636 unsigned long flags;
2637
2638 local_irq_save(flags);
2639#ifdef CONFIG_PREEMPT
2640 /*
2641 * We may have been preempted and rescheduled on a different
2642 * cpu before disabling interrupts. Need to reload cpu area
2643 * pointer.
2644 */
2645 c = this_cpu_ptr(s->cpu_slab);
2646#endif
2647
2648 p = ___slab_alloc(s, gfpflags, node, addr, c);
2649 local_irq_restore(flags);
2650 return p;
2651}
2652
2653/*
2654 * If the object has been wiped upon free, make sure it's fully initialized by
2655 * zeroing out freelist pointer.
2656 */
2657static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2658 void *obj)
2659{
2660 if (unlikely(slab_want_init_on_free(s)) && obj)
2661 memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2662}
2663
2664/*
2665 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2666 * have the fastpath folded into their functions. So no function call
2667 * overhead for requests that can be satisfied on the fastpath.
2668 *
2669 * The fastpath works by first checking if the lockless freelist can be used.
2670 * If not then __slab_alloc is called for slow processing.
2671 *
2672 * Otherwise we can simply pick the next object from the lockless free list.
2673 */
2674static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2675 gfp_t gfpflags, int node, unsigned long addr)
2676{
2677 void *object;
2678 struct kmem_cache_cpu *c;
2679 struct page *page;
2680 unsigned long tid;
2681
2682 s = slab_pre_alloc_hook(s, gfpflags);
2683 if (!s)
2684 return NULL;
2685redo:
2686 /*
2687 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2688 * enabled. We may switch back and forth between cpus while
2689 * reading from one cpu area. That does not matter as long
2690 * as we end up on the original cpu again when doing the cmpxchg.
2691 *
2692 * We should guarantee that tid and kmem_cache are retrieved on
2693 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2694 * to check if it is matched or not.
2695 */
2696 do {
2697 tid = this_cpu_read(s->cpu_slab->tid);
2698 c = raw_cpu_ptr(s->cpu_slab);
2699 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2700 unlikely(tid != READ_ONCE(c->tid)));
2701
2702 /*
2703 * Irqless object alloc/free algorithm used here depends on sequence
2704 * of fetching cpu_slab's data. tid should be fetched before anything
2705 * on c to guarantee that object and page associated with previous tid
2706 * won't be used with current tid. If we fetch tid first, object and
2707 * page could be one associated with next tid and our alloc/free
2708 * request will be failed. In this case, we will retry. So, no problem.
2709 */
2710 barrier();
2711
2712 /*
2713 * The transaction ids are globally unique per cpu and per operation on
2714 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2715 * occurs on the right processor and that there was no operation on the
2716 * linked list in between.
2717 */
2718
2719 object = c->freelist;
2720 page = c->page;
2721 if (unlikely(!object || !node_match(page, node))) {
2722 object = __slab_alloc(s, gfpflags, node, addr, c);
2723 stat(s, ALLOC_SLOWPATH);
2724 } else {
2725 void *next_object = get_freepointer_safe(s, object);
2726
2727 /*
2728 * The cmpxchg will only match if there was no additional
2729 * operation and if we are on the right processor.
2730 *
2731 * The cmpxchg does the following atomically (without lock
2732 * semantics!)
2733 * 1. Relocate first pointer to the current per cpu area.
2734 * 2. Verify that tid and freelist have not been changed
2735 * 3. If they were not changed replace tid and freelist
2736 *
2737 * Since this is without lock semantics the protection is only
2738 * against code executing on this cpu *not* from access by
2739 * other cpus.
2740 */
2741 if (unlikely(!this_cpu_cmpxchg_double(
2742 s->cpu_slab->freelist, s->cpu_slab->tid,
2743 object, tid,
2744 next_object, next_tid(tid)))) {
2745
2746 note_cmpxchg_failure("slab_alloc", s, tid);
2747 goto redo;
2748 }
2749 prefetch_freepointer(s, next_object);
2750 stat(s, ALLOC_FASTPATH);
2751 }
2752
2753 maybe_wipe_obj_freeptr(s, object);
2754
2755 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2756 memset(object, 0, s->object_size);
2757
2758 slab_post_alloc_hook(s, gfpflags, 1, &object);
2759
2760 return object;
2761}
2762
2763static __always_inline void *slab_alloc(struct kmem_cache *s,
2764 gfp_t gfpflags, unsigned long addr)
2765{
2766 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2767}
2768
2769void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2770{
2771 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2772
2773 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2774 s->size, gfpflags);
2775
2776 return ret;
2777}
2778EXPORT_SYMBOL(kmem_cache_alloc);
2779
2780#ifdef CONFIG_TRACING
2781void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2782{
2783 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2784 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2785 ret = kasan_kmalloc(s, ret, size, gfpflags);
2786 return ret;
2787}
2788EXPORT_SYMBOL(kmem_cache_alloc_trace);
2789#endif
2790
2791#ifdef CONFIG_NUMA
2792void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2793{
2794 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2795
2796 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2797 s->object_size, s->size, gfpflags, node);
2798
2799 return ret;
2800}
2801EXPORT_SYMBOL(kmem_cache_alloc_node);
2802
2803#ifdef CONFIG_TRACING
2804void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2805 gfp_t gfpflags,
2806 int node, size_t size)
2807{
2808 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2809
2810 trace_kmalloc_node(_RET_IP_, ret,
2811 size, s->size, gfpflags, node);
2812
2813 ret = kasan_kmalloc(s, ret, size, gfpflags);
2814 return ret;
2815}
2816EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2817#endif
2818#endif /* CONFIG_NUMA */
2819
2820/*
2821 * Slow path handling. This may still be called frequently since objects
2822 * have a longer lifetime than the cpu slabs in most processing loads.
2823 *
2824 * So we still attempt to reduce cache line usage. Just take the slab
2825 * lock and free the item. If there is no additional partial page
2826 * handling required then we can return immediately.
2827 */
2828static void __slab_free(struct kmem_cache *s, struct page *page,
2829 void *head, void *tail, int cnt,
2830 unsigned long addr)
2831
2832{
2833 void *prior;
2834 int was_frozen;
2835 struct page new;
2836 unsigned long counters;
2837 struct kmem_cache_node *n = NULL;
2838 unsigned long uninitialized_var(flags);
2839
2840 stat(s, FREE_SLOWPATH);
2841
2842 if (kmem_cache_debug(s) &&
2843 !free_debug_processing(s, page, head, tail, cnt, addr))
2844 return;
2845
2846 do {
2847 if (unlikely(n)) {
2848 spin_unlock_irqrestore(&n->list_lock, flags);
2849 n = NULL;
2850 }
2851 prior = page->freelist;
2852 counters = page->counters;
2853 set_freepointer(s, tail, prior);
2854 new.counters = counters;
2855 was_frozen = new.frozen;
2856 new.inuse -= cnt;
2857 if ((!new.inuse || !prior) && !was_frozen) {
2858
2859 if (kmem_cache_has_cpu_partial(s) && !prior) {
2860
2861 /*
2862 * Slab was on no list before and will be
2863 * partially empty
2864 * We can defer the list move and instead
2865 * freeze it.
2866 */
2867 new.frozen = 1;
2868
2869 } else { /* Needs to be taken off a list */
2870
2871 n = get_node(s, page_to_nid(page));
2872 /*
2873 * Speculatively acquire the list_lock.
2874 * If the cmpxchg does not succeed then we may
2875 * drop the list_lock without any processing.
2876 *
2877 * Otherwise the list_lock will synchronize with
2878 * other processors updating the list of slabs.
2879 */
2880 spin_lock_irqsave(&n->list_lock, flags);
2881
2882 }
2883 }
2884
2885 } while (!cmpxchg_double_slab(s, page,
2886 prior, counters,
2887 head, new.counters,
2888 "__slab_free"));
2889
2890 if (likely(!n)) {
2891
2892 /*
2893 * If we just froze the page then put it onto the
2894 * per cpu partial list.
2895 */
2896 if (new.frozen && !was_frozen) {
2897 put_cpu_partial(s, page, 1);
2898 stat(s, CPU_PARTIAL_FREE);
2899 }
2900 /*
2901 * The list lock was not taken therefore no list
2902 * activity can be necessary.
2903 */
2904 if (was_frozen)
2905 stat(s, FREE_FROZEN);
2906 return;
2907 }
2908
2909 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2910 goto slab_empty;
2911
2912 /*
2913 * Objects left in the slab. If it was not on the partial list before
2914 * then add it.
2915 */
2916 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2917 remove_full(s, n, page);
2918 add_partial(n, page, DEACTIVATE_TO_TAIL);
2919 stat(s, FREE_ADD_PARTIAL);
2920 }
2921 spin_unlock_irqrestore(&n->list_lock, flags);
2922 return;
2923
2924slab_empty:
2925 if (prior) {
2926 /*
2927 * Slab on the partial list.
2928 */
2929 remove_partial(n, page);
2930 stat(s, FREE_REMOVE_PARTIAL);
2931 } else {
2932 /* Slab must be on the full list */
2933 remove_full(s, n, page);
2934 }
2935
2936 spin_unlock_irqrestore(&n->list_lock, flags);
2937 stat(s, FREE_SLAB);
2938 discard_slab(s, page);
2939}
2940
2941/*
2942 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2943 * can perform fastpath freeing without additional function calls.
2944 *
2945 * The fastpath is only possible if we are freeing to the current cpu slab
2946 * of this processor. This typically the case if we have just allocated
2947 * the item before.
2948 *
2949 * If fastpath is not possible then fall back to __slab_free where we deal
2950 * with all sorts of special processing.
2951 *
2952 * Bulk free of a freelist with several objects (all pointing to the
2953 * same page) possible by specifying head and tail ptr, plus objects
2954 * count (cnt). Bulk free indicated by tail pointer being set.
2955 */
2956static __always_inline void do_slab_free(struct kmem_cache *s,
2957 struct page *page, void *head, void *tail,
2958 int cnt, unsigned long addr)
2959{
2960 void *tail_obj = tail ? : head;
2961 struct kmem_cache_cpu *c;
2962 unsigned long tid;
2963redo:
2964 /*
2965 * Determine the currently cpus per cpu slab.
2966 * The cpu may change afterward. However that does not matter since
2967 * data is retrieved via this pointer. If we are on the same cpu
2968 * during the cmpxchg then the free will succeed.
2969 */
2970 do {
2971 tid = this_cpu_read(s->cpu_slab->tid);
2972 c = raw_cpu_ptr(s->cpu_slab);
2973 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2974 unlikely(tid != READ_ONCE(c->tid)));
2975
2976 /* Same with comment on barrier() in slab_alloc_node() */
2977 barrier();
2978
2979 if (likely(page == c->page)) {
2980 set_freepointer(s, tail_obj, c->freelist);
2981
2982 if (unlikely(!this_cpu_cmpxchg_double(
2983 s->cpu_slab->freelist, s->cpu_slab->tid,
2984 c->freelist, tid,
2985 head, next_tid(tid)))) {
2986
2987 note_cmpxchg_failure("slab_free", s, tid);
2988 goto redo;
2989 }
2990 stat(s, FREE_FASTPATH);
2991 } else
2992 __slab_free(s, page, head, tail_obj, cnt, addr);
2993
2994}
2995
2996static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2997 void *head, void *tail, int cnt,
2998 unsigned long addr)
2999{
3000 /*
3001 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3002 * to remove objects, whose reuse must be delayed.
3003 */
3004 if (slab_free_freelist_hook(s, &head, &tail))
3005 do_slab_free(s, page, head, tail, cnt, addr);
3006}
3007
3008#ifdef CONFIG_KASAN_GENERIC
3009void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3010{
3011 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3012}
3013#endif
3014
3015void kmem_cache_free(struct kmem_cache *s, void *x)
3016{
3017 s = cache_from_obj(s, x);
3018 if (!s)
3019 return;
3020 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3021 trace_kmem_cache_free(_RET_IP_, x);
3022}
3023EXPORT_SYMBOL(kmem_cache_free);
3024
3025struct detached_freelist {
3026 struct page *page;
3027 void *tail;
3028 void *freelist;
3029 int cnt;
3030 struct kmem_cache *s;
3031};
3032
3033/*
3034 * This function progressively scans the array with free objects (with
3035 * a limited look ahead) and extract objects belonging to the same
3036 * page. It builds a detached freelist directly within the given
3037 * page/objects. This can happen without any need for
3038 * synchronization, because the objects are owned by running process.
3039 * The freelist is build up as a single linked list in the objects.
3040 * The idea is, that this detached freelist can then be bulk
3041 * transferred to the real freelist(s), but only requiring a single
3042 * synchronization primitive. Look ahead in the array is limited due
3043 * to performance reasons.
3044 */
3045static inline
3046int build_detached_freelist(struct kmem_cache *s, size_t size,
3047 void **p, struct detached_freelist *df)
3048{
3049 size_t first_skipped_index = 0;
3050 int lookahead = 3;
3051 void *object;
3052 struct page *page;
3053
3054 /* Always re-init detached_freelist */
3055 df->page = NULL;
3056
3057 do {
3058 object = p[--size];
3059 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3060 } while (!object && size);
3061
3062 if (!object)
3063 return 0;
3064
3065 page = virt_to_head_page(object);
3066 if (!s) {
3067 /* Handle kalloc'ed objects */
3068 if (unlikely(!PageSlab(page))) {
3069 BUG_ON(!PageCompound(page));
3070 kfree_hook(object);
3071 __free_pages(page, compound_order(page));
3072 p[size] = NULL; /* mark object processed */
3073 return size;
3074 }
3075 /* Derive kmem_cache from object */
3076 df->s = page->slab_cache;
3077 } else {
3078 df->s = cache_from_obj(s, object); /* Support for memcg */
3079 }
3080
3081 /* Start new detached freelist */
3082 df->page = page;
3083 set_freepointer(df->s, object, NULL);
3084 df->tail = object;
3085 df->freelist = object;
3086 p[size] = NULL; /* mark object processed */
3087 df->cnt = 1;
3088
3089 while (size) {
3090 object = p[--size];
3091 if (!object)
3092 continue; /* Skip processed objects */
3093
3094 /* df->page is always set at this point */
3095 if (df->page == virt_to_head_page(object)) {
3096 /* Opportunity build freelist */
3097 set_freepointer(df->s, object, df->freelist);
3098 df->freelist = object;
3099 df->cnt++;
3100 p[size] = NULL; /* mark object processed */
3101
3102 continue;
3103 }
3104
3105 /* Limit look ahead search */
3106 if (!--lookahead)
3107 break;
3108
3109 if (!first_skipped_index)
3110 first_skipped_index = size + 1;
3111 }
3112
3113 return first_skipped_index;
3114}
3115
3116/* Note that interrupts must be enabled when calling this function. */
3117void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3118{
3119 if (WARN_ON(!size))
3120 return;
3121
3122 do {
3123 struct detached_freelist df;
3124
3125 size = build_detached_freelist(s, size, p, &df);
3126 if (!df.page)
3127 continue;
3128
3129 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3130 } while (likely(size));
3131}
3132EXPORT_SYMBOL(kmem_cache_free_bulk);
3133
3134/* Note that interrupts must be enabled when calling this function. */
3135int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3136 void **p)
3137{
3138 struct kmem_cache_cpu *c;
3139 int i;
3140
3141 /* memcg and kmem_cache debug support */
3142 s = slab_pre_alloc_hook(s, flags);
3143 if (unlikely(!s))
3144 return false;
3145 /*
3146 * Drain objects in the per cpu slab, while disabling local
3147 * IRQs, which protects against PREEMPT and interrupts
3148 * handlers invoking normal fastpath.
3149 */
3150 local_irq_disable();
3151 c = this_cpu_ptr(s->cpu_slab);
3152
3153 for (i = 0; i < size; i++) {
3154 void *object = c->freelist;
3155
3156 if (unlikely(!object)) {
3157 /*
3158 * Invoking slow path likely have side-effect
3159 * of re-populating per CPU c->freelist
3160 */
3161 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3162 _RET_IP_, c);
3163 if (unlikely(!p[i]))
3164 goto error;
3165
3166 c = this_cpu_ptr(s->cpu_slab);
3167 maybe_wipe_obj_freeptr(s, p[i]);
3168
3169 continue; /* goto for-loop */
3170 }
3171 c->freelist = get_freepointer(s, object);
3172 p[i] = object;
3173 maybe_wipe_obj_freeptr(s, p[i]);
3174 }
3175 c->tid = next_tid(c->tid);
3176 local_irq_enable();
3177
3178 /* Clear memory outside IRQ disabled fastpath loop */
3179 if (unlikely(slab_want_init_on_alloc(flags, s))) {
3180 int j;
3181
3182 for (j = 0; j < i; j++)
3183 memset(p[j], 0, s->object_size);
3184 }
3185
3186 /* memcg and kmem_cache debug support */
3187 slab_post_alloc_hook(s, flags, size, p);
3188 return i;
3189error:
3190 local_irq_enable();
3191 slab_post_alloc_hook(s, flags, i, p);
3192 __kmem_cache_free_bulk(s, i, p);
3193 return 0;
3194}
3195EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3196
3197
3198/*
3199 * Object placement in a slab is made very easy because we always start at
3200 * offset 0. If we tune the size of the object to the alignment then we can
3201 * get the required alignment by putting one properly sized object after
3202 * another.
3203 *
3204 * Notice that the allocation order determines the sizes of the per cpu
3205 * caches. Each processor has always one slab available for allocations.
3206 * Increasing the allocation order reduces the number of times that slabs
3207 * must be moved on and off the partial lists and is therefore a factor in
3208 * locking overhead.
3209 */
3210
3211/*
3212 * Mininum / Maximum order of slab pages. This influences locking overhead
3213 * and slab fragmentation. A higher order reduces the number of partial slabs
3214 * and increases the number of allocations possible without having to
3215 * take the list_lock.
3216 */
3217static unsigned int slub_min_order;
3218static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3219static unsigned int slub_min_objects;
3220
3221/*
3222 * Calculate the order of allocation given an slab object size.
3223 *
3224 * The order of allocation has significant impact on performance and other
3225 * system components. Generally order 0 allocations should be preferred since
3226 * order 0 does not cause fragmentation in the page allocator. Larger objects
3227 * be problematic to put into order 0 slabs because there may be too much
3228 * unused space left. We go to a higher order if more than 1/16th of the slab
3229 * would be wasted.
3230 *
3231 * In order to reach satisfactory performance we must ensure that a minimum
3232 * number of objects is in one slab. Otherwise we may generate too much
3233 * activity on the partial lists which requires taking the list_lock. This is
3234 * less a concern for large slabs though which are rarely used.
3235 *
3236 * slub_max_order specifies the order where we begin to stop considering the
3237 * number of objects in a slab as critical. If we reach slub_max_order then
3238 * we try to keep the page order as low as possible. So we accept more waste
3239 * of space in favor of a small page order.
3240 *
3241 * Higher order allocations also allow the placement of more objects in a
3242 * slab and thereby reduce object handling overhead. If the user has
3243 * requested a higher mininum order then we start with that one instead of
3244 * the smallest order which will fit the object.
3245 */
3246static inline unsigned int slab_order(unsigned int size,
3247 unsigned int min_objects, unsigned int max_order,
3248 unsigned int fract_leftover)
3249{
3250 unsigned int min_order = slub_min_order;
3251 unsigned int order;
3252
3253 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3254 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3255
3256 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3257 order <= max_order; order++) {
3258
3259 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3260 unsigned int rem;
3261
3262 rem = slab_size % size;
3263
3264 if (rem <= slab_size / fract_leftover)
3265 break;
3266 }
3267
3268 return order;
3269}
3270
3271static inline int calculate_order(unsigned int size)
3272{
3273 unsigned int order;
3274 unsigned int min_objects;
3275 unsigned int max_objects;
3276
3277 /*
3278 * Attempt to find best configuration for a slab. This
3279 * works by first attempting to generate a layout with
3280 * the best configuration and backing off gradually.
3281 *
3282 * First we increase the acceptable waste in a slab. Then
3283 * we reduce the minimum objects required in a slab.
3284 */
3285 min_objects = slub_min_objects;
3286 if (!min_objects)
3287 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3288 max_objects = order_objects(slub_max_order, size);
3289 min_objects = min(min_objects, max_objects);
3290
3291 while (min_objects > 1) {
3292 unsigned int fraction;
3293
3294 fraction = 16;
3295 while (fraction >= 4) {
3296 order = slab_order(size, min_objects,
3297 slub_max_order, fraction);
3298 if (order <= slub_max_order)
3299 return order;
3300 fraction /= 2;
3301 }
3302 min_objects--;
3303 }
3304
3305 /*
3306 * We were unable to place multiple objects in a slab. Now
3307 * lets see if we can place a single object there.
3308 */
3309 order = slab_order(size, 1, slub_max_order, 1);
3310 if (order <= slub_max_order)
3311 return order;
3312
3313 /*
3314 * Doh this slab cannot be placed using slub_max_order.
3315 */
3316 order = slab_order(size, 1, MAX_ORDER, 1);
3317 if (order < MAX_ORDER)
3318 return order;
3319 return -ENOSYS;
3320}
3321
3322static void
3323init_kmem_cache_node(struct kmem_cache_node *n)
3324{
3325 n->nr_partial = 0;
3326 spin_lock_init(&n->list_lock);
3327 INIT_LIST_HEAD(&n->partial);
3328#ifdef CONFIG_SLUB_DEBUG
3329 atomic_long_set(&n->nr_slabs, 0);
3330 atomic_long_set(&n->total_objects, 0);
3331 INIT_LIST_HEAD(&n->full);
3332#endif
3333}
3334
3335static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3336{
3337 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3338 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3339
3340 /*
3341 * Must align to double word boundary for the double cmpxchg
3342 * instructions to work; see __pcpu_double_call_return_bool().
3343 */
3344 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3345 2 * sizeof(void *));
3346
3347 if (!s->cpu_slab)
3348 return 0;
3349
3350 init_kmem_cache_cpus(s);
3351
3352 return 1;
3353}
3354
3355static struct kmem_cache *kmem_cache_node;
3356
3357/*
3358 * No kmalloc_node yet so do it by hand. We know that this is the first
3359 * slab on the node for this slabcache. There are no concurrent accesses
3360 * possible.
3361 *
3362 * Note that this function only works on the kmem_cache_node
3363 * when allocating for the kmem_cache_node. This is used for bootstrapping
3364 * memory on a fresh node that has no slab structures yet.
3365 */
3366static void early_kmem_cache_node_alloc(int node)
3367{
3368 struct page *page;
3369 struct kmem_cache_node *n;
3370
3371 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3372
3373 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3374
3375 BUG_ON(!page);
3376 if (page_to_nid(page) != node) {
3377 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3378 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3379 }
3380
3381 n = page->freelist;
3382 BUG_ON(!n);
3383#ifdef CONFIG_SLUB_DEBUG
3384 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3385 init_tracking(kmem_cache_node, n);
3386#endif
3387 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3388 GFP_KERNEL);
3389 page->freelist = get_freepointer(kmem_cache_node, n);
3390 page->inuse = 1;
3391 page->frozen = 0;
3392 kmem_cache_node->node[node] = n;
3393 init_kmem_cache_node(n);
3394 inc_slabs_node(kmem_cache_node, node, page->objects);
3395
3396 /*
3397 * No locks need to be taken here as it has just been
3398 * initialized and there is no concurrent access.
3399 */
3400 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3401}
3402
3403static void free_kmem_cache_nodes(struct kmem_cache *s)
3404{
3405 int node;
3406 struct kmem_cache_node *n;
3407
3408 for_each_kmem_cache_node(s, node, n) {
3409 s->node[node] = NULL;
3410 kmem_cache_free(kmem_cache_node, n);
3411 }
3412}
3413
3414void __kmem_cache_release(struct kmem_cache *s)
3415{
3416 cache_random_seq_destroy(s);
3417 free_percpu(s->cpu_slab);
3418 free_kmem_cache_nodes(s);
3419}
3420
3421static int init_kmem_cache_nodes(struct kmem_cache *s)
3422{
3423 int node;
3424
3425 for_each_node_state(node, N_NORMAL_MEMORY) {
3426 struct kmem_cache_node *n;
3427
3428 if (slab_state == DOWN) {
3429 early_kmem_cache_node_alloc(node);
3430 continue;
3431 }
3432 n = kmem_cache_alloc_node(kmem_cache_node,
3433 GFP_KERNEL, node);
3434
3435 if (!n) {
3436 free_kmem_cache_nodes(s);
3437 return 0;
3438 }
3439
3440 init_kmem_cache_node(n);
3441 s->node[node] = n;
3442 }
3443 return 1;
3444}
3445
3446static void set_min_partial(struct kmem_cache *s, unsigned long min)
3447{
3448 if (min < MIN_PARTIAL)
3449 min = MIN_PARTIAL;
3450 else if (min > MAX_PARTIAL)
3451 min = MAX_PARTIAL;
3452 s->min_partial = min;
3453}
3454
3455static void set_cpu_partial(struct kmem_cache *s)
3456{
3457#ifdef CONFIG_SLUB_CPU_PARTIAL
3458 /*
3459 * cpu_partial determined the maximum number of objects kept in the
3460 * per cpu partial lists of a processor.
3461 *
3462 * Per cpu partial lists mainly contain slabs that just have one
3463 * object freed. If they are used for allocation then they can be
3464 * filled up again with minimal effort. The slab will never hit the
3465 * per node partial lists and therefore no locking will be required.
3466 *
3467 * This setting also determines
3468 *
3469 * A) The number of objects from per cpu partial slabs dumped to the
3470 * per node list when we reach the limit.
3471 * B) The number of objects in cpu partial slabs to extract from the
3472 * per node list when we run out of per cpu objects. We only fetch
3473 * 50% to keep some capacity around for frees.
3474 */
3475 if (!kmem_cache_has_cpu_partial(s))
3476 s->cpu_partial = 0;
3477 else if (s->size >= PAGE_SIZE)
3478 s->cpu_partial = 2;
3479 else if (s->size >= 1024)
3480 s->cpu_partial = 6;
3481 else if (s->size >= 256)
3482 s->cpu_partial = 13;
3483 else
3484 s->cpu_partial = 30;
3485#endif
3486}
3487
3488/*
3489 * calculate_sizes() determines the order and the distribution of data within
3490 * a slab object.
3491 */
3492static int calculate_sizes(struct kmem_cache *s, int forced_order)
3493{
3494 slab_flags_t flags = s->flags;
3495 unsigned int size = s->object_size;
3496 unsigned int order;
3497
3498 /*
3499 * Round up object size to the next word boundary. We can only
3500 * place the free pointer at word boundaries and this determines
3501 * the possible location of the free pointer.
3502 */
3503 size = ALIGN(size, sizeof(void *));
3504
3505#ifdef CONFIG_SLUB_DEBUG
3506 /*
3507 * Determine if we can poison the object itself. If the user of
3508 * the slab may touch the object after free or before allocation
3509 * then we should never poison the object itself.
3510 */
3511 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3512 !s->ctor)
3513 s->flags |= __OBJECT_POISON;
3514 else
3515 s->flags &= ~__OBJECT_POISON;
3516
3517
3518 /*
3519 * If we are Redzoning then check if there is some space between the
3520 * end of the object and the free pointer. If not then add an
3521 * additional word to have some bytes to store Redzone information.
3522 */
3523 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3524 size += sizeof(void *);
3525#endif
3526
3527 /*
3528 * With that we have determined the number of bytes in actual use
3529 * by the object. This is the potential offset to the free pointer.
3530 */
3531 s->inuse = size;
3532
3533 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3534 s->ctor)) {
3535 /*
3536 * Relocate free pointer after the object if it is not
3537 * permitted to overwrite the first word of the object on
3538 * kmem_cache_free.
3539 *
3540 * This is the case if we do RCU, have a constructor or
3541 * destructor or are poisoning the objects.
3542 */
3543 s->offset = size;
3544 size += sizeof(void *);
3545 }
3546
3547#ifdef CONFIG_SLUB_DEBUG
3548 if (flags & SLAB_STORE_USER)
3549 /*
3550 * Need to store information about allocs and frees after
3551 * the object.
3552 */
3553 size += 2 * sizeof(struct track);
3554#endif
3555
3556 kasan_cache_create(s, &size, &s->flags);
3557#ifdef CONFIG_SLUB_DEBUG
3558 if (flags & SLAB_RED_ZONE) {
3559 /*
3560 * Add some empty padding so that we can catch
3561 * overwrites from earlier objects rather than let
3562 * tracking information or the free pointer be
3563 * corrupted if a user writes before the start
3564 * of the object.
3565 */
3566 size += sizeof(void *);
3567
3568 s->red_left_pad = sizeof(void *);
3569 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3570 size += s->red_left_pad;
3571 }
3572#endif
3573
3574 /*
3575 * SLUB stores one object immediately after another beginning from
3576 * offset 0. In order to align the objects we have to simply size
3577 * each object to conform to the alignment.
3578 */
3579 size = ALIGN(size, s->align);
3580 s->size = size;
3581 if (forced_order >= 0)
3582 order = forced_order;
3583 else
3584 order = calculate_order(size);
3585
3586 if ((int)order < 0)
3587 return 0;
3588
3589 s->allocflags = 0;
3590 if (order)
3591 s->allocflags |= __GFP_COMP;
3592
3593 if (s->flags & SLAB_CACHE_DMA)
3594 s->allocflags |= GFP_DMA;
3595
3596 if (s->flags & SLAB_CACHE_DMA32)
3597 s->allocflags |= GFP_DMA32;
3598
3599 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3600 s->allocflags |= __GFP_RECLAIMABLE;
3601
3602 /*
3603 * Determine the number of objects per slab
3604 */
3605 s->oo = oo_make(order, size);
3606 s->min = oo_make(get_order(size), size);
3607 if (oo_objects(s->oo) > oo_objects(s->max))
3608 s->max = s->oo;
3609
3610 return !!oo_objects(s->oo);
3611}
3612
3613static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3614{
3615 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3616#ifdef CONFIG_SLAB_FREELIST_HARDENED
3617 s->random = get_random_long();
3618#endif
3619
3620 if (!calculate_sizes(s, -1))
3621 goto error;
3622 if (disable_higher_order_debug) {
3623 /*
3624 * Disable debugging flags that store metadata if the min slab
3625 * order increased.
3626 */
3627 if (get_order(s->size) > get_order(s->object_size)) {
3628 s->flags &= ~DEBUG_METADATA_FLAGS;
3629 s->offset = 0;
3630 if (!calculate_sizes(s, -1))
3631 goto error;
3632 }
3633 }
3634
3635#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3636 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3637 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3638 /* Enable fast mode */
3639 s->flags |= __CMPXCHG_DOUBLE;
3640#endif
3641
3642 /*
3643 * The larger the object size is, the more pages we want on the partial
3644 * list to avoid pounding the page allocator excessively.
3645 */
3646 set_min_partial(s, ilog2(s->size) / 2);
3647
3648 set_cpu_partial(s);
3649
3650#ifdef CONFIG_NUMA
3651 s->remote_node_defrag_ratio = 1000;
3652#endif
3653
3654 /* Initialize the pre-computed randomized freelist if slab is up */
3655 if (slab_state >= UP) {
3656 if (init_cache_random_seq(s))
3657 goto error;
3658 }
3659
3660 if (!init_kmem_cache_nodes(s))
3661 goto error;
3662
3663 if (alloc_kmem_cache_cpus(s))
3664 return 0;
3665
3666 free_kmem_cache_nodes(s);
3667error:
3668 return -EINVAL;
3669}
3670
3671static void list_slab_objects(struct kmem_cache *s, struct page *page,
3672 const char *text)
3673{
3674#ifdef CONFIG_SLUB_DEBUG
3675 void *addr = page_address(page);
3676 void *p;
3677 unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
3678 if (!map)
3679 return;
3680 slab_err(s, page, text, s->name);
3681 slab_lock(page);
3682
3683 get_map(s, page, map);
3684 for_each_object(p, s, addr, page->objects) {
3685
3686 if (!test_bit(slab_index(p, s, addr), map)) {
3687 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3688 print_tracking(s, p);
3689 }
3690 }
3691 slab_unlock(page);
3692 bitmap_free(map);
3693#endif
3694}
3695
3696/*
3697 * Attempt to free all partial slabs on a node.
3698 * This is called from __kmem_cache_shutdown(). We must take list_lock
3699 * because sysfs file might still access partial list after the shutdowning.
3700 */
3701static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3702{
3703 LIST_HEAD(discard);
3704 struct page *page, *h;
3705
3706 BUG_ON(irqs_disabled());
3707 spin_lock_irq(&n->list_lock);
3708 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3709 if (!page->inuse) {
3710 remove_partial(n, page);
3711 list_add(&page->slab_list, &discard);
3712 } else {
3713 list_slab_objects(s, page,
3714 "Objects remaining in %s on __kmem_cache_shutdown()");
3715 }
3716 }
3717 spin_unlock_irq(&n->list_lock);
3718
3719 list_for_each_entry_safe(page, h, &discard, slab_list)
3720 discard_slab(s, page);
3721}
3722
3723bool __kmem_cache_empty(struct kmem_cache *s)
3724{
3725 int node;
3726 struct kmem_cache_node *n;
3727
3728 for_each_kmem_cache_node(s, node, n)
3729 if (n->nr_partial || slabs_node(s, node))
3730 return false;
3731 return true;
3732}
3733
3734/*
3735 * Release all resources used by a slab cache.
3736 */
3737int __kmem_cache_shutdown(struct kmem_cache *s)
3738{
3739 int node;
3740 struct kmem_cache_node *n;
3741
3742 flush_all(s);
3743 /* Attempt to free all objects */
3744 for_each_kmem_cache_node(s, node, n) {
3745 free_partial(s, n);
3746 if (n->nr_partial || slabs_node(s, node))
3747 return 1;
3748 }
3749 sysfs_slab_remove(s);
3750 return 0;
3751}
3752
3753/********************************************************************
3754 * Kmalloc subsystem
3755 *******************************************************************/
3756
3757static int __init setup_slub_min_order(char *str)
3758{
3759 get_option(&str, (int *)&slub_min_order);
3760
3761 return 1;
3762}
3763
3764__setup("slub_min_order=", setup_slub_min_order);
3765
3766static int __init setup_slub_max_order(char *str)
3767{
3768 get_option(&str, (int *)&slub_max_order);
3769 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3770
3771 return 1;
3772}
3773
3774__setup("slub_max_order=", setup_slub_max_order);
3775
3776static int __init setup_slub_min_objects(char *str)
3777{
3778 get_option(&str, (int *)&slub_min_objects);
3779
3780 return 1;
3781}
3782
3783__setup("slub_min_objects=", setup_slub_min_objects);
3784
3785void *__kmalloc(size_t size, gfp_t flags)
3786{
3787 struct kmem_cache *s;
3788 void *ret;
3789
3790 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3791 return kmalloc_large(size, flags);
3792
3793 s = kmalloc_slab(size, flags);
3794
3795 if (unlikely(ZERO_OR_NULL_PTR(s)))
3796 return s;
3797
3798 ret = slab_alloc(s, flags, _RET_IP_);
3799
3800 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3801
3802 ret = kasan_kmalloc(s, ret, size, flags);
3803
3804 return ret;
3805}
3806EXPORT_SYMBOL(__kmalloc);
3807
3808#ifdef CONFIG_NUMA
3809static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3810{
3811 struct page *page;
3812 void *ptr = NULL;
3813 unsigned int order = get_order(size);
3814
3815 flags |= __GFP_COMP;
3816 page = alloc_pages_node(node, flags, order);
3817 if (page) {
3818 ptr = page_address(page);
3819 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3820 1 << order);
3821 }
3822
3823 return kmalloc_large_node_hook(ptr, size, flags);
3824}
3825
3826void *__kmalloc_node(size_t size, gfp_t flags, int node)
3827{
3828 struct kmem_cache *s;
3829 void *ret;
3830
3831 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3832 ret = kmalloc_large_node(size, flags, node);
3833
3834 trace_kmalloc_node(_RET_IP_, ret,
3835 size, PAGE_SIZE << get_order(size),
3836 flags, node);
3837
3838 return ret;
3839 }
3840
3841 s = kmalloc_slab(size, flags);
3842
3843 if (unlikely(ZERO_OR_NULL_PTR(s)))
3844 return s;
3845
3846 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3847
3848 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3849
3850 ret = kasan_kmalloc(s, ret, size, flags);
3851
3852 return ret;
3853}
3854EXPORT_SYMBOL(__kmalloc_node);
3855#endif /* CONFIG_NUMA */
3856
3857#ifdef CONFIG_HARDENED_USERCOPY
3858/*
3859 * Rejects incorrectly sized objects and objects that are to be copied
3860 * to/from userspace but do not fall entirely within the containing slab
3861 * cache's usercopy region.
3862 *
3863 * Returns NULL if check passes, otherwise const char * to name of cache
3864 * to indicate an error.
3865 */
3866void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3867 bool to_user)
3868{
3869 struct kmem_cache *s;
3870 unsigned int offset;
3871 size_t object_size;
3872
3873 ptr = kasan_reset_tag(ptr);
3874
3875 /* Find object and usable object size. */
3876 s = page->slab_cache;
3877
3878 /* Reject impossible pointers. */
3879 if (ptr < page_address(page))
3880 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3881 to_user, 0, n);
3882
3883 /* Find offset within object. */
3884 offset = (ptr - page_address(page)) % s->size;
3885
3886 /* Adjust for redzone and reject if within the redzone. */
3887 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3888 if (offset < s->red_left_pad)
3889 usercopy_abort("SLUB object in left red zone",
3890 s->name, to_user, offset, n);
3891 offset -= s->red_left_pad;
3892 }
3893
3894 /* Allow address range falling entirely within usercopy region. */
3895 if (offset >= s->useroffset &&
3896 offset - s->useroffset <= s->usersize &&
3897 n <= s->useroffset - offset + s->usersize)
3898 return;
3899
3900 /*
3901 * If the copy is still within the allocated object, produce
3902 * a warning instead of rejecting the copy. This is intended
3903 * to be a temporary method to find any missing usercopy
3904 * whitelists.
3905 */
3906 object_size = slab_ksize(s);
3907 if (usercopy_fallback &&
3908 offset <= object_size && n <= object_size - offset) {
3909 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3910 return;
3911 }
3912
3913 usercopy_abort("SLUB object", s->name, to_user, offset, n);
3914}
3915#endif /* CONFIG_HARDENED_USERCOPY */
3916
3917size_t __ksize(const void *object)
3918{
3919 struct page *page;
3920
3921 if (unlikely(object == ZERO_SIZE_PTR))
3922 return 0;
3923
3924 page = virt_to_head_page(object);
3925
3926 if (unlikely(!PageSlab(page))) {
3927 WARN_ON(!PageCompound(page));
3928 return page_size(page);
3929 }
3930
3931 return slab_ksize(page->slab_cache);
3932}
3933EXPORT_SYMBOL(__ksize);
3934
3935void kfree(const void *x)
3936{
3937 struct page *page;
3938 void *object = (void *)x;
3939
3940 trace_kfree(_RET_IP_, x);
3941
3942 if (unlikely(ZERO_OR_NULL_PTR(x)))
3943 return;
3944
3945 page = virt_to_head_page(x);
3946 if (unlikely(!PageSlab(page))) {
3947 unsigned int order = compound_order(page);
3948
3949 BUG_ON(!PageCompound(page));
3950 kfree_hook(object);
3951 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3952 -(1 << order));
3953 __free_pages(page, order);
3954 return;
3955 }
3956 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3957}
3958EXPORT_SYMBOL(kfree);
3959
3960#define SHRINK_PROMOTE_MAX 32
3961
3962/*
3963 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3964 * up most to the head of the partial lists. New allocations will then
3965 * fill those up and thus they can be removed from the partial lists.
3966 *
3967 * The slabs with the least items are placed last. This results in them
3968 * being allocated from last increasing the chance that the last objects
3969 * are freed in them.
3970 */
3971int __kmem_cache_shrink(struct kmem_cache *s)
3972{
3973 int node;
3974 int i;
3975 struct kmem_cache_node *n;
3976 struct page *page;
3977 struct page *t;
3978 struct list_head discard;
3979 struct list_head promote[SHRINK_PROMOTE_MAX];
3980 unsigned long flags;
3981 int ret = 0;
3982
3983 flush_all(s);
3984 for_each_kmem_cache_node(s, node, n) {
3985 INIT_LIST_HEAD(&discard);
3986 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3987 INIT_LIST_HEAD(promote + i);
3988
3989 spin_lock_irqsave(&n->list_lock, flags);
3990
3991 /*
3992 * Build lists of slabs to discard or promote.
3993 *
3994 * Note that concurrent frees may occur while we hold the
3995 * list_lock. page->inuse here is the upper limit.
3996 */
3997 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
3998 int free = page->objects - page->inuse;
3999
4000 /* Do not reread page->inuse */
4001 barrier();
4002
4003 /* We do not keep full slabs on the list */
4004 BUG_ON(free <= 0);
4005
4006 if (free == page->objects) {
4007 list_move(&page->slab_list, &discard);
4008 n->nr_partial--;
4009 } else if (free <= SHRINK_PROMOTE_MAX)
4010 list_move(&page->slab_list, promote + free - 1);
4011 }
4012
4013 /*
4014 * Promote the slabs filled up most to the head of the
4015 * partial list.
4016 */
4017 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4018 list_splice(promote + i, &n->partial);
4019
4020 spin_unlock_irqrestore(&n->list_lock, flags);
4021
4022 /* Release empty slabs */
4023 list_for_each_entry_safe(page, t, &discard, slab_list)
4024 discard_slab(s, page);
4025
4026 if (slabs_node(s, node))
4027 ret = 1;
4028 }
4029
4030 return ret;
4031}
4032
4033#ifdef CONFIG_MEMCG
4034void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
4035{
4036 /*
4037 * Called with all the locks held after a sched RCU grace period.
4038 * Even if @s becomes empty after shrinking, we can't know that @s
4039 * doesn't have allocations already in-flight and thus can't
4040 * destroy @s until the associated memcg is released.
4041 *
4042 * However, let's remove the sysfs files for empty caches here.
4043 * Each cache has a lot of interface files which aren't
4044 * particularly useful for empty draining caches; otherwise, we can
4045 * easily end up with millions of unnecessary sysfs files on
4046 * systems which have a lot of memory and transient cgroups.
4047 */
4048 if (!__kmem_cache_shrink(s))
4049 sysfs_slab_remove(s);
4050}
4051
4052void __kmemcg_cache_deactivate(struct kmem_cache *s)
4053{
4054 /*
4055 * Disable empty slabs caching. Used to avoid pinning offline
4056 * memory cgroups by kmem pages that can be freed.
4057 */
4058 slub_set_cpu_partial(s, 0);
4059 s->min_partial = 0;
4060}
4061#endif /* CONFIG_MEMCG */
4062
4063static int slab_mem_going_offline_callback(void *arg)
4064{
4065 struct kmem_cache *s;
4066
4067 mutex_lock(&slab_mutex);
4068 list_for_each_entry(s, &slab_caches, list)
4069 __kmem_cache_shrink(s);
4070 mutex_unlock(&slab_mutex);
4071
4072 return 0;
4073}
4074
4075static void slab_mem_offline_callback(void *arg)
4076{
4077 struct kmem_cache_node *n;
4078 struct kmem_cache *s;
4079 struct memory_notify *marg = arg;
4080 int offline_node;
4081
4082 offline_node = marg->status_change_nid_normal;
4083
4084 /*
4085 * If the node still has available memory. we need kmem_cache_node
4086 * for it yet.
4087 */
4088 if (offline_node < 0)
4089 return;
4090
4091 mutex_lock(&slab_mutex);
4092 list_for_each_entry(s, &slab_caches, list) {
4093 n = get_node(s, offline_node);
4094 if (n) {
4095 /*
4096 * if n->nr_slabs > 0, slabs still exist on the node
4097 * that is going down. We were unable to free them,
4098 * and offline_pages() function shouldn't call this
4099 * callback. So, we must fail.
4100 */
4101 BUG_ON(slabs_node(s, offline_node));
4102
4103 s->node[offline_node] = NULL;
4104 kmem_cache_free(kmem_cache_node, n);
4105 }
4106 }
4107 mutex_unlock(&slab_mutex);
4108}
4109
4110static int slab_mem_going_online_callback(void *arg)
4111{
4112 struct kmem_cache_node *n;
4113 struct kmem_cache *s;
4114 struct memory_notify *marg = arg;
4115 int nid = marg->status_change_nid_normal;
4116 int ret = 0;
4117
4118 /*
4119 * If the node's memory is already available, then kmem_cache_node is
4120 * already created. Nothing to do.
4121 */
4122 if (nid < 0)
4123 return 0;
4124
4125 /*
4126 * We are bringing a node online. No memory is available yet. We must
4127 * allocate a kmem_cache_node structure in order to bring the node
4128 * online.
4129 */
4130 mutex_lock(&slab_mutex);
4131 list_for_each_entry(s, &slab_caches, list) {
4132 /*
4133 * XXX: kmem_cache_alloc_node will fallback to other nodes
4134 * since memory is not yet available from the node that
4135 * is brought up.
4136 */
4137 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4138 if (!n) {
4139 ret = -ENOMEM;
4140 goto out;
4141 }
4142 init_kmem_cache_node(n);
4143 s->node[nid] = n;
4144 }
4145out:
4146 mutex_unlock(&slab_mutex);
4147 return ret;
4148}
4149
4150static int slab_memory_callback(struct notifier_block *self,
4151 unsigned long action, void *arg)
4152{
4153 int ret = 0;
4154
4155 switch (action) {
4156 case MEM_GOING_ONLINE:
4157 ret = slab_mem_going_online_callback(arg);
4158 break;
4159 case MEM_GOING_OFFLINE:
4160 ret = slab_mem_going_offline_callback(arg);
4161 break;
4162 case MEM_OFFLINE:
4163 case MEM_CANCEL_ONLINE:
4164 slab_mem_offline_callback(arg);
4165 break;
4166 case MEM_ONLINE:
4167 case MEM_CANCEL_OFFLINE:
4168 break;
4169 }
4170 if (ret)
4171 ret = notifier_from_errno(ret);
4172 else
4173 ret = NOTIFY_OK;
4174 return ret;
4175}
4176
4177static struct notifier_block slab_memory_callback_nb = {
4178 .notifier_call = slab_memory_callback,
4179 .priority = SLAB_CALLBACK_PRI,
4180};
4181
4182/********************************************************************
4183 * Basic setup of slabs
4184 *******************************************************************/
4185
4186/*
4187 * Used for early kmem_cache structures that were allocated using
4188 * the page allocator. Allocate them properly then fix up the pointers
4189 * that may be pointing to the wrong kmem_cache structure.
4190 */
4191
4192static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4193{
4194 int node;
4195 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4196 struct kmem_cache_node *n;
4197
4198 memcpy(s, static_cache, kmem_cache->object_size);
4199
4200 /*
4201 * This runs very early, and only the boot processor is supposed to be
4202 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4203 * IPIs around.
4204 */
4205 __flush_cpu_slab(s, smp_processor_id());
4206 for_each_kmem_cache_node(s, node, n) {
4207 struct page *p;
4208
4209 list_for_each_entry(p, &n->partial, slab_list)
4210 p->slab_cache = s;
4211
4212#ifdef CONFIG_SLUB_DEBUG
4213 list_for_each_entry(p, &n->full, slab_list)
4214 p->slab_cache = s;
4215#endif
4216 }
4217 slab_init_memcg_params(s);
4218 list_add(&s->list, &slab_caches);
4219 memcg_link_cache(s, NULL);
4220 return s;
4221}
4222
4223void __init kmem_cache_init(void)
4224{
4225 static __initdata struct kmem_cache boot_kmem_cache,
4226 boot_kmem_cache_node;
4227
4228 if (debug_guardpage_minorder())
4229 slub_max_order = 0;
4230
4231 kmem_cache_node = &boot_kmem_cache_node;
4232 kmem_cache = &boot_kmem_cache;
4233
4234 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4235 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4236
4237 register_hotmemory_notifier(&slab_memory_callback_nb);
4238
4239 /* Able to allocate the per node structures */
4240 slab_state = PARTIAL;
4241
4242 create_boot_cache(kmem_cache, "kmem_cache",
4243 offsetof(struct kmem_cache, node) +
4244 nr_node_ids * sizeof(struct kmem_cache_node *),
4245 SLAB_HWCACHE_ALIGN, 0, 0);
4246
4247 kmem_cache = bootstrap(&boot_kmem_cache);
4248 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4249
4250 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4251 setup_kmalloc_cache_index_table();
4252 create_kmalloc_caches(0);
4253
4254 /* Setup random freelists for each cache */
4255 init_freelist_randomization();
4256
4257 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4258 slub_cpu_dead);
4259
4260 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4261 cache_line_size(),
4262 slub_min_order, slub_max_order, slub_min_objects,
4263 nr_cpu_ids, nr_node_ids);
4264}
4265
4266void __init kmem_cache_init_late(void)
4267{
4268}
4269
4270struct kmem_cache *
4271__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4272 slab_flags_t flags, void (*ctor)(void *))
4273{
4274 struct kmem_cache *s, *c;
4275
4276 s = find_mergeable(size, align, flags, name, ctor);
4277 if (s) {
4278 s->refcount++;
4279
4280 /*
4281 * Adjust the object sizes so that we clear
4282 * the complete object on kzalloc.
4283 */
4284 s->object_size = max(s->object_size, size);
4285 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4286
4287 for_each_memcg_cache(c, s) {
4288 c->object_size = s->object_size;
4289 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4290 }
4291
4292 if (sysfs_slab_alias(s, name)) {
4293 s->refcount--;
4294 s = NULL;
4295 }
4296 }
4297
4298 return s;
4299}
4300
4301int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4302{
4303 int err;
4304
4305 err = kmem_cache_open(s, flags);
4306 if (err)
4307 return err;
4308
4309 /* Mutex is not taken during early boot */
4310 if (slab_state <= UP)
4311 return 0;
4312
4313 memcg_propagate_slab_attrs(s);
4314 err = sysfs_slab_add(s);
4315 if (err)
4316 __kmem_cache_release(s);
4317
4318 return err;
4319}
4320
4321void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4322{
4323 struct kmem_cache *s;
4324 void *ret;
4325
4326 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4327 return kmalloc_large(size, gfpflags);
4328
4329 s = kmalloc_slab(size, gfpflags);
4330
4331 if (unlikely(ZERO_OR_NULL_PTR(s)))
4332 return s;
4333
4334 ret = slab_alloc(s, gfpflags, caller);
4335
4336 /* Honor the call site pointer we received. */
4337 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4338
4339 return ret;
4340}
4341
4342#ifdef CONFIG_NUMA
4343void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4344 int node, unsigned long caller)
4345{
4346 struct kmem_cache *s;
4347 void *ret;
4348
4349 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4350 ret = kmalloc_large_node(size, gfpflags, node);
4351
4352 trace_kmalloc_node(caller, ret,
4353 size, PAGE_SIZE << get_order(size),
4354 gfpflags, node);
4355
4356 return ret;
4357 }
4358
4359 s = kmalloc_slab(size, gfpflags);
4360
4361 if (unlikely(ZERO_OR_NULL_PTR(s)))
4362 return s;
4363
4364 ret = slab_alloc_node(s, gfpflags, node, caller);
4365
4366 /* Honor the call site pointer we received. */
4367 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4368
4369 return ret;
4370}
4371#endif
4372
4373#ifdef CONFIG_SYSFS
4374static int count_inuse(struct page *page)
4375{
4376 return page->inuse;
4377}
4378
4379static int count_total(struct page *page)
4380{
4381 return page->objects;
4382}
4383#endif
4384
4385#ifdef CONFIG_SLUB_DEBUG
4386static int validate_slab(struct kmem_cache *s, struct page *page,
4387 unsigned long *map)
4388{
4389 void *p;
4390 void *addr = page_address(page);
4391
4392 if (!check_slab(s, page) ||
4393 !on_freelist(s, page, NULL))
4394 return 0;
4395
4396 /* Now we know that a valid freelist exists */
4397 bitmap_zero(map, page->objects);
4398
4399 get_map(s, page, map);
4400 for_each_object(p, s, addr, page->objects) {
4401 if (test_bit(slab_index(p, s, addr), map))
4402 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4403 return 0;
4404 }
4405
4406 for_each_object(p, s, addr, page->objects)
4407 if (!test_bit(slab_index(p, s, addr), map))
4408 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4409 return 0;
4410 return 1;
4411}
4412
4413static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4414 unsigned long *map)
4415{
4416 slab_lock(page);
4417 validate_slab(s, page, map);
4418 slab_unlock(page);
4419}
4420
4421static int validate_slab_node(struct kmem_cache *s,
4422 struct kmem_cache_node *n, unsigned long *map)
4423{
4424 unsigned long count = 0;
4425 struct page *page;
4426 unsigned long flags;
4427
4428 spin_lock_irqsave(&n->list_lock, flags);
4429
4430 list_for_each_entry(page, &n->partial, slab_list) {
4431 validate_slab_slab(s, page, map);
4432 count++;
4433 }
4434 if (count != n->nr_partial)
4435 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4436 s->name, count, n->nr_partial);
4437
4438 if (!(s->flags & SLAB_STORE_USER))
4439 goto out;
4440
4441 list_for_each_entry(page, &n->full, slab_list) {
4442 validate_slab_slab(s, page, map);
4443 count++;
4444 }
4445 if (count != atomic_long_read(&n->nr_slabs))
4446 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4447 s->name, count, atomic_long_read(&n->nr_slabs));
4448
4449out:
4450 spin_unlock_irqrestore(&n->list_lock, flags);
4451 return count;
4452}
4453
4454static long validate_slab_cache(struct kmem_cache *s)
4455{
4456 int node;
4457 unsigned long count = 0;
4458 struct kmem_cache_node *n;
4459 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4460
4461 if (!map)
4462 return -ENOMEM;
4463
4464 flush_all(s);
4465 for_each_kmem_cache_node(s, node, n)
4466 count += validate_slab_node(s, n, map);
4467 bitmap_free(map);
4468 return count;
4469}
4470/*
4471 * Generate lists of code addresses where slabcache objects are allocated
4472 * and freed.
4473 */
4474
4475struct location {
4476 unsigned long count;
4477 unsigned long addr;
4478 long long sum_time;
4479 long min_time;
4480 long max_time;
4481 long min_pid;
4482 long max_pid;
4483 DECLARE_BITMAP(cpus, NR_CPUS);
4484 nodemask_t nodes;
4485};
4486
4487struct loc_track {
4488 unsigned long max;
4489 unsigned long count;
4490 struct location *loc;
4491};
4492
4493static void free_loc_track(struct loc_track *t)
4494{
4495 if (t->max)
4496 free_pages((unsigned long)t->loc,
4497 get_order(sizeof(struct location) * t->max));
4498}
4499
4500static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4501{
4502 struct location *l;
4503 int order;
4504
4505 order = get_order(sizeof(struct location) * max);
4506
4507 l = (void *)__get_free_pages(flags, order);
4508 if (!l)
4509 return 0;
4510
4511 if (t->count) {
4512 memcpy(l, t->loc, sizeof(struct location) * t->count);
4513 free_loc_track(t);
4514 }
4515 t->max = max;
4516 t->loc = l;
4517 return 1;
4518}
4519
4520static int add_location(struct loc_track *t, struct kmem_cache *s,
4521 const struct track *track)
4522{
4523 long start, end, pos;
4524 struct location *l;
4525 unsigned long caddr;
4526 unsigned long age = jiffies - track->when;
4527
4528 start = -1;
4529 end = t->count;
4530
4531 for ( ; ; ) {
4532 pos = start + (end - start + 1) / 2;
4533
4534 /*
4535 * There is nothing at "end". If we end up there
4536 * we need to add something to before end.
4537 */
4538 if (pos == end)
4539 break;
4540
4541 caddr = t->loc[pos].addr;
4542 if (track->addr == caddr) {
4543
4544 l = &t->loc[pos];
4545 l->count++;
4546 if (track->when) {
4547 l->sum_time += age;
4548 if (age < l->min_time)
4549 l->min_time = age;
4550 if (age > l->max_time)
4551 l->max_time = age;
4552
4553 if (track->pid < l->min_pid)
4554 l->min_pid = track->pid;
4555 if (track->pid > l->max_pid)
4556 l->max_pid = track->pid;
4557
4558 cpumask_set_cpu(track->cpu,
4559 to_cpumask(l->cpus));
4560 }
4561 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4562 return 1;
4563 }
4564
4565 if (track->addr < caddr)
4566 end = pos;
4567 else
4568 start = pos;
4569 }
4570
4571 /*
4572 * Not found. Insert new tracking element.
4573 */
4574 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4575 return 0;
4576
4577 l = t->loc + pos;
4578 if (pos < t->count)
4579 memmove(l + 1, l,
4580 (t->count - pos) * sizeof(struct location));
4581 t->count++;
4582 l->count = 1;
4583 l->addr = track->addr;
4584 l->sum_time = age;
4585 l->min_time = age;
4586 l->max_time = age;
4587 l->min_pid = track->pid;
4588 l->max_pid = track->pid;
4589 cpumask_clear(to_cpumask(l->cpus));
4590 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4591 nodes_clear(l->nodes);
4592 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4593 return 1;
4594}
4595
4596static void process_slab(struct loc_track *t, struct kmem_cache *s,
4597 struct page *page, enum track_item alloc,
4598 unsigned long *map)
4599{
4600 void *addr = page_address(page);
4601 void *p;
4602
4603 bitmap_zero(map, page->objects);
4604 get_map(s, page, map);
4605
4606 for_each_object(p, s, addr, page->objects)
4607 if (!test_bit(slab_index(p, s, addr), map))
4608 add_location(t, s, get_track(s, p, alloc));
4609}
4610
4611static int list_locations(struct kmem_cache *s, char *buf,
4612 enum track_item alloc)
4613{
4614 int len = 0;
4615 unsigned long i;
4616 struct loc_track t = { 0, 0, NULL };
4617 int node;
4618 struct kmem_cache_node *n;
4619 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4620
4621 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4622 GFP_KERNEL)) {
4623 bitmap_free(map);
4624 return sprintf(buf, "Out of memory\n");
4625 }
4626 /* Push back cpu slabs */
4627 flush_all(s);
4628
4629 for_each_kmem_cache_node(s, node, n) {
4630 unsigned long flags;
4631 struct page *page;
4632
4633 if (!atomic_long_read(&n->nr_slabs))
4634 continue;
4635
4636 spin_lock_irqsave(&n->list_lock, flags);
4637 list_for_each_entry(page, &n->partial, slab_list)
4638 process_slab(&t, s, page, alloc, map);
4639 list_for_each_entry(page, &n->full, slab_list)
4640 process_slab(&t, s, page, alloc, map);
4641 spin_unlock_irqrestore(&n->list_lock, flags);
4642 }
4643
4644 for (i = 0; i < t.count; i++) {
4645 struct location *l = &t.loc[i];
4646
4647 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4648 break;
4649 len += sprintf(buf + len, "%7ld ", l->count);
4650
4651 if (l->addr)
4652 len += sprintf(buf + len, "%pS", (void *)l->addr);
4653 else
4654 len += sprintf(buf + len, "<not-available>");
4655
4656 if (l->sum_time != l->min_time) {
4657 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4658 l->min_time,
4659 (long)div_u64(l->sum_time, l->count),
4660 l->max_time);
4661 } else
4662 len += sprintf(buf + len, " age=%ld",
4663 l->min_time);
4664
4665 if (l->min_pid != l->max_pid)
4666 len += sprintf(buf + len, " pid=%ld-%ld",
4667 l->min_pid, l->max_pid);
4668 else
4669 len += sprintf(buf + len, " pid=%ld",
4670 l->min_pid);
4671
4672 if (num_online_cpus() > 1 &&
4673 !cpumask_empty(to_cpumask(l->cpus)) &&
4674 len < PAGE_SIZE - 60)
4675 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4676 " cpus=%*pbl",
4677 cpumask_pr_args(to_cpumask(l->cpus)));
4678
4679 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4680 len < PAGE_SIZE - 60)
4681 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4682 " nodes=%*pbl",
4683 nodemask_pr_args(&l->nodes));
4684
4685 len += sprintf(buf + len, "\n");
4686 }
4687
4688 free_loc_track(&t);
4689 bitmap_free(map);
4690 if (!t.count)
4691 len += sprintf(buf, "No data\n");
4692 return len;
4693}
4694#endif /* CONFIG_SLUB_DEBUG */
4695
4696#ifdef SLUB_RESILIENCY_TEST
4697static void __init resiliency_test(void)
4698{
4699 u8 *p;
4700 int type = KMALLOC_NORMAL;
4701
4702 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4703
4704 pr_err("SLUB resiliency testing\n");
4705 pr_err("-----------------------\n");
4706 pr_err("A. Corruption after allocation\n");
4707
4708 p = kzalloc(16, GFP_KERNEL);
4709 p[16] = 0x12;
4710 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4711 p + 16);
4712
4713 validate_slab_cache(kmalloc_caches[type][4]);
4714
4715 /* Hmmm... The next two are dangerous */
4716 p = kzalloc(32, GFP_KERNEL);
4717 p[32 + sizeof(void *)] = 0x34;
4718 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4719 p);
4720 pr_err("If allocated object is overwritten then not detectable\n\n");
4721
4722 validate_slab_cache(kmalloc_caches[type][5]);
4723 p = kzalloc(64, GFP_KERNEL);
4724 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4725 *p = 0x56;
4726 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4727 p);
4728 pr_err("If allocated object is overwritten then not detectable\n\n");
4729 validate_slab_cache(kmalloc_caches[type][6]);
4730
4731 pr_err("\nB. Corruption after free\n");
4732 p = kzalloc(128, GFP_KERNEL);
4733 kfree(p);
4734 *p = 0x78;
4735 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4736 validate_slab_cache(kmalloc_caches[type][7]);
4737
4738 p = kzalloc(256, GFP_KERNEL);
4739 kfree(p);
4740 p[50] = 0x9a;
4741 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4742 validate_slab_cache(kmalloc_caches[type][8]);
4743
4744 p = kzalloc(512, GFP_KERNEL);
4745 kfree(p);
4746 p[512] = 0xab;
4747 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4748 validate_slab_cache(kmalloc_caches[type][9]);
4749}
4750#else
4751#ifdef CONFIG_SYSFS
4752static void resiliency_test(void) {};
4753#endif
4754#endif /* SLUB_RESILIENCY_TEST */
4755
4756#ifdef CONFIG_SYSFS
4757enum slab_stat_type {
4758 SL_ALL, /* All slabs */
4759 SL_PARTIAL, /* Only partially allocated slabs */
4760 SL_CPU, /* Only slabs used for cpu caches */
4761 SL_OBJECTS, /* Determine allocated objects not slabs */
4762 SL_TOTAL /* Determine object capacity not slabs */
4763};
4764
4765#define SO_ALL (1 << SL_ALL)
4766#define SO_PARTIAL (1 << SL_PARTIAL)
4767#define SO_CPU (1 << SL_CPU)
4768#define SO_OBJECTS (1 << SL_OBJECTS)
4769#define SO_TOTAL (1 << SL_TOTAL)
4770
4771#ifdef CONFIG_MEMCG
4772static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4773
4774static int __init setup_slub_memcg_sysfs(char *str)
4775{
4776 int v;
4777
4778 if (get_option(&str, &v) > 0)
4779 memcg_sysfs_enabled = v;
4780
4781 return 1;
4782}
4783
4784__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4785#endif
4786
4787static ssize_t show_slab_objects(struct kmem_cache *s,
4788 char *buf, unsigned long flags)
4789{
4790 unsigned long total = 0;
4791 int node;
4792 int x;
4793 unsigned long *nodes;
4794
4795 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4796 if (!nodes)
4797 return -ENOMEM;
4798
4799 if (flags & SO_CPU) {
4800 int cpu;
4801
4802 for_each_possible_cpu(cpu) {
4803 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4804 cpu);
4805 int node;
4806 struct page *page;
4807
4808 page = READ_ONCE(c->page);
4809 if (!page)
4810 continue;
4811
4812 node = page_to_nid(page);
4813 if (flags & SO_TOTAL)
4814 x = page->objects;
4815 else if (flags & SO_OBJECTS)
4816 x = page->inuse;
4817 else
4818 x = 1;
4819
4820 total += x;
4821 nodes[node] += x;
4822
4823 page = slub_percpu_partial_read_once(c);
4824 if (page) {
4825 node = page_to_nid(page);
4826 if (flags & SO_TOTAL)
4827 WARN_ON_ONCE(1);
4828 else if (flags & SO_OBJECTS)
4829 WARN_ON_ONCE(1);
4830 else
4831 x = page->pages;
4832 total += x;
4833 nodes[node] += x;
4834 }
4835 }
4836 }
4837
4838 /*
4839 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4840 * already held which will conflict with an existing lock order:
4841 *
4842 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4843 *
4844 * We don't really need mem_hotplug_lock (to hold off
4845 * slab_mem_going_offline_callback) here because slab's memory hot
4846 * unplug code doesn't destroy the kmem_cache->node[] data.
4847 */
4848
4849#ifdef CONFIG_SLUB_DEBUG
4850 if (flags & SO_ALL) {
4851 struct kmem_cache_node *n;
4852
4853 for_each_kmem_cache_node(s, node, n) {
4854
4855 if (flags & SO_TOTAL)
4856 x = atomic_long_read(&n->total_objects);
4857 else if (flags & SO_OBJECTS)
4858 x = atomic_long_read(&n->total_objects) -
4859 count_partial(n, count_free);
4860 else
4861 x = atomic_long_read(&n->nr_slabs);
4862 total += x;
4863 nodes[node] += x;
4864 }
4865
4866 } else
4867#endif
4868 if (flags & SO_PARTIAL) {
4869 struct kmem_cache_node *n;
4870
4871 for_each_kmem_cache_node(s, node, n) {
4872 if (flags & SO_TOTAL)
4873 x = count_partial(n, count_total);
4874 else if (flags & SO_OBJECTS)
4875 x = count_partial(n, count_inuse);
4876 else
4877 x = n->nr_partial;
4878 total += x;
4879 nodes[node] += x;
4880 }
4881 }
4882 x = sprintf(buf, "%lu", total);
4883#ifdef CONFIG_NUMA
4884 for (node = 0; node < nr_node_ids; node++)
4885 if (nodes[node])
4886 x += sprintf(buf + x, " N%d=%lu",
4887 node, nodes[node]);
4888#endif
4889 kfree(nodes);
4890 return x + sprintf(buf + x, "\n");
4891}
4892
4893#ifdef CONFIG_SLUB_DEBUG
4894static int any_slab_objects(struct kmem_cache *s)
4895{
4896 int node;
4897 struct kmem_cache_node *n;
4898
4899 for_each_kmem_cache_node(s, node, n)
4900 if (atomic_long_read(&n->total_objects))
4901 return 1;
4902
4903 return 0;
4904}
4905#endif
4906
4907#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4908#define to_slab(n) container_of(n, struct kmem_cache, kobj)
4909
4910struct slab_attribute {
4911 struct attribute attr;
4912 ssize_t (*show)(struct kmem_cache *s, char *buf);
4913 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4914};
4915
4916#define SLAB_ATTR_RO(_name) \
4917 static struct slab_attribute _name##_attr = \
4918 __ATTR(_name, 0400, _name##_show, NULL)
4919
4920#define SLAB_ATTR(_name) \
4921 static struct slab_attribute _name##_attr = \
4922 __ATTR(_name, 0600, _name##_show, _name##_store)
4923
4924static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4925{
4926 return sprintf(buf, "%u\n", s->size);
4927}
4928SLAB_ATTR_RO(slab_size);
4929
4930static ssize_t align_show(struct kmem_cache *s, char *buf)
4931{
4932 return sprintf(buf, "%u\n", s->align);
4933}
4934SLAB_ATTR_RO(align);
4935
4936static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4937{
4938 return sprintf(buf, "%u\n", s->object_size);
4939}
4940SLAB_ATTR_RO(object_size);
4941
4942static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4943{
4944 return sprintf(buf, "%u\n", oo_objects(s->oo));
4945}
4946SLAB_ATTR_RO(objs_per_slab);
4947
4948static ssize_t order_store(struct kmem_cache *s,
4949 const char *buf, size_t length)
4950{
4951 unsigned int order;
4952 int err;
4953
4954 err = kstrtouint(buf, 10, &order);
4955 if (err)
4956 return err;
4957
4958 if (order > slub_max_order || order < slub_min_order)
4959 return -EINVAL;
4960
4961 calculate_sizes(s, order);
4962 return length;
4963}
4964
4965static ssize_t order_show(struct kmem_cache *s, char *buf)
4966{
4967 return sprintf(buf, "%u\n", oo_order(s->oo));
4968}
4969SLAB_ATTR(order);
4970
4971static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4972{
4973 return sprintf(buf, "%lu\n", s->min_partial);
4974}
4975
4976static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4977 size_t length)
4978{
4979 unsigned long min;
4980 int err;
4981
4982 err = kstrtoul(buf, 10, &min);
4983 if (err)
4984 return err;
4985
4986 set_min_partial(s, min);
4987 return length;
4988}
4989SLAB_ATTR(min_partial);
4990
4991static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4992{
4993 return sprintf(buf, "%u\n", slub_cpu_partial(s));
4994}
4995
4996static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4997 size_t length)
4998{
4999 unsigned int objects;
5000 int err;
5001
5002 err = kstrtouint(buf, 10, &objects);
5003 if (err)
5004 return err;
5005 if (objects && !kmem_cache_has_cpu_partial(s))
5006 return -EINVAL;
5007
5008 slub_set_cpu_partial(s, objects);
5009 flush_all(s);
5010 return length;
5011}
5012SLAB_ATTR(cpu_partial);
5013
5014static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5015{
5016 if (!s->ctor)
5017 return 0;
5018 return sprintf(buf, "%pS\n", s->ctor);
5019}
5020SLAB_ATTR_RO(ctor);
5021
5022static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5023{
5024 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5025}
5026SLAB_ATTR_RO(aliases);
5027
5028static ssize_t partial_show(struct kmem_cache *s, char *buf)
5029{
5030 return show_slab_objects(s, buf, SO_PARTIAL);
5031}
5032SLAB_ATTR_RO(partial);
5033
5034static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5035{
5036 return show_slab_objects(s, buf, SO_CPU);
5037}
5038SLAB_ATTR_RO(cpu_slabs);
5039
5040static ssize_t objects_show(struct kmem_cache *s, char *buf)
5041{
5042 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5043}
5044SLAB_ATTR_RO(objects);
5045
5046static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5047{
5048 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5049}
5050SLAB_ATTR_RO(objects_partial);
5051
5052static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5053{
5054 int objects = 0;
5055 int pages = 0;
5056 int cpu;
5057 int len;
5058
5059 for_each_online_cpu(cpu) {
5060 struct page *page;
5061
5062 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5063
5064 if (page) {
5065 pages += page->pages;
5066 objects += page->pobjects;
5067 }
5068 }
5069
5070 len = sprintf(buf, "%d(%d)", objects, pages);
5071
5072#ifdef CONFIG_SMP
5073 for_each_online_cpu(cpu) {
5074 struct page *page;
5075
5076 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5077
5078 if (page && len < PAGE_SIZE - 20)
5079 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5080 page->pobjects, page->pages);
5081 }
5082#endif
5083 return len + sprintf(buf + len, "\n");
5084}
5085SLAB_ATTR_RO(slabs_cpu_partial);
5086
5087static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5088{
5089 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5090}
5091
5092static ssize_t reclaim_account_store(struct kmem_cache *s,
5093 const char *buf, size_t length)
5094{
5095 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5096 if (buf[0] == '1')
5097 s->flags |= SLAB_RECLAIM_ACCOUNT;
5098 return length;
5099}
5100SLAB_ATTR(reclaim_account);
5101
5102static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5103{
5104 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5105}
5106SLAB_ATTR_RO(hwcache_align);
5107
5108#ifdef CONFIG_ZONE_DMA
5109static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5110{
5111 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5112}
5113SLAB_ATTR_RO(cache_dma);
5114#endif
5115
5116static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5117{
5118 return sprintf(buf, "%u\n", s->usersize);
5119}
5120SLAB_ATTR_RO(usersize);
5121
5122static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5123{
5124 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5125}
5126SLAB_ATTR_RO(destroy_by_rcu);
5127
5128#ifdef CONFIG_SLUB_DEBUG
5129static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5130{
5131 return show_slab_objects(s, buf, SO_ALL);
5132}
5133SLAB_ATTR_RO(slabs);
5134
5135static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5136{
5137 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5138}
5139SLAB_ATTR_RO(total_objects);
5140
5141static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5142{
5143 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5144}
5145
5146static ssize_t sanity_checks_store(struct kmem_cache *s,
5147 const char *buf, size_t length)
5148{
5149 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5150 if (buf[0] == '1') {
5151 s->flags &= ~__CMPXCHG_DOUBLE;
5152 s->flags |= SLAB_CONSISTENCY_CHECKS;
5153 }
5154 return length;
5155}
5156SLAB_ATTR(sanity_checks);
5157
5158static ssize_t trace_show(struct kmem_cache *s, char *buf)
5159{
5160 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5161}
5162
5163static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5164 size_t length)
5165{
5166 /*
5167 * Tracing a merged cache is going to give confusing results
5168 * as well as cause other issues like converting a mergeable
5169 * cache into an umergeable one.
5170 */
5171 if (s->refcount > 1)
5172 return -EINVAL;
5173
5174 s->flags &= ~SLAB_TRACE;
5175 if (buf[0] == '1') {
5176 s->flags &= ~__CMPXCHG_DOUBLE;
5177 s->flags |= SLAB_TRACE;
5178 }
5179 return length;
5180}
5181SLAB_ATTR(trace);
5182
5183static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5184{
5185 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5186}
5187
5188static ssize_t red_zone_store(struct kmem_cache *s,
5189 const char *buf, size_t length)
5190{
5191 if (any_slab_objects(s))
5192 return -EBUSY;
5193
5194 s->flags &= ~SLAB_RED_ZONE;
5195 if (buf[0] == '1') {
5196 s->flags |= SLAB_RED_ZONE;
5197 }
5198 calculate_sizes(s, -1);
5199 return length;
5200}
5201SLAB_ATTR(red_zone);
5202
5203static ssize_t poison_show(struct kmem_cache *s, char *buf)
5204{
5205 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5206}
5207
5208static ssize_t poison_store(struct kmem_cache *s,
5209 const char *buf, size_t length)
5210{
5211 if (any_slab_objects(s))
5212 return -EBUSY;
5213
5214 s->flags &= ~SLAB_POISON;
5215 if (buf[0] == '1') {
5216 s->flags |= SLAB_POISON;
5217 }
5218 calculate_sizes(s, -1);
5219 return length;
5220}
5221SLAB_ATTR(poison);
5222
5223static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5224{
5225 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5226}
5227
5228static ssize_t store_user_store(struct kmem_cache *s,
5229 const char *buf, size_t length)
5230{
5231 if (any_slab_objects(s))
5232 return -EBUSY;
5233
5234 s->flags &= ~SLAB_STORE_USER;
5235 if (buf[0] == '1') {
5236 s->flags &= ~__CMPXCHG_DOUBLE;
5237 s->flags |= SLAB_STORE_USER;
5238 }
5239 calculate_sizes(s, -1);
5240 return length;
5241}
5242SLAB_ATTR(store_user);
5243
5244static ssize_t validate_show(struct kmem_cache *s, char *buf)
5245{
5246 return 0;
5247}
5248
5249static ssize_t validate_store(struct kmem_cache *s,
5250 const char *buf, size_t length)
5251{
5252 int ret = -EINVAL;
5253
5254 if (buf[0] == '1') {
5255 ret = validate_slab_cache(s);
5256 if (ret >= 0)
5257 ret = length;
5258 }
5259 return ret;
5260}
5261SLAB_ATTR(validate);
5262
5263static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5264{
5265 if (!(s->flags & SLAB_STORE_USER))
5266 return -ENOSYS;
5267 return list_locations(s, buf, TRACK_ALLOC);
5268}
5269SLAB_ATTR_RO(alloc_calls);
5270
5271static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5272{
5273 if (!(s->flags & SLAB_STORE_USER))
5274 return -ENOSYS;
5275 return list_locations(s, buf, TRACK_FREE);
5276}
5277SLAB_ATTR_RO(free_calls);
5278#endif /* CONFIG_SLUB_DEBUG */
5279
5280#ifdef CONFIG_FAILSLAB
5281static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5282{
5283 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5284}
5285
5286static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5287 size_t length)
5288{
5289 if (s->refcount > 1)
5290 return -EINVAL;
5291
5292 s->flags &= ~SLAB_FAILSLAB;
5293 if (buf[0] == '1')
5294 s->flags |= SLAB_FAILSLAB;
5295 return length;
5296}
5297SLAB_ATTR(failslab);
5298#endif
5299
5300static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5301{
5302 return 0;
5303}
5304
5305static ssize_t shrink_store(struct kmem_cache *s,
5306 const char *buf, size_t length)
5307{
5308 if (buf[0] == '1')
5309 kmem_cache_shrink_all(s);
5310 else
5311 return -EINVAL;
5312 return length;
5313}
5314SLAB_ATTR(shrink);
5315
5316#ifdef CONFIG_NUMA
5317static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5318{
5319 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5320}
5321
5322static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5323 const char *buf, size_t length)
5324{
5325 unsigned int ratio;
5326 int err;
5327
5328 err = kstrtouint(buf, 10, &ratio);
5329 if (err)
5330 return err;
5331 if (ratio > 100)
5332 return -ERANGE;
5333
5334 s->remote_node_defrag_ratio = ratio * 10;
5335
5336 return length;
5337}
5338SLAB_ATTR(remote_node_defrag_ratio);
5339#endif
5340
5341#ifdef CONFIG_SLUB_STATS
5342static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5343{
5344 unsigned long sum = 0;
5345 int cpu;
5346 int len;
5347 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5348
5349 if (!data)
5350 return -ENOMEM;
5351
5352 for_each_online_cpu(cpu) {
5353 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5354
5355 data[cpu] = x;
5356 sum += x;
5357 }
5358
5359 len = sprintf(buf, "%lu", sum);
5360
5361#ifdef CONFIG_SMP
5362 for_each_online_cpu(cpu) {
5363 if (data[cpu] && len < PAGE_SIZE - 20)
5364 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5365 }
5366#endif
5367 kfree(data);
5368 return len + sprintf(buf + len, "\n");
5369}
5370
5371static void clear_stat(struct kmem_cache *s, enum stat_item si)
5372{
5373 int cpu;
5374
5375 for_each_online_cpu(cpu)
5376 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5377}
5378
5379#define STAT_ATTR(si, text) \
5380static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5381{ \
5382 return show_stat(s, buf, si); \
5383} \
5384static ssize_t text##_store(struct kmem_cache *s, \
5385 const char *buf, size_t length) \
5386{ \
5387 if (buf[0] != '0') \
5388 return -EINVAL; \
5389 clear_stat(s, si); \
5390 return length; \
5391} \
5392SLAB_ATTR(text); \
5393
5394STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5395STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5396STAT_ATTR(FREE_FASTPATH, free_fastpath);
5397STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5398STAT_ATTR(FREE_FROZEN, free_frozen);
5399STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5400STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5401STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5402STAT_ATTR(ALLOC_SLAB, alloc_slab);
5403STAT_ATTR(ALLOC_REFILL, alloc_refill);
5404STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5405STAT_ATTR(FREE_SLAB, free_slab);
5406STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5407STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5408STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5409STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5410STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5411STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5412STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5413STAT_ATTR(ORDER_FALLBACK, order_fallback);
5414STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5415STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5416STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5417STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5418STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5419STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5420#endif /* CONFIG_SLUB_STATS */
5421
5422static struct attribute *slab_attrs[] = {
5423 &slab_size_attr.attr,
5424 &object_size_attr.attr,
5425 &objs_per_slab_attr.attr,
5426 &order_attr.attr,
5427 &min_partial_attr.attr,
5428 &cpu_partial_attr.attr,
5429 &objects_attr.attr,
5430 &objects_partial_attr.attr,
5431 &partial_attr.attr,
5432 &cpu_slabs_attr.attr,
5433 &ctor_attr.attr,
5434 &aliases_attr.attr,
5435 &align_attr.attr,
5436 &hwcache_align_attr.attr,
5437 &reclaim_account_attr.attr,
5438 &destroy_by_rcu_attr.attr,
5439 &shrink_attr.attr,
5440 &slabs_cpu_partial_attr.attr,
5441#ifdef CONFIG_SLUB_DEBUG
5442 &total_objects_attr.attr,
5443 &slabs_attr.attr,
5444 &sanity_checks_attr.attr,
5445 &trace_attr.attr,
5446 &red_zone_attr.attr,
5447 &poison_attr.attr,
5448 &store_user_attr.attr,
5449 &validate_attr.attr,
5450 &alloc_calls_attr.attr,
5451 &free_calls_attr.attr,
5452#endif
5453#ifdef CONFIG_ZONE_DMA
5454 &cache_dma_attr.attr,
5455#endif
5456#ifdef CONFIG_NUMA
5457 &remote_node_defrag_ratio_attr.attr,
5458#endif
5459#ifdef CONFIG_SLUB_STATS
5460 &alloc_fastpath_attr.attr,
5461 &alloc_slowpath_attr.attr,
5462 &free_fastpath_attr.attr,
5463 &free_slowpath_attr.attr,
5464 &free_frozen_attr.attr,
5465 &free_add_partial_attr.attr,
5466 &free_remove_partial_attr.attr,
5467 &alloc_from_partial_attr.attr,
5468 &alloc_slab_attr.attr,
5469 &alloc_refill_attr.attr,
5470 &alloc_node_mismatch_attr.attr,
5471 &free_slab_attr.attr,
5472 &cpuslab_flush_attr.attr,
5473 &deactivate_full_attr.attr,
5474 &deactivate_empty_attr.attr,
5475 &deactivate_to_head_attr.attr,
5476 &deactivate_to_tail_attr.attr,
5477 &deactivate_remote_frees_attr.attr,
5478 &deactivate_bypass_attr.attr,
5479 &order_fallback_attr.attr,
5480 &cmpxchg_double_fail_attr.attr,
5481 &cmpxchg_double_cpu_fail_attr.attr,
5482 &cpu_partial_alloc_attr.attr,
5483 &cpu_partial_free_attr.attr,
5484 &cpu_partial_node_attr.attr,
5485 &cpu_partial_drain_attr.attr,
5486#endif
5487#ifdef CONFIG_FAILSLAB
5488 &failslab_attr.attr,
5489#endif
5490 &usersize_attr.attr,
5491
5492 NULL
5493};
5494
5495static const struct attribute_group slab_attr_group = {
5496 .attrs = slab_attrs,
5497};
5498
5499static ssize_t slab_attr_show(struct kobject *kobj,
5500 struct attribute *attr,
5501 char *buf)
5502{
5503 struct slab_attribute *attribute;
5504 struct kmem_cache *s;
5505 int err;
5506
5507 attribute = to_slab_attr(attr);
5508 s = to_slab(kobj);
5509
5510 if (!attribute->show)
5511 return -EIO;
5512
5513 err = attribute->show(s, buf);
5514
5515 return err;
5516}
5517
5518static ssize_t slab_attr_store(struct kobject *kobj,
5519 struct attribute *attr,
5520 const char *buf, size_t len)
5521{
5522 struct slab_attribute *attribute;
5523 struct kmem_cache *s;
5524 int err;
5525
5526 attribute = to_slab_attr(attr);
5527 s = to_slab(kobj);
5528
5529 if (!attribute->store)
5530 return -EIO;
5531
5532 err = attribute->store(s, buf, len);
5533#ifdef CONFIG_MEMCG
5534 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5535 struct kmem_cache *c;
5536
5537 mutex_lock(&slab_mutex);
5538 if (s->max_attr_size < len)
5539 s->max_attr_size = len;
5540
5541 /*
5542 * This is a best effort propagation, so this function's return
5543 * value will be determined by the parent cache only. This is
5544 * basically because not all attributes will have a well
5545 * defined semantics for rollbacks - most of the actions will
5546 * have permanent effects.
5547 *
5548 * Returning the error value of any of the children that fail
5549 * is not 100 % defined, in the sense that users seeing the
5550 * error code won't be able to know anything about the state of
5551 * the cache.
5552 *
5553 * Only returning the error code for the parent cache at least
5554 * has well defined semantics. The cache being written to
5555 * directly either failed or succeeded, in which case we loop
5556 * through the descendants with best-effort propagation.
5557 */
5558 for_each_memcg_cache(c, s)
5559 attribute->store(c, buf, len);
5560 mutex_unlock(&slab_mutex);
5561 }
5562#endif
5563 return err;
5564}
5565
5566static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5567{
5568#ifdef CONFIG_MEMCG
5569 int i;
5570 char *buffer = NULL;
5571 struct kmem_cache *root_cache;
5572
5573 if (is_root_cache(s))
5574 return;
5575
5576 root_cache = s->memcg_params.root_cache;
5577
5578 /*
5579 * This mean this cache had no attribute written. Therefore, no point
5580 * in copying default values around
5581 */
5582 if (!root_cache->max_attr_size)
5583 return;
5584
5585 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5586 char mbuf[64];
5587 char *buf;
5588 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5589 ssize_t len;
5590
5591 if (!attr || !attr->store || !attr->show)
5592 continue;
5593
5594 /*
5595 * It is really bad that we have to allocate here, so we will
5596 * do it only as a fallback. If we actually allocate, though,
5597 * we can just use the allocated buffer until the end.
5598 *
5599 * Most of the slub attributes will tend to be very small in
5600 * size, but sysfs allows buffers up to a page, so they can
5601 * theoretically happen.
5602 */
5603 if (buffer)
5604 buf = buffer;
5605 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5606 buf = mbuf;
5607 else {
5608 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5609 if (WARN_ON(!buffer))
5610 continue;
5611 buf = buffer;
5612 }
5613
5614 len = attr->show(root_cache, buf);
5615 if (len > 0)
5616 attr->store(s, buf, len);
5617 }
5618
5619 if (buffer)
5620 free_page((unsigned long)buffer);
5621#endif /* CONFIG_MEMCG */
5622}
5623
5624static void kmem_cache_release(struct kobject *k)
5625{
5626 slab_kmem_cache_release(to_slab(k));
5627}
5628
5629static const struct sysfs_ops slab_sysfs_ops = {
5630 .show = slab_attr_show,
5631 .store = slab_attr_store,
5632};
5633
5634static struct kobj_type slab_ktype = {
5635 .sysfs_ops = &slab_sysfs_ops,
5636 .release = kmem_cache_release,
5637};
5638
5639static int uevent_filter(struct kset *kset, struct kobject *kobj)
5640{
5641 struct kobj_type *ktype = get_ktype(kobj);
5642
5643 if (ktype == &slab_ktype)
5644 return 1;
5645 return 0;
5646}
5647
5648static const struct kset_uevent_ops slab_uevent_ops = {
5649 .filter = uevent_filter,
5650};
5651
5652static struct kset *slab_kset;
5653
5654static inline struct kset *cache_kset(struct kmem_cache *s)
5655{
5656#ifdef CONFIG_MEMCG
5657 if (!is_root_cache(s))
5658 return s->memcg_params.root_cache->memcg_kset;
5659#endif
5660 return slab_kset;
5661}
5662
5663#define ID_STR_LENGTH 64
5664
5665/* Create a unique string id for a slab cache:
5666 *
5667 * Format :[flags-]size
5668 */
5669static char *create_unique_id(struct kmem_cache *s)
5670{
5671 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5672 char *p = name;
5673
5674 BUG_ON(!name);
5675
5676 *p++ = ':';
5677 /*
5678 * First flags affecting slabcache operations. We will only
5679 * get here for aliasable slabs so we do not need to support
5680 * too many flags. The flags here must cover all flags that
5681 * are matched during merging to guarantee that the id is
5682 * unique.
5683 */
5684 if (s->flags & SLAB_CACHE_DMA)
5685 *p++ = 'd';
5686 if (s->flags & SLAB_CACHE_DMA32)
5687 *p++ = 'D';
5688 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5689 *p++ = 'a';
5690 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5691 *p++ = 'F';
5692 if (s->flags & SLAB_ACCOUNT)
5693 *p++ = 'A';
5694 if (p != name + 1)
5695 *p++ = '-';
5696 p += sprintf(p, "%07u", s->size);
5697
5698 BUG_ON(p > name + ID_STR_LENGTH - 1);
5699 return name;
5700}
5701
5702static void sysfs_slab_remove_workfn(struct work_struct *work)
5703{
5704 struct kmem_cache *s =
5705 container_of(work, struct kmem_cache, kobj_remove_work);
5706
5707 if (!s->kobj.state_in_sysfs)
5708 /*
5709 * For a memcg cache, this may be called during
5710 * deactivation and again on shutdown. Remove only once.
5711 * A cache is never shut down before deactivation is
5712 * complete, so no need to worry about synchronization.
5713 */
5714 goto out;
5715
5716#ifdef CONFIG_MEMCG
5717 kset_unregister(s->memcg_kset);
5718#endif
5719 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5720out:
5721 kobject_put(&s->kobj);
5722}
5723
5724static int sysfs_slab_add(struct kmem_cache *s)
5725{
5726 int err;
5727 const char *name;
5728 struct kset *kset = cache_kset(s);
5729 int unmergeable = slab_unmergeable(s);
5730
5731 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5732
5733 if (!kset) {
5734 kobject_init(&s->kobj, &slab_ktype);
5735 return 0;
5736 }
5737
5738 if (!unmergeable && disable_higher_order_debug &&
5739 (slub_debug & DEBUG_METADATA_FLAGS))
5740 unmergeable = 1;
5741
5742 if (unmergeable) {
5743 /*
5744 * Slabcache can never be merged so we can use the name proper.
5745 * This is typically the case for debug situations. In that
5746 * case we can catch duplicate names easily.
5747 */
5748 sysfs_remove_link(&slab_kset->kobj, s->name);
5749 name = s->name;
5750 } else {
5751 /*
5752 * Create a unique name for the slab as a target
5753 * for the symlinks.
5754 */
5755 name = create_unique_id(s);
5756 }
5757
5758 s->kobj.kset = kset;
5759 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5760 if (err)
5761 goto out;
5762
5763 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5764 if (err)
5765 goto out_del_kobj;
5766
5767#ifdef CONFIG_MEMCG
5768 if (is_root_cache(s) && memcg_sysfs_enabled) {
5769 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5770 if (!s->memcg_kset) {
5771 err = -ENOMEM;
5772 goto out_del_kobj;
5773 }
5774 }
5775#endif
5776
5777 kobject_uevent(&s->kobj, KOBJ_ADD);
5778 if (!unmergeable) {
5779 /* Setup first alias */
5780 sysfs_slab_alias(s, s->name);
5781 }
5782out:
5783 if (!unmergeable)
5784 kfree(name);
5785 return err;
5786out_del_kobj:
5787 kobject_del(&s->kobj);
5788 goto out;
5789}
5790
5791static void sysfs_slab_remove(struct kmem_cache *s)
5792{
5793 if (slab_state < FULL)
5794 /*
5795 * Sysfs has not been setup yet so no need to remove the
5796 * cache from sysfs.
5797 */
5798 return;
5799
5800 kobject_get(&s->kobj);
5801 schedule_work(&s->kobj_remove_work);
5802}
5803
5804void sysfs_slab_unlink(struct kmem_cache *s)
5805{
5806 if (slab_state >= FULL)
5807 kobject_del(&s->kobj);
5808}
5809
5810void sysfs_slab_release(struct kmem_cache *s)
5811{
5812 if (slab_state >= FULL)
5813 kobject_put(&s->kobj);
5814}
5815
5816/*
5817 * Need to buffer aliases during bootup until sysfs becomes
5818 * available lest we lose that information.
5819 */
5820struct saved_alias {
5821 struct kmem_cache *s;
5822 const char *name;
5823 struct saved_alias *next;
5824};
5825
5826static struct saved_alias *alias_list;
5827
5828static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5829{
5830 struct saved_alias *al;
5831
5832 if (slab_state == FULL) {
5833 /*
5834 * If we have a leftover link then remove it.
5835 */
5836 sysfs_remove_link(&slab_kset->kobj, name);
5837 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5838 }
5839
5840 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5841 if (!al)
5842 return -ENOMEM;
5843
5844 al->s = s;
5845 al->name = name;
5846 al->next = alias_list;
5847 alias_list = al;
5848 return 0;
5849}
5850
5851static int __init slab_sysfs_init(void)
5852{
5853 struct kmem_cache *s;
5854 int err;
5855
5856 mutex_lock(&slab_mutex);
5857
5858 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5859 if (!slab_kset) {
5860 mutex_unlock(&slab_mutex);
5861 pr_err("Cannot register slab subsystem.\n");
5862 return -ENOSYS;
5863 }
5864
5865 slab_state = FULL;
5866
5867 list_for_each_entry(s, &slab_caches, list) {
5868 err = sysfs_slab_add(s);
5869 if (err)
5870 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5871 s->name);
5872 }
5873
5874 while (alias_list) {
5875 struct saved_alias *al = alias_list;
5876
5877 alias_list = alias_list->next;
5878 err = sysfs_slab_alias(al->s, al->name);
5879 if (err)
5880 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5881 al->name);
5882 kfree(al);
5883 }
5884
5885 mutex_unlock(&slab_mutex);
5886 resiliency_test();
5887 return 0;
5888}
5889
5890__initcall(slab_sysfs_init);
5891#endif /* CONFIG_SYSFS */
5892
5893/*
5894 * The /proc/slabinfo ABI
5895 */
5896#ifdef CONFIG_SLUB_DEBUG
5897void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5898{
5899 unsigned long nr_slabs = 0;
5900 unsigned long nr_objs = 0;
5901 unsigned long nr_free = 0;
5902 int node;
5903 struct kmem_cache_node *n;
5904
5905 for_each_kmem_cache_node(s, node, n) {
5906 nr_slabs += node_nr_slabs(n);
5907 nr_objs += node_nr_objs(n);
5908 nr_free += count_partial(n, count_free);
5909 }
5910
5911 sinfo->active_objs = nr_objs - nr_free;
5912 sinfo->num_objs = nr_objs;
5913 sinfo->active_slabs = nr_slabs;
5914 sinfo->num_slabs = nr_slabs;
5915 sinfo->objects_per_slab = oo_objects(s->oo);
5916 sinfo->cache_order = oo_order(s->oo);
5917}
5918
5919void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5920{
5921}
5922
5923ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5924 size_t count, loff_t *ppos)
5925{
5926 return -EIO;
5927}
5928#endif /* CONFIG_SLUB_DEBUG */
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12#include <linux/mm.h>
13#include <linux/swap.h> /* struct reclaim_state */
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
19#include <linux/proc_fs.h>
20#include <linux/seq_file.h>
21#include <linux/kmemcheck.h>
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
26#include <linux/debugobjects.h>
27#include <linux/kallsyms.h>
28#include <linux/memory.h>
29#include <linux/math64.h>
30#include <linux/fault-inject.h>
31#include <linux/stacktrace.h>
32
33#include <trace/events/kmem.h>
34
35/*
36 * Lock order:
37 * 1. slub_lock (Global Semaphore)
38 * 2. node->list_lock
39 * 3. slab_lock(page) (Only on some arches and for debugging)
40 *
41 * slub_lock
42 *
43 * The role of the slub_lock is to protect the list of all the slabs
44 * and to synchronize major metadata changes to slab cache structures.
45 *
46 * The slab_lock is only used for debugging and on arches that do not
47 * have the ability to do a cmpxchg_double. It only protects the second
48 * double word in the page struct. Meaning
49 * A. page->freelist -> List of object free in a page
50 * B. page->counters -> Counters of objects
51 * C. page->frozen -> frozen state
52 *
53 * If a slab is frozen then it is exempt from list management. It is not
54 * on any list. The processor that froze the slab is the one who can
55 * perform list operations on the page. Other processors may put objects
56 * onto the freelist but the processor that froze the slab is the only
57 * one that can retrieve the objects from the page's freelist.
58 *
59 * The list_lock protects the partial and full list on each node and
60 * the partial slab counter. If taken then no new slabs may be added or
61 * removed from the lists nor make the number of partial slabs be modified.
62 * (Note that the total number of slabs is an atomic value that may be
63 * modified without taking the list lock).
64 *
65 * The list_lock is a centralized lock and thus we avoid taking it as
66 * much as possible. As long as SLUB does not have to handle partial
67 * slabs, operations can continue without any centralized lock. F.e.
68 * allocating a long series of objects that fill up slabs does not require
69 * the list lock.
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
102 * freelist that allows lockless access to
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
108 * the fast path and disables lockless freelists.
109 */
110
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
116#ifdef CONFIG_SLUB_DEBUG
117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
118#else
119 return 0;
120#endif
121}
122
123/*
124 * Issues still to be resolved:
125 *
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
134/* Enable to log cmpxchg failures */
135#undef SLUB_DEBUG_CMPXCHG
136
137/*
138 * Mininum number of partial slabs. These will be left on the partial
139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
140 */
141#define MIN_PARTIAL 5
142
143/*
144 * Maximum number of desirable partial slabs.
145 * The existence of more partial slabs makes kmem_cache_shrink
146 * sort the partial list by the number of objects in the.
147 */
148#define MAX_PARTIAL 10
149
150#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151 SLAB_POISON | SLAB_STORE_USER)
152
153/*
154 * Debugging flags that require metadata to be stored in the slab. These get
155 * disabled when slub_debug=O is used and a cache's min order increases with
156 * metadata.
157 */
158#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
159
160/*
161 * Set of flags that will prevent slab merging
162 */
163#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
164 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
165 SLAB_FAILSLAB)
166
167#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
168 SLAB_CACHE_DMA | SLAB_NOTRACK)
169
170#define OO_SHIFT 16
171#define OO_MASK ((1 << OO_SHIFT) - 1)
172#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
173
174/* Internal SLUB flags */
175#define __OBJECT_POISON 0x80000000UL /* Poison object */
176#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
177
178static int kmem_size = sizeof(struct kmem_cache);
179
180#ifdef CONFIG_SMP
181static struct notifier_block slab_notifier;
182#endif
183
184static enum {
185 DOWN, /* No slab functionality available */
186 PARTIAL, /* Kmem_cache_node works */
187 UP, /* Everything works but does not show up in sysfs */
188 SYSFS /* Sysfs up */
189} slab_state = DOWN;
190
191/* A list of all slab caches on the system */
192static DECLARE_RWSEM(slub_lock);
193static LIST_HEAD(slab_caches);
194
195/*
196 * Tracking user of a slab.
197 */
198#define TRACK_ADDRS_COUNT 16
199struct track {
200 unsigned long addr; /* Called from address */
201#ifdef CONFIG_STACKTRACE
202 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
203#endif
204 int cpu; /* Was running on cpu */
205 int pid; /* Pid context */
206 unsigned long when; /* When did the operation occur */
207};
208
209enum track_item { TRACK_ALLOC, TRACK_FREE };
210
211#ifdef CONFIG_SYSFS
212static int sysfs_slab_add(struct kmem_cache *);
213static int sysfs_slab_alias(struct kmem_cache *, const char *);
214static void sysfs_slab_remove(struct kmem_cache *);
215
216#else
217static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
218static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
219 { return 0; }
220static inline void sysfs_slab_remove(struct kmem_cache *s)
221{
222 kfree(s->name);
223 kfree(s);
224}
225
226#endif
227
228static inline void stat(const struct kmem_cache *s, enum stat_item si)
229{
230#ifdef CONFIG_SLUB_STATS
231 __this_cpu_inc(s->cpu_slab->stat[si]);
232#endif
233}
234
235/********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
238
239int slab_is_available(void)
240{
241 return slab_state >= UP;
242}
243
244static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
245{
246 return s->node[node];
247}
248
249/* Verify that a pointer has an address that is valid within a slab page */
250static inline int check_valid_pointer(struct kmem_cache *s,
251 struct page *page, const void *object)
252{
253 void *base;
254
255 if (!object)
256 return 1;
257
258 base = page_address(page);
259 if (object < base || object >= base + page->objects * s->size ||
260 (object - base) % s->size) {
261 return 0;
262 }
263
264 return 1;
265}
266
267static inline void *get_freepointer(struct kmem_cache *s, void *object)
268{
269 return *(void **)(object + s->offset);
270}
271
272static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
273{
274 void *p;
275
276#ifdef CONFIG_DEBUG_PAGEALLOC
277 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
278#else
279 p = get_freepointer(s, object);
280#endif
281 return p;
282}
283
284static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
285{
286 *(void **)(object + s->offset) = fp;
287}
288
289/* Loop over all objects in a slab */
290#define for_each_object(__p, __s, __addr, __objects) \
291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
292 __p += (__s)->size)
293
294/* Determine object index from a given position */
295static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
296{
297 return (p - addr) / s->size;
298}
299
300static inline size_t slab_ksize(const struct kmem_cache *s)
301{
302#ifdef CONFIG_SLUB_DEBUG
303 /*
304 * Debugging requires use of the padding between object
305 * and whatever may come after it.
306 */
307 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
308 return s->objsize;
309
310#endif
311 /*
312 * If we have the need to store the freelist pointer
313 * back there or track user information then we can
314 * only use the space before that information.
315 */
316 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
317 return s->inuse;
318 /*
319 * Else we can use all the padding etc for the allocation
320 */
321 return s->size;
322}
323
324static inline int order_objects(int order, unsigned long size, int reserved)
325{
326 return ((PAGE_SIZE << order) - reserved) / size;
327}
328
329static inline struct kmem_cache_order_objects oo_make(int order,
330 unsigned long size, int reserved)
331{
332 struct kmem_cache_order_objects x = {
333 (order << OO_SHIFT) + order_objects(order, size, reserved)
334 };
335
336 return x;
337}
338
339static inline int oo_order(struct kmem_cache_order_objects x)
340{
341 return x.x >> OO_SHIFT;
342}
343
344static inline int oo_objects(struct kmem_cache_order_objects x)
345{
346 return x.x & OO_MASK;
347}
348
349/*
350 * Per slab locking using the pagelock
351 */
352static __always_inline void slab_lock(struct page *page)
353{
354 bit_spin_lock(PG_locked, &page->flags);
355}
356
357static __always_inline void slab_unlock(struct page *page)
358{
359 __bit_spin_unlock(PG_locked, &page->flags);
360}
361
362/* Interrupts must be disabled (for the fallback code to work right) */
363static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 void *freelist_old, unsigned long counters_old,
365 void *freelist_new, unsigned long counters_new,
366 const char *n)
367{
368 VM_BUG_ON(!irqs_disabled());
369#ifdef CONFIG_CMPXCHG_DOUBLE
370 if (s->flags & __CMPXCHG_DOUBLE) {
371 if (cmpxchg_double(&page->freelist,
372 freelist_old, counters_old,
373 freelist_new, counters_new))
374 return 1;
375 } else
376#endif
377 {
378 slab_lock(page);
379 if (page->freelist == freelist_old && page->counters == counters_old) {
380 page->freelist = freelist_new;
381 page->counters = counters_new;
382 slab_unlock(page);
383 return 1;
384 }
385 slab_unlock(page);
386 }
387
388 cpu_relax();
389 stat(s, CMPXCHG_DOUBLE_FAIL);
390
391#ifdef SLUB_DEBUG_CMPXCHG
392 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
393#endif
394
395 return 0;
396}
397
398static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
399 void *freelist_old, unsigned long counters_old,
400 void *freelist_new, unsigned long counters_new,
401 const char *n)
402{
403#ifdef CONFIG_CMPXCHG_DOUBLE
404 if (s->flags & __CMPXCHG_DOUBLE) {
405 if (cmpxchg_double(&page->freelist,
406 freelist_old, counters_old,
407 freelist_new, counters_new))
408 return 1;
409 } else
410#endif
411 {
412 unsigned long flags;
413
414 local_irq_save(flags);
415 slab_lock(page);
416 if (page->freelist == freelist_old && page->counters == counters_old) {
417 page->freelist = freelist_new;
418 page->counters = counters_new;
419 slab_unlock(page);
420 local_irq_restore(flags);
421 return 1;
422 }
423 slab_unlock(page);
424 local_irq_restore(flags);
425 }
426
427 cpu_relax();
428 stat(s, CMPXCHG_DOUBLE_FAIL);
429
430#ifdef SLUB_DEBUG_CMPXCHG
431 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
432#endif
433
434 return 0;
435}
436
437#ifdef CONFIG_SLUB_DEBUG
438/*
439 * Determine a map of object in use on a page.
440 *
441 * Node listlock must be held to guarantee that the page does
442 * not vanish from under us.
443 */
444static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
445{
446 void *p;
447 void *addr = page_address(page);
448
449 for (p = page->freelist; p; p = get_freepointer(s, p))
450 set_bit(slab_index(p, s, addr), map);
451}
452
453/*
454 * Debug settings:
455 */
456#ifdef CONFIG_SLUB_DEBUG_ON
457static int slub_debug = DEBUG_DEFAULT_FLAGS;
458#else
459static int slub_debug;
460#endif
461
462static char *slub_debug_slabs;
463static int disable_higher_order_debug;
464
465/*
466 * Object debugging
467 */
468static void print_section(char *text, u8 *addr, unsigned int length)
469{
470 int i, offset;
471 int newline = 1;
472 char ascii[17];
473
474 ascii[16] = 0;
475
476 for (i = 0; i < length; i++) {
477 if (newline) {
478 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
479 newline = 0;
480 }
481 printk(KERN_CONT " %02x", addr[i]);
482 offset = i % 16;
483 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
484 if (offset == 15) {
485 printk(KERN_CONT " %s\n", ascii);
486 newline = 1;
487 }
488 }
489 if (!newline) {
490 i %= 16;
491 while (i < 16) {
492 printk(KERN_CONT " ");
493 ascii[i] = ' ';
494 i++;
495 }
496 printk(KERN_CONT " %s\n", ascii);
497 }
498}
499
500static struct track *get_track(struct kmem_cache *s, void *object,
501 enum track_item alloc)
502{
503 struct track *p;
504
505 if (s->offset)
506 p = object + s->offset + sizeof(void *);
507 else
508 p = object + s->inuse;
509
510 return p + alloc;
511}
512
513static void set_track(struct kmem_cache *s, void *object,
514 enum track_item alloc, unsigned long addr)
515{
516 struct track *p = get_track(s, object, alloc);
517
518 if (addr) {
519#ifdef CONFIG_STACKTRACE
520 struct stack_trace trace;
521 int i;
522
523 trace.nr_entries = 0;
524 trace.max_entries = TRACK_ADDRS_COUNT;
525 trace.entries = p->addrs;
526 trace.skip = 3;
527 save_stack_trace(&trace);
528
529 /* See rant in lockdep.c */
530 if (trace.nr_entries != 0 &&
531 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
532 trace.nr_entries--;
533
534 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
535 p->addrs[i] = 0;
536#endif
537 p->addr = addr;
538 p->cpu = smp_processor_id();
539 p->pid = current->pid;
540 p->when = jiffies;
541 } else
542 memset(p, 0, sizeof(struct track));
543}
544
545static void init_tracking(struct kmem_cache *s, void *object)
546{
547 if (!(s->flags & SLAB_STORE_USER))
548 return;
549
550 set_track(s, object, TRACK_FREE, 0UL);
551 set_track(s, object, TRACK_ALLOC, 0UL);
552}
553
554static void print_track(const char *s, struct track *t)
555{
556 if (!t->addr)
557 return;
558
559 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
560 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
561#ifdef CONFIG_STACKTRACE
562 {
563 int i;
564 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
565 if (t->addrs[i])
566 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
567 else
568 break;
569 }
570#endif
571}
572
573static void print_tracking(struct kmem_cache *s, void *object)
574{
575 if (!(s->flags & SLAB_STORE_USER))
576 return;
577
578 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
579 print_track("Freed", get_track(s, object, TRACK_FREE));
580}
581
582static void print_page_info(struct page *page)
583{
584 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
585 page, page->objects, page->inuse, page->freelist, page->flags);
586
587}
588
589static void slab_bug(struct kmem_cache *s, char *fmt, ...)
590{
591 va_list args;
592 char buf[100];
593
594 va_start(args, fmt);
595 vsnprintf(buf, sizeof(buf), fmt, args);
596 va_end(args);
597 printk(KERN_ERR "========================================"
598 "=====================================\n");
599 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
600 printk(KERN_ERR "----------------------------------------"
601 "-------------------------------------\n\n");
602}
603
604static void slab_fix(struct kmem_cache *s, char *fmt, ...)
605{
606 va_list args;
607 char buf[100];
608
609 va_start(args, fmt);
610 vsnprintf(buf, sizeof(buf), fmt, args);
611 va_end(args);
612 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
613}
614
615static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
616{
617 unsigned int off; /* Offset of last byte */
618 u8 *addr = page_address(page);
619
620 print_tracking(s, p);
621
622 print_page_info(page);
623
624 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
625 p, p - addr, get_freepointer(s, p));
626
627 if (p > addr + 16)
628 print_section("Bytes b4", p - 16, 16);
629
630 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
631
632 if (s->flags & SLAB_RED_ZONE)
633 print_section("Redzone", p + s->objsize,
634 s->inuse - s->objsize);
635
636 if (s->offset)
637 off = s->offset + sizeof(void *);
638 else
639 off = s->inuse;
640
641 if (s->flags & SLAB_STORE_USER)
642 off += 2 * sizeof(struct track);
643
644 if (off != s->size)
645 /* Beginning of the filler is the free pointer */
646 print_section("Padding", p + off, s->size - off);
647
648 dump_stack();
649}
650
651static void object_err(struct kmem_cache *s, struct page *page,
652 u8 *object, char *reason)
653{
654 slab_bug(s, "%s", reason);
655 print_trailer(s, page, object);
656}
657
658static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
659{
660 va_list args;
661 char buf[100];
662
663 va_start(args, fmt);
664 vsnprintf(buf, sizeof(buf), fmt, args);
665 va_end(args);
666 slab_bug(s, "%s", buf);
667 print_page_info(page);
668 dump_stack();
669}
670
671static void init_object(struct kmem_cache *s, void *object, u8 val)
672{
673 u8 *p = object;
674
675 if (s->flags & __OBJECT_POISON) {
676 memset(p, POISON_FREE, s->objsize - 1);
677 p[s->objsize - 1] = POISON_END;
678 }
679
680 if (s->flags & SLAB_RED_ZONE)
681 memset(p + s->objsize, val, s->inuse - s->objsize);
682}
683
684static u8 *check_bytes8(u8 *start, u8 value, unsigned int bytes)
685{
686 while (bytes) {
687 if (*start != value)
688 return start;
689 start++;
690 bytes--;
691 }
692 return NULL;
693}
694
695static u8 *check_bytes(u8 *start, u8 value, unsigned int bytes)
696{
697 u64 value64;
698 unsigned int words, prefix;
699
700 if (bytes <= 16)
701 return check_bytes8(start, value, bytes);
702
703 value64 = value | value << 8 | value << 16 | value << 24;
704 value64 = (value64 & 0xffffffff) | value64 << 32;
705 prefix = 8 - ((unsigned long)start) % 8;
706
707 if (prefix) {
708 u8 *r = check_bytes8(start, value, prefix);
709 if (r)
710 return r;
711 start += prefix;
712 bytes -= prefix;
713 }
714
715 words = bytes / 8;
716
717 while (words) {
718 if (*(u64 *)start != value64)
719 return check_bytes8(start, value, 8);
720 start += 8;
721 words--;
722 }
723
724 return check_bytes8(start, value, bytes % 8);
725}
726
727static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
728 void *from, void *to)
729{
730 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
731 memset(from, data, to - from);
732}
733
734static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
735 u8 *object, char *what,
736 u8 *start, unsigned int value, unsigned int bytes)
737{
738 u8 *fault;
739 u8 *end;
740
741 fault = check_bytes(start, value, bytes);
742 if (!fault)
743 return 1;
744
745 end = start + bytes;
746 while (end > fault && end[-1] == value)
747 end--;
748
749 slab_bug(s, "%s overwritten", what);
750 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
751 fault, end - 1, fault[0], value);
752 print_trailer(s, page, object);
753
754 restore_bytes(s, what, value, fault, end);
755 return 0;
756}
757
758/*
759 * Object layout:
760 *
761 * object address
762 * Bytes of the object to be managed.
763 * If the freepointer may overlay the object then the free
764 * pointer is the first word of the object.
765 *
766 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
767 * 0xa5 (POISON_END)
768 *
769 * object + s->objsize
770 * Padding to reach word boundary. This is also used for Redzoning.
771 * Padding is extended by another word if Redzoning is enabled and
772 * objsize == inuse.
773 *
774 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
775 * 0xcc (RED_ACTIVE) for objects in use.
776 *
777 * object + s->inuse
778 * Meta data starts here.
779 *
780 * A. Free pointer (if we cannot overwrite object on free)
781 * B. Tracking data for SLAB_STORE_USER
782 * C. Padding to reach required alignment boundary or at mininum
783 * one word if debugging is on to be able to detect writes
784 * before the word boundary.
785 *
786 * Padding is done using 0x5a (POISON_INUSE)
787 *
788 * object + s->size
789 * Nothing is used beyond s->size.
790 *
791 * If slabcaches are merged then the objsize and inuse boundaries are mostly
792 * ignored. And therefore no slab options that rely on these boundaries
793 * may be used with merged slabcaches.
794 */
795
796static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
797{
798 unsigned long off = s->inuse; /* The end of info */
799
800 if (s->offset)
801 /* Freepointer is placed after the object. */
802 off += sizeof(void *);
803
804 if (s->flags & SLAB_STORE_USER)
805 /* We also have user information there */
806 off += 2 * sizeof(struct track);
807
808 if (s->size == off)
809 return 1;
810
811 return check_bytes_and_report(s, page, p, "Object padding",
812 p + off, POISON_INUSE, s->size - off);
813}
814
815/* Check the pad bytes at the end of a slab page */
816static int slab_pad_check(struct kmem_cache *s, struct page *page)
817{
818 u8 *start;
819 u8 *fault;
820 u8 *end;
821 int length;
822 int remainder;
823
824 if (!(s->flags & SLAB_POISON))
825 return 1;
826
827 start = page_address(page);
828 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
829 end = start + length;
830 remainder = length % s->size;
831 if (!remainder)
832 return 1;
833
834 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
835 if (!fault)
836 return 1;
837 while (end > fault && end[-1] == POISON_INUSE)
838 end--;
839
840 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
841 print_section("Padding", end - remainder, remainder);
842
843 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
844 return 0;
845}
846
847static int check_object(struct kmem_cache *s, struct page *page,
848 void *object, u8 val)
849{
850 u8 *p = object;
851 u8 *endobject = object + s->objsize;
852
853 if (s->flags & SLAB_RED_ZONE) {
854 if (!check_bytes_and_report(s, page, object, "Redzone",
855 endobject, val, s->inuse - s->objsize))
856 return 0;
857 } else {
858 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
859 check_bytes_and_report(s, page, p, "Alignment padding",
860 endobject, POISON_INUSE, s->inuse - s->objsize);
861 }
862 }
863
864 if (s->flags & SLAB_POISON) {
865 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
866 (!check_bytes_and_report(s, page, p, "Poison", p,
867 POISON_FREE, s->objsize - 1) ||
868 !check_bytes_and_report(s, page, p, "Poison",
869 p + s->objsize - 1, POISON_END, 1)))
870 return 0;
871 /*
872 * check_pad_bytes cleans up on its own.
873 */
874 check_pad_bytes(s, page, p);
875 }
876
877 if (!s->offset && val == SLUB_RED_ACTIVE)
878 /*
879 * Object and freepointer overlap. Cannot check
880 * freepointer while object is allocated.
881 */
882 return 1;
883
884 /* Check free pointer validity */
885 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
886 object_err(s, page, p, "Freepointer corrupt");
887 /*
888 * No choice but to zap it and thus lose the remainder
889 * of the free objects in this slab. May cause
890 * another error because the object count is now wrong.
891 */
892 set_freepointer(s, p, NULL);
893 return 0;
894 }
895 return 1;
896}
897
898static int check_slab(struct kmem_cache *s, struct page *page)
899{
900 int maxobj;
901
902 VM_BUG_ON(!irqs_disabled());
903
904 if (!PageSlab(page)) {
905 slab_err(s, page, "Not a valid slab page");
906 return 0;
907 }
908
909 maxobj = order_objects(compound_order(page), s->size, s->reserved);
910 if (page->objects > maxobj) {
911 slab_err(s, page, "objects %u > max %u",
912 s->name, page->objects, maxobj);
913 return 0;
914 }
915 if (page->inuse > page->objects) {
916 slab_err(s, page, "inuse %u > max %u",
917 s->name, page->inuse, page->objects);
918 return 0;
919 }
920 /* Slab_pad_check fixes things up after itself */
921 slab_pad_check(s, page);
922 return 1;
923}
924
925/*
926 * Determine if a certain object on a page is on the freelist. Must hold the
927 * slab lock to guarantee that the chains are in a consistent state.
928 */
929static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
930{
931 int nr = 0;
932 void *fp;
933 void *object = NULL;
934 unsigned long max_objects;
935
936 fp = page->freelist;
937 while (fp && nr <= page->objects) {
938 if (fp == search)
939 return 1;
940 if (!check_valid_pointer(s, page, fp)) {
941 if (object) {
942 object_err(s, page, object,
943 "Freechain corrupt");
944 set_freepointer(s, object, NULL);
945 break;
946 } else {
947 slab_err(s, page, "Freepointer corrupt");
948 page->freelist = NULL;
949 page->inuse = page->objects;
950 slab_fix(s, "Freelist cleared");
951 return 0;
952 }
953 break;
954 }
955 object = fp;
956 fp = get_freepointer(s, object);
957 nr++;
958 }
959
960 max_objects = order_objects(compound_order(page), s->size, s->reserved);
961 if (max_objects > MAX_OBJS_PER_PAGE)
962 max_objects = MAX_OBJS_PER_PAGE;
963
964 if (page->objects != max_objects) {
965 slab_err(s, page, "Wrong number of objects. Found %d but "
966 "should be %d", page->objects, max_objects);
967 page->objects = max_objects;
968 slab_fix(s, "Number of objects adjusted.");
969 }
970 if (page->inuse != page->objects - nr) {
971 slab_err(s, page, "Wrong object count. Counter is %d but "
972 "counted were %d", page->inuse, page->objects - nr);
973 page->inuse = page->objects - nr;
974 slab_fix(s, "Object count adjusted.");
975 }
976 return search == NULL;
977}
978
979static void trace(struct kmem_cache *s, struct page *page, void *object,
980 int alloc)
981{
982 if (s->flags & SLAB_TRACE) {
983 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
984 s->name,
985 alloc ? "alloc" : "free",
986 object, page->inuse,
987 page->freelist);
988
989 if (!alloc)
990 print_section("Object", (void *)object, s->objsize);
991
992 dump_stack();
993 }
994}
995
996/*
997 * Hooks for other subsystems that check memory allocations. In a typical
998 * production configuration these hooks all should produce no code at all.
999 */
1000static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1001{
1002 flags &= gfp_allowed_mask;
1003 lockdep_trace_alloc(flags);
1004 might_sleep_if(flags & __GFP_WAIT);
1005
1006 return should_failslab(s->objsize, flags, s->flags);
1007}
1008
1009static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
1010{
1011 flags &= gfp_allowed_mask;
1012 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1013 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
1014}
1015
1016static inline void slab_free_hook(struct kmem_cache *s, void *x)
1017{
1018 kmemleak_free_recursive(x, s->flags);
1019
1020 /*
1021 * Trouble is that we may no longer disable interupts in the fast path
1022 * So in order to make the debug calls that expect irqs to be
1023 * disabled we need to disable interrupts temporarily.
1024 */
1025#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1026 {
1027 unsigned long flags;
1028
1029 local_irq_save(flags);
1030 kmemcheck_slab_free(s, x, s->objsize);
1031 debug_check_no_locks_freed(x, s->objsize);
1032 local_irq_restore(flags);
1033 }
1034#endif
1035 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1036 debug_check_no_obj_freed(x, s->objsize);
1037}
1038
1039/*
1040 * Tracking of fully allocated slabs for debugging purposes.
1041 *
1042 * list_lock must be held.
1043 */
1044static void add_full(struct kmem_cache *s,
1045 struct kmem_cache_node *n, struct page *page)
1046{
1047 if (!(s->flags & SLAB_STORE_USER))
1048 return;
1049
1050 list_add(&page->lru, &n->full);
1051}
1052
1053/*
1054 * list_lock must be held.
1055 */
1056static void remove_full(struct kmem_cache *s, struct page *page)
1057{
1058 if (!(s->flags & SLAB_STORE_USER))
1059 return;
1060
1061 list_del(&page->lru);
1062}
1063
1064/* Tracking of the number of slabs for debugging purposes */
1065static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1066{
1067 struct kmem_cache_node *n = get_node(s, node);
1068
1069 return atomic_long_read(&n->nr_slabs);
1070}
1071
1072static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1073{
1074 return atomic_long_read(&n->nr_slabs);
1075}
1076
1077static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1078{
1079 struct kmem_cache_node *n = get_node(s, node);
1080
1081 /*
1082 * May be called early in order to allocate a slab for the
1083 * kmem_cache_node structure. Solve the chicken-egg
1084 * dilemma by deferring the increment of the count during
1085 * bootstrap (see early_kmem_cache_node_alloc).
1086 */
1087 if (n) {
1088 atomic_long_inc(&n->nr_slabs);
1089 atomic_long_add(objects, &n->total_objects);
1090 }
1091}
1092static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1093{
1094 struct kmem_cache_node *n = get_node(s, node);
1095
1096 atomic_long_dec(&n->nr_slabs);
1097 atomic_long_sub(objects, &n->total_objects);
1098}
1099
1100/* Object debug checks for alloc/free paths */
1101static void setup_object_debug(struct kmem_cache *s, struct page *page,
1102 void *object)
1103{
1104 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1105 return;
1106
1107 init_object(s, object, SLUB_RED_INACTIVE);
1108 init_tracking(s, object);
1109}
1110
1111static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1112 void *object, unsigned long addr)
1113{
1114 if (!check_slab(s, page))
1115 goto bad;
1116
1117 if (!check_valid_pointer(s, page, object)) {
1118 object_err(s, page, object, "Freelist Pointer check fails");
1119 goto bad;
1120 }
1121
1122 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1123 goto bad;
1124
1125 /* Success perform special debug activities for allocs */
1126 if (s->flags & SLAB_STORE_USER)
1127 set_track(s, object, TRACK_ALLOC, addr);
1128 trace(s, page, object, 1);
1129 init_object(s, object, SLUB_RED_ACTIVE);
1130 return 1;
1131
1132bad:
1133 if (PageSlab(page)) {
1134 /*
1135 * If this is a slab page then lets do the best we can
1136 * to avoid issues in the future. Marking all objects
1137 * as used avoids touching the remaining objects.
1138 */
1139 slab_fix(s, "Marking all objects used");
1140 page->inuse = page->objects;
1141 page->freelist = NULL;
1142 }
1143 return 0;
1144}
1145
1146static noinline int free_debug_processing(struct kmem_cache *s,
1147 struct page *page, void *object, unsigned long addr)
1148{
1149 unsigned long flags;
1150 int rc = 0;
1151
1152 local_irq_save(flags);
1153 slab_lock(page);
1154
1155 if (!check_slab(s, page))
1156 goto fail;
1157
1158 if (!check_valid_pointer(s, page, object)) {
1159 slab_err(s, page, "Invalid object pointer 0x%p", object);
1160 goto fail;
1161 }
1162
1163 if (on_freelist(s, page, object)) {
1164 object_err(s, page, object, "Object already free");
1165 goto fail;
1166 }
1167
1168 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1169 goto out;
1170
1171 if (unlikely(s != page->slab)) {
1172 if (!PageSlab(page)) {
1173 slab_err(s, page, "Attempt to free object(0x%p) "
1174 "outside of slab", object);
1175 } else if (!page->slab) {
1176 printk(KERN_ERR
1177 "SLUB <none>: no slab for object 0x%p.\n",
1178 object);
1179 dump_stack();
1180 } else
1181 object_err(s, page, object,
1182 "page slab pointer corrupt.");
1183 goto fail;
1184 }
1185
1186 if (s->flags & SLAB_STORE_USER)
1187 set_track(s, object, TRACK_FREE, addr);
1188 trace(s, page, object, 0);
1189 init_object(s, object, SLUB_RED_INACTIVE);
1190 rc = 1;
1191out:
1192 slab_unlock(page);
1193 local_irq_restore(flags);
1194 return rc;
1195
1196fail:
1197 slab_fix(s, "Object at 0x%p not freed", object);
1198 goto out;
1199}
1200
1201static int __init setup_slub_debug(char *str)
1202{
1203 slub_debug = DEBUG_DEFAULT_FLAGS;
1204 if (*str++ != '=' || !*str)
1205 /*
1206 * No options specified. Switch on full debugging.
1207 */
1208 goto out;
1209
1210 if (*str == ',')
1211 /*
1212 * No options but restriction on slabs. This means full
1213 * debugging for slabs matching a pattern.
1214 */
1215 goto check_slabs;
1216
1217 if (tolower(*str) == 'o') {
1218 /*
1219 * Avoid enabling debugging on caches if its minimum order
1220 * would increase as a result.
1221 */
1222 disable_higher_order_debug = 1;
1223 goto out;
1224 }
1225
1226 slub_debug = 0;
1227 if (*str == '-')
1228 /*
1229 * Switch off all debugging measures.
1230 */
1231 goto out;
1232
1233 /*
1234 * Determine which debug features should be switched on
1235 */
1236 for (; *str && *str != ','; str++) {
1237 switch (tolower(*str)) {
1238 case 'f':
1239 slub_debug |= SLAB_DEBUG_FREE;
1240 break;
1241 case 'z':
1242 slub_debug |= SLAB_RED_ZONE;
1243 break;
1244 case 'p':
1245 slub_debug |= SLAB_POISON;
1246 break;
1247 case 'u':
1248 slub_debug |= SLAB_STORE_USER;
1249 break;
1250 case 't':
1251 slub_debug |= SLAB_TRACE;
1252 break;
1253 case 'a':
1254 slub_debug |= SLAB_FAILSLAB;
1255 break;
1256 default:
1257 printk(KERN_ERR "slub_debug option '%c' "
1258 "unknown. skipped\n", *str);
1259 }
1260 }
1261
1262check_slabs:
1263 if (*str == ',')
1264 slub_debug_slabs = str + 1;
1265out:
1266 return 1;
1267}
1268
1269__setup("slub_debug", setup_slub_debug);
1270
1271static unsigned long kmem_cache_flags(unsigned long objsize,
1272 unsigned long flags, const char *name,
1273 void (*ctor)(void *))
1274{
1275 /*
1276 * Enable debugging if selected on the kernel commandline.
1277 */
1278 if (slub_debug && (!slub_debug_slabs ||
1279 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1280 flags |= slub_debug;
1281
1282 return flags;
1283}
1284#else
1285static inline void setup_object_debug(struct kmem_cache *s,
1286 struct page *page, void *object) {}
1287
1288static inline int alloc_debug_processing(struct kmem_cache *s,
1289 struct page *page, void *object, unsigned long addr) { return 0; }
1290
1291static inline int free_debug_processing(struct kmem_cache *s,
1292 struct page *page, void *object, unsigned long addr) { return 0; }
1293
1294static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1295 { return 1; }
1296static inline int check_object(struct kmem_cache *s, struct page *page,
1297 void *object, u8 val) { return 1; }
1298static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1299 struct page *page) {}
1300static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1301static inline unsigned long kmem_cache_flags(unsigned long objsize,
1302 unsigned long flags, const char *name,
1303 void (*ctor)(void *))
1304{
1305 return flags;
1306}
1307#define slub_debug 0
1308
1309#define disable_higher_order_debug 0
1310
1311static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1312 { return 0; }
1313static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1314 { return 0; }
1315static inline void inc_slabs_node(struct kmem_cache *s, int node,
1316 int objects) {}
1317static inline void dec_slabs_node(struct kmem_cache *s, int node,
1318 int objects) {}
1319
1320static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1321 { return 0; }
1322
1323static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1324 void *object) {}
1325
1326static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1327
1328#endif /* CONFIG_SLUB_DEBUG */
1329
1330/*
1331 * Slab allocation and freeing
1332 */
1333static inline struct page *alloc_slab_page(gfp_t flags, int node,
1334 struct kmem_cache_order_objects oo)
1335{
1336 int order = oo_order(oo);
1337
1338 flags |= __GFP_NOTRACK;
1339
1340 if (node == NUMA_NO_NODE)
1341 return alloc_pages(flags, order);
1342 else
1343 return alloc_pages_exact_node(node, flags, order);
1344}
1345
1346static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1347{
1348 struct page *page;
1349 struct kmem_cache_order_objects oo = s->oo;
1350 gfp_t alloc_gfp;
1351
1352 flags &= gfp_allowed_mask;
1353
1354 if (flags & __GFP_WAIT)
1355 local_irq_enable();
1356
1357 flags |= s->allocflags;
1358
1359 /*
1360 * Let the initial higher-order allocation fail under memory pressure
1361 * so we fall-back to the minimum order allocation.
1362 */
1363 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1364
1365 page = alloc_slab_page(alloc_gfp, node, oo);
1366 if (unlikely(!page)) {
1367 oo = s->min;
1368 /*
1369 * Allocation may have failed due to fragmentation.
1370 * Try a lower order alloc if possible
1371 */
1372 page = alloc_slab_page(flags, node, oo);
1373
1374 if (page)
1375 stat(s, ORDER_FALLBACK);
1376 }
1377
1378 if (flags & __GFP_WAIT)
1379 local_irq_disable();
1380
1381 if (!page)
1382 return NULL;
1383
1384 if (kmemcheck_enabled
1385 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1386 int pages = 1 << oo_order(oo);
1387
1388 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1389
1390 /*
1391 * Objects from caches that have a constructor don't get
1392 * cleared when they're allocated, so we need to do it here.
1393 */
1394 if (s->ctor)
1395 kmemcheck_mark_uninitialized_pages(page, pages);
1396 else
1397 kmemcheck_mark_unallocated_pages(page, pages);
1398 }
1399
1400 page->objects = oo_objects(oo);
1401 mod_zone_page_state(page_zone(page),
1402 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1403 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1404 1 << oo_order(oo));
1405
1406 return page;
1407}
1408
1409static void setup_object(struct kmem_cache *s, struct page *page,
1410 void *object)
1411{
1412 setup_object_debug(s, page, object);
1413 if (unlikely(s->ctor))
1414 s->ctor(object);
1415}
1416
1417static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1418{
1419 struct page *page;
1420 void *start;
1421 void *last;
1422 void *p;
1423
1424 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1425
1426 page = allocate_slab(s,
1427 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1428 if (!page)
1429 goto out;
1430
1431 inc_slabs_node(s, page_to_nid(page), page->objects);
1432 page->slab = s;
1433 page->flags |= 1 << PG_slab;
1434
1435 start = page_address(page);
1436
1437 if (unlikely(s->flags & SLAB_POISON))
1438 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1439
1440 last = start;
1441 for_each_object(p, s, start, page->objects) {
1442 setup_object(s, page, last);
1443 set_freepointer(s, last, p);
1444 last = p;
1445 }
1446 setup_object(s, page, last);
1447 set_freepointer(s, last, NULL);
1448
1449 page->freelist = start;
1450 page->inuse = 0;
1451 page->frozen = 1;
1452out:
1453 return page;
1454}
1455
1456static void __free_slab(struct kmem_cache *s, struct page *page)
1457{
1458 int order = compound_order(page);
1459 int pages = 1 << order;
1460
1461 if (kmem_cache_debug(s)) {
1462 void *p;
1463
1464 slab_pad_check(s, page);
1465 for_each_object(p, s, page_address(page),
1466 page->objects)
1467 check_object(s, page, p, SLUB_RED_INACTIVE);
1468 }
1469
1470 kmemcheck_free_shadow(page, compound_order(page));
1471
1472 mod_zone_page_state(page_zone(page),
1473 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1474 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1475 -pages);
1476
1477 __ClearPageSlab(page);
1478 reset_page_mapcount(page);
1479 if (current->reclaim_state)
1480 current->reclaim_state->reclaimed_slab += pages;
1481 __free_pages(page, order);
1482}
1483
1484#define need_reserve_slab_rcu \
1485 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1486
1487static void rcu_free_slab(struct rcu_head *h)
1488{
1489 struct page *page;
1490
1491 if (need_reserve_slab_rcu)
1492 page = virt_to_head_page(h);
1493 else
1494 page = container_of((struct list_head *)h, struct page, lru);
1495
1496 __free_slab(page->slab, page);
1497}
1498
1499static void free_slab(struct kmem_cache *s, struct page *page)
1500{
1501 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1502 struct rcu_head *head;
1503
1504 if (need_reserve_slab_rcu) {
1505 int order = compound_order(page);
1506 int offset = (PAGE_SIZE << order) - s->reserved;
1507
1508 VM_BUG_ON(s->reserved != sizeof(*head));
1509 head = page_address(page) + offset;
1510 } else {
1511 /*
1512 * RCU free overloads the RCU head over the LRU
1513 */
1514 head = (void *)&page->lru;
1515 }
1516
1517 call_rcu(head, rcu_free_slab);
1518 } else
1519 __free_slab(s, page);
1520}
1521
1522static void discard_slab(struct kmem_cache *s, struct page *page)
1523{
1524 dec_slabs_node(s, page_to_nid(page), page->objects);
1525 free_slab(s, page);
1526}
1527
1528/*
1529 * Management of partially allocated slabs.
1530 *
1531 * list_lock must be held.
1532 */
1533static inline void add_partial(struct kmem_cache_node *n,
1534 struct page *page, int tail)
1535{
1536 n->nr_partial++;
1537 if (tail)
1538 list_add_tail(&page->lru, &n->partial);
1539 else
1540 list_add(&page->lru, &n->partial);
1541}
1542
1543/*
1544 * list_lock must be held.
1545 */
1546static inline void remove_partial(struct kmem_cache_node *n,
1547 struct page *page)
1548{
1549 list_del(&page->lru);
1550 n->nr_partial--;
1551}
1552
1553/*
1554 * Lock slab, remove from the partial list and put the object into the
1555 * per cpu freelist.
1556 *
1557 * Must hold list_lock.
1558 */
1559static inline int acquire_slab(struct kmem_cache *s,
1560 struct kmem_cache_node *n, struct page *page)
1561{
1562 void *freelist;
1563 unsigned long counters;
1564 struct page new;
1565
1566 /*
1567 * Zap the freelist and set the frozen bit.
1568 * The old freelist is the list of objects for the
1569 * per cpu allocation list.
1570 */
1571 do {
1572 freelist = page->freelist;
1573 counters = page->counters;
1574 new.counters = counters;
1575 new.inuse = page->objects;
1576
1577 VM_BUG_ON(new.frozen);
1578 new.frozen = 1;
1579
1580 } while (!__cmpxchg_double_slab(s, page,
1581 freelist, counters,
1582 NULL, new.counters,
1583 "lock and freeze"));
1584
1585 remove_partial(n, page);
1586
1587 if (freelist) {
1588 /* Populate the per cpu freelist */
1589 this_cpu_write(s->cpu_slab->freelist, freelist);
1590 this_cpu_write(s->cpu_slab->page, page);
1591 this_cpu_write(s->cpu_slab->node, page_to_nid(page));
1592 return 1;
1593 } else {
1594 /*
1595 * Slab page came from the wrong list. No object to allocate
1596 * from. Put it onto the correct list and continue partial
1597 * scan.
1598 */
1599 printk(KERN_ERR "SLUB: %s : Page without available objects on"
1600 " partial list\n", s->name);
1601 return 0;
1602 }
1603}
1604
1605/*
1606 * Try to allocate a partial slab from a specific node.
1607 */
1608static struct page *get_partial_node(struct kmem_cache *s,
1609 struct kmem_cache_node *n)
1610{
1611 struct page *page;
1612
1613 /*
1614 * Racy check. If we mistakenly see no partial slabs then we
1615 * just allocate an empty slab. If we mistakenly try to get a
1616 * partial slab and there is none available then get_partials()
1617 * will return NULL.
1618 */
1619 if (!n || !n->nr_partial)
1620 return NULL;
1621
1622 spin_lock(&n->list_lock);
1623 list_for_each_entry(page, &n->partial, lru)
1624 if (acquire_slab(s, n, page))
1625 goto out;
1626 page = NULL;
1627out:
1628 spin_unlock(&n->list_lock);
1629 return page;
1630}
1631
1632/*
1633 * Get a page from somewhere. Search in increasing NUMA distances.
1634 */
1635static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1636{
1637#ifdef CONFIG_NUMA
1638 struct zonelist *zonelist;
1639 struct zoneref *z;
1640 struct zone *zone;
1641 enum zone_type high_zoneidx = gfp_zone(flags);
1642 struct page *page;
1643
1644 /*
1645 * The defrag ratio allows a configuration of the tradeoffs between
1646 * inter node defragmentation and node local allocations. A lower
1647 * defrag_ratio increases the tendency to do local allocations
1648 * instead of attempting to obtain partial slabs from other nodes.
1649 *
1650 * If the defrag_ratio is set to 0 then kmalloc() always
1651 * returns node local objects. If the ratio is higher then kmalloc()
1652 * may return off node objects because partial slabs are obtained
1653 * from other nodes and filled up.
1654 *
1655 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1656 * defrag_ratio = 1000) then every (well almost) allocation will
1657 * first attempt to defrag slab caches on other nodes. This means
1658 * scanning over all nodes to look for partial slabs which may be
1659 * expensive if we do it every time we are trying to find a slab
1660 * with available objects.
1661 */
1662 if (!s->remote_node_defrag_ratio ||
1663 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1664 return NULL;
1665
1666 get_mems_allowed();
1667 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1668 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1669 struct kmem_cache_node *n;
1670
1671 n = get_node(s, zone_to_nid(zone));
1672
1673 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1674 n->nr_partial > s->min_partial) {
1675 page = get_partial_node(s, n);
1676 if (page) {
1677 put_mems_allowed();
1678 return page;
1679 }
1680 }
1681 }
1682 put_mems_allowed();
1683#endif
1684 return NULL;
1685}
1686
1687/*
1688 * Get a partial page, lock it and return it.
1689 */
1690static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1691{
1692 struct page *page;
1693 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1694
1695 page = get_partial_node(s, get_node(s, searchnode));
1696 if (page || node != NUMA_NO_NODE)
1697 return page;
1698
1699 return get_any_partial(s, flags);
1700}
1701
1702#ifdef CONFIG_PREEMPT
1703/*
1704 * Calculate the next globally unique transaction for disambiguiation
1705 * during cmpxchg. The transactions start with the cpu number and are then
1706 * incremented by CONFIG_NR_CPUS.
1707 */
1708#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1709#else
1710/*
1711 * No preemption supported therefore also no need to check for
1712 * different cpus.
1713 */
1714#define TID_STEP 1
1715#endif
1716
1717static inline unsigned long next_tid(unsigned long tid)
1718{
1719 return tid + TID_STEP;
1720}
1721
1722static inline unsigned int tid_to_cpu(unsigned long tid)
1723{
1724 return tid % TID_STEP;
1725}
1726
1727static inline unsigned long tid_to_event(unsigned long tid)
1728{
1729 return tid / TID_STEP;
1730}
1731
1732static inline unsigned int init_tid(int cpu)
1733{
1734 return cpu;
1735}
1736
1737static inline void note_cmpxchg_failure(const char *n,
1738 const struct kmem_cache *s, unsigned long tid)
1739{
1740#ifdef SLUB_DEBUG_CMPXCHG
1741 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1742
1743 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1744
1745#ifdef CONFIG_PREEMPT
1746 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1747 printk("due to cpu change %d -> %d\n",
1748 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1749 else
1750#endif
1751 if (tid_to_event(tid) != tid_to_event(actual_tid))
1752 printk("due to cpu running other code. Event %ld->%ld\n",
1753 tid_to_event(tid), tid_to_event(actual_tid));
1754 else
1755 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1756 actual_tid, tid, next_tid(tid));
1757#endif
1758 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1759}
1760
1761void init_kmem_cache_cpus(struct kmem_cache *s)
1762{
1763 int cpu;
1764
1765 for_each_possible_cpu(cpu)
1766 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1767}
1768/*
1769 * Remove the cpu slab
1770 */
1771
1772/*
1773 * Remove the cpu slab
1774 */
1775static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1776{
1777 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1778 struct page *page = c->page;
1779 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1780 int lock = 0;
1781 enum slab_modes l = M_NONE, m = M_NONE;
1782 void *freelist;
1783 void *nextfree;
1784 int tail = 0;
1785 struct page new;
1786 struct page old;
1787
1788 if (page->freelist) {
1789 stat(s, DEACTIVATE_REMOTE_FREES);
1790 tail = 1;
1791 }
1792
1793 c->tid = next_tid(c->tid);
1794 c->page = NULL;
1795 freelist = c->freelist;
1796 c->freelist = NULL;
1797
1798 /*
1799 * Stage one: Free all available per cpu objects back
1800 * to the page freelist while it is still frozen. Leave the
1801 * last one.
1802 *
1803 * There is no need to take the list->lock because the page
1804 * is still frozen.
1805 */
1806 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1807 void *prior;
1808 unsigned long counters;
1809
1810 do {
1811 prior = page->freelist;
1812 counters = page->counters;
1813 set_freepointer(s, freelist, prior);
1814 new.counters = counters;
1815 new.inuse--;
1816 VM_BUG_ON(!new.frozen);
1817
1818 } while (!__cmpxchg_double_slab(s, page,
1819 prior, counters,
1820 freelist, new.counters,
1821 "drain percpu freelist"));
1822
1823 freelist = nextfree;
1824 }
1825
1826 /*
1827 * Stage two: Ensure that the page is unfrozen while the
1828 * list presence reflects the actual number of objects
1829 * during unfreeze.
1830 *
1831 * We setup the list membership and then perform a cmpxchg
1832 * with the count. If there is a mismatch then the page
1833 * is not unfrozen but the page is on the wrong list.
1834 *
1835 * Then we restart the process which may have to remove
1836 * the page from the list that we just put it on again
1837 * because the number of objects in the slab may have
1838 * changed.
1839 */
1840redo:
1841
1842 old.freelist = page->freelist;
1843 old.counters = page->counters;
1844 VM_BUG_ON(!old.frozen);
1845
1846 /* Determine target state of the slab */
1847 new.counters = old.counters;
1848 if (freelist) {
1849 new.inuse--;
1850 set_freepointer(s, freelist, old.freelist);
1851 new.freelist = freelist;
1852 } else
1853 new.freelist = old.freelist;
1854
1855 new.frozen = 0;
1856
1857 if (!new.inuse && n->nr_partial > s->min_partial)
1858 m = M_FREE;
1859 else if (new.freelist) {
1860 m = M_PARTIAL;
1861 if (!lock) {
1862 lock = 1;
1863 /*
1864 * Taking the spinlock removes the possiblity
1865 * that acquire_slab() will see a slab page that
1866 * is frozen
1867 */
1868 spin_lock(&n->list_lock);
1869 }
1870 } else {
1871 m = M_FULL;
1872 if (kmem_cache_debug(s) && !lock) {
1873 lock = 1;
1874 /*
1875 * This also ensures that the scanning of full
1876 * slabs from diagnostic functions will not see
1877 * any frozen slabs.
1878 */
1879 spin_lock(&n->list_lock);
1880 }
1881 }
1882
1883 if (l != m) {
1884
1885 if (l == M_PARTIAL)
1886
1887 remove_partial(n, page);
1888
1889 else if (l == M_FULL)
1890
1891 remove_full(s, page);
1892
1893 if (m == M_PARTIAL) {
1894
1895 add_partial(n, page, tail);
1896 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1897
1898 } else if (m == M_FULL) {
1899
1900 stat(s, DEACTIVATE_FULL);
1901 add_full(s, n, page);
1902
1903 }
1904 }
1905
1906 l = m;
1907 if (!__cmpxchg_double_slab(s, page,
1908 old.freelist, old.counters,
1909 new.freelist, new.counters,
1910 "unfreezing slab"))
1911 goto redo;
1912
1913 if (lock)
1914 spin_unlock(&n->list_lock);
1915
1916 if (m == M_FREE) {
1917 stat(s, DEACTIVATE_EMPTY);
1918 discard_slab(s, page);
1919 stat(s, FREE_SLAB);
1920 }
1921}
1922
1923static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1924{
1925 stat(s, CPUSLAB_FLUSH);
1926 deactivate_slab(s, c);
1927}
1928
1929/*
1930 * Flush cpu slab.
1931 *
1932 * Called from IPI handler with interrupts disabled.
1933 */
1934static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1935{
1936 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1937
1938 if (likely(c && c->page))
1939 flush_slab(s, c);
1940}
1941
1942static void flush_cpu_slab(void *d)
1943{
1944 struct kmem_cache *s = d;
1945
1946 __flush_cpu_slab(s, smp_processor_id());
1947}
1948
1949static void flush_all(struct kmem_cache *s)
1950{
1951 on_each_cpu(flush_cpu_slab, s, 1);
1952}
1953
1954/*
1955 * Check if the objects in a per cpu structure fit numa
1956 * locality expectations.
1957 */
1958static inline int node_match(struct kmem_cache_cpu *c, int node)
1959{
1960#ifdef CONFIG_NUMA
1961 if (node != NUMA_NO_NODE && c->node != node)
1962 return 0;
1963#endif
1964 return 1;
1965}
1966
1967static int count_free(struct page *page)
1968{
1969 return page->objects - page->inuse;
1970}
1971
1972static unsigned long count_partial(struct kmem_cache_node *n,
1973 int (*get_count)(struct page *))
1974{
1975 unsigned long flags;
1976 unsigned long x = 0;
1977 struct page *page;
1978
1979 spin_lock_irqsave(&n->list_lock, flags);
1980 list_for_each_entry(page, &n->partial, lru)
1981 x += get_count(page);
1982 spin_unlock_irqrestore(&n->list_lock, flags);
1983 return x;
1984}
1985
1986static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1987{
1988#ifdef CONFIG_SLUB_DEBUG
1989 return atomic_long_read(&n->total_objects);
1990#else
1991 return 0;
1992#endif
1993}
1994
1995static noinline void
1996slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1997{
1998 int node;
1999
2000 printk(KERN_WARNING
2001 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2002 nid, gfpflags);
2003 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2004 "default order: %d, min order: %d\n", s->name, s->objsize,
2005 s->size, oo_order(s->oo), oo_order(s->min));
2006
2007 if (oo_order(s->min) > get_order(s->objsize))
2008 printk(KERN_WARNING " %s debugging increased min order, use "
2009 "slub_debug=O to disable.\n", s->name);
2010
2011 for_each_online_node(node) {
2012 struct kmem_cache_node *n = get_node(s, node);
2013 unsigned long nr_slabs;
2014 unsigned long nr_objs;
2015 unsigned long nr_free;
2016
2017 if (!n)
2018 continue;
2019
2020 nr_free = count_partial(n, count_free);
2021 nr_slabs = node_nr_slabs(n);
2022 nr_objs = node_nr_objs(n);
2023
2024 printk(KERN_WARNING
2025 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2026 node, nr_slabs, nr_objs, nr_free);
2027 }
2028}
2029
2030/*
2031 * Slow path. The lockless freelist is empty or we need to perform
2032 * debugging duties.
2033 *
2034 * Interrupts are disabled.
2035 *
2036 * Processing is still very fast if new objects have been freed to the
2037 * regular freelist. In that case we simply take over the regular freelist
2038 * as the lockless freelist and zap the regular freelist.
2039 *
2040 * If that is not working then we fall back to the partial lists. We take the
2041 * first element of the freelist as the object to allocate now and move the
2042 * rest of the freelist to the lockless freelist.
2043 *
2044 * And if we were unable to get a new slab from the partial slab lists then
2045 * we need to allocate a new slab. This is the slowest path since it involves
2046 * a call to the page allocator and the setup of a new slab.
2047 */
2048static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2049 unsigned long addr, struct kmem_cache_cpu *c)
2050{
2051 void **object;
2052 struct page *page;
2053 unsigned long flags;
2054 struct page new;
2055 unsigned long counters;
2056
2057 local_irq_save(flags);
2058#ifdef CONFIG_PREEMPT
2059 /*
2060 * We may have been preempted and rescheduled on a different
2061 * cpu before disabling interrupts. Need to reload cpu area
2062 * pointer.
2063 */
2064 c = this_cpu_ptr(s->cpu_slab);
2065#endif
2066
2067 /* We handle __GFP_ZERO in the caller */
2068 gfpflags &= ~__GFP_ZERO;
2069
2070 page = c->page;
2071 if (!page)
2072 goto new_slab;
2073
2074 if (unlikely(!node_match(c, node))) {
2075 stat(s, ALLOC_NODE_MISMATCH);
2076 deactivate_slab(s, c);
2077 goto new_slab;
2078 }
2079
2080 stat(s, ALLOC_SLOWPATH);
2081
2082 do {
2083 object = page->freelist;
2084 counters = page->counters;
2085 new.counters = counters;
2086 VM_BUG_ON(!new.frozen);
2087
2088 /*
2089 * If there is no object left then we use this loop to
2090 * deactivate the slab which is simple since no objects
2091 * are left in the slab and therefore we do not need to
2092 * put the page back onto the partial list.
2093 *
2094 * If there are objects left then we retrieve them
2095 * and use them to refill the per cpu queue.
2096 */
2097
2098 new.inuse = page->objects;
2099 new.frozen = object != NULL;
2100
2101 } while (!__cmpxchg_double_slab(s, page,
2102 object, counters,
2103 NULL, new.counters,
2104 "__slab_alloc"));
2105
2106 if (unlikely(!object)) {
2107 c->page = NULL;
2108 stat(s, DEACTIVATE_BYPASS);
2109 goto new_slab;
2110 }
2111
2112 stat(s, ALLOC_REFILL);
2113
2114load_freelist:
2115 VM_BUG_ON(!page->frozen);
2116 c->freelist = get_freepointer(s, object);
2117 c->tid = next_tid(c->tid);
2118 local_irq_restore(flags);
2119 return object;
2120
2121new_slab:
2122 page = get_partial(s, gfpflags, node);
2123 if (page) {
2124 stat(s, ALLOC_FROM_PARTIAL);
2125 object = c->freelist;
2126
2127 if (kmem_cache_debug(s))
2128 goto debug;
2129 goto load_freelist;
2130 }
2131
2132 page = new_slab(s, gfpflags, node);
2133
2134 if (page) {
2135 c = __this_cpu_ptr(s->cpu_slab);
2136 if (c->page)
2137 flush_slab(s, c);
2138
2139 /*
2140 * No other reference to the page yet so we can
2141 * muck around with it freely without cmpxchg
2142 */
2143 object = page->freelist;
2144 page->freelist = NULL;
2145 page->inuse = page->objects;
2146
2147 stat(s, ALLOC_SLAB);
2148 c->node = page_to_nid(page);
2149 c->page = page;
2150
2151 if (kmem_cache_debug(s))
2152 goto debug;
2153 goto load_freelist;
2154 }
2155 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2156 slab_out_of_memory(s, gfpflags, node);
2157 local_irq_restore(flags);
2158 return NULL;
2159
2160debug:
2161 if (!object || !alloc_debug_processing(s, page, object, addr))
2162 goto new_slab;
2163
2164 c->freelist = get_freepointer(s, object);
2165 deactivate_slab(s, c);
2166 c->page = NULL;
2167 c->node = NUMA_NO_NODE;
2168 local_irq_restore(flags);
2169 return object;
2170}
2171
2172/*
2173 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2174 * have the fastpath folded into their functions. So no function call
2175 * overhead for requests that can be satisfied on the fastpath.
2176 *
2177 * The fastpath works by first checking if the lockless freelist can be used.
2178 * If not then __slab_alloc is called for slow processing.
2179 *
2180 * Otherwise we can simply pick the next object from the lockless free list.
2181 */
2182static __always_inline void *slab_alloc(struct kmem_cache *s,
2183 gfp_t gfpflags, int node, unsigned long addr)
2184{
2185 void **object;
2186 struct kmem_cache_cpu *c;
2187 unsigned long tid;
2188
2189 if (slab_pre_alloc_hook(s, gfpflags))
2190 return NULL;
2191
2192redo:
2193
2194 /*
2195 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2196 * enabled. We may switch back and forth between cpus while
2197 * reading from one cpu area. That does not matter as long
2198 * as we end up on the original cpu again when doing the cmpxchg.
2199 */
2200 c = __this_cpu_ptr(s->cpu_slab);
2201
2202 /*
2203 * The transaction ids are globally unique per cpu and per operation on
2204 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2205 * occurs on the right processor and that there was no operation on the
2206 * linked list in between.
2207 */
2208 tid = c->tid;
2209 barrier();
2210
2211 object = c->freelist;
2212 if (unlikely(!object || !node_match(c, node)))
2213
2214 object = __slab_alloc(s, gfpflags, node, addr, c);
2215
2216 else {
2217 /*
2218 * The cmpxchg will only match if there was no additional
2219 * operation and if we are on the right processor.
2220 *
2221 * The cmpxchg does the following atomically (without lock semantics!)
2222 * 1. Relocate first pointer to the current per cpu area.
2223 * 2. Verify that tid and freelist have not been changed
2224 * 3. If they were not changed replace tid and freelist
2225 *
2226 * Since this is without lock semantics the protection is only against
2227 * code executing on this cpu *not* from access by other cpus.
2228 */
2229 if (unlikely(!irqsafe_cpu_cmpxchg_double(
2230 s->cpu_slab->freelist, s->cpu_slab->tid,
2231 object, tid,
2232 get_freepointer_safe(s, object), next_tid(tid)))) {
2233
2234 note_cmpxchg_failure("slab_alloc", s, tid);
2235 goto redo;
2236 }
2237 stat(s, ALLOC_FASTPATH);
2238 }
2239
2240 if (unlikely(gfpflags & __GFP_ZERO) && object)
2241 memset(object, 0, s->objsize);
2242
2243 slab_post_alloc_hook(s, gfpflags, object);
2244
2245 return object;
2246}
2247
2248void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2249{
2250 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2251
2252 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
2253
2254 return ret;
2255}
2256EXPORT_SYMBOL(kmem_cache_alloc);
2257
2258#ifdef CONFIG_TRACING
2259void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2260{
2261 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2262 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2263 return ret;
2264}
2265EXPORT_SYMBOL(kmem_cache_alloc_trace);
2266
2267void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2268{
2269 void *ret = kmalloc_order(size, flags, order);
2270 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2271 return ret;
2272}
2273EXPORT_SYMBOL(kmalloc_order_trace);
2274#endif
2275
2276#ifdef CONFIG_NUMA
2277void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2278{
2279 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2280
2281 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2282 s->objsize, s->size, gfpflags, node);
2283
2284 return ret;
2285}
2286EXPORT_SYMBOL(kmem_cache_alloc_node);
2287
2288#ifdef CONFIG_TRACING
2289void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2290 gfp_t gfpflags,
2291 int node, size_t size)
2292{
2293 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2294
2295 trace_kmalloc_node(_RET_IP_, ret,
2296 size, s->size, gfpflags, node);
2297 return ret;
2298}
2299EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2300#endif
2301#endif
2302
2303/*
2304 * Slow patch handling. This may still be called frequently since objects
2305 * have a longer lifetime than the cpu slabs in most processing loads.
2306 *
2307 * So we still attempt to reduce cache line usage. Just take the slab
2308 * lock and free the item. If there is no additional partial page
2309 * handling required then we can return immediately.
2310 */
2311static void __slab_free(struct kmem_cache *s, struct page *page,
2312 void *x, unsigned long addr)
2313{
2314 void *prior;
2315 void **object = (void *)x;
2316 int was_frozen;
2317 int inuse;
2318 struct page new;
2319 unsigned long counters;
2320 struct kmem_cache_node *n = NULL;
2321 unsigned long uninitialized_var(flags);
2322
2323 stat(s, FREE_SLOWPATH);
2324
2325 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2326 return;
2327
2328 do {
2329 prior = page->freelist;
2330 counters = page->counters;
2331 set_freepointer(s, object, prior);
2332 new.counters = counters;
2333 was_frozen = new.frozen;
2334 new.inuse--;
2335 if ((!new.inuse || !prior) && !was_frozen && !n) {
2336 n = get_node(s, page_to_nid(page));
2337 /*
2338 * Speculatively acquire the list_lock.
2339 * If the cmpxchg does not succeed then we may
2340 * drop the list_lock without any processing.
2341 *
2342 * Otherwise the list_lock will synchronize with
2343 * other processors updating the list of slabs.
2344 */
2345 spin_lock_irqsave(&n->list_lock, flags);
2346 }
2347 inuse = new.inuse;
2348
2349 } while (!cmpxchg_double_slab(s, page,
2350 prior, counters,
2351 object, new.counters,
2352 "__slab_free"));
2353
2354 if (likely(!n)) {
2355 /*
2356 * The list lock was not taken therefore no list
2357 * activity can be necessary.
2358 */
2359 if (was_frozen)
2360 stat(s, FREE_FROZEN);
2361 return;
2362 }
2363
2364 /*
2365 * was_frozen may have been set after we acquired the list_lock in
2366 * an earlier loop. So we need to check it here again.
2367 */
2368 if (was_frozen)
2369 stat(s, FREE_FROZEN);
2370 else {
2371 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2372 goto slab_empty;
2373
2374 /*
2375 * Objects left in the slab. If it was not on the partial list before
2376 * then add it.
2377 */
2378 if (unlikely(!prior)) {
2379 remove_full(s, page);
2380 add_partial(n, page, 1);
2381 stat(s, FREE_ADD_PARTIAL);
2382 }
2383 }
2384 spin_unlock_irqrestore(&n->list_lock, flags);
2385 return;
2386
2387slab_empty:
2388 if (prior) {
2389 /*
2390 * Slab on the partial list.
2391 */
2392 remove_partial(n, page);
2393 stat(s, FREE_REMOVE_PARTIAL);
2394 } else
2395 /* Slab must be on the full list */
2396 remove_full(s, page);
2397
2398 spin_unlock_irqrestore(&n->list_lock, flags);
2399 stat(s, FREE_SLAB);
2400 discard_slab(s, page);
2401}
2402
2403/*
2404 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2405 * can perform fastpath freeing without additional function calls.
2406 *
2407 * The fastpath is only possible if we are freeing to the current cpu slab
2408 * of this processor. This typically the case if we have just allocated
2409 * the item before.
2410 *
2411 * If fastpath is not possible then fall back to __slab_free where we deal
2412 * with all sorts of special processing.
2413 */
2414static __always_inline void slab_free(struct kmem_cache *s,
2415 struct page *page, void *x, unsigned long addr)
2416{
2417 void **object = (void *)x;
2418 struct kmem_cache_cpu *c;
2419 unsigned long tid;
2420
2421 slab_free_hook(s, x);
2422
2423redo:
2424
2425 /*
2426 * Determine the currently cpus per cpu slab.
2427 * The cpu may change afterward. However that does not matter since
2428 * data is retrieved via this pointer. If we are on the same cpu
2429 * during the cmpxchg then the free will succedd.
2430 */
2431 c = __this_cpu_ptr(s->cpu_slab);
2432
2433 tid = c->tid;
2434 barrier();
2435
2436 if (likely(page == c->page)) {
2437 set_freepointer(s, object, c->freelist);
2438
2439 if (unlikely(!irqsafe_cpu_cmpxchg_double(
2440 s->cpu_slab->freelist, s->cpu_slab->tid,
2441 c->freelist, tid,
2442 object, next_tid(tid)))) {
2443
2444 note_cmpxchg_failure("slab_free", s, tid);
2445 goto redo;
2446 }
2447 stat(s, FREE_FASTPATH);
2448 } else
2449 __slab_free(s, page, x, addr);
2450
2451}
2452
2453void kmem_cache_free(struct kmem_cache *s, void *x)
2454{
2455 struct page *page;
2456
2457 page = virt_to_head_page(x);
2458
2459 slab_free(s, page, x, _RET_IP_);
2460
2461 trace_kmem_cache_free(_RET_IP_, x);
2462}
2463EXPORT_SYMBOL(kmem_cache_free);
2464
2465/*
2466 * Object placement in a slab is made very easy because we always start at
2467 * offset 0. If we tune the size of the object to the alignment then we can
2468 * get the required alignment by putting one properly sized object after
2469 * another.
2470 *
2471 * Notice that the allocation order determines the sizes of the per cpu
2472 * caches. Each processor has always one slab available for allocations.
2473 * Increasing the allocation order reduces the number of times that slabs
2474 * must be moved on and off the partial lists and is therefore a factor in
2475 * locking overhead.
2476 */
2477
2478/*
2479 * Mininum / Maximum order of slab pages. This influences locking overhead
2480 * and slab fragmentation. A higher order reduces the number of partial slabs
2481 * and increases the number of allocations possible without having to
2482 * take the list_lock.
2483 */
2484static int slub_min_order;
2485static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2486static int slub_min_objects;
2487
2488/*
2489 * Merge control. If this is set then no merging of slab caches will occur.
2490 * (Could be removed. This was introduced to pacify the merge skeptics.)
2491 */
2492static int slub_nomerge;
2493
2494/*
2495 * Calculate the order of allocation given an slab object size.
2496 *
2497 * The order of allocation has significant impact on performance and other
2498 * system components. Generally order 0 allocations should be preferred since
2499 * order 0 does not cause fragmentation in the page allocator. Larger objects
2500 * be problematic to put into order 0 slabs because there may be too much
2501 * unused space left. We go to a higher order if more than 1/16th of the slab
2502 * would be wasted.
2503 *
2504 * In order to reach satisfactory performance we must ensure that a minimum
2505 * number of objects is in one slab. Otherwise we may generate too much
2506 * activity on the partial lists which requires taking the list_lock. This is
2507 * less a concern for large slabs though which are rarely used.
2508 *
2509 * slub_max_order specifies the order where we begin to stop considering the
2510 * number of objects in a slab as critical. If we reach slub_max_order then
2511 * we try to keep the page order as low as possible. So we accept more waste
2512 * of space in favor of a small page order.
2513 *
2514 * Higher order allocations also allow the placement of more objects in a
2515 * slab and thereby reduce object handling overhead. If the user has
2516 * requested a higher mininum order then we start with that one instead of
2517 * the smallest order which will fit the object.
2518 */
2519static inline int slab_order(int size, int min_objects,
2520 int max_order, int fract_leftover, int reserved)
2521{
2522 int order;
2523 int rem;
2524 int min_order = slub_min_order;
2525
2526 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2527 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2528
2529 for (order = max(min_order,
2530 fls(min_objects * size - 1) - PAGE_SHIFT);
2531 order <= max_order; order++) {
2532
2533 unsigned long slab_size = PAGE_SIZE << order;
2534
2535 if (slab_size < min_objects * size + reserved)
2536 continue;
2537
2538 rem = (slab_size - reserved) % size;
2539
2540 if (rem <= slab_size / fract_leftover)
2541 break;
2542
2543 }
2544
2545 return order;
2546}
2547
2548static inline int calculate_order(int size, int reserved)
2549{
2550 int order;
2551 int min_objects;
2552 int fraction;
2553 int max_objects;
2554
2555 /*
2556 * Attempt to find best configuration for a slab. This
2557 * works by first attempting to generate a layout with
2558 * the best configuration and backing off gradually.
2559 *
2560 * First we reduce the acceptable waste in a slab. Then
2561 * we reduce the minimum objects required in a slab.
2562 */
2563 min_objects = slub_min_objects;
2564 if (!min_objects)
2565 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2566 max_objects = order_objects(slub_max_order, size, reserved);
2567 min_objects = min(min_objects, max_objects);
2568
2569 while (min_objects > 1) {
2570 fraction = 16;
2571 while (fraction >= 4) {
2572 order = slab_order(size, min_objects,
2573 slub_max_order, fraction, reserved);
2574 if (order <= slub_max_order)
2575 return order;
2576 fraction /= 2;
2577 }
2578 min_objects--;
2579 }
2580
2581 /*
2582 * We were unable to place multiple objects in a slab. Now
2583 * lets see if we can place a single object there.
2584 */
2585 order = slab_order(size, 1, slub_max_order, 1, reserved);
2586 if (order <= slub_max_order)
2587 return order;
2588
2589 /*
2590 * Doh this slab cannot be placed using slub_max_order.
2591 */
2592 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2593 if (order < MAX_ORDER)
2594 return order;
2595 return -ENOSYS;
2596}
2597
2598/*
2599 * Figure out what the alignment of the objects will be.
2600 */
2601static unsigned long calculate_alignment(unsigned long flags,
2602 unsigned long align, unsigned long size)
2603{
2604 /*
2605 * If the user wants hardware cache aligned objects then follow that
2606 * suggestion if the object is sufficiently large.
2607 *
2608 * The hardware cache alignment cannot override the specified
2609 * alignment though. If that is greater then use it.
2610 */
2611 if (flags & SLAB_HWCACHE_ALIGN) {
2612 unsigned long ralign = cache_line_size();
2613 while (size <= ralign / 2)
2614 ralign /= 2;
2615 align = max(align, ralign);
2616 }
2617
2618 if (align < ARCH_SLAB_MINALIGN)
2619 align = ARCH_SLAB_MINALIGN;
2620
2621 return ALIGN(align, sizeof(void *));
2622}
2623
2624static void
2625init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2626{
2627 n->nr_partial = 0;
2628 spin_lock_init(&n->list_lock);
2629 INIT_LIST_HEAD(&n->partial);
2630#ifdef CONFIG_SLUB_DEBUG
2631 atomic_long_set(&n->nr_slabs, 0);
2632 atomic_long_set(&n->total_objects, 0);
2633 INIT_LIST_HEAD(&n->full);
2634#endif
2635}
2636
2637static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2638{
2639 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2640 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2641
2642 /*
2643 * Must align to double word boundary for the double cmpxchg
2644 * instructions to work; see __pcpu_double_call_return_bool().
2645 */
2646 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2647 2 * sizeof(void *));
2648
2649 if (!s->cpu_slab)
2650 return 0;
2651
2652 init_kmem_cache_cpus(s);
2653
2654 return 1;
2655}
2656
2657static struct kmem_cache *kmem_cache_node;
2658
2659/*
2660 * No kmalloc_node yet so do it by hand. We know that this is the first
2661 * slab on the node for this slabcache. There are no concurrent accesses
2662 * possible.
2663 *
2664 * Note that this function only works on the kmalloc_node_cache
2665 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2666 * memory on a fresh node that has no slab structures yet.
2667 */
2668static void early_kmem_cache_node_alloc(int node)
2669{
2670 struct page *page;
2671 struct kmem_cache_node *n;
2672
2673 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2674
2675 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2676
2677 BUG_ON(!page);
2678 if (page_to_nid(page) != node) {
2679 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2680 "node %d\n", node);
2681 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2682 "in order to be able to continue\n");
2683 }
2684
2685 n = page->freelist;
2686 BUG_ON(!n);
2687 page->freelist = get_freepointer(kmem_cache_node, n);
2688 page->inuse++;
2689 page->frozen = 0;
2690 kmem_cache_node->node[node] = n;
2691#ifdef CONFIG_SLUB_DEBUG
2692 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2693 init_tracking(kmem_cache_node, n);
2694#endif
2695 init_kmem_cache_node(n, kmem_cache_node);
2696 inc_slabs_node(kmem_cache_node, node, page->objects);
2697
2698 add_partial(n, page, 0);
2699}
2700
2701static void free_kmem_cache_nodes(struct kmem_cache *s)
2702{
2703 int node;
2704
2705 for_each_node_state(node, N_NORMAL_MEMORY) {
2706 struct kmem_cache_node *n = s->node[node];
2707
2708 if (n)
2709 kmem_cache_free(kmem_cache_node, n);
2710
2711 s->node[node] = NULL;
2712 }
2713}
2714
2715static int init_kmem_cache_nodes(struct kmem_cache *s)
2716{
2717 int node;
2718
2719 for_each_node_state(node, N_NORMAL_MEMORY) {
2720 struct kmem_cache_node *n;
2721
2722 if (slab_state == DOWN) {
2723 early_kmem_cache_node_alloc(node);
2724 continue;
2725 }
2726 n = kmem_cache_alloc_node(kmem_cache_node,
2727 GFP_KERNEL, node);
2728
2729 if (!n) {
2730 free_kmem_cache_nodes(s);
2731 return 0;
2732 }
2733
2734 s->node[node] = n;
2735 init_kmem_cache_node(n, s);
2736 }
2737 return 1;
2738}
2739
2740static void set_min_partial(struct kmem_cache *s, unsigned long min)
2741{
2742 if (min < MIN_PARTIAL)
2743 min = MIN_PARTIAL;
2744 else if (min > MAX_PARTIAL)
2745 min = MAX_PARTIAL;
2746 s->min_partial = min;
2747}
2748
2749/*
2750 * calculate_sizes() determines the order and the distribution of data within
2751 * a slab object.
2752 */
2753static int calculate_sizes(struct kmem_cache *s, int forced_order)
2754{
2755 unsigned long flags = s->flags;
2756 unsigned long size = s->objsize;
2757 unsigned long align = s->align;
2758 int order;
2759
2760 /*
2761 * Round up object size to the next word boundary. We can only
2762 * place the free pointer at word boundaries and this determines
2763 * the possible location of the free pointer.
2764 */
2765 size = ALIGN(size, sizeof(void *));
2766
2767#ifdef CONFIG_SLUB_DEBUG
2768 /*
2769 * Determine if we can poison the object itself. If the user of
2770 * the slab may touch the object after free or before allocation
2771 * then we should never poison the object itself.
2772 */
2773 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2774 !s->ctor)
2775 s->flags |= __OBJECT_POISON;
2776 else
2777 s->flags &= ~__OBJECT_POISON;
2778
2779
2780 /*
2781 * If we are Redzoning then check if there is some space between the
2782 * end of the object and the free pointer. If not then add an
2783 * additional word to have some bytes to store Redzone information.
2784 */
2785 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2786 size += sizeof(void *);
2787#endif
2788
2789 /*
2790 * With that we have determined the number of bytes in actual use
2791 * by the object. This is the potential offset to the free pointer.
2792 */
2793 s->inuse = size;
2794
2795 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2796 s->ctor)) {
2797 /*
2798 * Relocate free pointer after the object if it is not
2799 * permitted to overwrite the first word of the object on
2800 * kmem_cache_free.
2801 *
2802 * This is the case if we do RCU, have a constructor or
2803 * destructor or are poisoning the objects.
2804 */
2805 s->offset = size;
2806 size += sizeof(void *);
2807 }
2808
2809#ifdef CONFIG_SLUB_DEBUG
2810 if (flags & SLAB_STORE_USER)
2811 /*
2812 * Need to store information about allocs and frees after
2813 * the object.
2814 */
2815 size += 2 * sizeof(struct track);
2816
2817 if (flags & SLAB_RED_ZONE)
2818 /*
2819 * Add some empty padding so that we can catch
2820 * overwrites from earlier objects rather than let
2821 * tracking information or the free pointer be
2822 * corrupted if a user writes before the start
2823 * of the object.
2824 */
2825 size += sizeof(void *);
2826#endif
2827
2828 /*
2829 * Determine the alignment based on various parameters that the
2830 * user specified and the dynamic determination of cache line size
2831 * on bootup.
2832 */
2833 align = calculate_alignment(flags, align, s->objsize);
2834 s->align = align;
2835
2836 /*
2837 * SLUB stores one object immediately after another beginning from
2838 * offset 0. In order to align the objects we have to simply size
2839 * each object to conform to the alignment.
2840 */
2841 size = ALIGN(size, align);
2842 s->size = size;
2843 if (forced_order >= 0)
2844 order = forced_order;
2845 else
2846 order = calculate_order(size, s->reserved);
2847
2848 if (order < 0)
2849 return 0;
2850
2851 s->allocflags = 0;
2852 if (order)
2853 s->allocflags |= __GFP_COMP;
2854
2855 if (s->flags & SLAB_CACHE_DMA)
2856 s->allocflags |= SLUB_DMA;
2857
2858 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2859 s->allocflags |= __GFP_RECLAIMABLE;
2860
2861 /*
2862 * Determine the number of objects per slab
2863 */
2864 s->oo = oo_make(order, size, s->reserved);
2865 s->min = oo_make(get_order(size), size, s->reserved);
2866 if (oo_objects(s->oo) > oo_objects(s->max))
2867 s->max = s->oo;
2868
2869 return !!oo_objects(s->oo);
2870
2871}
2872
2873static int kmem_cache_open(struct kmem_cache *s,
2874 const char *name, size_t size,
2875 size_t align, unsigned long flags,
2876 void (*ctor)(void *))
2877{
2878 memset(s, 0, kmem_size);
2879 s->name = name;
2880 s->ctor = ctor;
2881 s->objsize = size;
2882 s->align = align;
2883 s->flags = kmem_cache_flags(size, flags, name, ctor);
2884 s->reserved = 0;
2885
2886 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2887 s->reserved = sizeof(struct rcu_head);
2888
2889 if (!calculate_sizes(s, -1))
2890 goto error;
2891 if (disable_higher_order_debug) {
2892 /*
2893 * Disable debugging flags that store metadata if the min slab
2894 * order increased.
2895 */
2896 if (get_order(s->size) > get_order(s->objsize)) {
2897 s->flags &= ~DEBUG_METADATA_FLAGS;
2898 s->offset = 0;
2899 if (!calculate_sizes(s, -1))
2900 goto error;
2901 }
2902 }
2903
2904#ifdef CONFIG_CMPXCHG_DOUBLE
2905 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
2906 /* Enable fast mode */
2907 s->flags |= __CMPXCHG_DOUBLE;
2908#endif
2909
2910 /*
2911 * The larger the object size is, the more pages we want on the partial
2912 * list to avoid pounding the page allocator excessively.
2913 */
2914 set_min_partial(s, ilog2(s->size));
2915 s->refcount = 1;
2916#ifdef CONFIG_NUMA
2917 s->remote_node_defrag_ratio = 1000;
2918#endif
2919 if (!init_kmem_cache_nodes(s))
2920 goto error;
2921
2922 if (alloc_kmem_cache_cpus(s))
2923 return 1;
2924
2925 free_kmem_cache_nodes(s);
2926error:
2927 if (flags & SLAB_PANIC)
2928 panic("Cannot create slab %s size=%lu realsize=%u "
2929 "order=%u offset=%u flags=%lx\n",
2930 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2931 s->offset, flags);
2932 return 0;
2933}
2934
2935/*
2936 * Determine the size of a slab object
2937 */
2938unsigned int kmem_cache_size(struct kmem_cache *s)
2939{
2940 return s->objsize;
2941}
2942EXPORT_SYMBOL(kmem_cache_size);
2943
2944static void list_slab_objects(struct kmem_cache *s, struct page *page,
2945 const char *text)
2946{
2947#ifdef CONFIG_SLUB_DEBUG
2948 void *addr = page_address(page);
2949 void *p;
2950 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2951 sizeof(long), GFP_ATOMIC);
2952 if (!map)
2953 return;
2954 slab_err(s, page, "%s", text);
2955 slab_lock(page);
2956
2957 get_map(s, page, map);
2958 for_each_object(p, s, addr, page->objects) {
2959
2960 if (!test_bit(slab_index(p, s, addr), map)) {
2961 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2962 p, p - addr);
2963 print_tracking(s, p);
2964 }
2965 }
2966 slab_unlock(page);
2967 kfree(map);
2968#endif
2969}
2970
2971/*
2972 * Attempt to free all partial slabs on a node.
2973 */
2974static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2975{
2976 unsigned long flags;
2977 struct page *page, *h;
2978
2979 spin_lock_irqsave(&n->list_lock, flags);
2980 list_for_each_entry_safe(page, h, &n->partial, lru) {
2981 if (!page->inuse) {
2982 remove_partial(n, page);
2983 discard_slab(s, page);
2984 } else {
2985 list_slab_objects(s, page,
2986 "Objects remaining on kmem_cache_close()");
2987 }
2988 }
2989 spin_unlock_irqrestore(&n->list_lock, flags);
2990}
2991
2992/*
2993 * Release all resources used by a slab cache.
2994 */
2995static inline int kmem_cache_close(struct kmem_cache *s)
2996{
2997 int node;
2998
2999 flush_all(s);
3000 free_percpu(s->cpu_slab);
3001 /* Attempt to free all objects */
3002 for_each_node_state(node, N_NORMAL_MEMORY) {
3003 struct kmem_cache_node *n = get_node(s, node);
3004
3005 free_partial(s, n);
3006 if (n->nr_partial || slabs_node(s, node))
3007 return 1;
3008 }
3009 free_kmem_cache_nodes(s);
3010 return 0;
3011}
3012
3013/*
3014 * Close a cache and release the kmem_cache structure
3015 * (must be used for caches created using kmem_cache_create)
3016 */
3017void kmem_cache_destroy(struct kmem_cache *s)
3018{
3019 down_write(&slub_lock);
3020 s->refcount--;
3021 if (!s->refcount) {
3022 list_del(&s->list);
3023 if (kmem_cache_close(s)) {
3024 printk(KERN_ERR "SLUB %s: %s called for cache that "
3025 "still has objects.\n", s->name, __func__);
3026 dump_stack();
3027 }
3028 if (s->flags & SLAB_DESTROY_BY_RCU)
3029 rcu_barrier();
3030 sysfs_slab_remove(s);
3031 }
3032 up_write(&slub_lock);
3033}
3034EXPORT_SYMBOL(kmem_cache_destroy);
3035
3036/********************************************************************
3037 * Kmalloc subsystem
3038 *******************************************************************/
3039
3040struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3041EXPORT_SYMBOL(kmalloc_caches);
3042
3043static struct kmem_cache *kmem_cache;
3044
3045#ifdef CONFIG_ZONE_DMA
3046static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3047#endif
3048
3049static int __init setup_slub_min_order(char *str)
3050{
3051 get_option(&str, &slub_min_order);
3052
3053 return 1;
3054}
3055
3056__setup("slub_min_order=", setup_slub_min_order);
3057
3058static int __init setup_slub_max_order(char *str)
3059{
3060 get_option(&str, &slub_max_order);
3061 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3062
3063 return 1;
3064}
3065
3066__setup("slub_max_order=", setup_slub_max_order);
3067
3068static int __init setup_slub_min_objects(char *str)
3069{
3070 get_option(&str, &slub_min_objects);
3071
3072 return 1;
3073}
3074
3075__setup("slub_min_objects=", setup_slub_min_objects);
3076
3077static int __init setup_slub_nomerge(char *str)
3078{
3079 slub_nomerge = 1;
3080 return 1;
3081}
3082
3083__setup("slub_nomerge", setup_slub_nomerge);
3084
3085static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3086 int size, unsigned int flags)
3087{
3088 struct kmem_cache *s;
3089
3090 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3091
3092 /*
3093 * This function is called with IRQs disabled during early-boot on
3094 * single CPU so there's no need to take slub_lock here.
3095 */
3096 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3097 flags, NULL))
3098 goto panic;
3099
3100 list_add(&s->list, &slab_caches);
3101 return s;
3102
3103panic:
3104 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3105 return NULL;
3106}
3107
3108/*
3109 * Conversion table for small slabs sizes / 8 to the index in the
3110 * kmalloc array. This is necessary for slabs < 192 since we have non power
3111 * of two cache sizes there. The size of larger slabs can be determined using
3112 * fls.
3113 */
3114static s8 size_index[24] = {
3115 3, /* 8 */
3116 4, /* 16 */
3117 5, /* 24 */
3118 5, /* 32 */
3119 6, /* 40 */
3120 6, /* 48 */
3121 6, /* 56 */
3122 6, /* 64 */
3123 1, /* 72 */
3124 1, /* 80 */
3125 1, /* 88 */
3126 1, /* 96 */
3127 7, /* 104 */
3128 7, /* 112 */
3129 7, /* 120 */
3130 7, /* 128 */
3131 2, /* 136 */
3132 2, /* 144 */
3133 2, /* 152 */
3134 2, /* 160 */
3135 2, /* 168 */
3136 2, /* 176 */
3137 2, /* 184 */
3138 2 /* 192 */
3139};
3140
3141static inline int size_index_elem(size_t bytes)
3142{
3143 return (bytes - 1) / 8;
3144}
3145
3146static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3147{
3148 int index;
3149
3150 if (size <= 192) {
3151 if (!size)
3152 return ZERO_SIZE_PTR;
3153
3154 index = size_index[size_index_elem(size)];
3155 } else
3156 index = fls(size - 1);
3157
3158#ifdef CONFIG_ZONE_DMA
3159 if (unlikely((flags & SLUB_DMA)))
3160 return kmalloc_dma_caches[index];
3161
3162#endif
3163 return kmalloc_caches[index];
3164}
3165
3166void *__kmalloc(size_t size, gfp_t flags)
3167{
3168 struct kmem_cache *s;
3169 void *ret;
3170
3171 if (unlikely(size > SLUB_MAX_SIZE))
3172 return kmalloc_large(size, flags);
3173
3174 s = get_slab(size, flags);
3175
3176 if (unlikely(ZERO_OR_NULL_PTR(s)))
3177 return s;
3178
3179 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3180
3181 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3182
3183 return ret;
3184}
3185EXPORT_SYMBOL(__kmalloc);
3186
3187#ifdef CONFIG_NUMA
3188static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3189{
3190 struct page *page;
3191 void *ptr = NULL;
3192
3193 flags |= __GFP_COMP | __GFP_NOTRACK;
3194 page = alloc_pages_node(node, flags, get_order(size));
3195 if (page)
3196 ptr = page_address(page);
3197
3198 kmemleak_alloc(ptr, size, 1, flags);
3199 return ptr;
3200}
3201
3202void *__kmalloc_node(size_t size, gfp_t flags, int node)
3203{
3204 struct kmem_cache *s;
3205 void *ret;
3206
3207 if (unlikely(size > SLUB_MAX_SIZE)) {
3208 ret = kmalloc_large_node(size, flags, node);
3209
3210 trace_kmalloc_node(_RET_IP_, ret,
3211 size, PAGE_SIZE << get_order(size),
3212 flags, node);
3213
3214 return ret;
3215 }
3216
3217 s = get_slab(size, flags);
3218
3219 if (unlikely(ZERO_OR_NULL_PTR(s)))
3220 return s;
3221
3222 ret = slab_alloc(s, flags, node, _RET_IP_);
3223
3224 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3225
3226 return ret;
3227}
3228EXPORT_SYMBOL(__kmalloc_node);
3229#endif
3230
3231size_t ksize(const void *object)
3232{
3233 struct page *page;
3234
3235 if (unlikely(object == ZERO_SIZE_PTR))
3236 return 0;
3237
3238 page = virt_to_head_page(object);
3239
3240 if (unlikely(!PageSlab(page))) {
3241 WARN_ON(!PageCompound(page));
3242 return PAGE_SIZE << compound_order(page);
3243 }
3244
3245 return slab_ksize(page->slab);
3246}
3247EXPORT_SYMBOL(ksize);
3248
3249#ifdef CONFIG_SLUB_DEBUG
3250bool verify_mem_not_deleted(const void *x)
3251{
3252 struct page *page;
3253 void *object = (void *)x;
3254 unsigned long flags;
3255 bool rv;
3256
3257 if (unlikely(ZERO_OR_NULL_PTR(x)))
3258 return false;
3259
3260 local_irq_save(flags);
3261
3262 page = virt_to_head_page(x);
3263 if (unlikely(!PageSlab(page))) {
3264 /* maybe it was from stack? */
3265 rv = true;
3266 goto out_unlock;
3267 }
3268
3269 slab_lock(page);
3270 if (on_freelist(page->slab, page, object)) {
3271 object_err(page->slab, page, object, "Object is on free-list");
3272 rv = false;
3273 } else {
3274 rv = true;
3275 }
3276 slab_unlock(page);
3277
3278out_unlock:
3279 local_irq_restore(flags);
3280 return rv;
3281}
3282EXPORT_SYMBOL(verify_mem_not_deleted);
3283#endif
3284
3285void kfree(const void *x)
3286{
3287 struct page *page;
3288 void *object = (void *)x;
3289
3290 trace_kfree(_RET_IP_, x);
3291
3292 if (unlikely(ZERO_OR_NULL_PTR(x)))
3293 return;
3294
3295 page = virt_to_head_page(x);
3296 if (unlikely(!PageSlab(page))) {
3297 BUG_ON(!PageCompound(page));
3298 kmemleak_free(x);
3299 put_page(page);
3300 return;
3301 }
3302 slab_free(page->slab, page, object, _RET_IP_);
3303}
3304EXPORT_SYMBOL(kfree);
3305
3306/*
3307 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3308 * the remaining slabs by the number of items in use. The slabs with the
3309 * most items in use come first. New allocations will then fill those up
3310 * and thus they can be removed from the partial lists.
3311 *
3312 * The slabs with the least items are placed last. This results in them
3313 * being allocated from last increasing the chance that the last objects
3314 * are freed in them.
3315 */
3316int kmem_cache_shrink(struct kmem_cache *s)
3317{
3318 int node;
3319 int i;
3320 struct kmem_cache_node *n;
3321 struct page *page;
3322 struct page *t;
3323 int objects = oo_objects(s->max);
3324 struct list_head *slabs_by_inuse =
3325 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3326 unsigned long flags;
3327
3328 if (!slabs_by_inuse)
3329 return -ENOMEM;
3330
3331 flush_all(s);
3332 for_each_node_state(node, N_NORMAL_MEMORY) {
3333 n = get_node(s, node);
3334
3335 if (!n->nr_partial)
3336 continue;
3337
3338 for (i = 0; i < objects; i++)
3339 INIT_LIST_HEAD(slabs_by_inuse + i);
3340
3341 spin_lock_irqsave(&n->list_lock, flags);
3342
3343 /*
3344 * Build lists indexed by the items in use in each slab.
3345 *
3346 * Note that concurrent frees may occur while we hold the
3347 * list_lock. page->inuse here is the upper limit.
3348 */
3349 list_for_each_entry_safe(page, t, &n->partial, lru) {
3350 if (!page->inuse) {
3351 remove_partial(n, page);
3352 discard_slab(s, page);
3353 } else {
3354 list_move(&page->lru,
3355 slabs_by_inuse + page->inuse);
3356 }
3357 }
3358
3359 /*
3360 * Rebuild the partial list with the slabs filled up most
3361 * first and the least used slabs at the end.
3362 */
3363 for (i = objects - 1; i >= 0; i--)
3364 list_splice(slabs_by_inuse + i, n->partial.prev);
3365
3366 spin_unlock_irqrestore(&n->list_lock, flags);
3367 }
3368
3369 kfree(slabs_by_inuse);
3370 return 0;
3371}
3372EXPORT_SYMBOL(kmem_cache_shrink);
3373
3374#if defined(CONFIG_MEMORY_HOTPLUG)
3375static int slab_mem_going_offline_callback(void *arg)
3376{
3377 struct kmem_cache *s;
3378
3379 down_read(&slub_lock);
3380 list_for_each_entry(s, &slab_caches, list)
3381 kmem_cache_shrink(s);
3382 up_read(&slub_lock);
3383
3384 return 0;
3385}
3386
3387static void slab_mem_offline_callback(void *arg)
3388{
3389 struct kmem_cache_node *n;
3390 struct kmem_cache *s;
3391 struct memory_notify *marg = arg;
3392 int offline_node;
3393
3394 offline_node = marg->status_change_nid;
3395
3396 /*
3397 * If the node still has available memory. we need kmem_cache_node
3398 * for it yet.
3399 */
3400 if (offline_node < 0)
3401 return;
3402
3403 down_read(&slub_lock);
3404 list_for_each_entry(s, &slab_caches, list) {
3405 n = get_node(s, offline_node);
3406 if (n) {
3407 /*
3408 * if n->nr_slabs > 0, slabs still exist on the node
3409 * that is going down. We were unable to free them,
3410 * and offline_pages() function shouldn't call this
3411 * callback. So, we must fail.
3412 */
3413 BUG_ON(slabs_node(s, offline_node));
3414
3415 s->node[offline_node] = NULL;
3416 kmem_cache_free(kmem_cache_node, n);
3417 }
3418 }
3419 up_read(&slub_lock);
3420}
3421
3422static int slab_mem_going_online_callback(void *arg)
3423{
3424 struct kmem_cache_node *n;
3425 struct kmem_cache *s;
3426 struct memory_notify *marg = arg;
3427 int nid = marg->status_change_nid;
3428 int ret = 0;
3429
3430 /*
3431 * If the node's memory is already available, then kmem_cache_node is
3432 * already created. Nothing to do.
3433 */
3434 if (nid < 0)
3435 return 0;
3436
3437 /*
3438 * We are bringing a node online. No memory is available yet. We must
3439 * allocate a kmem_cache_node structure in order to bring the node
3440 * online.
3441 */
3442 down_read(&slub_lock);
3443 list_for_each_entry(s, &slab_caches, list) {
3444 /*
3445 * XXX: kmem_cache_alloc_node will fallback to other nodes
3446 * since memory is not yet available from the node that
3447 * is brought up.
3448 */
3449 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3450 if (!n) {
3451 ret = -ENOMEM;
3452 goto out;
3453 }
3454 init_kmem_cache_node(n, s);
3455 s->node[nid] = n;
3456 }
3457out:
3458 up_read(&slub_lock);
3459 return ret;
3460}
3461
3462static int slab_memory_callback(struct notifier_block *self,
3463 unsigned long action, void *arg)
3464{
3465 int ret = 0;
3466
3467 switch (action) {
3468 case MEM_GOING_ONLINE:
3469 ret = slab_mem_going_online_callback(arg);
3470 break;
3471 case MEM_GOING_OFFLINE:
3472 ret = slab_mem_going_offline_callback(arg);
3473 break;
3474 case MEM_OFFLINE:
3475 case MEM_CANCEL_ONLINE:
3476 slab_mem_offline_callback(arg);
3477 break;
3478 case MEM_ONLINE:
3479 case MEM_CANCEL_OFFLINE:
3480 break;
3481 }
3482 if (ret)
3483 ret = notifier_from_errno(ret);
3484 else
3485 ret = NOTIFY_OK;
3486 return ret;
3487}
3488
3489#endif /* CONFIG_MEMORY_HOTPLUG */
3490
3491/********************************************************************
3492 * Basic setup of slabs
3493 *******************************************************************/
3494
3495/*
3496 * Used for early kmem_cache structures that were allocated using
3497 * the page allocator
3498 */
3499
3500static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3501{
3502 int node;
3503
3504 list_add(&s->list, &slab_caches);
3505 s->refcount = -1;
3506
3507 for_each_node_state(node, N_NORMAL_MEMORY) {
3508 struct kmem_cache_node *n = get_node(s, node);
3509 struct page *p;
3510
3511 if (n) {
3512 list_for_each_entry(p, &n->partial, lru)
3513 p->slab = s;
3514
3515#ifdef CONFIG_SLUB_DEBUG
3516 list_for_each_entry(p, &n->full, lru)
3517 p->slab = s;
3518#endif
3519 }
3520 }
3521}
3522
3523void __init kmem_cache_init(void)
3524{
3525 int i;
3526 int caches = 0;
3527 struct kmem_cache *temp_kmem_cache;
3528 int order;
3529 struct kmem_cache *temp_kmem_cache_node;
3530 unsigned long kmalloc_size;
3531
3532 kmem_size = offsetof(struct kmem_cache, node) +
3533 nr_node_ids * sizeof(struct kmem_cache_node *);
3534
3535 /* Allocate two kmem_caches from the page allocator */
3536 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3537 order = get_order(2 * kmalloc_size);
3538 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3539
3540 /*
3541 * Must first have the slab cache available for the allocations of the
3542 * struct kmem_cache_node's. There is special bootstrap code in
3543 * kmem_cache_open for slab_state == DOWN.
3544 */
3545 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3546
3547 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3548 sizeof(struct kmem_cache_node),
3549 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3550
3551 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3552
3553 /* Able to allocate the per node structures */
3554 slab_state = PARTIAL;
3555
3556 temp_kmem_cache = kmem_cache;
3557 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3558 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3559 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3560 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3561
3562 /*
3563 * Allocate kmem_cache_node properly from the kmem_cache slab.
3564 * kmem_cache_node is separately allocated so no need to
3565 * update any list pointers.
3566 */
3567 temp_kmem_cache_node = kmem_cache_node;
3568
3569 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3570 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3571
3572 kmem_cache_bootstrap_fixup(kmem_cache_node);
3573
3574 caches++;
3575 kmem_cache_bootstrap_fixup(kmem_cache);
3576 caches++;
3577 /* Free temporary boot structure */
3578 free_pages((unsigned long)temp_kmem_cache, order);
3579
3580 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3581
3582 /*
3583 * Patch up the size_index table if we have strange large alignment
3584 * requirements for the kmalloc array. This is only the case for
3585 * MIPS it seems. The standard arches will not generate any code here.
3586 *
3587 * Largest permitted alignment is 256 bytes due to the way we
3588 * handle the index determination for the smaller caches.
3589 *
3590 * Make sure that nothing crazy happens if someone starts tinkering
3591 * around with ARCH_KMALLOC_MINALIGN
3592 */
3593 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3594 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3595
3596 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3597 int elem = size_index_elem(i);
3598 if (elem >= ARRAY_SIZE(size_index))
3599 break;
3600 size_index[elem] = KMALLOC_SHIFT_LOW;
3601 }
3602
3603 if (KMALLOC_MIN_SIZE == 64) {
3604 /*
3605 * The 96 byte size cache is not used if the alignment
3606 * is 64 byte.
3607 */
3608 for (i = 64 + 8; i <= 96; i += 8)
3609 size_index[size_index_elem(i)] = 7;
3610 } else if (KMALLOC_MIN_SIZE == 128) {
3611 /*
3612 * The 192 byte sized cache is not used if the alignment
3613 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3614 * instead.
3615 */
3616 for (i = 128 + 8; i <= 192; i += 8)
3617 size_index[size_index_elem(i)] = 8;
3618 }
3619
3620 /* Caches that are not of the two-to-the-power-of size */
3621 if (KMALLOC_MIN_SIZE <= 32) {
3622 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3623 caches++;
3624 }
3625
3626 if (KMALLOC_MIN_SIZE <= 64) {
3627 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3628 caches++;
3629 }
3630
3631 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3632 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3633 caches++;
3634 }
3635
3636 slab_state = UP;
3637
3638 /* Provide the correct kmalloc names now that the caches are up */
3639 if (KMALLOC_MIN_SIZE <= 32) {
3640 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3641 BUG_ON(!kmalloc_caches[1]->name);
3642 }
3643
3644 if (KMALLOC_MIN_SIZE <= 64) {
3645 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3646 BUG_ON(!kmalloc_caches[2]->name);
3647 }
3648
3649 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3650 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3651
3652 BUG_ON(!s);
3653 kmalloc_caches[i]->name = s;
3654 }
3655
3656#ifdef CONFIG_SMP
3657 register_cpu_notifier(&slab_notifier);
3658#endif
3659
3660#ifdef CONFIG_ZONE_DMA
3661 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3662 struct kmem_cache *s = kmalloc_caches[i];
3663
3664 if (s && s->size) {
3665 char *name = kasprintf(GFP_NOWAIT,
3666 "dma-kmalloc-%d", s->objsize);
3667
3668 BUG_ON(!name);
3669 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3670 s->objsize, SLAB_CACHE_DMA);
3671 }
3672 }
3673#endif
3674 printk(KERN_INFO
3675 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3676 " CPUs=%d, Nodes=%d\n",
3677 caches, cache_line_size(),
3678 slub_min_order, slub_max_order, slub_min_objects,
3679 nr_cpu_ids, nr_node_ids);
3680}
3681
3682void __init kmem_cache_init_late(void)
3683{
3684}
3685
3686/*
3687 * Find a mergeable slab cache
3688 */
3689static int slab_unmergeable(struct kmem_cache *s)
3690{
3691 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3692 return 1;
3693
3694 if (s->ctor)
3695 return 1;
3696
3697 /*
3698 * We may have set a slab to be unmergeable during bootstrap.
3699 */
3700 if (s->refcount < 0)
3701 return 1;
3702
3703 return 0;
3704}
3705
3706static struct kmem_cache *find_mergeable(size_t size,
3707 size_t align, unsigned long flags, const char *name,
3708 void (*ctor)(void *))
3709{
3710 struct kmem_cache *s;
3711
3712 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3713 return NULL;
3714
3715 if (ctor)
3716 return NULL;
3717
3718 size = ALIGN(size, sizeof(void *));
3719 align = calculate_alignment(flags, align, size);
3720 size = ALIGN(size, align);
3721 flags = kmem_cache_flags(size, flags, name, NULL);
3722
3723 list_for_each_entry(s, &slab_caches, list) {
3724 if (slab_unmergeable(s))
3725 continue;
3726
3727 if (size > s->size)
3728 continue;
3729
3730 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3731 continue;
3732 /*
3733 * Check if alignment is compatible.
3734 * Courtesy of Adrian Drzewiecki
3735 */
3736 if ((s->size & ~(align - 1)) != s->size)
3737 continue;
3738
3739 if (s->size - size >= sizeof(void *))
3740 continue;
3741
3742 return s;
3743 }
3744 return NULL;
3745}
3746
3747struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3748 size_t align, unsigned long flags, void (*ctor)(void *))
3749{
3750 struct kmem_cache *s;
3751 char *n;
3752
3753 if (WARN_ON(!name))
3754 return NULL;
3755
3756 down_write(&slub_lock);
3757 s = find_mergeable(size, align, flags, name, ctor);
3758 if (s) {
3759 s->refcount++;
3760 /*
3761 * Adjust the object sizes so that we clear
3762 * the complete object on kzalloc.
3763 */
3764 s->objsize = max(s->objsize, (int)size);
3765 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3766
3767 if (sysfs_slab_alias(s, name)) {
3768 s->refcount--;
3769 goto err;
3770 }
3771 up_write(&slub_lock);
3772 return s;
3773 }
3774
3775 n = kstrdup(name, GFP_KERNEL);
3776 if (!n)
3777 goto err;
3778
3779 s = kmalloc(kmem_size, GFP_KERNEL);
3780 if (s) {
3781 if (kmem_cache_open(s, n,
3782 size, align, flags, ctor)) {
3783 list_add(&s->list, &slab_caches);
3784 if (sysfs_slab_add(s)) {
3785 list_del(&s->list);
3786 kfree(n);
3787 kfree(s);
3788 goto err;
3789 }
3790 up_write(&slub_lock);
3791 return s;
3792 }
3793 kfree(n);
3794 kfree(s);
3795 }
3796err:
3797 up_write(&slub_lock);
3798
3799 if (flags & SLAB_PANIC)
3800 panic("Cannot create slabcache %s\n", name);
3801 else
3802 s = NULL;
3803 return s;
3804}
3805EXPORT_SYMBOL(kmem_cache_create);
3806
3807#ifdef CONFIG_SMP
3808/*
3809 * Use the cpu notifier to insure that the cpu slabs are flushed when
3810 * necessary.
3811 */
3812static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3813 unsigned long action, void *hcpu)
3814{
3815 long cpu = (long)hcpu;
3816 struct kmem_cache *s;
3817 unsigned long flags;
3818
3819 switch (action) {
3820 case CPU_UP_CANCELED:
3821 case CPU_UP_CANCELED_FROZEN:
3822 case CPU_DEAD:
3823 case CPU_DEAD_FROZEN:
3824 down_read(&slub_lock);
3825 list_for_each_entry(s, &slab_caches, list) {
3826 local_irq_save(flags);
3827 __flush_cpu_slab(s, cpu);
3828 local_irq_restore(flags);
3829 }
3830 up_read(&slub_lock);
3831 break;
3832 default:
3833 break;
3834 }
3835 return NOTIFY_OK;
3836}
3837
3838static struct notifier_block __cpuinitdata slab_notifier = {
3839 .notifier_call = slab_cpuup_callback
3840};
3841
3842#endif
3843
3844void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3845{
3846 struct kmem_cache *s;
3847 void *ret;
3848
3849 if (unlikely(size > SLUB_MAX_SIZE))
3850 return kmalloc_large(size, gfpflags);
3851
3852 s = get_slab(size, gfpflags);
3853
3854 if (unlikely(ZERO_OR_NULL_PTR(s)))
3855 return s;
3856
3857 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3858
3859 /* Honor the call site pointer we received. */
3860 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3861
3862 return ret;
3863}
3864
3865#ifdef CONFIG_NUMA
3866void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3867 int node, unsigned long caller)
3868{
3869 struct kmem_cache *s;
3870 void *ret;
3871
3872 if (unlikely(size > SLUB_MAX_SIZE)) {
3873 ret = kmalloc_large_node(size, gfpflags, node);
3874
3875 trace_kmalloc_node(caller, ret,
3876 size, PAGE_SIZE << get_order(size),
3877 gfpflags, node);
3878
3879 return ret;
3880 }
3881
3882 s = get_slab(size, gfpflags);
3883
3884 if (unlikely(ZERO_OR_NULL_PTR(s)))
3885 return s;
3886
3887 ret = slab_alloc(s, gfpflags, node, caller);
3888
3889 /* Honor the call site pointer we received. */
3890 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3891
3892 return ret;
3893}
3894#endif
3895
3896#ifdef CONFIG_SYSFS
3897static int count_inuse(struct page *page)
3898{
3899 return page->inuse;
3900}
3901
3902static int count_total(struct page *page)
3903{
3904 return page->objects;
3905}
3906#endif
3907
3908#ifdef CONFIG_SLUB_DEBUG
3909static int validate_slab(struct kmem_cache *s, struct page *page,
3910 unsigned long *map)
3911{
3912 void *p;
3913 void *addr = page_address(page);
3914
3915 if (!check_slab(s, page) ||
3916 !on_freelist(s, page, NULL))
3917 return 0;
3918
3919 /* Now we know that a valid freelist exists */
3920 bitmap_zero(map, page->objects);
3921
3922 get_map(s, page, map);
3923 for_each_object(p, s, addr, page->objects) {
3924 if (test_bit(slab_index(p, s, addr), map))
3925 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3926 return 0;
3927 }
3928
3929 for_each_object(p, s, addr, page->objects)
3930 if (!test_bit(slab_index(p, s, addr), map))
3931 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3932 return 0;
3933 return 1;
3934}
3935
3936static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3937 unsigned long *map)
3938{
3939 slab_lock(page);
3940 validate_slab(s, page, map);
3941 slab_unlock(page);
3942}
3943
3944static int validate_slab_node(struct kmem_cache *s,
3945 struct kmem_cache_node *n, unsigned long *map)
3946{
3947 unsigned long count = 0;
3948 struct page *page;
3949 unsigned long flags;
3950
3951 spin_lock_irqsave(&n->list_lock, flags);
3952
3953 list_for_each_entry(page, &n->partial, lru) {
3954 validate_slab_slab(s, page, map);
3955 count++;
3956 }
3957 if (count != n->nr_partial)
3958 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3959 "counter=%ld\n", s->name, count, n->nr_partial);
3960
3961 if (!(s->flags & SLAB_STORE_USER))
3962 goto out;
3963
3964 list_for_each_entry(page, &n->full, lru) {
3965 validate_slab_slab(s, page, map);
3966 count++;
3967 }
3968 if (count != atomic_long_read(&n->nr_slabs))
3969 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3970 "counter=%ld\n", s->name, count,
3971 atomic_long_read(&n->nr_slabs));
3972
3973out:
3974 spin_unlock_irqrestore(&n->list_lock, flags);
3975 return count;
3976}
3977
3978static long validate_slab_cache(struct kmem_cache *s)
3979{
3980 int node;
3981 unsigned long count = 0;
3982 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3983 sizeof(unsigned long), GFP_KERNEL);
3984
3985 if (!map)
3986 return -ENOMEM;
3987
3988 flush_all(s);
3989 for_each_node_state(node, N_NORMAL_MEMORY) {
3990 struct kmem_cache_node *n = get_node(s, node);
3991
3992 count += validate_slab_node(s, n, map);
3993 }
3994 kfree(map);
3995 return count;
3996}
3997/*
3998 * Generate lists of code addresses where slabcache objects are allocated
3999 * and freed.
4000 */
4001
4002struct location {
4003 unsigned long count;
4004 unsigned long addr;
4005 long long sum_time;
4006 long min_time;
4007 long max_time;
4008 long min_pid;
4009 long max_pid;
4010 DECLARE_BITMAP(cpus, NR_CPUS);
4011 nodemask_t nodes;
4012};
4013
4014struct loc_track {
4015 unsigned long max;
4016 unsigned long count;
4017 struct location *loc;
4018};
4019
4020static void free_loc_track(struct loc_track *t)
4021{
4022 if (t->max)
4023 free_pages((unsigned long)t->loc,
4024 get_order(sizeof(struct location) * t->max));
4025}
4026
4027static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4028{
4029 struct location *l;
4030 int order;
4031
4032 order = get_order(sizeof(struct location) * max);
4033
4034 l = (void *)__get_free_pages(flags, order);
4035 if (!l)
4036 return 0;
4037
4038 if (t->count) {
4039 memcpy(l, t->loc, sizeof(struct location) * t->count);
4040 free_loc_track(t);
4041 }
4042 t->max = max;
4043 t->loc = l;
4044 return 1;
4045}
4046
4047static int add_location(struct loc_track *t, struct kmem_cache *s,
4048 const struct track *track)
4049{
4050 long start, end, pos;
4051 struct location *l;
4052 unsigned long caddr;
4053 unsigned long age = jiffies - track->when;
4054
4055 start = -1;
4056 end = t->count;
4057
4058 for ( ; ; ) {
4059 pos = start + (end - start + 1) / 2;
4060
4061 /*
4062 * There is nothing at "end". If we end up there
4063 * we need to add something to before end.
4064 */
4065 if (pos == end)
4066 break;
4067
4068 caddr = t->loc[pos].addr;
4069 if (track->addr == caddr) {
4070
4071 l = &t->loc[pos];
4072 l->count++;
4073 if (track->when) {
4074 l->sum_time += age;
4075 if (age < l->min_time)
4076 l->min_time = age;
4077 if (age > l->max_time)
4078 l->max_time = age;
4079
4080 if (track->pid < l->min_pid)
4081 l->min_pid = track->pid;
4082 if (track->pid > l->max_pid)
4083 l->max_pid = track->pid;
4084
4085 cpumask_set_cpu(track->cpu,
4086 to_cpumask(l->cpus));
4087 }
4088 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4089 return 1;
4090 }
4091
4092 if (track->addr < caddr)
4093 end = pos;
4094 else
4095 start = pos;
4096 }
4097
4098 /*
4099 * Not found. Insert new tracking element.
4100 */
4101 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4102 return 0;
4103
4104 l = t->loc + pos;
4105 if (pos < t->count)
4106 memmove(l + 1, l,
4107 (t->count - pos) * sizeof(struct location));
4108 t->count++;
4109 l->count = 1;
4110 l->addr = track->addr;
4111 l->sum_time = age;
4112 l->min_time = age;
4113 l->max_time = age;
4114 l->min_pid = track->pid;
4115 l->max_pid = track->pid;
4116 cpumask_clear(to_cpumask(l->cpus));
4117 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4118 nodes_clear(l->nodes);
4119 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4120 return 1;
4121}
4122
4123static void process_slab(struct loc_track *t, struct kmem_cache *s,
4124 struct page *page, enum track_item alloc,
4125 unsigned long *map)
4126{
4127 void *addr = page_address(page);
4128 void *p;
4129
4130 bitmap_zero(map, page->objects);
4131 get_map(s, page, map);
4132
4133 for_each_object(p, s, addr, page->objects)
4134 if (!test_bit(slab_index(p, s, addr), map))
4135 add_location(t, s, get_track(s, p, alloc));
4136}
4137
4138static int list_locations(struct kmem_cache *s, char *buf,
4139 enum track_item alloc)
4140{
4141 int len = 0;
4142 unsigned long i;
4143 struct loc_track t = { 0, 0, NULL };
4144 int node;
4145 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4146 sizeof(unsigned long), GFP_KERNEL);
4147
4148 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4149 GFP_TEMPORARY)) {
4150 kfree(map);
4151 return sprintf(buf, "Out of memory\n");
4152 }
4153 /* Push back cpu slabs */
4154 flush_all(s);
4155
4156 for_each_node_state(node, N_NORMAL_MEMORY) {
4157 struct kmem_cache_node *n = get_node(s, node);
4158 unsigned long flags;
4159 struct page *page;
4160
4161 if (!atomic_long_read(&n->nr_slabs))
4162 continue;
4163
4164 spin_lock_irqsave(&n->list_lock, flags);
4165 list_for_each_entry(page, &n->partial, lru)
4166 process_slab(&t, s, page, alloc, map);
4167 list_for_each_entry(page, &n->full, lru)
4168 process_slab(&t, s, page, alloc, map);
4169 spin_unlock_irqrestore(&n->list_lock, flags);
4170 }
4171
4172 for (i = 0; i < t.count; i++) {
4173 struct location *l = &t.loc[i];
4174
4175 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4176 break;
4177 len += sprintf(buf + len, "%7ld ", l->count);
4178
4179 if (l->addr)
4180 len += sprintf(buf + len, "%pS", (void *)l->addr);
4181 else
4182 len += sprintf(buf + len, "<not-available>");
4183
4184 if (l->sum_time != l->min_time) {
4185 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4186 l->min_time,
4187 (long)div_u64(l->sum_time, l->count),
4188 l->max_time);
4189 } else
4190 len += sprintf(buf + len, " age=%ld",
4191 l->min_time);
4192
4193 if (l->min_pid != l->max_pid)
4194 len += sprintf(buf + len, " pid=%ld-%ld",
4195 l->min_pid, l->max_pid);
4196 else
4197 len += sprintf(buf + len, " pid=%ld",
4198 l->min_pid);
4199
4200 if (num_online_cpus() > 1 &&
4201 !cpumask_empty(to_cpumask(l->cpus)) &&
4202 len < PAGE_SIZE - 60) {
4203 len += sprintf(buf + len, " cpus=");
4204 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4205 to_cpumask(l->cpus));
4206 }
4207
4208 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4209 len < PAGE_SIZE - 60) {
4210 len += sprintf(buf + len, " nodes=");
4211 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4212 l->nodes);
4213 }
4214
4215 len += sprintf(buf + len, "\n");
4216 }
4217
4218 free_loc_track(&t);
4219 kfree(map);
4220 if (!t.count)
4221 len += sprintf(buf, "No data\n");
4222 return len;
4223}
4224#endif
4225
4226#ifdef SLUB_RESILIENCY_TEST
4227static void resiliency_test(void)
4228{
4229 u8 *p;
4230
4231 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4232
4233 printk(KERN_ERR "SLUB resiliency testing\n");
4234 printk(KERN_ERR "-----------------------\n");
4235 printk(KERN_ERR "A. Corruption after allocation\n");
4236
4237 p = kzalloc(16, GFP_KERNEL);
4238 p[16] = 0x12;
4239 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4240 " 0x12->0x%p\n\n", p + 16);
4241
4242 validate_slab_cache(kmalloc_caches[4]);
4243
4244 /* Hmmm... The next two are dangerous */
4245 p = kzalloc(32, GFP_KERNEL);
4246 p[32 + sizeof(void *)] = 0x34;
4247 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4248 " 0x34 -> -0x%p\n", p);
4249 printk(KERN_ERR
4250 "If allocated object is overwritten then not detectable\n\n");
4251
4252 validate_slab_cache(kmalloc_caches[5]);
4253 p = kzalloc(64, GFP_KERNEL);
4254 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4255 *p = 0x56;
4256 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4257 p);
4258 printk(KERN_ERR
4259 "If allocated object is overwritten then not detectable\n\n");
4260 validate_slab_cache(kmalloc_caches[6]);
4261
4262 printk(KERN_ERR "\nB. Corruption after free\n");
4263 p = kzalloc(128, GFP_KERNEL);
4264 kfree(p);
4265 *p = 0x78;
4266 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4267 validate_slab_cache(kmalloc_caches[7]);
4268
4269 p = kzalloc(256, GFP_KERNEL);
4270 kfree(p);
4271 p[50] = 0x9a;
4272 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4273 p);
4274 validate_slab_cache(kmalloc_caches[8]);
4275
4276 p = kzalloc(512, GFP_KERNEL);
4277 kfree(p);
4278 p[512] = 0xab;
4279 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4280 validate_slab_cache(kmalloc_caches[9]);
4281}
4282#else
4283#ifdef CONFIG_SYSFS
4284static void resiliency_test(void) {};
4285#endif
4286#endif
4287
4288#ifdef CONFIG_SYSFS
4289enum slab_stat_type {
4290 SL_ALL, /* All slabs */
4291 SL_PARTIAL, /* Only partially allocated slabs */
4292 SL_CPU, /* Only slabs used for cpu caches */
4293 SL_OBJECTS, /* Determine allocated objects not slabs */
4294 SL_TOTAL /* Determine object capacity not slabs */
4295};
4296
4297#define SO_ALL (1 << SL_ALL)
4298#define SO_PARTIAL (1 << SL_PARTIAL)
4299#define SO_CPU (1 << SL_CPU)
4300#define SO_OBJECTS (1 << SL_OBJECTS)
4301#define SO_TOTAL (1 << SL_TOTAL)
4302
4303static ssize_t show_slab_objects(struct kmem_cache *s,
4304 char *buf, unsigned long flags)
4305{
4306 unsigned long total = 0;
4307 int node;
4308 int x;
4309 unsigned long *nodes;
4310 unsigned long *per_cpu;
4311
4312 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4313 if (!nodes)
4314 return -ENOMEM;
4315 per_cpu = nodes + nr_node_ids;
4316
4317 if (flags & SO_CPU) {
4318 int cpu;
4319
4320 for_each_possible_cpu(cpu) {
4321 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4322
4323 if (!c || c->node < 0)
4324 continue;
4325
4326 if (c->page) {
4327 if (flags & SO_TOTAL)
4328 x = c->page->objects;
4329 else if (flags & SO_OBJECTS)
4330 x = c->page->inuse;
4331 else
4332 x = 1;
4333
4334 total += x;
4335 nodes[c->node] += x;
4336 }
4337 per_cpu[c->node]++;
4338 }
4339 }
4340
4341 lock_memory_hotplug();
4342#ifdef CONFIG_SLUB_DEBUG
4343 if (flags & SO_ALL) {
4344 for_each_node_state(node, N_NORMAL_MEMORY) {
4345 struct kmem_cache_node *n = get_node(s, node);
4346
4347 if (flags & SO_TOTAL)
4348 x = atomic_long_read(&n->total_objects);
4349 else if (flags & SO_OBJECTS)
4350 x = atomic_long_read(&n->total_objects) -
4351 count_partial(n, count_free);
4352
4353 else
4354 x = atomic_long_read(&n->nr_slabs);
4355 total += x;
4356 nodes[node] += x;
4357 }
4358
4359 } else
4360#endif
4361 if (flags & SO_PARTIAL) {
4362 for_each_node_state(node, N_NORMAL_MEMORY) {
4363 struct kmem_cache_node *n = get_node(s, node);
4364
4365 if (flags & SO_TOTAL)
4366 x = count_partial(n, count_total);
4367 else if (flags & SO_OBJECTS)
4368 x = count_partial(n, count_inuse);
4369 else
4370 x = n->nr_partial;
4371 total += x;
4372 nodes[node] += x;
4373 }
4374 }
4375 x = sprintf(buf, "%lu", total);
4376#ifdef CONFIG_NUMA
4377 for_each_node_state(node, N_NORMAL_MEMORY)
4378 if (nodes[node])
4379 x += sprintf(buf + x, " N%d=%lu",
4380 node, nodes[node]);
4381#endif
4382 unlock_memory_hotplug();
4383 kfree(nodes);
4384 return x + sprintf(buf + x, "\n");
4385}
4386
4387#ifdef CONFIG_SLUB_DEBUG
4388static int any_slab_objects(struct kmem_cache *s)
4389{
4390 int node;
4391
4392 for_each_online_node(node) {
4393 struct kmem_cache_node *n = get_node(s, node);
4394
4395 if (!n)
4396 continue;
4397
4398 if (atomic_long_read(&n->total_objects))
4399 return 1;
4400 }
4401 return 0;
4402}
4403#endif
4404
4405#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4406#define to_slab(n) container_of(n, struct kmem_cache, kobj)
4407
4408struct slab_attribute {
4409 struct attribute attr;
4410 ssize_t (*show)(struct kmem_cache *s, char *buf);
4411 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4412};
4413
4414#define SLAB_ATTR_RO(_name) \
4415 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4416
4417#define SLAB_ATTR(_name) \
4418 static struct slab_attribute _name##_attr = \
4419 __ATTR(_name, 0644, _name##_show, _name##_store)
4420
4421static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4422{
4423 return sprintf(buf, "%d\n", s->size);
4424}
4425SLAB_ATTR_RO(slab_size);
4426
4427static ssize_t align_show(struct kmem_cache *s, char *buf)
4428{
4429 return sprintf(buf, "%d\n", s->align);
4430}
4431SLAB_ATTR_RO(align);
4432
4433static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4434{
4435 return sprintf(buf, "%d\n", s->objsize);
4436}
4437SLAB_ATTR_RO(object_size);
4438
4439static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4440{
4441 return sprintf(buf, "%d\n", oo_objects(s->oo));
4442}
4443SLAB_ATTR_RO(objs_per_slab);
4444
4445static ssize_t order_store(struct kmem_cache *s,
4446 const char *buf, size_t length)
4447{
4448 unsigned long order;
4449 int err;
4450
4451 err = strict_strtoul(buf, 10, &order);
4452 if (err)
4453 return err;
4454
4455 if (order > slub_max_order || order < slub_min_order)
4456 return -EINVAL;
4457
4458 calculate_sizes(s, order);
4459 return length;
4460}
4461
4462static ssize_t order_show(struct kmem_cache *s, char *buf)
4463{
4464 return sprintf(buf, "%d\n", oo_order(s->oo));
4465}
4466SLAB_ATTR(order);
4467
4468static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4469{
4470 return sprintf(buf, "%lu\n", s->min_partial);
4471}
4472
4473static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4474 size_t length)
4475{
4476 unsigned long min;
4477 int err;
4478
4479 err = strict_strtoul(buf, 10, &min);
4480 if (err)
4481 return err;
4482
4483 set_min_partial(s, min);
4484 return length;
4485}
4486SLAB_ATTR(min_partial);
4487
4488static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4489{
4490 if (!s->ctor)
4491 return 0;
4492 return sprintf(buf, "%pS\n", s->ctor);
4493}
4494SLAB_ATTR_RO(ctor);
4495
4496static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4497{
4498 return sprintf(buf, "%d\n", s->refcount - 1);
4499}
4500SLAB_ATTR_RO(aliases);
4501
4502static ssize_t partial_show(struct kmem_cache *s, char *buf)
4503{
4504 return show_slab_objects(s, buf, SO_PARTIAL);
4505}
4506SLAB_ATTR_RO(partial);
4507
4508static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4509{
4510 return show_slab_objects(s, buf, SO_CPU);
4511}
4512SLAB_ATTR_RO(cpu_slabs);
4513
4514static ssize_t objects_show(struct kmem_cache *s, char *buf)
4515{
4516 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4517}
4518SLAB_ATTR_RO(objects);
4519
4520static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4521{
4522 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4523}
4524SLAB_ATTR_RO(objects_partial);
4525
4526static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4527{
4528 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4529}
4530
4531static ssize_t reclaim_account_store(struct kmem_cache *s,
4532 const char *buf, size_t length)
4533{
4534 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4535 if (buf[0] == '1')
4536 s->flags |= SLAB_RECLAIM_ACCOUNT;
4537 return length;
4538}
4539SLAB_ATTR(reclaim_account);
4540
4541static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4542{
4543 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4544}
4545SLAB_ATTR_RO(hwcache_align);
4546
4547#ifdef CONFIG_ZONE_DMA
4548static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4549{
4550 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4551}
4552SLAB_ATTR_RO(cache_dma);
4553#endif
4554
4555static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4556{
4557 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4558}
4559SLAB_ATTR_RO(destroy_by_rcu);
4560
4561static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4562{
4563 return sprintf(buf, "%d\n", s->reserved);
4564}
4565SLAB_ATTR_RO(reserved);
4566
4567#ifdef CONFIG_SLUB_DEBUG
4568static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4569{
4570 return show_slab_objects(s, buf, SO_ALL);
4571}
4572SLAB_ATTR_RO(slabs);
4573
4574static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4575{
4576 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4577}
4578SLAB_ATTR_RO(total_objects);
4579
4580static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4581{
4582 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4583}
4584
4585static ssize_t sanity_checks_store(struct kmem_cache *s,
4586 const char *buf, size_t length)
4587{
4588 s->flags &= ~SLAB_DEBUG_FREE;
4589 if (buf[0] == '1') {
4590 s->flags &= ~__CMPXCHG_DOUBLE;
4591 s->flags |= SLAB_DEBUG_FREE;
4592 }
4593 return length;
4594}
4595SLAB_ATTR(sanity_checks);
4596
4597static ssize_t trace_show(struct kmem_cache *s, char *buf)
4598{
4599 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4600}
4601
4602static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4603 size_t length)
4604{
4605 s->flags &= ~SLAB_TRACE;
4606 if (buf[0] == '1') {
4607 s->flags &= ~__CMPXCHG_DOUBLE;
4608 s->flags |= SLAB_TRACE;
4609 }
4610 return length;
4611}
4612SLAB_ATTR(trace);
4613
4614static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4615{
4616 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4617}
4618
4619static ssize_t red_zone_store(struct kmem_cache *s,
4620 const char *buf, size_t length)
4621{
4622 if (any_slab_objects(s))
4623 return -EBUSY;
4624
4625 s->flags &= ~SLAB_RED_ZONE;
4626 if (buf[0] == '1') {
4627 s->flags &= ~__CMPXCHG_DOUBLE;
4628 s->flags |= SLAB_RED_ZONE;
4629 }
4630 calculate_sizes(s, -1);
4631 return length;
4632}
4633SLAB_ATTR(red_zone);
4634
4635static ssize_t poison_show(struct kmem_cache *s, char *buf)
4636{
4637 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4638}
4639
4640static ssize_t poison_store(struct kmem_cache *s,
4641 const char *buf, size_t length)
4642{
4643 if (any_slab_objects(s))
4644 return -EBUSY;
4645
4646 s->flags &= ~SLAB_POISON;
4647 if (buf[0] == '1') {
4648 s->flags &= ~__CMPXCHG_DOUBLE;
4649 s->flags |= SLAB_POISON;
4650 }
4651 calculate_sizes(s, -1);
4652 return length;
4653}
4654SLAB_ATTR(poison);
4655
4656static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4657{
4658 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4659}
4660
4661static ssize_t store_user_store(struct kmem_cache *s,
4662 const char *buf, size_t length)
4663{
4664 if (any_slab_objects(s))
4665 return -EBUSY;
4666
4667 s->flags &= ~SLAB_STORE_USER;
4668 if (buf[0] == '1') {
4669 s->flags &= ~__CMPXCHG_DOUBLE;
4670 s->flags |= SLAB_STORE_USER;
4671 }
4672 calculate_sizes(s, -1);
4673 return length;
4674}
4675SLAB_ATTR(store_user);
4676
4677static ssize_t validate_show(struct kmem_cache *s, char *buf)
4678{
4679 return 0;
4680}
4681
4682static ssize_t validate_store(struct kmem_cache *s,
4683 const char *buf, size_t length)
4684{
4685 int ret = -EINVAL;
4686
4687 if (buf[0] == '1') {
4688 ret = validate_slab_cache(s);
4689 if (ret >= 0)
4690 ret = length;
4691 }
4692 return ret;
4693}
4694SLAB_ATTR(validate);
4695
4696static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4697{
4698 if (!(s->flags & SLAB_STORE_USER))
4699 return -ENOSYS;
4700 return list_locations(s, buf, TRACK_ALLOC);
4701}
4702SLAB_ATTR_RO(alloc_calls);
4703
4704static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4705{
4706 if (!(s->flags & SLAB_STORE_USER))
4707 return -ENOSYS;
4708 return list_locations(s, buf, TRACK_FREE);
4709}
4710SLAB_ATTR_RO(free_calls);
4711#endif /* CONFIG_SLUB_DEBUG */
4712
4713#ifdef CONFIG_FAILSLAB
4714static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4715{
4716 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4717}
4718
4719static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4720 size_t length)
4721{
4722 s->flags &= ~SLAB_FAILSLAB;
4723 if (buf[0] == '1')
4724 s->flags |= SLAB_FAILSLAB;
4725 return length;
4726}
4727SLAB_ATTR(failslab);
4728#endif
4729
4730static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4731{
4732 return 0;
4733}
4734
4735static ssize_t shrink_store(struct kmem_cache *s,
4736 const char *buf, size_t length)
4737{
4738 if (buf[0] == '1') {
4739 int rc = kmem_cache_shrink(s);
4740
4741 if (rc)
4742 return rc;
4743 } else
4744 return -EINVAL;
4745 return length;
4746}
4747SLAB_ATTR(shrink);
4748
4749#ifdef CONFIG_NUMA
4750static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4751{
4752 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4753}
4754
4755static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4756 const char *buf, size_t length)
4757{
4758 unsigned long ratio;
4759 int err;
4760
4761 err = strict_strtoul(buf, 10, &ratio);
4762 if (err)
4763 return err;
4764
4765 if (ratio <= 100)
4766 s->remote_node_defrag_ratio = ratio * 10;
4767
4768 return length;
4769}
4770SLAB_ATTR(remote_node_defrag_ratio);
4771#endif
4772
4773#ifdef CONFIG_SLUB_STATS
4774static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4775{
4776 unsigned long sum = 0;
4777 int cpu;
4778 int len;
4779 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4780
4781 if (!data)
4782 return -ENOMEM;
4783
4784 for_each_online_cpu(cpu) {
4785 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4786
4787 data[cpu] = x;
4788 sum += x;
4789 }
4790
4791 len = sprintf(buf, "%lu", sum);
4792
4793#ifdef CONFIG_SMP
4794 for_each_online_cpu(cpu) {
4795 if (data[cpu] && len < PAGE_SIZE - 20)
4796 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4797 }
4798#endif
4799 kfree(data);
4800 return len + sprintf(buf + len, "\n");
4801}
4802
4803static void clear_stat(struct kmem_cache *s, enum stat_item si)
4804{
4805 int cpu;
4806
4807 for_each_online_cpu(cpu)
4808 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4809}
4810
4811#define STAT_ATTR(si, text) \
4812static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4813{ \
4814 return show_stat(s, buf, si); \
4815} \
4816static ssize_t text##_store(struct kmem_cache *s, \
4817 const char *buf, size_t length) \
4818{ \
4819 if (buf[0] != '0') \
4820 return -EINVAL; \
4821 clear_stat(s, si); \
4822 return length; \
4823} \
4824SLAB_ATTR(text); \
4825
4826STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4827STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4828STAT_ATTR(FREE_FASTPATH, free_fastpath);
4829STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4830STAT_ATTR(FREE_FROZEN, free_frozen);
4831STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4832STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4833STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4834STAT_ATTR(ALLOC_SLAB, alloc_slab);
4835STAT_ATTR(ALLOC_REFILL, alloc_refill);
4836STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4837STAT_ATTR(FREE_SLAB, free_slab);
4838STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4839STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4840STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4841STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4842STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4843STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4844STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4845STAT_ATTR(ORDER_FALLBACK, order_fallback);
4846STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4847STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4848#endif
4849
4850static struct attribute *slab_attrs[] = {
4851 &slab_size_attr.attr,
4852 &object_size_attr.attr,
4853 &objs_per_slab_attr.attr,
4854 &order_attr.attr,
4855 &min_partial_attr.attr,
4856 &objects_attr.attr,
4857 &objects_partial_attr.attr,
4858 &partial_attr.attr,
4859 &cpu_slabs_attr.attr,
4860 &ctor_attr.attr,
4861 &aliases_attr.attr,
4862 &align_attr.attr,
4863 &hwcache_align_attr.attr,
4864 &reclaim_account_attr.attr,
4865 &destroy_by_rcu_attr.attr,
4866 &shrink_attr.attr,
4867 &reserved_attr.attr,
4868#ifdef CONFIG_SLUB_DEBUG
4869 &total_objects_attr.attr,
4870 &slabs_attr.attr,
4871 &sanity_checks_attr.attr,
4872 &trace_attr.attr,
4873 &red_zone_attr.attr,
4874 &poison_attr.attr,
4875 &store_user_attr.attr,
4876 &validate_attr.attr,
4877 &alloc_calls_attr.attr,
4878 &free_calls_attr.attr,
4879#endif
4880#ifdef CONFIG_ZONE_DMA
4881 &cache_dma_attr.attr,
4882#endif
4883#ifdef CONFIG_NUMA
4884 &remote_node_defrag_ratio_attr.attr,
4885#endif
4886#ifdef CONFIG_SLUB_STATS
4887 &alloc_fastpath_attr.attr,
4888 &alloc_slowpath_attr.attr,
4889 &free_fastpath_attr.attr,
4890 &free_slowpath_attr.attr,
4891 &free_frozen_attr.attr,
4892 &free_add_partial_attr.attr,
4893 &free_remove_partial_attr.attr,
4894 &alloc_from_partial_attr.attr,
4895 &alloc_slab_attr.attr,
4896 &alloc_refill_attr.attr,
4897 &alloc_node_mismatch_attr.attr,
4898 &free_slab_attr.attr,
4899 &cpuslab_flush_attr.attr,
4900 &deactivate_full_attr.attr,
4901 &deactivate_empty_attr.attr,
4902 &deactivate_to_head_attr.attr,
4903 &deactivate_to_tail_attr.attr,
4904 &deactivate_remote_frees_attr.attr,
4905 &deactivate_bypass_attr.attr,
4906 &order_fallback_attr.attr,
4907 &cmpxchg_double_fail_attr.attr,
4908 &cmpxchg_double_cpu_fail_attr.attr,
4909#endif
4910#ifdef CONFIG_FAILSLAB
4911 &failslab_attr.attr,
4912#endif
4913
4914 NULL
4915};
4916
4917static struct attribute_group slab_attr_group = {
4918 .attrs = slab_attrs,
4919};
4920
4921static ssize_t slab_attr_show(struct kobject *kobj,
4922 struct attribute *attr,
4923 char *buf)
4924{
4925 struct slab_attribute *attribute;
4926 struct kmem_cache *s;
4927 int err;
4928
4929 attribute = to_slab_attr(attr);
4930 s = to_slab(kobj);
4931
4932 if (!attribute->show)
4933 return -EIO;
4934
4935 err = attribute->show(s, buf);
4936
4937 return err;
4938}
4939
4940static ssize_t slab_attr_store(struct kobject *kobj,
4941 struct attribute *attr,
4942 const char *buf, size_t len)
4943{
4944 struct slab_attribute *attribute;
4945 struct kmem_cache *s;
4946 int err;
4947
4948 attribute = to_slab_attr(attr);
4949 s = to_slab(kobj);
4950
4951 if (!attribute->store)
4952 return -EIO;
4953
4954 err = attribute->store(s, buf, len);
4955
4956 return err;
4957}
4958
4959static void kmem_cache_release(struct kobject *kobj)
4960{
4961 struct kmem_cache *s = to_slab(kobj);
4962
4963 kfree(s->name);
4964 kfree(s);
4965}
4966
4967static const struct sysfs_ops slab_sysfs_ops = {
4968 .show = slab_attr_show,
4969 .store = slab_attr_store,
4970};
4971
4972static struct kobj_type slab_ktype = {
4973 .sysfs_ops = &slab_sysfs_ops,
4974 .release = kmem_cache_release
4975};
4976
4977static int uevent_filter(struct kset *kset, struct kobject *kobj)
4978{
4979 struct kobj_type *ktype = get_ktype(kobj);
4980
4981 if (ktype == &slab_ktype)
4982 return 1;
4983 return 0;
4984}
4985
4986static const struct kset_uevent_ops slab_uevent_ops = {
4987 .filter = uevent_filter,
4988};
4989
4990static struct kset *slab_kset;
4991
4992#define ID_STR_LENGTH 64
4993
4994/* Create a unique string id for a slab cache:
4995 *
4996 * Format :[flags-]size
4997 */
4998static char *create_unique_id(struct kmem_cache *s)
4999{
5000 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5001 char *p = name;
5002
5003 BUG_ON(!name);
5004
5005 *p++ = ':';
5006 /*
5007 * First flags affecting slabcache operations. We will only
5008 * get here for aliasable slabs so we do not need to support
5009 * too many flags. The flags here must cover all flags that
5010 * are matched during merging to guarantee that the id is
5011 * unique.
5012 */
5013 if (s->flags & SLAB_CACHE_DMA)
5014 *p++ = 'd';
5015 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5016 *p++ = 'a';
5017 if (s->flags & SLAB_DEBUG_FREE)
5018 *p++ = 'F';
5019 if (!(s->flags & SLAB_NOTRACK))
5020 *p++ = 't';
5021 if (p != name + 1)
5022 *p++ = '-';
5023 p += sprintf(p, "%07d", s->size);
5024 BUG_ON(p > name + ID_STR_LENGTH - 1);
5025 return name;
5026}
5027
5028static int sysfs_slab_add(struct kmem_cache *s)
5029{
5030 int err;
5031 const char *name;
5032 int unmergeable;
5033
5034 if (slab_state < SYSFS)
5035 /* Defer until later */
5036 return 0;
5037
5038 unmergeable = slab_unmergeable(s);
5039 if (unmergeable) {
5040 /*
5041 * Slabcache can never be merged so we can use the name proper.
5042 * This is typically the case for debug situations. In that
5043 * case we can catch duplicate names easily.
5044 */
5045 sysfs_remove_link(&slab_kset->kobj, s->name);
5046 name = s->name;
5047 } else {
5048 /*
5049 * Create a unique name for the slab as a target
5050 * for the symlinks.
5051 */
5052 name = create_unique_id(s);
5053 }
5054
5055 s->kobj.kset = slab_kset;
5056 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5057 if (err) {
5058 kobject_put(&s->kobj);
5059 return err;
5060 }
5061
5062 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5063 if (err) {
5064 kobject_del(&s->kobj);
5065 kobject_put(&s->kobj);
5066 return err;
5067 }
5068 kobject_uevent(&s->kobj, KOBJ_ADD);
5069 if (!unmergeable) {
5070 /* Setup first alias */
5071 sysfs_slab_alias(s, s->name);
5072 kfree(name);
5073 }
5074 return 0;
5075}
5076
5077static void sysfs_slab_remove(struct kmem_cache *s)
5078{
5079 if (slab_state < SYSFS)
5080 /*
5081 * Sysfs has not been setup yet so no need to remove the
5082 * cache from sysfs.
5083 */
5084 return;
5085
5086 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5087 kobject_del(&s->kobj);
5088 kobject_put(&s->kobj);
5089}
5090
5091/*
5092 * Need to buffer aliases during bootup until sysfs becomes
5093 * available lest we lose that information.
5094 */
5095struct saved_alias {
5096 struct kmem_cache *s;
5097 const char *name;
5098 struct saved_alias *next;
5099};
5100
5101static struct saved_alias *alias_list;
5102
5103static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5104{
5105 struct saved_alias *al;
5106
5107 if (slab_state == SYSFS) {
5108 /*
5109 * If we have a leftover link then remove it.
5110 */
5111 sysfs_remove_link(&slab_kset->kobj, name);
5112 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5113 }
5114
5115 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5116 if (!al)
5117 return -ENOMEM;
5118
5119 al->s = s;
5120 al->name = name;
5121 al->next = alias_list;
5122 alias_list = al;
5123 return 0;
5124}
5125
5126static int __init slab_sysfs_init(void)
5127{
5128 struct kmem_cache *s;
5129 int err;
5130
5131 down_write(&slub_lock);
5132
5133 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5134 if (!slab_kset) {
5135 up_write(&slub_lock);
5136 printk(KERN_ERR "Cannot register slab subsystem.\n");
5137 return -ENOSYS;
5138 }
5139
5140 slab_state = SYSFS;
5141
5142 list_for_each_entry(s, &slab_caches, list) {
5143 err = sysfs_slab_add(s);
5144 if (err)
5145 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5146 " to sysfs\n", s->name);
5147 }
5148
5149 while (alias_list) {
5150 struct saved_alias *al = alias_list;
5151
5152 alias_list = alias_list->next;
5153 err = sysfs_slab_alias(al->s, al->name);
5154 if (err)
5155 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5156 " %s to sysfs\n", s->name);
5157 kfree(al);
5158 }
5159
5160 up_write(&slub_lock);
5161 resiliency_test();
5162 return 0;
5163}
5164
5165__initcall(slab_sysfs_init);
5166#endif /* CONFIG_SYSFS */
5167
5168/*
5169 * The /proc/slabinfo ABI
5170 */
5171#ifdef CONFIG_SLABINFO
5172static void print_slabinfo_header(struct seq_file *m)
5173{
5174 seq_puts(m, "slabinfo - version: 2.1\n");
5175 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5176 "<objperslab> <pagesperslab>");
5177 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5178 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5179 seq_putc(m, '\n');
5180}
5181
5182static void *s_start(struct seq_file *m, loff_t *pos)
5183{
5184 loff_t n = *pos;
5185
5186 down_read(&slub_lock);
5187 if (!n)
5188 print_slabinfo_header(m);
5189
5190 return seq_list_start(&slab_caches, *pos);
5191}
5192
5193static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5194{
5195 return seq_list_next(p, &slab_caches, pos);
5196}
5197
5198static void s_stop(struct seq_file *m, void *p)
5199{
5200 up_read(&slub_lock);
5201}
5202
5203static int s_show(struct seq_file *m, void *p)
5204{
5205 unsigned long nr_partials = 0;
5206 unsigned long nr_slabs = 0;
5207 unsigned long nr_inuse = 0;
5208 unsigned long nr_objs = 0;
5209 unsigned long nr_free = 0;
5210 struct kmem_cache *s;
5211 int node;
5212
5213 s = list_entry(p, struct kmem_cache, list);
5214
5215 for_each_online_node(node) {
5216 struct kmem_cache_node *n = get_node(s, node);
5217
5218 if (!n)
5219 continue;
5220
5221 nr_partials += n->nr_partial;
5222 nr_slabs += atomic_long_read(&n->nr_slabs);
5223 nr_objs += atomic_long_read(&n->total_objects);
5224 nr_free += count_partial(n, count_free);
5225 }
5226
5227 nr_inuse = nr_objs - nr_free;
5228
5229 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5230 nr_objs, s->size, oo_objects(s->oo),
5231 (1 << oo_order(s->oo)));
5232 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5233 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5234 0UL);
5235 seq_putc(m, '\n');
5236 return 0;
5237}
5238
5239static const struct seq_operations slabinfo_op = {
5240 .start = s_start,
5241 .next = s_next,
5242 .stop = s_stop,
5243 .show = s_show,
5244};
5245
5246static int slabinfo_open(struct inode *inode, struct file *file)
5247{
5248 return seq_open(file, &slabinfo_op);
5249}
5250
5251static const struct file_operations proc_slabinfo_operations = {
5252 .open = slabinfo_open,
5253 .read = seq_read,
5254 .llseek = seq_lseek,
5255 .release = seq_release,
5256};
5257
5258static int __init slab_proc_init(void)
5259{
5260 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
5261 return 0;
5262}
5263module_init(slab_proc_init);
5264#endif /* CONFIG_SLABINFO */