Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
  1/*
  2 *  bootmem - A boot-time physical memory allocator and configurator
  3 *
  4 *  Copyright (C) 1999 Ingo Molnar
  5 *                1999 Kanoj Sarcar, SGI
  6 *                2008 Johannes Weiner
  7 *
  8 * Access to this subsystem has to be serialized externally (which is true
  9 * for the boot process anyway).
 10 */
 11#include <linux/init.h>
 12#include <linux/pfn.h>
 13#include <linux/slab.h>
 14#include <linux/bootmem.h>
 15#include <linux/module.h>
 16#include <linux/kmemleak.h>
 17#include <linux/range.h>
 18#include <linux/memblock.h>
 19
 20#include <asm/bug.h>
 21#include <asm/io.h>
 22#include <asm/processor.h>
 23
 24#include "internal.h"
 25
 26#ifndef CONFIG_NEED_MULTIPLE_NODES
 27struct pglist_data __refdata contig_page_data;
 28EXPORT_SYMBOL(contig_page_data);
 29#endif
 30
 31unsigned long max_low_pfn;
 32unsigned long min_low_pfn;
 33unsigned long max_pfn;
 34
 35static void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
 36					u64 goal, u64 limit)
 37{
 38	void *ptr;
 39	u64 addr;
 40
 41	if (limit > memblock.current_limit)
 42		limit = memblock.current_limit;
 43
 44	addr = find_memory_core_early(nid, size, align, goal, limit);
 45
 46	if (addr == MEMBLOCK_ERROR)
 47		return NULL;
 48
 49	ptr = phys_to_virt(addr);
 50	memset(ptr, 0, size);
 51	memblock_x86_reserve_range(addr, addr + size, "BOOTMEM");
 52	/*
 53	 * The min_count is set to 0 so that bootmem allocated blocks
 54	 * are never reported as leaks.
 55	 */
 56	kmemleak_alloc(ptr, size, 0, 0);
 57	return ptr;
 58}
 59
 60/*
 61 * free_bootmem_late - free bootmem pages directly to page allocator
 62 * @addr: starting address of the range
 63 * @size: size of the range in bytes
 64 *
 65 * This is only useful when the bootmem allocator has already been torn
 66 * down, but we are still initializing the system.  Pages are given directly
 67 * to the page allocator, no bootmem metadata is updated because it is gone.
 68 */
 69void __init free_bootmem_late(unsigned long addr, unsigned long size)
 70{
 71	unsigned long cursor, end;
 72
 73	kmemleak_free_part(__va(addr), size);
 74
 75	cursor = PFN_UP(addr);
 76	end = PFN_DOWN(addr + size);
 77
 78	for (; cursor < end; cursor++) {
 79		__free_pages_bootmem(pfn_to_page(cursor), 0);
 80		totalram_pages++;
 81	}
 82}
 83
 84static void __init __free_pages_memory(unsigned long start, unsigned long end)
 85{
 86	int i;
 87	unsigned long start_aligned, end_aligned;
 88	int order = ilog2(BITS_PER_LONG);
 89
 90	start_aligned = (start + (BITS_PER_LONG - 1)) & ~(BITS_PER_LONG - 1);
 91	end_aligned = end & ~(BITS_PER_LONG - 1);
 92
 93	if (end_aligned <= start_aligned) {
 94		for (i = start; i < end; i++)
 95			__free_pages_bootmem(pfn_to_page(i), 0);
 96
 97		return;
 98	}
 99
100	for (i = start; i < start_aligned; i++)
101		__free_pages_bootmem(pfn_to_page(i), 0);
102
103	for (i = start_aligned; i < end_aligned; i += BITS_PER_LONG)
104		__free_pages_bootmem(pfn_to_page(i), order);
105
106	for (i = end_aligned; i < end; i++)
107		__free_pages_bootmem(pfn_to_page(i), 0);
108}
109
110unsigned long __init free_all_memory_core_early(int nodeid)
111{
112	int i;
113	u64 start, end;
114	unsigned long count = 0;
115	struct range *range = NULL;
116	int nr_range;
117
118	nr_range = get_free_all_memory_range(&range, nodeid);
119
120	for (i = 0; i < nr_range; i++) {
121		start = range[i].start;
122		end = range[i].end;
123		count += end - start;
124		__free_pages_memory(start, end);
125	}
126
127	return count;
128}
129
130/**
131 * free_all_bootmem_node - release a node's free pages to the buddy allocator
132 * @pgdat: node to be released
133 *
134 * Returns the number of pages actually released.
135 */
136unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
137{
138	register_page_bootmem_info_node(pgdat);
139
140	/* free_all_memory_core_early(MAX_NUMNODES) will be called later */
141	return 0;
142}
143
144/**
145 * free_all_bootmem - release free pages to the buddy allocator
146 *
147 * Returns the number of pages actually released.
148 */
149unsigned long __init free_all_bootmem(void)
150{
151	/*
152	 * We need to use MAX_NUMNODES instead of NODE_DATA(0)->node_id
153	 *  because in some case like Node0 doesn't have RAM installed
154	 *  low ram will be on Node1
155	 * Use MAX_NUMNODES will make sure all ranges in early_node_map[]
156	 *  will be used instead of only Node0 related
157	 */
158	return free_all_memory_core_early(MAX_NUMNODES);
159}
160
161/**
162 * free_bootmem_node - mark a page range as usable
163 * @pgdat: node the range resides on
164 * @physaddr: starting address of the range
165 * @size: size of the range in bytes
166 *
167 * Partial pages will be considered reserved and left as they are.
168 *
169 * The range must reside completely on the specified node.
170 */
171void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
172			      unsigned long size)
173{
174	kmemleak_free_part(__va(physaddr), size);
175	memblock_x86_free_range(physaddr, physaddr + size);
176}
177
178/**
179 * free_bootmem - mark a page range as usable
180 * @addr: starting address of the range
181 * @size: size of the range in bytes
182 *
183 * Partial pages will be considered reserved and left as they are.
184 *
185 * The range must be contiguous but may span node boundaries.
186 */
187void __init free_bootmem(unsigned long addr, unsigned long size)
188{
189	kmemleak_free_part(__va(addr), size);
190	memblock_x86_free_range(addr, addr + size);
191}
192
193static void * __init ___alloc_bootmem_nopanic(unsigned long size,
194					unsigned long align,
195					unsigned long goal,
196					unsigned long limit)
197{
198	void *ptr;
199
200	if (WARN_ON_ONCE(slab_is_available()))
201		return kzalloc(size, GFP_NOWAIT);
202
203restart:
204
205	ptr = __alloc_memory_core_early(MAX_NUMNODES, size, align, goal, limit);
206
207	if (ptr)
208		return ptr;
209
210	if (goal != 0) {
211		goal = 0;
212		goto restart;
213	}
214
215	return NULL;
216}
217
218/**
219 * __alloc_bootmem_nopanic - allocate boot memory without panicking
220 * @size: size of the request in bytes
221 * @align: alignment of the region
222 * @goal: preferred starting address of the region
223 *
224 * The goal is dropped if it can not be satisfied and the allocation will
225 * fall back to memory below @goal.
226 *
227 * Allocation may happen on any node in the system.
228 *
229 * Returns NULL on failure.
230 */
231void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
232					unsigned long goal)
233{
234	unsigned long limit = -1UL;
235
236	return ___alloc_bootmem_nopanic(size, align, goal, limit);
237}
238
239static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
240					unsigned long goal, unsigned long limit)
241{
242	void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
243
244	if (mem)
245		return mem;
246	/*
247	 * Whoops, we cannot satisfy the allocation request.
248	 */
249	printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
250	panic("Out of memory");
251	return NULL;
252}
253
254/**
255 * __alloc_bootmem - allocate boot memory
256 * @size: size of the request in bytes
257 * @align: alignment of the region
258 * @goal: preferred starting address of the region
259 *
260 * The goal is dropped if it can not be satisfied and the allocation will
261 * fall back to memory below @goal.
262 *
263 * Allocation may happen on any node in the system.
264 *
265 * The function panics if the request can not be satisfied.
266 */
267void * __init __alloc_bootmem(unsigned long size, unsigned long align,
268			      unsigned long goal)
269{
270	unsigned long limit = -1UL;
271
272	return ___alloc_bootmem(size, align, goal, limit);
273}
274
275/**
276 * __alloc_bootmem_node - allocate boot memory from a specific node
277 * @pgdat: node to allocate from
278 * @size: size of the request in bytes
279 * @align: alignment of the region
280 * @goal: preferred starting address of the region
281 *
282 * The goal is dropped if it can not be satisfied and the allocation will
283 * fall back to memory below @goal.
284 *
285 * Allocation may fall back to any node in the system if the specified node
286 * can not hold the requested memory.
287 *
288 * The function panics if the request can not be satisfied.
289 */
290void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
291				   unsigned long align, unsigned long goal)
292{
293	void *ptr;
294
295	if (WARN_ON_ONCE(slab_is_available()))
296		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
297
298	ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
299					 goal, -1ULL);
300	if (ptr)
301		return ptr;
302
303	return __alloc_memory_core_early(MAX_NUMNODES, size, align,
304					 goal, -1ULL);
305}
306
307void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
308				   unsigned long align, unsigned long goal)
309{
310	return __alloc_bootmem_node(pgdat, size, align, goal);
311}
312
313#ifdef CONFIG_SPARSEMEM
314/**
315 * alloc_bootmem_section - allocate boot memory from a specific section
316 * @size: size of the request in bytes
317 * @section_nr: sparse map section to allocate from
318 *
319 * Return NULL on failure.
320 */
321void * __init alloc_bootmem_section(unsigned long size,
322				    unsigned long section_nr)
323{
324	unsigned long pfn, goal, limit;
325
326	pfn = section_nr_to_pfn(section_nr);
327	goal = pfn << PAGE_SHIFT;
328	limit = section_nr_to_pfn(section_nr + 1) << PAGE_SHIFT;
329
330	return __alloc_memory_core_early(early_pfn_to_nid(pfn), size,
331					 SMP_CACHE_BYTES, goal, limit);
332}
333#endif
334
335void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
336				   unsigned long align, unsigned long goal)
337{
338	void *ptr;
339
340	if (WARN_ON_ONCE(slab_is_available()))
341		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
342
343	ptr =  __alloc_memory_core_early(pgdat->node_id, size, align,
344						 goal, -1ULL);
345	if (ptr)
346		return ptr;
347
348	return __alloc_bootmem_nopanic(size, align, goal);
349}
350
351#ifndef ARCH_LOW_ADDRESS_LIMIT
352#define ARCH_LOW_ADDRESS_LIMIT	0xffffffffUL
353#endif
354
355/**
356 * __alloc_bootmem_low - allocate low boot memory
357 * @size: size of the request in bytes
358 * @align: alignment of the region
359 * @goal: preferred starting address of the region
360 *
361 * The goal is dropped if it can not be satisfied and the allocation will
362 * fall back to memory below @goal.
363 *
364 * Allocation may happen on any node in the system.
365 *
366 * The function panics if the request can not be satisfied.
367 */
368void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
369				  unsigned long goal)
370{
371	return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
372}
373
374/**
375 * __alloc_bootmem_low_node - allocate low boot memory from a specific node
376 * @pgdat: node to allocate from
377 * @size: size of the request in bytes
378 * @align: alignment of the region
379 * @goal: preferred starting address of the region
380 *
381 * The goal is dropped if it can not be satisfied and the allocation will
382 * fall back to memory below @goal.
383 *
384 * Allocation may fall back to any node in the system if the specified node
385 * can not hold the requested memory.
386 *
387 * The function panics if the request can not be satisfied.
388 */
389void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
390				       unsigned long align, unsigned long goal)
391{
392	void *ptr;
393
394	if (WARN_ON_ONCE(slab_is_available()))
395		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
396
397	ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
398				goal, ARCH_LOW_ADDRESS_LIMIT);
399	if (ptr)
400		return ptr;
401
402	return  __alloc_memory_core_early(MAX_NUMNODES, size, align,
403				goal, ARCH_LOW_ADDRESS_LIMIT);
404}