Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * DMA Pool allocator
  4 *
  5 * Copyright 2001 David Brownell
  6 * Copyright 2007 Intel Corporation
  7 *   Author: Matthew Wilcox <willy@linux.intel.com>
  8 *
 
 
 
 
  9 * This allocator returns small blocks of a given size which are DMA-able by
 10 * the given device.  It uses the dma_alloc_coherent page allocator to get
 11 * new pages, then splits them up into blocks of the required size.
 12 * Many older drivers still have their own code to do this.
 13 *
 14 * The current design of this allocator is fairly simple.  The pool is
 15 * represented by the 'struct dma_pool' which keeps a doubly-linked list of
 16 * allocated pages.  Each page in the page_list is split into blocks of at
 17 * least 'size' bytes.  Free blocks are tracked in an unsorted singly-linked
 18 * list of free blocks within the page.  Used blocks aren't tracked, but we
 19 * keep a count of how many are currently allocated from each page.
 20 */
 21
 22#include <linux/device.h>
 23#include <linux/dma-mapping.h>
 24#include <linux/dmapool.h>
 25#include <linux/kernel.h>
 26#include <linux/list.h>
 27#include <linux/export.h>
 28#include <linux/mutex.h>
 29#include <linux/poison.h>
 30#include <linux/sched.h>
 31#include <linux/slab.h>
 32#include <linux/stat.h>
 33#include <linux/spinlock.h>
 34#include <linux/string.h>
 35#include <linux/types.h>
 36#include <linux/wait.h>
 37
 38#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
 39#define DMAPOOL_DEBUG 1
 40#endif
 41
 42struct dma_pool {		/* the pool */
 43	struct list_head page_list;
 44	spinlock_t lock;
 45	size_t size;
 46	struct device *dev;
 47	size_t allocation;
 48	size_t boundary;
 49	char name[32];
 
 50	struct list_head pools;
 51};
 52
 53struct dma_page {		/* cacheable header for 'allocation' bytes */
 54	struct list_head page_list;
 55	void *vaddr;
 56	dma_addr_t dma;
 57	unsigned int in_use;
 58	unsigned int offset;
 59};
 60
 
 
 61static DEFINE_MUTEX(pools_lock);
 62static DEFINE_MUTEX(pools_reg_lock);
 63
 64static ssize_t
 65show_pools(struct device *dev, struct device_attribute *attr, char *buf)
 66{
 67	unsigned temp;
 68	unsigned size;
 69	char *next;
 70	struct dma_page *page;
 71	struct dma_pool *pool;
 72
 73	next = buf;
 74	size = PAGE_SIZE;
 75
 76	temp = scnprintf(next, size, "poolinfo - 0.1\n");
 77	size -= temp;
 78	next += temp;
 79
 80	mutex_lock(&pools_lock);
 81	list_for_each_entry(pool, &dev->dma_pools, pools) {
 82		unsigned pages = 0;
 83		unsigned blocks = 0;
 84
 85		spin_lock_irq(&pool->lock);
 86		list_for_each_entry(page, &pool->page_list, page_list) {
 87			pages++;
 88			blocks += page->in_use;
 89		}
 90		spin_unlock_irq(&pool->lock);
 91
 92		/* per-pool info, no real statistics yet */
 93		temp = scnprintf(next, size, "%-16s %4u %4zu %4zu %2u\n",
 94				 pool->name, blocks,
 95				 pages * (pool->allocation / pool->size),
 96				 pool->size, pages);
 97		size -= temp;
 98		next += temp;
 99	}
100	mutex_unlock(&pools_lock);
101
102	return PAGE_SIZE - size;
103}
104
105static DEVICE_ATTR(pools, 0444, show_pools, NULL);
106
107/**
108 * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
109 * @name: name of pool, for diagnostics
110 * @dev: device that will be doing the DMA
111 * @size: size of the blocks in this pool.
112 * @align: alignment requirement for blocks; must be a power of two
113 * @boundary: returned blocks won't cross this power of two boundary
114 * Context: not in_interrupt()
115 *
116 * Given one of these pools, dma_pool_alloc()
 
117 * may be used to allocate memory.  Such memory will all have "consistent"
118 * DMA mappings, accessible by the device and its driver without using
119 * cache flushing primitives.  The actual size of blocks allocated may be
120 * larger than requested because of alignment.
121 *
122 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
123 * cross that size boundary.  This is useful for devices which have
124 * addressing restrictions on individual DMA transfers, such as not crossing
125 * boundaries of 4KBytes.
126 *
127 * Return: a dma allocation pool with the requested characteristics, or
128 * %NULL if one can't be created.
129 */
130struct dma_pool *dma_pool_create(const char *name, struct device *dev,
131				 size_t size, size_t align, size_t boundary)
132{
133	struct dma_pool *retval;
134	size_t allocation;
135	bool empty = false;
136
137	if (align == 0)
138		align = 1;
139	else if (align & (align - 1))
140		return NULL;
 
141
142	if (size == 0)
143		return NULL;
144	else if (size < 4)
145		size = 4;
 
146
147	if ((size % align) != 0)
148		size = ALIGN(size, align);
149
150	allocation = max_t(size_t, size, PAGE_SIZE);
151
152	if (!boundary)
153		boundary = allocation;
154	else if ((boundary < size) || (boundary & (boundary - 1)))
155		return NULL;
 
156
157	retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
158	if (!retval)
159		return retval;
160
161	strlcpy(retval->name, name, sizeof(retval->name));
162
163	retval->dev = dev;
164
165	INIT_LIST_HEAD(&retval->page_list);
166	spin_lock_init(&retval->lock);
167	retval->size = size;
168	retval->boundary = boundary;
169	retval->allocation = allocation;
 
170
171	INIT_LIST_HEAD(&retval->pools);
172
173	/*
174	 * pools_lock ensures that the ->dma_pools list does not get corrupted.
175	 * pools_reg_lock ensures that there is not a race between
176	 * dma_pool_create() and dma_pool_destroy() or within dma_pool_create()
177	 * when the first invocation of dma_pool_create() failed on
178	 * device_create_file() and the second assumes that it has been done (I
179	 * know it is a short window).
180	 */
181	mutex_lock(&pools_reg_lock);
182	mutex_lock(&pools_lock);
183	if (list_empty(&dev->dma_pools))
184		empty = true;
185	list_add(&retval->pools, &dev->dma_pools);
186	mutex_unlock(&pools_lock);
187	if (empty) {
188		int err;
189
190		err = device_create_file(dev, &dev_attr_pools);
191		if (err) {
192			mutex_lock(&pools_lock);
193			list_del(&retval->pools);
194			mutex_unlock(&pools_lock);
195			mutex_unlock(&pools_reg_lock);
 
 
 
196			kfree(retval);
197			return NULL;
198		}
199	}
200	mutex_unlock(&pools_reg_lock);
 
 
201	return retval;
202}
203EXPORT_SYMBOL(dma_pool_create);
204
205static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
206{
207	unsigned int offset = 0;
208	unsigned int next_boundary = pool->boundary;
209
210	do {
211		unsigned int next = offset + pool->size;
212		if (unlikely((next + pool->size) >= next_boundary)) {
213			next = next_boundary;
214			next_boundary += pool->boundary;
215		}
216		*(int *)(page->vaddr + offset) = next;
217		offset = next;
218	} while (offset < pool->allocation);
219}
220
221static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
222{
223	struct dma_page *page;
224
225	page = kmalloc(sizeof(*page), mem_flags);
226	if (!page)
227		return NULL;
228	page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
229					 &page->dma, mem_flags);
230	if (page->vaddr) {
231#ifdef	DMAPOOL_DEBUG
232		memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
233#endif
234		pool_initialise_page(pool, page);
 
235		page->in_use = 0;
236		page->offset = 0;
237	} else {
238		kfree(page);
239		page = NULL;
240	}
241	return page;
242}
243
244static inline bool is_page_busy(struct dma_page *page)
245{
246	return page->in_use != 0;
247}
248
249static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
250{
251	dma_addr_t dma = page->dma;
252
253#ifdef	DMAPOOL_DEBUG
254	memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
255#endif
256	dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
257	list_del(&page->page_list);
258	kfree(page);
259}
260
261/**
262 * dma_pool_destroy - destroys a pool of dma memory blocks.
263 * @pool: dma pool that will be destroyed
264 * Context: !in_interrupt()
265 *
266 * Caller guarantees that no more memory from the pool is in use,
267 * and that nothing will try to use the pool after this call.
268 */
269void dma_pool_destroy(struct dma_pool *pool)
270{
271	bool empty = false;
272
273	if (unlikely(!pool))
274		return;
275
276	mutex_lock(&pools_reg_lock);
277	mutex_lock(&pools_lock);
278	list_del(&pool->pools);
279	if (pool->dev && list_empty(&pool->dev->dma_pools))
280		empty = true;
281	mutex_unlock(&pools_lock);
282	if (empty)
283		device_remove_file(pool->dev, &dev_attr_pools);
284	mutex_unlock(&pools_reg_lock);
285
286	while (!list_empty(&pool->page_list)) {
287		struct dma_page *page;
288		page = list_entry(pool->page_list.next,
289				  struct dma_page, page_list);
290		if (is_page_busy(page)) {
291			if (pool->dev)
292				dev_err(pool->dev,
293					"dma_pool_destroy %s, %p busy\n",
294					pool->name, page->vaddr);
295			else
296				pr_err("dma_pool_destroy %s, %p busy\n",
 
297				       pool->name, page->vaddr);
298			/* leak the still-in-use consistent memory */
299			list_del(&page->page_list);
300			kfree(page);
301		} else
302			pool_free_page(pool, page);
303	}
304
305	kfree(pool);
306}
307EXPORT_SYMBOL(dma_pool_destroy);
308
309/**
310 * dma_pool_alloc - get a block of consistent memory
311 * @pool: dma pool that will produce the block
312 * @mem_flags: GFP_* bitmask
313 * @handle: pointer to dma address of block
314 *
315 * Return: the kernel virtual address of a currently unused block,
316 * and reports its dma address through the handle.
317 * If such a memory block can't be allocated, %NULL is returned.
318 */
319void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
320		     dma_addr_t *handle)
321{
322	unsigned long flags;
323	struct dma_page *page;
324	size_t offset;
325	void *retval;
326
327	might_sleep_if(gfpflags_allow_blocking(mem_flags));
328
329	spin_lock_irqsave(&pool->lock, flags);
 
330	list_for_each_entry(page, &pool->page_list, page_list) {
331		if (page->offset < pool->allocation)
332			goto ready;
333	}
 
 
 
 
334
335	/* pool_alloc_page() might sleep, so temporarily drop &pool->lock */
336	spin_unlock_irqrestore(&pool->lock, flags);
 
337
338	page = pool_alloc_page(pool, mem_flags & (~__GFP_ZERO));
339	if (!page)
340		return NULL;
341
342	spin_lock_irqsave(&pool->lock, flags);
 
 
 
 
 
 
343
344	list_add(&page->page_list, &pool->page_list);
345 ready:
346	page->in_use++;
347	offset = page->offset;
348	page->offset = *(int *)(page->vaddr + offset);
349	retval = offset + page->vaddr;
350	*handle = offset + page->dma;
351#ifdef	DMAPOOL_DEBUG
352	{
353		int i;
354		u8 *data = retval;
355		/* page->offset is stored in first 4 bytes */
356		for (i = sizeof(page->offset); i < pool->size; i++) {
357			if (data[i] == POOL_POISON_FREED)
358				continue;
359			if (pool->dev)
360				dev_err(pool->dev,
361					"dma_pool_alloc %s, %p (corrupted)\n",
362					pool->name, retval);
363			else
364				pr_err("dma_pool_alloc %s, %p (corrupted)\n",
365					pool->name, retval);
366
367			/*
368			 * Dump the first 4 bytes even if they are not
369			 * POOL_POISON_FREED
370			 */
371			print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1,
372					data, pool->size, 1);
373			break;
374		}
375	}
376	if (!(mem_flags & __GFP_ZERO))
377		memset(retval, POOL_POISON_ALLOCATED, pool->size);
378#endif
 
379	spin_unlock_irqrestore(&pool->lock, flags);
380
381	if (want_init_on_alloc(mem_flags))
382		memset(retval, 0, pool->size);
383
384	return retval;
385}
386EXPORT_SYMBOL(dma_pool_alloc);
387
388static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
389{
390	struct dma_page *page;
391
392	list_for_each_entry(page, &pool->page_list, page_list) {
393		if (dma < page->dma)
394			continue;
395		if ((dma - page->dma) < pool->allocation)
396			return page;
397	}
398	return NULL;
399}
400
401/**
402 * dma_pool_free - put block back into dma pool
403 * @pool: the dma pool holding the block
404 * @vaddr: virtual address of block
405 * @dma: dma address of block
406 *
407 * Caller promises neither device nor driver will again touch this block
408 * unless it is first re-allocated.
409 */
410void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
411{
412	struct dma_page *page;
413	unsigned long flags;
414	unsigned int offset;
415
416	spin_lock_irqsave(&pool->lock, flags);
417	page = pool_find_page(pool, dma);
418	if (!page) {
419		spin_unlock_irqrestore(&pool->lock, flags);
420		if (pool->dev)
421			dev_err(pool->dev,
422				"dma_pool_free %s, %p/%lx (bad dma)\n",
423				pool->name, vaddr, (unsigned long)dma);
424		else
425			pr_err("dma_pool_free %s, %p/%lx (bad dma)\n",
426			       pool->name, vaddr, (unsigned long)dma);
427		return;
428	}
429
430	offset = vaddr - page->vaddr;
431	if (want_init_on_free())
432		memset(vaddr, 0, pool->size);
433#ifdef	DMAPOOL_DEBUG
434	if ((dma - page->dma) != offset) {
435		spin_unlock_irqrestore(&pool->lock, flags);
436		if (pool->dev)
437			dev_err(pool->dev,
438				"dma_pool_free %s, %p (bad vaddr)/%pad\n",
439				pool->name, vaddr, &dma);
440		else
441			pr_err("dma_pool_free %s, %p (bad vaddr)/%pad\n",
442			       pool->name, vaddr, &dma);
 
443		return;
444	}
445	{
446		unsigned int chain = page->offset;
447		while (chain < pool->allocation) {
448			if (chain != offset) {
449				chain = *(int *)(page->vaddr + chain);
450				continue;
451			}
452			spin_unlock_irqrestore(&pool->lock, flags);
453			if (pool->dev)
454				dev_err(pool->dev, "dma_pool_free %s, dma %pad already free\n",
455					pool->name, &dma);
 
456			else
457				pr_err("dma_pool_free %s, dma %pad already free\n",
458				       pool->name, &dma);
 
459			return;
460		}
461	}
462	memset(vaddr, POOL_POISON_FREED, pool->size);
463#endif
464
465	page->in_use--;
466	*(int *)vaddr = page->offset;
467	page->offset = offset;
 
 
468	/*
469	 * Resist a temptation to do
470	 *    if (!is_page_busy(page)) pool_free_page(pool, page);
471	 * Better have a few empty pages hang around.
472	 */
473	spin_unlock_irqrestore(&pool->lock, flags);
474}
475EXPORT_SYMBOL(dma_pool_free);
476
477/*
478 * Managed DMA pool
479 */
480static void dmam_pool_release(struct device *dev, void *res)
481{
482	struct dma_pool *pool = *(struct dma_pool **)res;
483
484	dma_pool_destroy(pool);
485}
486
487static int dmam_pool_match(struct device *dev, void *res, void *match_data)
488{
489	return *(struct dma_pool **)res == match_data;
490}
491
492/**
493 * dmam_pool_create - Managed dma_pool_create()
494 * @name: name of pool, for diagnostics
495 * @dev: device that will be doing the DMA
496 * @size: size of the blocks in this pool.
497 * @align: alignment requirement for blocks; must be a power of two
498 * @allocation: returned blocks won't cross this boundary (or zero)
499 *
500 * Managed dma_pool_create().  DMA pool created with this function is
501 * automatically destroyed on driver detach.
502 *
503 * Return: a managed dma allocation pool with the requested
504 * characteristics, or %NULL if one can't be created.
505 */
506struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
507				  size_t size, size_t align, size_t allocation)
508{
509	struct dma_pool **ptr, *pool;
510
511	ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
512	if (!ptr)
513		return NULL;
514
515	pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
516	if (pool)
517		devres_add(dev, ptr);
518	else
519		devres_free(ptr);
520
521	return pool;
522}
523EXPORT_SYMBOL(dmam_pool_create);
524
525/**
526 * dmam_pool_destroy - Managed dma_pool_destroy()
527 * @pool: dma pool that will be destroyed
528 *
529 * Managed dma_pool_destroy().
530 */
531void dmam_pool_destroy(struct dma_pool *pool)
532{
533	struct device *dev = pool->dev;
534
535	WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool));
 
536}
537EXPORT_SYMBOL(dmam_pool_destroy);
v3.1
 
  1/*
  2 * DMA Pool allocator
  3 *
  4 * Copyright 2001 David Brownell
  5 * Copyright 2007 Intel Corporation
  6 *   Author: Matthew Wilcox <willy@linux.intel.com>
  7 *
  8 * This software may be redistributed and/or modified under the terms of
  9 * the GNU General Public License ("GPL") version 2 as published by the
 10 * Free Software Foundation.
 11 *
 12 * This allocator returns small blocks of a given size which are DMA-able by
 13 * the given device.  It uses the dma_alloc_coherent page allocator to get
 14 * new pages, then splits them up into blocks of the required size.
 15 * Many older drivers still have their own code to do this.
 16 *
 17 * The current design of this allocator is fairly simple.  The pool is
 18 * represented by the 'struct dma_pool' which keeps a doubly-linked list of
 19 * allocated pages.  Each page in the page_list is split into blocks of at
 20 * least 'size' bytes.  Free blocks are tracked in an unsorted singly-linked
 21 * list of free blocks within the page.  Used blocks aren't tracked, but we
 22 * keep a count of how many are currently allocated from each page.
 23 */
 24
 25#include <linux/device.h>
 26#include <linux/dma-mapping.h>
 27#include <linux/dmapool.h>
 28#include <linux/kernel.h>
 29#include <linux/list.h>
 30#include <linux/module.h>
 31#include <linux/mutex.h>
 32#include <linux/poison.h>
 33#include <linux/sched.h>
 34#include <linux/slab.h>
 
 35#include <linux/spinlock.h>
 36#include <linux/string.h>
 37#include <linux/types.h>
 38#include <linux/wait.h>
 39
 40#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
 41#define DMAPOOL_DEBUG 1
 42#endif
 43
 44struct dma_pool {		/* the pool */
 45	struct list_head page_list;
 46	spinlock_t lock;
 47	size_t size;
 48	struct device *dev;
 49	size_t allocation;
 50	size_t boundary;
 51	char name[32];
 52	wait_queue_head_t waitq;
 53	struct list_head pools;
 54};
 55
 56struct dma_page {		/* cacheable header for 'allocation' bytes */
 57	struct list_head page_list;
 58	void *vaddr;
 59	dma_addr_t dma;
 60	unsigned int in_use;
 61	unsigned int offset;
 62};
 63
 64#define	POOL_TIMEOUT_JIFFIES	((100 /* msec */ * HZ) / 1000)
 65
 66static DEFINE_MUTEX(pools_lock);
 
 67
 68static ssize_t
 69show_pools(struct device *dev, struct device_attribute *attr, char *buf)
 70{
 71	unsigned temp;
 72	unsigned size;
 73	char *next;
 74	struct dma_page *page;
 75	struct dma_pool *pool;
 76
 77	next = buf;
 78	size = PAGE_SIZE;
 79
 80	temp = scnprintf(next, size, "poolinfo - 0.1\n");
 81	size -= temp;
 82	next += temp;
 83
 84	mutex_lock(&pools_lock);
 85	list_for_each_entry(pool, &dev->dma_pools, pools) {
 86		unsigned pages = 0;
 87		unsigned blocks = 0;
 88
 89		spin_lock_irq(&pool->lock);
 90		list_for_each_entry(page, &pool->page_list, page_list) {
 91			pages++;
 92			blocks += page->in_use;
 93		}
 94		spin_unlock_irq(&pool->lock);
 95
 96		/* per-pool info, no real statistics yet */
 97		temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n",
 98				 pool->name, blocks,
 99				 pages * (pool->allocation / pool->size),
100				 pool->size, pages);
101		size -= temp;
102		next += temp;
103	}
104	mutex_unlock(&pools_lock);
105
106	return PAGE_SIZE - size;
107}
108
109static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL);
110
111/**
112 * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
113 * @name: name of pool, for diagnostics
114 * @dev: device that will be doing the DMA
115 * @size: size of the blocks in this pool.
116 * @align: alignment requirement for blocks; must be a power of two
117 * @boundary: returned blocks won't cross this power of two boundary
118 * Context: !in_interrupt()
119 *
120 * Returns a dma allocation pool with the requested characteristics, or
121 * null if one can't be created.  Given one of these pools, dma_pool_alloc()
122 * may be used to allocate memory.  Such memory will all have "consistent"
123 * DMA mappings, accessible by the device and its driver without using
124 * cache flushing primitives.  The actual size of blocks allocated may be
125 * larger than requested because of alignment.
126 *
127 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
128 * cross that size boundary.  This is useful for devices which have
129 * addressing restrictions on individual DMA transfers, such as not crossing
130 * boundaries of 4KBytes.
 
 
 
131 */
132struct dma_pool *dma_pool_create(const char *name, struct device *dev,
133				 size_t size, size_t align, size_t boundary)
134{
135	struct dma_pool *retval;
136	size_t allocation;
 
137
138	if (align == 0) {
139		align = 1;
140	} else if (align & (align - 1)) {
141		return NULL;
142	}
143
144	if (size == 0) {
145		return NULL;
146	} else if (size < 4) {
147		size = 4;
148	}
149
150	if ((size % align) != 0)
151		size = ALIGN(size, align);
152
153	allocation = max_t(size_t, size, PAGE_SIZE);
154
155	if (!boundary) {
156		boundary = allocation;
157	} else if ((boundary < size) || (boundary & (boundary - 1))) {
158		return NULL;
159	}
160
161	retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
162	if (!retval)
163		return retval;
164
165	strlcpy(retval->name, name, sizeof(retval->name));
166
167	retval->dev = dev;
168
169	INIT_LIST_HEAD(&retval->page_list);
170	spin_lock_init(&retval->lock);
171	retval->size = size;
172	retval->boundary = boundary;
173	retval->allocation = allocation;
174	init_waitqueue_head(&retval->waitq);
175
176	if (dev) {
177		int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178
179		mutex_lock(&pools_lock);
180		if (list_empty(&dev->dma_pools))
181			ret = device_create_file(dev, &dev_attr_pools);
182		else
183			ret = 0;
184		/* note:  not currently insisting "name" be unique */
185		if (!ret)
186			list_add(&retval->pools, &dev->dma_pools);
187		else {
188			kfree(retval);
189			retval = NULL;
190		}
191		mutex_unlock(&pools_lock);
192	} else
193		INIT_LIST_HEAD(&retval->pools);
194
195	return retval;
196}
197EXPORT_SYMBOL(dma_pool_create);
198
199static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
200{
201	unsigned int offset = 0;
202	unsigned int next_boundary = pool->boundary;
203
204	do {
205		unsigned int next = offset + pool->size;
206		if (unlikely((next + pool->size) >= next_boundary)) {
207			next = next_boundary;
208			next_boundary += pool->boundary;
209		}
210		*(int *)(page->vaddr + offset) = next;
211		offset = next;
212	} while (offset < pool->allocation);
213}
214
215static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
216{
217	struct dma_page *page;
218
219	page = kmalloc(sizeof(*page), mem_flags);
220	if (!page)
221		return NULL;
222	page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
223					 &page->dma, mem_flags);
224	if (page->vaddr) {
225#ifdef	DMAPOOL_DEBUG
226		memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
227#endif
228		pool_initialise_page(pool, page);
229		list_add(&page->page_list, &pool->page_list);
230		page->in_use = 0;
231		page->offset = 0;
232	} else {
233		kfree(page);
234		page = NULL;
235	}
236	return page;
237}
238
239static inline int is_page_busy(struct dma_page *page)
240{
241	return page->in_use != 0;
242}
243
244static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
245{
246	dma_addr_t dma = page->dma;
247
248#ifdef	DMAPOOL_DEBUG
249	memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
250#endif
251	dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
252	list_del(&page->page_list);
253	kfree(page);
254}
255
256/**
257 * dma_pool_destroy - destroys a pool of dma memory blocks.
258 * @pool: dma pool that will be destroyed
259 * Context: !in_interrupt()
260 *
261 * Caller guarantees that no more memory from the pool is in use,
262 * and that nothing will try to use the pool after this call.
263 */
264void dma_pool_destroy(struct dma_pool *pool)
265{
 
 
 
 
 
 
266	mutex_lock(&pools_lock);
267	list_del(&pool->pools);
268	if (pool->dev && list_empty(&pool->dev->dma_pools))
 
 
 
269		device_remove_file(pool->dev, &dev_attr_pools);
270	mutex_unlock(&pools_lock);
271
272	while (!list_empty(&pool->page_list)) {
273		struct dma_page *page;
274		page = list_entry(pool->page_list.next,
275				  struct dma_page, page_list);
276		if (is_page_busy(page)) {
277			if (pool->dev)
278				dev_err(pool->dev,
279					"dma_pool_destroy %s, %p busy\n",
280					pool->name, page->vaddr);
281			else
282				printk(KERN_ERR
283				       "dma_pool_destroy %s, %p busy\n",
284				       pool->name, page->vaddr);
285			/* leak the still-in-use consistent memory */
286			list_del(&page->page_list);
287			kfree(page);
288		} else
289			pool_free_page(pool, page);
290	}
291
292	kfree(pool);
293}
294EXPORT_SYMBOL(dma_pool_destroy);
295
296/**
297 * dma_pool_alloc - get a block of consistent memory
298 * @pool: dma pool that will produce the block
299 * @mem_flags: GFP_* bitmask
300 * @handle: pointer to dma address of block
301 *
302 * This returns the kernel virtual address of a currently unused block,
303 * and reports its dma address through the handle.
304 * If such a memory block can't be allocated, %NULL is returned.
305 */
306void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
307		     dma_addr_t *handle)
308{
309	unsigned long flags;
310	struct dma_page *page;
311	size_t offset;
312	void *retval;
313
314	might_sleep_if(mem_flags & __GFP_WAIT);
315
316	spin_lock_irqsave(&pool->lock, flags);
317 restart:
318	list_for_each_entry(page, &pool->page_list, page_list) {
319		if (page->offset < pool->allocation)
320			goto ready;
321	}
322	page = pool_alloc_page(pool, GFP_ATOMIC);
323	if (!page) {
324		if (mem_flags & __GFP_WAIT) {
325			DECLARE_WAITQUEUE(wait, current);
326
327			__set_current_state(TASK_UNINTERRUPTIBLE);
328			__add_wait_queue(&pool->waitq, &wait);
329			spin_unlock_irqrestore(&pool->lock, flags);
330
331			schedule_timeout(POOL_TIMEOUT_JIFFIES);
 
 
332
333			spin_lock_irqsave(&pool->lock, flags);
334			__remove_wait_queue(&pool->waitq, &wait);
335			goto restart;
336		}
337		retval = NULL;
338		goto done;
339	}
340
 
341 ready:
342	page->in_use++;
343	offset = page->offset;
344	page->offset = *(int *)(page->vaddr + offset);
345	retval = offset + page->vaddr;
346	*handle = offset + page->dma;
347#ifdef	DMAPOOL_DEBUG
348	memset(retval, POOL_POISON_ALLOCATED, pool->size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
349#endif
350 done:
351	spin_unlock_irqrestore(&pool->lock, flags);
 
 
 
 
352	return retval;
353}
354EXPORT_SYMBOL(dma_pool_alloc);
355
356static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
357{
358	struct dma_page *page;
359
360	list_for_each_entry(page, &pool->page_list, page_list) {
361		if (dma < page->dma)
362			continue;
363		if (dma < (page->dma + pool->allocation))
364			return page;
365	}
366	return NULL;
367}
368
369/**
370 * dma_pool_free - put block back into dma pool
371 * @pool: the dma pool holding the block
372 * @vaddr: virtual address of block
373 * @dma: dma address of block
374 *
375 * Caller promises neither device nor driver will again touch this block
376 * unless it is first re-allocated.
377 */
378void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
379{
380	struct dma_page *page;
381	unsigned long flags;
382	unsigned int offset;
383
384	spin_lock_irqsave(&pool->lock, flags);
385	page = pool_find_page(pool, dma);
386	if (!page) {
387		spin_unlock_irqrestore(&pool->lock, flags);
388		if (pool->dev)
389			dev_err(pool->dev,
390				"dma_pool_free %s, %p/%lx (bad dma)\n",
391				pool->name, vaddr, (unsigned long)dma);
392		else
393			printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n",
394			       pool->name, vaddr, (unsigned long)dma);
395		return;
396	}
397
398	offset = vaddr - page->vaddr;
 
 
399#ifdef	DMAPOOL_DEBUG
400	if ((dma - page->dma) != offset) {
401		spin_unlock_irqrestore(&pool->lock, flags);
402		if (pool->dev)
403			dev_err(pool->dev,
404				"dma_pool_free %s, %p (bad vaddr)/%Lx\n",
405				pool->name, vaddr, (unsigned long long)dma);
406		else
407			printk(KERN_ERR
408			       "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
409			       pool->name, vaddr, (unsigned long long)dma);
410		return;
411	}
412	{
413		unsigned int chain = page->offset;
414		while (chain < pool->allocation) {
415			if (chain != offset) {
416				chain = *(int *)(page->vaddr + chain);
417				continue;
418			}
419			spin_unlock_irqrestore(&pool->lock, flags);
420			if (pool->dev)
421				dev_err(pool->dev, "dma_pool_free %s, dma %Lx "
422					"already free\n", pool->name,
423					(unsigned long long)dma);
424			else
425				printk(KERN_ERR "dma_pool_free %s, dma %Lx "
426					"already free\n", pool->name,
427					(unsigned long long)dma);
428			return;
429		}
430	}
431	memset(vaddr, POOL_POISON_FREED, pool->size);
432#endif
433
434	page->in_use--;
435	*(int *)vaddr = page->offset;
436	page->offset = offset;
437	if (waitqueue_active(&pool->waitq))
438		wake_up_locked(&pool->waitq);
439	/*
440	 * Resist a temptation to do
441	 *    if (!is_page_busy(page)) pool_free_page(pool, page);
442	 * Better have a few empty pages hang around.
443	 */
444	spin_unlock_irqrestore(&pool->lock, flags);
445}
446EXPORT_SYMBOL(dma_pool_free);
447
448/*
449 * Managed DMA pool
450 */
451static void dmam_pool_release(struct device *dev, void *res)
452{
453	struct dma_pool *pool = *(struct dma_pool **)res;
454
455	dma_pool_destroy(pool);
456}
457
458static int dmam_pool_match(struct device *dev, void *res, void *match_data)
459{
460	return *(struct dma_pool **)res == match_data;
461}
462
463/**
464 * dmam_pool_create - Managed dma_pool_create()
465 * @name: name of pool, for diagnostics
466 * @dev: device that will be doing the DMA
467 * @size: size of the blocks in this pool.
468 * @align: alignment requirement for blocks; must be a power of two
469 * @allocation: returned blocks won't cross this boundary (or zero)
470 *
471 * Managed dma_pool_create().  DMA pool created with this function is
472 * automatically destroyed on driver detach.
 
 
 
473 */
474struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
475				  size_t size, size_t align, size_t allocation)
476{
477	struct dma_pool **ptr, *pool;
478
479	ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
480	if (!ptr)
481		return NULL;
482
483	pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
484	if (pool)
485		devres_add(dev, ptr);
486	else
487		devres_free(ptr);
488
489	return pool;
490}
491EXPORT_SYMBOL(dmam_pool_create);
492
493/**
494 * dmam_pool_destroy - Managed dma_pool_destroy()
495 * @pool: dma pool that will be destroyed
496 *
497 * Managed dma_pool_destroy().
498 */
499void dmam_pool_destroy(struct dma_pool *pool)
500{
501	struct device *dev = pool->dev;
502
503	WARN_ON(devres_destroy(dev, dmam_pool_release, dmam_pool_match, pool));
504	dma_pool_destroy(pool);
505}
506EXPORT_SYMBOL(dmam_pool_destroy);