Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * A fast, small, non-recursive O(n log n) sort for the Linux kernel
  4 *
  5 * This performs n*log2(n) + 0.37*n + o(n) comparisons on average,
  6 * and 1.5*n*log2(n) + O(n) in the (very contrived) worst case.
  7 *
  8 * Glibc qsort() manages n*log2(n) - 1.26*n for random inputs (1.63*n
  9 * better) at the expense of stack usage and much larger code to avoid
 10 * quicksort's O(n^2) worst case.
 11 */
 12
 13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 14
 15#include <linux/types.h>
 16#include <linux/export.h>
 17#include <linux/sort.h>
 
 18
 19/**
 20 * is_aligned - is this pointer & size okay for word-wide copying?
 21 * @base: pointer to data
 22 * @size: size of each element
 23 * @align: required alignment (typically 4 or 8)
 24 *
 25 * Returns true if elements can be copied using word loads and stores.
 26 * The size must be a multiple of the alignment, and the base address must
 27 * be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS.
 28 *
 29 * For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)"
 30 * to "if ((a | b) & mask)", so we do that by hand.
 31 */
 32__attribute_const__ __always_inline
 33static bool is_aligned(const void *base, size_t size, unsigned char align)
 34{
 35	unsigned char lsbits = (unsigned char)size;
 36
 37	(void)base;
 38#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
 39	lsbits |= (unsigned char)(uintptr_t)base;
 40#endif
 41	return (lsbits & (align - 1)) == 0;
 42}
 43
 44/**
 45 * swap_words_32 - swap two elements in 32-bit chunks
 46 * @a: pointer to the first element to swap
 47 * @b: pointer to the second element to swap
 48 * @n: element size (must be a multiple of 4)
 49 *
 50 * Exchange the two objects in memory.  This exploits base+index addressing,
 51 * which basically all CPUs have, to minimize loop overhead computations.
 52 *
 53 * For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the
 54 * bottom of the loop, even though the zero flag is stil valid from the
 55 * subtract (since the intervening mov instructions don't alter the flags).
 56 * Gcc 8.1.0 doesn't have that problem.
 57 */
 58static void swap_words_32(void *a, void *b, size_t n)
 59{
 60	do {
 61		u32 t = *(u32 *)(a + (n -= 4));
 62		*(u32 *)(a + n) = *(u32 *)(b + n);
 63		*(u32 *)(b + n) = t;
 64	} while (n);
 65}
 66
 67/**
 68 * swap_words_64 - swap two elements in 64-bit chunks
 69 * @a: pointer to the first element to swap
 70 * @b: pointer to the second element to swap
 71 * @n: element size (must be a multiple of 8)
 72 *
 73 * Exchange the two objects in memory.  This exploits base+index
 74 * addressing, which basically all CPUs have, to minimize loop overhead
 75 * computations.
 76 *
 77 * We'd like to use 64-bit loads if possible.  If they're not, emulating
 78 * one requires base+index+4 addressing which x86 has but most other
 79 * processors do not.  If CONFIG_64BIT, we definitely have 64-bit loads,
 80 * but it's possible to have 64-bit loads without 64-bit pointers (e.g.
 81 * x32 ABI).  Are there any cases the kernel needs to worry about?
 82 */
 83static void swap_words_64(void *a, void *b, size_t n)
 84{
 85	do {
 86#ifdef CONFIG_64BIT
 87		u64 t = *(u64 *)(a + (n -= 8));
 88		*(u64 *)(a + n) = *(u64 *)(b + n);
 89		*(u64 *)(b + n) = t;
 90#else
 91		/* Use two 32-bit transfers to avoid base+index+4 addressing */
 92		u32 t = *(u32 *)(a + (n -= 4));
 93		*(u32 *)(a + n) = *(u32 *)(b + n);
 94		*(u32 *)(b + n) = t;
 95
 96		t = *(u32 *)(a + (n -= 4));
 97		*(u32 *)(a + n) = *(u32 *)(b + n);
 98		*(u32 *)(b + n) = t;
 99#endif
100	} while (n);
101}
102
103/**
104 * swap_bytes - swap two elements a byte at a time
105 * @a: pointer to the first element to swap
106 * @b: pointer to the second element to swap
107 * @n: element size
108 *
109 * This is the fallback if alignment doesn't allow using larger chunks.
110 */
111static void swap_bytes(void *a, void *b, size_t n)
112{
113	do {
114		char t = ((char *)a)[--n];
115		((char *)a)[n] = ((char *)b)[n];
116		((char *)b)[n] = t;
117	} while (n);
118}
119
120typedef void (*swap_func_t)(void *a, void *b, int size);
121
122/*
123 * The values are arbitrary as long as they can't be confused with
124 * a pointer, but small integers make for the smallest compare
125 * instructions.
126 */
127#define SWAP_WORDS_64 (swap_func_t)0
128#define SWAP_WORDS_32 (swap_func_t)1
129#define SWAP_BYTES    (swap_func_t)2
130
131/*
132 * The function pointer is last to make tail calls most efficient if the
133 * compiler decides not to inline this function.
134 */
135static void do_swap(void *a, void *b, size_t size, swap_func_t swap_func)
136{
137	if (swap_func == SWAP_WORDS_64)
138		swap_words_64(a, b, size);
139	else if (swap_func == SWAP_WORDS_32)
140		swap_words_32(a, b, size);
141	else if (swap_func == SWAP_BYTES)
142		swap_bytes(a, b, size);
143	else
144		swap_func(a, b, (int)size);
145}
146
147typedef int (*cmp_func_t)(const void *, const void *);
148typedef int (*cmp_r_func_t)(const void *, const void *, const void *);
149#define _CMP_WRAPPER ((cmp_r_func_t)0L)
150
151static int do_cmp(const void *a, const void *b,
152		  cmp_r_func_t cmp, const void *priv)
153{
154	if (cmp == _CMP_WRAPPER)
155		return ((cmp_func_t)(priv))(a, b);
156	return cmp(a, b, priv);
157}
158
159/**
160 * parent - given the offset of the child, find the offset of the parent.
161 * @i: the offset of the heap element whose parent is sought.  Non-zero.
162 * @lsbit: a precomputed 1-bit mask, equal to "size & -size"
163 * @size: size of each element
164 *
165 * In terms of array indexes, the parent of element j = @i/@size is simply
166 * (j-1)/2.  But when working in byte offsets, we can't use implicit
167 * truncation of integer divides.
168 *
169 * Fortunately, we only need one bit of the quotient, not the full divide.
170 * @size has a least significant bit.  That bit will be clear if @i is
171 * an even multiple of @size, and set if it's an odd multiple.
172 *
173 * Logically, we're doing "if (i & lsbit) i -= size;", but since the
174 * branch is unpredictable, it's done with a bit of clever branch-free
175 * code instead.
176 */
177__attribute_const__ __always_inline
178static size_t parent(size_t i, unsigned int lsbit, size_t size)
179{
180	i -= size;
181	i -= size & -(i & lsbit);
182	return i / 2;
183}
184
185/**
186 * sort_r - sort an array of elements
187 * @base: pointer to data to sort
188 * @num: number of elements
189 * @size: size of each element
190 * @cmp_func: pointer to comparison function
191 * @swap_func: pointer to swap function or NULL
192 * @priv: third argument passed to comparison function
193 *
194 * This function does a heapsort on the given array.  You may provide
195 * a swap_func function if you need to do something more than a memory
196 * copy (e.g. fix up pointers or auxiliary data), but the built-in swap
197 * avoids a slow retpoline and so is significantly faster.
198 *
199 * Sorting time is O(n log n) both on average and worst-case. While
200 * quicksort is slightly faster on average, it suffers from exploitable
201 * O(n*n) worst-case behavior and extra memory requirements that make
202 * it less suitable for kernel use.
203 */
204void sort_r(void *base, size_t num, size_t size,
205	    int (*cmp_func)(const void *, const void *, const void *),
206	    void (*swap_func)(void *, void *, int size),
207	    const void *priv)
208{
209	/* pre-scale counters for performance */
210	size_t n = num * size, a = (num/2) * size;
211	const unsigned int lsbit = size & -size;  /* Used to find parent */
212
213	if (!a)		/* num < 2 || size == 0 */
214		return;
215
216	if (!swap_func) {
217		if (is_aligned(base, size, 8))
218			swap_func = SWAP_WORDS_64;
219		else if (is_aligned(base, size, 4))
220			swap_func = SWAP_WORDS_32;
221		else
222			swap_func = SWAP_BYTES;
 
 
 
 
223	}
224
225	/*
226	 * Loop invariants:
227	 * 1. elements [a,n) satisfy the heap property (compare greater than
228	 *    all of their children),
229	 * 2. elements [n,num*size) are sorted, and
230	 * 3. a <= b <= c <= d <= n (whenever they are valid).
231	 */
232	for (;;) {
233		size_t b, c, d;
234
235		if (a)			/* Building heap: sift down --a */
236			a -= size;
237		else if (n -= size)	/* Sorting: Extract root to --n */
238			do_swap(base, base + n, size, swap_func);
239		else			/* Sort complete */
240			break;
241
242		/*
243		 * Sift element at "a" down into heap.  This is the
244		 * "bottom-up" variant, which significantly reduces
245		 * calls to cmp_func(): we find the sift-down path all
246		 * the way to the leaves (one compare per level), then
247		 * backtrack to find where to insert the target element.
248		 *
249		 * Because elements tend to sift down close to the leaves,
250		 * this uses fewer compares than doing two per level
251		 * on the way down.  (A bit more than half as many on
252		 * average, 3/4 worst-case.)
253		 */
254		for (b = a; c = 2*b + size, (d = c + size) < n;)
255			b = do_cmp(base + c, base + d, cmp_func, priv) >= 0 ? c : d;
256		if (d == n)	/* Special case last leaf with no sibling */
257			b = c;
258
259		/* Now backtrack from "b" to the correct location for "a" */
260		while (b != a && do_cmp(base + a, base + b, cmp_func, priv) >= 0)
261			b = parent(b, lsbit, size);
262		c = b;			/* Where "a" belongs */
263		while (b != a) {	/* Shift it into place */
264			b = parent(b, lsbit, size);
265			do_swap(base + b, base + c, size, swap_func);
266		}
267	}
268}
269EXPORT_SYMBOL(sort_r);
270
271void sort(void *base, size_t num, size_t size,
272	  int (*cmp_func)(const void *, const void *),
273	  void (*swap_func)(void *, void *, int size))
 
 
 
274{
275	return sort_r(base, num, size, _CMP_WRAPPER, swap_func, cmp_func);
276}
277EXPORT_SYMBOL(sort);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v3.1
 
  1/*
  2 * A fast, small, non-recursive O(nlog n) sort for the Linux kernel
  3 *
  4 * Jan 23 2005  Matt Mackall <mpm@selenic.com>
 
 
 
 
 
  5 */
  6
  7#include <linux/kernel.h>
  8#include <linux/module.h>
 
 
  9#include <linux/sort.h>
 10#include <linux/slab.h>
 11
 12static void u32_swap(void *a, void *b, int size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 13{
 14	u32 t = *(u32 *)a;
 15	*(u32 *)a = *(u32 *)b;
 16	*(u32 *)b = t;
 
 
 
 
 17}
 18
 19static void generic_swap(void *a, void *b, int size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 20{
 21	char t;
 
 
 
 
 
 22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 23	do {
 24		t = *(char *)a;
 25		*(char *)a++ = *(char *)b;
 26		*(char *)b++ = t;
 27	} while (--size > 0);
 
 
 
 
 
 
 
 
 
 
 
 28}
 29
 30/**
 31 * sort - sort an array of elements
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 32 * @base: pointer to data to sort
 33 * @num: number of elements
 34 * @size: size of each element
 35 * @cmp_func: pointer to comparison function
 36 * @swap_func: pointer to swap function or NULL
 
 37 *
 38 * This function does a heapsort on the given array. You may provide a
 39 * swap_func function optimized to your element type.
 
 
 40 *
 41 * Sorting time is O(n log n) both on average and worst-case. While
 42 * qsort is about 20% faster on average, it suffers from exploitable
 43 * O(n*n) worst-case behavior and extra memory requirements that make
 44 * it less suitable for kernel use.
 45 */
 46
 47void sort(void *base, size_t num, size_t size,
 48	  int (*cmp_func)(const void *, const void *),
 49	  void (*swap_func)(void *, void *, int size))
 50{
 51	/* pre-scale counters for performance */
 52	int i = (num/2 - 1) * size, n = num * size, c, r;
 
 53
 54	if (!swap_func)
 55		swap_func = (size == 4 ? u32_swap : generic_swap);
 56
 57	/* heapify */
 58	for ( ; i >= 0; i -= size) {
 59		for (r = i; r * 2 + size < n; r  = c) {
 60			c = r * 2 + size;
 61			if (c < n - size &&
 62					cmp_func(base + c, base + c + size) < 0)
 63				c += size;
 64			if (cmp_func(base + r, base + c) >= 0)
 65				break;
 66			swap_func(base + r, base + c, size);
 67		}
 68	}
 69
 70	/* sort */
 71	for (i = n - size; i > 0; i -= size) {
 72		swap_func(base, base + i, size);
 73		for (r = 0; r * 2 + size < i; r = c) {
 74			c = r * 2 + size;
 75			if (c < i - size &&
 76					cmp_func(base + c, base + c + size) < 0)
 77				c += size;
 78			if (cmp_func(base + r, base + c) >= 0)
 79				break;
 80			swap_func(base + r, base + c, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 81		}
 82	}
 83}
 
 84
 85EXPORT_SYMBOL(sort);
 86
 87#if 0
 88/* a simple boot-time regression test */
 89
 90int cmpint(const void *a, const void *b)
 91{
 92	return *(int *)a - *(int *)b;
 93}
 94
 95static int sort_test(void)
 96{
 97	int *a, i, r = 1;
 98
 99	a = kmalloc(1000 * sizeof(int), GFP_KERNEL);
100	BUG_ON(!a);
101
102	printk("testing sort()\n");
103
104	for (i = 0; i < 1000; i++) {
105		r = (r * 725861) % 6599;
106		a[i] = r;
107	}
108
109	sort(a, 1000, sizeof(int), cmpint, NULL);
110
111	for (i = 0; i < 999; i++)
112		if (a[i] > a[i+1]) {
113			printk("sort() failed!\n");
114			break;
115		}
116
117	kfree(a);
118
119	return 0;
120}
121
122module_init(sort_test);
123#endif