Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * transition.c - Kernel Live Patching transition functions
  4 *
  5 * Copyright (C) 2015-2016 Josh Poimboeuf <jpoimboe@redhat.com>
  6 */
  7
  8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9
 10#include <linux/cpu.h>
 11#include <linux/stacktrace.h>
 12#include "core.h"
 13#include "patch.h"
 14#include "transition.h"
 15#include "../sched/sched.h"
 16
 17#define MAX_STACK_ENTRIES  100
 18#define STACK_ERR_BUF_SIZE 128
 19
 20#define SIGNALS_TIMEOUT 15
 21
 22struct klp_patch *klp_transition_patch;
 23
 24static int klp_target_state = KLP_UNDEFINED;
 25
 26static unsigned int klp_signals_cnt;
 27
 28/*
 29 * This work can be performed periodically to finish patching or unpatching any
 30 * "straggler" tasks which failed to transition in the first attempt.
 31 */
 32static void klp_transition_work_fn(struct work_struct *work)
 33{
 34	mutex_lock(&klp_mutex);
 35
 36	if (klp_transition_patch)
 37		klp_try_complete_transition();
 38
 39	mutex_unlock(&klp_mutex);
 40}
 41static DECLARE_DELAYED_WORK(klp_transition_work, klp_transition_work_fn);
 42
 43/*
 44 * This function is just a stub to implement a hard force
 45 * of synchronize_rcu(). This requires synchronizing
 46 * tasks even in userspace and idle.
 47 */
 48static void klp_sync(struct work_struct *work)
 49{
 50}
 51
 52/*
 53 * We allow to patch also functions where RCU is not watching,
 54 * e.g. before user_exit(). We can not rely on the RCU infrastructure
 55 * to do the synchronization. Instead hard force the sched synchronization.
 56 *
 57 * This approach allows to use RCU functions for manipulating func_stack
 58 * safely.
 59 */
 60static void klp_synchronize_transition(void)
 61{
 62	schedule_on_each_cpu(klp_sync);
 63}
 64
 65/*
 66 * The transition to the target patch state is complete.  Clean up the data
 67 * structures.
 68 */
 69static void klp_complete_transition(void)
 70{
 71	struct klp_object *obj;
 72	struct klp_func *func;
 73	struct task_struct *g, *task;
 74	unsigned int cpu;
 75
 76	pr_debug("'%s': completing %s transition\n",
 77		 klp_transition_patch->mod->name,
 78		 klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
 79
 80	if (klp_transition_patch->replace && klp_target_state == KLP_PATCHED) {
 81		klp_discard_replaced_patches(klp_transition_patch);
 82		klp_discard_nops(klp_transition_patch);
 83	}
 84
 85	if (klp_target_state == KLP_UNPATCHED) {
 86		/*
 87		 * All tasks have transitioned to KLP_UNPATCHED so we can now
 88		 * remove the new functions from the func_stack.
 89		 */
 90		klp_unpatch_objects(klp_transition_patch);
 91
 92		/*
 93		 * Make sure klp_ftrace_handler() can no longer see functions
 94		 * from this patch on the ops->func_stack.  Otherwise, after
 95		 * func->transition gets cleared, the handler may choose a
 96		 * removed function.
 97		 */
 98		klp_synchronize_transition();
 99	}
100
101	klp_for_each_object(klp_transition_patch, obj)
102		klp_for_each_func(obj, func)
103			func->transition = false;
104
105	/* Prevent klp_ftrace_handler() from seeing KLP_UNDEFINED state */
106	if (klp_target_state == KLP_PATCHED)
107		klp_synchronize_transition();
108
109	read_lock(&tasklist_lock);
110	for_each_process_thread(g, task) {
111		WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
112		task->patch_state = KLP_UNDEFINED;
113	}
114	read_unlock(&tasklist_lock);
115
116	for_each_possible_cpu(cpu) {
117		task = idle_task(cpu);
118		WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
119		task->patch_state = KLP_UNDEFINED;
120	}
121
122	klp_for_each_object(klp_transition_patch, obj) {
123		if (!klp_is_object_loaded(obj))
124			continue;
125		if (klp_target_state == KLP_PATCHED)
126			klp_post_patch_callback(obj);
127		else if (klp_target_state == KLP_UNPATCHED)
128			klp_post_unpatch_callback(obj);
129	}
130
131	pr_notice("'%s': %s complete\n", klp_transition_patch->mod->name,
132		  klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
133
134	klp_target_state = KLP_UNDEFINED;
135	klp_transition_patch = NULL;
136}
137
138/*
139 * This is called in the error path, to cancel a transition before it has
140 * started, i.e. klp_init_transition() has been called but
141 * klp_start_transition() hasn't.  If the transition *has* been started,
142 * klp_reverse_transition() should be used instead.
143 */
144void klp_cancel_transition(void)
145{
146	if (WARN_ON_ONCE(klp_target_state != KLP_PATCHED))
147		return;
148
149	pr_debug("'%s': canceling patching transition, going to unpatch\n",
150		 klp_transition_patch->mod->name);
151
152	klp_target_state = KLP_UNPATCHED;
153	klp_complete_transition();
154}
155
156/*
157 * Switch the patched state of the task to the set of functions in the target
158 * patch state.
159 *
160 * NOTE: If task is not 'current', the caller must ensure the task is inactive.
161 * Otherwise klp_ftrace_handler() might read the wrong 'patch_state' value.
162 */
163void klp_update_patch_state(struct task_struct *task)
164{
165	/*
166	 * A variant of synchronize_rcu() is used to allow patching functions
167	 * where RCU is not watching, see klp_synchronize_transition().
168	 */
169	preempt_disable_notrace();
170
171	/*
172	 * This test_and_clear_tsk_thread_flag() call also serves as a read
173	 * barrier (smp_rmb) for two cases:
174	 *
175	 * 1) Enforce the order of the TIF_PATCH_PENDING read and the
176	 *    klp_target_state read.  The corresponding write barrier is in
177	 *    klp_init_transition().
178	 *
179	 * 2) Enforce the order of the TIF_PATCH_PENDING read and a future read
180	 *    of func->transition, if klp_ftrace_handler() is called later on
181	 *    the same CPU.  See __klp_disable_patch().
182	 */
183	if (test_and_clear_tsk_thread_flag(task, TIF_PATCH_PENDING))
184		task->patch_state = READ_ONCE(klp_target_state);
185
186	preempt_enable_notrace();
187}
188
189/*
190 * Determine whether the given stack trace includes any references to a
191 * to-be-patched or to-be-unpatched function.
192 */
193static int klp_check_stack_func(struct klp_func *func, unsigned long *entries,
194				unsigned int nr_entries)
195{
196	unsigned long func_addr, func_size, address;
197	struct klp_ops *ops;
198	int i;
199
200	for (i = 0; i < nr_entries; i++) {
201		address = entries[i];
202
203		if (klp_target_state == KLP_UNPATCHED) {
204			 /*
205			  * Check for the to-be-unpatched function
206			  * (the func itself).
207			  */
208			func_addr = (unsigned long)func->new_func;
209			func_size = func->new_size;
210		} else {
211			/*
212			 * Check for the to-be-patched function
213			 * (the previous func).
214			 */
215			ops = klp_find_ops(func->old_func);
216
217			if (list_is_singular(&ops->func_stack)) {
218				/* original function */
219				func_addr = (unsigned long)func->old_func;
220				func_size = func->old_size;
221			} else {
222				/* previously patched function */
223				struct klp_func *prev;
224
225				prev = list_next_entry(func, stack_node);
226				func_addr = (unsigned long)prev->new_func;
227				func_size = prev->new_size;
228			}
229		}
230
231		if (address >= func_addr && address < func_addr + func_size)
232			return -EAGAIN;
233	}
234
235	return 0;
236}
237
238/*
239 * Determine whether it's safe to transition the task to the target patch state
240 * by looking for any to-be-patched or to-be-unpatched functions on its stack.
241 */
242static int klp_check_stack(struct task_struct *task, char *err_buf)
243{
244	static unsigned long entries[MAX_STACK_ENTRIES];
245	struct klp_object *obj;
246	struct klp_func *func;
247	int ret, nr_entries;
248
249	ret = stack_trace_save_tsk_reliable(task, entries, ARRAY_SIZE(entries));
250	if (ret < 0) {
251		snprintf(err_buf, STACK_ERR_BUF_SIZE,
252			 "%s: %s:%d has an unreliable stack\n",
253			 __func__, task->comm, task->pid);
254		return ret;
255	}
256	nr_entries = ret;
257
258	klp_for_each_object(klp_transition_patch, obj) {
259		if (!obj->patched)
260			continue;
261		klp_for_each_func(obj, func) {
262			ret = klp_check_stack_func(func, entries, nr_entries);
263			if (ret) {
264				snprintf(err_buf, STACK_ERR_BUF_SIZE,
265					 "%s: %s:%d is sleeping on function %s\n",
266					 __func__, task->comm, task->pid,
267					 func->old_name);
268				return ret;
269			}
270		}
271	}
272
273	return 0;
274}
275
276/*
277 * Try to safely switch a task to the target patch state.  If it's currently
278 * running, or it's sleeping on a to-be-patched or to-be-unpatched function, or
279 * if the stack is unreliable, return false.
280 */
281static bool klp_try_switch_task(struct task_struct *task)
282{
283	static char err_buf[STACK_ERR_BUF_SIZE];
284	struct rq *rq;
285	struct rq_flags flags;
286	int ret;
287	bool success = false;
288
289	err_buf[0] = '\0';
290
291	/* check if this task has already switched over */
292	if (task->patch_state == klp_target_state)
293		return true;
294
295	/*
296	 * For arches which don't have reliable stack traces, we have to rely
297	 * on other methods (e.g., switching tasks at kernel exit).
298	 */
299	if (!klp_have_reliable_stack())
300		return false;
301
302	/*
303	 * Now try to check the stack for any to-be-patched or to-be-unpatched
304	 * functions.  If all goes well, switch the task to the target patch
305	 * state.
306	 */
307	rq = task_rq_lock(task, &flags);
308
309	if (task_running(rq, task) && task != current) {
310		snprintf(err_buf, STACK_ERR_BUF_SIZE,
311			 "%s: %s:%d is running\n", __func__, task->comm,
312			 task->pid);
313		goto done;
314	}
315
316	ret = klp_check_stack(task, err_buf);
317	if (ret)
318		goto done;
319
320	success = true;
321
322	clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
323	task->patch_state = klp_target_state;
324
325done:
326	task_rq_unlock(rq, task, &flags);
327
328	/*
329	 * Due to console deadlock issues, pr_debug() can't be used while
330	 * holding the task rq lock.  Instead we have to use a temporary buffer
331	 * and print the debug message after releasing the lock.
332	 */
333	if (err_buf[0] != '\0')
334		pr_debug("%s", err_buf);
335
336	return success;
337}
338
339/*
340 * Sends a fake signal to all non-kthread tasks with TIF_PATCH_PENDING set.
341 * Kthreads with TIF_PATCH_PENDING set are woken up.
342 */
343static void klp_send_signals(void)
344{
345	struct task_struct *g, *task;
346
347	if (klp_signals_cnt == SIGNALS_TIMEOUT)
348		pr_notice("signaling remaining tasks\n");
349
350	read_lock(&tasklist_lock);
351	for_each_process_thread(g, task) {
352		if (!klp_patch_pending(task))
353			continue;
354
355		/*
356		 * There is a small race here. We could see TIF_PATCH_PENDING
357		 * set and decide to wake up a kthread or send a fake signal.
358		 * Meanwhile the task could migrate itself and the action
359		 * would be meaningless. It is not serious though.
360		 */
361		if (task->flags & PF_KTHREAD) {
362			/*
363			 * Wake up a kthread which sleeps interruptedly and
364			 * still has not been migrated.
365			 */
366			wake_up_state(task, TASK_INTERRUPTIBLE);
367		} else {
368			/*
369			 * Send fake signal to all non-kthread tasks which are
370			 * still not migrated.
371			 */
372			spin_lock_irq(&task->sighand->siglock);
373			signal_wake_up(task, 0);
374			spin_unlock_irq(&task->sighand->siglock);
375		}
376	}
377	read_unlock(&tasklist_lock);
378}
379
380/*
381 * Try to switch all remaining tasks to the target patch state by walking the
382 * stacks of sleeping tasks and looking for any to-be-patched or
383 * to-be-unpatched functions.  If such functions are found, the task can't be
384 * switched yet.
385 *
386 * If any tasks are still stuck in the initial patch state, schedule a retry.
387 */
388void klp_try_complete_transition(void)
389{
390	unsigned int cpu;
391	struct task_struct *g, *task;
392	struct klp_patch *patch;
393	bool complete = true;
394
395	WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
396
397	/*
398	 * Try to switch the tasks to the target patch state by walking their
399	 * stacks and looking for any to-be-patched or to-be-unpatched
400	 * functions.  If such functions are found on a stack, or if the stack
401	 * is deemed unreliable, the task can't be switched yet.
402	 *
403	 * Usually this will transition most (or all) of the tasks on a system
404	 * unless the patch includes changes to a very common function.
405	 */
406	read_lock(&tasklist_lock);
407	for_each_process_thread(g, task)
408		if (!klp_try_switch_task(task))
409			complete = false;
410	read_unlock(&tasklist_lock);
411
412	/*
413	 * Ditto for the idle "swapper" tasks.
414	 */
415	get_online_cpus();
416	for_each_possible_cpu(cpu) {
417		task = idle_task(cpu);
418		if (cpu_online(cpu)) {
419			if (!klp_try_switch_task(task))
420				complete = false;
421		} else if (task->patch_state != klp_target_state) {
422			/* offline idle tasks can be switched immediately */
423			clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
424			task->patch_state = klp_target_state;
425		}
426	}
427	put_online_cpus();
428
429	if (!complete) {
430		if (klp_signals_cnt && !(klp_signals_cnt % SIGNALS_TIMEOUT))
431			klp_send_signals();
432		klp_signals_cnt++;
433
434		/*
435		 * Some tasks weren't able to be switched over.  Try again
436		 * later and/or wait for other methods like kernel exit
437		 * switching.
438		 */
439		schedule_delayed_work(&klp_transition_work,
440				      round_jiffies_relative(HZ));
441		return;
442	}
443
444	/* we're done, now cleanup the data structures */
445	patch = klp_transition_patch;
446	klp_complete_transition();
447
448	/*
449	 * It would make more sense to free the patch in
450	 * klp_complete_transition() but it is called also
451	 * from klp_cancel_transition().
452	 */
453	if (!patch->enabled) {
454		klp_free_patch_start(patch);
455		schedule_work(&patch->free_work);
456	}
457}
458
459/*
460 * Start the transition to the specified target patch state so tasks can begin
461 * switching to it.
462 */
463void klp_start_transition(void)
464{
465	struct task_struct *g, *task;
466	unsigned int cpu;
467
468	WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
469
470	pr_notice("'%s': starting %s transition\n",
471		  klp_transition_patch->mod->name,
472		  klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
473
474	/*
475	 * Mark all normal tasks as needing a patch state update.  They'll
476	 * switch either in klp_try_complete_transition() or as they exit the
477	 * kernel.
478	 */
479	read_lock(&tasklist_lock);
480	for_each_process_thread(g, task)
481		if (task->patch_state != klp_target_state)
482			set_tsk_thread_flag(task, TIF_PATCH_PENDING);
483	read_unlock(&tasklist_lock);
484
485	/*
486	 * Mark all idle tasks as needing a patch state update.  They'll switch
487	 * either in klp_try_complete_transition() or at the idle loop switch
488	 * point.
489	 */
490	for_each_possible_cpu(cpu) {
491		task = idle_task(cpu);
492		if (task->patch_state != klp_target_state)
493			set_tsk_thread_flag(task, TIF_PATCH_PENDING);
494	}
495
496	klp_signals_cnt = 0;
497}
498
499/*
500 * Initialize the global target patch state and all tasks to the initial patch
501 * state, and initialize all function transition states to true in preparation
502 * for patching or unpatching.
503 */
504void klp_init_transition(struct klp_patch *patch, int state)
505{
506	struct task_struct *g, *task;
507	unsigned int cpu;
508	struct klp_object *obj;
509	struct klp_func *func;
510	int initial_state = !state;
511
512	WARN_ON_ONCE(klp_target_state != KLP_UNDEFINED);
513
514	klp_transition_patch = patch;
515
516	/*
517	 * Set the global target patch state which tasks will switch to.  This
518	 * has no effect until the TIF_PATCH_PENDING flags get set later.
519	 */
520	klp_target_state = state;
521
522	pr_debug("'%s': initializing %s transition\n", patch->mod->name,
523		 klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
524
525	/*
526	 * Initialize all tasks to the initial patch state to prepare them for
527	 * switching to the target state.
528	 */
529	read_lock(&tasklist_lock);
530	for_each_process_thread(g, task) {
531		WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED);
532		task->patch_state = initial_state;
533	}
534	read_unlock(&tasklist_lock);
535
536	/*
537	 * Ditto for the idle "swapper" tasks.
538	 */
539	for_each_possible_cpu(cpu) {
540		task = idle_task(cpu);
541		WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED);
542		task->patch_state = initial_state;
543	}
544
545	/*
546	 * Enforce the order of the task->patch_state initializations and the
547	 * func->transition updates to ensure that klp_ftrace_handler() doesn't
548	 * see a func in transition with a task->patch_state of KLP_UNDEFINED.
549	 *
550	 * Also enforce the order of the klp_target_state write and future
551	 * TIF_PATCH_PENDING writes to ensure klp_update_patch_state() doesn't
552	 * set a task->patch_state to KLP_UNDEFINED.
553	 */
554	smp_wmb();
555
556	/*
557	 * Set the func transition states so klp_ftrace_handler() will know to
558	 * switch to the transition logic.
559	 *
560	 * When patching, the funcs aren't yet in the func_stack and will be
561	 * made visible to the ftrace handler shortly by the calls to
562	 * klp_patch_object().
563	 *
564	 * When unpatching, the funcs are already in the func_stack and so are
565	 * already visible to the ftrace handler.
566	 */
567	klp_for_each_object(patch, obj)
568		klp_for_each_func(obj, func)
569			func->transition = true;
570}
571
572/*
573 * This function can be called in the middle of an existing transition to
574 * reverse the direction of the target patch state.  This can be done to
575 * effectively cancel an existing enable or disable operation if there are any
576 * tasks which are stuck in the initial patch state.
577 */
578void klp_reverse_transition(void)
579{
580	unsigned int cpu;
581	struct task_struct *g, *task;
582
583	pr_debug("'%s': reversing transition from %s\n",
584		 klp_transition_patch->mod->name,
585		 klp_target_state == KLP_PATCHED ? "patching to unpatching" :
586						   "unpatching to patching");
587
588	klp_transition_patch->enabled = !klp_transition_patch->enabled;
589
590	klp_target_state = !klp_target_state;
591
592	/*
593	 * Clear all TIF_PATCH_PENDING flags to prevent races caused by
594	 * klp_update_patch_state() running in parallel with
595	 * klp_start_transition().
596	 */
597	read_lock(&tasklist_lock);
598	for_each_process_thread(g, task)
599		clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
600	read_unlock(&tasklist_lock);
601
602	for_each_possible_cpu(cpu)
603		clear_tsk_thread_flag(idle_task(cpu), TIF_PATCH_PENDING);
604
605	/* Let any remaining calls to klp_update_patch_state() complete */
606	klp_synchronize_transition();
607
608	klp_start_transition();
609}
610
611/* Called from copy_process() during fork */
612void klp_copy_process(struct task_struct *child)
613{
614	child->patch_state = current->patch_state;
615
616	/* TIF_PATCH_PENDING gets copied in setup_thread_stack() */
617}
618
619/*
620 * Drop TIF_PATCH_PENDING of all tasks on admin's request. This forces an
621 * existing transition to finish.
622 *
623 * NOTE: klp_update_patch_state(task) requires the task to be inactive or
624 * 'current'. This is not the case here and the consistency model could be
625 * broken. Administrator, who is the only one to execute the
626 * klp_force_transitions(), has to be aware of this.
627 */
628void klp_force_transition(void)
629{
630	struct klp_patch *patch;
631	struct task_struct *g, *task;
632	unsigned int cpu;
633
634	pr_warn("forcing remaining tasks to the patched state\n");
635
636	read_lock(&tasklist_lock);
637	for_each_process_thread(g, task)
638		klp_update_patch_state(task);
639	read_unlock(&tasklist_lock);
640
641	for_each_possible_cpu(cpu)
642		klp_update_patch_state(idle_task(cpu));
643
644	klp_for_each_patch(patch)
645		patch->forced = true;
646}