Linux Audio

Check our new training course

Loading...
v5.4
    1// SPDX-License-Identifier: GPL-2.0
    2/*
    3 * Performance events core code:
    4 *
    5 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
    6 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
    7 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
    8 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 
 
    9 */
   10
   11#include <linux/fs.h>
   12#include <linux/mm.h>
   13#include <linux/cpu.h>
   14#include <linux/smp.h>
   15#include <linux/idr.h>
   16#include <linux/file.h>
   17#include <linux/poll.h>
   18#include <linux/slab.h>
   19#include <linux/hash.h>
   20#include <linux/tick.h>
   21#include <linux/sysfs.h>
   22#include <linux/dcache.h>
   23#include <linux/percpu.h>
   24#include <linux/ptrace.h>
   25#include <linux/reboot.h>
   26#include <linux/vmstat.h>
   27#include <linux/device.h>
   28#include <linux/export.h>
   29#include <linux/vmalloc.h>
   30#include <linux/hardirq.h>
   31#include <linux/rculist.h>
   32#include <linux/uaccess.h>
   33#include <linux/syscalls.h>
   34#include <linux/anon_inodes.h>
   35#include <linux/kernel_stat.h>
   36#include <linux/cgroup.h>
   37#include <linux/perf_event.h>
   38#include <linux/trace_events.h>
   39#include <linux/hw_breakpoint.h>
   40#include <linux/mm_types.h>
   41#include <linux/module.h>
   42#include <linux/mman.h>
   43#include <linux/compat.h>
   44#include <linux/bpf.h>
   45#include <linux/filter.h>
   46#include <linux/namei.h>
   47#include <linux/parser.h>
   48#include <linux/sched/clock.h>
   49#include <linux/sched/mm.h>
   50#include <linux/proc_ns.h>
   51#include <linux/mount.h>
   52
   53#include "internal.h"
   54
   55#include <asm/irq_regs.h>
   56
   57typedef int (*remote_function_f)(void *);
   58
   59struct remote_function_call {
   60	struct task_struct	*p;
   61	remote_function_f	func;
   62	void			*info;
   63	int			ret;
   64};
   65
   66static void remote_function(void *data)
   67{
   68	struct remote_function_call *tfc = data;
   69	struct task_struct *p = tfc->p;
   70
   71	if (p) {
   72		/* -EAGAIN */
   73		if (task_cpu(p) != smp_processor_id())
   74			return;
   75
   76		/*
   77		 * Now that we're on right CPU with IRQs disabled, we can test
   78		 * if we hit the right task without races.
   79		 */
   80
   81		tfc->ret = -ESRCH; /* No such (running) process */
   82		if (p != current)
   83			return;
   84	}
   85
   86	tfc->ret = tfc->func(tfc->info);
   87}
   88
   89/**
   90 * task_function_call - call a function on the cpu on which a task runs
   91 * @p:		the task to evaluate
   92 * @func:	the function to be called
   93 * @info:	the function call argument
   94 *
   95 * Calls the function @func when the task is currently running. This might
   96 * be on the current CPU, which just calls the function directly
   97 *
   98 * returns: @func return value, or
   99 *	    -ESRCH  - when the process isn't running
  100 *	    -EAGAIN - when the process moved away
  101 */
  102static int
  103task_function_call(struct task_struct *p, remote_function_f func, void *info)
  104{
  105	struct remote_function_call data = {
  106		.p	= p,
  107		.func	= func,
  108		.info	= info,
  109		.ret	= -EAGAIN,
  110	};
  111	int ret;
  112
  113	do {
  114		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
  115		if (!ret)
  116			ret = data.ret;
  117	} while (ret == -EAGAIN);
  118
  119	return ret;
  120}
  121
  122/**
  123 * cpu_function_call - call a function on the cpu
  124 * @func:	the function to be called
  125 * @info:	the function call argument
  126 *
  127 * Calls the function @func on the remote cpu.
  128 *
  129 * returns: @func return value or -ENXIO when the cpu is offline
  130 */
  131static int cpu_function_call(int cpu, remote_function_f func, void *info)
  132{
  133	struct remote_function_call data = {
  134		.p	= NULL,
  135		.func	= func,
  136		.info	= info,
  137		.ret	= -ENXIO, /* No such CPU */
  138	};
  139
  140	smp_call_function_single(cpu, remote_function, &data, 1);
  141
  142	return data.ret;
  143}
  144
  145static inline struct perf_cpu_context *
  146__get_cpu_context(struct perf_event_context *ctx)
  147{
  148	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
  149}
  150
  151static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
  152			  struct perf_event_context *ctx)
  153{
  154	raw_spin_lock(&cpuctx->ctx.lock);
  155	if (ctx)
  156		raw_spin_lock(&ctx->lock);
  157}
  158
  159static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
  160			    struct perf_event_context *ctx)
  161{
  162	if (ctx)
  163		raw_spin_unlock(&ctx->lock);
  164	raw_spin_unlock(&cpuctx->ctx.lock);
  165}
  166
  167#define TASK_TOMBSTONE ((void *)-1L)
  168
  169static bool is_kernel_event(struct perf_event *event)
  170{
  171	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
  172}
  173
  174/*
  175 * On task ctx scheduling...
  176 *
  177 * When !ctx->nr_events a task context will not be scheduled. This means
  178 * we can disable the scheduler hooks (for performance) without leaving
  179 * pending task ctx state.
  180 *
  181 * This however results in two special cases:
  182 *
  183 *  - removing the last event from a task ctx; this is relatively straight
  184 *    forward and is done in __perf_remove_from_context.
  185 *
  186 *  - adding the first event to a task ctx; this is tricky because we cannot
  187 *    rely on ctx->is_active and therefore cannot use event_function_call().
  188 *    See perf_install_in_context().
  189 *
  190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
  191 */
  192
  193typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
  194			struct perf_event_context *, void *);
  195
  196struct event_function_struct {
  197	struct perf_event *event;
  198	event_f func;
  199	void *data;
  200};
  201
  202static int event_function(void *info)
  203{
  204	struct event_function_struct *efs = info;
  205	struct perf_event *event = efs->event;
  206	struct perf_event_context *ctx = event->ctx;
  207	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  208	struct perf_event_context *task_ctx = cpuctx->task_ctx;
  209	int ret = 0;
  210
  211	lockdep_assert_irqs_disabled();
  212
  213	perf_ctx_lock(cpuctx, task_ctx);
  214	/*
  215	 * Since we do the IPI call without holding ctx->lock things can have
  216	 * changed, double check we hit the task we set out to hit.
  217	 */
  218	if (ctx->task) {
  219		if (ctx->task != current) {
  220			ret = -ESRCH;
  221			goto unlock;
  222		}
  223
  224		/*
  225		 * We only use event_function_call() on established contexts,
  226		 * and event_function() is only ever called when active (or
  227		 * rather, we'll have bailed in task_function_call() or the
  228		 * above ctx->task != current test), therefore we must have
  229		 * ctx->is_active here.
  230		 */
  231		WARN_ON_ONCE(!ctx->is_active);
  232		/*
  233		 * And since we have ctx->is_active, cpuctx->task_ctx must
  234		 * match.
  235		 */
  236		WARN_ON_ONCE(task_ctx != ctx);
  237	} else {
  238		WARN_ON_ONCE(&cpuctx->ctx != ctx);
  239	}
  240
  241	efs->func(event, cpuctx, ctx, efs->data);
  242unlock:
  243	perf_ctx_unlock(cpuctx, task_ctx);
  244
  245	return ret;
  246}
  247
  248static void event_function_call(struct perf_event *event, event_f func, void *data)
  249{
  250	struct perf_event_context *ctx = event->ctx;
  251	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
  252	struct event_function_struct efs = {
  253		.event = event,
  254		.func = func,
  255		.data = data,
  256	};
  257
  258	if (!event->parent) {
  259		/*
  260		 * If this is a !child event, we must hold ctx::mutex to
  261		 * stabilize the the event->ctx relation. See
  262		 * perf_event_ctx_lock().
  263		 */
  264		lockdep_assert_held(&ctx->mutex);
  265	}
  266
  267	if (!task) {
  268		cpu_function_call(event->cpu, event_function, &efs);
  269		return;
  270	}
  271
  272	if (task == TASK_TOMBSTONE)
  273		return;
  274
  275again:
  276	if (!task_function_call(task, event_function, &efs))
  277		return;
  278
  279	raw_spin_lock_irq(&ctx->lock);
  280	/*
  281	 * Reload the task pointer, it might have been changed by
  282	 * a concurrent perf_event_context_sched_out().
  283	 */
  284	task = ctx->task;
  285	if (task == TASK_TOMBSTONE) {
  286		raw_spin_unlock_irq(&ctx->lock);
  287		return;
  288	}
  289	if (ctx->is_active) {
  290		raw_spin_unlock_irq(&ctx->lock);
  291		goto again;
  292	}
  293	func(event, NULL, ctx, data);
  294	raw_spin_unlock_irq(&ctx->lock);
  295}
  296
  297/*
  298 * Similar to event_function_call() + event_function(), but hard assumes IRQs
  299 * are already disabled and we're on the right CPU.
  300 */
  301static void event_function_local(struct perf_event *event, event_f func, void *data)
  302{
  303	struct perf_event_context *ctx = event->ctx;
  304	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  305	struct task_struct *task = READ_ONCE(ctx->task);
  306	struct perf_event_context *task_ctx = NULL;
  307
  308	lockdep_assert_irqs_disabled();
  309
  310	if (task) {
  311		if (task == TASK_TOMBSTONE)
  312			return;
  313
  314		task_ctx = ctx;
  315	}
  316
  317	perf_ctx_lock(cpuctx, task_ctx);
  318
  319	task = ctx->task;
  320	if (task == TASK_TOMBSTONE)
  321		goto unlock;
  322
  323	if (task) {
  324		/*
  325		 * We must be either inactive or active and the right task,
  326		 * otherwise we're screwed, since we cannot IPI to somewhere
  327		 * else.
  328		 */
  329		if (ctx->is_active) {
  330			if (WARN_ON_ONCE(task != current))
  331				goto unlock;
  332
  333			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
  334				goto unlock;
  335		}
  336	} else {
  337		WARN_ON_ONCE(&cpuctx->ctx != ctx);
  338	}
  339
  340	func(event, cpuctx, ctx, data);
  341unlock:
  342	perf_ctx_unlock(cpuctx, task_ctx);
  343}
  344
  345#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
  346		       PERF_FLAG_FD_OUTPUT  |\
  347		       PERF_FLAG_PID_CGROUP |\
  348		       PERF_FLAG_FD_CLOEXEC)
  349
  350/*
  351 * branch priv levels that need permission checks
  352 */
  353#define PERF_SAMPLE_BRANCH_PERM_PLM \
  354	(PERF_SAMPLE_BRANCH_KERNEL |\
  355	 PERF_SAMPLE_BRANCH_HV)
  356
  357enum event_type_t {
  358	EVENT_FLEXIBLE = 0x1,
  359	EVENT_PINNED = 0x2,
  360	EVENT_TIME = 0x4,
  361	/* see ctx_resched() for details */
  362	EVENT_CPU = 0x8,
  363	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
  364};
  365
  366/*
  367 * perf_sched_events : >0 events exist
  368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
  369 */
  370
  371static void perf_sched_delayed(struct work_struct *work);
  372DEFINE_STATIC_KEY_FALSE(perf_sched_events);
  373static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
  374static DEFINE_MUTEX(perf_sched_mutex);
  375static atomic_t perf_sched_count;
  376
  377static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
  378static DEFINE_PER_CPU(int, perf_sched_cb_usages);
  379static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
  380
  381static atomic_t nr_mmap_events __read_mostly;
  382static atomic_t nr_comm_events __read_mostly;
  383static atomic_t nr_namespaces_events __read_mostly;
  384static atomic_t nr_task_events __read_mostly;
  385static atomic_t nr_freq_events __read_mostly;
  386static atomic_t nr_switch_events __read_mostly;
  387static atomic_t nr_ksymbol_events __read_mostly;
  388static atomic_t nr_bpf_events __read_mostly;
  389
  390static LIST_HEAD(pmus);
  391static DEFINE_MUTEX(pmus_lock);
  392static struct srcu_struct pmus_srcu;
  393static cpumask_var_t perf_online_mask;
  394
  395/*
  396 * perf event paranoia level:
  397 *  -1 - not paranoid at all
  398 *   0 - disallow raw tracepoint access for unpriv
  399 *   1 - disallow cpu events for unpriv
  400 *   2 - disallow kernel profiling for unpriv
  401 */
  402int sysctl_perf_event_paranoid __read_mostly = 2;
  403
  404/* Minimum for 512 kiB + 1 user control page */
  405int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
  406
  407/*
  408 * max perf event sample rate
  409 */
  410#define DEFAULT_MAX_SAMPLE_RATE		100000
  411#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
  412#define DEFAULT_CPU_TIME_MAX_PERCENT	25
  413
  414int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
  415
  416static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
  417static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
  418
  419static int perf_sample_allowed_ns __read_mostly =
  420	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
  421
  422static void update_perf_cpu_limits(void)
  423{
  424	u64 tmp = perf_sample_period_ns;
  425
  426	tmp *= sysctl_perf_cpu_time_max_percent;
  427	tmp = div_u64(tmp, 100);
  428	if (!tmp)
  429		tmp = 1;
  430
  431	WRITE_ONCE(perf_sample_allowed_ns, tmp);
  432}
  433
  434static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
  435
  436int perf_proc_update_handler(struct ctl_table *table, int write,
  437		void __user *buffer, size_t *lenp,
  438		loff_t *ppos)
  439{
  440	int ret;
  441	int perf_cpu = sysctl_perf_cpu_time_max_percent;
  442	/*
  443	 * If throttling is disabled don't allow the write:
  444	 */
  445	if (write && (perf_cpu == 100 || perf_cpu == 0))
  446		return -EINVAL;
  447
  448	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  449	if (ret || !write)
  450		return ret;
  451
  452	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
  453	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
  454	update_perf_cpu_limits();
  455
  456	return 0;
  457}
  458
  459int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
  460
  461int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
  462				void __user *buffer, size_t *lenp,
  463				loff_t *ppos)
  464{
  465	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  466
  467	if (ret || !write)
  468		return ret;
  469
  470	if (sysctl_perf_cpu_time_max_percent == 100 ||
  471	    sysctl_perf_cpu_time_max_percent == 0) {
  472		printk(KERN_WARNING
  473		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
  474		WRITE_ONCE(perf_sample_allowed_ns, 0);
  475	} else {
  476		update_perf_cpu_limits();
  477	}
  478
  479	return 0;
  480}
  481
  482/*
  483 * perf samples are done in some very critical code paths (NMIs).
  484 * If they take too much CPU time, the system can lock up and not
  485 * get any real work done.  This will drop the sample rate when
  486 * we detect that events are taking too long.
  487 */
  488#define NR_ACCUMULATED_SAMPLES 128
  489static DEFINE_PER_CPU(u64, running_sample_length);
  490
  491static u64 __report_avg;
  492static u64 __report_allowed;
  493
  494static void perf_duration_warn(struct irq_work *w)
  495{
  496	printk_ratelimited(KERN_INFO
  497		"perf: interrupt took too long (%lld > %lld), lowering "
  498		"kernel.perf_event_max_sample_rate to %d\n",
  499		__report_avg, __report_allowed,
  500		sysctl_perf_event_sample_rate);
  501}
  502
  503static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
  504
  505void perf_sample_event_took(u64 sample_len_ns)
  506{
  507	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
  508	u64 running_len;
  509	u64 avg_len;
  510	u32 max;
  511
  512	if (max_len == 0)
  513		return;
  514
  515	/* Decay the counter by 1 average sample. */
  516	running_len = __this_cpu_read(running_sample_length);
  517	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
  518	running_len += sample_len_ns;
  519	__this_cpu_write(running_sample_length, running_len);
  520
  521	/*
  522	 * Note: this will be biased artifically low until we have
  523	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
  524	 * from having to maintain a count.
  525	 */
  526	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
  527	if (avg_len <= max_len)
  528		return;
  529
  530	__report_avg = avg_len;
  531	__report_allowed = max_len;
  532
  533	/*
  534	 * Compute a throttle threshold 25% below the current duration.
  535	 */
  536	avg_len += avg_len / 4;
  537	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
  538	if (avg_len < max)
  539		max /= (u32)avg_len;
  540	else
  541		max = 1;
  542
  543	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
  544	WRITE_ONCE(max_samples_per_tick, max);
  545
  546	sysctl_perf_event_sample_rate = max * HZ;
  547	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
  548
  549	if (!irq_work_queue(&perf_duration_work)) {
  550		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
  551			     "kernel.perf_event_max_sample_rate to %d\n",
  552			     __report_avg, __report_allowed,
  553			     sysctl_perf_event_sample_rate);
  554	}
  555}
  556
  557static atomic64_t perf_event_id;
  558
  559static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
  560			      enum event_type_t event_type);
  561
  562static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
  563			     enum event_type_t event_type,
  564			     struct task_struct *task);
  565
  566static void update_context_time(struct perf_event_context *ctx);
  567static u64 perf_event_time(struct perf_event *event);
  568
  569void __weak perf_event_print_debug(void)	{ }
  570
  571extern __weak const char *perf_pmu_name(void)
  572{
  573	return "pmu";
  574}
  575
  576static inline u64 perf_clock(void)
  577{
  578	return local_clock();
  579}
  580
  581static inline u64 perf_event_clock(struct perf_event *event)
 
  582{
  583	return event->clock();
  584}
  585
  586/*
  587 * State based event timekeeping...
  588 *
  589 * The basic idea is to use event->state to determine which (if any) time
  590 * fields to increment with the current delta. This means we only need to
  591 * update timestamps when we change state or when they are explicitly requested
  592 * (read).
  593 *
  594 * Event groups make things a little more complicated, but not terribly so. The
  595 * rules for a group are that if the group leader is OFF the entire group is
  596 * OFF, irrespecive of what the group member states are. This results in
  597 * __perf_effective_state().
  598 *
  599 * A futher ramification is that when a group leader flips between OFF and
  600 * !OFF, we need to update all group member times.
  601 *
  602 *
  603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
  604 * need to make sure the relevant context time is updated before we try and
  605 * update our timestamps.
  606 */
  607
  608static __always_inline enum perf_event_state
  609__perf_effective_state(struct perf_event *event)
  610{
  611	struct perf_event *leader = event->group_leader;
  612
  613	if (leader->state <= PERF_EVENT_STATE_OFF)
  614		return leader->state;
  615
  616	return event->state;
  617}
  618
  619static __always_inline void
  620__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
  621{
  622	enum perf_event_state state = __perf_effective_state(event);
  623	u64 delta = now - event->tstamp;
  624
  625	*enabled = event->total_time_enabled;
  626	if (state >= PERF_EVENT_STATE_INACTIVE)
  627		*enabled += delta;
  628
  629	*running = event->total_time_running;
  630	if (state >= PERF_EVENT_STATE_ACTIVE)
  631		*running += delta;
  632}
  633
  634static void perf_event_update_time(struct perf_event *event)
  635{
  636	u64 now = perf_event_time(event);
  637
  638	__perf_update_times(event, now, &event->total_time_enabled,
  639					&event->total_time_running);
  640	event->tstamp = now;
 
 
 
 
 
 
 
  641}
  642
  643static void perf_event_update_sibling_time(struct perf_event *leader)
 
  644{
  645	struct perf_event *sibling;
 
  646
  647	for_each_sibling_event(sibling, leader)
  648		perf_event_update_time(sibling);
  649}
  650
  651static void
  652perf_event_set_state(struct perf_event *event, enum perf_event_state state)
  653{
  654	if (event->state == state)
  655		return;
  656
  657	perf_event_update_time(event);
  658	/*
  659	 * If a group leader gets enabled/disabled all its siblings
  660	 * are affected too.
  661	 */
  662	if ((event->state < 0) ^ (state < 0))
  663		perf_event_update_sibling_time(event);
  664
  665	WRITE_ONCE(event->state, state);
  666}
  667
  668#ifdef CONFIG_CGROUP_PERF
  669
  670static inline bool
  671perf_cgroup_match(struct perf_event *event)
  672{
  673	struct perf_event_context *ctx = event->ctx;
  674	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  675
  676	/* @event doesn't care about cgroup */
  677	if (!event->cgrp)
  678		return true;
  679
  680	/* wants specific cgroup scope but @cpuctx isn't associated with any */
  681	if (!cpuctx->cgrp)
  682		return false;
  683
  684	/*
  685	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
  686	 * also enabled for all its descendant cgroups.  If @cpuctx's
  687	 * cgroup is a descendant of @event's (the test covers identity
  688	 * case), it's a match.
  689	 */
  690	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
  691				    event->cgrp->css.cgroup);
  692}
  693
  694static inline void perf_detach_cgroup(struct perf_event *event)
  695{
  696	css_put(&event->cgrp->css);
  697	event->cgrp = NULL;
  698}
  699
  700static inline int is_cgroup_event(struct perf_event *event)
  701{
  702	return event->cgrp != NULL;
  703}
  704
  705static inline u64 perf_cgroup_event_time(struct perf_event *event)
  706{
  707	struct perf_cgroup_info *t;
  708
  709	t = per_cpu_ptr(event->cgrp->info, event->cpu);
  710	return t->time;
  711}
  712
  713static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
  714{
  715	struct perf_cgroup_info *info;
  716	u64 now;
  717
  718	now = perf_clock();
  719
  720	info = this_cpu_ptr(cgrp->info);
  721
  722	info->time += now - info->timestamp;
  723	info->timestamp = now;
  724}
  725
  726static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
  727{
  728	struct perf_cgroup *cgrp = cpuctx->cgrp;
  729	struct cgroup_subsys_state *css;
  730
  731	if (cgrp) {
  732		for (css = &cgrp->css; css; css = css->parent) {
  733			cgrp = container_of(css, struct perf_cgroup, css);
  734			__update_cgrp_time(cgrp);
  735		}
  736	}
  737}
  738
  739static inline void update_cgrp_time_from_event(struct perf_event *event)
  740{
  741	struct perf_cgroup *cgrp;
  742
  743	/*
  744	 * ensure we access cgroup data only when needed and
  745	 * when we know the cgroup is pinned (css_get)
  746	 */
  747	if (!is_cgroup_event(event))
  748		return;
  749
  750	cgrp = perf_cgroup_from_task(current, event->ctx);
  751	/*
  752	 * Do not update time when cgroup is not active
  753	 */
  754	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
  755		__update_cgrp_time(event->cgrp);
  756}
  757
  758static inline void
  759perf_cgroup_set_timestamp(struct task_struct *task,
  760			  struct perf_event_context *ctx)
  761{
  762	struct perf_cgroup *cgrp;
  763	struct perf_cgroup_info *info;
  764	struct cgroup_subsys_state *css;
  765
  766	/*
  767	 * ctx->lock held by caller
  768	 * ensure we do not access cgroup data
  769	 * unless we have the cgroup pinned (css_get)
  770	 */
  771	if (!task || !ctx->nr_cgroups)
  772		return;
  773
  774	cgrp = perf_cgroup_from_task(task, ctx);
  775
  776	for (css = &cgrp->css; css; css = css->parent) {
  777		cgrp = container_of(css, struct perf_cgroup, css);
  778		info = this_cpu_ptr(cgrp->info);
  779		info->timestamp = ctx->timestamp;
  780	}
  781}
  782
  783static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
  784
  785#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
  786#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
  787
  788/*
  789 * reschedule events based on the cgroup constraint of task.
  790 *
  791 * mode SWOUT : schedule out everything
  792 * mode SWIN : schedule in based on cgroup for next
  793 */
  794static void perf_cgroup_switch(struct task_struct *task, int mode)
  795{
  796	struct perf_cpu_context *cpuctx;
  797	struct list_head *list;
  798	unsigned long flags;
  799
  800	/*
  801	 * Disable interrupts and preemption to avoid this CPU's
  802	 * cgrp_cpuctx_entry to change under us.
 
  803	 */
  804	local_irq_save(flags);
  805
  806	list = this_cpu_ptr(&cgrp_cpuctx_list);
  807	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
  808		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
 
 
  809
  810		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
  811		perf_pmu_disable(cpuctx->ctx.pmu);
  812
  813		if (mode & PERF_CGROUP_SWOUT) {
  814			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
  815			/*
  816			 * must not be done before ctxswout due
  817			 * to event_filter_match() in event_sched_out()
  818			 */
  819			cpuctx->cgrp = NULL;
  820		}
 
 
  821
  822		if (mode & PERF_CGROUP_SWIN) {
  823			WARN_ON_ONCE(cpuctx->cgrp);
  824			/*
  825			 * set cgrp before ctxsw in to allow
  826			 * event_filter_match() to not have to pass
  827			 * task around
  828			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
  829			 * because cgorup events are only per-cpu
  830			 */
  831			cpuctx->cgrp = perf_cgroup_from_task(task,
  832							     &cpuctx->ctx);
  833			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
 
 
 
 
 
 
 
 
  834		}
  835		perf_pmu_enable(cpuctx->ctx.pmu);
  836		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
  837	}
  838
 
 
  839	local_irq_restore(flags);
  840}
  841
  842static inline void perf_cgroup_sched_out(struct task_struct *task,
  843					 struct task_struct *next)
  844{
  845	struct perf_cgroup *cgrp1;
  846	struct perf_cgroup *cgrp2 = NULL;
  847
  848	rcu_read_lock();
  849	/*
  850	 * we come here when we know perf_cgroup_events > 0
  851	 * we do not need to pass the ctx here because we know
  852	 * we are holding the rcu lock
  853	 */
  854	cgrp1 = perf_cgroup_from_task(task, NULL);
  855	cgrp2 = perf_cgroup_from_task(next, NULL);
 
 
 
 
 
 
  856
  857	/*
  858	 * only schedule out current cgroup events if we know
  859	 * that we are switching to a different cgroup. Otherwise,
  860	 * do no touch the cgroup events.
  861	 */
  862	if (cgrp1 != cgrp2)
  863		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
  864
  865	rcu_read_unlock();
  866}
  867
  868static inline void perf_cgroup_sched_in(struct task_struct *prev,
  869					struct task_struct *task)
  870{
  871	struct perf_cgroup *cgrp1;
  872	struct perf_cgroup *cgrp2 = NULL;
  873
  874	rcu_read_lock();
  875	/*
  876	 * we come here when we know perf_cgroup_events > 0
  877	 * we do not need to pass the ctx here because we know
  878	 * we are holding the rcu lock
  879	 */
  880	cgrp1 = perf_cgroup_from_task(task, NULL);
  881	cgrp2 = perf_cgroup_from_task(prev, NULL);
 
 
  882
  883	/*
  884	 * only need to schedule in cgroup events if we are changing
  885	 * cgroup during ctxsw. Cgroup events were not scheduled
  886	 * out of ctxsw out if that was not the case.
  887	 */
  888	if (cgrp1 != cgrp2)
  889		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
  890
  891	rcu_read_unlock();
  892}
  893
  894static inline int perf_cgroup_connect(int fd, struct perf_event *event,
  895				      struct perf_event_attr *attr,
  896				      struct perf_event *group_leader)
  897{
  898	struct perf_cgroup *cgrp;
  899	struct cgroup_subsys_state *css;
  900	struct fd f = fdget(fd);
  901	int ret = 0;
  902
  903	if (!f.file)
 
  904		return -EBADF;
  905
  906	css = css_tryget_online_from_dir(f.file->f_path.dentry,
  907					 &perf_event_cgrp_subsys);
  908	if (IS_ERR(css)) {
  909		ret = PTR_ERR(css);
  910		goto out;
  911	}
  912
  913	cgrp = container_of(css, struct perf_cgroup, css);
  914	event->cgrp = cgrp;
  915
 
 
 
  916	/*
  917	 * all events in a group must monitor
  918	 * the same cgroup because a task belongs
  919	 * to only one perf cgroup at a time
  920	 */
  921	if (group_leader && group_leader->cgrp != cgrp) {
  922		perf_detach_cgroup(event);
  923		ret = -EINVAL;
  924	}
  925out:
  926	fdput(f);
  927	return ret;
  928}
  929
  930static inline void
  931perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
  932{
  933	struct perf_cgroup_info *t;
  934	t = per_cpu_ptr(event->cgrp->info, event->cpu);
  935	event->shadow_ctx_time = now - t->timestamp;
  936}
  937
  938/*
  939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
  940 * cleared when last cgroup event is removed.
  941 */
  942static inline void
  943list_update_cgroup_event(struct perf_event *event,
  944			 struct perf_event_context *ctx, bool add)
  945{
  946	struct perf_cpu_context *cpuctx;
  947	struct list_head *cpuctx_entry;
  948
  949	if (!is_cgroup_event(event))
  950		return;
  951
  952	/*
  953	 * Because cgroup events are always per-cpu events,
  954	 * this will always be called from the right CPU.
  955	 */
  956	cpuctx = __get_cpu_context(ctx);
  957
  958	/*
  959	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
  960	 * matching the event's cgroup, we must do this for every new event,
  961	 * because if the first would mismatch, the second would not try again
  962	 * and we would leave cpuctx->cgrp unset.
  963	 */
  964	if (add && !cpuctx->cgrp) {
  965		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
 
  966
  967		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
  968			cpuctx->cgrp = cgrp;
  969	}
 
 
 
  970
  971	if (add && ctx->nr_cgroups++)
  972		return;
  973	else if (!add && --ctx->nr_cgroups)
  974		return;
  975
  976	/* no cgroup running */
  977	if (!add)
  978		cpuctx->cgrp = NULL;
  979
  980	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
  981	if (add)
  982		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
  983	else
  984		list_del(cpuctx_entry);
 
 
  985}
  986
  987#else /* !CONFIG_CGROUP_PERF */
  988
  989static inline bool
  990perf_cgroup_match(struct perf_event *event)
  991{
  992	return true;
  993}
  994
  995static inline void perf_detach_cgroup(struct perf_event *event)
  996{}
  997
  998static inline int is_cgroup_event(struct perf_event *event)
  999{
 1000	return 0;
 1001}
 1002
 
 
 
 
 
 1003static inline void update_cgrp_time_from_event(struct perf_event *event)
 1004{
 1005}
 1006
 1007static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 1008{
 1009}
 1010
 1011static inline void perf_cgroup_sched_out(struct task_struct *task,
 1012					 struct task_struct *next)
 1013{
 1014}
 1015
 1016static inline void perf_cgroup_sched_in(struct task_struct *prev,
 1017					struct task_struct *task)
 1018{
 1019}
 1020
 1021static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
 1022				      struct perf_event_attr *attr,
 1023				      struct perf_event *group_leader)
 1024{
 1025	return -EINVAL;
 1026}
 1027
 1028static inline void
 1029perf_cgroup_set_timestamp(struct task_struct *task,
 1030			  struct perf_event_context *ctx)
 1031{
 1032}
 1033
 1034static inline void
 1035perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
 1036{
 1037}
 1038
 1039static inline void
 1040perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 1041{
 1042}
 1043
 1044static inline u64 perf_cgroup_event_time(struct perf_event *event)
 1045{
 1046	return 0;
 1047}
 1048
 1049static inline void
 1050list_update_cgroup_event(struct perf_event *event,
 1051			 struct perf_event_context *ctx, bool add)
 1052{
 1053}
 1054
 1055#endif
 1056
 1057/*
 1058 * set default to be dependent on timer tick just
 1059 * like original code
 1060 */
 1061#define PERF_CPU_HRTIMER (1000 / HZ)
 1062/*
 1063 * function must be called with interrupts disabled
 1064 */
 1065static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
 1066{
 1067	struct perf_cpu_context *cpuctx;
 1068	bool rotations;
 1069
 1070	lockdep_assert_irqs_disabled();
 1071
 1072	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
 1073	rotations = perf_rotate_context(cpuctx);
 1074
 1075	raw_spin_lock(&cpuctx->hrtimer_lock);
 1076	if (rotations)
 1077		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
 1078	else
 1079		cpuctx->hrtimer_active = 0;
 1080	raw_spin_unlock(&cpuctx->hrtimer_lock);
 1081
 1082	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
 1083}
 1084
 1085static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
 1086{
 1087	struct hrtimer *timer = &cpuctx->hrtimer;
 1088	struct pmu *pmu = cpuctx->ctx.pmu;
 1089	u64 interval;
 1090
 1091	/* no multiplexing needed for SW PMU */
 1092	if (pmu->task_ctx_nr == perf_sw_context)
 1093		return;
 1094
 1095	/*
 1096	 * check default is sane, if not set then force to
 1097	 * default interval (1/tick)
 1098	 */
 1099	interval = pmu->hrtimer_interval_ms;
 1100	if (interval < 1)
 1101		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
 1102
 1103	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
 1104
 1105	raw_spin_lock_init(&cpuctx->hrtimer_lock);
 1106	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
 1107	timer->function = perf_mux_hrtimer_handler;
 1108}
 1109
 1110static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
 1111{
 1112	struct hrtimer *timer = &cpuctx->hrtimer;
 1113	struct pmu *pmu = cpuctx->ctx.pmu;
 1114	unsigned long flags;
 1115
 1116	/* not for SW PMU */
 1117	if (pmu->task_ctx_nr == perf_sw_context)
 1118		return 0;
 1119
 1120	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
 1121	if (!cpuctx->hrtimer_active) {
 1122		cpuctx->hrtimer_active = 1;
 1123		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
 1124		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
 1125	}
 1126	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
 1127
 1128	return 0;
 1129}
 
 1130
 1131void perf_pmu_disable(struct pmu *pmu)
 1132{
 1133	int *count = this_cpu_ptr(pmu->pmu_disable_count);
 1134	if (!(*count)++)
 1135		pmu->pmu_disable(pmu);
 1136}
 1137
 1138void perf_pmu_enable(struct pmu *pmu)
 1139{
 1140	int *count = this_cpu_ptr(pmu->pmu_disable_count);
 1141	if (!--(*count))
 1142		pmu->pmu_enable(pmu);
 1143}
 1144
 1145static DEFINE_PER_CPU(struct list_head, active_ctx_list);
 1146
 1147/*
 1148 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 1149 * perf_event_task_tick() are fully serialized because they're strictly cpu
 1150 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 1151 * disabled, while perf_event_task_tick is called from IRQ context.
 1152 */
 1153static void perf_event_ctx_activate(struct perf_event_context *ctx)
 1154{
 1155	struct list_head *head = this_cpu_ptr(&active_ctx_list);
 1156
 1157	lockdep_assert_irqs_disabled();
 1158
 1159	WARN_ON(!list_empty(&ctx->active_ctx_list));
 1160
 1161	list_add(&ctx->active_ctx_list, head);
 1162}
 1163
 1164static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
 1165{
 1166	lockdep_assert_irqs_disabled();
 
 1167
 1168	WARN_ON(list_empty(&ctx->active_ctx_list));
 1169
 1170	list_del_init(&ctx->active_ctx_list);
 
 1171}
 1172
 1173static void get_ctx(struct perf_event_context *ctx)
 1174{
 1175	refcount_inc(&ctx->refcount);
 1176}
 1177
 1178static void free_ctx(struct rcu_head *head)
 1179{
 1180	struct perf_event_context *ctx;
 1181
 1182	ctx = container_of(head, struct perf_event_context, rcu_head);
 1183	kfree(ctx->task_ctx_data);
 1184	kfree(ctx);
 1185}
 1186
 1187static void put_ctx(struct perf_event_context *ctx)
 1188{
 1189	if (refcount_dec_and_test(&ctx->refcount)) {
 1190		if (ctx->parent_ctx)
 1191			put_ctx(ctx->parent_ctx);
 1192		if (ctx->task && ctx->task != TASK_TOMBSTONE)
 1193			put_task_struct(ctx->task);
 1194		call_rcu(&ctx->rcu_head, free_ctx);
 1195	}
 1196}
 1197
 1198/*
 1199 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 1200 * perf_pmu_migrate_context() we need some magic.
 1201 *
 1202 * Those places that change perf_event::ctx will hold both
 1203 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 1204 *
 1205 * Lock ordering is by mutex address. There are two other sites where
 1206 * perf_event_context::mutex nests and those are:
 1207 *
 1208 *  - perf_event_exit_task_context()	[ child , 0 ]
 1209 *      perf_event_exit_event()
 1210 *        put_event()			[ parent, 1 ]
 1211 *
 1212 *  - perf_event_init_context()		[ parent, 0 ]
 1213 *      inherit_task_group()
 1214 *        inherit_group()
 1215 *          inherit_event()
 1216 *            perf_event_alloc()
 1217 *              perf_init_event()
 1218 *                perf_try_init_event()	[ child , 1 ]
 1219 *
 1220 * While it appears there is an obvious deadlock here -- the parent and child
 1221 * nesting levels are inverted between the two. This is in fact safe because
 1222 * life-time rules separate them. That is an exiting task cannot fork, and a
 1223 * spawning task cannot (yet) exit.
 1224 *
 1225 * But remember that that these are parent<->child context relations, and
 1226 * migration does not affect children, therefore these two orderings should not
 1227 * interact.
 1228 *
 1229 * The change in perf_event::ctx does not affect children (as claimed above)
 1230 * because the sys_perf_event_open() case will install a new event and break
 1231 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 1232 * concerned with cpuctx and that doesn't have children.
 1233 *
 1234 * The places that change perf_event::ctx will issue:
 1235 *
 1236 *   perf_remove_from_context();
 1237 *   synchronize_rcu();
 1238 *   perf_install_in_context();
 1239 *
 1240 * to affect the change. The remove_from_context() + synchronize_rcu() should
 1241 * quiesce the event, after which we can install it in the new location. This
 1242 * means that only external vectors (perf_fops, prctl) can perturb the event
 1243 * while in transit. Therefore all such accessors should also acquire
 1244 * perf_event_context::mutex to serialize against this.
 1245 *
 1246 * However; because event->ctx can change while we're waiting to acquire
 1247 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 1248 * function.
 1249 *
 1250 * Lock order:
 1251 *    cred_guard_mutex
 1252 *	task_struct::perf_event_mutex
 1253 *	  perf_event_context::mutex
 1254 *	    perf_event::child_mutex;
 1255 *	      perf_event_context::lock
 1256 *	    perf_event::mmap_mutex
 1257 *	    mmap_sem
 1258 *	      perf_addr_filters_head::lock
 1259 *
 1260 *    cpu_hotplug_lock
 1261 *      pmus_lock
 1262 *	  cpuctx->mutex / perf_event_context::mutex
 1263 */
 1264static struct perf_event_context *
 1265perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
 1266{
 1267	struct perf_event_context *ctx;
 1268
 1269again:
 1270	rcu_read_lock();
 1271	ctx = READ_ONCE(event->ctx);
 1272	if (!refcount_inc_not_zero(&ctx->refcount)) {
 1273		rcu_read_unlock();
 1274		goto again;
 1275	}
 1276	rcu_read_unlock();
 1277
 1278	mutex_lock_nested(&ctx->mutex, nesting);
 1279	if (event->ctx != ctx) {
 1280		mutex_unlock(&ctx->mutex);
 1281		put_ctx(ctx);
 1282		goto again;
 1283	}
 1284
 1285	return ctx;
 1286}
 1287
 1288static inline struct perf_event_context *
 1289perf_event_ctx_lock(struct perf_event *event)
 1290{
 1291	return perf_event_ctx_lock_nested(event, 0);
 1292}
 1293
 1294static void perf_event_ctx_unlock(struct perf_event *event,
 1295				  struct perf_event_context *ctx)
 1296{
 1297	mutex_unlock(&ctx->mutex);
 1298	put_ctx(ctx);
 1299}
 1300
 1301/*
 1302 * This must be done under the ctx->lock, such as to serialize against
 1303 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 1304 * calling scheduler related locks and ctx->lock nests inside those.
 1305 */
 1306static __must_check struct perf_event_context *
 1307unclone_ctx(struct perf_event_context *ctx)
 1308{
 1309	struct perf_event_context *parent_ctx = ctx->parent_ctx;
 1310
 1311	lockdep_assert_held(&ctx->lock);
 1312
 1313	if (parent_ctx)
 1314		ctx->parent_ctx = NULL;
 1315	ctx->generation++;
 1316
 1317	return parent_ctx;
 1318}
 1319
 1320static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
 1321				enum pid_type type)
 1322{
 1323	u32 nr;
 1324	/*
 1325	 * only top level events have the pid namespace they were created in
 1326	 */
 1327	if (event->parent)
 1328		event = event->parent;
 1329
 1330	nr = __task_pid_nr_ns(p, type, event->ns);
 1331	/* avoid -1 if it is idle thread or runs in another ns */
 1332	if (!nr && !pid_alive(p))
 1333		nr = -1;
 1334	return nr;
 1335}
 1336
 1337static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
 1338{
 1339	return perf_event_pid_type(event, p, PIDTYPE_TGID);
 1340}
 1341
 1342static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
 1343{
 1344	return perf_event_pid_type(event, p, PIDTYPE_PID);
 
 
 
 
 
 
 1345}
 1346
 1347/*
 1348 * If we inherit events we want to return the parent event id
 1349 * to userspace.
 1350 */
 1351static u64 primary_event_id(struct perf_event *event)
 1352{
 1353	u64 id = event->id;
 1354
 1355	if (event->parent)
 1356		id = event->parent->id;
 1357
 1358	return id;
 1359}
 1360
 1361/*
 1362 * Get the perf_event_context for a task and lock it.
 1363 *
 1364 * This has to cope with with the fact that until it is locked,
 1365 * the context could get moved to another task.
 1366 */
 1367static struct perf_event_context *
 1368perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
 1369{
 1370	struct perf_event_context *ctx;
 1371
 1372retry:
 1373	/*
 1374	 * One of the few rules of preemptible RCU is that one cannot do
 1375	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
 1376	 * part of the read side critical section was irqs-enabled -- see
 1377	 * rcu_read_unlock_special().
 1378	 *
 1379	 * Since ctx->lock nests under rq->lock we must ensure the entire read
 1380	 * side critical section has interrupts disabled.
 1381	 */
 1382	local_irq_save(*flags);
 1383	rcu_read_lock();
 
 1384	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
 1385	if (ctx) {
 1386		/*
 1387		 * If this context is a clone of another, it might
 1388		 * get swapped for another underneath us by
 1389		 * perf_event_task_sched_out, though the
 1390		 * rcu_read_lock() protects us from any context
 1391		 * getting freed.  Lock the context and check if it
 1392		 * got swapped before we could get the lock, and retry
 1393		 * if so.  If we locked the right context, then it
 1394		 * can't get swapped on us any more.
 1395		 */
 1396		raw_spin_lock(&ctx->lock);
 1397		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
 1398			raw_spin_unlock(&ctx->lock);
 1399			rcu_read_unlock();
 1400			local_irq_restore(*flags);
 1401			goto retry;
 1402		}
 1403
 1404		if (ctx->task == TASK_TOMBSTONE ||
 1405		    !refcount_inc_not_zero(&ctx->refcount)) {
 1406			raw_spin_unlock(&ctx->lock);
 1407			ctx = NULL;
 1408		} else {
 1409			WARN_ON_ONCE(ctx->task != task);
 1410		}
 1411	}
 1412	rcu_read_unlock();
 1413	if (!ctx)
 1414		local_irq_restore(*flags);
 1415	return ctx;
 1416}
 1417
 1418/*
 1419 * Get the context for a task and increment its pin_count so it
 1420 * can't get swapped to another task.  This also increments its
 1421 * reference count so that the context can't get freed.
 1422 */
 1423static struct perf_event_context *
 1424perf_pin_task_context(struct task_struct *task, int ctxn)
 1425{
 1426	struct perf_event_context *ctx;
 1427	unsigned long flags;
 1428
 1429	ctx = perf_lock_task_context(task, ctxn, &flags);
 1430	if (ctx) {
 1431		++ctx->pin_count;
 1432		raw_spin_unlock_irqrestore(&ctx->lock, flags);
 1433	}
 1434	return ctx;
 1435}
 1436
 1437static void perf_unpin_context(struct perf_event_context *ctx)
 1438{
 1439	unsigned long flags;
 1440
 1441	raw_spin_lock_irqsave(&ctx->lock, flags);
 1442	--ctx->pin_count;
 1443	raw_spin_unlock_irqrestore(&ctx->lock, flags);
 1444}
 1445
 1446/*
 1447 * Update the record of the current time in a context.
 1448 */
 1449static void update_context_time(struct perf_event_context *ctx)
 1450{
 1451	u64 now = perf_clock();
 1452
 1453	ctx->time += now - ctx->timestamp;
 1454	ctx->timestamp = now;
 1455}
 1456
 1457static u64 perf_event_time(struct perf_event *event)
 1458{
 1459	struct perf_event_context *ctx = event->ctx;
 1460
 1461	if (is_cgroup_event(event))
 1462		return perf_cgroup_event_time(event);
 1463
 1464	return ctx ? ctx->time : 0;
 1465}
 1466
 1467static enum event_type_t get_event_type(struct perf_event *event)
 
 
 
 
 1468{
 1469	struct perf_event_context *ctx = event->ctx;
 1470	enum event_type_t event_type;
 1471
 1472	lockdep_assert_held(&ctx->lock);
 1473
 
 
 
 1474	/*
 1475	 * It's 'group type', really, because if our group leader is
 1476	 * pinned, so are we.
 
 
 
 
 
 
 1477	 */
 1478	if (event->group_leader != event)
 1479		event = event->group_leader;
 1480
 1481	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
 1482	if (!ctx->task)
 1483		event_type |= EVENT_CPU;
 1484
 1485	return event_type;
 1486}
 1487
 1488/*
 1489 * Helper function to initialize event group nodes.
 1490 */
 1491static void init_event_group(struct perf_event *event)
 1492{
 1493	RB_CLEAR_NODE(&event->group_node);
 1494	event->group_index = 0;
 1495}
 1496
 1497/*
 1498 * Extract pinned or flexible groups from the context
 1499 * based on event attrs bits.
 1500 */
 1501static struct perf_event_groups *
 1502get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
 1503{
 1504	if (event->attr.pinned)
 1505		return &ctx->pinned_groups;
 1506	else
 1507		return &ctx->flexible_groups;
 1508}
 1509
 1510/*
 1511 * Helper function to initializes perf_event_group trees.
 1512 */
 1513static void perf_event_groups_init(struct perf_event_groups *groups)
 1514{
 1515	groups->tree = RB_ROOT;
 1516	groups->index = 0;
 1517}
 1518
 1519/*
 1520 * Compare function for event groups;
 1521 *
 1522 * Implements complex key that first sorts by CPU and then by virtual index
 1523 * which provides ordering when rotating groups for the same CPU.
 1524 */
 1525static bool
 1526perf_event_groups_less(struct perf_event *left, struct perf_event *right)
 1527{
 1528	if (left->cpu < right->cpu)
 1529		return true;
 1530	if (left->cpu > right->cpu)
 1531		return false;
 1532
 1533	if (left->group_index < right->group_index)
 1534		return true;
 1535	if (left->group_index > right->group_index)
 1536		return false;
 1537
 1538	return false;
 1539}
 1540
 1541/*
 1542 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
 1543 * key (see perf_event_groups_less). This places it last inside the CPU
 1544 * subtree.
 1545 */
 1546static void
 1547perf_event_groups_insert(struct perf_event_groups *groups,
 1548			 struct perf_event *event)
 1549{
 1550	struct perf_event *node_event;
 1551	struct rb_node *parent;
 1552	struct rb_node **node;
 1553
 1554	event->group_index = ++groups->index;
 1555
 1556	node = &groups->tree.rb_node;
 1557	parent = *node;
 1558
 1559	while (*node) {
 1560		parent = *node;
 1561		node_event = container_of(*node, struct perf_event, group_node);
 1562
 1563		if (perf_event_groups_less(event, node_event))
 1564			node = &parent->rb_left;
 1565		else
 1566			node = &parent->rb_right;
 1567	}
 1568
 1569	rb_link_node(&event->group_node, parent, node);
 1570	rb_insert_color(&event->group_node, &groups->tree);
 1571}
 1572
 1573/*
 1574 * Helper function to insert event into the pinned or flexible groups.
 1575 */
 1576static void
 1577add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
 1578{
 1579	struct perf_event_groups *groups;
 1580
 1581	groups = get_event_groups(event, ctx);
 1582	perf_event_groups_insert(groups, event);
 1583}
 1584
 1585/*
 1586 * Delete a group from a tree.
 1587 */
 1588static void
 1589perf_event_groups_delete(struct perf_event_groups *groups,
 1590			 struct perf_event *event)
 1591{
 1592	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
 1593		     RB_EMPTY_ROOT(&groups->tree));
 1594
 1595	rb_erase(&event->group_node, &groups->tree);
 1596	init_event_group(event);
 1597}
 1598
 1599/*
 1600 * Helper function to delete event from its groups.
 1601 */
 1602static void
 1603del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
 1604{
 1605	struct perf_event_groups *groups;
 1606
 1607	groups = get_event_groups(event, ctx);
 1608	perf_event_groups_delete(groups, event);
 1609}
 1610
 1611/*
 1612 * Get the leftmost event in the @cpu subtree.
 1613 */
 1614static struct perf_event *
 1615perf_event_groups_first(struct perf_event_groups *groups, int cpu)
 1616{
 1617	struct perf_event *node_event = NULL, *match = NULL;
 1618	struct rb_node *node = groups->tree.rb_node;
 1619
 1620	while (node) {
 1621		node_event = container_of(node, struct perf_event, group_node);
 1622
 1623		if (cpu < node_event->cpu) {
 1624			node = node->rb_left;
 1625		} else if (cpu > node_event->cpu) {
 1626			node = node->rb_right;
 1627		} else {
 1628			match = node_event;
 1629			node = node->rb_left;
 1630		}
 1631	}
 1632
 1633	return match;
 
 
 1634}
 1635
 1636/*
 1637 * Like rb_entry_next_safe() for the @cpu subtree.
 1638 */
 1639static struct perf_event *
 1640perf_event_groups_next(struct perf_event *event)
 1641{
 1642	struct perf_event *next;
 1643
 1644	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
 1645	if (next && next->cpu == event->cpu)
 1646		return next;
 1647
 1648	return NULL;
 1649}
 1650
 1651/*
 1652 * Iterate through the whole groups tree.
 1653 */
 1654#define perf_event_groups_for_each(event, groups)			\
 1655	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
 1656				typeof(*event), group_node); event;	\
 1657		event = rb_entry_safe(rb_next(&event->group_node),	\
 1658				typeof(*event), group_node))
 1659
 1660/*
 1661 * Add an event from the lists for its context.
 1662 * Must be called with ctx->mutex and ctx->lock held.
 1663 */
 1664static void
 1665list_add_event(struct perf_event *event, struct perf_event_context *ctx)
 1666{
 1667	lockdep_assert_held(&ctx->lock);
 1668
 1669	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
 1670	event->attach_state |= PERF_ATTACH_CONTEXT;
 1671
 1672	event->tstamp = perf_event_time(event);
 1673
 1674	/*
 1675	 * If we're a stand alone event or group leader, we go to the context
 1676	 * list, group events are kept attached to the group so that
 1677	 * perf_group_detach can, at all times, locate all siblings.
 1678	 */
 1679	if (event->group_leader == event) {
 1680		event->group_caps = event->event_caps;
 1681		add_event_to_groups(event, ctx);
 
 
 
 
 
 1682	}
 1683
 1684	list_update_cgroup_event(event, ctx, true);
 
 1685
 1686	list_add_rcu(&event->event_entry, &ctx->event_list);
 
 
 1687	ctx->nr_events++;
 1688	if (event->attr.inherit_stat)
 1689		ctx->nr_stat++;
 1690
 1691	ctx->generation++;
 1692}
 1693
 1694/*
 1695 * Initialize event state based on the perf_event_attr::disabled.
 
 1696 */
 1697static inline void perf_event__state_init(struct perf_event *event)
 1698{
 1699	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
 1700					      PERF_EVENT_STATE_INACTIVE;
 1701}
 1702
 1703static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
 1704{
 1705	int entry = sizeof(u64); /* value */
 1706	int size = 0;
 1707	int nr = 1;
 1708
 1709	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
 1710		size += sizeof(u64);
 1711
 1712	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
 1713		size += sizeof(u64);
 1714
 1715	if (event->attr.read_format & PERF_FORMAT_ID)
 1716		entry += sizeof(u64);
 1717
 1718	if (event->attr.read_format & PERF_FORMAT_GROUP) {
 1719		nr += nr_siblings;
 1720		size += sizeof(u64);
 1721	}
 1722
 1723	size += entry * nr;
 1724	event->read_size = size;
 1725}
 1726
 1727static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
 1728{
 1729	struct perf_sample_data *data;
 
 1730	u16 size = 0;
 1731
 
 
 1732	if (sample_type & PERF_SAMPLE_IP)
 1733		size += sizeof(data->ip);
 1734
 1735	if (sample_type & PERF_SAMPLE_ADDR)
 1736		size += sizeof(data->addr);
 1737
 1738	if (sample_type & PERF_SAMPLE_PERIOD)
 1739		size += sizeof(data->period);
 1740
 1741	if (sample_type & PERF_SAMPLE_WEIGHT)
 1742		size += sizeof(data->weight);
 1743
 1744	if (sample_type & PERF_SAMPLE_READ)
 1745		size += event->read_size;
 1746
 1747	if (sample_type & PERF_SAMPLE_DATA_SRC)
 1748		size += sizeof(data->data_src.val);
 1749
 1750	if (sample_type & PERF_SAMPLE_TRANSACTION)
 1751		size += sizeof(data->txn);
 1752
 1753	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
 1754		size += sizeof(data->phys_addr);
 1755
 1756	event->header_size = size;
 1757}
 1758
 1759/*
 1760 * Called at perf_event creation and when events are attached/detached from a
 1761 * group.
 1762 */
 1763static void perf_event__header_size(struct perf_event *event)
 1764{
 1765	__perf_event_read_size(event,
 1766			       event->group_leader->nr_siblings);
 1767	__perf_event_header_size(event, event->attr.sample_type);
 1768}
 1769
 1770static void perf_event__id_header_size(struct perf_event *event)
 1771{
 1772	struct perf_sample_data *data;
 1773	u64 sample_type = event->attr.sample_type;
 1774	u16 size = 0;
 1775
 1776	if (sample_type & PERF_SAMPLE_TID)
 1777		size += sizeof(data->tid_entry);
 1778
 1779	if (sample_type & PERF_SAMPLE_TIME)
 1780		size += sizeof(data->time);
 1781
 1782	if (sample_type & PERF_SAMPLE_IDENTIFIER)
 1783		size += sizeof(data->id);
 1784
 1785	if (sample_type & PERF_SAMPLE_ID)
 1786		size += sizeof(data->id);
 1787
 1788	if (sample_type & PERF_SAMPLE_STREAM_ID)
 1789		size += sizeof(data->stream_id);
 1790
 1791	if (sample_type & PERF_SAMPLE_CPU)
 1792		size += sizeof(data->cpu_entry);
 1793
 1794	event->id_header_size = size;
 1795}
 1796
 1797static bool perf_event_validate_size(struct perf_event *event)
 1798{
 1799	/*
 1800	 * The values computed here will be over-written when we actually
 1801	 * attach the event.
 1802	 */
 1803	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
 1804	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
 1805	perf_event__id_header_size(event);
 1806
 1807	/*
 1808	 * Sum the lot; should not exceed the 64k limit we have on records.
 1809	 * Conservative limit to allow for callchains and other variable fields.
 1810	 */
 1811	if (event->read_size + event->header_size +
 1812	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
 1813		return false;
 1814
 1815	return true;
 1816}
 1817
 1818static void perf_group_attach(struct perf_event *event)
 1819{
 1820	struct perf_event *group_leader = event->group_leader, *pos;
 1821
 1822	lockdep_assert_held(&event->ctx->lock);
 1823
 1824	/*
 1825	 * We can have double attach due to group movement in perf_event_open.
 1826	 */
 1827	if (event->attach_state & PERF_ATTACH_GROUP)
 1828		return;
 1829
 1830	event->attach_state |= PERF_ATTACH_GROUP;
 1831
 1832	if (group_leader == event)
 1833		return;
 1834
 1835	WARN_ON_ONCE(group_leader->ctx != event->ctx);
 1836
 1837	group_leader->group_caps &= event->event_caps;
 1838
 1839	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
 1840	group_leader->nr_siblings++;
 1841
 1842	perf_event__header_size(group_leader);
 1843
 1844	for_each_sibling_event(pos, group_leader)
 1845		perf_event__header_size(pos);
 1846}
 1847
 1848/*
 1849 * Remove an event from the lists for its context.
 1850 * Must be called with ctx->mutex and ctx->lock held.
 1851 */
 1852static void
 1853list_del_event(struct perf_event *event, struct perf_event_context *ctx)
 1854{
 1855	WARN_ON_ONCE(event->ctx != ctx);
 1856	lockdep_assert_held(&ctx->lock);
 1857
 1858	/*
 1859	 * We can have double detach due to exit/hot-unplug + close.
 1860	 */
 1861	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
 1862		return;
 1863
 1864	event->attach_state &= ~PERF_ATTACH_CONTEXT;
 1865
 1866	list_update_cgroup_event(event, ctx, false);
 
 
 
 
 
 
 
 
 
 
 1867
 1868	ctx->nr_events--;
 1869	if (event->attr.inherit_stat)
 1870		ctx->nr_stat--;
 1871
 1872	list_del_rcu(&event->event_entry);
 1873
 1874	if (event->group_leader == event)
 1875		del_event_from_groups(event, ctx);
 
 
 1876
 1877	/*
 1878	 * If event was in error state, then keep it
 1879	 * that way, otherwise bogus counts will be
 1880	 * returned on read(). The only way to get out
 1881	 * of error state is by explicit re-enabling
 1882	 * of the event
 1883	 */
 1884	if (event->state > PERF_EVENT_STATE_OFF)
 1885		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
 1886
 1887	ctx->generation++;
 1888}
 1889
 1890static int
 1891perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
 1892{
 1893	if (!has_aux(aux_event))
 1894		return 0;
 1895
 1896	if (!event->pmu->aux_output_match)
 1897		return 0;
 1898
 1899	return event->pmu->aux_output_match(aux_event);
 1900}
 1901
 1902static void put_event(struct perf_event *event);
 1903static void event_sched_out(struct perf_event *event,
 1904			    struct perf_cpu_context *cpuctx,
 1905			    struct perf_event_context *ctx);
 1906
 1907static void perf_put_aux_event(struct perf_event *event)
 1908{
 1909	struct perf_event_context *ctx = event->ctx;
 1910	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 1911	struct perf_event *iter;
 1912
 1913	/*
 1914	 * If event uses aux_event tear down the link
 1915	 */
 1916	if (event->aux_event) {
 1917		iter = event->aux_event;
 1918		event->aux_event = NULL;
 1919		put_event(iter);
 1920		return;
 1921	}
 1922
 1923	/*
 1924	 * If the event is an aux_event, tear down all links to
 1925	 * it from other events.
 1926	 */
 1927	for_each_sibling_event(iter, event->group_leader) {
 1928		if (iter->aux_event != event)
 1929			continue;
 1930
 1931		iter->aux_event = NULL;
 1932		put_event(event);
 1933
 1934		/*
 1935		 * If it's ACTIVE, schedule it out and put it into ERROR
 1936		 * state so that we don't try to schedule it again. Note
 1937		 * that perf_event_enable() will clear the ERROR status.
 1938		 */
 1939		event_sched_out(iter, cpuctx, ctx);
 1940		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
 1941	}
 1942}
 1943
 1944static int perf_get_aux_event(struct perf_event *event,
 1945			      struct perf_event *group_leader)
 1946{
 1947	/*
 1948	 * Our group leader must be an aux event if we want to be
 1949	 * an aux_output. This way, the aux event will precede its
 1950	 * aux_output events in the group, and therefore will always
 1951	 * schedule first.
 1952	 */
 1953	if (!group_leader)
 1954		return 0;
 1955
 1956	if (!perf_aux_output_match(event, group_leader))
 1957		return 0;
 1958
 1959	if (!atomic_long_inc_not_zero(&group_leader->refcount))
 1960		return 0;
 1961
 1962	/*
 1963	 * Link aux_outputs to their aux event; this is undone in
 1964	 * perf_group_detach() by perf_put_aux_event(). When the
 1965	 * group in torn down, the aux_output events loose their
 1966	 * link to the aux_event and can't schedule any more.
 1967	 */
 1968	event->aux_event = group_leader;
 1969
 1970	return 1;
 1971}
 1972
 1973static void perf_group_detach(struct perf_event *event)
 1974{
 1975	struct perf_event *sibling, *tmp;
 1976	struct perf_event_context *ctx = event->ctx;
 1977
 1978	lockdep_assert_held(&ctx->lock);
 1979
 1980	/*
 1981	 * We can have double detach due to exit/hot-unplug + close.
 1982	 */
 1983	if (!(event->attach_state & PERF_ATTACH_GROUP))
 1984		return;
 1985
 1986	event->attach_state &= ~PERF_ATTACH_GROUP;
 1987
 1988	perf_put_aux_event(event);
 1989
 1990	/*
 1991	 * If this is a sibling, remove it from its group.
 1992	 */
 1993	if (event->group_leader != event) {
 1994		list_del_init(&event->sibling_list);
 1995		event->group_leader->nr_siblings--;
 1996		goto out;
 1997	}
 1998
 
 
 
 1999	/*
 2000	 * If this was a group event with sibling events then
 2001	 * upgrade the siblings to singleton events by adding them
 2002	 * to whatever list we are on.
 2003	 */
 2004	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
 2005
 
 2006		sibling->group_leader = sibling;
 2007		list_del_init(&sibling->sibling_list);
 2008
 2009		/* Inherit group flags from the previous leader */
 2010		sibling->group_caps = event->group_caps;
 2011
 2012		if (!RB_EMPTY_NODE(&event->group_node)) {
 2013			add_event_to_groups(sibling, event->ctx);
 2014
 2015			if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
 2016				struct list_head *list = sibling->attr.pinned ?
 2017					&ctx->pinned_active : &ctx->flexible_active;
 2018
 2019				list_add_tail(&sibling->active_list, list);
 2020			}
 2021		}
 2022
 2023		WARN_ON_ONCE(sibling->ctx != event->ctx);
 2024	}
 2025
 2026out:
 2027	perf_event__header_size(event->group_leader);
 2028
 2029	for_each_sibling_event(tmp, event->group_leader)
 2030		perf_event__header_size(tmp);
 2031}
 2032
 2033static bool is_orphaned_event(struct perf_event *event)
 2034{
 2035	return event->state == PERF_EVENT_STATE_DEAD;
 2036}
 2037
 2038static inline int __pmu_filter_match(struct perf_event *event)
 2039{
 2040	struct pmu *pmu = event->pmu;
 2041	return pmu->filter_match ? pmu->filter_match(event) : 1;
 2042}
 2043
 2044/*
 2045 * Check whether we should attempt to schedule an event group based on
 2046 * PMU-specific filtering. An event group can consist of HW and SW events,
 2047 * potentially with a SW leader, so we must check all the filters, to
 2048 * determine whether a group is schedulable:
 2049 */
 2050static inline int pmu_filter_match(struct perf_event *event)
 2051{
 2052	struct perf_event *sibling;
 2053
 2054	if (!__pmu_filter_match(event))
 2055		return 0;
 2056
 2057	for_each_sibling_event(sibling, event) {
 2058		if (!__pmu_filter_match(sibling))
 2059			return 0;
 2060	}
 2061
 2062	return 1;
 2063}
 2064
 2065static inline int
 2066event_filter_match(struct perf_event *event)
 2067{
 2068	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
 2069	       perf_cgroup_match(event) && pmu_filter_match(event);
 2070}
 2071
 2072static void
 2073event_sched_out(struct perf_event *event,
 2074		  struct perf_cpu_context *cpuctx,
 2075		  struct perf_event_context *ctx)
 2076{
 2077	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
 2078
 2079	WARN_ON_ONCE(event->ctx != ctx);
 2080	lockdep_assert_held(&ctx->lock);
 
 
 
 
 
 
 
 
 
 
 2081
 2082	if (event->state != PERF_EVENT_STATE_ACTIVE)
 2083		return;
 2084
 2085	/*
 2086	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
 2087	 * we can schedule events _OUT_ individually through things like
 2088	 * __perf_remove_from_context().
 2089	 */
 2090	list_del_init(&event->active_list);
 2091
 2092	perf_pmu_disable(event->pmu);
 2093
 2094	event->pmu->del(event, 0);
 2095	event->oncpu = -1;
 2096
 2097	if (READ_ONCE(event->pending_disable) >= 0) {
 2098		WRITE_ONCE(event->pending_disable, -1);
 2099		state = PERF_EVENT_STATE_OFF;
 2100	}
 2101	perf_event_set_state(event, state);
 2102
 2103	if (!is_software_event(event))
 2104		cpuctx->active_oncpu--;
 2105	if (!--ctx->nr_active)
 2106		perf_event_ctx_deactivate(ctx);
 2107	if (event->attr.freq && event->attr.sample_freq)
 2108		ctx->nr_freq--;
 2109	if (event->attr.exclusive || !cpuctx->active_oncpu)
 2110		cpuctx->exclusive = 0;
 2111
 2112	perf_pmu_enable(event->pmu);
 2113}
 2114
 2115static void
 2116group_sched_out(struct perf_event *group_event,
 2117		struct perf_cpu_context *cpuctx,
 2118		struct perf_event_context *ctx)
 2119{
 2120	struct perf_event *event;
 2121
 2122	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
 2123		return;
 2124
 2125	perf_pmu_disable(ctx->pmu);
 2126
 2127	event_sched_out(group_event, cpuctx, ctx);
 2128
 2129	/*
 2130	 * Schedule out siblings (if any):
 2131	 */
 2132	for_each_sibling_event(event, group_event)
 2133		event_sched_out(event, cpuctx, ctx);
 2134
 2135	perf_pmu_enable(ctx->pmu);
 2136
 2137	if (group_event->attr.exclusive)
 2138		cpuctx->exclusive = 0;
 2139}
 2140
 2141#define DETACH_GROUP	0x01UL
 2142
 2143/*
 2144 * Cross CPU call to remove a performance event
 2145 *
 2146 * We disable the event on the hardware level first. After that we
 2147 * remove it from the context list.
 2148 */
 2149static void
 2150__perf_remove_from_context(struct perf_event *event,
 2151			   struct perf_cpu_context *cpuctx,
 2152			   struct perf_event_context *ctx,
 2153			   void *info)
 2154{
 2155	unsigned long flags = (unsigned long)info;
 2156
 2157	if (ctx->is_active & EVENT_TIME) {
 2158		update_context_time(ctx);
 2159		update_cgrp_time_from_cpuctx(cpuctx);
 2160	}
 2161
 
 2162	event_sched_out(event, cpuctx, ctx);
 2163	if (flags & DETACH_GROUP)
 2164		perf_group_detach(event);
 2165	list_del_event(event, ctx);
 2166
 2167	if (!ctx->nr_events && ctx->is_active) {
 2168		ctx->is_active = 0;
 2169		if (ctx->task) {
 2170			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
 2171			cpuctx->task_ctx = NULL;
 2172		}
 2173	}
 
 
 
 2174}
 2175
 
 2176/*
 2177 * Remove the event from a task's (or a CPU's) list of events.
 2178 *
 
 
 
 2179 * If event->ctx is a cloned context, callers must make sure that
 2180 * every task struct that event->ctx->task could possibly point to
 2181 * remains valid.  This is OK when called from perf_release since
 2182 * that only calls us on the top-level context, which can't be a clone.
 2183 * When called from perf_event_exit_task, it's OK because the
 2184 * context has been detached from its task.
 2185 */
 2186static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
 2187{
 2188	struct perf_event_context *ctx = event->ctx;
 
 2189
 2190	lockdep_assert_held(&ctx->mutex);
 2191
 2192	event_function_call(event, __perf_remove_from_context, (void *)flags);
 
 
 
 
 
 
 
 
 
 
 
 2193
 
 2194	/*
 2195	 * The above event_function_call() can NO-OP when it hits
 2196	 * TASK_TOMBSTONE. In that case we must already have been detached
 2197	 * from the context (by perf_event_exit_event()) but the grouping
 2198	 * might still be in-tact.
 2199	 */
 2200	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
 2201	if ((flags & DETACH_GROUP) &&
 2202	    (event->attach_state & PERF_ATTACH_GROUP)) {
 2203		/*
 2204		 * Since in that case we cannot possibly be scheduled, simply
 2205		 * detach now.
 2206		 */
 2207		raw_spin_lock_irq(&ctx->lock);
 2208		perf_group_detach(event);
 2209		raw_spin_unlock_irq(&ctx->lock);
 
 2210	}
 
 
 
 
 
 
 
 2211}
 2212
 2213/*
 2214 * Cross CPU call to disable a performance event
 2215 */
 2216static void __perf_event_disable(struct perf_event *event,
 2217				 struct perf_cpu_context *cpuctx,
 2218				 struct perf_event_context *ctx,
 2219				 void *info)
 2220{
 2221	if (event->state < PERF_EVENT_STATE_INACTIVE)
 2222		return;
 
 
 
 
 
 
 
 
 
 
 
 2223
 2224	if (ctx->is_active & EVENT_TIME) {
 
 
 
 
 
 
 2225		update_context_time(ctx);
 2226		update_cgrp_time_from_event(event);
 
 
 
 
 
 
 2227	}
 2228
 2229	if (event == event->group_leader)
 2230		group_sched_out(event, cpuctx, ctx);
 2231	else
 2232		event_sched_out(event, cpuctx, ctx);
 2233
 2234	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
 2235}
 2236
 2237/*
 2238 * Disable an event.
 2239 *
 2240 * If event->ctx is a cloned context, callers must make sure that
 2241 * every task struct that event->ctx->task could possibly point to
 2242 * remains valid.  This condition is satisfied when called through
 2243 * perf_event_for_each_child or perf_event_for_each because they
 2244 * hold the top-level event's child_mutex, so any descendant that
 2245 * goes to exit will block in perf_event_exit_event().
 2246 *
 2247 * When called from perf_pending_event it's OK because event->ctx
 2248 * is the current context on this CPU and preemption is disabled,
 2249 * hence we can't get into perf_event_task_sched_out for this context.
 2250 */
 2251static void _perf_event_disable(struct perf_event *event)
 2252{
 2253	struct perf_event_context *ctx = event->ctx;
 
 2254
 2255	raw_spin_lock_irq(&ctx->lock);
 2256	if (event->state <= PERF_EVENT_STATE_OFF) {
 2257		raw_spin_unlock_irq(&ctx->lock);
 
 
 2258		return;
 2259	}
 2260	raw_spin_unlock_irq(&ctx->lock);
 2261
 2262	event_function_call(event, __perf_event_disable, NULL);
 2263}
 2264
 2265void perf_event_disable_local(struct perf_event *event)
 2266{
 2267	event_function_local(event, __perf_event_disable, NULL);
 2268}
 2269
 2270/*
 2271 * Strictly speaking kernel users cannot create groups and therefore this
 2272 * interface does not need the perf_event_ctx_lock() magic.
 2273 */
 2274void perf_event_disable(struct perf_event *event)
 2275{
 2276	struct perf_event_context *ctx;
 2277
 2278	ctx = perf_event_ctx_lock(event);
 2279	_perf_event_disable(event);
 2280	perf_event_ctx_unlock(event, ctx);
 2281}
 2282EXPORT_SYMBOL_GPL(perf_event_disable);
 
 
 
 
 
 
 
 
 2283
 2284void perf_event_disable_inatomic(struct perf_event *event)
 2285{
 2286	WRITE_ONCE(event->pending_disable, smp_processor_id());
 2287	/* can fail, see perf_pending_event_disable() */
 2288	irq_work_queue(&event->pending);
 
 
 
 
 2289}
 2290
 2291static void perf_set_shadow_time(struct perf_event *event,
 2292				 struct perf_event_context *ctx)
 
 2293{
 2294	/*
 2295	 * use the correct time source for the time snapshot
 2296	 *
 2297	 * We could get by without this by leveraging the
 2298	 * fact that to get to this function, the caller
 2299	 * has most likely already called update_context_time()
 2300	 * and update_cgrp_time_xx() and thus both timestamp
 2301	 * are identical (or very close). Given that tstamp is,
 2302	 * already adjusted for cgroup, we could say that:
 2303	 *    tstamp - ctx->timestamp
 2304	 * is equivalent to
 2305	 *    tstamp - cgrp->timestamp.
 2306	 *
 2307	 * Then, in perf_output_read(), the calculation would
 2308	 * work with no changes because:
 2309	 * - event is guaranteed scheduled in
 2310	 * - no scheduled out in between
 2311	 * - thus the timestamp would be the same
 2312	 *
 2313	 * But this is a bit hairy.
 2314	 *
 2315	 * So instead, we have an explicit cgroup call to remain
 2316	 * within the time time source all along. We believe it
 2317	 * is cleaner and simpler to understand.
 2318	 */
 2319	if (is_cgroup_event(event))
 2320		perf_cgroup_set_shadow_time(event, event->tstamp);
 2321	else
 2322		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
 2323}
 2324
 2325#define MAX_INTERRUPTS (~0ULL)
 2326
 2327static void perf_log_throttle(struct perf_event *event, int enable);
 2328static void perf_log_itrace_start(struct perf_event *event);
 2329
 2330static int
 2331event_sched_in(struct perf_event *event,
 2332		 struct perf_cpu_context *cpuctx,
 2333		 struct perf_event_context *ctx)
 2334{
 2335	int ret = 0;
 2336
 2337	lockdep_assert_held(&ctx->lock);
 2338
 2339	if (event->state <= PERF_EVENT_STATE_OFF)
 2340		return 0;
 2341
 2342	WRITE_ONCE(event->oncpu, smp_processor_id());
 2343	/*
 2344	 * Order event::oncpu write to happen before the ACTIVE state is
 2345	 * visible. This allows perf_event_{stop,read}() to observe the correct
 2346	 * ->oncpu if it sees ACTIVE.
 2347	 */
 2348	smp_wmb();
 2349	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
 2350
 2351	/*
 2352	 * Unthrottle events, since we scheduled we might have missed several
 2353	 * ticks already, also for a heavily scheduling task there is little
 2354	 * guarantee it'll get a tick in a timely manner.
 2355	 */
 2356	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
 2357		perf_log_throttle(event, 1);
 2358		event->hw.interrupts = 0;
 2359	}
 2360
 2361	perf_pmu_disable(event->pmu);
 2362
 2363	perf_set_shadow_time(event, ctx);
 2364
 2365	perf_log_itrace_start(event);
 2366
 2367	if (event->pmu->add(event, PERF_EF_START)) {
 2368		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
 2369		event->oncpu = -1;
 2370		ret = -EAGAIN;
 2371		goto out;
 2372	}
 2373
 
 
 
 
 2374	if (!is_software_event(event))
 2375		cpuctx->active_oncpu++;
 2376	if (!ctx->nr_active++)
 2377		perf_event_ctx_activate(ctx);
 2378	if (event->attr.freq && event->attr.sample_freq)
 2379		ctx->nr_freq++;
 2380
 2381	if (event->attr.exclusive)
 2382		cpuctx->exclusive = 1;
 2383
 2384out:
 2385	perf_pmu_enable(event->pmu);
 2386
 2387	return ret;
 2388}
 2389
 2390static int
 2391group_sched_in(struct perf_event *group_event,
 2392	       struct perf_cpu_context *cpuctx,
 2393	       struct perf_event_context *ctx)
 2394{
 2395	struct perf_event *event, *partial_group = NULL;
 2396	struct pmu *pmu = ctx->pmu;
 
 
 2397
 2398	if (group_event->state == PERF_EVENT_STATE_OFF)
 2399		return 0;
 2400
 2401	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
 2402
 2403	if (event_sched_in(group_event, cpuctx, ctx)) {
 2404		pmu->cancel_txn(pmu);
 2405		perf_mux_hrtimer_restart(cpuctx);
 2406		return -EAGAIN;
 2407	}
 2408
 2409	/*
 2410	 * Schedule in siblings as one group (if any):
 2411	 */
 2412	for_each_sibling_event(event, group_event) {
 2413		if (event_sched_in(event, cpuctx, ctx)) {
 2414			partial_group = event;
 2415			goto group_error;
 2416		}
 2417	}
 2418
 2419	if (!pmu->commit_txn(pmu))
 2420		return 0;
 2421
 2422group_error:
 2423	/*
 2424	 * Groups can be scheduled in as one unit only, so undo any
 2425	 * partial group before returning:
 2426	 * The events up to the failed event are scheduled out normally.
 
 
 
 
 
 
 
 
 
 2427	 */
 2428	for_each_sibling_event(event, group_event) {
 2429		if (event == partial_group)
 2430			break;
 2431
 2432		event_sched_out(event, cpuctx, ctx);
 
 
 
 
 
 2433	}
 2434	event_sched_out(group_event, cpuctx, ctx);
 2435
 2436	pmu->cancel_txn(pmu);
 2437
 2438	perf_mux_hrtimer_restart(cpuctx);
 2439
 2440	return -EAGAIN;
 2441}
 2442
 2443/*
 2444 * Work out whether we can put this event group on the CPU now.
 2445 */
 2446static int group_can_go_on(struct perf_event *event,
 2447			   struct perf_cpu_context *cpuctx,
 2448			   int can_add_hw)
 2449{
 2450	/*
 2451	 * Groups consisting entirely of software events can always go on.
 2452	 */
 2453	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
 2454		return 1;
 2455	/*
 2456	 * If an exclusive group is already on, no other hardware
 2457	 * events can go on.
 2458	 */
 2459	if (cpuctx->exclusive)
 2460		return 0;
 2461	/*
 2462	 * If this group is exclusive and there are already
 2463	 * events on the CPU, it can't go on.
 2464	 */
 2465	if (event->attr.exclusive && cpuctx->active_oncpu)
 2466		return 0;
 2467	/*
 2468	 * Otherwise, try to add it if all previous groups were able
 2469	 * to go on.
 2470	 */
 2471	return can_add_hw;
 2472}
 2473
 2474static void add_event_to_ctx(struct perf_event *event,
 2475			       struct perf_event_context *ctx)
 2476{
 
 
 2477	list_add_event(event, ctx);
 2478	perf_group_attach(event);
 
 
 
 2479}
 2480
 2481static void ctx_sched_out(struct perf_event_context *ctx,
 2482			  struct perf_cpu_context *cpuctx,
 2483			  enum event_type_t event_type);
 2484static void
 2485ctx_sched_in(struct perf_event_context *ctx,
 2486	     struct perf_cpu_context *cpuctx,
 2487	     enum event_type_t event_type,
 2488	     struct task_struct *task);
 2489
 2490static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
 2491			       struct perf_event_context *ctx,
 2492			       enum event_type_t event_type)
 2493{
 2494	if (!cpuctx->task_ctx)
 2495		return;
 2496
 2497	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
 2498		return;
 2499
 2500	ctx_sched_out(ctx, cpuctx, event_type);
 2501}
 2502
 2503static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
 2504				struct perf_event_context *ctx,
 2505				struct task_struct *task)
 2506{
 2507	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
 2508	if (ctx)
 2509		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
 2510	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
 2511	if (ctx)
 2512		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
 2513}
 2514
 2515/*
 2516 * We want to maintain the following priority of scheduling:
 2517 *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
 2518 *  - task pinned (EVENT_PINNED)
 2519 *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
 2520 *  - task flexible (EVENT_FLEXIBLE).
 2521 *
 2522 * In order to avoid unscheduling and scheduling back in everything every
 2523 * time an event is added, only do it for the groups of equal priority and
 2524 * below.
 2525 *
 2526 * This can be called after a batch operation on task events, in which case
 2527 * event_type is a bit mask of the types of events involved. For CPU events,
 2528 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
 2529 */
 2530static void ctx_resched(struct perf_cpu_context *cpuctx,
 2531			struct perf_event_context *task_ctx,
 2532			enum event_type_t event_type)
 2533{
 2534	enum event_type_t ctx_event_type;
 2535	bool cpu_event = !!(event_type & EVENT_CPU);
 2536
 2537	/*
 2538	 * If pinned groups are involved, flexible groups also need to be
 2539	 * scheduled out.
 2540	 */
 2541	if (event_type & EVENT_PINNED)
 2542		event_type |= EVENT_FLEXIBLE;
 2543
 2544	ctx_event_type = event_type & EVENT_ALL;
 2545
 2546	perf_pmu_disable(cpuctx->ctx.pmu);
 2547	if (task_ctx)
 2548		task_ctx_sched_out(cpuctx, task_ctx, event_type);
 2549
 2550	/*
 2551	 * Decide which cpu ctx groups to schedule out based on the types
 2552	 * of events that caused rescheduling:
 2553	 *  - EVENT_CPU: schedule out corresponding groups;
 2554	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
 2555	 *  - otherwise, do nothing more.
 2556	 */
 2557	if (cpu_event)
 2558		cpu_ctx_sched_out(cpuctx, ctx_event_type);
 2559	else if (ctx_event_type & EVENT_PINNED)
 2560		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
 2561
 2562	perf_event_sched_in(cpuctx, task_ctx, current);
 2563	perf_pmu_enable(cpuctx->ctx.pmu);
 2564}
 2565
 2566void perf_pmu_resched(struct pmu *pmu)
 2567{
 2568	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 2569	struct perf_event_context *task_ctx = cpuctx->task_ctx;
 2570
 2571	perf_ctx_lock(cpuctx, task_ctx);
 2572	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
 2573	perf_ctx_unlock(cpuctx, task_ctx);
 2574}
 2575
 2576/*
 2577 * Cross CPU call to install and enable a performance event
 2578 *
 2579 * Very similar to remote_function() + event_function() but cannot assume that
 2580 * things like ctx->is_active and cpuctx->task_ctx are set.
 2581 */
 2582static int  __perf_install_in_context(void *info)
 2583{
 2584	struct perf_event *event = info;
 2585	struct perf_event_context *ctx = event->ctx;
 2586	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 2587	struct perf_event_context *task_ctx = cpuctx->task_ctx;
 2588	bool reprogram = true;
 2589	int ret = 0;
 2590
 2591	raw_spin_lock(&cpuctx->ctx.lock);
 2592	if (ctx->task) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2593		raw_spin_lock(&ctx->lock);
 2594		task_ctx = ctx;
 
 2595
 2596		reprogram = (ctx->task == current);
 
 
 
 2597
 2598		/*
 2599		 * If the task is running, it must be running on this CPU,
 2600		 * otherwise we cannot reprogram things.
 2601		 *
 2602		 * If its not running, we don't care, ctx->lock will
 2603		 * serialize against it becoming runnable.
 2604		 */
 2605		if (task_curr(ctx->task) && !reprogram) {
 2606			ret = -ESRCH;
 2607			goto unlock;
 2608		}
 2609
 2610		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
 2611	} else if (task_ctx) {
 2612		raw_spin_lock(&task_ctx->lock);
 2613	}
 
 
 
 2614
 2615#ifdef CONFIG_CGROUP_PERF
 2616	if (is_cgroup_event(event)) {
 2617		/*
 2618		 * If the current cgroup doesn't match the event's
 2619		 * cgroup, we should not try to schedule it.
 2620		 */
 2621		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
 2622		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
 2623					event->cgrp->css.cgroup);
 2624	}
 2625#endif
 2626
 2627	if (reprogram) {
 2628		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
 2629		add_event_to_ctx(event, ctx);
 2630		ctx_resched(cpuctx, task_ctx, get_event_type(event));
 2631	} else {
 2632		add_event_to_ctx(event, ctx);
 2633	}
 2634
 2635unlock:
 2636	perf_ctx_unlock(cpuctx, task_ctx);
 2637
 2638	return ret;
 2639}
 2640
 2641static bool exclusive_event_installable(struct perf_event *event,
 2642					struct perf_event_context *ctx);
 2643
 2644/*
 2645 * Attach a performance event to a context.
 
 
 
 2646 *
 2647 * Very similar to event_function_call, see comment there.
 
 
 2648 */
 2649static void
 2650perf_install_in_context(struct perf_event_context *ctx,
 2651			struct perf_event *event,
 2652			int cpu)
 2653{
 2654	struct task_struct *task = READ_ONCE(ctx->task);
 2655
 2656	lockdep_assert_held(&ctx->mutex);
 2657
 2658	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
 2659
 2660	if (event->cpu != -1)
 2661		event->cpu = cpu;
 2662
 2663	/*
 2664	 * Ensures that if we can observe event->ctx, both the event and ctx
 2665	 * will be 'complete'. See perf_iterate_sb_cpu().
 2666	 */
 2667	smp_store_release(&event->ctx, ctx);
 2668
 2669	if (!task) {
 
 
 
 
 2670		cpu_function_call(cpu, __perf_install_in_context, event);
 2671		return;
 2672	}
 2673
 2674	/*
 2675	 * Should not happen, we validate the ctx is still alive before calling.
 2676	 */
 2677	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
 2678		return;
 2679
 2680	/*
 2681	 * Installing events is tricky because we cannot rely on ctx->is_active
 2682	 * to be set in case this is the nr_events 0 -> 1 transition.
 2683	 *
 2684	 * Instead we use task_curr(), which tells us if the task is running.
 2685	 * However, since we use task_curr() outside of rq::lock, we can race
 2686	 * against the actual state. This means the result can be wrong.
 2687	 *
 2688	 * If we get a false positive, we retry, this is harmless.
 2689	 *
 2690	 * If we get a false negative, things are complicated. If we are after
 2691	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
 2692	 * value must be correct. If we're before, it doesn't matter since
 2693	 * perf_event_context_sched_in() will program the counter.
 2694	 *
 2695	 * However, this hinges on the remote context switch having observed
 2696	 * our task->perf_event_ctxp[] store, such that it will in fact take
 2697	 * ctx::lock in perf_event_context_sched_in().
 2698	 *
 2699	 * We do this by task_function_call(), if the IPI fails to hit the task
 2700	 * we know any future context switch of task must see the
 2701	 * perf_event_ctpx[] store.
 2702	 */
 2703
 2704	/*
 2705	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
 2706	 * task_cpu() load, such that if the IPI then does not find the task
 2707	 * running, a future context switch of that task must observe the
 2708	 * store.
 2709	 */
 2710	smp_mb();
 2711again:
 2712	if (!task_function_call(task, __perf_install_in_context, event))
 2713		return;
 2714
 2715	raw_spin_lock_irq(&ctx->lock);
 2716	task = ctx->task;
 2717	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
 2718		/*
 2719		 * Cannot happen because we already checked above (which also
 2720		 * cannot happen), and we hold ctx->mutex, which serializes us
 2721		 * against perf_event_exit_task_context().
 2722		 */
 2723		raw_spin_unlock_irq(&ctx->lock);
 2724		return;
 2725	}
 2726	/*
 2727	 * If the task is not running, ctx->lock will avoid it becoming so,
 2728	 * thus we can safely install the event.
 2729	 */
 2730	if (task_curr(task)) {
 2731		raw_spin_unlock_irq(&ctx->lock);
 2732		goto again;
 2733	}
 
 
 
 
 
 2734	add_event_to_ctx(event, ctx);
 2735	raw_spin_unlock_irq(&ctx->lock);
 2736}
 2737
 2738/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2739 * Cross CPU call to enable a performance event
 2740 */
 2741static void __perf_event_enable(struct perf_event *event,
 2742				struct perf_cpu_context *cpuctx,
 2743				struct perf_event_context *ctx,
 2744				void *info)
 2745{
 
 
 2746	struct perf_event *leader = event->group_leader;
 2747	struct perf_event_context *task_ctx;
 
 2748
 2749	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
 2750	    event->state <= PERF_EVENT_STATE_ERROR)
 2751		return;
 
 
 2752
 2753	if (ctx->is_active)
 2754		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
 2755
 2756	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
 
 
 
 2757
 2758	if (!ctx->is_active)
 2759		return;
 2760
 2761	if (!event_filter_match(event)) {
 2762		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
 2763		return;
 
 2764	}
 2765
 2766	/*
 2767	 * If the event is in a group and isn't the group leader,
 2768	 * then don't put it on unless the group is on.
 2769	 */
 2770	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
 2771		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
 2772		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2773	}
 2774
 2775	task_ctx = cpuctx->task_ctx;
 2776	if (ctx->task)
 2777		WARN_ON_ONCE(task_ctx != ctx);
 2778
 2779	ctx_resched(cpuctx, task_ctx, get_event_type(event));
 2780}
 2781
 2782/*
 2783 * Enable an event.
 2784 *
 2785 * If event->ctx is a cloned context, callers must make sure that
 2786 * every task struct that event->ctx->task could possibly point to
 2787 * remains valid.  This condition is satisfied when called through
 2788 * perf_event_for_each_child or perf_event_for_each as described
 2789 * for perf_event_disable.
 2790 */
 2791static void _perf_event_enable(struct perf_event *event)
 2792{
 2793	struct perf_event_context *ctx = event->ctx;
 
 2794
 2795	raw_spin_lock_irq(&ctx->lock);
 2796	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
 2797	    event->state <  PERF_EVENT_STATE_ERROR) {
 2798		raw_spin_unlock_irq(&ctx->lock);
 
 2799		return;
 2800	}
 2801
 
 
 
 
 2802	/*
 2803	 * If the event is in error state, clear that first.
 2804	 *
 2805	 * That way, if we see the event in error state below, we know that it
 2806	 * has gone back into error state, as distinct from the task having
 2807	 * been scheduled away before the cross-call arrived.
 2808	 */
 2809	if (event->state == PERF_EVENT_STATE_ERROR)
 2810		event->state = PERF_EVENT_STATE_OFF;
 2811	raw_spin_unlock_irq(&ctx->lock);
 2812
 2813	event_function_call(event, __perf_event_enable, NULL);
 2814}
 2815
 2816/*
 2817 * See perf_event_disable();
 2818 */
 2819void perf_event_enable(struct perf_event *event)
 2820{
 2821	struct perf_event_context *ctx;
 2822
 2823	ctx = perf_event_ctx_lock(event);
 2824	_perf_event_enable(event);
 2825	perf_event_ctx_unlock(event, ctx);
 2826}
 2827EXPORT_SYMBOL_GPL(perf_event_enable);
 2828
 2829struct stop_event_data {
 2830	struct perf_event	*event;
 2831	unsigned int		restart;
 2832};
 2833
 2834static int __perf_event_stop(void *info)
 2835{
 2836	struct stop_event_data *sd = info;
 2837	struct perf_event *event = sd->event;
 2838
 2839	/* if it's already INACTIVE, do nothing */
 2840	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
 2841		return 0;
 2842
 2843	/* matches smp_wmb() in event_sched_in() */
 2844	smp_rmb();
 2845
 2846	/*
 2847	 * There is a window with interrupts enabled before we get here,
 2848	 * so we need to check again lest we try to stop another CPU's event.
 2849	 */
 2850	if (READ_ONCE(event->oncpu) != smp_processor_id())
 2851		return -EAGAIN;
 2852
 2853	event->pmu->stop(event, PERF_EF_UPDATE);
 2854
 2855	/*
 2856	 * May race with the actual stop (through perf_pmu_output_stop()),
 2857	 * but it is only used for events with AUX ring buffer, and such
 2858	 * events will refuse to restart because of rb::aux_mmap_count==0,
 2859	 * see comments in perf_aux_output_begin().
 2860	 *
 2861	 * Since this is happening on an event-local CPU, no trace is lost
 2862	 * while restarting.
 2863	 */
 2864	if (sd->restart)
 2865		event->pmu->start(event, 0);
 2866
 2867	return 0;
 2868}
 2869
 2870static int perf_event_stop(struct perf_event *event, int restart)
 2871{
 2872	struct stop_event_data sd = {
 2873		.event		= event,
 2874		.restart	= restart,
 2875	};
 2876	int ret = 0;
 2877
 2878	do {
 2879		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
 2880			return 0;
 2881
 2882		/* matches smp_wmb() in event_sched_in() */
 2883		smp_rmb();
 2884
 2885		/*
 2886		 * We only want to restart ACTIVE events, so if the event goes
 2887		 * inactive here (event->oncpu==-1), there's nothing more to do;
 2888		 * fall through with ret==-ENXIO.
 2889		 */
 2890		ret = cpu_function_call(READ_ONCE(event->oncpu),
 2891					__perf_event_stop, &sd);
 2892	} while (ret == -EAGAIN);
 2893
 2894	return ret;
 2895}
 2896
 2897/*
 2898 * In order to contain the amount of racy and tricky in the address filter
 2899 * configuration management, it is a two part process:
 2900 *
 2901 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
 2902 *      we update the addresses of corresponding vmas in
 2903 *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
 2904 * (p2) when an event is scheduled in (pmu::add), it calls
 2905 *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
 2906 *      if the generation has changed since the previous call.
 2907 *
 2908 * If (p1) happens while the event is active, we restart it to force (p2).
 2909 *
 2910 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
 2911 *     pre-existing mappings, called once when new filters arrive via SET_FILTER
 2912 *     ioctl;
 2913 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
 2914 *     registered mapping, called for every new mmap(), with mm::mmap_sem down
 2915 *     for reading;
 2916 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
 2917 *     of exec.
 2918 */
 2919void perf_event_addr_filters_sync(struct perf_event *event)
 2920{
 2921	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
 2922
 2923	if (!has_addr_filter(event))
 2924		return;
 2925
 2926	raw_spin_lock(&ifh->lock);
 2927	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
 2928		event->pmu->addr_filters_sync(event);
 2929		event->hw.addr_filters_gen = event->addr_filters_gen;
 2930	}
 2931	raw_spin_unlock(&ifh->lock);
 
 
 2932}
 2933EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
 2934
 2935static int _perf_event_refresh(struct perf_event *event, int refresh)
 2936{
 2937	/*
 2938	 * not supported on inherited events
 2939	 */
 2940	if (event->attr.inherit || !is_sampling_event(event))
 2941		return -EINVAL;
 2942
 2943	atomic_add(refresh, &event->event_limit);
 2944	_perf_event_enable(event);
 2945
 2946	return 0;
 2947}
 2948
 2949/*
 2950 * See perf_event_disable()
 2951 */
 2952int perf_event_refresh(struct perf_event *event, int refresh)
 2953{
 2954	struct perf_event_context *ctx;
 2955	int ret;
 2956
 2957	ctx = perf_event_ctx_lock(event);
 2958	ret = _perf_event_refresh(event, refresh);
 2959	perf_event_ctx_unlock(event, ctx);
 2960
 2961	return ret;
 2962}
 2963EXPORT_SYMBOL_GPL(perf_event_refresh);
 2964
 2965static int perf_event_modify_breakpoint(struct perf_event *bp,
 2966					 struct perf_event_attr *attr)
 2967{
 2968	int err;
 2969
 2970	_perf_event_disable(bp);
 2971
 2972	err = modify_user_hw_breakpoint_check(bp, attr, true);
 2973
 2974	if (!bp->attr.disabled)
 2975		_perf_event_enable(bp);
 2976
 2977	return err;
 2978}
 2979
 2980static int perf_event_modify_attr(struct perf_event *event,
 2981				  struct perf_event_attr *attr)
 2982{
 2983	if (event->attr.type != attr->type)
 2984		return -EINVAL;
 2985
 2986	switch (event->attr.type) {
 2987	case PERF_TYPE_BREAKPOINT:
 2988		return perf_event_modify_breakpoint(event, attr);
 2989	default:
 2990		/* Place holder for future additions. */
 2991		return -EOPNOTSUPP;
 2992	}
 2993}
 2994
 2995static void ctx_sched_out(struct perf_event_context *ctx,
 2996			  struct perf_cpu_context *cpuctx,
 2997			  enum event_type_t event_type)
 2998{
 2999	struct perf_event *event, *tmp;
 3000	int is_active = ctx->is_active;
 3001
 3002	lockdep_assert_held(&ctx->lock);
 3003
 3004	if (likely(!ctx->nr_events)) {
 3005		/*
 3006		 * See __perf_remove_from_context().
 3007		 */
 3008		WARN_ON_ONCE(ctx->is_active);
 3009		if (ctx->task)
 3010			WARN_ON_ONCE(cpuctx->task_ctx);
 3011		return;
 3012	}
 3013
 3014	ctx->is_active &= ~event_type;
 3015	if (!(ctx->is_active & EVENT_ALL))
 3016		ctx->is_active = 0;
 3017
 3018	if (ctx->task) {
 3019		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
 3020		if (!ctx->is_active)
 3021			cpuctx->task_ctx = NULL;
 3022	}
 3023
 3024	/*
 3025	 * Always update time if it was set; not only when it changes.
 3026	 * Otherwise we can 'forget' to update time for any but the last
 3027	 * context we sched out. For example:
 3028	 *
 3029	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
 3030	 *   ctx_sched_out(.event_type = EVENT_PINNED)
 3031	 *
 3032	 * would only update time for the pinned events.
 3033	 */
 3034	if (is_active & EVENT_TIME) {
 3035		/* update (and stop) ctx time */
 3036		update_context_time(ctx);
 3037		update_cgrp_time_from_cpuctx(cpuctx);
 3038	}
 3039
 3040	is_active ^= ctx->is_active; /* changed bits */
 3041
 3042	if (!ctx->nr_active || !(is_active & EVENT_ALL))
 3043		return;
 3044
 3045	/*
 3046	 * If we had been multiplexing, no rotations are necessary, now no events
 3047	 * are active.
 3048	 */
 3049	ctx->rotate_necessary = 0;
 3050
 3051	perf_pmu_disable(ctx->pmu);
 3052	if (is_active & EVENT_PINNED) {
 3053		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
 3054			group_sched_out(event, cpuctx, ctx);
 3055	}
 3056
 3057	if (is_active & EVENT_FLEXIBLE) {
 3058		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
 3059			group_sched_out(event, cpuctx, ctx);
 3060	}
 3061	perf_pmu_enable(ctx->pmu);
 3062}
 3063
 3064/*
 3065 * Test whether two contexts are equivalent, i.e. whether they have both been
 3066 * cloned from the same version of the same context.
 3067 *
 3068 * Equivalence is measured using a generation number in the context that is
 3069 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 3070 * and list_del_event().
 
 
 
 3071 */
 3072static int context_equiv(struct perf_event_context *ctx1,
 3073			 struct perf_event_context *ctx2)
 3074{
 3075	lockdep_assert_held(&ctx1->lock);
 3076	lockdep_assert_held(&ctx2->lock);
 3077
 3078	/* Pinning disables the swap optimization */
 3079	if (ctx1->pin_count || ctx2->pin_count)
 3080		return 0;
 3081
 3082	/* If ctx1 is the parent of ctx2 */
 3083	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
 3084		return 1;
 3085
 3086	/* If ctx2 is the parent of ctx1 */
 3087	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
 3088		return 1;
 3089
 3090	/*
 3091	 * If ctx1 and ctx2 have the same parent; we flatten the parent
 3092	 * hierarchy, see perf_event_init_context().
 3093	 */
 3094	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
 3095			ctx1->parent_gen == ctx2->parent_gen)
 3096		return 1;
 3097
 3098	/* Unmatched */
 3099	return 0;
 3100}
 3101
 3102static void __perf_event_sync_stat(struct perf_event *event,
 3103				     struct perf_event *next_event)
 3104{
 3105	u64 value;
 3106
 3107	if (!event->attr.inherit_stat)
 3108		return;
 3109
 3110	/*
 3111	 * Update the event value, we cannot use perf_event_read()
 3112	 * because we're in the middle of a context switch and have IRQs
 3113	 * disabled, which upsets smp_call_function_single(), however
 3114	 * we know the event must be on the current CPU, therefore we
 3115	 * don't need to use it.
 3116	 */
 3117	if (event->state == PERF_EVENT_STATE_ACTIVE)
 
 3118		event->pmu->read(event);
 
 3119
 3120	perf_event_update_time(event);
 
 
 
 
 
 
 3121
 3122	/*
 3123	 * In order to keep per-task stats reliable we need to flip the event
 3124	 * values when we flip the contexts.
 3125	 */
 3126	value = local64_read(&next_event->count);
 3127	value = local64_xchg(&event->count, value);
 3128	local64_set(&next_event->count, value);
 3129
 3130	swap(event->total_time_enabled, next_event->total_time_enabled);
 3131	swap(event->total_time_running, next_event->total_time_running);
 3132
 3133	/*
 3134	 * Since we swizzled the values, update the user visible data too.
 3135	 */
 3136	perf_event_update_userpage(event);
 3137	perf_event_update_userpage(next_event);
 3138}
 3139
 
 
 
 3140static void perf_event_sync_stat(struct perf_event_context *ctx,
 3141				   struct perf_event_context *next_ctx)
 3142{
 3143	struct perf_event *event, *next_event;
 3144
 3145	if (!ctx->nr_stat)
 3146		return;
 3147
 3148	update_context_time(ctx);
 3149
 3150	event = list_first_entry(&ctx->event_list,
 3151				   struct perf_event, event_entry);
 3152
 3153	next_event = list_first_entry(&next_ctx->event_list,
 3154					struct perf_event, event_entry);
 3155
 3156	while (&event->event_entry != &ctx->event_list &&
 3157	       &next_event->event_entry != &next_ctx->event_list) {
 3158
 3159		__perf_event_sync_stat(event, next_event);
 3160
 3161		event = list_next_entry(event, event_entry);
 3162		next_event = list_next_entry(next_event, event_entry);
 3163	}
 3164}
 3165
 3166static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
 3167					 struct task_struct *next)
 3168{
 3169	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
 3170	struct perf_event_context *next_ctx;
 3171	struct perf_event_context *parent, *next_parent;
 3172	struct perf_cpu_context *cpuctx;
 3173	int do_switch = 1;
 3174
 3175	if (likely(!ctx))
 3176		return;
 3177
 3178	cpuctx = __get_cpu_context(ctx);
 3179	if (!cpuctx->task_ctx)
 3180		return;
 3181
 3182	rcu_read_lock();
 3183	next_ctx = next->perf_event_ctxp[ctxn];
 3184	if (!next_ctx)
 3185		goto unlock;
 3186
 3187	parent = rcu_dereference(ctx->parent_ctx);
 3188	next_parent = rcu_dereference(next_ctx->parent_ctx);
 3189
 3190	/* If neither context have a parent context; they cannot be clones. */
 3191	if (!parent && !next_parent)
 3192		goto unlock;
 3193
 3194	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
 3195		/*
 3196		 * Looks like the two contexts are clones, so we might be
 3197		 * able to optimize the context switch.  We lock both
 3198		 * contexts and check that they are clones under the
 3199		 * lock (including re-checking that neither has been
 3200		 * uncloned in the meantime).  It doesn't matter which
 3201		 * order we take the locks because no other cpu could
 3202		 * be trying to lock both of these tasks.
 3203		 */
 3204		raw_spin_lock(&ctx->lock);
 3205		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
 3206		if (context_equiv(ctx, next_ctx)) {
 3207			WRITE_ONCE(ctx->task, next);
 3208			WRITE_ONCE(next_ctx->task, task);
 3209
 3210			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
 3211
 3212			/*
 3213			 * RCU_INIT_POINTER here is safe because we've not
 3214			 * modified the ctx and the above modification of
 3215			 * ctx->task and ctx->task_ctx_data are immaterial
 3216			 * since those values are always verified under
 3217			 * ctx->lock which we're now holding.
 3218			 */
 3219			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
 3220			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
 3221
 
 3222			do_switch = 0;
 3223
 3224			perf_event_sync_stat(ctx, next_ctx);
 3225		}
 3226		raw_spin_unlock(&next_ctx->lock);
 3227		raw_spin_unlock(&ctx->lock);
 3228	}
 3229unlock:
 3230	rcu_read_unlock();
 3231
 3232	if (do_switch) {
 3233		raw_spin_lock(&ctx->lock);
 3234		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
 
 3235		raw_spin_unlock(&ctx->lock);
 3236	}
 3237}
 3238
 3239static DEFINE_PER_CPU(struct list_head, sched_cb_list);
 3240
 3241void perf_sched_cb_dec(struct pmu *pmu)
 3242{
 3243	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 3244
 3245	this_cpu_dec(perf_sched_cb_usages);
 3246
 3247	if (!--cpuctx->sched_cb_usage)
 3248		list_del(&cpuctx->sched_cb_entry);
 3249}
 3250
 3251
 3252void perf_sched_cb_inc(struct pmu *pmu)
 3253{
 3254	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 3255
 3256	if (!cpuctx->sched_cb_usage++)
 3257		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
 3258
 3259	this_cpu_inc(perf_sched_cb_usages);
 3260}
 3261
 3262/*
 3263 * This function provides the context switch callback to the lower code
 3264 * layer. It is invoked ONLY when the context switch callback is enabled.
 3265 *
 3266 * This callback is relevant even to per-cpu events; for example multi event
 3267 * PEBS requires this to provide PID/TID information. This requires we flush
 3268 * all queued PEBS records before we context switch to a new task.
 3269 */
 3270static void perf_pmu_sched_task(struct task_struct *prev,
 3271				struct task_struct *next,
 3272				bool sched_in)
 3273{
 3274	struct perf_cpu_context *cpuctx;
 3275	struct pmu *pmu;
 3276
 3277	if (prev == next)
 3278		return;
 3279
 3280	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
 3281		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
 3282
 3283		if (WARN_ON_ONCE(!pmu->sched_task))
 3284			continue;
 3285
 3286		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
 3287		perf_pmu_disable(pmu);
 3288
 3289		pmu->sched_task(cpuctx->task_ctx, sched_in);
 3290
 3291		perf_pmu_enable(pmu);
 3292		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
 3293	}
 3294}
 3295
 3296static void perf_event_switch(struct task_struct *task,
 3297			      struct task_struct *next_prev, bool sched_in);
 3298
 3299#define for_each_task_context_nr(ctxn)					\
 3300	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
 3301
 3302/*
 3303 * Called from scheduler to remove the events of the current task,
 3304 * with interrupts disabled.
 3305 *
 3306 * We stop each event and update the event value in event->count.
 3307 *
 3308 * This does not protect us against NMI, but disable()
 3309 * sets the disabled bit in the control field of event _before_
 3310 * accessing the event control register. If a NMI hits, then it will
 3311 * not restart the event.
 3312 */
 3313void __perf_event_task_sched_out(struct task_struct *task,
 3314				 struct task_struct *next)
 3315{
 3316	int ctxn;
 3317
 3318	if (__this_cpu_read(perf_sched_cb_usages))
 3319		perf_pmu_sched_task(task, next, false);
 3320
 3321	if (atomic_read(&nr_switch_events))
 3322		perf_event_switch(task, next, false);
 3323
 3324	for_each_task_context_nr(ctxn)
 3325		perf_event_context_sched_out(task, ctxn, next);
 3326
 3327	/*
 3328	 * if cgroup events exist on this CPU, then we need
 3329	 * to check if we have to switch out PMU state.
 3330	 * cgroup event are system-wide mode only
 3331	 */
 3332	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
 3333		perf_cgroup_sched_out(task, next);
 3334}
 3335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3336/*
 3337 * Called with IRQs disabled
 3338 */
 3339static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
 3340			      enum event_type_t event_type)
 3341{
 3342	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
 3343}
 3344
 3345static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
 3346			      int (*func)(struct perf_event *, void *), void *data)
 3347{
 3348	struct perf_event **evt, *evt1, *evt2;
 3349	int ret;
 3350
 3351	evt1 = perf_event_groups_first(groups, -1);
 3352	evt2 = perf_event_groups_first(groups, cpu);
 3353
 3354	while (evt1 || evt2) {
 3355		if (evt1 && evt2) {
 3356			if (evt1->group_index < evt2->group_index)
 3357				evt = &evt1;
 3358			else
 3359				evt = &evt2;
 3360		} else if (evt1) {
 3361			evt = &evt1;
 3362		} else {
 3363			evt = &evt2;
 3364		}
 3365
 3366		ret = func(*evt, data);
 3367		if (ret)
 3368			return ret;
 3369
 3370		*evt = perf_event_groups_next(*evt);
 3371	}
 3372
 3373	return 0;
 3374}
 3375
 3376struct sched_in_data {
 3377	struct perf_event_context *ctx;
 3378	struct perf_cpu_context *cpuctx;
 3379	int can_add_hw;
 3380};
 3381
 3382static int pinned_sched_in(struct perf_event *event, void *data)
 3383{
 3384	struct sched_in_data *sid = data;
 3385
 3386	if (event->state <= PERF_EVENT_STATE_OFF)
 3387		return 0;
 3388
 3389	if (!event_filter_match(event))
 3390		return 0;
 3391
 3392	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
 3393		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
 3394			list_add_tail(&event->active_list, &sid->ctx->pinned_active);
 3395	}
 3396
 3397	/*
 3398	 * If this pinned group hasn't been scheduled,
 3399	 * put it in error state.
 3400	 */
 3401	if (event->state == PERF_EVENT_STATE_INACTIVE)
 3402		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
 3403
 3404	return 0;
 3405}
 3406
 3407static int flexible_sched_in(struct perf_event *event, void *data)
 3408{
 3409	struct sched_in_data *sid = data;
 
 
 3410
 3411	if (event->state <= PERF_EVENT_STATE_OFF)
 3412		return 0;
 
 3413
 3414	if (!event_filter_match(event))
 3415		return 0;
 3416
 3417	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
 3418		int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
 3419		if (ret) {
 3420			sid->can_add_hw = 0;
 3421			sid->ctx->rotate_necessary = 1;
 3422			return 0;
 
 3423		}
 3424		list_add_tail(&event->active_list, &sid->ctx->flexible_active);
 3425	}
 3426
 3427	return 0;
 3428}
 3429
 3430static void
 3431ctx_pinned_sched_in(struct perf_event_context *ctx,
 3432		    struct perf_cpu_context *cpuctx)
 3433{
 3434	struct sched_in_data sid = {
 3435		.ctx = ctx,
 3436		.cpuctx = cpuctx,
 3437		.can_add_hw = 1,
 3438	};
 3439
 3440	visit_groups_merge(&ctx->pinned_groups,
 3441			   smp_processor_id(),
 3442			   pinned_sched_in, &sid);
 3443}
 3444
 3445static void
 3446ctx_flexible_sched_in(struct perf_event_context *ctx,
 3447		      struct perf_cpu_context *cpuctx)
 3448{
 3449	struct sched_in_data sid = {
 3450		.ctx = ctx,
 3451		.cpuctx = cpuctx,
 3452		.can_add_hw = 1,
 3453	};
 
 
 
 
 
 
 
 
 3454
 3455	visit_groups_merge(&ctx->flexible_groups,
 3456			   smp_processor_id(),
 3457			   flexible_sched_in, &sid);
 
 
 
 
 
 
 3458}
 3459
 3460static void
 3461ctx_sched_in(struct perf_event_context *ctx,
 3462	     struct perf_cpu_context *cpuctx,
 3463	     enum event_type_t event_type,
 3464	     struct task_struct *task)
 3465{
 3466	int is_active = ctx->is_active;
 3467	u64 now;
 
 3468
 3469	lockdep_assert_held(&ctx->lock);
 3470
 3471	if (likely(!ctx->nr_events))
 3472		return;
 3473
 3474	ctx->is_active |= (event_type | EVENT_TIME);
 3475	if (ctx->task) {
 3476		if (!is_active)
 3477			cpuctx->task_ctx = ctx;
 3478		else
 3479			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
 3480	}
 3481
 3482	is_active ^= ctx->is_active; /* changed bits */
 3483
 3484	if (is_active & EVENT_TIME) {
 3485		/* start ctx time */
 3486		now = perf_clock();
 3487		ctx->timestamp = now;
 3488		perf_cgroup_set_timestamp(task, ctx);
 3489	}
 3490
 3491	/*
 3492	 * First go through the list and put on any pinned groups
 3493	 * in order to give them the best chance of going on.
 3494	 */
 3495	if (is_active & EVENT_PINNED)
 3496		ctx_pinned_sched_in(ctx, cpuctx);
 3497
 3498	/* Then walk through the lower prio flexible groups */
 3499	if (is_active & EVENT_FLEXIBLE)
 3500		ctx_flexible_sched_in(ctx, cpuctx);
 3501}
 3502
 3503static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
 3504			     enum event_type_t event_type,
 3505			     struct task_struct *task)
 3506{
 3507	struct perf_event_context *ctx = &cpuctx->ctx;
 3508
 3509	ctx_sched_in(ctx, cpuctx, event_type, task);
 3510}
 3511
 3512static void perf_event_context_sched_in(struct perf_event_context *ctx,
 3513					struct task_struct *task)
 3514{
 3515	struct perf_cpu_context *cpuctx;
 3516
 3517	cpuctx = __get_cpu_context(ctx);
 3518	if (cpuctx->task_ctx == ctx)
 3519		return;
 3520
 3521	perf_ctx_lock(cpuctx, ctx);
 3522	/*
 3523	 * We must check ctx->nr_events while holding ctx->lock, such
 3524	 * that we serialize against perf_install_in_context().
 3525	 */
 3526	if (!ctx->nr_events)
 3527		goto unlock;
 3528
 3529	perf_pmu_disable(ctx->pmu);
 3530	/*
 3531	 * We want to keep the following priority order:
 3532	 * cpu pinned (that don't need to move), task pinned,
 3533	 * cpu flexible, task flexible.
 3534	 *
 3535	 * However, if task's ctx is not carrying any pinned
 3536	 * events, no need to flip the cpuctx's events around.
 3537	 */
 3538	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
 3539		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
 3540	perf_event_sched_in(cpuctx, ctx, task);
 3541	perf_pmu_enable(ctx->pmu);
 3542
 3543unlock:
 
 
 3544	perf_ctx_unlock(cpuctx, ctx);
 
 
 
 
 
 
 3545}
 3546
 3547/*
 3548 * Called from scheduler to add the events of the current task
 3549 * with interrupts disabled.
 3550 *
 3551 * We restore the event value and then enable it.
 3552 *
 3553 * This does not protect us against NMI, but enable()
 3554 * sets the enabled bit in the control field of event _before_
 3555 * accessing the event control register. If a NMI hits, then it will
 3556 * keep the event running.
 3557 */
 3558void __perf_event_task_sched_in(struct task_struct *prev,
 3559				struct task_struct *task)
 3560{
 3561	struct perf_event_context *ctx;
 3562	int ctxn;
 3563
 3564	/*
 3565	 * If cgroup events exist on this CPU, then we need to check if we have
 3566	 * to switch in PMU state; cgroup event are system-wide mode only.
 3567	 *
 3568	 * Since cgroup events are CPU events, we must schedule these in before
 3569	 * we schedule in the task events.
 3570	 */
 3571	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
 3572		perf_cgroup_sched_in(prev, task);
 3573
 3574	for_each_task_context_nr(ctxn) {
 3575		ctx = task->perf_event_ctxp[ctxn];
 3576		if (likely(!ctx))
 3577			continue;
 3578
 3579		perf_event_context_sched_in(ctx, task);
 3580	}
 3581
 3582	if (atomic_read(&nr_switch_events))
 3583		perf_event_switch(task, prev, true);
 3584
 3585	if (__this_cpu_read(perf_sched_cb_usages))
 3586		perf_pmu_sched_task(prev, task, true);
 
 3587}
 3588
 3589static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
 3590{
 3591	u64 frequency = event->attr.sample_freq;
 3592	u64 sec = NSEC_PER_SEC;
 3593	u64 divisor, dividend;
 3594
 3595	int count_fls, nsec_fls, frequency_fls, sec_fls;
 3596
 3597	count_fls = fls64(count);
 3598	nsec_fls = fls64(nsec);
 3599	frequency_fls = fls64(frequency);
 3600	sec_fls = 30;
 3601
 3602	/*
 3603	 * We got @count in @nsec, with a target of sample_freq HZ
 3604	 * the target period becomes:
 3605	 *
 3606	 *             @count * 10^9
 3607	 * period = -------------------
 3608	 *          @nsec * sample_freq
 3609	 *
 3610	 */
 3611
 3612	/*
 3613	 * Reduce accuracy by one bit such that @a and @b converge
 3614	 * to a similar magnitude.
 3615	 */
 3616#define REDUCE_FLS(a, b)		\
 3617do {					\
 3618	if (a##_fls > b##_fls) {	\
 3619		a >>= 1;		\
 3620		a##_fls--;		\
 3621	} else {			\
 3622		b >>= 1;		\
 3623		b##_fls--;		\
 3624	}				\
 3625} while (0)
 3626
 3627	/*
 3628	 * Reduce accuracy until either term fits in a u64, then proceed with
 3629	 * the other, so that finally we can do a u64/u64 division.
 3630	 */
 3631	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
 3632		REDUCE_FLS(nsec, frequency);
 3633		REDUCE_FLS(sec, count);
 3634	}
 3635
 3636	if (count_fls + sec_fls > 64) {
 3637		divisor = nsec * frequency;
 3638
 3639		while (count_fls + sec_fls > 64) {
 3640			REDUCE_FLS(count, sec);
 3641			divisor >>= 1;
 3642		}
 3643
 3644		dividend = count * sec;
 3645	} else {
 3646		dividend = count * sec;
 3647
 3648		while (nsec_fls + frequency_fls > 64) {
 3649			REDUCE_FLS(nsec, frequency);
 3650			dividend >>= 1;
 3651		}
 3652
 3653		divisor = nsec * frequency;
 3654	}
 3655
 3656	if (!divisor)
 3657		return dividend;
 3658
 3659	return div64_u64(dividend, divisor);
 3660}
 3661
 3662static DEFINE_PER_CPU(int, perf_throttled_count);
 3663static DEFINE_PER_CPU(u64, perf_throttled_seq);
 3664
 3665static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
 3666{
 3667	struct hw_perf_event *hwc = &event->hw;
 3668	s64 period, sample_period;
 3669	s64 delta;
 3670
 3671	period = perf_calculate_period(event, nsec, count);
 3672
 3673	delta = (s64)(period - hwc->sample_period);
 3674	delta = (delta + 7) / 8; /* low pass filter */
 3675
 3676	sample_period = hwc->sample_period + delta;
 3677
 3678	if (!sample_period)
 3679		sample_period = 1;
 3680
 3681	hwc->sample_period = sample_period;
 3682
 3683	if (local64_read(&hwc->period_left) > 8*sample_period) {
 3684		if (disable)
 3685			event->pmu->stop(event, PERF_EF_UPDATE);
 3686
 3687		local64_set(&hwc->period_left, 0);
 3688
 3689		if (disable)
 3690			event->pmu->start(event, PERF_EF_RELOAD);
 3691	}
 3692}
 3693
 3694/*
 3695 * combine freq adjustment with unthrottling to avoid two passes over the
 3696 * events. At the same time, make sure, having freq events does not change
 3697 * the rate of unthrottling as that would introduce bias.
 3698 */
 3699static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
 3700					   int needs_unthr)
 3701{
 3702	struct perf_event *event;
 3703	struct hw_perf_event *hwc;
 3704	u64 now, period = TICK_NSEC;
 3705	s64 delta;
 3706
 3707	/*
 3708	 * only need to iterate over all events iff:
 3709	 * - context have events in frequency mode (needs freq adjust)
 3710	 * - there are events to unthrottle on this cpu
 3711	 */
 3712	if (!(ctx->nr_freq || needs_unthr))
 3713		return;
 3714
 3715	raw_spin_lock(&ctx->lock);
 3716	perf_pmu_disable(ctx->pmu);
 3717
 3718	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
 3719		if (event->state != PERF_EVENT_STATE_ACTIVE)
 3720			continue;
 3721
 3722		if (!event_filter_match(event))
 3723			continue;
 3724
 3725		perf_pmu_disable(event->pmu);
 3726
 3727		hwc = &event->hw;
 3728
 3729		if (hwc->interrupts == MAX_INTERRUPTS) {
 3730			hwc->interrupts = 0;
 
 
 
 
 
 3731			perf_log_throttle(event, 1);
 3732			event->pmu->start(event, 0);
 3733		}
 3734
 3735		if (!event->attr.freq || !event->attr.sample_freq)
 3736			goto next;
 3737
 3738		/*
 3739		 * stop the event and update event->count
 3740		 */
 3741		event->pmu->stop(event, PERF_EF_UPDATE);
 3742
 
 3743		now = local64_read(&event->count);
 3744		delta = now - hwc->freq_count_stamp;
 3745		hwc->freq_count_stamp = now;
 3746
 3747		/*
 3748		 * restart the event
 3749		 * reload only if value has changed
 3750		 * we have stopped the event so tell that
 3751		 * to perf_adjust_period() to avoid stopping it
 3752		 * twice.
 3753		 */
 3754		if (delta > 0)
 3755			perf_adjust_period(event, period, delta, false);
 3756
 3757		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
 3758	next:
 3759		perf_pmu_enable(event->pmu);
 3760	}
 3761
 3762	perf_pmu_enable(ctx->pmu);
 3763	raw_spin_unlock(&ctx->lock);
 3764}
 3765
 3766/*
 3767 * Move @event to the tail of the @ctx's elegible events.
 3768 */
 3769static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
 3770{
 3771	/*
 3772	 * Rotate the first entry last of non-pinned groups. Rotation might be
 3773	 * disabled by the inheritance code.
 3774	 */
 3775	if (ctx->rotate_disable)
 3776		return;
 3777
 3778	perf_event_groups_delete(&ctx->flexible_groups, event);
 3779	perf_event_groups_insert(&ctx->flexible_groups, event);
 3780}
 3781
 3782/* pick an event from the flexible_groups to rotate */
 3783static inline struct perf_event *
 3784ctx_event_to_rotate(struct perf_event_context *ctx)
 
 
 
 3785{
 3786	struct perf_event *event;
 
 
 3787
 3788	/* pick the first active flexible event */
 3789	event = list_first_entry_or_null(&ctx->flexible_active,
 3790					 struct perf_event, active_list);
 3791
 3792	/* if no active flexible event, pick the first event */
 3793	if (!event) {
 3794		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
 3795				      typeof(*event), group_node);
 3796	}
 3797
 3798	return event;
 3799}
 3800
 3801static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
 3802{
 3803	struct perf_event *cpu_event = NULL, *task_event = NULL;
 3804	struct perf_event_context *task_ctx = NULL;
 3805	int cpu_rotate, task_rotate;
 3806
 3807	/*
 3808	 * Since we run this from IRQ context, nobody can install new
 3809	 * events, thus the event count values are stable.
 3810	 */
 
 3811
 3812	cpu_rotate = cpuctx->ctx.rotate_necessary;
 3813	task_ctx = cpuctx->task_ctx;
 3814	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
 3815
 3816	if (!(cpu_rotate || task_rotate))
 3817		return false;
 
 3818
 3819	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
 3820	perf_pmu_disable(cpuctx->ctx.pmu);
 
 3821
 3822	if (task_rotate)
 3823		task_event = ctx_event_to_rotate(task_ctx);
 3824	if (cpu_rotate)
 3825		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
 3826
 3827	/*
 3828	 * As per the order given at ctx_resched() first 'pop' task flexible
 3829	 * and then, if needed CPU flexible.
 3830	 */
 3831	if (task_event || (task_ctx && cpu_event))
 3832		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
 3833	if (cpu_event)
 3834		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
 3835
 3836	if (task_event)
 3837		rotate_ctx(task_ctx, task_event);
 3838	if (cpu_event)
 3839		rotate_ctx(&cpuctx->ctx, cpu_event);
 3840
 3841	perf_event_sched_in(cpuctx, task_ctx, current);
 
 
 3842
 3843	perf_pmu_enable(cpuctx->ctx.pmu);
 3844	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
 3845
 3846	return true;
 3847}
 3848
 3849void perf_event_task_tick(void)
 3850{
 3851	struct list_head *head = this_cpu_ptr(&active_ctx_list);
 3852	struct perf_event_context *ctx, *tmp;
 3853	int throttled;
 3854
 3855	lockdep_assert_irqs_disabled();
 3856
 3857	__this_cpu_inc(perf_throttled_seq);
 3858	throttled = __this_cpu_xchg(perf_throttled_count, 0);
 3859	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
 3860
 3861	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
 3862		perf_adjust_freq_unthr_context(ctx, throttled);
 
 
 
 
 
 3863}
 3864
 3865static int event_enable_on_exec(struct perf_event *event,
 3866				struct perf_event_context *ctx)
 3867{
 3868	if (!event->attr.enable_on_exec)
 3869		return 0;
 3870
 3871	event->attr.enable_on_exec = 0;
 3872	if (event->state >= PERF_EVENT_STATE_INACTIVE)
 3873		return 0;
 3874
 3875	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
 3876
 3877	return 1;
 3878}
 3879
 3880/*
 3881 * Enable all of a task's events that have been marked enable-on-exec.
 3882 * This expects task == current.
 3883 */
 3884static void perf_event_enable_on_exec(int ctxn)
 3885{
 3886	struct perf_event_context *ctx, *clone_ctx = NULL;
 3887	enum event_type_t event_type = 0;
 3888	struct perf_cpu_context *cpuctx;
 3889	struct perf_event *event;
 3890	unsigned long flags;
 3891	int enabled = 0;
 
 3892
 3893	local_irq_save(flags);
 3894	ctx = current->perf_event_ctxp[ctxn];
 3895	if (!ctx || !ctx->nr_events)
 3896		goto out;
 3897
 3898	cpuctx = __get_cpu_context(ctx);
 3899	perf_ctx_lock(cpuctx, ctx);
 3900	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
 3901	list_for_each_entry(event, &ctx->event_list, event_entry) {
 3902		enabled |= event_enable_on_exec(event, ctx);
 3903		event_type |= get_event_type(event);
 3904	}
 3905
 3906	/*
 3907	 * Unclone and reschedule this context if we enabled any event.
 
 
 
 
 3908	 */
 3909	if (enabled) {
 3910		clone_ctx = unclone_ctx(ctx);
 3911		ctx_resched(cpuctx, ctx, event_type);
 3912	} else {
 3913		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
 3914	}
 3915	perf_ctx_unlock(cpuctx, ctx);
 3916
 3917out:
 3918	local_irq_restore(flags);
 3919
 3920	if (clone_ctx)
 3921		put_ctx(clone_ctx);
 3922}
 3923
 3924struct perf_read_data {
 3925	struct perf_event *event;
 3926	bool group;
 3927	int ret;
 3928};
 3929
 3930static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
 3931{
 3932	u16 local_pkg, event_pkg;
 
 
 3933
 3934	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
 3935		int local_cpu = smp_processor_id();
 
 
 
 3936
 3937		event_pkg = topology_physical_package_id(event_cpu);
 3938		local_pkg = topology_physical_package_id(local_cpu);
 
 
 
 3939
 3940		if (event_pkg == local_pkg)
 3941			return local_cpu;
 3942	}
 3943
 3944	return event_cpu;
 
 
 
 
 
 3945}
 3946
 3947/*
 3948 * Cross CPU call to read the hardware event
 3949 */
 3950static void __perf_event_read(void *info)
 3951{
 3952	struct perf_read_data *data = info;
 3953	struct perf_event *sub, *event = data->event;
 3954	struct perf_event_context *ctx = event->ctx;
 3955	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 3956	struct pmu *pmu = event->pmu;
 3957
 3958	/*
 3959	 * If this is a task context, we need to check whether it is
 3960	 * the current task context of this cpu.  If not it has been
 3961	 * scheduled out before the smp call arrived.  In that case
 3962	 * event->count would have been updated to a recent sample
 3963	 * when the event was scheduled out.
 3964	 */
 3965	if (ctx->task && cpuctx->task_ctx != ctx)
 3966		return;
 3967
 3968	raw_spin_lock(&ctx->lock);
 3969	if (ctx->is_active & EVENT_TIME) {
 3970		update_context_time(ctx);
 3971		update_cgrp_time_from_event(event);
 3972	}
 
 
 
 
 
 3973
 3974	perf_event_update_time(event);
 3975	if (data->group)
 3976		perf_event_update_sibling_time(event);
 
 3977
 3978	if (event->state != PERF_EVENT_STATE_ACTIVE)
 3979		goto unlock;
 
 
 
 
 
 
 
 
 
 
 3980
 3981	if (!data->group) {
 3982		pmu->read(event);
 3983		data->ret = 0;
 3984		goto unlock;
 
 
 
 
 
 
 
 
 3985	}
 3986
 3987	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
 
 
 
 
 
 3988
 3989	pmu->read(event);
 
 
 
 3990
 3991	for_each_sibling_event(sub, event) {
 3992		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
 3993			/*
 3994			 * Use sibling's PMU rather than @event's since
 3995			 * sibling could be on different (eg: software) PMU.
 3996			 */
 3997			sub->pmu->read(sub);
 3998		}
 3999	}
 4000
 4001	data->ret = pmu->commit_txn(pmu);
 4002
 4003unlock:
 4004	raw_spin_unlock(&ctx->lock);
 
 4005}
 4006
 4007static inline u64 perf_event_count(struct perf_event *event)
 
 4008{
 4009	return local64_read(&event->count) + atomic64_read(&event->child_count);
 4010}
 4011
 4012/*
 4013 * NMI-safe method to read a local event, that is an event that
 4014 * is:
 4015 *   - either for the current task, or for this CPU
 4016 *   - does not have inherit set, for inherited task events
 4017 *     will not be local and we cannot read them atomically
 4018 *   - must not have a pmu::count method
 4019 */
 4020int perf_event_read_local(struct perf_event *event, u64 *value,
 4021			  u64 *enabled, u64 *running)
 4022{
 4023	unsigned long flags;
 4024	int ret = 0;
 4025
 4026	/*
 4027	 * Disabling interrupts avoids all counter scheduling (context
 4028	 * switches, timer based rotation and IPIs).
 4029	 */
 4030	local_irq_save(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4031
 4032	/*
 4033	 * It must not be an event with inherit set, we cannot read
 4034	 * all child counters from atomic context.
 
 4035	 */
 4036	if (event->attr.inherit) {
 4037		ret = -EOPNOTSUPP;
 4038		goto out;
 4039	}
 4040
 4041	/* If this is a per-task event, it must be for current */
 4042	if ((event->attach_state & PERF_ATTACH_TASK) &&
 4043	    event->hw.target != current) {
 4044		ret = -EINVAL;
 4045		goto out;
 
 
 
 
 
 
 4046	}
 4047
 4048	/* If this is a per-CPU event, it must be for this CPU */
 4049	if (!(event->attach_state & PERF_ATTACH_TASK) &&
 4050	    event->cpu != smp_processor_id()) {
 4051		ret = -EINVAL;
 4052		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4053	}
 4054
 4055	/* If this is a pinned event it must be running on this CPU */
 4056	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
 4057		ret = -EBUSY;
 4058		goto out;
 
 4059	}
 4060
 4061	/*
 4062	 * If the event is currently on this CPU, its either a per-task event,
 4063	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
 4064	 * oncpu == -1).
 4065	 */
 4066	if (event->oncpu == smp_processor_id())
 4067		event->pmu->read(event);
 
 4068
 4069	*value = local64_read(&event->count);
 4070	if (enabled || running) {
 4071		u64 now = event->shadow_ctx_time + perf_clock();
 4072		u64 __enabled, __running;
 4073
 4074		__perf_update_times(event, now, &__enabled, &__running);
 4075		if (enabled)
 4076			*enabled = __enabled;
 4077		if (running)
 4078			*running = __running;
 4079	}
 4080out:
 4081	local_irq_restore(flags);
 4082
 4083	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4084}
 4085
 4086static int perf_event_read(struct perf_event *event, bool group)
 4087{
 4088	enum perf_event_state state = READ_ONCE(event->state);
 4089	int event_cpu, ret = 0;
 
 4090
 4091	/*
 4092	 * If event is enabled and currently active on a CPU, update the
 4093	 * value in the event structure:
 4094	 */
 4095again:
 4096	if (state == PERF_EVENT_STATE_ACTIVE) {
 4097		struct perf_read_data data;
 4098
 4099		/*
 4100		 * Orders the ->state and ->oncpu loads such that if we see
 4101		 * ACTIVE we must also see the right ->oncpu.
 4102		 *
 4103		 * Matches the smp_wmb() from event_sched_in().
 4104		 */
 4105		smp_rmb();
 4106
 4107		event_cpu = READ_ONCE(event->oncpu);
 4108		if ((unsigned)event_cpu >= nr_cpu_ids)
 4109			return 0;
 4110
 4111		data = (struct perf_read_data){
 4112			.event = event,
 4113			.group = group,
 4114			.ret = 0,
 4115		};
 4116
 4117		preempt_disable();
 4118		event_cpu = __perf_event_read_cpu(event, event_cpu);
 4119
 4120		/*
 4121		 * Purposely ignore the smp_call_function_single() return
 4122		 * value.
 4123		 *
 4124		 * If event_cpu isn't a valid CPU it means the event got
 4125		 * scheduled out and that will have updated the event count.
 4126		 *
 4127		 * Therefore, either way, we'll have an up-to-date event count
 4128		 * after this.
 4129		 */
 4130		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
 4131		preempt_enable();
 4132		ret = data.ret;
 4133
 4134	} else if (state == PERF_EVENT_STATE_INACTIVE) {
 4135		struct perf_event_context *ctx = event->ctx;
 4136		unsigned long flags;
 
 
 4137
 4138		raw_spin_lock_irqsave(&ctx->lock, flags);
 4139		state = event->state;
 4140		if (state != PERF_EVENT_STATE_INACTIVE) {
 4141			raw_spin_unlock_irqrestore(&ctx->lock, flags);
 4142			goto again;
 4143		}
 4144
 4145		/*
 4146		 * May read while context is not active (e.g., thread is
 4147		 * blocked), in that case we cannot update context time
 4148		 */
 4149		if (ctx->is_active & EVENT_TIME) {
 4150			update_context_time(ctx);
 4151			update_cgrp_time_from_event(event);
 4152		}
 4153
 4154		perf_event_update_time(event);
 4155		if (group)
 4156			perf_event_update_sibling_time(event);
 4157		raw_spin_unlock_irqrestore(&ctx->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 4158	}
 4159
 4160	return ret;
 
 
 
 
 
 
 
 
 4161}
 4162
 4163/*
 4164 * Initialize the perf_event context in a task_struct:
 4165 */
 4166static void __perf_event_init_context(struct perf_event_context *ctx)
 4167{
 4168	raw_spin_lock_init(&ctx->lock);
 4169	mutex_init(&ctx->mutex);
 4170	INIT_LIST_HEAD(&ctx->active_ctx_list);
 4171	perf_event_groups_init(&ctx->pinned_groups);
 4172	perf_event_groups_init(&ctx->flexible_groups);
 4173	INIT_LIST_HEAD(&ctx->event_list);
 4174	INIT_LIST_HEAD(&ctx->pinned_active);
 4175	INIT_LIST_HEAD(&ctx->flexible_active);
 4176	refcount_set(&ctx->refcount, 1);
 4177}
 4178
 4179static struct perf_event_context *
 4180alloc_perf_context(struct pmu *pmu, struct task_struct *task)
 4181{
 4182	struct perf_event_context *ctx;
 4183
 4184	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
 4185	if (!ctx)
 4186		return NULL;
 4187
 4188	__perf_event_init_context(ctx);
 4189	if (task)
 4190		ctx->task = get_task_struct(task);
 
 
 4191	ctx->pmu = pmu;
 4192
 4193	return ctx;
 4194}
 4195
 4196static struct task_struct *
 4197find_lively_task_by_vpid(pid_t vpid)
 4198{
 4199	struct task_struct *task;
 
 4200
 4201	rcu_read_lock();
 4202	if (!vpid)
 4203		task = current;
 4204	else
 4205		task = find_task_by_vpid(vpid);
 4206	if (task)
 4207		get_task_struct(task);
 4208	rcu_read_unlock();
 4209
 4210	if (!task)
 4211		return ERR_PTR(-ESRCH);
 4212
 
 
 
 
 
 4213	return task;
 
 
 
 
 4214}
 4215
 4216/*
 4217 * Returns a matching context with refcount and pincount.
 4218 */
 4219static struct perf_event_context *
 4220find_get_context(struct pmu *pmu, struct task_struct *task,
 4221		struct perf_event *event)
 4222{
 4223	struct perf_event_context *ctx, *clone_ctx = NULL;
 4224	struct perf_cpu_context *cpuctx;
 4225	void *task_ctx_data = NULL;
 4226	unsigned long flags;
 4227	int ctxn, err;
 4228	int cpu = event->cpu;
 4229
 4230	if (!task) {
 4231		/* Must be root to operate on a CPU event: */
 4232		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
 4233			return ERR_PTR(-EACCES);
 4234
 
 
 
 
 
 
 
 
 4235		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
 4236		ctx = &cpuctx->ctx;
 4237		get_ctx(ctx);
 4238		++ctx->pin_count;
 4239
 4240		return ctx;
 4241	}
 4242
 4243	err = -EINVAL;
 4244	ctxn = pmu->task_ctx_nr;
 4245	if (ctxn < 0)
 4246		goto errout;
 4247
 4248	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
 4249		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
 4250		if (!task_ctx_data) {
 4251			err = -ENOMEM;
 4252			goto errout;
 4253		}
 4254	}
 4255
 4256retry:
 4257	ctx = perf_lock_task_context(task, ctxn, &flags);
 4258	if (ctx) {
 4259		clone_ctx = unclone_ctx(ctx);
 4260		++ctx->pin_count;
 4261
 4262		if (task_ctx_data && !ctx->task_ctx_data) {
 4263			ctx->task_ctx_data = task_ctx_data;
 4264			task_ctx_data = NULL;
 4265		}
 4266		raw_spin_unlock_irqrestore(&ctx->lock, flags);
 4267
 4268		if (clone_ctx)
 4269			put_ctx(clone_ctx);
 4270	} else {
 4271		ctx = alloc_perf_context(pmu, task);
 4272		err = -ENOMEM;
 4273		if (!ctx)
 4274			goto errout;
 4275
 4276		if (task_ctx_data) {
 4277			ctx->task_ctx_data = task_ctx_data;
 4278			task_ctx_data = NULL;
 4279		}
 4280
 4281		err = 0;
 4282		mutex_lock(&task->perf_event_mutex);
 4283		/*
 4284		 * If it has already passed perf_event_exit_task().
 4285		 * we must see PF_EXITING, it takes this mutex too.
 4286		 */
 4287		if (task->flags & PF_EXITING)
 4288			err = -ESRCH;
 4289		else if (task->perf_event_ctxp[ctxn])
 4290			err = -EAGAIN;
 4291		else {
 4292			get_ctx(ctx);
 4293			++ctx->pin_count;
 4294			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
 4295		}
 4296		mutex_unlock(&task->perf_event_mutex);
 4297
 4298		if (unlikely(err)) {
 4299			put_ctx(ctx);
 4300
 4301			if (err == -EAGAIN)
 4302				goto retry;
 4303			goto errout;
 4304		}
 4305	}
 4306
 4307	kfree(task_ctx_data);
 4308	return ctx;
 4309
 4310errout:
 4311	kfree(task_ctx_data);
 4312	return ERR_PTR(err);
 4313}
 4314
 4315static void perf_event_free_filter(struct perf_event *event);
 4316static void perf_event_free_bpf_prog(struct perf_event *event);
 4317
 4318static void free_event_rcu(struct rcu_head *head)
 4319{
 4320	struct perf_event *event;
 4321
 4322	event = container_of(head, struct perf_event, rcu_head);
 4323	if (event->ns)
 4324		put_pid_ns(event->ns);
 4325	perf_event_free_filter(event);
 4326	kfree(event);
 4327}
 4328
 4329static void ring_buffer_attach(struct perf_event *event,
 4330			       struct ring_buffer *rb);
 4331
 4332static void detach_sb_event(struct perf_event *event)
 4333{
 4334	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
 4335
 4336	raw_spin_lock(&pel->lock);
 4337	list_del_rcu(&event->sb_list);
 4338	raw_spin_unlock(&pel->lock);
 4339}
 4340
 4341static bool is_sb_event(struct perf_event *event)
 4342{
 4343	struct perf_event_attr *attr = &event->attr;
 4344
 4345	if (event->parent)
 4346		return false;
 4347
 4348	if (event->attach_state & PERF_ATTACH_TASK)
 4349		return false;
 4350
 4351	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
 4352	    attr->comm || attr->comm_exec ||
 4353	    attr->task || attr->ksymbol ||
 4354	    attr->context_switch ||
 4355	    attr->bpf_event)
 4356		return true;
 4357	return false;
 4358}
 4359
 4360static void unaccount_pmu_sb_event(struct perf_event *event)
 4361{
 4362	if (is_sb_event(event))
 4363		detach_sb_event(event);
 4364}
 4365
 4366static void unaccount_event_cpu(struct perf_event *event, int cpu)
 4367{
 4368	if (event->parent)
 4369		return;
 4370
 4371	if (is_cgroup_event(event))
 4372		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
 4373}
 4374
 4375#ifdef CONFIG_NO_HZ_FULL
 4376static DEFINE_SPINLOCK(nr_freq_lock);
 4377#endif
 4378
 4379static void unaccount_freq_event_nohz(void)
 4380{
 4381#ifdef CONFIG_NO_HZ_FULL
 4382	spin_lock(&nr_freq_lock);
 4383	if (atomic_dec_and_test(&nr_freq_events))
 4384		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
 4385	spin_unlock(&nr_freq_lock);
 4386#endif
 4387}
 4388
 4389static void unaccount_freq_event(void)
 4390{
 4391	if (tick_nohz_full_enabled())
 4392		unaccount_freq_event_nohz();
 4393	else
 4394		atomic_dec(&nr_freq_events);
 4395}
 4396
 4397static void unaccount_event(struct perf_event *event)
 4398{
 4399	bool dec = false;
 4400
 4401	if (event->parent)
 4402		return;
 4403
 4404	if (event->attach_state & PERF_ATTACH_TASK)
 4405		dec = true;
 4406	if (event->attr.mmap || event->attr.mmap_data)
 4407		atomic_dec(&nr_mmap_events);
 4408	if (event->attr.comm)
 4409		atomic_dec(&nr_comm_events);
 4410	if (event->attr.namespaces)
 4411		atomic_dec(&nr_namespaces_events);
 4412	if (event->attr.task)
 4413		atomic_dec(&nr_task_events);
 4414	if (event->attr.freq)
 4415		unaccount_freq_event();
 4416	if (event->attr.context_switch) {
 4417		dec = true;
 4418		atomic_dec(&nr_switch_events);
 4419	}
 4420	if (is_cgroup_event(event))
 4421		dec = true;
 4422	if (has_branch_stack(event))
 4423		dec = true;
 4424	if (event->attr.ksymbol)
 4425		atomic_dec(&nr_ksymbol_events);
 4426	if (event->attr.bpf_event)
 4427		atomic_dec(&nr_bpf_events);
 4428
 4429	if (dec) {
 4430		if (!atomic_add_unless(&perf_sched_count, -1, 1))
 4431			schedule_delayed_work(&perf_sched_work, HZ);
 4432	}
 4433
 4434	unaccount_event_cpu(event, event->cpu);
 4435
 4436	unaccount_pmu_sb_event(event);
 4437}
 4438
 4439static void perf_sched_delayed(struct work_struct *work)
 4440{
 4441	mutex_lock(&perf_sched_mutex);
 4442	if (atomic_dec_and_test(&perf_sched_count))
 4443		static_branch_disable(&perf_sched_events);
 4444	mutex_unlock(&perf_sched_mutex);
 4445}
 4446
 4447/*
 4448 * The following implement mutual exclusion of events on "exclusive" pmus
 4449 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 4450 * at a time, so we disallow creating events that might conflict, namely:
 4451 *
 4452 *  1) cpu-wide events in the presence of per-task events,
 4453 *  2) per-task events in the presence of cpu-wide events,
 4454 *  3) two matching events on the same context.
 4455 *
 4456 * The former two cases are handled in the allocation path (perf_event_alloc(),
 4457 * _free_event()), the latter -- before the first perf_install_in_context().
 4458 */
 4459static int exclusive_event_init(struct perf_event *event)
 4460{
 4461	struct pmu *pmu = event->pmu;
 4462
 4463	if (!is_exclusive_pmu(pmu))
 4464		return 0;
 4465
 4466	/*
 4467	 * Prevent co-existence of per-task and cpu-wide events on the
 4468	 * same exclusive pmu.
 4469	 *
 4470	 * Negative pmu::exclusive_cnt means there are cpu-wide
 4471	 * events on this "exclusive" pmu, positive means there are
 4472	 * per-task events.
 4473	 *
 4474	 * Since this is called in perf_event_alloc() path, event::ctx
 4475	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
 4476	 * to mean "per-task event", because unlike other attach states it
 4477	 * never gets cleared.
 4478	 */
 4479	if (event->attach_state & PERF_ATTACH_TASK) {
 4480		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
 4481			return -EBUSY;
 4482	} else {
 4483		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
 4484			return -EBUSY;
 4485	}
 4486
 4487	return 0;
 4488}
 4489
 4490static void exclusive_event_destroy(struct perf_event *event)
 4491{
 4492	struct pmu *pmu = event->pmu;
 4493
 4494	if (!is_exclusive_pmu(pmu))
 4495		return;
 4496
 4497	/* see comment in exclusive_event_init() */
 4498	if (event->attach_state & PERF_ATTACH_TASK)
 4499		atomic_dec(&pmu->exclusive_cnt);
 4500	else
 4501		atomic_inc(&pmu->exclusive_cnt);
 4502}
 4503
 4504static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
 4505{
 4506	if ((e1->pmu == e2->pmu) &&
 4507	    (e1->cpu == e2->cpu ||
 4508	     e1->cpu == -1 ||
 4509	     e2->cpu == -1))
 4510		return true;
 4511	return false;
 4512}
 4513
 4514static bool exclusive_event_installable(struct perf_event *event,
 4515					struct perf_event_context *ctx)
 4516{
 4517	struct perf_event *iter_event;
 4518	struct pmu *pmu = event->pmu;
 4519
 4520	lockdep_assert_held(&ctx->mutex);
 4521
 4522	if (!is_exclusive_pmu(pmu))
 4523		return true;
 4524
 4525	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
 4526		if (exclusive_event_match(iter_event, event))
 4527			return false;
 4528	}
 4529
 4530	return true;
 4531}
 4532
 4533static void perf_addr_filters_splice(struct perf_event *event,
 4534				       struct list_head *head);
 4535
 4536static void _free_event(struct perf_event *event)
 4537{
 4538	irq_work_sync(&event->pending);
 4539
 4540	unaccount_event(event);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4541
 4542	if (event->rb) {
 4543		/*
 4544		 * Can happen when we close an event with re-directed output.
 4545		 *
 4546		 * Since we have a 0 refcount, perf_mmap_close() will skip
 4547		 * over us; possibly making our ring_buffer_put() the last.
 4548		 */
 4549		mutex_lock(&event->mmap_mutex);
 4550		ring_buffer_attach(event, NULL);
 4551		mutex_unlock(&event->mmap_mutex);
 4552	}
 4553
 4554	if (is_cgroup_event(event))
 4555		perf_detach_cgroup(event);
 4556
 4557	if (!event->parent) {
 4558		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
 4559			put_callchain_buffers();
 4560	}
 4561
 4562	perf_event_free_bpf_prog(event);
 4563	perf_addr_filters_splice(event, NULL);
 4564	kfree(event->addr_filter_ranges);
 4565
 4566	if (event->destroy)
 4567		event->destroy(event);
 4568
 4569	/*
 4570	 * Must be after ->destroy(), due to uprobe_perf_close() using
 4571	 * hw.target.
 4572	 */
 4573	if (event->hw.target)
 4574		put_task_struct(event->hw.target);
 4575
 4576	/*
 4577	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
 4578	 * all task references must be cleaned up.
 4579	 */
 4580	if (event->ctx)
 4581		put_ctx(event->ctx);
 4582
 4583	exclusive_event_destroy(event);
 4584	module_put(event->pmu->module);
 4585
 4586	call_rcu(&event->rcu_head, free_event_rcu);
 4587}
 4588
 4589/*
 4590 * Used to free events which have a known refcount of 1, such as in error paths
 4591 * where the event isn't exposed yet and inherited events.
 4592 */
 4593static void free_event(struct perf_event *event)
 4594{
 4595	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
 4596				"unexpected event refcount: %ld; ptr=%p\n",
 4597				atomic_long_read(&event->refcount), event)) {
 4598		/* leak to avoid use-after-free */
 4599		return;
 4600	}
 4601
 4602	_free_event(event);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4603}
 
 4604
 4605/*
 4606 * Remove user event from the owner task.
 4607 */
 4608static void perf_remove_from_owner(struct perf_event *event)
 4609{
 
 4610	struct task_struct *owner;
 4611
 
 
 4612	rcu_read_lock();
 
 4613	/*
 4614	 * Matches the smp_store_release() in perf_event_exit_task(). If we
 4615	 * observe !owner it means the list deletion is complete and we can
 4616	 * indeed free this event, otherwise we need to serialize on
 4617	 * owner->perf_event_mutex.
 4618	 */
 4619	owner = READ_ONCE(event->owner);
 4620	if (owner) {
 4621		/*
 4622		 * Since delayed_put_task_struct() also drops the last
 4623		 * task reference we can safely take a new reference
 4624		 * while holding the rcu_read_lock().
 4625		 */
 4626		get_task_struct(owner);
 4627	}
 4628	rcu_read_unlock();
 4629
 4630	if (owner) {
 4631		/*
 4632		 * If we're here through perf_event_exit_task() we're already
 4633		 * holding ctx->mutex which would be an inversion wrt. the
 4634		 * normal lock order.
 4635		 *
 4636		 * However we can safely take this lock because its the child
 4637		 * ctx->mutex.
 4638		 */
 4639		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
 4640
 4641		/*
 4642		 * We have to re-check the event->owner field, if it is cleared
 4643		 * we raced with perf_event_exit_task(), acquiring the mutex
 4644		 * ensured they're done, and we can proceed with freeing the
 4645		 * event.
 4646		 */
 4647		if (event->owner) {
 4648			list_del_init(&event->owner_entry);
 4649			smp_store_release(&event->owner, NULL);
 4650		}
 4651		mutex_unlock(&owner->perf_event_mutex);
 4652		put_task_struct(owner);
 4653	}
 4654}
 4655
 4656static void put_event(struct perf_event *event)
 4657{
 4658	if (!atomic_long_dec_and_test(&event->refcount))
 4659		return;
 4660
 4661	_free_event(event);
 4662}
 4663
 4664/*
 4665 * Kill an event dead; while event:refcount will preserve the event
 4666 * object, it will not preserve its functionality. Once the last 'user'
 4667 * gives up the object, we'll destroy the thing.
 4668 */
 4669int perf_event_release_kernel(struct perf_event *event)
 4670{
 4671	struct perf_event_context *ctx = event->ctx;
 4672	struct perf_event *child, *tmp;
 4673	LIST_HEAD(free_list);
 4674
 4675	/*
 4676	 * If we got here through err_file: fput(event_file); we will not have
 4677	 * attached to a context yet.
 4678	 */
 4679	if (!ctx) {
 4680		WARN_ON_ONCE(event->attach_state &
 4681				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
 4682		goto no_ctx;
 4683	}
 4684
 4685	if (!is_kernel_event(event))
 4686		perf_remove_from_owner(event);
 4687
 4688	ctx = perf_event_ctx_lock(event);
 4689	WARN_ON_ONCE(ctx->parent_ctx);
 4690	perf_remove_from_context(event, DETACH_GROUP);
 4691
 4692	raw_spin_lock_irq(&ctx->lock);
 4693	/*
 4694	 * Mark this event as STATE_DEAD, there is no external reference to it
 4695	 * anymore.
 4696	 *
 4697	 * Anybody acquiring event->child_mutex after the below loop _must_
 4698	 * also see this, most importantly inherit_event() which will avoid
 4699	 * placing more children on the list.
 4700	 *
 4701	 * Thus this guarantees that we will in fact observe and kill _ALL_
 4702	 * child events.
 4703	 */
 4704	event->state = PERF_EVENT_STATE_DEAD;
 4705	raw_spin_unlock_irq(&ctx->lock);
 4706
 4707	perf_event_ctx_unlock(event, ctx);
 4708
 4709again:
 4710	mutex_lock(&event->child_mutex);
 4711	list_for_each_entry(child, &event->child_list, child_list) {
 4712
 4713		/*
 4714		 * Cannot change, child events are not migrated, see the
 4715		 * comment with perf_event_ctx_lock_nested().
 4716		 */
 4717		ctx = READ_ONCE(child->ctx);
 4718		/*
 4719		 * Since child_mutex nests inside ctx::mutex, we must jump
 4720		 * through hoops. We start by grabbing a reference on the ctx.
 4721		 *
 4722		 * Since the event cannot get freed while we hold the
 4723		 * child_mutex, the context must also exist and have a !0
 4724		 * reference count.
 4725		 */
 4726		get_ctx(ctx);
 4727
 4728		/*
 4729		 * Now that we have a ctx ref, we can drop child_mutex, and
 4730		 * acquire ctx::mutex without fear of it going away. Then we
 4731		 * can re-acquire child_mutex.
 4732		 */
 4733		mutex_unlock(&event->child_mutex);
 4734		mutex_lock(&ctx->mutex);
 4735		mutex_lock(&event->child_mutex);
 4736
 4737		/*
 4738		 * Now that we hold ctx::mutex and child_mutex, revalidate our
 4739		 * state, if child is still the first entry, it didn't get freed
 4740		 * and we can continue doing so.
 4741		 */
 4742		tmp = list_first_entry_or_null(&event->child_list,
 4743					       struct perf_event, child_list);
 4744		if (tmp == child) {
 4745			perf_remove_from_context(child, DETACH_GROUP);
 4746			list_move(&child->child_list, &free_list);
 4747			/*
 4748			 * This matches the refcount bump in inherit_event();
 4749			 * this can't be the last reference.
 4750			 */
 4751			put_event(event);
 4752		}
 4753
 4754		mutex_unlock(&event->child_mutex);
 4755		mutex_unlock(&ctx->mutex);
 4756		put_ctx(ctx);
 4757		goto again;
 4758	}
 4759	mutex_unlock(&event->child_mutex);
 4760
 4761	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
 4762		void *var = &child->ctx->refcount;
 4763
 4764		list_del(&child->child_list);
 4765		free_event(child);
 4766
 4767		/*
 4768		 * Wake any perf_event_free_task() waiting for this event to be
 4769		 * freed.
 4770		 */
 4771		smp_mb(); /* pairs with wait_var_event() */
 4772		wake_up_var(var);
 4773	}
 4774
 4775no_ctx:
 4776	put_event(event); /* Must be the 'last' reference */
 4777	return 0;
 4778}
 4779EXPORT_SYMBOL_GPL(perf_event_release_kernel);
 4780
 4781/*
 4782 * Called when the last reference to the file is gone.
 4783 */
 4784static int perf_release(struct inode *inode, struct file *file)
 4785{
 4786	perf_event_release_kernel(file->private_data);
 4787	return 0;
 4788}
 4789
 4790static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
 4791{
 4792	struct perf_event *child;
 4793	u64 total = 0;
 4794
 4795	*enabled = 0;
 4796	*running = 0;
 4797
 4798	mutex_lock(&event->child_mutex);
 4799
 4800	(void)perf_event_read(event, false);
 4801	total += perf_event_count(event);
 4802
 4803	*enabled += event->total_time_enabled +
 4804			atomic64_read(&event->child_total_time_enabled);
 4805	*running += event->total_time_running +
 4806			atomic64_read(&event->child_total_time_running);
 4807
 4808	list_for_each_entry(child, &event->child_list, child_list) {
 4809		(void)perf_event_read(child, false);
 4810		total += perf_event_count(child);
 4811		*enabled += child->total_time_enabled;
 4812		*running += child->total_time_running;
 4813	}
 4814	mutex_unlock(&event->child_mutex);
 4815
 4816	return total;
 4817}
 4818
 4819u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
 4820{
 4821	struct perf_event_context *ctx;
 4822	u64 count;
 4823
 4824	ctx = perf_event_ctx_lock(event);
 4825	count = __perf_event_read_value(event, enabled, running);
 4826	perf_event_ctx_unlock(event, ctx);
 4827
 4828	return count;
 4829}
 4830EXPORT_SYMBOL_GPL(perf_event_read_value);
 4831
 4832static int __perf_read_group_add(struct perf_event *leader,
 4833					u64 read_format, u64 *values)
 4834{
 
 
 4835	struct perf_event_context *ctx = leader->ctx;
 4836	struct perf_event *sub;
 4837	unsigned long flags;
 4838	int n = 1; /* skip @nr */
 4839	int ret;
 4840
 4841	ret = perf_event_read(leader, true);
 4842	if (ret)
 4843		return ret;
 4844
 4845	raw_spin_lock_irqsave(&ctx->lock, flags);
 4846
 4847	/*
 4848	 * Since we co-schedule groups, {enabled,running} times of siblings
 4849	 * will be identical to those of the leader, so we only publish one
 4850	 * set.
 4851	 */
 4852	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
 4853		values[n++] += leader->total_time_enabled +
 4854			atomic64_read(&leader->child_total_time_enabled);
 4855	}
 4856
 4857	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
 4858		values[n++] += leader->total_time_running +
 4859			atomic64_read(&leader->child_total_time_running);
 4860	}
 4861
 4862	/*
 4863	 * Write {count,id} tuples for every sibling.
 4864	 */
 4865	values[n++] += perf_event_count(leader);
 
 
 4866	if (read_format & PERF_FORMAT_ID)
 4867		values[n++] = primary_event_id(leader);
 4868
 4869	for_each_sibling_event(sub, leader) {
 4870		values[n++] += perf_event_count(sub);
 4871		if (read_format & PERF_FORMAT_ID)
 4872			values[n++] = primary_event_id(sub);
 4873	}
 4874
 4875	raw_spin_unlock_irqrestore(&ctx->lock, flags);
 4876	return 0;
 4877}
 4878
 4879static int perf_read_group(struct perf_event *event,
 4880				   u64 read_format, char __user *buf)
 4881{
 4882	struct perf_event *leader = event->group_leader, *child;
 4883	struct perf_event_context *ctx = leader->ctx;
 4884	int ret;
 4885	u64 *values;
 4886
 4887	lockdep_assert_held(&ctx->mutex);
 
 4888
 4889	values = kzalloc(event->read_size, GFP_KERNEL);
 4890	if (!values)
 4891		return -ENOMEM;
 4892
 4893	values[0] = 1 + leader->nr_siblings;
 
 4894
 4895	/*
 4896	 * By locking the child_mutex of the leader we effectively
 4897	 * lock the child list of all siblings.. XXX explain how.
 4898	 */
 4899	mutex_lock(&leader->child_mutex);
 4900
 4901	ret = __perf_read_group_add(leader, read_format, values);
 4902	if (ret)
 4903		goto unlock;
 4904
 4905	list_for_each_entry(child, &leader->child_list, child_list) {
 4906		ret = __perf_read_group_add(child, read_format, values);
 4907		if (ret)
 4908			goto unlock;
 4909	}
 4910
 4911	mutex_unlock(&leader->child_mutex);
 4912
 4913	ret = event->read_size;
 4914	if (copy_to_user(buf, values, event->read_size))
 4915		ret = -EFAULT;
 4916	goto out;
 4917
 
 
 4918unlock:
 4919	mutex_unlock(&leader->child_mutex);
 4920out:
 4921	kfree(values);
 4922	return ret;
 4923}
 4924
 4925static int perf_read_one(struct perf_event *event,
 4926				 u64 read_format, char __user *buf)
 4927{
 4928	u64 enabled, running;
 4929	u64 values[4];
 4930	int n = 0;
 4931
 4932	values[n++] = __perf_event_read_value(event, &enabled, &running);
 4933	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
 4934		values[n++] = enabled;
 4935	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
 4936		values[n++] = running;
 4937	if (read_format & PERF_FORMAT_ID)
 4938		values[n++] = primary_event_id(event);
 4939
 4940	if (copy_to_user(buf, values, n * sizeof(u64)))
 4941		return -EFAULT;
 4942
 4943	return n * sizeof(u64);
 4944}
 4945
 4946static bool is_event_hup(struct perf_event *event)
 4947{
 4948	bool no_children;
 4949
 4950	if (event->state > PERF_EVENT_STATE_EXIT)
 4951		return false;
 4952
 4953	mutex_lock(&event->child_mutex);
 4954	no_children = list_empty(&event->child_list);
 4955	mutex_unlock(&event->child_mutex);
 4956	return no_children;
 4957}
 4958
 4959/*
 4960 * Read the performance event - simple non blocking version for now
 4961 */
 4962static ssize_t
 4963__perf_read(struct perf_event *event, char __user *buf, size_t count)
 4964{
 4965	u64 read_format = event->attr.read_format;
 4966	int ret;
 4967
 4968	/*
 4969	 * Return end-of-file for a read on an event that is in
 4970	 * error state (i.e. because it was pinned but it couldn't be
 4971	 * scheduled on to the CPU at some point).
 4972	 */
 4973	if (event->state == PERF_EVENT_STATE_ERROR)
 4974		return 0;
 4975
 4976	if (count < event->read_size)
 4977		return -ENOSPC;
 4978
 4979	WARN_ON_ONCE(event->ctx->parent_ctx);
 4980	if (read_format & PERF_FORMAT_GROUP)
 4981		ret = perf_read_group(event, read_format, buf);
 4982	else
 4983		ret = perf_read_one(event, read_format, buf);
 4984
 4985	return ret;
 4986}
 4987
 4988static ssize_t
 4989perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
 4990{
 4991	struct perf_event *event = file->private_data;
 4992	struct perf_event_context *ctx;
 4993	int ret;
 4994
 4995	ctx = perf_event_ctx_lock(event);
 4996	ret = __perf_read(event, buf, count);
 4997	perf_event_ctx_unlock(event, ctx);
 4998
 4999	return ret;
 5000}
 5001
 5002static __poll_t perf_poll(struct file *file, poll_table *wait)
 5003{
 5004	struct perf_event *event = file->private_data;
 5005	struct ring_buffer *rb;
 5006	__poll_t events = EPOLLHUP;
 5007
 5008	poll_wait(file, &event->waitq, wait);
 5009
 5010	if (is_event_hup(event))
 5011		return events;
 5012
 5013	/*
 5014	 * Pin the event->rb by taking event->mmap_mutex; otherwise
 5015	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
 5016	 */
 5017	mutex_lock(&event->mmap_mutex);
 5018	rb = event->rb;
 5019	if (rb)
 5020		events = atomic_xchg(&rb->poll, 0);
 5021	mutex_unlock(&event->mmap_mutex);
 
 
 
 5022	return events;
 5023}
 5024
 5025static void _perf_event_reset(struct perf_event *event)
 5026{
 5027	(void)perf_event_read(event, false);
 5028	local64_set(&event->count, 0);
 5029	perf_event_update_userpage(event);
 5030}
 5031
 5032/*
 5033 * Holding the top-level event's child_mutex means that any
 5034 * descendant process that has inherited this event will block
 5035 * in perf_event_exit_event() if it goes to exit, thus satisfying the
 5036 * task existence requirements of perf_event_enable/disable.
 5037 */
 5038static void perf_event_for_each_child(struct perf_event *event,
 5039					void (*func)(struct perf_event *))
 5040{
 5041	struct perf_event *child;
 5042
 5043	WARN_ON_ONCE(event->ctx->parent_ctx);
 5044
 5045	mutex_lock(&event->child_mutex);
 5046	func(event);
 5047	list_for_each_entry(child, &event->child_list, child_list)
 5048		func(child);
 5049	mutex_unlock(&event->child_mutex);
 5050}
 5051
 5052static void perf_event_for_each(struct perf_event *event,
 5053				  void (*func)(struct perf_event *))
 5054{
 5055	struct perf_event_context *ctx = event->ctx;
 5056	struct perf_event *sibling;
 5057
 5058	lockdep_assert_held(&ctx->mutex);
 5059
 5060	event = event->group_leader;
 5061
 5062	perf_event_for_each_child(event, func);
 5063	for_each_sibling_event(sibling, event)
 5064		perf_event_for_each_child(sibling, func);
 5065}
 5066
 5067static void __perf_event_period(struct perf_event *event,
 5068				struct perf_cpu_context *cpuctx,
 5069				struct perf_event_context *ctx,
 5070				void *info)
 5071{
 5072	u64 value = *((u64 *)info);
 5073	bool active;
 5074
 5075	if (event->attr.freq) {
 5076		event->attr.sample_freq = value;
 5077	} else {
 5078		event->attr.sample_period = value;
 5079		event->hw.sample_period = value;
 5080	}
 5081
 5082	active = (event->state == PERF_EVENT_STATE_ACTIVE);
 5083	if (active) {
 5084		perf_pmu_disable(ctx->pmu);
 5085		/*
 5086		 * We could be throttled; unthrottle now to avoid the tick
 5087		 * trying to unthrottle while we already re-started the event.
 5088		 */
 5089		if (event->hw.interrupts == MAX_INTERRUPTS) {
 5090			event->hw.interrupts = 0;
 5091			perf_log_throttle(event, 1);
 5092		}
 5093		event->pmu->stop(event, PERF_EF_UPDATE);
 5094	}
 5095
 5096	local64_set(&event->hw.period_left, 0);
 5097
 5098	if (active) {
 5099		event->pmu->start(event, PERF_EF_RELOAD);
 5100		perf_pmu_enable(ctx->pmu);
 5101	}
 5102}
 5103
 5104static int perf_event_check_period(struct perf_event *event, u64 value)
 5105{
 5106	return event->pmu->check_period(event, value);
 5107}
 5108
 5109static int perf_event_period(struct perf_event *event, u64 __user *arg)
 5110{
 
 
 5111	u64 value;
 5112
 5113	if (!is_sampling_event(event))
 5114		return -EINVAL;
 5115
 5116	if (copy_from_user(&value, arg, sizeof(value)))
 5117		return -EFAULT;
 5118
 5119	if (!value)
 5120		return -EINVAL;
 5121
 5122	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
 5123		return -EINVAL;
 5124
 5125	if (perf_event_check_period(event, value))
 5126		return -EINVAL;
 5127
 5128	if (!event->attr.freq && (value & (1ULL << 63)))
 5129		return -EINVAL;
 5130
 5131	event_function_call(event, __perf_event_period, &value);
 
 
 
 
 
 
 5132
 5133	return 0;
 5134}
 5135
 5136static const struct file_operations perf_fops;
 5137
 5138static inline int perf_fget_light(int fd, struct fd *p)
 5139{
 5140	struct fd f = fdget(fd);
 5141	if (!f.file)
 5142		return -EBADF;
 5143
 5144	if (f.file->f_op != &perf_fops) {
 5145		fdput(f);
 5146		return -EBADF;
 
 
 
 
 
 5147	}
 5148	*p = f;
 5149	return 0;
 5150}
 5151
 5152static int perf_event_set_output(struct perf_event *event,
 5153				 struct perf_event *output_event);
 5154static int perf_event_set_filter(struct perf_event *event, void __user *arg);
 5155static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
 5156static int perf_copy_attr(struct perf_event_attr __user *uattr,
 5157			  struct perf_event_attr *attr);
 5158
 5159static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
 5160{
 
 5161	void (*func)(struct perf_event *);
 5162	u32 flags = arg;
 5163
 5164	switch (cmd) {
 5165	case PERF_EVENT_IOC_ENABLE:
 5166		func = _perf_event_enable;
 5167		break;
 5168	case PERF_EVENT_IOC_DISABLE:
 5169		func = _perf_event_disable;
 5170		break;
 5171	case PERF_EVENT_IOC_RESET:
 5172		func = _perf_event_reset;
 5173		break;
 5174
 5175	case PERF_EVENT_IOC_REFRESH:
 5176		return _perf_event_refresh(event, arg);
 5177
 5178	case PERF_EVENT_IOC_PERIOD:
 5179		return perf_event_period(event, (u64 __user *)arg);
 5180
 5181	case PERF_EVENT_IOC_ID:
 5182	{
 5183		u64 id = primary_event_id(event);
 5184
 5185		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
 5186			return -EFAULT;
 5187		return 0;
 5188	}
 5189
 5190	case PERF_EVENT_IOC_SET_OUTPUT:
 5191	{
 
 
 5192		int ret;
 
 5193		if (arg != -1) {
 5194			struct perf_event *output_event;
 5195			struct fd output;
 5196			ret = perf_fget_light(arg, &output);
 5197			if (ret)
 5198				return ret;
 5199			output_event = output.file->private_data;
 5200			ret = perf_event_set_output(event, output_event);
 5201			fdput(output);
 5202		} else {
 5203			ret = perf_event_set_output(event, NULL);
 5204		}
 
 
 
 
 
 5205		return ret;
 5206	}
 5207
 5208	case PERF_EVENT_IOC_SET_FILTER:
 5209		return perf_event_set_filter(event, (void __user *)arg);
 5210
 5211	case PERF_EVENT_IOC_SET_BPF:
 5212		return perf_event_set_bpf_prog(event, arg);
 5213
 5214	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
 5215		struct ring_buffer *rb;
 5216
 5217		rcu_read_lock();
 5218		rb = rcu_dereference(event->rb);
 5219		if (!rb || !rb->nr_pages) {
 5220			rcu_read_unlock();
 5221			return -EINVAL;
 5222		}
 5223		rb_toggle_paused(rb, !!arg);
 5224		rcu_read_unlock();
 5225		return 0;
 5226	}
 5227
 5228	case PERF_EVENT_IOC_QUERY_BPF:
 5229		return perf_event_query_prog_array(event, (void __user *)arg);
 5230
 5231	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
 5232		struct perf_event_attr new_attr;
 5233		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
 5234					 &new_attr);
 5235
 5236		if (err)
 5237			return err;
 5238
 5239		return perf_event_modify_attr(event,  &new_attr);
 5240	}
 5241	default:
 5242		return -ENOTTY;
 5243	}
 5244
 5245	if (flags & PERF_IOC_FLAG_GROUP)
 5246		perf_event_for_each(event, func);
 5247	else
 5248		perf_event_for_each_child(event, func);
 5249
 5250	return 0;
 5251}
 5252
 5253static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 5254{
 5255	struct perf_event *event = file->private_data;
 5256	struct perf_event_context *ctx;
 5257	long ret;
 5258
 5259	ctx = perf_event_ctx_lock(event);
 5260	ret = _perf_ioctl(event, cmd, arg);
 5261	perf_event_ctx_unlock(event, ctx);
 5262
 5263	return ret;
 5264}
 5265
 5266#ifdef CONFIG_COMPAT
 5267static long perf_compat_ioctl(struct file *file, unsigned int cmd,
 5268				unsigned long arg)
 5269{
 5270	switch (_IOC_NR(cmd)) {
 5271	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
 5272	case _IOC_NR(PERF_EVENT_IOC_ID):
 5273	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
 5274	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
 5275		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
 5276		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
 5277			cmd &= ~IOCSIZE_MASK;
 5278			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
 5279		}
 5280		break;
 5281	}
 5282	return perf_ioctl(file, cmd, arg);
 5283}
 5284#else
 5285# define perf_compat_ioctl NULL
 5286#endif
 5287
 5288int perf_event_task_enable(void)
 5289{
 5290	struct perf_event_context *ctx;
 5291	struct perf_event *event;
 5292
 5293	mutex_lock(&current->perf_event_mutex);
 5294	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
 5295		ctx = perf_event_ctx_lock(event);
 5296		perf_event_for_each_child(event, _perf_event_enable);
 5297		perf_event_ctx_unlock(event, ctx);
 5298	}
 5299	mutex_unlock(&current->perf_event_mutex);
 5300
 5301	return 0;
 5302}
 5303
 5304int perf_event_task_disable(void)
 5305{
 5306	struct perf_event_context *ctx;
 5307	struct perf_event *event;
 5308
 5309	mutex_lock(&current->perf_event_mutex);
 5310	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
 5311		ctx = perf_event_ctx_lock(event);
 5312		perf_event_for_each_child(event, _perf_event_disable);
 5313		perf_event_ctx_unlock(event, ctx);
 5314	}
 5315	mutex_unlock(&current->perf_event_mutex);
 5316
 5317	return 0;
 5318}
 5319
 
 
 
 
 5320static int perf_event_index(struct perf_event *event)
 5321{
 5322	if (event->hw.state & PERF_HES_STOPPED)
 5323		return 0;
 5324
 5325	if (event->state != PERF_EVENT_STATE_ACTIVE)
 5326		return 0;
 5327
 5328	return event->pmu->event_idx(event);
 5329}
 5330
 5331static void calc_timer_values(struct perf_event *event,
 5332				u64 *now,
 5333				u64 *enabled,
 5334				u64 *running)
 5335{
 5336	u64 ctx_time;
 5337
 5338	*now = perf_clock();
 5339	ctx_time = event->shadow_ctx_time + *now;
 5340	__perf_update_times(event, ctx_time, enabled, running);
 5341}
 5342
 5343static void perf_event_init_userpage(struct perf_event *event)
 5344{
 5345	struct perf_event_mmap_page *userpg;
 5346	struct ring_buffer *rb;
 5347
 5348	rcu_read_lock();
 5349	rb = rcu_dereference(event->rb);
 5350	if (!rb)
 5351		goto unlock;
 5352
 5353	userpg = rb->user_page;
 5354
 5355	/* Allow new userspace to detect that bit 0 is deprecated */
 5356	userpg->cap_bit0_is_deprecated = 1;
 5357	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
 5358	userpg->data_offset = PAGE_SIZE;
 5359	userpg->data_size = perf_data_size(rb);
 5360
 5361unlock:
 5362	rcu_read_unlock();
 5363}
 5364
 5365void __weak arch_perf_update_userpage(
 5366	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
 5367{
 5368}
 5369
 5370/*
 5371 * Callers need to ensure there can be no nesting of this function, otherwise
 5372 * the seqlock logic goes bad. We can not serialize this because the arch
 5373 * code calls this from NMI context.
 5374 */
 5375void perf_event_update_userpage(struct perf_event *event)
 5376{
 5377	struct perf_event_mmap_page *userpg;
 5378	struct ring_buffer *rb;
 5379	u64 enabled, running, now;
 5380
 5381	rcu_read_lock();
 5382	rb = rcu_dereference(event->rb);
 5383	if (!rb)
 5384		goto unlock;
 5385
 5386	/*
 5387	 * compute total_time_enabled, total_time_running
 5388	 * based on snapshot values taken when the event
 5389	 * was last scheduled in.
 5390	 *
 5391	 * we cannot simply called update_context_time()
 5392	 * because of locking issue as we can be called in
 5393	 * NMI context
 5394	 */
 5395	calc_timer_values(event, &now, &enabled, &running);
 
 
 
 5396
 5397	userpg = rb->user_page;
 
 5398	/*
 5399	 * Disable preemption to guarantee consistent time stamps are stored to
 5400	 * the user page.
 5401	 */
 5402	preempt_disable();
 5403	++userpg->lock;
 5404	barrier();
 5405	userpg->index = perf_event_index(event);
 5406	userpg->offset = perf_event_count(event);
 5407	if (userpg->index)
 5408		userpg->offset -= local64_read(&event->hw.prev_count);
 5409
 5410	userpg->time_enabled = enabled +
 5411			atomic64_read(&event->child_total_time_enabled);
 5412
 5413	userpg->time_running = running +
 5414			atomic64_read(&event->child_total_time_running);
 5415
 5416	arch_perf_update_userpage(event, userpg, now);
 5417
 5418	barrier();
 5419	++userpg->lock;
 5420	preempt_enable();
 5421unlock:
 5422	rcu_read_unlock();
 5423}
 5424EXPORT_SYMBOL_GPL(perf_event_update_userpage);
 5425
 5426static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
 5427{
 5428	struct perf_event *event = vmf->vma->vm_file->private_data;
 5429	struct ring_buffer *rb;
 5430	vm_fault_t ret = VM_FAULT_SIGBUS;
 5431
 5432	if (vmf->flags & FAULT_FLAG_MKWRITE) {
 5433		if (vmf->pgoff == 0)
 5434			ret = 0;
 5435		return ret;
 5436	}
 5437
 5438	rcu_read_lock();
 5439	rb = rcu_dereference(event->rb);
 5440	if (!rb)
 5441		goto unlock;
 5442
 5443	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
 5444		goto unlock;
 5445
 5446	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
 5447	if (!vmf->page)
 5448		goto unlock;
 5449
 5450	get_page(vmf->page);
 5451	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
 5452	vmf->page->index   = vmf->pgoff;
 5453
 5454	ret = 0;
 5455unlock:
 5456	rcu_read_unlock();
 5457
 5458	return ret;
 5459}
 5460
 5461static void ring_buffer_attach(struct perf_event *event,
 5462			       struct ring_buffer *rb)
 5463{
 5464	struct ring_buffer *old_rb = NULL;
 5465	unsigned long flags;
 5466
 5467	if (event->rb) {
 5468		/*
 5469		 * Should be impossible, we set this when removing
 5470		 * event->rb_entry and wait/clear when adding event->rb_entry.
 5471		 */
 5472		WARN_ON_ONCE(event->rcu_pending);
 5473
 5474		old_rb = event->rb;
 5475		spin_lock_irqsave(&old_rb->event_lock, flags);
 5476		list_del_rcu(&event->rb_entry);
 5477		spin_unlock_irqrestore(&old_rb->event_lock, flags);
 5478
 5479		event->rcu_batches = get_state_synchronize_rcu();
 5480		event->rcu_pending = 1;
 5481	}
 5482
 5483	if (rb) {
 5484		if (event->rcu_pending) {
 5485			cond_synchronize_rcu(event->rcu_batches);
 5486			event->rcu_pending = 0;
 5487		}
 5488
 5489		spin_lock_irqsave(&rb->event_lock, flags);
 5490		list_add_rcu(&event->rb_entry, &rb->event_list);
 5491		spin_unlock_irqrestore(&rb->event_lock, flags);
 5492	}
 5493
 5494	/*
 5495	 * Avoid racing with perf_mmap_close(AUX): stop the event
 5496	 * before swizzling the event::rb pointer; if it's getting
 5497	 * unmapped, its aux_mmap_count will be 0 and it won't
 5498	 * restart. See the comment in __perf_pmu_output_stop().
 5499	 *
 5500	 * Data will inevitably be lost when set_output is done in
 5501	 * mid-air, but then again, whoever does it like this is
 5502	 * not in for the data anyway.
 5503	 */
 5504	if (has_aux(event))
 5505		perf_event_stop(event, 0);
 5506
 5507	rcu_assign_pointer(event->rb, rb);
 5508
 5509	if (old_rb) {
 5510		ring_buffer_put(old_rb);
 5511		/*
 5512		 * Since we detached before setting the new rb, so that we
 5513		 * could attach the new rb, we could have missed a wakeup.
 5514		 * Provide it now.
 5515		 */
 5516		wake_up_all(&event->waitq);
 5517	}
 5518}
 5519
 5520static void ring_buffer_wakeup(struct perf_event *event)
 5521{
 5522	struct ring_buffer *rb;
 5523
 5524	rcu_read_lock();
 5525	rb = rcu_dereference(event->rb);
 5526	if (rb) {
 5527		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
 5528			wake_up_all(&event->waitq);
 5529	}
 5530	rcu_read_unlock();
 5531}
 5532
 5533struct ring_buffer *ring_buffer_get(struct perf_event *event)
 5534{
 5535	struct ring_buffer *rb;
 5536
 5537	rcu_read_lock();
 5538	rb = rcu_dereference(event->rb);
 5539	if (rb) {
 5540		if (!refcount_inc_not_zero(&rb->refcount))
 5541			rb = NULL;
 5542	}
 5543	rcu_read_unlock();
 5544
 5545	return rb;
 5546}
 5547
 5548void ring_buffer_put(struct ring_buffer *rb)
 5549{
 5550	if (!refcount_dec_and_test(&rb->refcount))
 5551		return;
 5552
 5553	WARN_ON_ONCE(!list_empty(&rb->event_list));
 5554
 5555	call_rcu(&rb->rcu_head, rb_free_rcu);
 5556}
 5557
 5558static void perf_mmap_open(struct vm_area_struct *vma)
 5559{
 5560	struct perf_event *event = vma->vm_file->private_data;
 5561
 5562	atomic_inc(&event->mmap_count);
 5563	atomic_inc(&event->rb->mmap_count);
 5564
 5565	if (vma->vm_pgoff)
 5566		atomic_inc(&event->rb->aux_mmap_count);
 5567
 5568	if (event->pmu->event_mapped)
 5569		event->pmu->event_mapped(event, vma->vm_mm);
 5570}
 5571
 5572static void perf_pmu_output_stop(struct perf_event *event);
 5573
 5574/*
 5575 * A buffer can be mmap()ed multiple times; either directly through the same
 5576 * event, or through other events by use of perf_event_set_output().
 5577 *
 5578 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 5579 * the buffer here, where we still have a VM context. This means we need
 5580 * to detach all events redirecting to us.
 5581 */
 5582static void perf_mmap_close(struct vm_area_struct *vma)
 5583{
 5584	struct perf_event *event = vma->vm_file->private_data;
 5585
 5586	struct ring_buffer *rb = ring_buffer_get(event);
 5587	struct user_struct *mmap_user = rb->mmap_user;
 5588	int mmap_locked = rb->mmap_locked;
 5589	unsigned long size = perf_data_size(rb);
 5590
 5591	if (event->pmu->event_unmapped)
 5592		event->pmu->event_unmapped(event, vma->vm_mm);
 5593
 5594	/*
 5595	 * rb->aux_mmap_count will always drop before rb->mmap_count and
 5596	 * event->mmap_count, so it is ok to use event->mmap_mutex to
 5597	 * serialize with perf_mmap here.
 5598	 */
 5599	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
 5600	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
 5601		/*
 5602		 * Stop all AUX events that are writing to this buffer,
 5603		 * so that we can free its AUX pages and corresponding PMU
 5604		 * data. Note that after rb::aux_mmap_count dropped to zero,
 5605		 * they won't start any more (see perf_aux_output_begin()).
 5606		 */
 5607		perf_pmu_output_stop(event);
 5608
 5609		/* now it's safe to free the pages */
 5610		if (!rb->aux_mmap_locked)
 5611			atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
 5612		else
 5613			atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
 5614
 5615		/* this has to be the last one */
 5616		rb_free_aux(rb);
 5617		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
 5618
 5619		mutex_unlock(&event->mmap_mutex);
 5620	}
 5621
 5622	atomic_dec(&rb->mmap_count);
 5623
 5624	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
 5625		goto out_put;
 5626
 5627	ring_buffer_attach(event, NULL);
 5628	mutex_unlock(&event->mmap_mutex);
 5629
 5630	/* If there's still other mmap()s of this buffer, we're done. */
 5631	if (atomic_read(&rb->mmap_count))
 5632		goto out_put;
 5633
 5634	/*
 5635	 * No other mmap()s, detach from all other events that might redirect
 5636	 * into the now unreachable buffer. Somewhat complicated by the
 5637	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
 5638	 */
 5639again:
 5640	rcu_read_lock();
 5641	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
 5642		if (!atomic_long_inc_not_zero(&event->refcount)) {
 5643			/*
 5644			 * This event is en-route to free_event() which will
 5645			 * detach it and remove it from the list.
 5646			 */
 5647			continue;
 5648		}
 5649		rcu_read_unlock();
 5650
 5651		mutex_lock(&event->mmap_mutex);
 5652		/*
 5653		 * Check we didn't race with perf_event_set_output() which can
 5654		 * swizzle the rb from under us while we were waiting to
 5655		 * acquire mmap_mutex.
 5656		 *
 5657		 * If we find a different rb; ignore this event, a next
 5658		 * iteration will no longer find it on the list. We have to
 5659		 * still restart the iteration to make sure we're not now
 5660		 * iterating the wrong list.
 5661		 */
 5662		if (event->rb == rb)
 5663			ring_buffer_attach(event, NULL);
 5664
 5665		mutex_unlock(&event->mmap_mutex);
 5666		put_event(event);
 5667
 5668		/*
 5669		 * Restart the iteration; either we're on the wrong list or
 5670		 * destroyed its integrity by doing a deletion.
 5671		 */
 5672		goto again;
 5673	}
 5674	rcu_read_unlock();
 5675
 5676	/*
 5677	 * It could be there's still a few 0-ref events on the list; they'll
 5678	 * get cleaned up by free_event() -- they'll also still have their
 5679	 * ref on the rb and will free it whenever they are done with it.
 5680	 *
 5681	 * Aside from that, this buffer is 'fully' detached and unmapped,
 5682	 * undo the VM accounting.
 5683	 */
 5684
 5685	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
 5686			&mmap_user->locked_vm);
 5687	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
 5688	free_uid(mmap_user);
 5689
 5690out_put:
 5691	ring_buffer_put(rb); /* could be last */
 5692}
 5693
 5694static const struct vm_operations_struct perf_mmap_vmops = {
 5695	.open		= perf_mmap_open,
 5696	.close		= perf_mmap_close, /* non mergeable */
 5697	.fault		= perf_mmap_fault,
 5698	.page_mkwrite	= perf_mmap_fault,
 5699};
 5700
 5701static int perf_mmap(struct file *file, struct vm_area_struct *vma)
 5702{
 5703	struct perf_event *event = file->private_data;
 5704	unsigned long user_locked, user_lock_limit;
 5705	struct user_struct *user = current_user();
 5706	unsigned long locked, lock_limit;
 5707	struct ring_buffer *rb = NULL;
 5708	unsigned long vma_size;
 5709	unsigned long nr_pages;
 5710	long user_extra = 0, extra = 0;
 5711	int ret = 0, flags = 0;
 5712
 5713	/*
 5714	 * Don't allow mmap() of inherited per-task counters. This would
 5715	 * create a performance issue due to all children writing to the
 5716	 * same rb.
 5717	 */
 5718	if (event->cpu == -1 && event->attr.inherit)
 5719		return -EINVAL;
 5720
 5721	if (!(vma->vm_flags & VM_SHARED))
 5722		return -EINVAL;
 5723
 5724	vma_size = vma->vm_end - vma->vm_start;
 5725
 5726	if (vma->vm_pgoff == 0) {
 5727		nr_pages = (vma_size / PAGE_SIZE) - 1;
 5728	} else {
 5729		/*
 5730		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
 5731		 * mapped, all subsequent mappings should have the same size
 5732		 * and offset. Must be above the normal perf buffer.
 5733		 */
 5734		u64 aux_offset, aux_size;
 5735
 5736		if (!event->rb)
 5737			return -EINVAL;
 5738
 5739		nr_pages = vma_size / PAGE_SIZE;
 5740
 5741		mutex_lock(&event->mmap_mutex);
 5742		ret = -EINVAL;
 5743
 5744		rb = event->rb;
 5745		if (!rb)
 5746			goto aux_unlock;
 5747
 5748		aux_offset = READ_ONCE(rb->user_page->aux_offset);
 5749		aux_size = READ_ONCE(rb->user_page->aux_size);
 5750
 5751		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
 5752			goto aux_unlock;
 5753
 5754		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
 5755			goto aux_unlock;
 5756
 5757		/* already mapped with a different offset */
 5758		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
 5759			goto aux_unlock;
 5760
 5761		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
 5762			goto aux_unlock;
 5763
 5764		/* already mapped with a different size */
 5765		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
 5766			goto aux_unlock;
 5767
 5768		if (!is_power_of_2(nr_pages))
 5769			goto aux_unlock;
 5770
 5771		if (!atomic_inc_not_zero(&rb->mmap_count))
 5772			goto aux_unlock;
 5773
 5774		if (rb_has_aux(rb)) {
 5775			atomic_inc(&rb->aux_mmap_count);
 5776			ret = 0;
 5777			goto unlock;
 5778		}
 5779
 5780		atomic_set(&rb->aux_mmap_count, 1);
 5781		user_extra = nr_pages;
 5782
 5783		goto accounting;
 5784	}
 5785
 5786	/*
 5787	 * If we have rb pages ensure they're a power-of-two number, so we
 5788	 * can do bitmasks instead of modulo.
 5789	 */
 5790	if (nr_pages != 0 && !is_power_of_2(nr_pages))
 5791		return -EINVAL;
 5792
 5793	if (vma_size != PAGE_SIZE * (1 + nr_pages))
 5794		return -EINVAL;
 5795
 
 
 
 5796	WARN_ON_ONCE(event->ctx->parent_ctx);
 5797again:
 5798	mutex_lock(&event->mmap_mutex);
 5799	if (event->rb) {
 5800		if (event->rb->nr_pages != nr_pages) {
 
 
 5801			ret = -EINVAL;
 5802			goto unlock;
 5803		}
 5804
 5805		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
 5806			/*
 5807			 * Raced against perf_mmap_close() through
 5808			 * perf_event_set_output(). Try again, hope for better
 5809			 * luck.
 5810			 */
 5811			mutex_unlock(&event->mmap_mutex);
 5812			goto again;
 5813		}
 5814
 5815		goto unlock;
 5816	}
 5817
 5818	user_extra = nr_pages + 1;
 5819
 5820accounting:
 5821	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
 5822
 5823	/*
 5824	 * Increase the limit linearly with more CPUs:
 5825	 */
 5826	user_lock_limit *= num_online_cpus();
 5827
 5828	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
 5829
 5830	if (user_locked <= user_lock_limit) {
 5831		/* charge all to locked_vm */
 5832	} else if (atomic_long_read(&user->locked_vm) >= user_lock_limit) {
 5833		/* charge all to pinned_vm */
 5834		extra = user_extra;
 5835		user_extra = 0;
 5836	} else {
 5837		/*
 5838		 * charge locked_vm until it hits user_lock_limit;
 5839		 * charge the rest from pinned_vm
 5840		 */
 5841		extra = user_locked - user_lock_limit;
 5842		user_extra -= extra;
 5843	}
 5844
 5845	lock_limit = rlimit(RLIMIT_MEMLOCK);
 5846	lock_limit >>= PAGE_SHIFT;
 5847	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
 5848
 5849	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
 5850		!capable(CAP_IPC_LOCK)) {
 5851		ret = -EPERM;
 5852		goto unlock;
 5853	}
 5854
 5855	WARN_ON(!rb && event->rb);
 5856
 5857	if (vma->vm_flags & VM_WRITE)
 5858		flags |= RING_BUFFER_WRITABLE;
 5859
 5860	if (!rb) {
 5861		rb = rb_alloc(nr_pages,
 5862			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
 5863			      event->cpu, flags);
 5864
 5865		if (!rb) {
 5866			ret = -ENOMEM;
 5867			goto unlock;
 5868		}
 5869
 5870		atomic_set(&rb->mmap_count, 1);
 5871		rb->mmap_user = get_current_user();
 5872		rb->mmap_locked = extra;
 5873
 5874		ring_buffer_attach(event, rb);
 5875
 5876		perf_event_init_userpage(event);
 5877		perf_event_update_userpage(event);
 5878	} else {
 5879		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
 5880				   event->attr.aux_watermark, flags);
 5881		if (!ret)
 5882			rb->aux_mmap_locked = extra;
 5883	}
 
 5884
 5885unlock:
 5886	if (!ret) {
 5887		atomic_long_add(user_extra, &user->locked_vm);
 5888		atomic64_add(extra, &vma->vm_mm->pinned_vm);
 5889
 
 
 5890		atomic_inc(&event->mmap_count);
 5891	} else if (rb) {
 5892		atomic_dec(&rb->mmap_count);
 5893	}
 5894aux_unlock:
 5895	mutex_unlock(&event->mmap_mutex);
 5896
 5897	/*
 5898	 * Since pinned accounting is per vm we cannot allow fork() to copy our
 5899	 * vma.
 5900	 */
 5901	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
 5902	vma->vm_ops = &perf_mmap_vmops;
 5903
 5904	if (event->pmu->event_mapped)
 5905		event->pmu->event_mapped(event, vma->vm_mm);
 5906
 5907	return ret;
 5908}
 5909
 5910static int perf_fasync(int fd, struct file *filp, int on)
 5911{
 5912	struct inode *inode = file_inode(filp);
 5913	struct perf_event *event = filp->private_data;
 5914	int retval;
 5915
 5916	inode_lock(inode);
 5917	retval = fasync_helper(fd, filp, on, &event->fasync);
 5918	inode_unlock(inode);
 5919
 5920	if (retval < 0)
 5921		return retval;
 5922
 5923	return 0;
 5924}
 5925
 5926static const struct file_operations perf_fops = {
 5927	.llseek			= no_llseek,
 5928	.release		= perf_release,
 5929	.read			= perf_read,
 5930	.poll			= perf_poll,
 5931	.unlocked_ioctl		= perf_ioctl,
 5932	.compat_ioctl		= perf_compat_ioctl,
 5933	.mmap			= perf_mmap,
 5934	.fasync			= perf_fasync,
 5935};
 5936
 5937/*
 5938 * Perf event wakeup
 5939 *
 5940 * If there's data, ensure we set the poll() state and publish everything
 5941 * to user-space before waking everybody up.
 5942 */
 5943
 5944static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
 5945{
 5946	/* only the parent has fasync state */
 5947	if (event->parent)
 5948		event = event->parent;
 5949	return &event->fasync;
 5950}
 5951
 5952void perf_event_wakeup(struct perf_event *event)
 5953{
 5954	ring_buffer_wakeup(event);
 5955
 5956	if (event->pending_kill) {
 5957		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
 5958		event->pending_kill = 0;
 5959	}
 5960}
 5961
 5962static void perf_pending_event_disable(struct perf_event *event)
 5963{
 5964	int cpu = READ_ONCE(event->pending_disable);
 5965
 5966	if (cpu < 0)
 5967		return;
 5968
 5969	if (cpu == smp_processor_id()) {
 5970		WRITE_ONCE(event->pending_disable, -1);
 5971		perf_event_disable_local(event);
 5972		return;
 5973	}
 5974
 5975	/*
 5976	 *  CPU-A			CPU-B
 5977	 *
 5978	 *  perf_event_disable_inatomic()
 5979	 *    @pending_disable = CPU-A;
 5980	 *    irq_work_queue();
 5981	 *
 5982	 *  sched-out
 5983	 *    @pending_disable = -1;
 5984	 *
 5985	 *				sched-in
 5986	 *				perf_event_disable_inatomic()
 5987	 *				  @pending_disable = CPU-B;
 5988	 *				  irq_work_queue(); // FAILS
 5989	 *
 5990	 *  irq_work_run()
 5991	 *    perf_pending_event()
 5992	 *
 5993	 * But the event runs on CPU-B and wants disabling there.
 5994	 */
 5995	irq_work_queue_on(&event->pending, cpu);
 5996}
 5997
 5998static void perf_pending_event(struct irq_work *entry)
 5999{
 6000	struct perf_event *event = container_of(entry, struct perf_event, pending);
 6001	int rctx;
 6002
 6003	rctx = perf_swevent_get_recursion_context();
 6004	/*
 6005	 * If we 'fail' here, that's OK, it means recursion is already disabled
 6006	 * and we won't recurse 'further'.
 6007	 */
 6008
 6009	perf_pending_event_disable(event);
 
 
 
 6010
 6011	if (event->pending_wakeup) {
 6012		event->pending_wakeup = 0;
 6013		perf_event_wakeup(event);
 6014	}
 6015
 6016	if (rctx >= 0)
 6017		perf_swevent_put_recursion_context(rctx);
 6018}
 6019
 6020/*
 6021 * We assume there is only KVM supporting the callbacks.
 6022 * Later on, we might change it to a list if there is
 6023 * another virtualization implementation supporting the callbacks.
 6024 */
 6025struct perf_guest_info_callbacks *perf_guest_cbs;
 6026
 6027int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
 6028{
 6029	perf_guest_cbs = cbs;
 6030	return 0;
 6031}
 6032EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
 6033
 6034int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
 6035{
 6036	perf_guest_cbs = NULL;
 6037	return 0;
 6038}
 6039EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
 6040
 6041static void
 6042perf_output_sample_regs(struct perf_output_handle *handle,
 6043			struct pt_regs *regs, u64 mask)
 6044{
 6045	int bit;
 6046	DECLARE_BITMAP(_mask, 64);
 6047
 6048	bitmap_from_u64(_mask, mask);
 6049	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
 6050		u64 val;
 6051
 6052		val = perf_reg_value(regs, bit);
 6053		perf_output_put(handle, val);
 6054	}
 6055}
 6056
 6057static void perf_sample_regs_user(struct perf_regs *regs_user,
 6058				  struct pt_regs *regs,
 6059				  struct pt_regs *regs_user_copy)
 6060{
 6061	if (user_mode(regs)) {
 6062		regs_user->abi = perf_reg_abi(current);
 6063		regs_user->regs = regs;
 6064	} else if (!(current->flags & PF_KTHREAD)) {
 6065		perf_get_regs_user(regs_user, regs, regs_user_copy);
 6066	} else {
 6067		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
 6068		regs_user->regs = NULL;
 6069	}
 6070}
 6071
 6072static void perf_sample_regs_intr(struct perf_regs *regs_intr,
 6073				  struct pt_regs *regs)
 6074{
 6075	regs_intr->regs = regs;
 6076	regs_intr->abi  = perf_reg_abi(current);
 6077}
 6078
 6079
 6080/*
 6081 * Get remaining task size from user stack pointer.
 6082 *
 6083 * It'd be better to take stack vma map and limit this more
 6084 * precisely, but there's no way to get it safely under interrupt,
 6085 * so using TASK_SIZE as limit.
 6086 */
 6087static u64 perf_ustack_task_size(struct pt_regs *regs)
 6088{
 6089	unsigned long addr = perf_user_stack_pointer(regs);
 6090
 6091	if (!addr || addr >= TASK_SIZE)
 6092		return 0;
 6093
 6094	return TASK_SIZE - addr;
 6095}
 6096
 6097static u16
 6098perf_sample_ustack_size(u16 stack_size, u16 header_size,
 6099			struct pt_regs *regs)
 6100{
 6101	u64 task_size;
 6102
 6103	/* No regs, no stack pointer, no dump. */
 6104	if (!regs)
 6105		return 0;
 6106
 6107	/*
 6108	 * Check if we fit in with the requested stack size into the:
 6109	 * - TASK_SIZE
 6110	 *   If we don't, we limit the size to the TASK_SIZE.
 6111	 *
 6112	 * - remaining sample size
 6113	 *   If we don't, we customize the stack size to
 6114	 *   fit in to the remaining sample size.
 6115	 */
 6116
 6117	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
 6118	stack_size = min(stack_size, (u16) task_size);
 6119
 6120	/* Current header size plus static size and dynamic size. */
 6121	header_size += 2 * sizeof(u64);
 6122
 6123	/* Do we fit in with the current stack dump size? */
 6124	if ((u16) (header_size + stack_size) < header_size) {
 6125		/*
 6126		 * If we overflow the maximum size for the sample,
 6127		 * we customize the stack dump size to fit in.
 6128		 */
 6129		stack_size = USHRT_MAX - header_size - sizeof(u64);
 6130		stack_size = round_up(stack_size, sizeof(u64));
 6131	}
 6132
 6133	return stack_size;
 6134}
 6135
 6136static void
 6137perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
 6138			  struct pt_regs *regs)
 6139{
 6140	/* Case of a kernel thread, nothing to dump */
 6141	if (!regs) {
 6142		u64 size = 0;
 6143		perf_output_put(handle, size);
 6144	} else {
 6145		unsigned long sp;
 6146		unsigned int rem;
 6147		u64 dyn_size;
 6148		mm_segment_t fs;
 6149
 6150		/*
 6151		 * We dump:
 6152		 * static size
 6153		 *   - the size requested by user or the best one we can fit
 6154		 *     in to the sample max size
 6155		 * data
 6156		 *   - user stack dump data
 6157		 * dynamic size
 6158		 *   - the actual dumped size
 6159		 */
 6160
 6161		/* Static size. */
 6162		perf_output_put(handle, dump_size);
 6163
 6164		/* Data. */
 6165		sp = perf_user_stack_pointer(regs);
 6166		fs = get_fs();
 6167		set_fs(USER_DS);
 6168		rem = __output_copy_user(handle, (void *) sp, dump_size);
 6169		set_fs(fs);
 6170		dyn_size = dump_size - rem;
 6171
 6172		perf_output_skip(handle, rem);
 6173
 6174		/* Dynamic size. */
 6175		perf_output_put(handle, dyn_size);
 6176	}
 6177}
 6178
 6179static void __perf_event_header__init_id(struct perf_event_header *header,
 6180					 struct perf_sample_data *data,
 6181					 struct perf_event *event)
 6182{
 6183	u64 sample_type = event->attr.sample_type;
 6184
 6185	data->type = sample_type;
 6186	header->size += event->id_header_size;
 6187
 6188	if (sample_type & PERF_SAMPLE_TID) {
 6189		/* namespace issues */
 6190		data->tid_entry.pid = perf_event_pid(event, current);
 6191		data->tid_entry.tid = perf_event_tid(event, current);
 6192	}
 6193
 6194	if (sample_type & PERF_SAMPLE_TIME)
 6195		data->time = perf_event_clock(event);
 6196
 6197	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
 6198		data->id = primary_event_id(event);
 6199
 6200	if (sample_type & PERF_SAMPLE_STREAM_ID)
 6201		data->stream_id = event->id;
 6202
 6203	if (sample_type & PERF_SAMPLE_CPU) {
 6204		data->cpu_entry.cpu	 = raw_smp_processor_id();
 6205		data->cpu_entry.reserved = 0;
 6206	}
 6207}
 6208
 6209void perf_event_header__init_id(struct perf_event_header *header,
 6210				struct perf_sample_data *data,
 6211				struct perf_event *event)
 6212{
 6213	if (event->attr.sample_id_all)
 6214		__perf_event_header__init_id(header, data, event);
 6215}
 6216
 6217static void __perf_event__output_id_sample(struct perf_output_handle *handle,
 6218					   struct perf_sample_data *data)
 6219{
 6220	u64 sample_type = data->type;
 6221
 6222	if (sample_type & PERF_SAMPLE_TID)
 6223		perf_output_put(handle, data->tid_entry);
 6224
 6225	if (sample_type & PERF_SAMPLE_TIME)
 6226		perf_output_put(handle, data->time);
 6227
 6228	if (sample_type & PERF_SAMPLE_ID)
 6229		perf_output_put(handle, data->id);
 6230
 6231	if (sample_type & PERF_SAMPLE_STREAM_ID)
 6232		perf_output_put(handle, data->stream_id);
 6233
 6234	if (sample_type & PERF_SAMPLE_CPU)
 6235		perf_output_put(handle, data->cpu_entry);
 6236
 6237	if (sample_type & PERF_SAMPLE_IDENTIFIER)
 6238		perf_output_put(handle, data->id);
 6239}
 6240
 6241void perf_event__output_id_sample(struct perf_event *event,
 6242				  struct perf_output_handle *handle,
 6243				  struct perf_sample_data *sample)
 6244{
 6245	if (event->attr.sample_id_all)
 6246		__perf_event__output_id_sample(handle, sample);
 6247}
 6248
 6249static void perf_output_read_one(struct perf_output_handle *handle,
 6250				 struct perf_event *event,
 6251				 u64 enabled, u64 running)
 6252{
 6253	u64 read_format = event->attr.read_format;
 6254	u64 values[4];
 6255	int n = 0;
 6256
 6257	values[n++] = perf_event_count(event);
 6258	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
 6259		values[n++] = enabled +
 6260			atomic64_read(&event->child_total_time_enabled);
 6261	}
 6262	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
 6263		values[n++] = running +
 6264			atomic64_read(&event->child_total_time_running);
 6265	}
 6266	if (read_format & PERF_FORMAT_ID)
 6267		values[n++] = primary_event_id(event);
 6268
 6269	__output_copy(handle, values, n * sizeof(u64));
 6270}
 6271
 
 
 
 6272static void perf_output_read_group(struct perf_output_handle *handle,
 6273			    struct perf_event *event,
 6274			    u64 enabled, u64 running)
 6275{
 6276	struct perf_event *leader = event->group_leader, *sub;
 6277	u64 read_format = event->attr.read_format;
 6278	u64 values[5];
 6279	int n = 0;
 6280
 6281	values[n++] = 1 + leader->nr_siblings;
 6282
 6283	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
 6284		values[n++] = enabled;
 6285
 6286	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
 6287		values[n++] = running;
 6288
 6289	if ((leader != event) &&
 6290	    (leader->state == PERF_EVENT_STATE_ACTIVE))
 6291		leader->pmu->read(leader);
 6292
 6293	values[n++] = perf_event_count(leader);
 6294	if (read_format & PERF_FORMAT_ID)
 6295		values[n++] = primary_event_id(leader);
 6296
 6297	__output_copy(handle, values, n * sizeof(u64));
 6298
 6299	for_each_sibling_event(sub, leader) {
 6300		n = 0;
 6301
 6302		if ((sub != event) &&
 6303		    (sub->state == PERF_EVENT_STATE_ACTIVE))
 6304			sub->pmu->read(sub);
 6305
 6306		values[n++] = perf_event_count(sub);
 6307		if (read_format & PERF_FORMAT_ID)
 6308			values[n++] = primary_event_id(sub);
 6309
 6310		__output_copy(handle, values, n * sizeof(u64));
 6311	}
 6312}
 6313
 6314#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
 6315				 PERF_FORMAT_TOTAL_TIME_RUNNING)
 6316
 6317/*
 6318 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
 6319 *
 6320 * The problem is that its both hard and excessively expensive to iterate the
 6321 * child list, not to mention that its impossible to IPI the children running
 6322 * on another CPU, from interrupt/NMI context.
 6323 */
 6324static void perf_output_read(struct perf_output_handle *handle,
 6325			     struct perf_event *event)
 6326{
 6327	u64 enabled = 0, running = 0, now;
 6328	u64 read_format = event->attr.read_format;
 6329
 6330	/*
 6331	 * compute total_time_enabled, total_time_running
 6332	 * based on snapshot values taken when the event
 6333	 * was last scheduled in.
 6334	 *
 6335	 * we cannot simply called update_context_time()
 6336	 * because of locking issue as we are called in
 6337	 * NMI context
 6338	 */
 6339	if (read_format & PERF_FORMAT_TOTAL_TIMES)
 6340		calc_timer_values(event, &now, &enabled, &running);
 6341
 6342	if (event->attr.read_format & PERF_FORMAT_GROUP)
 6343		perf_output_read_group(handle, event, enabled, running);
 6344	else
 6345		perf_output_read_one(handle, event, enabled, running);
 6346}
 6347
 6348void perf_output_sample(struct perf_output_handle *handle,
 6349			struct perf_event_header *header,
 6350			struct perf_sample_data *data,
 6351			struct perf_event *event)
 6352{
 6353	u64 sample_type = data->type;
 6354
 6355	perf_output_put(handle, *header);
 6356
 6357	if (sample_type & PERF_SAMPLE_IDENTIFIER)
 6358		perf_output_put(handle, data->id);
 6359
 6360	if (sample_type & PERF_SAMPLE_IP)
 6361		perf_output_put(handle, data->ip);
 6362
 6363	if (sample_type & PERF_SAMPLE_TID)
 6364		perf_output_put(handle, data->tid_entry);
 6365
 6366	if (sample_type & PERF_SAMPLE_TIME)
 6367		perf_output_put(handle, data->time);
 6368
 6369	if (sample_type & PERF_SAMPLE_ADDR)
 6370		perf_output_put(handle, data->addr);
 6371
 6372	if (sample_type & PERF_SAMPLE_ID)
 6373		perf_output_put(handle, data->id);
 6374
 6375	if (sample_type & PERF_SAMPLE_STREAM_ID)
 6376		perf_output_put(handle, data->stream_id);
 6377
 6378	if (sample_type & PERF_SAMPLE_CPU)
 6379		perf_output_put(handle, data->cpu_entry);
 6380
 6381	if (sample_type & PERF_SAMPLE_PERIOD)
 6382		perf_output_put(handle, data->period);
 6383
 6384	if (sample_type & PERF_SAMPLE_READ)
 6385		perf_output_read(handle, event);
 6386
 6387	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
 6388		int size = 1;
 
 6389
 6390		size += data->callchain->nr;
 6391		size *= sizeof(u64);
 6392		__output_copy(handle, data->callchain, size);
 6393	}
 6394
 6395	if (sample_type & PERF_SAMPLE_RAW) {
 6396		struct perf_raw_record *raw = data->raw;
 6397
 6398		if (raw) {
 6399			struct perf_raw_frag *frag = &raw->frag;
 
 
 
 
 6400
 6401			perf_output_put(handle, raw->size);
 6402			do {
 6403				if (frag->copy) {
 6404					__output_custom(handle, frag->copy,
 6405							frag->data, frag->size);
 6406				} else {
 6407					__output_copy(handle, frag->data,
 6408						      frag->size);
 6409				}
 6410				if (perf_raw_frag_last(frag))
 6411					break;
 6412				frag = frag->next;
 6413			} while (1);
 6414			if (frag->pad)
 6415				__output_skip(handle, NULL, frag->pad);
 6416		} else {
 6417			struct {
 6418				u32	size;
 6419				u32	data;
 6420			} raw = {
 6421				.size = sizeof(u32),
 6422				.data = 0,
 6423			};
 6424			perf_output_put(handle, raw);
 6425		}
 6426	}
 6427
 6428	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
 6429		if (data->br_stack) {
 6430			size_t size;
 6431
 6432			size = data->br_stack->nr
 6433			     * sizeof(struct perf_branch_entry);
 6434
 6435			perf_output_put(handle, data->br_stack->nr);
 6436			perf_output_copy(handle, data->br_stack->entries, size);
 6437		} else {
 6438			/*
 6439			 * we always store at least the value of nr
 6440			 */
 6441			u64 nr = 0;
 6442			perf_output_put(handle, nr);
 6443		}
 6444	}
 6445
 6446	if (sample_type & PERF_SAMPLE_REGS_USER) {
 6447		u64 abi = data->regs_user.abi;
 6448
 6449		/*
 6450		 * If there are no regs to dump, notice it through
 6451		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
 6452		 */
 6453		perf_output_put(handle, abi);
 6454
 6455		if (abi) {
 6456			u64 mask = event->attr.sample_regs_user;
 6457			perf_output_sample_regs(handle,
 6458						data->regs_user.regs,
 6459						mask);
 6460		}
 6461	}
 6462
 6463	if (sample_type & PERF_SAMPLE_STACK_USER) {
 6464		perf_output_sample_ustack(handle,
 6465					  data->stack_user_size,
 6466					  data->regs_user.regs);
 6467	}
 6468
 6469	if (sample_type & PERF_SAMPLE_WEIGHT)
 6470		perf_output_put(handle, data->weight);
 6471
 6472	if (sample_type & PERF_SAMPLE_DATA_SRC)
 6473		perf_output_put(handle, data->data_src.val);
 6474
 6475	if (sample_type & PERF_SAMPLE_TRANSACTION)
 6476		perf_output_put(handle, data->txn);
 6477
 6478	if (sample_type & PERF_SAMPLE_REGS_INTR) {
 6479		u64 abi = data->regs_intr.abi;
 6480		/*
 6481		 * If there are no regs to dump, notice it through
 6482		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
 6483		 */
 6484		perf_output_put(handle, abi);
 6485
 6486		if (abi) {
 6487			u64 mask = event->attr.sample_regs_intr;
 6488
 6489			perf_output_sample_regs(handle,
 6490						data->regs_intr.regs,
 6491						mask);
 6492		}
 6493	}
 6494
 6495	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
 6496		perf_output_put(handle, data->phys_addr);
 6497
 6498	if (!event->attr.watermark) {
 6499		int wakeup_events = event->attr.wakeup_events;
 6500
 6501		if (wakeup_events) {
 6502			struct ring_buffer *rb = handle->rb;
 6503			int events = local_inc_return(&rb->events);
 6504
 6505			if (events >= wakeup_events) {
 6506				local_sub(wakeup_events, &rb->events);
 6507				local_inc(&rb->wakeup);
 6508			}
 6509		}
 6510	}
 6511}
 6512
 6513static u64 perf_virt_to_phys(u64 virt)
 6514{
 6515	u64 phys_addr = 0;
 6516	struct page *p = NULL;
 6517
 6518	if (!virt)
 6519		return 0;
 6520
 6521	if (virt >= TASK_SIZE) {
 6522		/* If it's vmalloc()d memory, leave phys_addr as 0 */
 6523		if (virt_addr_valid((void *)(uintptr_t)virt) &&
 6524		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
 6525			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
 6526	} else {
 6527		/*
 6528		 * Walking the pages tables for user address.
 6529		 * Interrupts are disabled, so it prevents any tear down
 6530		 * of the page tables.
 6531		 * Try IRQ-safe __get_user_pages_fast first.
 6532		 * If failed, leave phys_addr as 0.
 6533		 */
 6534		if ((current->mm != NULL) &&
 6535		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
 6536			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
 6537
 6538		if (p)
 6539			put_page(p);
 6540	}
 6541
 6542	return phys_addr;
 6543}
 6544
 6545static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
 6546
 6547struct perf_callchain_entry *
 6548perf_callchain(struct perf_event *event, struct pt_regs *regs)
 6549{
 6550	bool kernel = !event->attr.exclude_callchain_kernel;
 6551	bool user   = !event->attr.exclude_callchain_user;
 6552	/* Disallow cross-task user callchains. */
 6553	bool crosstask = event->ctx->task && event->ctx->task != current;
 6554	const u32 max_stack = event->attr.sample_max_stack;
 6555	struct perf_callchain_entry *callchain;
 6556
 6557	if (!kernel && !user)
 6558		return &__empty_callchain;
 6559
 6560	callchain = get_perf_callchain(regs, 0, kernel, user,
 6561				       max_stack, crosstask, true);
 6562	return callchain ?: &__empty_callchain;
 6563}
 6564
 6565void perf_prepare_sample(struct perf_event_header *header,
 6566			 struct perf_sample_data *data,
 6567			 struct perf_event *event,
 6568			 struct pt_regs *regs)
 6569{
 6570	u64 sample_type = event->attr.sample_type;
 6571
 6572	header->type = PERF_RECORD_SAMPLE;
 6573	header->size = sizeof(*header) + event->header_size;
 6574
 6575	header->misc = 0;
 6576	header->misc |= perf_misc_flags(regs);
 6577
 6578	__perf_event_header__init_id(header, data, event);
 6579
 6580	if (sample_type & PERF_SAMPLE_IP)
 6581		data->ip = perf_instruction_pointer(regs);
 6582
 6583	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
 6584		int size = 1;
 6585
 6586		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
 6587			data->callchain = perf_callchain(event, regs);
 6588
 6589		size += data->callchain->nr;
 
 6590
 6591		header->size += size * sizeof(u64);
 6592	}
 6593
 6594	if (sample_type & PERF_SAMPLE_RAW) {
 6595		struct perf_raw_record *raw = data->raw;
 6596		int size;
 6597
 6598		if (raw) {
 6599			struct perf_raw_frag *frag = &raw->frag;
 6600			u32 sum = 0;
 6601
 6602			do {
 6603				sum += frag->size;
 6604				if (perf_raw_frag_last(frag))
 6605					break;
 6606				frag = frag->next;
 6607			} while (1);
 6608
 6609			size = round_up(sum + sizeof(u32), sizeof(u64));
 6610			raw->size = size - sizeof(u32);
 6611			frag->pad = raw->size - sum;
 6612		} else {
 6613			size = sizeof(u64);
 6614		}
 6615
 6616		header->size += size;
 6617	}
 6618
 6619	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
 6620		int size = sizeof(u64); /* nr */
 6621		if (data->br_stack) {
 6622			size += data->br_stack->nr
 6623			      * sizeof(struct perf_branch_entry);
 6624		}
 6625		header->size += size;
 6626	}
 6627
 6628	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
 6629		perf_sample_regs_user(&data->regs_user, regs,
 6630				      &data->regs_user_copy);
 6631
 6632	if (sample_type & PERF_SAMPLE_REGS_USER) {
 6633		/* regs dump ABI info */
 6634		int size = sizeof(u64);
 6635
 6636		if (data->regs_user.regs) {
 6637			u64 mask = event->attr.sample_regs_user;
 6638			size += hweight64(mask) * sizeof(u64);
 6639		}
 6640
 6641		header->size += size;
 6642	}
 6643
 6644	if (sample_type & PERF_SAMPLE_STACK_USER) {
 6645		/*
 6646		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
 6647		 * processed as the last one or have additional check added
 6648		 * in case new sample type is added, because we could eat
 6649		 * up the rest of the sample size.
 6650		 */
 6651		u16 stack_size = event->attr.sample_stack_user;
 6652		u16 size = sizeof(u64);
 6653
 6654		stack_size = perf_sample_ustack_size(stack_size, header->size,
 6655						     data->regs_user.regs);
 6656
 6657		/*
 6658		 * If there is something to dump, add space for the dump
 6659		 * itself and for the field that tells the dynamic size,
 6660		 * which is how many have been actually dumped.
 6661		 */
 6662		if (stack_size)
 6663			size += sizeof(u64) + stack_size;
 6664
 6665		data->stack_user_size = stack_size;
 6666		header->size += size;
 6667	}
 6668
 6669	if (sample_type & PERF_SAMPLE_REGS_INTR) {
 6670		/* regs dump ABI info */
 6671		int size = sizeof(u64);
 6672
 6673		perf_sample_regs_intr(&data->regs_intr, regs);
 6674
 6675		if (data->regs_intr.regs) {
 6676			u64 mask = event->attr.sample_regs_intr;
 6677
 6678			size += hweight64(mask) * sizeof(u64);
 6679		}
 6680
 
 6681		header->size += size;
 6682	}
 6683
 6684	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
 6685		data->phys_addr = perf_virt_to_phys(data->addr);
 6686}
 6687
 6688static __always_inline int
 6689__perf_event_output(struct perf_event *event,
 6690		    struct perf_sample_data *data,
 6691		    struct pt_regs *regs,
 6692		    int (*output_begin)(struct perf_output_handle *,
 6693					struct perf_event *,
 6694					unsigned int))
 6695{
 6696	struct perf_output_handle handle;
 6697	struct perf_event_header header;
 6698	int err;
 6699
 6700	/* protect the callchain buffers */
 6701	rcu_read_lock();
 6702
 6703	perf_prepare_sample(&header, data, event, regs);
 6704
 6705	err = output_begin(&handle, event, header.size);
 6706	if (err)
 6707		goto exit;
 6708
 6709	perf_output_sample(&handle, &header, data, event);
 6710
 6711	perf_output_end(&handle);
 6712
 6713exit:
 6714	rcu_read_unlock();
 6715	return err;
 6716}
 6717
 6718void
 6719perf_event_output_forward(struct perf_event *event,
 6720			 struct perf_sample_data *data,
 6721			 struct pt_regs *regs)
 6722{
 6723	__perf_event_output(event, data, regs, perf_output_begin_forward);
 6724}
 6725
 6726void
 6727perf_event_output_backward(struct perf_event *event,
 6728			   struct perf_sample_data *data,
 6729			   struct pt_regs *regs)
 6730{
 6731	__perf_event_output(event, data, regs, perf_output_begin_backward);
 6732}
 6733
 6734int
 6735perf_event_output(struct perf_event *event,
 6736		  struct perf_sample_data *data,
 6737		  struct pt_regs *regs)
 6738{
 6739	return __perf_event_output(event, data, regs, perf_output_begin);
 6740}
 6741
 6742/*
 6743 * read event_id
 6744 */
 6745
 6746struct perf_read_event {
 6747	struct perf_event_header	header;
 6748
 6749	u32				pid;
 6750	u32				tid;
 6751};
 6752
 6753static void
 6754perf_event_read_event(struct perf_event *event,
 6755			struct task_struct *task)
 6756{
 6757	struct perf_output_handle handle;
 6758	struct perf_sample_data sample;
 6759	struct perf_read_event read_event = {
 6760		.header = {
 6761			.type = PERF_RECORD_READ,
 6762			.misc = 0,
 6763			.size = sizeof(read_event) + event->read_size,
 6764		},
 6765		.pid = perf_event_pid(event, task),
 6766		.tid = perf_event_tid(event, task),
 6767	};
 6768	int ret;
 6769
 6770	perf_event_header__init_id(&read_event.header, &sample, event);
 6771	ret = perf_output_begin(&handle, event, read_event.header.size);
 6772	if (ret)
 6773		return;
 6774
 6775	perf_output_put(&handle, read_event);
 6776	perf_output_read(&handle, event);
 6777	perf_event__output_id_sample(event, &handle, &sample);
 6778
 6779	perf_output_end(&handle);
 6780}
 6781
 6782typedef void (perf_iterate_f)(struct perf_event *event, void *data);
 6783
 6784static void
 6785perf_iterate_ctx(struct perf_event_context *ctx,
 6786		   perf_iterate_f output,
 6787		   void *data, bool all)
 6788{
 6789	struct perf_event *event;
 6790
 6791	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
 6792		if (!all) {
 6793			if (event->state < PERF_EVENT_STATE_INACTIVE)
 6794				continue;
 6795			if (!event_filter_match(event))
 6796				continue;
 6797		}
 6798
 6799		output(event, data);
 6800	}
 6801}
 6802
 6803static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
 6804{
 6805	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
 6806	struct perf_event *event;
 6807
 6808	list_for_each_entry_rcu(event, &pel->list, sb_list) {
 6809		/*
 6810		 * Skip events that are not fully formed yet; ensure that
 6811		 * if we observe event->ctx, both event and ctx will be
 6812		 * complete enough. See perf_install_in_context().
 6813		 */
 6814		if (!smp_load_acquire(&event->ctx))
 6815			continue;
 6816
 6817		if (event->state < PERF_EVENT_STATE_INACTIVE)
 6818			continue;
 6819		if (!event_filter_match(event))
 6820			continue;
 6821		output(event, data);
 6822	}
 6823}
 6824
 6825/*
 6826 * Iterate all events that need to receive side-band events.
 6827 *
 6828 * For new callers; ensure that account_pmu_sb_event() includes
 6829 * your event, otherwise it might not get delivered.
 6830 */
 6831static void
 6832perf_iterate_sb(perf_iterate_f output, void *data,
 6833	       struct perf_event_context *task_ctx)
 6834{
 6835	struct perf_event_context *ctx;
 6836	int ctxn;
 6837
 6838	rcu_read_lock();
 6839	preempt_disable();
 6840
 6841	/*
 6842	 * If we have task_ctx != NULL we only notify the task context itself.
 6843	 * The task_ctx is set only for EXIT events before releasing task
 6844	 * context.
 6845	 */
 6846	if (task_ctx) {
 6847		perf_iterate_ctx(task_ctx, output, data, false);
 6848		goto done;
 6849	}
 6850
 6851	perf_iterate_sb_cpu(output, data);
 6852
 6853	for_each_task_context_nr(ctxn) {
 6854		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
 6855		if (ctx)
 6856			perf_iterate_ctx(ctx, output, data, false);
 6857	}
 6858done:
 6859	preempt_enable();
 6860	rcu_read_unlock();
 6861}
 6862
 6863/*
 6864 * Clear all file-based filters at exec, they'll have to be
 6865 * re-instated when/if these objects are mmapped again.
 6866 */
 6867static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
 6868{
 6869	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
 6870	struct perf_addr_filter *filter;
 6871	unsigned int restart = 0, count = 0;
 6872	unsigned long flags;
 6873
 6874	if (!has_addr_filter(event))
 6875		return;
 6876
 6877	raw_spin_lock_irqsave(&ifh->lock, flags);
 6878	list_for_each_entry(filter, &ifh->list, entry) {
 6879		if (filter->path.dentry) {
 6880			event->addr_filter_ranges[count].start = 0;
 6881			event->addr_filter_ranges[count].size = 0;
 6882			restart++;
 6883		}
 6884
 6885		count++;
 6886	}
 6887
 6888	if (restart)
 6889		event->addr_filters_gen++;
 6890	raw_spin_unlock_irqrestore(&ifh->lock, flags);
 6891
 6892	if (restart)
 6893		perf_event_stop(event, 1);
 6894}
 6895
 6896void perf_event_exec(void)
 6897{
 6898	struct perf_event_context *ctx;
 6899	int ctxn;
 6900
 6901	rcu_read_lock();
 6902	for_each_task_context_nr(ctxn) {
 6903		ctx = current->perf_event_ctxp[ctxn];
 6904		if (!ctx)
 6905			continue;
 6906
 6907		perf_event_enable_on_exec(ctxn);
 6908
 6909		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
 6910				   true);
 6911	}
 6912	rcu_read_unlock();
 6913}
 6914
 6915struct remote_output {
 6916	struct ring_buffer	*rb;
 6917	int			err;
 6918};
 6919
 6920static void __perf_event_output_stop(struct perf_event *event, void *data)
 6921{
 6922	struct perf_event *parent = event->parent;
 6923	struct remote_output *ro = data;
 6924	struct ring_buffer *rb = ro->rb;
 6925	struct stop_event_data sd = {
 6926		.event	= event,
 6927	};
 6928
 6929	if (!has_aux(event))
 6930		return;
 6931
 6932	if (!parent)
 6933		parent = event;
 6934
 6935	/*
 6936	 * In case of inheritance, it will be the parent that links to the
 6937	 * ring-buffer, but it will be the child that's actually using it.
 6938	 *
 6939	 * We are using event::rb to determine if the event should be stopped,
 6940	 * however this may race with ring_buffer_attach() (through set_output),
 6941	 * which will make us skip the event that actually needs to be stopped.
 6942	 * So ring_buffer_attach() has to stop an aux event before re-assigning
 6943	 * its rb pointer.
 6944	 */
 6945	if (rcu_dereference(parent->rb) == rb)
 6946		ro->err = __perf_event_stop(&sd);
 6947}
 6948
 6949static int __perf_pmu_output_stop(void *info)
 6950{
 6951	struct perf_event *event = info;
 6952	struct pmu *pmu = event->ctx->pmu;
 6953	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 6954	struct remote_output ro = {
 6955		.rb	= event->rb,
 6956	};
 6957
 6958	rcu_read_lock();
 6959	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
 6960	if (cpuctx->task_ctx)
 6961		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
 6962				   &ro, false);
 6963	rcu_read_unlock();
 6964
 6965	return ro.err;
 6966}
 6967
 6968static void perf_pmu_output_stop(struct perf_event *event)
 6969{
 6970	struct perf_event *iter;
 6971	int err, cpu;
 6972
 6973restart:
 6974	rcu_read_lock();
 6975	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
 6976		/*
 6977		 * For per-CPU events, we need to make sure that neither they
 6978		 * nor their children are running; for cpu==-1 events it's
 6979		 * sufficient to stop the event itself if it's active, since
 6980		 * it can't have children.
 6981		 */
 6982		cpu = iter->cpu;
 6983		if (cpu == -1)
 6984			cpu = READ_ONCE(iter->oncpu);
 6985
 6986		if (cpu == -1)
 6987			continue;
 6988
 6989		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
 6990		if (err == -EAGAIN) {
 6991			rcu_read_unlock();
 6992			goto restart;
 6993		}
 6994	}
 6995	rcu_read_unlock();
 6996}
 6997
 6998/*
 6999 * task tracking -- fork/exit
 7000 *
 7001 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
 7002 */
 7003
 7004struct perf_task_event {
 7005	struct task_struct		*task;
 7006	struct perf_event_context	*task_ctx;
 7007
 7008	struct {
 7009		struct perf_event_header	header;
 7010
 7011		u32				pid;
 7012		u32				ppid;
 7013		u32				tid;
 7014		u32				ptid;
 7015		u64				time;
 7016	} event_id;
 7017};
 7018
 7019static int perf_event_task_match(struct perf_event *event)
 7020{
 7021	return event->attr.comm  || event->attr.mmap ||
 7022	       event->attr.mmap2 || event->attr.mmap_data ||
 7023	       event->attr.task;
 7024}
 7025
 7026static void perf_event_task_output(struct perf_event *event,
 7027				   void *data)
 7028{
 7029	struct perf_task_event *task_event = data;
 7030	struct perf_output_handle handle;
 7031	struct perf_sample_data	sample;
 7032	struct task_struct *task = task_event->task;
 7033	int ret, size = task_event->event_id.header.size;
 7034
 7035	if (!perf_event_task_match(event))
 7036		return;
 7037
 7038	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
 7039
 7040	ret = perf_output_begin(&handle, event,
 7041				task_event->event_id.header.size);
 7042	if (ret)
 7043		goto out;
 7044
 7045	task_event->event_id.pid = perf_event_pid(event, task);
 7046	task_event->event_id.ppid = perf_event_pid(event, current);
 7047
 7048	task_event->event_id.tid = perf_event_tid(event, task);
 7049	task_event->event_id.ptid = perf_event_tid(event, current);
 7050
 7051	task_event->event_id.time = perf_event_clock(event);
 7052
 7053	perf_output_put(&handle, task_event->event_id);
 7054
 7055	perf_event__output_id_sample(event, &handle, &sample);
 7056
 7057	perf_output_end(&handle);
 7058out:
 7059	task_event->event_id.header.size = size;
 7060}
 7061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7062static void perf_event_task(struct task_struct *task,
 7063			      struct perf_event_context *task_ctx,
 7064			      int new)
 7065{
 7066	struct perf_task_event task_event;
 7067
 7068	if (!atomic_read(&nr_comm_events) &&
 7069	    !atomic_read(&nr_mmap_events) &&
 7070	    !atomic_read(&nr_task_events))
 7071		return;
 7072
 7073	task_event = (struct perf_task_event){
 7074		.task	  = task,
 7075		.task_ctx = task_ctx,
 7076		.event_id    = {
 7077			.header = {
 7078				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
 7079				.misc = 0,
 7080				.size = sizeof(task_event.event_id),
 7081			},
 7082			/* .pid  */
 7083			/* .ppid */
 7084			/* .tid  */
 7085			/* .ptid */
 7086			/* .time */
 7087		},
 7088	};
 7089
 7090	perf_iterate_sb(perf_event_task_output,
 7091		       &task_event,
 7092		       task_ctx);
 7093}
 7094
 7095void perf_event_fork(struct task_struct *task)
 7096{
 7097	perf_event_task(task, NULL, 1);
 7098	perf_event_namespaces(task);
 7099}
 7100
 7101/*
 7102 * comm tracking
 7103 */
 7104
 7105struct perf_comm_event {
 7106	struct task_struct	*task;
 7107	char			*comm;
 7108	int			comm_size;
 7109
 7110	struct {
 7111		struct perf_event_header	header;
 7112
 7113		u32				pid;
 7114		u32				tid;
 7115	} event_id;
 7116};
 7117
 7118static int perf_event_comm_match(struct perf_event *event)
 7119{
 7120	return event->attr.comm;
 7121}
 7122
 7123static void perf_event_comm_output(struct perf_event *event,
 7124				   void *data)
 7125{
 7126	struct perf_comm_event *comm_event = data;
 7127	struct perf_output_handle handle;
 7128	struct perf_sample_data sample;
 7129	int size = comm_event->event_id.header.size;
 7130	int ret;
 7131
 7132	if (!perf_event_comm_match(event))
 7133		return;
 7134
 7135	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
 7136	ret = perf_output_begin(&handle, event,
 7137				comm_event->event_id.header.size);
 7138
 7139	if (ret)
 7140		goto out;
 7141
 7142	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
 7143	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
 7144
 7145	perf_output_put(&handle, comm_event->event_id);
 7146	__output_copy(&handle, comm_event->comm,
 7147				   comm_event->comm_size);
 7148
 7149	perf_event__output_id_sample(event, &handle, &sample);
 7150
 7151	perf_output_end(&handle);
 7152out:
 7153	comm_event->event_id.header.size = size;
 7154}
 7155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7156static void perf_event_comm_event(struct perf_comm_event *comm_event)
 7157{
 
 
 7158	char comm[TASK_COMM_LEN];
 7159	unsigned int size;
 
 
 7160
 7161	memset(comm, 0, sizeof(comm));
 7162	strlcpy(comm, comm_event->task->comm, sizeof(comm));
 7163	size = ALIGN(strlen(comm)+1, sizeof(u64));
 7164
 7165	comm_event->comm = comm;
 7166	comm_event->comm_size = size;
 7167
 7168	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
 
 
 
 
 
 
 
 
 
 
 7169
 7170	perf_iterate_sb(perf_event_comm_output,
 7171		       comm_event,
 7172		       NULL);
 
 
 
 
 7173}
 7174
 7175void perf_event_comm(struct task_struct *task, bool exec)
 7176{
 7177	struct perf_comm_event comm_event;
 
 
 
 
 
 
 
 
 
 
 7178
 7179	if (!atomic_read(&nr_comm_events))
 7180		return;
 7181
 7182	comm_event = (struct perf_comm_event){
 7183		.task	= task,
 7184		/* .comm      */
 7185		/* .comm_size */
 7186		.event_id  = {
 7187			.header = {
 7188				.type = PERF_RECORD_COMM,
 7189				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
 7190				/* .size */
 7191			},
 7192			/* .pid */
 7193			/* .tid */
 7194		},
 7195	};
 7196
 7197	perf_event_comm_event(&comm_event);
 7198}
 7199
 7200/*
 7201 * namespaces tracking
 7202 */
 7203
 7204struct perf_namespaces_event {
 7205	struct task_struct		*task;
 7206
 7207	struct {
 7208		struct perf_event_header	header;
 7209
 7210		u32				pid;
 7211		u32				tid;
 7212		u64				nr_namespaces;
 7213		struct perf_ns_link_info	link_info[NR_NAMESPACES];
 7214	} event_id;
 7215};
 7216
 7217static int perf_event_namespaces_match(struct perf_event *event)
 7218{
 7219	return event->attr.namespaces;
 7220}
 7221
 7222static void perf_event_namespaces_output(struct perf_event *event,
 7223					 void *data)
 7224{
 7225	struct perf_namespaces_event *namespaces_event = data;
 7226	struct perf_output_handle handle;
 7227	struct perf_sample_data sample;
 7228	u16 header_size = namespaces_event->event_id.header.size;
 7229	int ret;
 7230
 7231	if (!perf_event_namespaces_match(event))
 7232		return;
 7233
 7234	perf_event_header__init_id(&namespaces_event->event_id.header,
 7235				   &sample, event);
 7236	ret = perf_output_begin(&handle, event,
 7237				namespaces_event->event_id.header.size);
 7238	if (ret)
 7239		goto out;
 7240
 7241	namespaces_event->event_id.pid = perf_event_pid(event,
 7242							namespaces_event->task);
 7243	namespaces_event->event_id.tid = perf_event_tid(event,
 7244							namespaces_event->task);
 7245
 7246	perf_output_put(&handle, namespaces_event->event_id);
 7247
 7248	perf_event__output_id_sample(event, &handle, &sample);
 7249
 7250	perf_output_end(&handle);
 7251out:
 7252	namespaces_event->event_id.header.size = header_size;
 7253}
 7254
 7255static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
 7256				   struct task_struct *task,
 7257				   const struct proc_ns_operations *ns_ops)
 7258{
 7259	struct path ns_path;
 7260	struct inode *ns_inode;
 7261	void *error;
 7262
 7263	error = ns_get_path(&ns_path, task, ns_ops);
 7264	if (!error) {
 7265		ns_inode = ns_path.dentry->d_inode;
 7266		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
 7267		ns_link_info->ino = ns_inode->i_ino;
 7268		path_put(&ns_path);
 7269	}
 7270}
 7271
 7272void perf_event_namespaces(struct task_struct *task)
 7273{
 7274	struct perf_namespaces_event namespaces_event;
 7275	struct perf_ns_link_info *ns_link_info;
 7276
 7277	if (!atomic_read(&nr_namespaces_events))
 7278		return;
 7279
 7280	namespaces_event = (struct perf_namespaces_event){
 7281		.task	= task,
 7282		.event_id  = {
 7283			.header = {
 7284				.type = PERF_RECORD_NAMESPACES,
 7285				.misc = 0,
 7286				.size = sizeof(namespaces_event.event_id),
 7287			},
 7288			/* .pid */
 7289			/* .tid */
 7290			.nr_namespaces = NR_NAMESPACES,
 7291			/* .link_info[NR_NAMESPACES] */
 7292		},
 7293	};
 7294
 7295	ns_link_info = namespaces_event.event_id.link_info;
 7296
 7297	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
 7298			       task, &mntns_operations);
 7299
 7300#ifdef CONFIG_USER_NS
 7301	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
 7302			       task, &userns_operations);
 7303#endif
 7304#ifdef CONFIG_NET_NS
 7305	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
 7306			       task, &netns_operations);
 7307#endif
 7308#ifdef CONFIG_UTS_NS
 7309	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
 7310			       task, &utsns_operations);
 7311#endif
 7312#ifdef CONFIG_IPC_NS
 7313	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
 7314			       task, &ipcns_operations);
 7315#endif
 7316#ifdef CONFIG_PID_NS
 7317	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
 7318			       task, &pidns_operations);
 7319#endif
 7320#ifdef CONFIG_CGROUPS
 7321	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
 7322			       task, &cgroupns_operations);
 7323#endif
 7324
 7325	perf_iterate_sb(perf_event_namespaces_output,
 7326			&namespaces_event,
 7327			NULL);
 7328}
 7329
 7330/*
 7331 * mmap tracking
 7332 */
 7333
 7334struct perf_mmap_event {
 7335	struct vm_area_struct	*vma;
 7336
 7337	const char		*file_name;
 7338	int			file_size;
 7339	int			maj, min;
 7340	u64			ino;
 7341	u64			ino_generation;
 7342	u32			prot, flags;
 7343
 7344	struct {
 7345		struct perf_event_header	header;
 7346
 7347		u32				pid;
 7348		u32				tid;
 7349		u64				start;
 7350		u64				len;
 7351		u64				pgoff;
 7352	} event_id;
 7353};
 7354
 7355static int perf_event_mmap_match(struct perf_event *event,
 7356				 void *data)
 7357{
 7358	struct perf_mmap_event *mmap_event = data;
 7359	struct vm_area_struct *vma = mmap_event->vma;
 7360	int executable = vma->vm_flags & VM_EXEC;
 7361
 7362	return (!executable && event->attr.mmap_data) ||
 7363	       (executable && (event->attr.mmap || event->attr.mmap2));
 7364}
 7365
 7366static void perf_event_mmap_output(struct perf_event *event,
 7367				   void *data)
 7368{
 7369	struct perf_mmap_event *mmap_event = data;
 7370	struct perf_output_handle handle;
 7371	struct perf_sample_data sample;
 7372	int size = mmap_event->event_id.header.size;
 7373	u32 type = mmap_event->event_id.header.type;
 7374	int ret;
 7375
 7376	if (!perf_event_mmap_match(event, data))
 7377		return;
 7378
 7379	if (event->attr.mmap2) {
 7380		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
 7381		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
 7382		mmap_event->event_id.header.size += sizeof(mmap_event->min);
 7383		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
 7384		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
 7385		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
 7386		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
 7387	}
 7388
 7389	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
 7390	ret = perf_output_begin(&handle, event,
 7391				mmap_event->event_id.header.size);
 7392	if (ret)
 7393		goto out;
 7394
 7395	mmap_event->event_id.pid = perf_event_pid(event, current);
 7396	mmap_event->event_id.tid = perf_event_tid(event, current);
 7397
 7398	perf_output_put(&handle, mmap_event->event_id);
 7399
 7400	if (event->attr.mmap2) {
 7401		perf_output_put(&handle, mmap_event->maj);
 7402		perf_output_put(&handle, mmap_event->min);
 7403		perf_output_put(&handle, mmap_event->ino);
 7404		perf_output_put(&handle, mmap_event->ino_generation);
 7405		perf_output_put(&handle, mmap_event->prot);
 7406		perf_output_put(&handle, mmap_event->flags);
 7407	}
 7408
 7409	__output_copy(&handle, mmap_event->file_name,
 7410				   mmap_event->file_size);
 7411
 7412	perf_event__output_id_sample(event, &handle, &sample);
 7413
 7414	perf_output_end(&handle);
 7415out:
 7416	mmap_event->event_id.header.size = size;
 7417	mmap_event->event_id.header.type = type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7418}
 7419
 7420static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
 7421{
 
 
 7422	struct vm_area_struct *vma = mmap_event->vma;
 7423	struct file *file = vma->vm_file;
 7424	int maj = 0, min = 0;
 7425	u64 ino = 0, gen = 0;
 7426	u32 prot = 0, flags = 0;
 7427	unsigned int size;
 7428	char tmp[16];
 7429	char *buf = NULL;
 7430	char *name;
 7431
 7432	if (vma->vm_flags & VM_READ)
 7433		prot |= PROT_READ;
 7434	if (vma->vm_flags & VM_WRITE)
 7435		prot |= PROT_WRITE;
 7436	if (vma->vm_flags & VM_EXEC)
 7437		prot |= PROT_EXEC;
 7438
 7439	if (vma->vm_flags & VM_MAYSHARE)
 7440		flags = MAP_SHARED;
 7441	else
 7442		flags = MAP_PRIVATE;
 7443
 7444	if (vma->vm_flags & VM_DENYWRITE)
 7445		flags |= MAP_DENYWRITE;
 7446	if (vma->vm_flags & VM_MAYEXEC)
 7447		flags |= MAP_EXECUTABLE;
 7448	if (vma->vm_flags & VM_LOCKED)
 7449		flags |= MAP_LOCKED;
 7450	if (vma->vm_flags & VM_HUGETLB)
 7451		flags |= MAP_HUGETLB;
 7452
 7453	if (file) {
 7454		struct inode *inode;
 7455		dev_t dev;
 7456
 7457		buf = kmalloc(PATH_MAX, GFP_KERNEL);
 7458		if (!buf) {
 7459			name = "//enomem";
 7460			goto cpy_name;
 7461		}
 7462		/*
 7463		 * d_path() works from the end of the rb backwards, so we
 7464		 * need to add enough zero bytes after the string to handle
 7465		 * the 64bit alignment we do later.
 7466		 */
 7467		name = file_path(file, buf, PATH_MAX - sizeof(u64));
 
 
 
 
 
 7468		if (IS_ERR(name)) {
 7469			name = "//toolong";
 7470			goto cpy_name;
 7471		}
 7472		inode = file_inode(vma->vm_file);
 7473		dev = inode->i_sb->s_dev;
 7474		ino = inode->i_ino;
 7475		gen = inode->i_generation;
 7476		maj = MAJOR(dev);
 7477		min = MINOR(dev);
 7478
 7479		goto got_name;
 7480	} else {
 7481		if (vma->vm_ops && vma->vm_ops->name) {
 7482			name = (char *) vma->vm_ops->name(vma);
 7483			if (name)
 7484				goto cpy_name;
 7485		}
 7486
 7487		name = (char *)arch_vma_name(vma);
 7488		if (name)
 7489			goto cpy_name;
 7490
 7491		if (vma->vm_start <= vma->vm_mm->start_brk &&
 7492				vma->vm_end >= vma->vm_mm->brk) {
 7493			name = "[heap]";
 7494			goto cpy_name;
 7495		}
 7496		if (vma->vm_start <= vma->vm_mm->start_stack &&
 7497				vma->vm_end >= vma->vm_mm->start_stack) {
 7498			name = "[stack]";
 7499			goto cpy_name;
 7500		}
 7501
 7502		name = "//anon";
 7503		goto cpy_name;
 7504	}
 7505
 7506cpy_name:
 7507	strlcpy(tmp, name, sizeof(tmp));
 7508	name = tmp;
 7509got_name:
 7510	/*
 7511	 * Since our buffer works in 8 byte units we need to align our string
 7512	 * size to a multiple of 8. However, we must guarantee the tail end is
 7513	 * zero'd out to avoid leaking random bits to userspace.
 7514	 */
 7515	size = strlen(name)+1;
 7516	while (!IS_ALIGNED(size, sizeof(u64)))
 7517		name[size++] = '\0';
 7518
 7519	mmap_event->file_name = name;
 7520	mmap_event->file_size = size;
 7521	mmap_event->maj = maj;
 7522	mmap_event->min = min;
 7523	mmap_event->ino = ino;
 7524	mmap_event->ino_generation = gen;
 7525	mmap_event->prot = prot;
 7526	mmap_event->flags = flags;
 7527
 7528	if (!(vma->vm_flags & VM_EXEC))
 7529		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
 7530
 7531	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
 7532
 7533	perf_iterate_sb(perf_event_mmap_output,
 7534		       mmap_event,
 7535		       NULL);
 7536
 7537	kfree(buf);
 7538}
 7539
 7540/*
 7541 * Check whether inode and address range match filter criteria.
 7542 */
 7543static bool perf_addr_filter_match(struct perf_addr_filter *filter,
 7544				     struct file *file, unsigned long offset,
 7545				     unsigned long size)
 7546{
 7547	/* d_inode(NULL) won't be equal to any mapped user-space file */
 7548	if (!filter->path.dentry)
 7549		return false;
 7550
 7551	if (d_inode(filter->path.dentry) != file_inode(file))
 7552		return false;
 7553
 7554	if (filter->offset > offset + size)
 7555		return false;
 7556
 7557	if (filter->offset + filter->size < offset)
 7558		return false;
 7559
 7560	return true;
 7561}
 7562
 7563static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
 7564					struct vm_area_struct *vma,
 7565					struct perf_addr_filter_range *fr)
 7566{
 7567	unsigned long vma_size = vma->vm_end - vma->vm_start;
 7568	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
 7569	struct file *file = vma->vm_file;
 7570
 7571	if (!perf_addr_filter_match(filter, file, off, vma_size))
 7572		return false;
 7573
 7574	if (filter->offset < off) {
 7575		fr->start = vma->vm_start;
 7576		fr->size = min(vma_size, filter->size - (off - filter->offset));
 7577	} else {
 7578		fr->start = vma->vm_start + filter->offset - off;
 7579		fr->size = min(vma->vm_end - fr->start, filter->size);
 7580	}
 7581
 7582	return true;
 7583}
 7584
 7585static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
 7586{
 7587	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
 7588	struct vm_area_struct *vma = data;
 7589	struct perf_addr_filter *filter;
 7590	unsigned int restart = 0, count = 0;
 7591	unsigned long flags;
 7592
 7593	if (!has_addr_filter(event))
 7594		return;
 7595
 7596	if (!vma->vm_file)
 7597		return;
 7598
 7599	raw_spin_lock_irqsave(&ifh->lock, flags);
 7600	list_for_each_entry(filter, &ifh->list, entry) {
 7601		if (perf_addr_filter_vma_adjust(filter, vma,
 7602						&event->addr_filter_ranges[count]))
 7603			restart++;
 7604
 7605		count++;
 7606	}
 7607
 7608	if (restart)
 7609		event->addr_filters_gen++;
 7610	raw_spin_unlock_irqrestore(&ifh->lock, flags);
 7611
 7612	if (restart)
 7613		perf_event_stop(event, 1);
 7614}
 7615
 7616/*
 7617 * Adjust all task's events' filters to the new vma
 7618 */
 7619static void perf_addr_filters_adjust(struct vm_area_struct *vma)
 7620{
 7621	struct perf_event_context *ctx;
 7622	int ctxn;
 7623
 7624	/*
 7625	 * Data tracing isn't supported yet and as such there is no need
 7626	 * to keep track of anything that isn't related to executable code:
 7627	 */
 7628	if (!(vma->vm_flags & VM_EXEC))
 7629		return;
 7630
 7631	rcu_read_lock();
 7632	for_each_task_context_nr(ctxn) {
 7633		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
 7634		if (!ctx)
 7635			continue;
 7636
 7637		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
 
 
 7638	}
 7639	rcu_read_unlock();
 
 
 7640}
 7641
 7642void perf_event_mmap(struct vm_area_struct *vma)
 7643{
 7644	struct perf_mmap_event mmap_event;
 7645
 7646	if (!atomic_read(&nr_mmap_events))
 7647		return;
 7648
 7649	mmap_event = (struct perf_mmap_event){
 7650		.vma	= vma,
 7651		/* .file_name */
 7652		/* .file_size */
 7653		.event_id  = {
 7654			.header = {
 7655				.type = PERF_RECORD_MMAP,
 7656				.misc = PERF_RECORD_MISC_USER,
 7657				/* .size */
 7658			},
 7659			/* .pid */
 7660			/* .tid */
 7661			.start  = vma->vm_start,
 7662			.len    = vma->vm_end - vma->vm_start,
 7663			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
 7664		},
 7665		/* .maj (attr_mmap2 only) */
 7666		/* .min (attr_mmap2 only) */
 7667		/* .ino (attr_mmap2 only) */
 7668		/* .ino_generation (attr_mmap2 only) */
 7669		/* .prot (attr_mmap2 only) */
 7670		/* .flags (attr_mmap2 only) */
 7671	};
 7672
 7673	perf_addr_filters_adjust(vma);
 7674	perf_event_mmap_event(&mmap_event);
 7675}
 7676
 7677void perf_event_aux_event(struct perf_event *event, unsigned long head,
 7678			  unsigned long size, u64 flags)
 7679{
 7680	struct perf_output_handle handle;
 7681	struct perf_sample_data sample;
 7682	struct perf_aux_event {
 7683		struct perf_event_header	header;
 7684		u64				offset;
 7685		u64				size;
 7686		u64				flags;
 7687	} rec = {
 7688		.header = {
 7689			.type = PERF_RECORD_AUX,
 7690			.misc = 0,
 7691			.size = sizeof(rec),
 7692		},
 7693		.offset		= head,
 7694		.size		= size,
 7695		.flags		= flags,
 7696	};
 7697	int ret;
 7698
 7699	perf_event_header__init_id(&rec.header, &sample, event);
 7700	ret = perf_output_begin(&handle, event, rec.header.size);
 7701
 7702	if (ret)
 7703		return;
 7704
 7705	perf_output_put(&handle, rec);
 7706	perf_event__output_id_sample(event, &handle, &sample);
 7707
 7708	perf_output_end(&handle);
 7709}
 7710
 7711/*
 7712 * Lost/dropped samples logging
 7713 */
 7714void perf_log_lost_samples(struct perf_event *event, u64 lost)
 7715{
 7716	struct perf_output_handle handle;
 7717	struct perf_sample_data sample;
 7718	int ret;
 7719
 7720	struct {
 7721		struct perf_event_header	header;
 7722		u64				lost;
 7723	} lost_samples_event = {
 7724		.header = {
 7725			.type = PERF_RECORD_LOST_SAMPLES,
 7726			.misc = 0,
 7727			.size = sizeof(lost_samples_event),
 7728		},
 7729		.lost		= lost,
 7730	};
 7731
 7732	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
 7733
 7734	ret = perf_output_begin(&handle, event,
 7735				lost_samples_event.header.size);
 7736	if (ret)
 7737		return;
 7738
 7739	perf_output_put(&handle, lost_samples_event);
 7740	perf_event__output_id_sample(event, &handle, &sample);
 7741	perf_output_end(&handle);
 7742}
 7743
 7744/*
 7745 * context_switch tracking
 7746 */
 7747
 7748struct perf_switch_event {
 7749	struct task_struct	*task;
 7750	struct task_struct	*next_prev;
 7751
 7752	struct {
 7753		struct perf_event_header	header;
 7754		u32				next_prev_pid;
 7755		u32				next_prev_tid;
 7756	} event_id;
 7757};
 7758
 7759static int perf_event_switch_match(struct perf_event *event)
 7760{
 7761	return event->attr.context_switch;
 7762}
 7763
 7764static void perf_event_switch_output(struct perf_event *event, void *data)
 7765{
 7766	struct perf_switch_event *se = data;
 7767	struct perf_output_handle handle;
 7768	struct perf_sample_data sample;
 7769	int ret;
 7770
 7771	if (!perf_event_switch_match(event))
 7772		return;
 7773
 7774	/* Only CPU-wide events are allowed to see next/prev pid/tid */
 7775	if (event->ctx->task) {
 7776		se->event_id.header.type = PERF_RECORD_SWITCH;
 7777		se->event_id.header.size = sizeof(se->event_id.header);
 7778	} else {
 7779		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
 7780		se->event_id.header.size = sizeof(se->event_id);
 7781		se->event_id.next_prev_pid =
 7782					perf_event_pid(event, se->next_prev);
 7783		se->event_id.next_prev_tid =
 7784					perf_event_tid(event, se->next_prev);
 7785	}
 7786
 7787	perf_event_header__init_id(&se->event_id.header, &sample, event);
 7788
 7789	ret = perf_output_begin(&handle, event, se->event_id.header.size);
 7790	if (ret)
 7791		return;
 7792
 7793	if (event->ctx->task)
 7794		perf_output_put(&handle, se->event_id.header);
 7795	else
 7796		perf_output_put(&handle, se->event_id);
 7797
 7798	perf_event__output_id_sample(event, &handle, &sample);
 7799
 7800	perf_output_end(&handle);
 7801}
 7802
 7803static void perf_event_switch(struct task_struct *task,
 7804			      struct task_struct *next_prev, bool sched_in)
 7805{
 7806	struct perf_switch_event switch_event;
 7807
 7808	/* N.B. caller checks nr_switch_events != 0 */
 7809
 7810	switch_event = (struct perf_switch_event){
 7811		.task		= task,
 7812		.next_prev	= next_prev,
 7813		.event_id	= {
 7814			.header = {
 7815				/* .type */
 7816				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
 7817				/* .size */
 7818			},
 7819			/* .next_prev_pid */
 7820			/* .next_prev_tid */
 7821		},
 7822	};
 7823
 7824	if (!sched_in && task->state == TASK_RUNNING)
 7825		switch_event.event_id.header.misc |=
 7826				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
 7827
 7828	perf_iterate_sb(perf_event_switch_output,
 7829		       &switch_event,
 7830		       NULL);
 7831}
 7832
 7833/*
 7834 * IRQ throttle logging
 7835 */
 7836
 7837static void perf_log_throttle(struct perf_event *event, int enable)
 7838{
 7839	struct perf_output_handle handle;
 7840	struct perf_sample_data sample;
 7841	int ret;
 7842
 7843	struct {
 7844		struct perf_event_header	header;
 7845		u64				time;
 7846		u64				id;
 7847		u64				stream_id;
 7848	} throttle_event = {
 7849		.header = {
 7850			.type = PERF_RECORD_THROTTLE,
 7851			.misc = 0,
 7852			.size = sizeof(throttle_event),
 7853		},
 7854		.time		= perf_event_clock(event),
 7855		.id		= primary_event_id(event),
 7856		.stream_id	= event->id,
 7857	};
 7858
 7859	if (enable)
 7860		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
 7861
 7862	perf_event_header__init_id(&throttle_event.header, &sample, event);
 7863
 7864	ret = perf_output_begin(&handle, event,
 7865				throttle_event.header.size);
 7866	if (ret)
 7867		return;
 7868
 7869	perf_output_put(&handle, throttle_event);
 7870	perf_event__output_id_sample(event, &handle, &sample);
 7871	perf_output_end(&handle);
 7872}
 7873
 7874/*
 7875 * ksymbol register/unregister tracking
 7876 */
 7877
 7878struct perf_ksymbol_event {
 7879	const char	*name;
 7880	int		name_len;
 7881	struct {
 7882		struct perf_event_header        header;
 7883		u64				addr;
 7884		u32				len;
 7885		u16				ksym_type;
 7886		u16				flags;
 7887	} event_id;
 7888};
 7889
 7890static int perf_event_ksymbol_match(struct perf_event *event)
 7891{
 7892	return event->attr.ksymbol;
 7893}
 7894
 7895static void perf_event_ksymbol_output(struct perf_event *event, void *data)
 7896{
 7897	struct perf_ksymbol_event *ksymbol_event = data;
 7898	struct perf_output_handle handle;
 7899	struct perf_sample_data sample;
 7900	int ret;
 7901
 7902	if (!perf_event_ksymbol_match(event))
 7903		return;
 7904
 7905	perf_event_header__init_id(&ksymbol_event->event_id.header,
 7906				   &sample, event);
 7907	ret = perf_output_begin(&handle, event,
 7908				ksymbol_event->event_id.header.size);
 7909	if (ret)
 7910		return;
 7911
 7912	perf_output_put(&handle, ksymbol_event->event_id);
 7913	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
 7914	perf_event__output_id_sample(event, &handle, &sample);
 7915
 7916	perf_output_end(&handle);
 7917}
 7918
 7919void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
 7920			const char *sym)
 7921{
 7922	struct perf_ksymbol_event ksymbol_event;
 7923	char name[KSYM_NAME_LEN];
 7924	u16 flags = 0;
 7925	int name_len;
 7926
 7927	if (!atomic_read(&nr_ksymbol_events))
 7928		return;
 7929
 7930	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
 7931	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
 7932		goto err;
 7933
 7934	strlcpy(name, sym, KSYM_NAME_LEN);
 7935	name_len = strlen(name) + 1;
 7936	while (!IS_ALIGNED(name_len, sizeof(u64)))
 7937		name[name_len++] = '\0';
 7938	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
 7939
 7940	if (unregister)
 7941		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
 7942
 7943	ksymbol_event = (struct perf_ksymbol_event){
 7944		.name = name,
 7945		.name_len = name_len,
 7946		.event_id = {
 7947			.header = {
 7948				.type = PERF_RECORD_KSYMBOL,
 7949				.size = sizeof(ksymbol_event.event_id) +
 7950					name_len,
 7951			},
 7952			.addr = addr,
 7953			.len = len,
 7954			.ksym_type = ksym_type,
 7955			.flags = flags,
 7956		},
 7957	};
 7958
 7959	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
 7960	return;
 7961err:
 7962	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
 7963}
 7964
 7965/*
 7966 * bpf program load/unload tracking
 7967 */
 7968
 7969struct perf_bpf_event {
 7970	struct bpf_prog	*prog;
 7971	struct {
 7972		struct perf_event_header        header;
 7973		u16				type;
 7974		u16				flags;
 7975		u32				id;
 7976		u8				tag[BPF_TAG_SIZE];
 7977	} event_id;
 7978};
 7979
 7980static int perf_event_bpf_match(struct perf_event *event)
 7981{
 7982	return event->attr.bpf_event;
 7983}
 7984
 7985static void perf_event_bpf_output(struct perf_event *event, void *data)
 7986{
 7987	struct perf_bpf_event *bpf_event = data;
 7988	struct perf_output_handle handle;
 7989	struct perf_sample_data sample;
 7990	int ret;
 7991
 7992	if (!perf_event_bpf_match(event))
 7993		return;
 7994
 7995	perf_event_header__init_id(&bpf_event->event_id.header,
 7996				   &sample, event);
 7997	ret = perf_output_begin(&handle, event,
 7998				bpf_event->event_id.header.size);
 7999	if (ret)
 8000		return;
 8001
 8002	perf_output_put(&handle, bpf_event->event_id);
 8003	perf_event__output_id_sample(event, &handle, &sample);
 8004
 8005	perf_output_end(&handle);
 8006}
 8007
 8008static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
 8009					 enum perf_bpf_event_type type)
 8010{
 8011	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
 8012	char sym[KSYM_NAME_LEN];
 8013	int i;
 8014
 8015	if (prog->aux->func_cnt == 0) {
 8016		bpf_get_prog_name(prog, sym);
 8017		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
 8018				   (u64)(unsigned long)prog->bpf_func,
 8019				   prog->jited_len, unregister, sym);
 8020	} else {
 8021		for (i = 0; i < prog->aux->func_cnt; i++) {
 8022			struct bpf_prog *subprog = prog->aux->func[i];
 8023
 8024			bpf_get_prog_name(subprog, sym);
 8025			perf_event_ksymbol(
 8026				PERF_RECORD_KSYMBOL_TYPE_BPF,
 8027				(u64)(unsigned long)subprog->bpf_func,
 8028				subprog->jited_len, unregister, sym);
 8029		}
 8030	}
 8031}
 8032
 8033void perf_event_bpf_event(struct bpf_prog *prog,
 8034			  enum perf_bpf_event_type type,
 8035			  u16 flags)
 8036{
 8037	struct perf_bpf_event bpf_event;
 8038
 8039	if (type <= PERF_BPF_EVENT_UNKNOWN ||
 8040	    type >= PERF_BPF_EVENT_MAX)
 8041		return;
 8042
 8043	switch (type) {
 8044	case PERF_BPF_EVENT_PROG_LOAD:
 8045	case PERF_BPF_EVENT_PROG_UNLOAD:
 8046		if (atomic_read(&nr_ksymbol_events))
 8047			perf_event_bpf_emit_ksymbols(prog, type);
 8048		break;
 8049	default:
 8050		break;
 8051	}
 8052
 8053	if (!atomic_read(&nr_bpf_events))
 8054		return;
 8055
 8056	bpf_event = (struct perf_bpf_event){
 8057		.prog = prog,
 8058		.event_id = {
 8059			.header = {
 8060				.type = PERF_RECORD_BPF_EVENT,
 8061				.size = sizeof(bpf_event.event_id),
 8062			},
 8063			.type = type,
 8064			.flags = flags,
 8065			.id = prog->aux->id,
 8066		},
 8067	};
 8068
 8069	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
 8070
 8071	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
 8072	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
 8073}
 8074
 8075void perf_event_itrace_started(struct perf_event *event)
 8076{
 8077	event->attach_state |= PERF_ATTACH_ITRACE;
 8078}
 8079
 8080static void perf_log_itrace_start(struct perf_event *event)
 8081{
 8082	struct perf_output_handle handle;
 8083	struct perf_sample_data sample;
 8084	struct perf_aux_event {
 8085		struct perf_event_header        header;
 8086		u32				pid;
 8087		u32				tid;
 8088	} rec;
 8089	int ret;
 8090
 8091	if (event->parent)
 8092		event = event->parent;
 8093
 8094	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
 8095	    event->attach_state & PERF_ATTACH_ITRACE)
 8096		return;
 8097
 8098	rec.header.type	= PERF_RECORD_ITRACE_START;
 8099	rec.header.misc	= 0;
 8100	rec.header.size	= sizeof(rec);
 8101	rec.pid	= perf_event_pid(event, current);
 8102	rec.tid	= perf_event_tid(event, current);
 8103
 8104	perf_event_header__init_id(&rec.header, &sample, event);
 8105	ret = perf_output_begin(&handle, event, rec.header.size);
 8106
 8107	if (ret)
 8108		return;
 8109
 8110	perf_output_put(&handle, rec);
 8111	perf_event__output_id_sample(event, &handle, &sample);
 8112
 8113	perf_output_end(&handle);
 8114}
 8115
 8116static int
 8117__perf_event_account_interrupt(struct perf_event *event, int throttle)
 8118{
 
 8119	struct hw_perf_event *hwc = &event->hw;
 8120	int ret = 0;
 8121	u64 seq;
 8122
 8123	seq = __this_cpu_read(perf_throttled_seq);
 8124	if (seq != hwc->interrupts_seq) {
 8125		hwc->interrupts_seq = seq;
 8126		hwc->interrupts = 1;
 8127	} else {
 8128		hwc->interrupts++;
 8129		if (unlikely(throttle
 8130			     && hwc->interrupts >= max_samples_per_tick)) {
 8131			__this_cpu_inc(perf_throttled_count);
 8132			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
 8133			hwc->interrupts = MAX_INTERRUPTS;
 8134			perf_log_throttle(event, 0);
 8135			ret = 1;
 8136		}
 8137	}
 
 8138
 8139	if (event->attr.freq) {
 8140		u64 now = perf_clock();
 8141		s64 delta = now - hwc->freq_time_stamp;
 8142
 8143		hwc->freq_time_stamp = now;
 8144
 8145		if (delta > 0 && delta < 2*TICK_NSEC)
 8146			perf_adjust_period(event, delta, hwc->last_period, true);
 8147	}
 8148
 8149	return ret;
 8150}
 8151
 8152int perf_event_account_interrupt(struct perf_event *event)
 8153{
 8154	return __perf_event_account_interrupt(event, 1);
 8155}
 8156
 8157/*
 8158 * Generic event overflow handling, sampling.
 8159 */
 8160
 8161static int __perf_event_overflow(struct perf_event *event,
 8162				   int throttle, struct perf_sample_data *data,
 8163				   struct pt_regs *regs)
 8164{
 8165	int events = atomic_read(&event->event_limit);
 8166	int ret = 0;
 8167
 8168	/*
 8169	 * Non-sampling counters might still use the PMI to fold short
 8170	 * hardware counters, ignore those.
 8171	 */
 8172	if (unlikely(!is_sampling_event(event)))
 8173		return 0;
 8174
 8175	ret = __perf_event_account_interrupt(event, throttle);
 8176
 8177	/*
 8178	 * XXX event_limit might not quite work as expected on inherited
 8179	 * events
 8180	 */
 8181
 8182	event->pending_kill = POLL_IN;
 8183	if (events && atomic_dec_and_test(&event->event_limit)) {
 8184		ret = 1;
 8185		event->pending_kill = POLL_HUP;
 8186
 8187		perf_event_disable_inatomic(event);
 8188	}
 8189
 8190	READ_ONCE(event->overflow_handler)(event, data, regs);
 
 
 
 8191
 8192	if (*perf_event_fasync(event) && event->pending_kill) {
 8193		event->pending_wakeup = 1;
 8194		irq_work_queue(&event->pending);
 8195	}
 8196
 8197	return ret;
 8198}
 8199
 8200int perf_event_overflow(struct perf_event *event,
 8201			  struct perf_sample_data *data,
 8202			  struct pt_regs *regs)
 8203{
 8204	return __perf_event_overflow(event, 1, data, regs);
 8205}
 8206
 8207/*
 8208 * Generic software event infrastructure
 8209 */
 8210
 8211struct swevent_htable {
 8212	struct swevent_hlist		*swevent_hlist;
 8213	struct mutex			hlist_mutex;
 8214	int				hlist_refcount;
 8215
 8216	/* Recursion avoidance in each contexts */
 8217	int				recursion[PERF_NR_CONTEXTS];
 8218};
 8219
 8220static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
 8221
 8222/*
 8223 * We directly increment event->count and keep a second value in
 8224 * event->hw.period_left to count intervals. This period event
 8225 * is kept in the range [-sample_period, 0] so that we can use the
 8226 * sign as trigger.
 8227 */
 8228
 8229u64 perf_swevent_set_period(struct perf_event *event)
 8230{
 8231	struct hw_perf_event *hwc = &event->hw;
 8232	u64 period = hwc->last_period;
 8233	u64 nr, offset;
 8234	s64 old, val;
 8235
 8236	hwc->last_period = hwc->sample_period;
 8237
 8238again:
 8239	old = val = local64_read(&hwc->period_left);
 8240	if (val < 0)
 8241		return 0;
 8242
 8243	nr = div64_u64(period + val, period);
 8244	offset = nr * period;
 8245	val -= offset;
 8246	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
 8247		goto again;
 8248
 8249	return nr;
 8250}
 8251
 8252static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
 8253				    struct perf_sample_data *data,
 8254				    struct pt_regs *regs)
 8255{
 8256	struct hw_perf_event *hwc = &event->hw;
 8257	int throttle = 0;
 8258
 
 8259	if (!overflow)
 8260		overflow = perf_swevent_set_period(event);
 8261
 8262	if (hwc->interrupts == MAX_INTERRUPTS)
 8263		return;
 8264
 8265	for (; overflow; overflow--) {
 8266		if (__perf_event_overflow(event, throttle,
 8267					    data, regs)) {
 8268			/*
 8269			 * We inhibit the overflow from happening when
 8270			 * hwc->interrupts == MAX_INTERRUPTS.
 8271			 */
 8272			break;
 8273		}
 8274		throttle = 1;
 8275	}
 8276}
 8277
 8278static void perf_swevent_event(struct perf_event *event, u64 nr,
 8279			       struct perf_sample_data *data,
 8280			       struct pt_regs *regs)
 8281{
 8282	struct hw_perf_event *hwc = &event->hw;
 8283
 8284	local64_add(nr, &event->count);
 8285
 8286	if (!regs)
 8287		return;
 8288
 8289	if (!is_sampling_event(event))
 8290		return;
 8291
 8292	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
 8293		data->period = nr;
 8294		return perf_swevent_overflow(event, 1, data, regs);
 8295	} else
 8296		data->period = event->hw.last_period;
 8297
 8298	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
 8299		return perf_swevent_overflow(event, 1, data, regs);
 8300
 8301	if (local64_add_negative(nr, &hwc->period_left))
 8302		return;
 8303
 8304	perf_swevent_overflow(event, 0, data, regs);
 8305}
 8306
 8307static int perf_exclude_event(struct perf_event *event,
 8308			      struct pt_regs *regs)
 8309{
 8310	if (event->hw.state & PERF_HES_STOPPED)
 8311		return 1;
 8312
 8313	if (regs) {
 8314		if (event->attr.exclude_user && user_mode(regs))
 8315			return 1;
 8316
 8317		if (event->attr.exclude_kernel && !user_mode(regs))
 8318			return 1;
 8319	}
 8320
 8321	return 0;
 8322}
 8323
 8324static int perf_swevent_match(struct perf_event *event,
 8325				enum perf_type_id type,
 8326				u32 event_id,
 8327				struct perf_sample_data *data,
 8328				struct pt_regs *regs)
 8329{
 8330	if (event->attr.type != type)
 8331		return 0;
 8332
 8333	if (event->attr.config != event_id)
 8334		return 0;
 8335
 8336	if (perf_exclude_event(event, regs))
 8337		return 0;
 8338
 8339	return 1;
 8340}
 8341
 8342static inline u64 swevent_hash(u64 type, u32 event_id)
 8343{
 8344	u64 val = event_id | (type << 32);
 8345
 8346	return hash_64(val, SWEVENT_HLIST_BITS);
 8347}
 8348
 8349static inline struct hlist_head *
 8350__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
 8351{
 8352	u64 hash = swevent_hash(type, event_id);
 8353
 8354	return &hlist->heads[hash];
 8355}
 8356
 8357/* For the read side: events when they trigger */
 8358static inline struct hlist_head *
 8359find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
 8360{
 8361	struct swevent_hlist *hlist;
 8362
 8363	hlist = rcu_dereference(swhash->swevent_hlist);
 8364	if (!hlist)
 8365		return NULL;
 8366
 8367	return __find_swevent_head(hlist, type, event_id);
 8368}
 8369
 8370/* For the event head insertion and removal in the hlist */
 8371static inline struct hlist_head *
 8372find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
 8373{
 8374	struct swevent_hlist *hlist;
 8375	u32 event_id = event->attr.config;
 8376	u64 type = event->attr.type;
 8377
 8378	/*
 8379	 * Event scheduling is always serialized against hlist allocation
 8380	 * and release. Which makes the protected version suitable here.
 8381	 * The context lock guarantees that.
 8382	 */
 8383	hlist = rcu_dereference_protected(swhash->swevent_hlist,
 8384					  lockdep_is_held(&event->ctx->lock));
 8385	if (!hlist)
 8386		return NULL;
 8387
 8388	return __find_swevent_head(hlist, type, event_id);
 8389}
 8390
 8391static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
 8392				    u64 nr,
 8393				    struct perf_sample_data *data,
 8394				    struct pt_regs *regs)
 8395{
 8396	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
 8397	struct perf_event *event;
 
 8398	struct hlist_head *head;
 8399
 8400	rcu_read_lock();
 8401	head = find_swevent_head_rcu(swhash, type, event_id);
 8402	if (!head)
 8403		goto end;
 8404
 8405	hlist_for_each_entry_rcu(event, head, hlist_entry) {
 8406		if (perf_swevent_match(event, type, event_id, data, regs))
 8407			perf_swevent_event(event, nr, data, regs);
 8408	}
 8409end:
 8410	rcu_read_unlock();
 8411}
 8412
 8413DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
 8414
 8415int perf_swevent_get_recursion_context(void)
 8416{
 8417	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
 8418
 8419	return get_recursion_context(swhash->recursion);
 8420}
 8421EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
 8422
 8423void perf_swevent_put_recursion_context(int rctx)
 8424{
 8425	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
 8426
 8427	put_recursion_context(swhash->recursion, rctx);
 8428}
 8429
 8430void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
 8431{
 8432	struct perf_sample_data data;
 8433
 8434	if (WARN_ON_ONCE(!regs))
 8435		return;
 8436
 8437	perf_sample_data_init(&data, addr, 0);
 8438	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
 8439}
 8440
 8441void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
 8442{
 
 8443	int rctx;
 8444
 8445	preempt_disable_notrace();
 8446	rctx = perf_swevent_get_recursion_context();
 8447	if (unlikely(rctx < 0))
 8448		goto fail;
 
 
 8449
 8450	___perf_sw_event(event_id, nr, regs, addr);
 8451
 8452	perf_swevent_put_recursion_context(rctx);
 8453fail:
 8454	preempt_enable_notrace();
 8455}
 8456
 8457static void perf_swevent_read(struct perf_event *event)
 8458{
 8459}
 8460
 8461static int perf_swevent_add(struct perf_event *event, int flags)
 8462{
 8463	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
 8464	struct hw_perf_event *hwc = &event->hw;
 8465	struct hlist_head *head;
 8466
 8467	if (is_sampling_event(event)) {
 8468		hwc->last_period = hwc->sample_period;
 8469		perf_swevent_set_period(event);
 8470	}
 8471
 8472	hwc->state = !(flags & PERF_EF_START);
 8473
 8474	head = find_swevent_head(swhash, event);
 8475	if (WARN_ON_ONCE(!head))
 8476		return -EINVAL;
 8477
 8478	hlist_add_head_rcu(&event->hlist_entry, head);
 8479	perf_event_update_userpage(event);
 8480
 8481	return 0;
 8482}
 8483
 8484static void perf_swevent_del(struct perf_event *event, int flags)
 8485{
 8486	hlist_del_rcu(&event->hlist_entry);
 8487}
 8488
 8489static void perf_swevent_start(struct perf_event *event, int flags)
 8490{
 8491	event->hw.state = 0;
 8492}
 8493
 8494static void perf_swevent_stop(struct perf_event *event, int flags)
 8495{
 8496	event->hw.state = PERF_HES_STOPPED;
 8497}
 8498
 8499/* Deref the hlist from the update side */
 8500static inline struct swevent_hlist *
 8501swevent_hlist_deref(struct swevent_htable *swhash)
 8502{
 8503	return rcu_dereference_protected(swhash->swevent_hlist,
 8504					 lockdep_is_held(&swhash->hlist_mutex));
 8505}
 8506
 8507static void swevent_hlist_release(struct swevent_htable *swhash)
 8508{
 8509	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
 8510
 8511	if (!hlist)
 8512		return;
 8513
 8514	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
 8515	kfree_rcu(hlist, rcu_head);
 8516}
 8517
 8518static void swevent_hlist_put_cpu(int cpu)
 8519{
 8520	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
 8521
 8522	mutex_lock(&swhash->hlist_mutex);
 8523
 8524	if (!--swhash->hlist_refcount)
 8525		swevent_hlist_release(swhash);
 8526
 8527	mutex_unlock(&swhash->hlist_mutex);
 8528}
 8529
 8530static void swevent_hlist_put(void)
 8531{
 8532	int cpu;
 8533
 
 
 
 
 
 8534	for_each_possible_cpu(cpu)
 8535		swevent_hlist_put_cpu(cpu);
 8536}
 8537
 8538static int swevent_hlist_get_cpu(int cpu)
 8539{
 8540	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
 8541	int err = 0;
 8542
 8543	mutex_lock(&swhash->hlist_mutex);
 8544	if (!swevent_hlist_deref(swhash) &&
 8545	    cpumask_test_cpu(cpu, perf_online_mask)) {
 8546		struct swevent_hlist *hlist;
 8547
 8548		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
 8549		if (!hlist) {
 8550			err = -ENOMEM;
 8551			goto exit;
 8552		}
 8553		rcu_assign_pointer(swhash->swevent_hlist, hlist);
 8554	}
 8555	swhash->hlist_refcount++;
 8556exit:
 8557	mutex_unlock(&swhash->hlist_mutex);
 8558
 8559	return err;
 8560}
 8561
 8562static int swevent_hlist_get(void)
 8563{
 8564	int err, cpu, failed_cpu;
 
 8565
 8566	mutex_lock(&pmus_lock);
 
 
 
 8567	for_each_possible_cpu(cpu) {
 8568		err = swevent_hlist_get_cpu(cpu);
 8569		if (err) {
 8570			failed_cpu = cpu;
 8571			goto fail;
 8572		}
 8573	}
 8574	mutex_unlock(&pmus_lock);
 
 8575	return 0;
 8576fail:
 8577	for_each_possible_cpu(cpu) {
 8578		if (cpu == failed_cpu)
 8579			break;
 8580		swevent_hlist_put_cpu(cpu);
 8581	}
 8582	mutex_unlock(&pmus_lock);
 
 8583	return err;
 8584}
 8585
 8586struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
 8587
 8588static void sw_perf_event_destroy(struct perf_event *event)
 8589{
 8590	u64 event_id = event->attr.config;
 8591
 8592	WARN_ON(event->parent);
 8593
 8594	static_key_slow_dec(&perf_swevent_enabled[event_id]);
 8595	swevent_hlist_put();
 8596}
 8597
 8598static int perf_swevent_init(struct perf_event *event)
 8599{
 8600	u64 event_id = event->attr.config;
 8601
 8602	if (event->attr.type != PERF_TYPE_SOFTWARE)
 8603		return -ENOENT;
 8604
 8605	/*
 8606	 * no branch sampling for software events
 8607	 */
 8608	if (has_branch_stack(event))
 8609		return -EOPNOTSUPP;
 8610
 8611	switch (event_id) {
 8612	case PERF_COUNT_SW_CPU_CLOCK:
 8613	case PERF_COUNT_SW_TASK_CLOCK:
 8614		return -ENOENT;
 8615
 8616	default:
 8617		break;
 8618	}
 8619
 8620	if (event_id >= PERF_COUNT_SW_MAX)
 8621		return -ENOENT;
 8622
 8623	if (!event->parent) {
 8624		int err;
 8625
 8626		err = swevent_hlist_get();
 8627		if (err)
 8628			return err;
 8629
 8630		static_key_slow_inc(&perf_swevent_enabled[event_id]);
 8631		event->destroy = sw_perf_event_destroy;
 8632	}
 8633
 8634	return 0;
 8635}
 8636
 8637static struct pmu perf_swevent = {
 8638	.task_ctx_nr	= perf_sw_context,
 8639
 8640	.capabilities	= PERF_PMU_CAP_NO_NMI,
 8641
 8642	.event_init	= perf_swevent_init,
 8643	.add		= perf_swevent_add,
 8644	.del		= perf_swevent_del,
 8645	.start		= perf_swevent_start,
 8646	.stop		= perf_swevent_stop,
 8647	.read		= perf_swevent_read,
 8648};
 8649
 8650#ifdef CONFIG_EVENT_TRACING
 8651
 8652static int perf_tp_filter_match(struct perf_event *event,
 8653				struct perf_sample_data *data)
 8654{
 8655	void *record = data->raw->frag.data;
 8656
 8657	/* only top level events have filters set */
 8658	if (event->parent)
 8659		event = event->parent;
 8660
 8661	if (likely(!event->filter) || filter_match_preds(event->filter, record))
 8662		return 1;
 8663	return 0;
 8664}
 8665
 8666static int perf_tp_event_match(struct perf_event *event,
 8667				struct perf_sample_data *data,
 8668				struct pt_regs *regs)
 8669{
 8670	if (event->hw.state & PERF_HES_STOPPED)
 8671		return 0;
 8672	/*
 8673	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
 8674	 */
 8675	if (event->attr.exclude_kernel && !user_mode(regs))
 8676		return 0;
 8677
 8678	if (!perf_tp_filter_match(event, data))
 8679		return 0;
 8680
 8681	return 1;
 8682}
 8683
 8684void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
 8685			       struct trace_event_call *call, u64 count,
 8686			       struct pt_regs *regs, struct hlist_head *head,
 8687			       struct task_struct *task)
 8688{
 8689	if (bpf_prog_array_valid(call)) {
 8690		*(struct pt_regs **)raw_data = regs;
 8691		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
 8692			perf_swevent_put_recursion_context(rctx);
 8693			return;
 8694		}
 8695	}
 8696	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
 8697		      rctx, task);
 8698}
 8699EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
 8700
 8701void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
 8702		   struct pt_regs *regs, struct hlist_head *head, int rctx,
 8703		   struct task_struct *task)
 8704{
 8705	struct perf_sample_data data;
 8706	struct perf_event *event;
 
 8707
 8708	struct perf_raw_record raw = {
 8709		.frag = {
 8710			.size = entry_size,
 8711			.data = record,
 8712		},
 8713	};
 8714
 8715	perf_sample_data_init(&data, 0, 0);
 8716	data.raw = &raw;
 8717
 8718	perf_trace_buf_update(record, event_type);
 8719
 8720	hlist_for_each_entry_rcu(event, head, hlist_entry) {
 8721		if (perf_tp_event_match(event, &data, regs))
 8722			perf_swevent_event(event, count, &data, regs);
 8723	}
 8724
 8725	/*
 8726	 * If we got specified a target task, also iterate its context and
 8727	 * deliver this event there too.
 8728	 */
 8729	if (task && task != current) {
 8730		struct perf_event_context *ctx;
 8731		struct trace_entry *entry = record;
 8732
 8733		rcu_read_lock();
 8734		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
 8735		if (!ctx)
 8736			goto unlock;
 8737
 8738		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
 8739			if (event->cpu != smp_processor_id())
 8740				continue;
 8741			if (event->attr.type != PERF_TYPE_TRACEPOINT)
 8742				continue;
 8743			if (event->attr.config != entry->type)
 8744				continue;
 8745			if (perf_tp_event_match(event, &data, regs))
 8746				perf_swevent_event(event, count, &data, regs);
 8747		}
 8748unlock:
 8749		rcu_read_unlock();
 8750	}
 8751
 8752	perf_swevent_put_recursion_context(rctx);
 8753}
 8754EXPORT_SYMBOL_GPL(perf_tp_event);
 8755
 8756static void tp_perf_event_destroy(struct perf_event *event)
 8757{
 8758	perf_trace_destroy(event);
 8759}
 8760
 8761static int perf_tp_event_init(struct perf_event *event)
 8762{
 8763	int err;
 8764
 8765	if (event->attr.type != PERF_TYPE_TRACEPOINT)
 8766		return -ENOENT;
 8767
 8768	/*
 8769	 * no branch sampling for tracepoint events
 8770	 */
 8771	if (has_branch_stack(event))
 8772		return -EOPNOTSUPP;
 8773
 8774	err = perf_trace_init(event);
 8775	if (err)
 8776		return err;
 8777
 8778	event->destroy = tp_perf_event_destroy;
 8779
 8780	return 0;
 8781}
 8782
 8783static struct pmu perf_tracepoint = {
 8784	.task_ctx_nr	= perf_sw_context,
 8785
 8786	.event_init	= perf_tp_event_init,
 8787	.add		= perf_trace_add,
 8788	.del		= perf_trace_del,
 8789	.start		= perf_swevent_start,
 8790	.stop		= perf_swevent_stop,
 8791	.read		= perf_swevent_read,
 8792};
 8793
 8794#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
 8795/*
 8796 * Flags in config, used by dynamic PMU kprobe and uprobe
 8797 * The flags should match following PMU_FORMAT_ATTR().
 8798 *
 8799 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
 8800 *                               if not set, create kprobe/uprobe
 8801 *
 8802 * The following values specify a reference counter (or semaphore in the
 8803 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
 8804 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
 8805 *
 8806 * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
 8807 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
 8808 */
 8809enum perf_probe_config {
 8810	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
 8811	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
 8812	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
 8813};
 8814
 8815PMU_FORMAT_ATTR(retprobe, "config:0");
 8816#endif
 8817
 8818#ifdef CONFIG_KPROBE_EVENTS
 8819static struct attribute *kprobe_attrs[] = {
 8820	&format_attr_retprobe.attr,
 8821	NULL,
 8822};
 8823
 8824static struct attribute_group kprobe_format_group = {
 8825	.name = "format",
 8826	.attrs = kprobe_attrs,
 8827};
 8828
 8829static const struct attribute_group *kprobe_attr_groups[] = {
 8830	&kprobe_format_group,
 8831	NULL,
 8832};
 8833
 8834static int perf_kprobe_event_init(struct perf_event *event);
 8835static struct pmu perf_kprobe = {
 8836	.task_ctx_nr	= perf_sw_context,
 8837	.event_init	= perf_kprobe_event_init,
 8838	.add		= perf_trace_add,
 8839	.del		= perf_trace_del,
 8840	.start		= perf_swevent_start,
 8841	.stop		= perf_swevent_stop,
 8842	.read		= perf_swevent_read,
 8843	.attr_groups	= kprobe_attr_groups,
 8844};
 8845
 8846static int perf_kprobe_event_init(struct perf_event *event)
 8847{
 8848	int err;
 8849	bool is_retprobe;
 8850
 8851	if (event->attr.type != perf_kprobe.type)
 8852		return -ENOENT;
 8853
 8854	if (!capable(CAP_SYS_ADMIN))
 8855		return -EACCES;
 8856
 8857	/*
 8858	 * no branch sampling for probe events
 8859	 */
 8860	if (has_branch_stack(event))
 8861		return -EOPNOTSUPP;
 8862
 8863	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
 8864	err = perf_kprobe_init(event, is_retprobe);
 8865	if (err)
 8866		return err;
 8867
 8868	event->destroy = perf_kprobe_destroy;
 8869
 8870	return 0;
 8871}
 8872#endif /* CONFIG_KPROBE_EVENTS */
 8873
 8874#ifdef CONFIG_UPROBE_EVENTS
 8875PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
 8876
 8877static struct attribute *uprobe_attrs[] = {
 8878	&format_attr_retprobe.attr,
 8879	&format_attr_ref_ctr_offset.attr,
 8880	NULL,
 8881};
 8882
 8883static struct attribute_group uprobe_format_group = {
 8884	.name = "format",
 8885	.attrs = uprobe_attrs,
 8886};
 8887
 8888static const struct attribute_group *uprobe_attr_groups[] = {
 8889	&uprobe_format_group,
 8890	NULL,
 8891};
 8892
 8893static int perf_uprobe_event_init(struct perf_event *event);
 8894static struct pmu perf_uprobe = {
 8895	.task_ctx_nr	= perf_sw_context,
 8896	.event_init	= perf_uprobe_event_init,
 8897	.add		= perf_trace_add,
 8898	.del		= perf_trace_del,
 8899	.start		= perf_swevent_start,
 8900	.stop		= perf_swevent_stop,
 8901	.read		= perf_swevent_read,
 8902	.attr_groups	= uprobe_attr_groups,
 8903};
 8904
 8905static int perf_uprobe_event_init(struct perf_event *event)
 8906{
 8907	int err;
 8908	unsigned long ref_ctr_offset;
 8909	bool is_retprobe;
 8910
 8911	if (event->attr.type != perf_uprobe.type)
 8912		return -ENOENT;
 8913
 8914	if (!capable(CAP_SYS_ADMIN))
 8915		return -EACCES;
 8916
 8917	/*
 8918	 * no branch sampling for probe events
 8919	 */
 8920	if (has_branch_stack(event))
 8921		return -EOPNOTSUPP;
 8922
 8923	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
 8924	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
 8925	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
 8926	if (err)
 8927		return err;
 8928
 8929	event->destroy = perf_uprobe_destroy;
 8930
 8931	return 0;
 8932}
 8933#endif /* CONFIG_UPROBE_EVENTS */
 8934
 8935static inline void perf_tp_register(void)
 8936{
 8937	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
 8938#ifdef CONFIG_KPROBE_EVENTS
 8939	perf_pmu_register(&perf_kprobe, "kprobe", -1);
 8940#endif
 8941#ifdef CONFIG_UPROBE_EVENTS
 8942	perf_pmu_register(&perf_uprobe, "uprobe", -1);
 8943#endif
 8944}
 8945
 8946static void perf_event_free_filter(struct perf_event *event)
 8947{
 8948	ftrace_profile_free_filter(event);
 8949}
 8950
 8951#ifdef CONFIG_BPF_SYSCALL
 8952static void bpf_overflow_handler(struct perf_event *event,
 8953				 struct perf_sample_data *data,
 8954				 struct pt_regs *regs)
 8955{
 8956	struct bpf_perf_event_data_kern ctx = {
 8957		.data = data,
 8958		.event = event,
 8959	};
 8960	int ret = 0;
 8961
 8962	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
 8963	preempt_disable();
 8964	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
 8965		goto out;
 8966	rcu_read_lock();
 8967	ret = BPF_PROG_RUN(event->prog, &ctx);
 8968	rcu_read_unlock();
 8969out:
 8970	__this_cpu_dec(bpf_prog_active);
 8971	preempt_enable();
 8972	if (!ret)
 8973		return;
 8974
 8975	event->orig_overflow_handler(event, data, regs);
 8976}
 8977
 8978static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
 8979{
 8980	struct bpf_prog *prog;
 8981
 8982	if (event->overflow_handler_context)
 8983		/* hw breakpoint or kernel counter */
 8984		return -EINVAL;
 8985
 8986	if (event->prog)
 8987		return -EEXIST;
 8988
 8989	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
 8990	if (IS_ERR(prog))
 8991		return PTR_ERR(prog);
 8992
 8993	event->prog = prog;
 8994	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
 8995	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
 8996	return 0;
 8997}
 8998
 8999static void perf_event_free_bpf_handler(struct perf_event *event)
 9000{
 9001	struct bpf_prog *prog = event->prog;
 9002
 9003	if (!prog)
 9004		return;
 9005
 9006	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
 9007	event->prog = NULL;
 9008	bpf_prog_put(prog);
 9009}
 9010#else
 9011static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
 9012{
 9013	return -EOPNOTSUPP;
 9014}
 9015static void perf_event_free_bpf_handler(struct perf_event *event)
 9016{
 9017}
 9018#endif
 9019
 9020/*
 9021 * returns true if the event is a tracepoint, or a kprobe/upprobe created
 9022 * with perf_event_open()
 9023 */
 9024static inline bool perf_event_is_tracing(struct perf_event *event)
 9025{
 9026	if (event->pmu == &perf_tracepoint)
 9027		return true;
 9028#ifdef CONFIG_KPROBE_EVENTS
 9029	if (event->pmu == &perf_kprobe)
 9030		return true;
 9031#endif
 9032#ifdef CONFIG_UPROBE_EVENTS
 9033	if (event->pmu == &perf_uprobe)
 9034		return true;
 9035#endif
 9036	return false;
 9037}
 9038
 9039static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
 9040{
 9041	bool is_kprobe, is_tracepoint, is_syscall_tp;
 9042	struct bpf_prog *prog;
 9043	int ret;
 9044
 9045	if (!perf_event_is_tracing(event))
 9046		return perf_event_set_bpf_handler(event, prog_fd);
 9047
 9048	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
 9049	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
 9050	is_syscall_tp = is_syscall_trace_event(event->tp_event);
 9051	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
 9052		/* bpf programs can only be attached to u/kprobe or tracepoint */
 9053		return -EINVAL;
 9054
 9055	prog = bpf_prog_get(prog_fd);
 9056	if (IS_ERR(prog))
 9057		return PTR_ERR(prog);
 9058
 9059	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
 9060	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
 9061	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
 9062		/* valid fd, but invalid bpf program type */
 9063		bpf_prog_put(prog);
 9064		return -EINVAL;
 9065	}
 9066
 9067	/* Kprobe override only works for kprobes, not uprobes. */
 9068	if (prog->kprobe_override &&
 9069	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
 9070		bpf_prog_put(prog);
 9071		return -EINVAL;
 9072	}
 9073
 9074	if (is_tracepoint || is_syscall_tp) {
 9075		int off = trace_event_get_offsets(event->tp_event);
 
 9076
 9077		if (prog->aux->max_ctx_offset > off) {
 9078			bpf_prog_put(prog);
 9079			return -EACCES;
 9080		}
 9081	}
 9082
 9083	ret = perf_event_attach_bpf_prog(event, prog);
 9084	if (ret)
 9085		bpf_prog_put(prog);
 9086	return ret;
 9087}
 9088
 9089static void perf_event_free_bpf_prog(struct perf_event *event)
 9090{
 9091	if (!perf_event_is_tracing(event)) {
 9092		perf_event_free_bpf_handler(event);
 9093		return;
 9094	}
 9095	perf_event_detach_bpf_prog(event);
 9096}
 9097
 9098#else
 9099
 9100static inline void perf_tp_register(void)
 9101{
 9102}
 9103
 9104static void perf_event_free_filter(struct perf_event *event)
 9105{
 9106}
 9107
 9108static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
 9109{
 9110	return -ENOENT;
 9111}
 9112
 9113static void perf_event_free_bpf_prog(struct perf_event *event)
 9114{
 9115}
 
 9116#endif /* CONFIG_EVENT_TRACING */
 9117
 9118#ifdef CONFIG_HAVE_HW_BREAKPOINT
 9119void perf_bp_event(struct perf_event *bp, void *data)
 9120{
 9121	struct perf_sample_data sample;
 9122	struct pt_regs *regs = data;
 9123
 9124	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
 9125
 9126	if (!bp->hw.state && !perf_exclude_event(bp, regs))
 9127		perf_swevent_event(bp, 1, &sample, regs);
 9128}
 9129#endif
 9130
 9131/*
 9132 * Allocate a new address filter
 9133 */
 9134static struct perf_addr_filter *
 9135perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
 9136{
 9137	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
 9138	struct perf_addr_filter *filter;
 9139
 9140	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
 9141	if (!filter)
 9142		return NULL;
 9143
 9144	INIT_LIST_HEAD(&filter->entry);
 9145	list_add_tail(&filter->entry, filters);
 9146
 9147	return filter;
 9148}
 9149
 9150static void free_filters_list(struct list_head *filters)
 9151{
 9152	struct perf_addr_filter *filter, *iter;
 9153
 9154	list_for_each_entry_safe(filter, iter, filters, entry) {
 9155		path_put(&filter->path);
 9156		list_del(&filter->entry);
 9157		kfree(filter);
 9158	}
 9159}
 9160
 9161/*
 9162 * Free existing address filters and optionally install new ones
 9163 */
 9164static void perf_addr_filters_splice(struct perf_event *event,
 9165				     struct list_head *head)
 9166{
 9167	unsigned long flags;
 9168	LIST_HEAD(list);
 9169
 9170	if (!has_addr_filter(event))
 9171		return;
 9172
 9173	/* don't bother with children, they don't have their own filters */
 9174	if (event->parent)
 9175		return;
 9176
 9177	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
 9178
 9179	list_splice_init(&event->addr_filters.list, &list);
 9180	if (head)
 9181		list_splice(head, &event->addr_filters.list);
 9182
 9183	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
 9184
 9185	free_filters_list(&list);
 9186}
 9187
 9188/*
 9189 * Scan through mm's vmas and see if one of them matches the
 9190 * @filter; if so, adjust filter's address range.
 9191 * Called with mm::mmap_sem down for reading.
 9192 */
 9193static void perf_addr_filter_apply(struct perf_addr_filter *filter,
 9194				   struct mm_struct *mm,
 9195				   struct perf_addr_filter_range *fr)
 9196{
 9197	struct vm_area_struct *vma;
 9198
 9199	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 9200		if (!vma->vm_file)
 9201			continue;
 9202
 9203		if (perf_addr_filter_vma_adjust(filter, vma, fr))
 9204			return;
 9205	}
 9206}
 9207
 9208/*
 9209 * Update event's address range filters based on the
 9210 * task's existing mappings, if any.
 9211 */
 9212static void perf_event_addr_filters_apply(struct perf_event *event)
 9213{
 9214	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
 9215	struct task_struct *task = READ_ONCE(event->ctx->task);
 9216	struct perf_addr_filter *filter;
 9217	struct mm_struct *mm = NULL;
 9218	unsigned int count = 0;
 9219	unsigned long flags;
 9220
 9221	/*
 9222	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
 9223	 * will stop on the parent's child_mutex that our caller is also holding
 9224	 */
 9225	if (task == TASK_TOMBSTONE)
 9226		return;
 9227
 9228	if (ifh->nr_file_filters) {
 9229		mm = get_task_mm(event->ctx->task);
 9230		if (!mm)
 9231			goto restart;
 9232
 9233		down_read(&mm->mmap_sem);
 9234	}
 9235
 9236	raw_spin_lock_irqsave(&ifh->lock, flags);
 9237	list_for_each_entry(filter, &ifh->list, entry) {
 9238		if (filter->path.dentry) {
 9239			/*
 9240			 * Adjust base offset if the filter is associated to a
 9241			 * binary that needs to be mapped:
 9242			 */
 9243			event->addr_filter_ranges[count].start = 0;
 9244			event->addr_filter_ranges[count].size = 0;
 9245
 9246			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
 9247		} else {
 9248			event->addr_filter_ranges[count].start = filter->offset;
 9249			event->addr_filter_ranges[count].size  = filter->size;
 9250		}
 9251
 9252		count++;
 9253	}
 9254
 9255	event->addr_filters_gen++;
 9256	raw_spin_unlock_irqrestore(&ifh->lock, flags);
 9257
 9258	if (ifh->nr_file_filters) {
 9259		up_read(&mm->mmap_sem);
 9260
 9261		mmput(mm);
 9262	}
 9263
 9264restart:
 9265	perf_event_stop(event, 1);
 9266}
 9267
 9268/*
 9269 * Address range filtering: limiting the data to certain
 9270 * instruction address ranges. Filters are ioctl()ed to us from
 9271 * userspace as ascii strings.
 9272 *
 9273 * Filter string format:
 9274 *
 9275 * ACTION RANGE_SPEC
 9276 * where ACTION is one of the
 9277 *  * "filter": limit the trace to this region
 9278 *  * "start": start tracing from this address
 9279 *  * "stop": stop tracing at this address/region;
 9280 * RANGE_SPEC is
 9281 *  * for kernel addresses: <start address>[/<size>]
 9282 *  * for object files:     <start address>[/<size>]@</path/to/object/file>
 9283 *
 9284 * if <size> is not specified or is zero, the range is treated as a single
 9285 * address; not valid for ACTION=="filter".
 9286 */
 9287enum {
 9288	IF_ACT_NONE = -1,
 9289	IF_ACT_FILTER,
 9290	IF_ACT_START,
 9291	IF_ACT_STOP,
 9292	IF_SRC_FILE,
 9293	IF_SRC_KERNEL,
 9294	IF_SRC_FILEADDR,
 9295	IF_SRC_KERNELADDR,
 9296};
 9297
 9298enum {
 9299	IF_STATE_ACTION = 0,
 9300	IF_STATE_SOURCE,
 9301	IF_STATE_END,
 9302};
 9303
 9304static const match_table_t if_tokens = {
 9305	{ IF_ACT_FILTER,	"filter" },
 9306	{ IF_ACT_START,		"start" },
 9307	{ IF_ACT_STOP,		"stop" },
 9308	{ IF_SRC_FILE,		"%u/%u@%s" },
 9309	{ IF_SRC_KERNEL,	"%u/%u" },
 9310	{ IF_SRC_FILEADDR,	"%u@%s" },
 9311	{ IF_SRC_KERNELADDR,	"%u" },
 9312	{ IF_ACT_NONE,		NULL },
 9313};
 9314
 9315/*
 9316 * Address filter string parser
 9317 */
 9318static int
 9319perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
 9320			     struct list_head *filters)
 9321{
 9322	struct perf_addr_filter *filter = NULL;
 9323	char *start, *orig, *filename = NULL;
 9324	substring_t args[MAX_OPT_ARGS];
 9325	int state = IF_STATE_ACTION, token;
 9326	unsigned int kernel = 0;
 9327	int ret = -EINVAL;
 9328
 9329	orig = fstr = kstrdup(fstr, GFP_KERNEL);
 9330	if (!fstr)
 9331		return -ENOMEM;
 9332
 9333	while ((start = strsep(&fstr, " ,\n")) != NULL) {
 9334		static const enum perf_addr_filter_action_t actions[] = {
 9335			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
 9336			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
 9337			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
 9338		};
 9339		ret = -EINVAL;
 9340
 9341		if (!*start)
 9342			continue;
 9343
 9344		/* filter definition begins */
 9345		if (state == IF_STATE_ACTION) {
 9346			filter = perf_addr_filter_new(event, filters);
 9347			if (!filter)
 9348				goto fail;
 9349		}
 9350
 9351		token = match_token(start, if_tokens, args);
 9352		switch (token) {
 9353		case IF_ACT_FILTER:
 9354		case IF_ACT_START:
 9355		case IF_ACT_STOP:
 9356			if (state != IF_STATE_ACTION)
 9357				goto fail;
 9358
 9359			filter->action = actions[token];
 9360			state = IF_STATE_SOURCE;
 9361			break;
 9362
 9363		case IF_SRC_KERNELADDR:
 9364		case IF_SRC_KERNEL:
 9365			kernel = 1;
 9366			/* fall through */
 9367
 9368		case IF_SRC_FILEADDR:
 9369		case IF_SRC_FILE:
 9370			if (state != IF_STATE_SOURCE)
 9371				goto fail;
 9372
 9373			*args[0].to = 0;
 9374			ret = kstrtoul(args[0].from, 0, &filter->offset);
 9375			if (ret)
 9376				goto fail;
 9377
 9378			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
 9379				*args[1].to = 0;
 9380				ret = kstrtoul(args[1].from, 0, &filter->size);
 9381				if (ret)
 9382					goto fail;
 9383			}
 9384
 9385			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
 9386				int fpos = token == IF_SRC_FILE ? 2 : 1;
 9387
 9388				filename = match_strdup(&args[fpos]);
 9389				if (!filename) {
 9390					ret = -ENOMEM;
 9391					goto fail;
 9392				}
 9393			}
 9394
 9395			state = IF_STATE_END;
 9396			break;
 9397
 9398		default:
 9399			goto fail;
 9400		}
 9401
 9402		/*
 9403		 * Filter definition is fully parsed, validate and install it.
 9404		 * Make sure that it doesn't contradict itself or the event's
 9405		 * attribute.
 9406		 */
 9407		if (state == IF_STATE_END) {
 9408			ret = -EINVAL;
 9409			if (kernel && event->attr.exclude_kernel)
 9410				goto fail;
 9411
 9412			/*
 9413			 * ACTION "filter" must have a non-zero length region
 9414			 * specified.
 9415			 */
 9416			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
 9417			    !filter->size)
 9418				goto fail;
 9419
 9420			if (!kernel) {
 9421				if (!filename)
 9422					goto fail;
 9423
 9424				/*
 9425				 * For now, we only support file-based filters
 9426				 * in per-task events; doing so for CPU-wide
 9427				 * events requires additional context switching
 9428				 * trickery, since same object code will be
 9429				 * mapped at different virtual addresses in
 9430				 * different processes.
 9431				 */
 9432				ret = -EOPNOTSUPP;
 9433				if (!event->ctx->task)
 9434					goto fail_free_name;
 9435
 9436				/* look up the path and grab its inode */
 9437				ret = kern_path(filename, LOOKUP_FOLLOW,
 9438						&filter->path);
 9439				if (ret)
 9440					goto fail_free_name;
 9441
 9442				kfree(filename);
 9443				filename = NULL;
 9444
 9445				ret = -EINVAL;
 9446				if (!filter->path.dentry ||
 9447				    !S_ISREG(d_inode(filter->path.dentry)
 9448					     ->i_mode))
 9449					goto fail;
 9450
 9451				event->addr_filters.nr_file_filters++;
 9452			}
 9453
 9454			/* ready to consume more filters */
 9455			state = IF_STATE_ACTION;
 9456			filter = NULL;
 9457		}
 9458	}
 9459
 9460	if (state != IF_STATE_ACTION)
 9461		goto fail;
 9462
 9463	kfree(orig);
 9464
 9465	return 0;
 9466
 9467fail_free_name:
 9468	kfree(filename);
 9469fail:
 9470	free_filters_list(filters);
 9471	kfree(orig);
 9472
 9473	return ret;
 9474}
 9475
 9476static int
 9477perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
 9478{
 9479	LIST_HEAD(filters);
 9480	int ret;
 9481
 9482	/*
 9483	 * Since this is called in perf_ioctl() path, we're already holding
 9484	 * ctx::mutex.
 9485	 */
 9486	lockdep_assert_held(&event->ctx->mutex);
 9487
 9488	if (WARN_ON_ONCE(event->parent))
 9489		return -EINVAL;
 9490
 9491	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
 9492	if (ret)
 9493		goto fail_clear_files;
 9494
 9495	ret = event->pmu->addr_filters_validate(&filters);
 9496	if (ret)
 9497		goto fail_free_filters;
 9498
 9499	/* remove existing filters, if any */
 9500	perf_addr_filters_splice(event, &filters);
 9501
 9502	/* install new filters */
 9503	perf_event_for_each_child(event, perf_event_addr_filters_apply);
 9504
 9505	return ret;
 9506
 9507fail_free_filters:
 9508	free_filters_list(&filters);
 9509
 9510fail_clear_files:
 9511	event->addr_filters.nr_file_filters = 0;
 9512
 9513	return ret;
 9514}
 9515
 9516static int perf_event_set_filter(struct perf_event *event, void __user *arg)
 9517{
 9518	int ret = -EINVAL;
 9519	char *filter_str;
 9520
 9521	filter_str = strndup_user(arg, PAGE_SIZE);
 9522	if (IS_ERR(filter_str))
 9523		return PTR_ERR(filter_str);
 9524
 9525#ifdef CONFIG_EVENT_TRACING
 9526	if (perf_event_is_tracing(event)) {
 9527		struct perf_event_context *ctx = event->ctx;
 9528
 9529		/*
 9530		 * Beware, here be dragons!!
 9531		 *
 9532		 * the tracepoint muck will deadlock against ctx->mutex, but
 9533		 * the tracepoint stuff does not actually need it. So
 9534		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
 9535		 * already have a reference on ctx.
 9536		 *
 9537		 * This can result in event getting moved to a different ctx,
 9538		 * but that does not affect the tracepoint state.
 9539		 */
 9540		mutex_unlock(&ctx->mutex);
 9541		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
 9542		mutex_lock(&ctx->mutex);
 9543	} else
 9544#endif
 9545	if (has_addr_filter(event))
 9546		ret = perf_event_set_addr_filter(event, filter_str);
 9547
 9548	kfree(filter_str);
 9549	return ret;
 9550}
 9551
 9552/*
 9553 * hrtimer based swevent callback
 9554 */
 9555
 9556static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
 9557{
 9558	enum hrtimer_restart ret = HRTIMER_RESTART;
 9559	struct perf_sample_data data;
 9560	struct pt_regs *regs;
 9561	struct perf_event *event;
 9562	u64 period;
 9563
 9564	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
 9565
 9566	if (event->state != PERF_EVENT_STATE_ACTIVE)
 9567		return HRTIMER_NORESTART;
 9568
 9569	event->pmu->read(event);
 9570
 9571	perf_sample_data_init(&data, 0, event->hw.last_period);
 
 9572	regs = get_irq_regs();
 9573
 9574	if (regs && !perf_exclude_event(event, regs)) {
 9575		if (!(event->attr.exclude_idle && is_idle_task(current)))
 9576			if (__perf_event_overflow(event, 1, &data, regs))
 9577				ret = HRTIMER_NORESTART;
 9578	}
 9579
 9580	period = max_t(u64, 10000, event->hw.sample_period);
 9581	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
 9582
 9583	return ret;
 9584}
 9585
 9586static void perf_swevent_start_hrtimer(struct perf_event *event)
 9587{
 9588	struct hw_perf_event *hwc = &event->hw;
 9589	s64 period;
 9590
 9591	if (!is_sampling_event(event))
 9592		return;
 9593
 9594	period = local64_read(&hwc->period_left);
 9595	if (period) {
 9596		if (period < 0)
 9597			period = 10000;
 9598
 9599		local64_set(&hwc->period_left, 0);
 9600	} else {
 9601		period = max_t(u64, 10000, hwc->sample_period);
 9602	}
 9603	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
 9604		      HRTIMER_MODE_REL_PINNED_HARD);
 
 9605}
 9606
 9607static void perf_swevent_cancel_hrtimer(struct perf_event *event)
 9608{
 9609	struct hw_perf_event *hwc = &event->hw;
 9610
 9611	if (is_sampling_event(event)) {
 9612		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
 9613		local64_set(&hwc->period_left, ktime_to_ns(remaining));
 9614
 9615		hrtimer_cancel(&hwc->hrtimer);
 9616	}
 9617}
 9618
 9619static void perf_swevent_init_hrtimer(struct perf_event *event)
 9620{
 9621	struct hw_perf_event *hwc = &event->hw;
 9622
 9623	if (!is_sampling_event(event))
 9624		return;
 9625
 9626	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
 9627	hwc->hrtimer.function = perf_swevent_hrtimer;
 9628
 9629	/*
 9630	 * Since hrtimers have a fixed rate, we can do a static freq->period
 9631	 * mapping and avoid the whole period adjust feedback stuff.
 9632	 */
 9633	if (event->attr.freq) {
 9634		long freq = event->attr.sample_freq;
 9635
 9636		event->attr.sample_period = NSEC_PER_SEC / freq;
 9637		hwc->sample_period = event->attr.sample_period;
 9638		local64_set(&hwc->period_left, hwc->sample_period);
 9639		hwc->last_period = hwc->sample_period;
 9640		event->attr.freq = 0;
 9641	}
 9642}
 9643
 9644/*
 9645 * Software event: cpu wall time clock
 9646 */
 9647
 9648static void cpu_clock_event_update(struct perf_event *event)
 9649{
 9650	s64 prev;
 9651	u64 now;
 9652
 9653	now = local_clock();
 9654	prev = local64_xchg(&event->hw.prev_count, now);
 9655	local64_add(now - prev, &event->count);
 9656}
 9657
 9658static void cpu_clock_event_start(struct perf_event *event, int flags)
 9659{
 9660	local64_set(&event->hw.prev_count, local_clock());
 9661	perf_swevent_start_hrtimer(event);
 9662}
 9663
 9664static void cpu_clock_event_stop(struct perf_event *event, int flags)
 9665{
 9666	perf_swevent_cancel_hrtimer(event);
 9667	cpu_clock_event_update(event);
 9668}
 9669
 9670static int cpu_clock_event_add(struct perf_event *event, int flags)
 9671{
 9672	if (flags & PERF_EF_START)
 9673		cpu_clock_event_start(event, flags);
 9674	perf_event_update_userpage(event);
 9675
 9676	return 0;
 9677}
 9678
 9679static void cpu_clock_event_del(struct perf_event *event, int flags)
 9680{
 9681	cpu_clock_event_stop(event, flags);
 9682}
 9683
 9684static void cpu_clock_event_read(struct perf_event *event)
 9685{
 9686	cpu_clock_event_update(event);
 9687}
 9688
 9689static int cpu_clock_event_init(struct perf_event *event)
 9690{
 9691	if (event->attr.type != PERF_TYPE_SOFTWARE)
 9692		return -ENOENT;
 9693
 9694	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
 9695		return -ENOENT;
 9696
 9697	/*
 9698	 * no branch sampling for software events
 9699	 */
 9700	if (has_branch_stack(event))
 9701		return -EOPNOTSUPP;
 9702
 9703	perf_swevent_init_hrtimer(event);
 9704
 9705	return 0;
 9706}
 9707
 9708static struct pmu perf_cpu_clock = {
 9709	.task_ctx_nr	= perf_sw_context,
 9710
 9711	.capabilities	= PERF_PMU_CAP_NO_NMI,
 9712
 9713	.event_init	= cpu_clock_event_init,
 9714	.add		= cpu_clock_event_add,
 9715	.del		= cpu_clock_event_del,
 9716	.start		= cpu_clock_event_start,
 9717	.stop		= cpu_clock_event_stop,
 9718	.read		= cpu_clock_event_read,
 9719};
 9720
 9721/*
 9722 * Software event: task time clock
 9723 */
 9724
 9725static void task_clock_event_update(struct perf_event *event, u64 now)
 9726{
 9727	u64 prev;
 9728	s64 delta;
 9729
 9730	prev = local64_xchg(&event->hw.prev_count, now);
 9731	delta = now - prev;
 9732	local64_add(delta, &event->count);
 9733}
 9734
 9735static void task_clock_event_start(struct perf_event *event, int flags)
 9736{
 9737	local64_set(&event->hw.prev_count, event->ctx->time);
 9738	perf_swevent_start_hrtimer(event);
 9739}
 9740
 9741static void task_clock_event_stop(struct perf_event *event, int flags)
 9742{
 9743	perf_swevent_cancel_hrtimer(event);
 9744	task_clock_event_update(event, event->ctx->time);
 9745}
 9746
 9747static int task_clock_event_add(struct perf_event *event, int flags)
 9748{
 9749	if (flags & PERF_EF_START)
 9750		task_clock_event_start(event, flags);
 9751	perf_event_update_userpage(event);
 9752
 9753	return 0;
 9754}
 9755
 9756static void task_clock_event_del(struct perf_event *event, int flags)
 9757{
 9758	task_clock_event_stop(event, PERF_EF_UPDATE);
 9759}
 9760
 9761static void task_clock_event_read(struct perf_event *event)
 9762{
 9763	u64 now = perf_clock();
 9764	u64 delta = now - event->ctx->timestamp;
 9765	u64 time = event->ctx->time + delta;
 9766
 9767	task_clock_event_update(event, time);
 9768}
 9769
 9770static int task_clock_event_init(struct perf_event *event)
 9771{
 9772	if (event->attr.type != PERF_TYPE_SOFTWARE)
 9773		return -ENOENT;
 9774
 9775	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
 9776		return -ENOENT;
 9777
 9778	/*
 9779	 * no branch sampling for software events
 9780	 */
 9781	if (has_branch_stack(event))
 9782		return -EOPNOTSUPP;
 9783
 9784	perf_swevent_init_hrtimer(event);
 9785
 9786	return 0;
 9787}
 9788
 9789static struct pmu perf_task_clock = {
 9790	.task_ctx_nr	= perf_sw_context,
 9791
 9792	.capabilities	= PERF_PMU_CAP_NO_NMI,
 9793
 9794	.event_init	= task_clock_event_init,
 9795	.add		= task_clock_event_add,
 9796	.del		= task_clock_event_del,
 9797	.start		= task_clock_event_start,
 9798	.stop		= task_clock_event_stop,
 9799	.read		= task_clock_event_read,
 9800};
 9801
 9802static void perf_pmu_nop_void(struct pmu *pmu)
 9803{
 9804}
 9805
 9806static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
 9807{
 9808}
 9809
 9810static int perf_pmu_nop_int(struct pmu *pmu)
 9811{
 9812	return 0;
 9813}
 9814
 9815static int perf_event_nop_int(struct perf_event *event, u64 value)
 9816{
 9817	return 0;
 9818}
 9819
 9820static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
 9821
 9822static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
 9823{
 9824	__this_cpu_write(nop_txn_flags, flags);
 9825
 9826	if (flags & ~PERF_PMU_TXN_ADD)
 9827		return;
 9828
 9829	perf_pmu_disable(pmu);
 9830}
 9831
 9832static int perf_pmu_commit_txn(struct pmu *pmu)
 9833{
 9834	unsigned int flags = __this_cpu_read(nop_txn_flags);
 9835
 9836	__this_cpu_write(nop_txn_flags, 0);
 9837
 9838	if (flags & ~PERF_PMU_TXN_ADD)
 9839		return 0;
 9840
 9841	perf_pmu_enable(pmu);
 9842	return 0;
 9843}
 9844
 9845static void perf_pmu_cancel_txn(struct pmu *pmu)
 9846{
 9847	unsigned int flags =  __this_cpu_read(nop_txn_flags);
 9848
 9849	__this_cpu_write(nop_txn_flags, 0);
 9850
 9851	if (flags & ~PERF_PMU_TXN_ADD)
 9852		return;
 9853
 9854	perf_pmu_enable(pmu);
 9855}
 9856
 9857static int perf_event_idx_default(struct perf_event *event)
 9858{
 9859	return 0;
 9860}
 9861
 9862/*
 9863 * Ensures all contexts with the same task_ctx_nr have the same
 9864 * pmu_cpu_context too.
 9865 */
 9866static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
 9867{
 9868	struct pmu *pmu;
 9869
 9870	if (ctxn < 0)
 9871		return NULL;
 9872
 9873	list_for_each_entry(pmu, &pmus, entry) {
 9874		if (pmu->task_ctx_nr == ctxn)
 9875			return pmu->pmu_cpu_context;
 9876	}
 9877
 9878	return NULL;
 9879}
 9880
 9881static void free_pmu_context(struct pmu *pmu)
 9882{
 9883	/*
 9884	 * Static contexts such as perf_sw_context have a global lifetime
 9885	 * and may be shared between different PMUs. Avoid freeing them
 9886	 * when a single PMU is going away.
 9887	 */
 9888	if (pmu->task_ctx_nr > perf_invalid_context)
 9889		return;
 9890
 9891	free_percpu(pmu->pmu_cpu_context);
 9892}
 9893
 9894/*
 9895 * Let userspace know that this PMU supports address range filtering:
 9896 */
 9897static ssize_t nr_addr_filters_show(struct device *dev,
 9898				    struct device_attribute *attr,
 9899				    char *page)
 9900{
 9901	struct pmu *pmu = dev_get_drvdata(dev);
 9902
 9903	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
 
 
 9904}
 9905DEVICE_ATTR_RO(nr_addr_filters);
 9906
 9907static struct idr pmu_idr;
 9908
 9909static ssize_t
 9910type_show(struct device *dev, struct device_attribute *attr, char *page)
 9911{
 9912	struct pmu *pmu = dev_get_drvdata(dev);
 9913
 9914	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
 9915}
 9916static DEVICE_ATTR_RO(type);
 9917
 9918static ssize_t
 9919perf_event_mux_interval_ms_show(struct device *dev,
 9920				struct device_attribute *attr,
 9921				char *page)
 9922{
 9923	struct pmu *pmu = dev_get_drvdata(dev);
 9924
 9925	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
 
 
 9926}
 9927
 9928static DEFINE_MUTEX(mux_interval_mutex);
 9929
 9930static ssize_t
 9931perf_event_mux_interval_ms_store(struct device *dev,
 9932				 struct device_attribute *attr,
 9933				 const char *buf, size_t count)
 9934{
 9935	struct pmu *pmu = dev_get_drvdata(dev);
 9936	int timer, cpu, ret;
 9937
 9938	ret = kstrtoint(buf, 0, &timer);
 9939	if (ret)
 9940		return ret;
 9941
 9942	if (timer < 1)
 9943		return -EINVAL;
 9944
 9945	/* same value, noting to do */
 9946	if (timer == pmu->hrtimer_interval_ms)
 9947		return count;
 9948
 9949	mutex_lock(&mux_interval_mutex);
 9950	pmu->hrtimer_interval_ms = timer;
 9951
 9952	/* update all cpuctx for this PMU */
 9953	cpus_read_lock();
 9954	for_each_online_cpu(cpu) {
 9955		struct perf_cpu_context *cpuctx;
 9956		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
 9957		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
 9958
 9959		cpu_function_call(cpu,
 9960			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
 9961	}
 9962	cpus_read_unlock();
 9963	mutex_unlock(&mux_interval_mutex);
 9964
 9965	return count;
 9966}
 9967static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
 9968
 9969static struct attribute *pmu_dev_attrs[] = {
 9970	&dev_attr_type.attr,
 9971	&dev_attr_perf_event_mux_interval_ms.attr,
 9972	NULL,
 9973};
 9974ATTRIBUTE_GROUPS(pmu_dev);
 9975
 9976static int pmu_bus_running;
 9977static struct bus_type pmu_bus = {
 9978	.name		= "event_source",
 9979	.dev_groups	= pmu_dev_groups,
 9980};
 9981
 9982static void pmu_dev_release(struct device *dev)
 9983{
 9984	kfree(dev);
 9985}
 9986
 9987static int pmu_dev_alloc(struct pmu *pmu)
 9988{
 9989	int ret = -ENOMEM;
 9990
 9991	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
 9992	if (!pmu->dev)
 9993		goto out;
 9994
 9995	pmu->dev->groups = pmu->attr_groups;
 9996	device_initialize(pmu->dev);
 9997	ret = dev_set_name(pmu->dev, "%s", pmu->name);
 9998	if (ret)
 9999		goto free_dev;
10000
10001	dev_set_drvdata(pmu->dev, pmu);
10002	pmu->dev->bus = &pmu_bus;
10003	pmu->dev->release = pmu_dev_release;
10004	ret = device_add(pmu->dev);
10005	if (ret)
10006		goto free_dev;
10007
10008	/* For PMUs with address filters, throw in an extra attribute: */
10009	if (pmu->nr_addr_filters)
10010		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10011
10012	if (ret)
10013		goto del_dev;
10014
10015	if (pmu->attr_update)
10016		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10017
10018	if (ret)
10019		goto del_dev;
10020
10021out:
10022	return ret;
10023
10024del_dev:
10025	device_del(pmu->dev);
10026
10027free_dev:
10028	put_device(pmu->dev);
10029	goto out;
10030}
10031
10032static struct lock_class_key cpuctx_mutex;
10033static struct lock_class_key cpuctx_lock;
10034
10035int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10036{
10037	int cpu, ret;
10038
10039	mutex_lock(&pmus_lock);
10040	ret = -ENOMEM;
10041	pmu->pmu_disable_count = alloc_percpu(int);
10042	if (!pmu->pmu_disable_count)
10043		goto unlock;
10044
10045	pmu->type = -1;
10046	if (!name)
10047		goto skip_type;
10048	pmu->name = name;
10049
10050	if (type < 0) {
10051		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
10052		if (type < 0) {
10053			ret = type;
 
 
 
 
10054			goto free_pdc;
10055		}
10056	}
10057	pmu->type = type;
10058
10059	if (pmu_bus_running) {
10060		ret = pmu_dev_alloc(pmu);
10061		if (ret)
10062			goto free_idr;
10063	}
10064
10065skip_type:
10066	if (pmu->task_ctx_nr == perf_hw_context) {
10067		static int hw_context_taken = 0;
10068
10069		/*
10070		 * Other than systems with heterogeneous CPUs, it never makes
10071		 * sense for two PMUs to share perf_hw_context. PMUs which are
10072		 * uncore must use perf_invalid_context.
10073		 */
10074		if (WARN_ON_ONCE(hw_context_taken &&
10075		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10076			pmu->task_ctx_nr = perf_invalid_context;
10077
10078		hw_context_taken = 1;
10079	}
10080
10081	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10082	if (pmu->pmu_cpu_context)
10083		goto got_cpu_context;
10084
10085	ret = -ENOMEM;
10086	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10087	if (!pmu->pmu_cpu_context)
10088		goto free_dev;
10089
10090	for_each_possible_cpu(cpu) {
10091		struct perf_cpu_context *cpuctx;
10092
10093		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10094		__perf_event_init_context(&cpuctx->ctx);
10095		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10096		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
 
10097		cpuctx->ctx.pmu = pmu;
10098		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10099
10100		__perf_mux_hrtimer_init(cpuctx, cpu);
10101	}
10102
10103got_cpu_context:
10104	if (!pmu->start_txn) {
10105		if (pmu->pmu_enable) {
10106			/*
10107			 * If we have pmu_enable/pmu_disable calls, install
10108			 * transaction stubs that use that to try and batch
10109			 * hardware accesses.
10110			 */
10111			pmu->start_txn  = perf_pmu_start_txn;
10112			pmu->commit_txn = perf_pmu_commit_txn;
10113			pmu->cancel_txn = perf_pmu_cancel_txn;
10114		} else {
10115			pmu->start_txn  = perf_pmu_nop_txn;
10116			pmu->commit_txn = perf_pmu_nop_int;
10117			pmu->cancel_txn = perf_pmu_nop_void;
10118		}
10119	}
10120
10121	if (!pmu->pmu_enable) {
10122		pmu->pmu_enable  = perf_pmu_nop_void;
10123		pmu->pmu_disable = perf_pmu_nop_void;
10124	}
10125
10126	if (!pmu->check_period)
10127		pmu->check_period = perf_event_nop_int;
10128
10129	if (!pmu->event_idx)
10130		pmu->event_idx = perf_event_idx_default;
10131
10132	list_add_rcu(&pmu->entry, &pmus);
10133	atomic_set(&pmu->exclusive_cnt, 0);
10134	ret = 0;
10135unlock:
10136	mutex_unlock(&pmus_lock);
10137
10138	return ret;
10139
10140free_dev:
10141	device_del(pmu->dev);
10142	put_device(pmu->dev);
10143
10144free_idr:
10145	if (pmu->type >= PERF_TYPE_MAX)
10146		idr_remove(&pmu_idr, pmu->type);
10147
10148free_pdc:
10149	free_percpu(pmu->pmu_disable_count);
10150	goto unlock;
10151}
10152EXPORT_SYMBOL_GPL(perf_pmu_register);
10153
10154void perf_pmu_unregister(struct pmu *pmu)
10155{
10156	mutex_lock(&pmus_lock);
10157	list_del_rcu(&pmu->entry);
 
10158
10159	/*
10160	 * We dereference the pmu list under both SRCU and regular RCU, so
10161	 * synchronize against both of those.
10162	 */
10163	synchronize_srcu(&pmus_srcu);
10164	synchronize_rcu();
10165
10166	free_percpu(pmu->pmu_disable_count);
10167	if (pmu->type >= PERF_TYPE_MAX)
10168		idr_remove(&pmu_idr, pmu->type);
10169	if (pmu_bus_running) {
10170		if (pmu->nr_addr_filters)
10171			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10172		device_del(pmu->dev);
10173		put_device(pmu->dev);
10174	}
10175	free_pmu_context(pmu);
10176	mutex_unlock(&pmus_lock);
10177}
10178EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10179
10180static inline bool has_extended_regs(struct perf_event *event)
10181{
10182	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10183	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10184}
10185
10186static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10187{
10188	struct perf_event_context *ctx = NULL;
10189	int ret;
10190
10191	if (!try_module_get(pmu->module))
10192		return -ENODEV;
10193
10194	/*
10195	 * A number of pmu->event_init() methods iterate the sibling_list to,
10196	 * for example, validate if the group fits on the PMU. Therefore,
10197	 * if this is a sibling event, acquire the ctx->mutex to protect
10198	 * the sibling_list.
10199	 */
10200	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10201		/*
10202		 * This ctx->mutex can nest when we're called through
10203		 * inheritance. See the perf_event_ctx_lock_nested() comment.
10204		 */
10205		ctx = perf_event_ctx_lock_nested(event->group_leader,
10206						 SINGLE_DEPTH_NESTING);
10207		BUG_ON(!ctx);
10208	}
10209
10210	event->pmu = pmu;
10211	ret = pmu->event_init(event);
10212
10213	if (ctx)
10214		perf_event_ctx_unlock(event->group_leader, ctx);
10215
10216	if (!ret) {
10217		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10218		    has_extended_regs(event))
10219			ret = -EOPNOTSUPP;
10220
10221		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10222		    event_has_any_exclude_flag(event))
10223			ret = -EINVAL;
10224
10225		if (ret && event->destroy)
10226			event->destroy(event);
10227	}
10228
10229	if (ret)
10230		module_put(pmu->module);
10231
10232	return ret;
10233}
10234
10235static struct pmu *perf_init_event(struct perf_event *event)
10236{
10237	struct pmu *pmu;
10238	int idx;
10239	int ret;
10240
10241	idx = srcu_read_lock(&pmus_srcu);
10242
10243	/* Try parent's PMU first: */
10244	if (event->parent && event->parent->pmu) {
10245		pmu = event->parent->pmu;
10246		ret = perf_try_init_event(pmu, event);
10247		if (!ret)
10248			goto unlock;
10249	}
10250
10251	rcu_read_lock();
10252	pmu = idr_find(&pmu_idr, event->attr.type);
10253	rcu_read_unlock();
10254	if (pmu) {
10255		ret = perf_try_init_event(pmu, event);
10256		if (ret)
10257			pmu = ERR_PTR(ret);
10258		goto unlock;
10259	}
10260
10261	list_for_each_entry_rcu(pmu, &pmus, entry) {
10262		ret = perf_try_init_event(pmu, event);
10263		if (!ret)
10264			goto unlock;
10265
10266		if (ret != -ENOENT) {
10267			pmu = ERR_PTR(ret);
10268			goto unlock;
10269		}
10270	}
10271	pmu = ERR_PTR(-ENOENT);
10272unlock:
10273	srcu_read_unlock(&pmus_srcu, idx);
10274
10275	return pmu;
10276}
10277
10278static void attach_sb_event(struct perf_event *event)
10279{
10280	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10281
10282	raw_spin_lock(&pel->lock);
10283	list_add_rcu(&event->sb_list, &pel->list);
10284	raw_spin_unlock(&pel->lock);
10285}
10286
10287/*
10288 * We keep a list of all !task (and therefore per-cpu) events
10289 * that need to receive side-band records.
10290 *
10291 * This avoids having to scan all the various PMU per-cpu contexts
10292 * looking for them.
10293 */
10294static void account_pmu_sb_event(struct perf_event *event)
10295{
10296	if (is_sb_event(event))
10297		attach_sb_event(event);
10298}
10299
10300static void account_event_cpu(struct perf_event *event, int cpu)
10301{
10302	if (event->parent)
10303		return;
10304
10305	if (is_cgroup_event(event))
10306		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10307}
10308
10309/* Freq events need the tick to stay alive (see perf_event_task_tick). */
10310static void account_freq_event_nohz(void)
10311{
10312#ifdef CONFIG_NO_HZ_FULL
10313	/* Lock so we don't race with concurrent unaccount */
10314	spin_lock(&nr_freq_lock);
10315	if (atomic_inc_return(&nr_freq_events) == 1)
10316		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10317	spin_unlock(&nr_freq_lock);
10318#endif
10319}
10320
10321static void account_freq_event(void)
10322{
10323	if (tick_nohz_full_enabled())
10324		account_freq_event_nohz();
10325	else
10326		atomic_inc(&nr_freq_events);
10327}
10328
10329
10330static void account_event(struct perf_event *event)
10331{
10332	bool inc = false;
10333
10334	if (event->parent)
10335		return;
10336
10337	if (event->attach_state & PERF_ATTACH_TASK)
10338		inc = true;
10339	if (event->attr.mmap || event->attr.mmap_data)
10340		atomic_inc(&nr_mmap_events);
10341	if (event->attr.comm)
10342		atomic_inc(&nr_comm_events);
10343	if (event->attr.namespaces)
10344		atomic_inc(&nr_namespaces_events);
10345	if (event->attr.task)
10346		atomic_inc(&nr_task_events);
10347	if (event->attr.freq)
10348		account_freq_event();
10349	if (event->attr.context_switch) {
10350		atomic_inc(&nr_switch_events);
10351		inc = true;
10352	}
10353	if (has_branch_stack(event))
10354		inc = true;
10355	if (is_cgroup_event(event))
10356		inc = true;
10357	if (event->attr.ksymbol)
10358		atomic_inc(&nr_ksymbol_events);
10359	if (event->attr.bpf_event)
10360		atomic_inc(&nr_bpf_events);
10361
10362	if (inc) {
10363		/*
10364		 * We need the mutex here because static_branch_enable()
10365		 * must complete *before* the perf_sched_count increment
10366		 * becomes visible.
10367		 */
10368		if (atomic_inc_not_zero(&perf_sched_count))
10369			goto enabled;
10370
10371		mutex_lock(&perf_sched_mutex);
10372		if (!atomic_read(&perf_sched_count)) {
10373			static_branch_enable(&perf_sched_events);
10374			/*
10375			 * Guarantee that all CPUs observe they key change and
10376			 * call the perf scheduling hooks before proceeding to
10377			 * install events that need them.
10378			 */
10379			synchronize_rcu();
10380		}
10381		/*
10382		 * Now that we have waited for the sync_sched(), allow further
10383		 * increments to by-pass the mutex.
10384		 */
10385		atomic_inc(&perf_sched_count);
10386		mutex_unlock(&perf_sched_mutex);
10387	}
10388enabled:
10389
10390	account_event_cpu(event, event->cpu);
10391
10392	account_pmu_sb_event(event);
10393}
10394
10395/*
10396 * Allocate and initialize an event structure
10397 */
10398static struct perf_event *
10399perf_event_alloc(struct perf_event_attr *attr, int cpu,
10400		 struct task_struct *task,
10401		 struct perf_event *group_leader,
10402		 struct perf_event *parent_event,
10403		 perf_overflow_handler_t overflow_handler,
10404		 void *context, int cgroup_fd)
10405{
10406	struct pmu *pmu;
10407	struct perf_event *event;
10408	struct hw_perf_event *hwc;
10409	long err = -EINVAL;
10410
10411	if ((unsigned)cpu >= nr_cpu_ids) {
10412		if (!task || cpu != -1)
10413			return ERR_PTR(-EINVAL);
10414	}
10415
10416	event = kzalloc(sizeof(*event), GFP_KERNEL);
10417	if (!event)
10418		return ERR_PTR(-ENOMEM);
10419
10420	/*
10421	 * Single events are their own group leaders, with an
10422	 * empty sibling list:
10423	 */
10424	if (!group_leader)
10425		group_leader = event;
10426
10427	mutex_init(&event->child_mutex);
10428	INIT_LIST_HEAD(&event->child_list);
10429
 
10430	INIT_LIST_HEAD(&event->event_entry);
10431	INIT_LIST_HEAD(&event->sibling_list);
10432	INIT_LIST_HEAD(&event->active_list);
10433	init_event_group(event);
10434	INIT_LIST_HEAD(&event->rb_entry);
10435	INIT_LIST_HEAD(&event->active_entry);
10436	INIT_LIST_HEAD(&event->addr_filters.list);
10437	INIT_HLIST_NODE(&event->hlist_entry);
10438
10439
10440	init_waitqueue_head(&event->waitq);
10441	event->pending_disable = -1;
10442	init_irq_work(&event->pending, perf_pending_event);
10443
10444	mutex_init(&event->mmap_mutex);
10445	raw_spin_lock_init(&event->addr_filters.lock);
10446
10447	atomic_long_set(&event->refcount, 1);
10448	event->cpu		= cpu;
10449	event->attr		= *attr;
10450	event->group_leader	= group_leader;
10451	event->pmu		= NULL;
10452	event->oncpu		= -1;
10453
10454	event->parent		= parent_event;
10455
10456	event->ns		= get_pid_ns(task_active_pid_ns(current));
10457	event->id		= atomic64_inc_return(&perf_event_id);
10458
10459	event->state		= PERF_EVENT_STATE_INACTIVE;
10460
10461	if (task) {
10462		event->attach_state = PERF_ATTACH_TASK;
 
10463		/*
10464		 * XXX pmu::event_init needs to know what task to account to
10465		 * and we cannot use the ctx information because we need the
10466		 * pmu before we get a ctx.
10467		 */
10468		event->hw.target = get_task_struct(task);
 
 
10469	}
10470
10471	event->clock = &local_clock;
10472	if (parent_event)
10473		event->clock = parent_event->clock;
10474
10475	if (!overflow_handler && parent_event) {
10476		overflow_handler = parent_event->overflow_handler;
10477		context = parent_event->overflow_handler_context;
10478#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10479		if (overflow_handler == bpf_overflow_handler) {
10480			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10481
10482			if (IS_ERR(prog)) {
10483				err = PTR_ERR(prog);
10484				goto err_ns;
10485			}
10486			event->prog = prog;
10487			event->orig_overflow_handler =
10488				parent_event->orig_overflow_handler;
10489		}
10490#endif
10491	}
10492
10493	if (overflow_handler) {
10494		event->overflow_handler	= overflow_handler;
10495		event->overflow_handler_context = context;
10496	} else if (is_write_backward(event)){
10497		event->overflow_handler = perf_event_output_backward;
10498		event->overflow_handler_context = NULL;
10499	} else {
10500		event->overflow_handler = perf_event_output_forward;
10501		event->overflow_handler_context = NULL;
10502	}
10503
10504	perf_event__state_init(event);
 
10505
10506	pmu = NULL;
10507
10508	hwc = &event->hw;
10509	hwc->sample_period = attr->sample_period;
10510	if (attr->freq && attr->sample_freq)
10511		hwc->sample_period = 1;
10512	hwc->last_period = hwc->sample_period;
10513
10514	local64_set(&hwc->period_left, hwc->sample_period);
10515
10516	/*
10517	 * We currently do not support PERF_SAMPLE_READ on inherited events.
10518	 * See perf_output_read().
10519	 */
10520	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10521		goto err_ns;
10522
10523	if (!has_branch_stack(event))
10524		event->attr.branch_sample_type = 0;
10525
10526	if (cgroup_fd != -1) {
10527		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10528		if (err)
10529			goto err_ns;
10530	}
10531
10532	pmu = perf_init_event(event);
10533	if (IS_ERR(pmu)) {
10534		err = PTR_ERR(pmu);
10535		goto err_ns;
10536	}
10537
10538	/*
10539	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
10540	 * be different on other CPUs in the uncore mask.
10541	 */
10542	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
10543		err = -EINVAL;
10544		goto err_pmu;
10545	}
10546
10547	if (event->attr.aux_output &&
10548	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
10549		err = -EOPNOTSUPP;
10550		goto err_pmu;
 
10551	}
10552
10553	err = exclusive_event_init(event);
10554	if (err)
10555		goto err_pmu;
10556
10557	if (has_addr_filter(event)) {
10558		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10559						    sizeof(struct perf_addr_filter_range),
10560						    GFP_KERNEL);
10561		if (!event->addr_filter_ranges) {
10562			err = -ENOMEM;
10563			goto err_per_task;
10564		}
10565
10566		/*
10567		 * Clone the parent's vma offsets: they are valid until exec()
10568		 * even if the mm is not shared with the parent.
10569		 */
10570		if (event->parent) {
10571			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10572
10573			raw_spin_lock_irq(&ifh->lock);
10574			memcpy(event->addr_filter_ranges,
10575			       event->parent->addr_filter_ranges,
10576			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10577			raw_spin_unlock_irq(&ifh->lock);
10578		}
10579
10580		/* force hw sync on the address filters */
10581		event->addr_filters_gen = 1;
10582	}
10583
10584	if (!event->parent) {
 
 
 
 
 
 
 
 
10585		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10586			err = get_callchain_buffers(attr->sample_max_stack);
10587			if (err)
10588				goto err_addr_filters;
 
 
10589		}
10590	}
10591
10592	/* symmetric to unaccount_event() in _free_event() */
10593	account_event(event);
10594
10595	return event;
10596
10597err_addr_filters:
10598	kfree(event->addr_filter_ranges);
10599
10600err_per_task:
10601	exclusive_event_destroy(event);
10602
10603err_pmu:
10604	if (event->destroy)
10605		event->destroy(event);
10606	module_put(pmu->module);
10607err_ns:
10608	if (is_cgroup_event(event))
10609		perf_detach_cgroup(event);
10610	if (event->ns)
10611		put_pid_ns(event->ns);
10612	if (event->hw.target)
10613		put_task_struct(event->hw.target);
10614	kfree(event);
10615
10616	return ERR_PTR(err);
10617}
10618
10619static int perf_copy_attr(struct perf_event_attr __user *uattr,
10620			  struct perf_event_attr *attr)
10621{
10622	u32 size;
10623	int ret;
10624
10625	/* Zero the full structure, so that a short copy will be nice. */
 
 
 
 
 
10626	memset(attr, 0, sizeof(*attr));
10627
10628	ret = get_user(size, &uattr->size);
10629	if (ret)
10630		return ret;
10631
10632	/* ABI compatibility quirk: */
10633	if (!size)
 
 
10634		size = PERF_ATTR_SIZE_VER0;
10635	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
 
10636		goto err_size;
10637
10638	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
10639	if (ret) {
10640		if (ret == -E2BIG)
10641			goto err_size;
10642		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10643	}
10644
10645	attr->size = size;
 
 
10646
10647	if (attr->__reserved_1 || attr->__reserved_2)
10648		return -EINVAL;
10649
10650	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10651		return -EINVAL;
10652
10653	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10654		return -EINVAL;
10655
10656	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10657		u64 mask = attr->branch_sample_type;
10658
10659		/* only using defined bits */
10660		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10661			return -EINVAL;
10662
10663		/* at least one branch bit must be set */
10664		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10665			return -EINVAL;
10666
10667		/* propagate priv level, when not set for branch */
10668		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10669
10670			/* exclude_kernel checked on syscall entry */
10671			if (!attr->exclude_kernel)
10672				mask |= PERF_SAMPLE_BRANCH_KERNEL;
10673
10674			if (!attr->exclude_user)
10675				mask |= PERF_SAMPLE_BRANCH_USER;
10676
10677			if (!attr->exclude_hv)
10678				mask |= PERF_SAMPLE_BRANCH_HV;
10679			/*
10680			 * adjust user setting (for HW filter setup)
10681			 */
10682			attr->branch_sample_type = mask;
10683		}
10684		/* privileged levels capture (kernel, hv): check permissions */
10685		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10686		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10687			return -EACCES;
10688	}
10689
10690	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10691		ret = perf_reg_validate(attr->sample_regs_user);
10692		if (ret)
10693			return ret;
10694	}
10695
10696	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10697		if (!arch_perf_have_user_stack_dump())
10698			return -ENOSYS;
10699
10700		/*
10701		 * We have __u32 type for the size, but so far
10702		 * we can only use __u16 as maximum due to the
10703		 * __u16 sample size limit.
10704		 */
10705		if (attr->sample_stack_user >= USHRT_MAX)
10706			return -EINVAL;
10707		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10708			return -EINVAL;
10709	}
10710
10711	if (!attr->sample_max_stack)
10712		attr->sample_max_stack = sysctl_perf_event_max_stack;
10713
10714	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10715		ret = perf_reg_validate(attr->sample_regs_intr);
10716out:
10717	return ret;
10718
10719err_size:
10720	put_user(sizeof(*attr), &uattr->size);
10721	ret = -E2BIG;
10722	goto out;
10723}
10724
10725static int
10726perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10727{
10728	struct ring_buffer *rb = NULL;
10729	int ret = -EINVAL;
10730
10731	if (!output_event)
10732		goto set;
10733
10734	/* don't allow circular references */
10735	if (event == output_event)
10736		goto out;
10737
10738	/*
10739	 * Don't allow cross-cpu buffers
10740	 */
10741	if (output_event->cpu != event->cpu)
10742		goto out;
10743
10744	/*
10745	 * If its not a per-cpu rb, it must be the same task.
10746	 */
10747	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10748		goto out;
10749
10750	/*
10751	 * Mixing clocks in the same buffer is trouble you don't need.
10752	 */
10753	if (output_event->clock != event->clock)
10754		goto out;
10755
10756	/*
10757	 * Either writing ring buffer from beginning or from end.
10758	 * Mixing is not allowed.
10759	 */
10760	if (is_write_backward(output_event) != is_write_backward(event))
10761		goto out;
10762
10763	/*
10764	 * If both events generate aux data, they must be on the same PMU
10765	 */
10766	if (has_aux(event) && has_aux(output_event) &&
10767	    event->pmu != output_event->pmu)
10768		goto out;
10769
10770set:
10771	mutex_lock(&event->mmap_mutex);
10772	/* Can't redirect output if we've got an active mmap() */
10773	if (atomic_read(&event->mmap_count))
10774		goto unlock;
10775
10776	if (output_event) {
10777		/* get the rb we want to redirect to */
10778		rb = ring_buffer_get(output_event);
10779		if (!rb)
10780			goto unlock;
10781	}
10782
10783	ring_buffer_attach(event, rb);
10784
10785	ret = 0;
10786unlock:
10787	mutex_unlock(&event->mmap_mutex);
10788
 
 
10789out:
10790	return ret;
10791}
10792
10793static void mutex_lock_double(struct mutex *a, struct mutex *b)
10794{
10795	if (b < a)
10796		swap(a, b);
10797
10798	mutex_lock(a);
10799	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10800}
10801
10802static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10803{
10804	bool nmi_safe = false;
10805
10806	switch (clk_id) {
10807	case CLOCK_MONOTONIC:
10808		event->clock = &ktime_get_mono_fast_ns;
10809		nmi_safe = true;
10810		break;
10811
10812	case CLOCK_MONOTONIC_RAW:
10813		event->clock = &ktime_get_raw_fast_ns;
10814		nmi_safe = true;
10815		break;
10816
10817	case CLOCK_REALTIME:
10818		event->clock = &ktime_get_real_ns;
10819		break;
10820
10821	case CLOCK_BOOTTIME:
10822		event->clock = &ktime_get_boottime_ns;
10823		break;
10824
10825	case CLOCK_TAI:
10826		event->clock = &ktime_get_clocktai_ns;
10827		break;
10828
10829	default:
10830		return -EINVAL;
10831	}
10832
10833	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10834		return -EINVAL;
10835
10836	return 0;
10837}
10838
10839/*
10840 * Variation on perf_event_ctx_lock_nested(), except we take two context
10841 * mutexes.
10842 */
10843static struct perf_event_context *
10844__perf_event_ctx_lock_double(struct perf_event *group_leader,
10845			     struct perf_event_context *ctx)
10846{
10847	struct perf_event_context *gctx;
10848
10849again:
10850	rcu_read_lock();
10851	gctx = READ_ONCE(group_leader->ctx);
10852	if (!refcount_inc_not_zero(&gctx->refcount)) {
10853		rcu_read_unlock();
10854		goto again;
10855	}
10856	rcu_read_unlock();
10857
10858	mutex_lock_double(&gctx->mutex, &ctx->mutex);
10859
10860	if (group_leader->ctx != gctx) {
10861		mutex_unlock(&ctx->mutex);
10862		mutex_unlock(&gctx->mutex);
10863		put_ctx(gctx);
10864		goto again;
10865	}
10866
10867	return gctx;
10868}
10869
10870/**
10871 * sys_perf_event_open - open a performance event, associate it to a task/cpu
10872 *
10873 * @attr_uptr:	event_id type attributes for monitoring/sampling
10874 * @pid:		target pid
10875 * @cpu:		target cpu
10876 * @group_fd:		group leader event fd
10877 */
10878SYSCALL_DEFINE5(perf_event_open,
10879		struct perf_event_attr __user *, attr_uptr,
10880		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10881{
10882	struct perf_event *group_leader = NULL, *output_event = NULL;
10883	struct perf_event *event, *sibling;
10884	struct perf_event_attr attr;
10885	struct perf_event_context *ctx, *uninitialized_var(gctx);
10886	struct file *event_file = NULL;
10887	struct fd group = {NULL, 0};
10888	struct task_struct *task = NULL;
10889	struct pmu *pmu;
10890	int event_fd;
10891	int move_group = 0;
 
10892	int err;
10893	int f_flags = O_RDWR;
10894	int cgroup_fd = -1;
10895
10896	/* for future expandability... */
10897	if (flags & ~PERF_FLAG_ALL)
10898		return -EINVAL;
10899
10900	err = perf_copy_attr(attr_uptr, &attr);
10901	if (err)
10902		return err;
10903
10904	if (!attr.exclude_kernel) {
10905		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10906			return -EACCES;
10907	}
10908
10909	if (attr.namespaces) {
10910		if (!capable(CAP_SYS_ADMIN))
10911			return -EACCES;
10912	}
10913
10914	if (attr.freq) {
10915		if (attr.sample_freq > sysctl_perf_event_sample_rate)
10916			return -EINVAL;
10917	} else {
10918		if (attr.sample_period & (1ULL << 63))
10919			return -EINVAL;
10920	}
10921
10922	/* Only privileged users can get physical addresses */
10923	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10924	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10925		return -EACCES;
10926
10927	err = security_locked_down(LOCKDOWN_PERF);
10928	if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
10929		/* REGS_INTR can leak data, lockdown must prevent this */
10930		return err;
10931
10932	err = 0;
10933
10934	/*
10935	 * In cgroup mode, the pid argument is used to pass the fd
10936	 * opened to the cgroup directory in cgroupfs. The cpu argument
10937	 * designates the cpu on which to monitor threads from that
10938	 * cgroup.
10939	 */
10940	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10941		return -EINVAL;
10942
10943	if (flags & PERF_FLAG_FD_CLOEXEC)
10944		f_flags |= O_CLOEXEC;
10945
10946	event_fd = get_unused_fd_flags(f_flags);
10947	if (event_fd < 0)
10948		return event_fd;
10949
10950	if (group_fd != -1) {
10951		err = perf_fget_light(group_fd, &group);
10952		if (err)
 
10953			goto err_fd;
10954		group_leader = group.file->private_data;
 
10955		if (flags & PERF_FLAG_FD_OUTPUT)
10956			output_event = group_leader;
10957		if (flags & PERF_FLAG_FD_NO_GROUP)
10958			group_leader = NULL;
10959	}
10960
10961	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10962		task = find_lively_task_by_vpid(pid);
10963		if (IS_ERR(task)) {
10964			err = PTR_ERR(task);
10965			goto err_group_fd;
10966		}
10967	}
10968
10969	if (task && group_leader &&
10970	    group_leader->attr.inherit != attr.inherit) {
10971		err = -EINVAL;
10972		goto err_task;
10973	}
10974
10975	if (task) {
10976		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10977		if (err)
10978			goto err_task;
10979
10980		/*
10981		 * Reuse ptrace permission checks for now.
10982		 *
10983		 * We must hold cred_guard_mutex across this and any potential
10984		 * perf_install_in_context() call for this new event to
10985		 * serialize against exec() altering our credentials (and the
10986		 * perf_event_exit_task() that could imply).
10987		 */
10988		err = -EACCES;
10989		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10990			goto err_cred;
10991	}
10992
10993	if (flags & PERF_FLAG_PID_CGROUP)
10994		cgroup_fd = pid;
10995
10996	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10997				 NULL, NULL, cgroup_fd);
10998	if (IS_ERR(event)) {
10999		err = PTR_ERR(event);
11000		goto err_cred;
11001	}
11002
11003	if (is_sampling_event(event)) {
11004		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11005			err = -EOPNOTSUPP;
11006			goto err_alloc;
11007		}
 
 
 
 
 
 
11008	}
11009
11010	/*
11011	 * Special case software events and allow them to be part of
11012	 * any hardware group.
11013	 */
11014	pmu = event->pmu;
11015
11016	if (attr.use_clockid) {
11017		err = perf_event_set_clock(event, attr.clockid);
11018		if (err)
11019			goto err_alloc;
11020	}
11021
11022	if (pmu->task_ctx_nr == perf_sw_context)
11023		event->event_caps |= PERF_EV_CAP_SOFTWARE;
11024
11025	if (group_leader) {
11026		if (is_software_event(event) &&
11027		    !in_software_context(group_leader)) {
11028			/*
11029			 * If the event is a sw event, but the group_leader
11030			 * is on hw context.
11031			 *
11032			 * Allow the addition of software events to hw
11033			 * groups, this is safe because software events
11034			 * never fail to schedule.
11035			 */
11036			pmu = group_leader->ctx->pmu;
11037		} else if (!is_software_event(event) &&
11038			   is_software_event(group_leader) &&
11039			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11040			/*
11041			 * In case the group is a pure software group, and we
11042			 * try to add a hardware event, move the whole group to
11043			 * the hardware context.
11044			 */
11045			move_group = 1;
11046		}
11047	}
11048
11049	/*
11050	 * Get the target context (task or percpu):
11051	 */
11052	ctx = find_get_context(pmu, task, event);
11053	if (IS_ERR(ctx)) {
11054		err = PTR_ERR(ctx);
11055		goto err_alloc;
11056	}
11057
 
 
 
 
 
11058	/*
11059	 * Look up the group leader (we will attach this event to it):
11060	 */
11061	if (group_leader) {
11062		err = -EINVAL;
11063
11064		/*
11065		 * Do not allow a recursive hierarchy (this new sibling
11066		 * becoming part of another group-sibling):
11067		 */
11068		if (group_leader->group_leader != group_leader)
11069			goto err_context;
11070
11071		/* All events in a group should have the same clock */
11072		if (group_leader->clock != event->clock)
11073			goto err_context;
11074
11075		/*
11076		 * Make sure we're both events for the same CPU;
11077		 * grouping events for different CPUs is broken; since
11078		 * you can never concurrently schedule them anyhow.
11079		 */
11080		if (group_leader->cpu != event->cpu)
11081			goto err_context;
11082
11083		/*
11084		 * Make sure we're both on the same task, or both
11085		 * per-CPU events.
11086		 */
11087		if (group_leader->ctx->task != ctx->task)
11088			goto err_context;
11089
11090		/*
11091		 * Do not allow to attach to a group in a different task
11092		 * or CPU context. If we're moving SW events, we'll fix
11093		 * this up later, so allow that.
11094		 */
11095		if (!move_group && group_leader->ctx != ctx)
11096			goto err_context;
 
 
 
 
 
11097
11098		/*
11099		 * Only a group leader can be exclusive or pinned
11100		 */
11101		if (attr.exclusive || attr.pinned)
11102			goto err_context;
11103	}
11104
11105	if (output_event) {
11106		err = perf_event_set_output(event, output_event);
11107		if (err)
11108			goto err_context;
11109	}
11110
11111	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11112					f_flags);
11113	if (IS_ERR(event_file)) {
11114		err = PTR_ERR(event_file);
11115		event_file = NULL;
11116		goto err_context;
11117	}
11118
11119	if (move_group) {
11120		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11121
11122		if (gctx->task == TASK_TOMBSTONE) {
11123			err = -ESRCH;
11124			goto err_locked;
11125		}
11126
11127		/*
11128		 * Check if we raced against another sys_perf_event_open() call
11129		 * moving the software group underneath us.
11130		 */
11131		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11132			/*
11133			 * If someone moved the group out from under us, check
11134			 * if this new event wound up on the same ctx, if so
11135			 * its the regular !move_group case, otherwise fail.
11136			 */
11137			if (gctx != ctx) {
11138				err = -EINVAL;
11139				goto err_locked;
11140			} else {
11141				perf_event_ctx_unlock(group_leader, gctx);
11142				move_group = 0;
11143			}
11144		}
11145
11146		/*
11147		 * Failure to create exclusive events returns -EBUSY.
11148		 */
11149		err = -EBUSY;
11150		if (!exclusive_event_installable(group_leader, ctx))
11151			goto err_locked;
11152
11153		for_each_sibling_event(sibling, group_leader) {
11154			if (!exclusive_event_installable(sibling, ctx))
11155				goto err_locked;
11156		}
11157	} else {
11158		mutex_lock(&ctx->mutex);
11159	}
11160
11161	if (ctx->task == TASK_TOMBSTONE) {
11162		err = -ESRCH;
11163		goto err_locked;
11164	}
11165
11166	if (!perf_event_validate_size(event)) {
11167		err = -E2BIG;
11168		goto err_locked;
11169	}
11170
11171	if (!task) {
11172		/*
11173		 * Check if the @cpu we're creating an event for is online.
11174		 *
11175		 * We use the perf_cpu_context::ctx::mutex to serialize against
11176		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11177		 */
11178		struct perf_cpu_context *cpuctx =
11179			container_of(ctx, struct perf_cpu_context, ctx);
11180
11181		if (!cpuctx->online) {
11182			err = -ENODEV;
11183			goto err_locked;
11184		}
 
 
11185	}
11186
11187	if (event->attr.aux_output && !perf_get_aux_event(event, group_leader))
11188		goto err_locked;
11189
11190	/*
11191	 * Must be under the same ctx::mutex as perf_install_in_context(),
11192	 * because we need to serialize with concurrent event creation.
11193	 */
11194	if (!exclusive_event_installable(event, ctx)) {
11195		err = -EBUSY;
11196		goto err_locked;
11197	}
11198
11199	WARN_ON_ONCE(ctx->parent_ctx);
11200
11201	/*
11202	 * This is the point on no return; we cannot fail hereafter. This is
11203	 * where we start modifying current state.
11204	 */
11205
11206	if (move_group) {
11207		/*
11208		 * See perf_event_ctx_lock() for comments on the details
11209		 * of swizzling perf_event::ctx.
11210		 */
11211		perf_remove_from_context(group_leader, 0);
11212		put_ctx(gctx);
11213
11214		for_each_sibling_event(sibling, group_leader) {
11215			perf_remove_from_context(sibling, 0);
11216			put_ctx(gctx);
11217		}
11218
11219		/*
11220		 * Wait for everybody to stop referencing the events through
11221		 * the old lists, before installing it on new lists.
11222		 */
11223		synchronize_rcu();
11224
11225		/*
11226		 * Install the group siblings before the group leader.
11227		 *
11228		 * Because a group leader will try and install the entire group
11229		 * (through the sibling list, which is still in-tact), we can
11230		 * end up with siblings installed in the wrong context.
11231		 *
11232		 * By installing siblings first we NO-OP because they're not
11233		 * reachable through the group lists.
11234		 */
11235		for_each_sibling_event(sibling, group_leader) {
11236			perf_event__state_init(sibling);
11237			perf_install_in_context(ctx, sibling, sibling->cpu);
11238			get_ctx(ctx);
11239		}
11240
11241		/*
11242		 * Removing from the context ends up with disabled
11243		 * event. What we want here is event in the initial
11244		 * startup state, ready to be add into new context.
11245		 */
11246		perf_event__state_init(group_leader);
11247		perf_install_in_context(ctx, group_leader, group_leader->cpu);
11248		get_ctx(ctx);
11249	}
11250
11251	/*
11252	 * Precalculate sample_data sizes; do while holding ctx::mutex such
11253	 * that we're serialized against further additions and before
11254	 * perf_install_in_context() which is the point the event is active and
11255	 * can use these values.
11256	 */
11257	perf_event__header_size(event);
11258	perf_event__id_header_size(event);
11259
11260	event->owner = current;
11261
11262	perf_install_in_context(ctx, event, event->cpu);
11263	perf_unpin_context(ctx);
11264
11265	if (move_group)
11266		perf_event_ctx_unlock(group_leader, gctx);
11267	mutex_unlock(&ctx->mutex);
11268
11269	if (task) {
11270		mutex_unlock(&task->signal->cred_guard_mutex);
11271		put_task_struct(task);
11272	}
11273
11274	mutex_lock(&current->perf_event_mutex);
11275	list_add_tail(&event->owner_entry, &current->perf_event_list);
11276	mutex_unlock(&current->perf_event_mutex);
11277
11278	/*
 
 
 
 
 
 
11279	 * Drop the reference on the group_event after placing the
11280	 * new event on the sibling_list. This ensures destruction
11281	 * of the group leader will find the pointer to itself in
11282	 * perf_group_detach().
11283	 */
11284	fdput(group);
11285	fd_install(event_fd, event_file);
11286	return event_fd;
11287
11288err_locked:
11289	if (move_group)
11290		perf_event_ctx_unlock(group_leader, gctx);
11291	mutex_unlock(&ctx->mutex);
11292/* err_file: */
11293	fput(event_file);
11294err_context:
11295	perf_unpin_context(ctx);
11296	put_ctx(ctx);
11297err_alloc:
11298	/*
11299	 * If event_file is set, the fput() above will have called ->release()
11300	 * and that will take care of freeing the event.
11301	 */
11302	if (!event_file)
11303		free_event(event);
11304err_cred:
11305	if (task)
11306		mutex_unlock(&task->signal->cred_guard_mutex);
11307err_task:
11308	if (task)
11309		put_task_struct(task);
11310err_group_fd:
11311	fdput(group);
11312err_fd:
11313	put_unused_fd(event_fd);
11314	return err;
11315}
11316
11317/**
11318 * perf_event_create_kernel_counter
11319 *
11320 * @attr: attributes of the counter to create
11321 * @cpu: cpu in which the counter is bound
11322 * @task: task to profile (NULL for percpu)
11323 */
11324struct perf_event *
11325perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11326				 struct task_struct *task,
11327				 perf_overflow_handler_t overflow_handler,
11328				 void *context)
11329{
11330	struct perf_event_context *ctx;
11331	struct perf_event *event;
11332	int err;
11333
11334	/*
11335	 * Grouping is not supported for kernel events, neither is 'AUX',
11336	 * make sure the caller's intentions are adjusted.
11337	 */
11338	if (attr->aux_output)
11339		return ERR_PTR(-EINVAL);
11340
11341	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11342				 overflow_handler, context, -1);
11343	if (IS_ERR(event)) {
11344		err = PTR_ERR(event);
11345		goto err;
11346	}
11347
11348	/* Mark owner so we could distinguish it from user events. */
11349	event->owner = TASK_TOMBSTONE;
11350
11351	/*
11352	 * Get the target context (task or percpu):
11353	 */
11354	ctx = find_get_context(event->pmu, task, event);
11355	if (IS_ERR(ctx)) {
11356		err = PTR_ERR(ctx);
11357		goto err_free;
11358	}
11359
 
11360	WARN_ON_ONCE(ctx->parent_ctx);
11361	mutex_lock(&ctx->mutex);
11362	if (ctx->task == TASK_TOMBSTONE) {
11363		err = -ESRCH;
11364		goto err_unlock;
11365	}
11366
11367	if (!task) {
11368		/*
11369		 * Check if the @cpu we're creating an event for is online.
11370		 *
11371		 * We use the perf_cpu_context::ctx::mutex to serialize against
11372		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11373		 */
11374		struct perf_cpu_context *cpuctx =
11375			container_of(ctx, struct perf_cpu_context, ctx);
11376		if (!cpuctx->online) {
11377			err = -ENODEV;
11378			goto err_unlock;
11379		}
11380	}
11381
11382	if (!exclusive_event_installable(event, ctx)) {
11383		err = -EBUSY;
11384		goto err_unlock;
11385	}
11386
11387	perf_install_in_context(ctx, event, event->cpu);
11388	perf_unpin_context(ctx);
11389	mutex_unlock(&ctx->mutex);
11390
11391	return event;
11392
11393err_unlock:
11394	mutex_unlock(&ctx->mutex);
11395	perf_unpin_context(ctx);
11396	put_ctx(ctx);
11397err_free:
11398	free_event(event);
11399err:
11400	return ERR_PTR(err);
11401}
11402EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11403
11404void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11405{
11406	struct perf_event_context *src_ctx;
11407	struct perf_event_context *dst_ctx;
11408	struct perf_event *event, *tmp;
11409	LIST_HEAD(events);
11410
11411	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11412	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11413
11414	/*
11415	 * See perf_event_ctx_lock() for comments on the details
11416	 * of swizzling perf_event::ctx.
11417	 */
11418	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11419	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11420				 event_entry) {
11421		perf_remove_from_context(event, 0);
11422		unaccount_event_cpu(event, src_cpu);
11423		put_ctx(src_ctx);
11424		list_add(&event->migrate_entry, &events);
11425	}
11426
11427	/*
11428	 * Wait for the events to quiesce before re-instating them.
11429	 */
11430	synchronize_rcu();
11431
11432	/*
11433	 * Re-instate events in 2 passes.
11434	 *
11435	 * Skip over group leaders and only install siblings on this first
11436	 * pass, siblings will not get enabled without a leader, however a
11437	 * leader will enable its siblings, even if those are still on the old
11438	 * context.
11439	 */
11440	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11441		if (event->group_leader == event)
11442			continue;
11443
11444		list_del(&event->migrate_entry);
11445		if (event->state >= PERF_EVENT_STATE_OFF)
11446			event->state = PERF_EVENT_STATE_INACTIVE;
11447		account_event_cpu(event, dst_cpu);
11448		perf_install_in_context(dst_ctx, event, dst_cpu);
11449		get_ctx(dst_ctx);
11450	}
11451
11452	/*
11453	 * Once all the siblings are setup properly, install the group leaders
11454	 * to make it go.
11455	 */
11456	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11457		list_del(&event->migrate_entry);
11458		if (event->state >= PERF_EVENT_STATE_OFF)
11459			event->state = PERF_EVENT_STATE_INACTIVE;
11460		account_event_cpu(event, dst_cpu);
11461		perf_install_in_context(dst_ctx, event, dst_cpu);
11462		get_ctx(dst_ctx);
11463	}
11464	mutex_unlock(&dst_ctx->mutex);
11465	mutex_unlock(&src_ctx->mutex);
11466}
11467EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11468
11469static void sync_child_event(struct perf_event *child_event,
11470			       struct task_struct *child)
11471{
11472	struct perf_event *parent_event = child_event->parent;
11473	u64 child_val;
11474
11475	if (child_event->attr.inherit_stat)
11476		perf_event_read_event(child_event, child);
11477
11478	child_val = perf_event_count(child_event);
11479
11480	/*
11481	 * Add back the child's count to the parent's count:
11482	 */
11483	atomic64_add(child_val, &parent_event->child_count);
11484	atomic64_add(child_event->total_time_enabled,
11485		     &parent_event->child_total_time_enabled);
11486	atomic64_add(child_event->total_time_running,
11487		     &parent_event->child_total_time_running);
11488}
11489
11490static void
11491perf_event_exit_event(struct perf_event *child_event,
11492		      struct perf_event_context *child_ctx,
11493		      struct task_struct *child)
11494{
11495	struct perf_event *parent_event = child_event->parent;
11496
11497	/*
11498	 * Do not destroy the 'original' grouping; because of the context
11499	 * switch optimization the original events could've ended up in a
11500	 * random child task.
11501	 *
11502	 * If we were to destroy the original group, all group related
11503	 * operations would cease to function properly after this random
11504	 * child dies.
11505	 *
11506	 * Do destroy all inherited groups, we don't care about those
11507	 * and being thorough is better.
11508	 */
11509	raw_spin_lock_irq(&child_ctx->lock);
11510	WARN_ON_ONCE(child_ctx->is_active);
11511
11512	if (parent_event)
11513		perf_group_detach(child_event);
11514	list_del_event(child_event, child_ctx);
11515	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11516	raw_spin_unlock_irq(&child_ctx->lock);
11517
11518	/*
11519	 * Parent events are governed by their filedesc, retain them.
11520	 */
11521	if (!parent_event) {
11522		perf_event_wakeup(child_event);
11523		return;
11524	}
11525	/*
11526	 * Child events can be cleaned up.
11527	 */
11528
11529	sync_child_event(child_event, child);
11530
11531	/*
11532	 * Remove this event from the parent's list
11533	 */
11534	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11535	mutex_lock(&parent_event->child_mutex);
11536	list_del_init(&child_event->child_list);
11537	mutex_unlock(&parent_event->child_mutex);
11538
11539	/*
11540	 * Kick perf_poll() for is_event_hup().
 
11541	 */
11542	perf_event_wakeup(parent_event);
11543	free_event(child_event);
11544	put_event(parent_event);
11545}
11546
11547static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
 
 
 
11548{
11549	struct perf_event_context *child_ctx, *clone_ctx = NULL;
11550	struct perf_event *child_event, *next;
 
 
 
11551
11552	WARN_ON_ONCE(child != current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11553
11554	child_ctx = perf_pin_task_context(child, ctxn);
11555	if (!child_ctx)
11556		return;
 
11557
 
11558	/*
11559	 * In order to reduce the amount of tricky in ctx tear-down, we hold
11560	 * ctx::mutex over the entire thing. This serializes against almost
11561	 * everything that wants to access the ctx.
11562	 *
11563	 * The exception is sys_perf_event_open() /
11564	 * perf_event_create_kernel_count() which does find_get_context()
11565	 * without ctx::mutex (it cannot because of the move_group double mutex
11566	 * lock thing). See the comments in perf_install_in_context().
11567	 */
11568	mutex_lock(&child_ctx->mutex);
11569
11570	/*
11571	 * In a single ctx::lock section, de-schedule the events and detach the
11572	 * context from the task such that we cannot ever get it scheduled back
11573	 * in.
11574	 */
11575	raw_spin_lock_irq(&child_ctx->lock);
11576	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11577
11578	/*
11579	 * Now that the context is inactive, destroy the task <-> ctx relation
11580	 * and mark the context dead.
 
11581	 */
11582	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11583	put_ctx(child_ctx); /* cannot be last */
11584	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11585	put_task_struct(current); /* cannot be last */
11586
11587	clone_ctx = unclone_ctx(child_ctx);
11588	raw_spin_unlock_irq(&child_ctx->lock);
11589
11590	if (clone_ctx)
11591		put_ctx(clone_ctx);
11592
11593	/*
11594	 * Report the task dead after unscheduling the events so that we
11595	 * won't get any samples after PERF_RECORD_EXIT. We can however still
11596	 * get a few PERF_RECORD_READ events.
11597	 */
11598	perf_event_task(child, child_ctx, 0);
11599
11600	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11601		perf_event_exit_event(child_event, child_ctx, child);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11602
11603	mutex_unlock(&child_ctx->mutex);
11604
11605	put_ctx(child_ctx);
11606}
11607
11608/*
11609 * When a child task exits, feed back event values to parent events.
11610 *
11611 * Can be called with cred_guard_mutex held when called from
11612 * install_exec_creds().
11613 */
11614void perf_event_exit_task(struct task_struct *child)
11615{
11616	struct perf_event *event, *tmp;
11617	int ctxn;
11618
11619	mutex_lock(&child->perf_event_mutex);
11620	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11621				 owner_entry) {
11622		list_del_init(&event->owner_entry);
11623
11624		/*
11625		 * Ensure the list deletion is visible before we clear
11626		 * the owner, closes a race against perf_release() where
11627		 * we need to serialize on the owner->perf_event_mutex.
11628		 */
11629		smp_store_release(&event->owner, NULL);
 
11630	}
11631	mutex_unlock(&child->perf_event_mutex);
11632
11633	for_each_task_context_nr(ctxn)
11634		perf_event_exit_task_context(child, ctxn);
11635
11636	/*
11637	 * The perf_event_exit_task_context calls perf_event_task
11638	 * with child's task_ctx, which generates EXIT events for
11639	 * child contexts and sets child->perf_event_ctxp[] to NULL.
11640	 * At this point we need to send EXIT events to cpu contexts.
11641	 */
11642	perf_event_task(child, NULL, 0);
11643}
11644
11645static void perf_free_event(struct perf_event *event,
11646			    struct perf_event_context *ctx)
11647{
11648	struct perf_event *parent = event->parent;
11649
11650	if (WARN_ON_ONCE(!parent))
11651		return;
11652
11653	mutex_lock(&parent->child_mutex);
11654	list_del_init(&event->child_list);
11655	mutex_unlock(&parent->child_mutex);
11656
11657	put_event(parent);
11658
11659	raw_spin_lock_irq(&ctx->lock);
11660	perf_group_detach(event);
11661	list_del_event(event, ctx);
11662	raw_spin_unlock_irq(&ctx->lock);
11663	free_event(event);
11664}
11665
11666/*
11667 * Free a context as created by inheritance by perf_event_init_task() below,
11668 * used by fork() in case of fail.
11669 *
11670 * Even though the task has never lived, the context and events have been
11671 * exposed through the child_list, so we must take care tearing it all down.
11672 */
11673void perf_event_free_task(struct task_struct *task)
11674{
11675	struct perf_event_context *ctx;
11676	struct perf_event *event, *tmp;
11677	int ctxn;
11678
11679	for_each_task_context_nr(ctxn) {
11680		ctx = task->perf_event_ctxp[ctxn];
11681		if (!ctx)
11682			continue;
11683
11684		mutex_lock(&ctx->mutex);
11685		raw_spin_lock_irq(&ctx->lock);
11686		/*
11687		 * Destroy the task <-> ctx relation and mark the context dead.
11688		 *
11689		 * This is important because even though the task hasn't been
11690		 * exposed yet the context has been (through child_list).
11691		 */
11692		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11693		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11694		put_task_struct(task); /* cannot be last */
11695		raw_spin_unlock_irq(&ctx->lock);
11696
11697		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
 
11698			perf_free_event(event, ctx);
11699
 
 
 
 
11700		mutex_unlock(&ctx->mutex);
11701
11702		/*
11703		 * perf_event_release_kernel() could've stolen some of our
11704		 * child events and still have them on its free_list. In that
11705		 * case we must wait for these events to have been freed (in
11706		 * particular all their references to this task must've been
11707		 * dropped).
11708		 *
11709		 * Without this copy_process() will unconditionally free this
11710		 * task (irrespective of its reference count) and
11711		 * _free_event()'s put_task_struct(event->hw.target) will be a
11712		 * use-after-free.
11713		 *
11714		 * Wait for all events to drop their context reference.
11715		 */
11716		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
11717		put_ctx(ctx); /* must be last */
11718	}
11719}
11720
11721void perf_event_delayed_put(struct task_struct *task)
11722{
11723	int ctxn;
11724
11725	for_each_task_context_nr(ctxn)
11726		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11727}
11728
11729struct file *perf_event_get(unsigned int fd)
11730{
11731	struct file *file = fget(fd);
11732	if (!file)
11733		return ERR_PTR(-EBADF);
11734
11735	if (file->f_op != &perf_fops) {
11736		fput(file);
11737		return ERR_PTR(-EBADF);
11738	}
11739
11740	return file;
11741}
11742
11743const struct perf_event *perf_get_event(struct file *file)
11744{
11745	if (file->f_op != &perf_fops)
11746		return ERR_PTR(-EINVAL);
11747
11748	return file->private_data;
11749}
11750
11751const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11752{
11753	if (!event)
11754		return ERR_PTR(-EINVAL);
11755
11756	return &event->attr;
11757}
11758
11759/*
11760 * Inherit an event from parent task to child task.
11761 *
11762 * Returns:
11763 *  - valid pointer on success
11764 *  - NULL for orphaned events
11765 *  - IS_ERR() on error
11766 */
11767static struct perf_event *
11768inherit_event(struct perf_event *parent_event,
11769	      struct task_struct *parent,
11770	      struct perf_event_context *parent_ctx,
11771	      struct task_struct *child,
11772	      struct perf_event *group_leader,
11773	      struct perf_event_context *child_ctx)
11774{
11775	enum perf_event_state parent_state = parent_event->state;
11776	struct perf_event *child_event;
11777	unsigned long flags;
11778
11779	/*
11780	 * Instead of creating recursive hierarchies of events,
11781	 * we link inherited events back to the original parent,
11782	 * which has a filp for sure, which we use as the reference
11783	 * count:
11784	 */
11785	if (parent_event->parent)
11786		parent_event = parent_event->parent;
11787
11788	child_event = perf_event_alloc(&parent_event->attr,
11789					   parent_event->cpu,
11790					   child,
11791					   group_leader, parent_event,
11792					   NULL, NULL, -1);
11793	if (IS_ERR(child_event))
11794		return child_event;
11795
11796
11797	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11798	    !child_ctx->task_ctx_data) {
11799		struct pmu *pmu = child_event->pmu;
11800
11801		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11802						   GFP_KERNEL);
11803		if (!child_ctx->task_ctx_data) {
11804			free_event(child_event);
11805			return ERR_PTR(-ENOMEM);
11806		}
11807	}
11808
11809	/*
11810	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11811	 * must be under the same lock in order to serialize against
11812	 * perf_event_release_kernel(), such that either we must observe
11813	 * is_orphaned_event() or they will observe us on the child_list.
11814	 */
11815	mutex_lock(&parent_event->child_mutex);
11816	if (is_orphaned_event(parent_event) ||
11817	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
11818		mutex_unlock(&parent_event->child_mutex);
11819		/* task_ctx_data is freed with child_ctx */
11820		free_event(child_event);
11821		return NULL;
11822	}
11823
11824	get_ctx(child_ctx);
11825
11826	/*
11827	 * Make the child state follow the state of the parent event,
11828	 * not its attr.disabled bit.  We hold the parent's mutex,
11829	 * so we won't race with perf_event_{en, dis}able_family.
11830	 */
11831	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11832		child_event->state = PERF_EVENT_STATE_INACTIVE;
11833	else
11834		child_event->state = PERF_EVENT_STATE_OFF;
11835
11836	if (parent_event->attr.freq) {
11837		u64 sample_period = parent_event->hw.sample_period;
11838		struct hw_perf_event *hwc = &child_event->hw;
11839
11840		hwc->sample_period = sample_period;
11841		hwc->last_period   = sample_period;
11842
11843		local64_set(&hwc->period_left, sample_period);
11844	}
11845
11846	child_event->ctx = child_ctx;
11847	child_event->overflow_handler = parent_event->overflow_handler;
11848	child_event->overflow_handler_context
11849		= parent_event->overflow_handler_context;
11850
11851	/*
11852	 * Precalculate sample_data sizes
11853	 */
11854	perf_event__header_size(child_event);
11855	perf_event__id_header_size(child_event);
11856
11857	/*
11858	 * Link it up in the child's context:
11859	 */
11860	raw_spin_lock_irqsave(&child_ctx->lock, flags);
11861	add_event_to_ctx(child_event, child_ctx);
11862	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11863
11864	/*
 
 
 
 
 
 
 
 
11865	 * Link this into the parent event's child list
11866	 */
 
 
11867	list_add_tail(&child_event->child_list, &parent_event->child_list);
11868	mutex_unlock(&parent_event->child_mutex);
11869
11870	return child_event;
11871}
11872
11873/*
11874 * Inherits an event group.
11875 *
11876 * This will quietly suppress orphaned events; !inherit_event() is not an error.
11877 * This matches with perf_event_release_kernel() removing all child events.
11878 *
11879 * Returns:
11880 *  - 0 on success
11881 *  - <0 on error
11882 */
11883static int inherit_group(struct perf_event *parent_event,
11884	      struct task_struct *parent,
11885	      struct perf_event_context *parent_ctx,
11886	      struct task_struct *child,
11887	      struct perf_event_context *child_ctx)
11888{
11889	struct perf_event *leader;
11890	struct perf_event *sub;
11891	struct perf_event *child_ctr;
11892
11893	leader = inherit_event(parent_event, parent, parent_ctx,
11894				 child, NULL, child_ctx);
11895	if (IS_ERR(leader))
11896		return PTR_ERR(leader);
11897	/*
11898	 * @leader can be NULL here because of is_orphaned_event(). In this
11899	 * case inherit_event() will create individual events, similar to what
11900	 * perf_group_detach() would do anyway.
11901	 */
11902	for_each_sibling_event(sub, parent_event) {
11903		child_ctr = inherit_event(sub, parent, parent_ctx,
11904					    child, leader, child_ctx);
11905		if (IS_ERR(child_ctr))
11906			return PTR_ERR(child_ctr);
11907
11908		if (sub->aux_event == parent_event && child_ctr &&
11909		    !perf_get_aux_event(child_ctr, leader))
11910			return -EINVAL;
11911	}
11912	return 0;
11913}
11914
11915/*
11916 * Creates the child task context and tries to inherit the event-group.
11917 *
11918 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11919 * inherited_all set when we 'fail' to inherit an orphaned event; this is
11920 * consistent with perf_event_release_kernel() removing all child events.
11921 *
11922 * Returns:
11923 *  - 0 on success
11924 *  - <0 on error
11925 */
11926static int
11927inherit_task_group(struct perf_event *event, struct task_struct *parent,
11928		   struct perf_event_context *parent_ctx,
11929		   struct task_struct *child, int ctxn,
11930		   int *inherited_all)
11931{
11932	int ret;
11933	struct perf_event_context *child_ctx;
11934
11935	if (!event->attr.inherit) {
11936		*inherited_all = 0;
11937		return 0;
11938	}
11939
11940	child_ctx = child->perf_event_ctxp[ctxn];
11941	if (!child_ctx) {
11942		/*
11943		 * This is executed from the parent task context, so
11944		 * inherit events that have been marked for cloning.
11945		 * First allocate and initialize a context for the
11946		 * child.
11947		 */
11948		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
 
11949		if (!child_ctx)
11950			return -ENOMEM;
11951
11952		child->perf_event_ctxp[ctxn] = child_ctx;
11953	}
11954
11955	ret = inherit_group(event, parent, parent_ctx,
11956			    child, child_ctx);
11957
11958	if (ret)
11959		*inherited_all = 0;
11960
11961	return ret;
11962}
11963
11964/*
11965 * Initialize the perf_event context in task_struct
11966 */
11967static int perf_event_init_context(struct task_struct *child, int ctxn)
11968{
11969	struct perf_event_context *child_ctx, *parent_ctx;
11970	struct perf_event_context *cloned_ctx;
11971	struct perf_event *event;
11972	struct task_struct *parent = current;
11973	int inherited_all = 1;
11974	unsigned long flags;
11975	int ret = 0;
11976
11977	if (likely(!parent->perf_event_ctxp[ctxn]))
11978		return 0;
11979
11980	/*
11981	 * If the parent's context is a clone, pin it so it won't get
11982	 * swapped under us.
11983	 */
11984	parent_ctx = perf_pin_task_context(parent, ctxn);
11985	if (!parent_ctx)
11986		return 0;
11987
11988	/*
11989	 * No need to check if parent_ctx != NULL here; since we saw
11990	 * it non-NULL earlier, the only reason for it to become NULL
11991	 * is if we exit, and since we're currently in the middle of
11992	 * a fork we can't be exiting at the same time.
11993	 */
11994
11995	/*
11996	 * Lock the parent list. No need to lock the child - not PID
11997	 * hashed yet and not running, so nobody can access it.
11998	 */
11999	mutex_lock(&parent_ctx->mutex);
12000
12001	/*
12002	 * We dont have to disable NMIs - we are only looking at
12003	 * the list, not manipulating it:
12004	 */
12005	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12006		ret = inherit_task_group(event, parent, parent_ctx,
12007					 child, ctxn, &inherited_all);
12008		if (ret)
12009			goto out_unlock;
12010	}
12011
12012	/*
12013	 * We can't hold ctx->lock when iterating the ->flexible_group list due
12014	 * to allocations, but we need to prevent rotation because
12015	 * rotate_ctx() will change the list from interrupt context.
12016	 */
12017	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12018	parent_ctx->rotate_disable = 1;
12019	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12020
12021	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12022		ret = inherit_task_group(event, parent, parent_ctx,
12023					 child, ctxn, &inherited_all);
12024		if (ret)
12025			goto out_unlock;
12026	}
12027
12028	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12029	parent_ctx->rotate_disable = 0;
12030
12031	child_ctx = child->perf_event_ctxp[ctxn];
12032
12033	if (child_ctx && inherited_all) {
12034		/*
12035		 * Mark the child context as a clone of the parent
12036		 * context, or of whatever the parent is a clone of.
12037		 *
12038		 * Note that if the parent is a clone, the holding of
12039		 * parent_ctx->lock avoids it from being uncloned.
12040		 */
12041		cloned_ctx = parent_ctx->parent_ctx;
12042		if (cloned_ctx) {
12043			child_ctx->parent_ctx = cloned_ctx;
12044			child_ctx->parent_gen = parent_ctx->parent_gen;
12045		} else {
12046			child_ctx->parent_ctx = parent_ctx;
12047			child_ctx->parent_gen = parent_ctx->generation;
12048		}
12049		get_ctx(child_ctx->parent_ctx);
12050	}
12051
12052	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12053out_unlock:
12054	mutex_unlock(&parent_ctx->mutex);
12055
12056	perf_unpin_context(parent_ctx);
12057	put_ctx(parent_ctx);
12058
12059	return ret;
12060}
12061
12062/*
12063 * Initialize the perf_event context in task_struct
12064 */
12065int perf_event_init_task(struct task_struct *child)
12066{
12067	int ctxn, ret;
12068
12069	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12070	mutex_init(&child->perf_event_mutex);
12071	INIT_LIST_HEAD(&child->perf_event_list);
12072
12073	for_each_task_context_nr(ctxn) {
12074		ret = perf_event_init_context(child, ctxn);
12075		if (ret) {
12076			perf_event_free_task(child);
12077			return ret;
12078		}
12079	}
12080
12081	return 0;
12082}
12083
12084static void __init perf_event_init_all_cpus(void)
12085{
12086	struct swevent_htable *swhash;
12087	int cpu;
12088
12089	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12090
12091	for_each_possible_cpu(cpu) {
12092		swhash = &per_cpu(swevent_htable, cpu);
12093		mutex_init(&swhash->hlist_mutex);
12094		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12095
12096		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12097		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12098
12099#ifdef CONFIG_CGROUP_PERF
12100		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12101#endif
12102		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12103	}
12104}
12105
12106static void perf_swevent_init_cpu(unsigned int cpu)
12107{
12108	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12109
12110	mutex_lock(&swhash->hlist_mutex);
12111	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12112		struct swevent_hlist *hlist;
12113
12114		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12115		WARN_ON(!hlist);
12116		rcu_assign_pointer(swhash->swevent_hlist, hlist);
12117	}
12118	mutex_unlock(&swhash->hlist_mutex);
12119}
12120
12121#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
 
 
 
 
 
 
 
 
 
12122static void __perf_event_exit_context(void *__info)
12123{
12124	struct perf_event_context *ctx = __info;
12125	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12126	struct perf_event *event;
12127
12128	raw_spin_lock(&ctx->lock);
12129	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12130	list_for_each_entry(event, &ctx->event_list, event_entry)
12131		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12132	raw_spin_unlock(&ctx->lock);
 
12133}
12134
12135static void perf_event_exit_cpu_context(int cpu)
12136{
12137	struct perf_cpu_context *cpuctx;
12138	struct perf_event_context *ctx;
12139	struct pmu *pmu;
 
12140
12141	mutex_lock(&pmus_lock);
12142	list_for_each_entry(pmu, &pmus, entry) {
12143		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12144		ctx = &cpuctx->ctx;
12145
12146		mutex_lock(&ctx->mutex);
12147		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12148		cpuctx->online = 0;
12149		mutex_unlock(&ctx->mutex);
12150	}
12151	cpumask_clear_cpu(cpu, perf_online_mask);
12152	mutex_unlock(&pmus_lock);
12153}
12154#else
12155
12156static void perf_event_exit_cpu_context(int cpu) { }
12157
12158#endif
12159
12160int perf_event_init_cpu(unsigned int cpu)
12161{
12162	struct perf_cpu_context *cpuctx;
12163	struct perf_event_context *ctx;
12164	struct pmu *pmu;
12165
12166	perf_swevent_init_cpu(cpu);
12167
12168	mutex_lock(&pmus_lock);
12169	cpumask_set_cpu(cpu, perf_online_mask);
12170	list_for_each_entry(pmu, &pmus, entry) {
12171		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12172		ctx = &cpuctx->ctx;
12173
12174		mutex_lock(&ctx->mutex);
12175		cpuctx->online = 1;
12176		mutex_unlock(&ctx->mutex);
12177	}
12178	mutex_unlock(&pmus_lock);
12179
12180	return 0;
12181}
 
12182
12183int perf_event_exit_cpu(unsigned int cpu)
12184{
12185	perf_event_exit_cpu_context(cpu);
12186	return 0;
12187}
 
 
 
12188
12189static int
12190perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12191{
12192	int cpu;
12193
12194	for_each_online_cpu(cpu)
12195		perf_event_exit_cpu(cpu);
12196
12197	return NOTIFY_OK;
12198}
12199
12200/*
12201 * Run the perf reboot notifier at the very last possible moment so that
12202 * the generic watchdog code runs as long as possible.
12203 */
12204static struct notifier_block perf_reboot_notifier = {
12205	.notifier_call = perf_reboot,
12206	.priority = INT_MIN,
12207};
12208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12209void __init perf_event_init(void)
12210{
12211	int ret;
12212
12213	idr_init(&pmu_idr);
12214
12215	perf_event_init_all_cpus();
12216	init_srcu_struct(&pmus_srcu);
12217	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12218	perf_pmu_register(&perf_cpu_clock, NULL, -1);
12219	perf_pmu_register(&perf_task_clock, NULL, -1);
12220	perf_tp_register();
12221	perf_event_init_cpu(smp_processor_id());
12222	register_reboot_notifier(&perf_reboot_notifier);
12223
12224	ret = init_hw_breakpoint();
12225	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12226
12227	/*
12228	 * Build time assertion that we keep the data_head at the intended
12229	 * location.  IOW, validation we got the __reserved[] size right.
12230	 */
12231	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12232		     != 1024);
12233}
12234
12235ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12236			      char *page)
12237{
12238	struct perf_pmu_events_attr *pmu_attr =
12239		container_of(attr, struct perf_pmu_events_attr, attr);
12240
12241	if (pmu_attr->event_str)
12242		return sprintf(page, "%s\n", pmu_attr->event_str);
12243
12244	return 0;
12245}
12246EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12247
12248static int __init perf_event_sysfs_init(void)
12249{
12250	struct pmu *pmu;
12251	int ret;
12252
12253	mutex_lock(&pmus_lock);
12254
12255	ret = bus_register(&pmu_bus);
12256	if (ret)
12257		goto unlock;
12258
12259	list_for_each_entry(pmu, &pmus, entry) {
12260		if (!pmu->name || pmu->type < 0)
12261			continue;
12262
12263		ret = pmu_dev_alloc(pmu);
12264		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12265	}
12266	pmu_bus_running = 1;
12267	ret = 0;
12268
12269unlock:
12270	mutex_unlock(&pmus_lock);
12271
12272	return ret;
12273}
12274device_initcall(perf_event_sysfs_init);
12275
12276#ifdef CONFIG_CGROUP_PERF
12277static struct cgroup_subsys_state *
12278perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12279{
12280	struct perf_cgroup *jc;
12281
12282	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12283	if (!jc)
12284		return ERR_PTR(-ENOMEM);
12285
12286	jc->info = alloc_percpu(struct perf_cgroup_info);
12287	if (!jc->info) {
12288		kfree(jc);
12289		return ERR_PTR(-ENOMEM);
12290	}
12291
12292	return &jc->css;
12293}
12294
12295static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
 
12296{
12297	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12298
 
12299	free_percpu(jc->info);
12300	kfree(jc);
12301}
12302
12303static int __perf_cgroup_move(void *info)
12304{
12305	struct task_struct *task = info;
12306	rcu_read_lock();
12307	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12308	rcu_read_unlock();
12309	return 0;
12310}
12311
12312static void perf_cgroup_attach(struct cgroup_taskset *tset)
 
12313{
12314	struct task_struct *task;
12315	struct cgroup_subsys_state *css;
12316
12317	cgroup_taskset_for_each(task, css, tset)
12318		task_function_call(task, __perf_cgroup_move, task);
12319}
12320
12321struct cgroup_subsys perf_event_cgrp_subsys = {
12322	.css_alloc	= perf_cgroup_css_alloc,
12323	.css_free	= perf_cgroup_css_free,
12324	.attach		= perf_cgroup_attach,
12325	/*
12326	 * Implicitly enable on dfl hierarchy so that perf events can
12327	 * always be filtered by cgroup2 path as long as perf_event
12328	 * controller is not mounted on a legacy hierarchy.
12329	 */
12330	.implicit_on_dfl = true,
12331	.threaded	= true,
 
 
 
 
 
 
 
 
 
 
 
12332};
12333#endif /* CONFIG_CGROUP_PERF */
v3.1
 
   1/*
   2 * Performance events core code:
   3 *
   4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
   6 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
   7 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   8 *
   9 * For licensing details see kernel-base/COPYING
  10 */
  11
  12#include <linux/fs.h>
  13#include <linux/mm.h>
  14#include <linux/cpu.h>
  15#include <linux/smp.h>
  16#include <linux/idr.h>
  17#include <linux/file.h>
  18#include <linux/poll.h>
  19#include <linux/slab.h>
  20#include <linux/hash.h>
 
  21#include <linux/sysfs.h>
  22#include <linux/dcache.h>
  23#include <linux/percpu.h>
  24#include <linux/ptrace.h>
  25#include <linux/reboot.h>
  26#include <linux/vmstat.h>
  27#include <linux/device.h>
 
  28#include <linux/vmalloc.h>
  29#include <linux/hardirq.h>
  30#include <linux/rculist.h>
  31#include <linux/uaccess.h>
  32#include <linux/syscalls.h>
  33#include <linux/anon_inodes.h>
  34#include <linux/kernel_stat.h>
 
  35#include <linux/perf_event.h>
  36#include <linux/ftrace_event.h>
  37#include <linux/hw_breakpoint.h>
 
 
 
 
 
 
 
 
 
 
 
 
  38
  39#include "internal.h"
  40
  41#include <asm/irq_regs.h>
  42
 
 
  43struct remote_function_call {
  44	struct task_struct	*p;
  45	int			(*func)(void *info);
  46	void			*info;
  47	int			ret;
  48};
  49
  50static void remote_function(void *data)
  51{
  52	struct remote_function_call *tfc = data;
  53	struct task_struct *p = tfc->p;
  54
  55	if (p) {
  56		tfc->ret = -EAGAIN;
  57		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
 
 
 
 
 
 
 
 
 
  58			return;
  59	}
  60
  61	tfc->ret = tfc->func(tfc->info);
  62}
  63
  64/**
  65 * task_function_call - call a function on the cpu on which a task runs
  66 * @p:		the task to evaluate
  67 * @func:	the function to be called
  68 * @info:	the function call argument
  69 *
  70 * Calls the function @func when the task is currently running. This might
  71 * be on the current CPU, which just calls the function directly
  72 *
  73 * returns: @func return value, or
  74 *	    -ESRCH  - when the process isn't running
  75 *	    -EAGAIN - when the process moved away
  76 */
  77static int
  78task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
  79{
  80	struct remote_function_call data = {
  81		.p	= p,
  82		.func	= func,
  83		.info	= info,
  84		.ret	= -ESRCH, /* No such (running) process */
  85	};
 
  86
  87	if (task_curr(p))
  88		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
 
 
 
  89
  90	return data.ret;
  91}
  92
  93/**
  94 * cpu_function_call - call a function on the cpu
  95 * @func:	the function to be called
  96 * @info:	the function call argument
  97 *
  98 * Calls the function @func on the remote cpu.
  99 *
 100 * returns: @func return value or -ENXIO when the cpu is offline
 101 */
 102static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
 103{
 104	struct remote_function_call data = {
 105		.p	= NULL,
 106		.func	= func,
 107		.info	= info,
 108		.ret	= -ENXIO, /* No such CPU */
 109	};
 110
 111	smp_call_function_single(cpu, remote_function, &data, 1);
 112
 113	return data.ret;
 114}
 115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 116#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
 117		       PERF_FLAG_FD_OUTPUT  |\
 118		       PERF_FLAG_PID_CGROUP)
 
 
 
 
 
 
 
 
 119
 120enum event_type_t {
 121	EVENT_FLEXIBLE = 0x1,
 122	EVENT_PINNED = 0x2,
 
 
 
 123	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
 124};
 125
 126/*
 127 * perf_sched_events : >0 events exist
 128 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 129 */
 130struct jump_label_key perf_sched_events __read_mostly;
 
 
 
 
 
 
 131static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
 
 
 132
 133static atomic_t nr_mmap_events __read_mostly;
 134static atomic_t nr_comm_events __read_mostly;
 
 135static atomic_t nr_task_events __read_mostly;
 
 
 
 
 136
 137static LIST_HEAD(pmus);
 138static DEFINE_MUTEX(pmus_lock);
 139static struct srcu_struct pmus_srcu;
 
 140
 141/*
 142 * perf event paranoia level:
 143 *  -1 - not paranoid at all
 144 *   0 - disallow raw tracepoint access for unpriv
 145 *   1 - disallow cpu events for unpriv
 146 *   2 - disallow kernel profiling for unpriv
 147 */
 148int sysctl_perf_event_paranoid __read_mostly = 1;
 149
 150/* Minimum for 512 kiB + 1 user control page */
 151int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
 152
 153/*
 154 * max perf event sample rate
 155 */
 156#define DEFAULT_MAX_SAMPLE_RATE 100000
 157int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
 158static int max_samples_per_tick __read_mostly =
 159	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160
 161int perf_proc_update_handler(struct ctl_table *table, int write,
 162		void __user *buffer, size_t *lenp,
 163		loff_t *ppos)
 164{
 165	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
 
 
 
 
 
 
 166
 
 167	if (ret || !write)
 168		return ret;
 169
 170	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
 
 
 171
 172	return 0;
 173}
 174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175static atomic64_t perf_event_id;
 176
 177static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
 178			      enum event_type_t event_type);
 179
 180static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
 181			     enum event_type_t event_type,
 182			     struct task_struct *task);
 183
 184static void update_context_time(struct perf_event_context *ctx);
 185static u64 perf_event_time(struct perf_event *event);
 186
 187void __weak perf_event_print_debug(void)	{ }
 188
 189extern __weak const char *perf_pmu_name(void)
 190{
 191	return "pmu";
 192}
 193
 194static inline u64 perf_clock(void)
 195{
 196	return local_clock();
 197}
 198
 199static inline struct perf_cpu_context *
 200__get_cpu_context(struct perf_event_context *ctx)
 201{
 202	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
 203}
 204
 205static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
 206			  struct perf_event_context *ctx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207{
 208	raw_spin_lock(&cpuctx->ctx.lock);
 209	if (ctx)
 210		raw_spin_lock(&ctx->lock);
 
 
 
 211}
 212
 213static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
 214			    struct perf_event_context *ctx)
 215{
 216	if (ctx)
 217		raw_spin_unlock(&ctx->lock);
 218	raw_spin_unlock(&cpuctx->ctx.lock);
 
 
 
 
 
 
 
 219}
 220
 221#ifdef CONFIG_CGROUP_PERF
 
 
 222
 223/*
 224 * Must ensure cgroup is pinned (css_get) before calling
 225 * this function. In other words, we cannot call this function
 226 * if there is no cgroup event for the current CPU context.
 227 */
 228static inline struct perf_cgroup *
 229perf_cgroup_from_task(struct task_struct *task)
 230{
 231	return container_of(task_subsys_state(task, perf_subsys_id),
 232			struct perf_cgroup, css);
 233}
 234
 235static inline bool
 236perf_cgroup_match(struct perf_event *event)
 237{
 238	struct perf_event_context *ctx = event->ctx;
 239	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 240
 241	return !event->cgrp || event->cgrp == cpuctx->cgrp;
 
 242}
 243
 244static inline void perf_get_cgroup(struct perf_event *event)
 
 245{
 246	css_get(&event->cgrp->css);
 
 
 
 
 
 
 
 
 
 
 
 247}
 248
 249static inline void perf_put_cgroup(struct perf_event *event)
 
 
 
 250{
 251	css_put(&event->cgrp->css);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 252}
 253
 254static inline void perf_detach_cgroup(struct perf_event *event)
 255{
 256	perf_put_cgroup(event);
 257	event->cgrp = NULL;
 258}
 259
 260static inline int is_cgroup_event(struct perf_event *event)
 261{
 262	return event->cgrp != NULL;
 263}
 264
 265static inline u64 perf_cgroup_event_time(struct perf_event *event)
 266{
 267	struct perf_cgroup_info *t;
 268
 269	t = per_cpu_ptr(event->cgrp->info, event->cpu);
 270	return t->time;
 271}
 272
 273static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
 274{
 275	struct perf_cgroup_info *info;
 276	u64 now;
 277
 278	now = perf_clock();
 279
 280	info = this_cpu_ptr(cgrp->info);
 281
 282	info->time += now - info->timestamp;
 283	info->timestamp = now;
 284}
 285
 286static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 287{
 288	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
 289	if (cgrp_out)
 290		__update_cgrp_time(cgrp_out);
 
 
 
 
 
 
 291}
 292
 293static inline void update_cgrp_time_from_event(struct perf_event *event)
 294{
 295	struct perf_cgroup *cgrp;
 296
 297	/*
 298	 * ensure we access cgroup data only when needed and
 299	 * when we know the cgroup is pinned (css_get)
 300	 */
 301	if (!is_cgroup_event(event))
 302		return;
 303
 304	cgrp = perf_cgroup_from_task(current);
 305	/*
 306	 * Do not update time when cgroup is not active
 307	 */
 308	if (cgrp == event->cgrp)
 309		__update_cgrp_time(event->cgrp);
 310}
 311
 312static inline void
 313perf_cgroup_set_timestamp(struct task_struct *task,
 314			  struct perf_event_context *ctx)
 315{
 316	struct perf_cgroup *cgrp;
 317	struct perf_cgroup_info *info;
 
 318
 319	/*
 320	 * ctx->lock held by caller
 321	 * ensure we do not access cgroup data
 322	 * unless we have the cgroup pinned (css_get)
 323	 */
 324	if (!task || !ctx->nr_cgroups)
 325		return;
 326
 327	cgrp = perf_cgroup_from_task(task);
 328	info = this_cpu_ptr(cgrp->info);
 329	info->timestamp = ctx->timestamp;
 
 
 
 
 330}
 331
 
 
 332#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
 333#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
 334
 335/*
 336 * reschedule events based on the cgroup constraint of task.
 337 *
 338 * mode SWOUT : schedule out everything
 339 * mode SWIN : schedule in based on cgroup for next
 340 */
 341void perf_cgroup_switch(struct task_struct *task, int mode)
 342{
 343	struct perf_cpu_context *cpuctx;
 344	struct pmu *pmu;
 345	unsigned long flags;
 346
 347	/*
 348	 * disable interrupts to avoid geting nr_cgroup
 349	 * changes via __perf_event_disable(). Also
 350	 * avoids preemption.
 351	 */
 352	local_irq_save(flags);
 353
 354	/*
 355	 * we reschedule only in the presence of cgroup
 356	 * constrained events.
 357	 */
 358	rcu_read_lock();
 359
 360	list_for_each_entry_rcu(pmu, &pmus, entry) {
 361		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 362
 363		/*
 364		 * perf_cgroup_events says at least one
 365		 * context on this CPU has cgroup events.
 366		 *
 367		 * ctx->nr_cgroups reports the number of cgroup
 368		 * events for a context.
 369		 */
 370		if (cpuctx->ctx.nr_cgroups > 0) {
 371			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
 372			perf_pmu_disable(cpuctx->ctx.pmu);
 373
 374			if (mode & PERF_CGROUP_SWOUT) {
 375				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
 376				/*
 377				 * must not be done before ctxswout due
 378				 * to event_filter_match() in event_sched_out()
 379				 */
 380				cpuctx->cgrp = NULL;
 381			}
 382
 383			if (mode & PERF_CGROUP_SWIN) {
 384				WARN_ON_ONCE(cpuctx->cgrp);
 385				/* set cgrp before ctxsw in to
 386				 * allow event_filter_match() to not
 387				 * have to pass task around
 388				 */
 389				cpuctx->cgrp = perf_cgroup_from_task(task);
 390				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
 391			}
 392			perf_pmu_enable(cpuctx->ctx.pmu);
 393			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
 394		}
 
 
 395	}
 396
 397	rcu_read_unlock();
 398
 399	local_irq_restore(flags);
 400}
 401
 402static inline void perf_cgroup_sched_out(struct task_struct *task,
 403					 struct task_struct *next)
 404{
 405	struct perf_cgroup *cgrp1;
 406	struct perf_cgroup *cgrp2 = NULL;
 407
 
 408	/*
 409	 * we come here when we know perf_cgroup_events > 0
 
 
 410	 */
 411	cgrp1 = perf_cgroup_from_task(task);
 412
 413	/*
 414	 * next is NULL when called from perf_event_enable_on_exec()
 415	 * that will systematically cause a cgroup_switch()
 416	 */
 417	if (next)
 418		cgrp2 = perf_cgroup_from_task(next);
 419
 420	/*
 421	 * only schedule out current cgroup events if we know
 422	 * that we are switching to a different cgroup. Otherwise,
 423	 * do no touch the cgroup events.
 424	 */
 425	if (cgrp1 != cgrp2)
 426		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
 
 
 427}
 428
 429static inline void perf_cgroup_sched_in(struct task_struct *prev,
 430					struct task_struct *task)
 431{
 432	struct perf_cgroup *cgrp1;
 433	struct perf_cgroup *cgrp2 = NULL;
 434
 
 435	/*
 436	 * we come here when we know perf_cgroup_events > 0
 
 
 437	 */
 438	cgrp1 = perf_cgroup_from_task(task);
 439
 440	/* prev can never be NULL */
 441	cgrp2 = perf_cgroup_from_task(prev);
 442
 443	/*
 444	 * only need to schedule in cgroup events if we are changing
 445	 * cgroup during ctxsw. Cgroup events were not scheduled
 446	 * out of ctxsw out if that was not the case.
 447	 */
 448	if (cgrp1 != cgrp2)
 449		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
 
 
 450}
 451
 452static inline int perf_cgroup_connect(int fd, struct perf_event *event,
 453				      struct perf_event_attr *attr,
 454				      struct perf_event *group_leader)
 455{
 456	struct perf_cgroup *cgrp;
 457	struct cgroup_subsys_state *css;
 458	struct file *file;
 459	int ret = 0, fput_needed;
 460
 461	file = fget_light(fd, &fput_needed);
 462	if (!file)
 463		return -EBADF;
 464
 465	css = cgroup_css_from_dir(file, perf_subsys_id);
 
 466	if (IS_ERR(css)) {
 467		ret = PTR_ERR(css);
 468		goto out;
 469	}
 470
 471	cgrp = container_of(css, struct perf_cgroup, css);
 472	event->cgrp = cgrp;
 473
 474	/* must be done before we fput() the file */
 475	perf_get_cgroup(event);
 476
 477	/*
 478	 * all events in a group must monitor
 479	 * the same cgroup because a task belongs
 480	 * to only one perf cgroup at a time
 481	 */
 482	if (group_leader && group_leader->cgrp != cgrp) {
 483		perf_detach_cgroup(event);
 484		ret = -EINVAL;
 485	}
 486out:
 487	fput_light(file, fput_needed);
 488	return ret;
 489}
 490
 491static inline void
 492perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 493{
 494	struct perf_cgroup_info *t;
 495	t = per_cpu_ptr(event->cgrp->info, event->cpu);
 496	event->shadow_ctx_time = now - t->timestamp;
 497}
 498
 
 
 
 
 499static inline void
 500perf_cgroup_defer_enabled(struct perf_event *event)
 
 501{
 
 
 
 
 
 
 
 
 
 
 
 
 502	/*
 503	 * when the current task's perf cgroup does not match
 504	 * the event's, we need to remember to call the
 505	 * perf_mark_enable() function the first time a task with
 506	 * a matching perf cgroup is scheduled in.
 507	 */
 508	if (is_cgroup_event(event) && !perf_cgroup_match(event))
 509		event->cgrp_defer_enabled = 1;
 510}
 511
 512static inline void
 513perf_cgroup_mark_enabled(struct perf_event *event,
 514			 struct perf_event_context *ctx)
 515{
 516	struct perf_event *sub;
 517	u64 tstamp = perf_event_time(event);
 518
 519	if (!event->cgrp_defer_enabled)
 
 
 520		return;
 521
 522	event->cgrp_defer_enabled = 0;
 
 
 523
 524	event->tstamp_enabled = tstamp - event->total_time_enabled;
 525	list_for_each_entry(sub, &event->sibling_list, group_entry) {
 526		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
 527			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
 528			sub->cgrp_defer_enabled = 0;
 529		}
 530	}
 531}
 
 532#else /* !CONFIG_CGROUP_PERF */
 533
 534static inline bool
 535perf_cgroup_match(struct perf_event *event)
 536{
 537	return true;
 538}
 539
 540static inline void perf_detach_cgroup(struct perf_event *event)
 541{}
 542
 543static inline int is_cgroup_event(struct perf_event *event)
 544{
 545	return 0;
 546}
 547
 548static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
 549{
 550	return 0;
 551}
 552
 553static inline void update_cgrp_time_from_event(struct perf_event *event)
 554{
 555}
 556
 557static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 558{
 559}
 560
 561static inline void perf_cgroup_sched_out(struct task_struct *task,
 562					 struct task_struct *next)
 563{
 564}
 565
 566static inline void perf_cgroup_sched_in(struct task_struct *prev,
 567					struct task_struct *task)
 568{
 569}
 570
 571static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
 572				      struct perf_event_attr *attr,
 573				      struct perf_event *group_leader)
 574{
 575	return -EINVAL;
 576}
 577
 578static inline void
 579perf_cgroup_set_timestamp(struct task_struct *task,
 580			  struct perf_event_context *ctx)
 581{
 582}
 583
 584void
 585perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
 586{
 587}
 588
 589static inline void
 590perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 591{
 592}
 593
 594static inline u64 perf_cgroup_event_time(struct perf_event *event)
 595{
 596	return 0;
 597}
 598
 599static inline void
 600perf_cgroup_defer_enabled(struct perf_event *event)
 
 601{
 602}
 603
 604static inline void
 605perf_cgroup_mark_enabled(struct perf_event *event,
 606			 struct perf_event_context *ctx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 608}
 609#endif
 610
 611void perf_pmu_disable(struct pmu *pmu)
 612{
 613	int *count = this_cpu_ptr(pmu->pmu_disable_count);
 614	if (!(*count)++)
 615		pmu->pmu_disable(pmu);
 616}
 617
 618void perf_pmu_enable(struct pmu *pmu)
 619{
 620	int *count = this_cpu_ptr(pmu->pmu_disable_count);
 621	if (!--(*count))
 622		pmu->pmu_enable(pmu);
 623}
 624
 625static DEFINE_PER_CPU(struct list_head, rotation_list);
 626
 627/*
 628 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 629 * because they're strictly cpu affine and rotate_start is called with IRQs
 630 * disabled, while rotate_context is called from IRQ context.
 
 631 */
 632static void perf_pmu_rotate_start(struct pmu *pmu)
 
 
 
 
 
 
 
 
 
 
 
 633{
 634	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 635	struct list_head *head = &__get_cpu_var(rotation_list);
 636
 637	WARN_ON(!irqs_disabled());
 638
 639	if (list_empty(&cpuctx->rotation_list))
 640		list_add(&cpuctx->rotation_list, head);
 641}
 642
 643static void get_ctx(struct perf_event_context *ctx)
 644{
 645	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
 
 
 
 
 
 
 
 
 
 646}
 647
 648static void put_ctx(struct perf_event_context *ctx)
 649{
 650	if (atomic_dec_and_test(&ctx->refcount)) {
 651		if (ctx->parent_ctx)
 652			put_ctx(ctx->parent_ctx);
 653		if (ctx->task)
 654			put_task_struct(ctx->task);
 655		kfree_rcu(ctx, rcu_head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 656	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657}
 658
 659static void unclone_ctx(struct perf_event_context *ctx)
 
 
 
 
 
 
 660{
 661	if (ctx->parent_ctx) {
 662		put_ctx(ctx->parent_ctx);
 
 
 
 663		ctx->parent_ctx = NULL;
 664	}
 
 
 665}
 666
 667static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
 
 668{
 
 669	/*
 670	 * only top level events have the pid namespace they were created in
 671	 */
 672	if (event->parent)
 673		event = event->parent;
 674
 675	return task_tgid_nr_ns(p, event->ns);
 
 
 
 
 
 
 
 
 
 676}
 677
 678static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
 679{
 680	/*
 681	 * only top level events have the pid namespace they were created in
 682	 */
 683	if (event->parent)
 684		event = event->parent;
 685
 686	return task_pid_nr_ns(p, event->ns);
 687}
 688
 689/*
 690 * If we inherit events we want to return the parent event id
 691 * to userspace.
 692 */
 693static u64 primary_event_id(struct perf_event *event)
 694{
 695	u64 id = event->id;
 696
 697	if (event->parent)
 698		id = event->parent->id;
 699
 700	return id;
 701}
 702
 703/*
 704 * Get the perf_event_context for a task and lock it.
 
 705 * This has to cope with with the fact that until it is locked,
 706 * the context could get moved to another task.
 707 */
 708static struct perf_event_context *
 709perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
 710{
 711	struct perf_event_context *ctx;
 712
 
 
 
 
 
 
 
 
 
 
 
 713	rcu_read_lock();
 714retry:
 715	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
 716	if (ctx) {
 717		/*
 718		 * If this context is a clone of another, it might
 719		 * get swapped for another underneath us by
 720		 * perf_event_task_sched_out, though the
 721		 * rcu_read_lock() protects us from any context
 722		 * getting freed.  Lock the context and check if it
 723		 * got swapped before we could get the lock, and retry
 724		 * if so.  If we locked the right context, then it
 725		 * can't get swapped on us any more.
 726		 */
 727		raw_spin_lock_irqsave(&ctx->lock, *flags);
 728		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
 729			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
 
 
 730			goto retry;
 731		}
 732
 733		if (!atomic_inc_not_zero(&ctx->refcount)) {
 734			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
 
 735			ctx = NULL;
 
 
 736		}
 737	}
 738	rcu_read_unlock();
 
 
 739	return ctx;
 740}
 741
 742/*
 743 * Get the context for a task and increment its pin_count so it
 744 * can't get swapped to another task.  This also increments its
 745 * reference count so that the context can't get freed.
 746 */
 747static struct perf_event_context *
 748perf_pin_task_context(struct task_struct *task, int ctxn)
 749{
 750	struct perf_event_context *ctx;
 751	unsigned long flags;
 752
 753	ctx = perf_lock_task_context(task, ctxn, &flags);
 754	if (ctx) {
 755		++ctx->pin_count;
 756		raw_spin_unlock_irqrestore(&ctx->lock, flags);
 757	}
 758	return ctx;
 759}
 760
 761static void perf_unpin_context(struct perf_event_context *ctx)
 762{
 763	unsigned long flags;
 764
 765	raw_spin_lock_irqsave(&ctx->lock, flags);
 766	--ctx->pin_count;
 767	raw_spin_unlock_irqrestore(&ctx->lock, flags);
 768}
 769
 770/*
 771 * Update the record of the current time in a context.
 772 */
 773static void update_context_time(struct perf_event_context *ctx)
 774{
 775	u64 now = perf_clock();
 776
 777	ctx->time += now - ctx->timestamp;
 778	ctx->timestamp = now;
 779}
 780
 781static u64 perf_event_time(struct perf_event *event)
 782{
 783	struct perf_event_context *ctx = event->ctx;
 784
 785	if (is_cgroup_event(event))
 786		return perf_cgroup_event_time(event);
 787
 788	return ctx ? ctx->time : 0;
 789}
 790
 791/*
 792 * Update the total_time_enabled and total_time_running fields for a event.
 793 * The caller of this function needs to hold the ctx->lock.
 794 */
 795static void update_event_times(struct perf_event *event)
 796{
 797	struct perf_event_context *ctx = event->ctx;
 798	u64 run_end;
 
 
 799
 800	if (event->state < PERF_EVENT_STATE_INACTIVE ||
 801	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
 802		return;
 803	/*
 804	 * in cgroup mode, time_enabled represents
 805	 * the time the event was enabled AND active
 806	 * tasks were in the monitored cgroup. This is
 807	 * independent of the activity of the context as
 808	 * there may be a mix of cgroup and non-cgroup events.
 809	 *
 810	 * That is why we treat cgroup events differently
 811	 * here.
 812	 */
 813	if (is_cgroup_event(event))
 814		run_end = perf_event_time(event);
 815	else if (ctx->is_active)
 816		run_end = ctx->time;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 817	else
 818		run_end = event->tstamp_stopped;
 
 
 
 
 
 
 
 
 
 
 819
 820	event->total_time_enabled = run_end - event->tstamp_enabled;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 821
 822	if (event->state == PERF_EVENT_STATE_INACTIVE)
 823		run_end = event->tstamp_stopped;
 824	else
 825		run_end = perf_event_time(event);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 826
 827	event->total_time_running = run_end - event->tstamp_running;
 
 
 
 
 
 
 828
 
 
 829}
 830
 831/*
 832 * Update total_time_enabled and total_time_running for all events in a group.
 833 */
 834static void update_group_times(struct perf_event *leader)
 
 835{
 836	struct perf_event *event;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 837
 838	update_event_times(leader);
 839	list_for_each_entry(event, &leader->sibling_list, group_entry)
 840		update_event_times(event);
 841}
 842
 843static struct list_head *
 844ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
 
 
 
 845{
 846	if (event->attr.pinned)
 847		return &ctx->pinned_groups;
 848	else
 849		return &ctx->flexible_groups;
 
 
 
 850}
 851
 852/*
 853 * Add a event from the lists for its context.
 
 
 
 
 
 
 
 
 
 854 * Must be called with ctx->mutex and ctx->lock held.
 855 */
 856static void
 857list_add_event(struct perf_event *event, struct perf_event_context *ctx)
 858{
 
 
 859	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
 860	event->attach_state |= PERF_ATTACH_CONTEXT;
 861
 
 
 862	/*
 863	 * If we're a stand alone event or group leader, we go to the context
 864	 * list, group events are kept attached to the group so that
 865	 * perf_group_detach can, at all times, locate all siblings.
 866	 */
 867	if (event->group_leader == event) {
 868		struct list_head *list;
 869
 870		if (is_software_event(event))
 871			event->group_flags |= PERF_GROUP_SOFTWARE;
 872
 873		list = ctx_group_list(event, ctx);
 874		list_add_tail(&event->group_entry, list);
 875	}
 876
 877	if (is_cgroup_event(event))
 878		ctx->nr_cgroups++;
 879
 880	list_add_rcu(&event->event_entry, &ctx->event_list);
 881	if (!ctx->nr_events)
 882		perf_pmu_rotate_start(ctx->pmu);
 883	ctx->nr_events++;
 884	if (event->attr.inherit_stat)
 885		ctx->nr_stat++;
 
 
 886}
 887
 888/*
 889 * Called at perf_event creation and when events are attached/detached from a
 890 * group.
 891 */
 892static void perf_event__read_size(struct perf_event *event)
 
 
 
 
 
 
 893{
 894	int entry = sizeof(u64); /* value */
 895	int size = 0;
 896	int nr = 1;
 897
 898	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
 899		size += sizeof(u64);
 900
 901	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
 902		size += sizeof(u64);
 903
 904	if (event->attr.read_format & PERF_FORMAT_ID)
 905		entry += sizeof(u64);
 906
 907	if (event->attr.read_format & PERF_FORMAT_GROUP) {
 908		nr += event->group_leader->nr_siblings;
 909		size += sizeof(u64);
 910	}
 911
 912	size += entry * nr;
 913	event->read_size = size;
 914}
 915
 916static void perf_event__header_size(struct perf_event *event)
 917{
 918	struct perf_sample_data *data;
 919	u64 sample_type = event->attr.sample_type;
 920	u16 size = 0;
 921
 922	perf_event__read_size(event);
 923
 924	if (sample_type & PERF_SAMPLE_IP)
 925		size += sizeof(data->ip);
 926
 927	if (sample_type & PERF_SAMPLE_ADDR)
 928		size += sizeof(data->addr);
 929
 930	if (sample_type & PERF_SAMPLE_PERIOD)
 931		size += sizeof(data->period);
 932
 
 
 
 933	if (sample_type & PERF_SAMPLE_READ)
 934		size += event->read_size;
 935
 
 
 
 
 
 
 
 
 
 936	event->header_size = size;
 937}
 938
 
 
 
 
 
 
 
 
 
 
 
 939static void perf_event__id_header_size(struct perf_event *event)
 940{
 941	struct perf_sample_data *data;
 942	u64 sample_type = event->attr.sample_type;
 943	u16 size = 0;
 944
 945	if (sample_type & PERF_SAMPLE_TID)
 946		size += sizeof(data->tid_entry);
 947
 948	if (sample_type & PERF_SAMPLE_TIME)
 949		size += sizeof(data->time);
 950
 
 
 
 951	if (sample_type & PERF_SAMPLE_ID)
 952		size += sizeof(data->id);
 953
 954	if (sample_type & PERF_SAMPLE_STREAM_ID)
 955		size += sizeof(data->stream_id);
 956
 957	if (sample_type & PERF_SAMPLE_CPU)
 958		size += sizeof(data->cpu_entry);
 959
 960	event->id_header_size = size;
 961}
 962
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 963static void perf_group_attach(struct perf_event *event)
 964{
 965	struct perf_event *group_leader = event->group_leader, *pos;
 966
 
 
 967	/*
 968	 * We can have double attach due to group movement in perf_event_open.
 969	 */
 970	if (event->attach_state & PERF_ATTACH_GROUP)
 971		return;
 972
 973	event->attach_state |= PERF_ATTACH_GROUP;
 974
 975	if (group_leader == event)
 976		return;
 977
 978	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
 979			!is_software_event(event))
 980		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
 981
 982	list_add_tail(&event->group_entry, &group_leader->sibling_list);
 983	group_leader->nr_siblings++;
 984
 985	perf_event__header_size(group_leader);
 986
 987	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
 988		perf_event__header_size(pos);
 989}
 990
 991/*
 992 * Remove a event from the lists for its context.
 993 * Must be called with ctx->mutex and ctx->lock held.
 994 */
 995static void
 996list_del_event(struct perf_event *event, struct perf_event_context *ctx)
 997{
 998	struct perf_cpu_context *cpuctx;
 
 
 999	/*
1000	 * We can have double detach due to exit/hot-unplug + close.
1001	 */
1002	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1003		return;
1004
1005	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1006
1007	if (is_cgroup_event(event)) {
1008		ctx->nr_cgroups--;
1009		cpuctx = __get_cpu_context(ctx);
1010		/*
1011		 * if there are no more cgroup events
1012		 * then cler cgrp to avoid stale pointer
1013		 * in update_cgrp_time_from_cpuctx()
1014		 */
1015		if (!ctx->nr_cgroups)
1016			cpuctx->cgrp = NULL;
1017	}
1018
1019	ctx->nr_events--;
1020	if (event->attr.inherit_stat)
1021		ctx->nr_stat--;
1022
1023	list_del_rcu(&event->event_entry);
1024
1025	if (event->group_leader == event)
1026		list_del_init(&event->group_entry);
1027
1028	update_group_times(event);
1029
1030	/*
1031	 * If event was in error state, then keep it
1032	 * that way, otherwise bogus counts will be
1033	 * returned on read(). The only way to get out
1034	 * of error state is by explicit re-enabling
1035	 * of the event
1036	 */
1037	if (event->state > PERF_EVENT_STATE_OFF)
1038		event->state = PERF_EVENT_STATE_OFF;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1039}
1040
1041static void perf_group_detach(struct perf_event *event)
1042{
1043	struct perf_event *sibling, *tmp;
1044	struct list_head *list = NULL;
 
 
1045
1046	/*
1047	 * We can have double detach due to exit/hot-unplug + close.
1048	 */
1049	if (!(event->attach_state & PERF_ATTACH_GROUP))
1050		return;
1051
1052	event->attach_state &= ~PERF_ATTACH_GROUP;
1053
 
 
1054	/*
1055	 * If this is a sibling, remove it from its group.
1056	 */
1057	if (event->group_leader != event) {
1058		list_del_init(&event->group_entry);
1059		event->group_leader->nr_siblings--;
1060		goto out;
1061	}
1062
1063	if (!list_empty(&event->group_entry))
1064		list = &event->group_entry;
1065
1066	/*
1067	 * If this was a group event with sibling events then
1068	 * upgrade the siblings to singleton events by adding them
1069	 * to whatever list we are on.
1070	 */
1071	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1072		if (list)
1073			list_move_tail(&sibling->group_entry, list);
1074		sibling->group_leader = sibling;
 
1075
1076		/* Inherit group flags from the previous leader */
1077		sibling->group_flags = event->group_flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
1078	}
1079
1080out:
1081	perf_event__header_size(event->group_leader);
1082
1083	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1084		perf_event__header_size(tmp);
1085}
1086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1087static inline int
1088event_filter_match(struct perf_event *event)
1089{
1090	return (event->cpu == -1 || event->cpu == smp_processor_id())
1091	    && perf_cgroup_match(event);
1092}
1093
1094static void
1095event_sched_out(struct perf_event *event,
1096		  struct perf_cpu_context *cpuctx,
1097		  struct perf_event_context *ctx)
1098{
1099	u64 tstamp = perf_event_time(event);
1100	u64 delta;
1101	/*
1102	 * An event which could not be activated because of
1103	 * filter mismatch still needs to have its timings
1104	 * maintained, otherwise bogus information is return
1105	 * via read() for time_enabled, time_running:
1106	 */
1107	if (event->state == PERF_EVENT_STATE_INACTIVE
1108	    && !event_filter_match(event)) {
1109		delta = tstamp - event->tstamp_stopped;
1110		event->tstamp_running += delta;
1111		event->tstamp_stopped = tstamp;
1112	}
1113
1114	if (event->state != PERF_EVENT_STATE_ACTIVE)
1115		return;
1116
1117	event->state = PERF_EVENT_STATE_INACTIVE;
1118	if (event->pending_disable) {
1119		event->pending_disable = 0;
1120		event->state = PERF_EVENT_STATE_OFF;
1121	}
1122	event->tstamp_stopped = tstamp;
 
 
 
1123	event->pmu->del(event, 0);
1124	event->oncpu = -1;
1125
 
 
 
 
 
 
1126	if (!is_software_event(event))
1127		cpuctx->active_oncpu--;
1128	ctx->nr_active--;
 
 
 
1129	if (event->attr.exclusive || !cpuctx->active_oncpu)
1130		cpuctx->exclusive = 0;
 
 
1131}
1132
1133static void
1134group_sched_out(struct perf_event *group_event,
1135		struct perf_cpu_context *cpuctx,
1136		struct perf_event_context *ctx)
1137{
1138	struct perf_event *event;
1139	int state = group_event->state;
 
 
 
 
1140
1141	event_sched_out(group_event, cpuctx, ctx);
1142
1143	/*
1144	 * Schedule out siblings (if any):
1145	 */
1146	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1147		event_sched_out(event, cpuctx, ctx);
1148
1149	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
 
 
1150		cpuctx->exclusive = 0;
1151}
1152
 
 
1153/*
1154 * Cross CPU call to remove a performance event
1155 *
1156 * We disable the event on the hardware level first. After that we
1157 * remove it from the context list.
1158 */
1159static int __perf_remove_from_context(void *info)
 
 
 
 
1160{
1161	struct perf_event *event = info;
1162	struct perf_event_context *ctx = event->ctx;
1163	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 
 
 
1164
1165	raw_spin_lock(&ctx->lock);
1166	event_sched_out(event, cpuctx, ctx);
 
 
1167	list_del_event(event, ctx);
1168	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
 
1169		ctx->is_active = 0;
1170		cpuctx->task_ctx = NULL;
 
 
 
1171	}
1172	raw_spin_unlock(&ctx->lock);
1173
1174	return 0;
1175}
1176
1177
1178/*
1179 * Remove the event from a task's (or a CPU's) list of events.
1180 *
1181 * CPU events are removed with a smp call. For task events we only
1182 * call when the task is on a CPU.
1183 *
1184 * If event->ctx is a cloned context, callers must make sure that
1185 * every task struct that event->ctx->task could possibly point to
1186 * remains valid.  This is OK when called from perf_release since
1187 * that only calls us on the top-level context, which can't be a clone.
1188 * When called from perf_event_exit_task, it's OK because the
1189 * context has been detached from its task.
1190 */
1191static void perf_remove_from_context(struct perf_event *event)
1192{
1193	struct perf_event_context *ctx = event->ctx;
1194	struct task_struct *task = ctx->task;
1195
1196	lockdep_assert_held(&ctx->mutex);
1197
1198	if (!task) {
1199		/*
1200		 * Per cpu events are removed via an smp call and
1201		 * the removal is always successful.
1202		 */
1203		cpu_function_call(event->cpu, __perf_remove_from_context, event);
1204		return;
1205	}
1206
1207retry:
1208	if (!task_function_call(task, __perf_remove_from_context, event))
1209		return;
1210
1211	raw_spin_lock_irq(&ctx->lock);
1212	/*
1213	 * If we failed to find a running task, but find the context active now
1214	 * that we've acquired the ctx->lock, retry.
 
 
1215	 */
1216	if (ctx->is_active) {
 
 
 
 
 
 
 
 
1217		raw_spin_unlock_irq(&ctx->lock);
1218		goto retry;
1219	}
1220
1221	/*
1222	 * Since the task isn't running, its safe to remove the event, us
1223	 * holding the ctx->lock ensures the task won't get scheduled in.
1224	 */
1225	list_del_event(event, ctx);
1226	raw_spin_unlock_irq(&ctx->lock);
1227}
1228
1229/*
1230 * Cross CPU call to disable a performance event
1231 */
1232static int __perf_event_disable(void *info)
 
 
 
1233{
1234	struct perf_event *event = info;
1235	struct perf_event_context *ctx = event->ctx;
1236	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1237
1238	/*
1239	 * If this is a per-task event, need to check whether this
1240	 * event's task is the current task on this cpu.
1241	 *
1242	 * Can trigger due to concurrent perf_event_context_sched_out()
1243	 * flipping contexts around.
1244	 */
1245	if (ctx->task && cpuctx->task_ctx != ctx)
1246		return -EINVAL;
1247
1248	raw_spin_lock(&ctx->lock);
1249
1250	/*
1251	 * If the event is on, turn it off.
1252	 * If it is in error state, leave it in error state.
1253	 */
1254	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1255		update_context_time(ctx);
1256		update_cgrp_time_from_event(event);
1257		update_group_times(event);
1258		if (event == event->group_leader)
1259			group_sched_out(event, cpuctx, ctx);
1260		else
1261			event_sched_out(event, cpuctx, ctx);
1262		event->state = PERF_EVENT_STATE_OFF;
1263	}
1264
1265	raw_spin_unlock(&ctx->lock);
 
 
 
1266
1267	return 0;
1268}
1269
1270/*
1271 * Disable a event.
1272 *
1273 * If event->ctx is a cloned context, callers must make sure that
1274 * every task struct that event->ctx->task could possibly point to
1275 * remains valid.  This condition is satisifed when called through
1276 * perf_event_for_each_child or perf_event_for_each because they
1277 * hold the top-level event's child_mutex, so any descendant that
1278 * goes to exit will block in sync_child_event.
 
1279 * When called from perf_pending_event it's OK because event->ctx
1280 * is the current context on this CPU and preemption is disabled,
1281 * hence we can't get into perf_event_task_sched_out for this context.
1282 */
1283void perf_event_disable(struct perf_event *event)
1284{
1285	struct perf_event_context *ctx = event->ctx;
1286	struct task_struct *task = ctx->task;
1287
1288	if (!task) {
1289		/*
1290		 * Disable the event on the cpu that it's on
1291		 */
1292		cpu_function_call(event->cpu, __perf_event_disable, event);
1293		return;
1294	}
 
1295
1296retry:
1297	if (!task_function_call(task, __perf_event_disable, event))
1298		return;
 
 
 
 
 
 
 
 
 
 
 
 
1299
1300	raw_spin_lock_irq(&ctx->lock);
1301	/*
1302	 * If the event is still active, we need to retry the cross-call.
1303	 */
1304	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1305		raw_spin_unlock_irq(&ctx->lock);
1306		/*
1307		 * Reload the task pointer, it might have been changed by
1308		 * a concurrent perf_event_context_sched_out().
1309		 */
1310		task = ctx->task;
1311		goto retry;
1312	}
1313
1314	/*
1315	 * Since we have the lock this context can't be scheduled
1316	 * in, so we can change the state safely.
1317	 */
1318	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1319		update_group_times(event);
1320		event->state = PERF_EVENT_STATE_OFF;
1321	}
1322	raw_spin_unlock_irq(&ctx->lock);
1323}
1324
1325static void perf_set_shadow_time(struct perf_event *event,
1326				 struct perf_event_context *ctx,
1327				 u64 tstamp)
1328{
1329	/*
1330	 * use the correct time source for the time snapshot
1331	 *
1332	 * We could get by without this by leveraging the
1333	 * fact that to get to this function, the caller
1334	 * has most likely already called update_context_time()
1335	 * and update_cgrp_time_xx() and thus both timestamp
1336	 * are identical (or very close). Given that tstamp is,
1337	 * already adjusted for cgroup, we could say that:
1338	 *    tstamp - ctx->timestamp
1339	 * is equivalent to
1340	 *    tstamp - cgrp->timestamp.
1341	 *
1342	 * Then, in perf_output_read(), the calculation would
1343	 * work with no changes because:
1344	 * - event is guaranteed scheduled in
1345	 * - no scheduled out in between
1346	 * - thus the timestamp would be the same
1347	 *
1348	 * But this is a bit hairy.
1349	 *
1350	 * So instead, we have an explicit cgroup call to remain
1351	 * within the time time source all along. We believe it
1352	 * is cleaner and simpler to understand.
1353	 */
1354	if (is_cgroup_event(event))
1355		perf_cgroup_set_shadow_time(event, tstamp);
1356	else
1357		event->shadow_ctx_time = tstamp - ctx->timestamp;
1358}
1359
1360#define MAX_INTERRUPTS (~0ULL)
1361
1362static void perf_log_throttle(struct perf_event *event, int enable);
 
1363
1364static int
1365event_sched_in(struct perf_event *event,
1366		 struct perf_cpu_context *cpuctx,
1367		 struct perf_event_context *ctx)
1368{
1369	u64 tstamp = perf_event_time(event);
 
 
1370
1371	if (event->state <= PERF_EVENT_STATE_OFF)
1372		return 0;
1373
1374	event->state = PERF_EVENT_STATE_ACTIVE;
1375	event->oncpu = smp_processor_id();
 
 
 
 
 
 
1376
1377	/*
1378	 * Unthrottle events, since we scheduled we might have missed several
1379	 * ticks already, also for a heavily scheduling task there is little
1380	 * guarantee it'll get a tick in a timely manner.
1381	 */
1382	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1383		perf_log_throttle(event, 1);
1384		event->hw.interrupts = 0;
1385	}
1386
1387	/*
1388	 * The new state must be visible before we turn it on in the hardware:
1389	 */
1390	smp_wmb();
 
1391
1392	if (event->pmu->add(event, PERF_EF_START)) {
1393		event->state = PERF_EVENT_STATE_INACTIVE;
1394		event->oncpu = -1;
1395		return -EAGAIN;
 
1396	}
1397
1398	event->tstamp_running += tstamp - event->tstamp_stopped;
1399
1400	perf_set_shadow_time(event, ctx, tstamp);
1401
1402	if (!is_software_event(event))
1403		cpuctx->active_oncpu++;
1404	ctx->nr_active++;
 
 
 
1405
1406	if (event->attr.exclusive)
1407		cpuctx->exclusive = 1;
1408
1409	return 0;
 
 
 
1410}
1411
1412static int
1413group_sched_in(struct perf_event *group_event,
1414	       struct perf_cpu_context *cpuctx,
1415	       struct perf_event_context *ctx)
1416{
1417	struct perf_event *event, *partial_group = NULL;
1418	struct pmu *pmu = group_event->pmu;
1419	u64 now = ctx->time;
1420	bool simulate = false;
1421
1422	if (group_event->state == PERF_EVENT_STATE_OFF)
1423		return 0;
1424
1425	pmu->start_txn(pmu);
1426
1427	if (event_sched_in(group_event, cpuctx, ctx)) {
1428		pmu->cancel_txn(pmu);
 
1429		return -EAGAIN;
1430	}
1431
1432	/*
1433	 * Schedule in siblings as one group (if any):
1434	 */
1435	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1436		if (event_sched_in(event, cpuctx, ctx)) {
1437			partial_group = event;
1438			goto group_error;
1439		}
1440	}
1441
1442	if (!pmu->commit_txn(pmu))
1443		return 0;
1444
1445group_error:
1446	/*
1447	 * Groups can be scheduled in as one unit only, so undo any
1448	 * partial group before returning:
1449	 * The events up to the failed event are scheduled out normally,
1450	 * tstamp_stopped will be updated.
1451	 *
1452	 * The failed events and the remaining siblings need to have
1453	 * their timings updated as if they had gone thru event_sched_in()
1454	 * and event_sched_out(). This is required to get consistent timings
1455	 * across the group. This also takes care of the case where the group
1456	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1457	 * the time the event was actually stopped, such that time delta
1458	 * calculation in update_event_times() is correct.
1459	 */
1460	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1461		if (event == partial_group)
1462			simulate = true;
1463
1464		if (simulate) {
1465			event->tstamp_running += now - event->tstamp_stopped;
1466			event->tstamp_stopped = now;
1467		} else {
1468			event_sched_out(event, cpuctx, ctx);
1469		}
1470	}
1471	event_sched_out(group_event, cpuctx, ctx);
1472
1473	pmu->cancel_txn(pmu);
1474
 
 
1475	return -EAGAIN;
1476}
1477
1478/*
1479 * Work out whether we can put this event group on the CPU now.
1480 */
1481static int group_can_go_on(struct perf_event *event,
1482			   struct perf_cpu_context *cpuctx,
1483			   int can_add_hw)
1484{
1485	/*
1486	 * Groups consisting entirely of software events can always go on.
1487	 */
1488	if (event->group_flags & PERF_GROUP_SOFTWARE)
1489		return 1;
1490	/*
1491	 * If an exclusive group is already on, no other hardware
1492	 * events can go on.
1493	 */
1494	if (cpuctx->exclusive)
1495		return 0;
1496	/*
1497	 * If this group is exclusive and there are already
1498	 * events on the CPU, it can't go on.
1499	 */
1500	if (event->attr.exclusive && cpuctx->active_oncpu)
1501		return 0;
1502	/*
1503	 * Otherwise, try to add it if all previous groups were able
1504	 * to go on.
1505	 */
1506	return can_add_hw;
1507}
1508
1509static void add_event_to_ctx(struct perf_event *event,
1510			       struct perf_event_context *ctx)
1511{
1512	u64 tstamp = perf_event_time(event);
1513
1514	list_add_event(event, ctx);
1515	perf_group_attach(event);
1516	event->tstamp_enabled = tstamp;
1517	event->tstamp_running = tstamp;
1518	event->tstamp_stopped = tstamp;
1519}
1520
1521static void task_ctx_sched_out(struct perf_event_context *ctx);
 
 
1522static void
1523ctx_sched_in(struct perf_event_context *ctx,
1524	     struct perf_cpu_context *cpuctx,
1525	     enum event_type_t event_type,
1526	     struct task_struct *task);
1527
 
 
 
 
 
 
 
 
 
 
 
 
 
1528static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1529				struct perf_event_context *ctx,
1530				struct task_struct *task)
1531{
1532	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1533	if (ctx)
1534		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1535	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1536	if (ctx)
1537		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1538}
1539
1540/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1541 * Cross CPU call to install and enable a performance event
1542 *
1543 * Must be called with ctx->mutex held
 
1544 */
1545static int  __perf_install_in_context(void *info)
1546{
1547	struct perf_event *event = info;
1548	struct perf_event_context *ctx = event->ctx;
1549	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1550	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1551	struct task_struct *task = current;
 
1552
1553	perf_ctx_lock(cpuctx, task_ctx);
1554	perf_pmu_disable(cpuctx->ctx.pmu);
1555
1556	/*
1557	 * If there was an active task_ctx schedule it out.
1558	 */
1559	if (task_ctx)
1560		task_ctx_sched_out(task_ctx);
1561
1562	/*
1563	 * If the context we're installing events in is not the
1564	 * active task_ctx, flip them.
1565	 */
1566	if (ctx->task && task_ctx != ctx) {
1567		if (task_ctx)
1568			raw_spin_unlock(&task_ctx->lock);
1569		raw_spin_lock(&ctx->lock);
1570		task_ctx = ctx;
1571	}
1572
1573	if (task_ctx) {
1574		cpuctx->task_ctx = task_ctx;
1575		task = task_ctx->task;
1576	}
1577
1578	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
 
 
 
 
 
 
 
 
 
 
1579
1580	update_context_time(ctx);
1581	/*
1582	 * update cgrp time only if current cgrp
1583	 * matches event->cgrp. Must be done before
1584	 * calling add_event_to_ctx()
1585	 */
1586	update_cgrp_time_from_event(event);
1587
1588	add_event_to_ctx(event, ctx);
 
 
 
 
 
 
 
 
 
 
1589
1590	/*
1591	 * Schedule everything back in
1592	 */
1593	perf_event_sched_in(cpuctx, task_ctx, task);
 
 
 
1594
1595	perf_pmu_enable(cpuctx->ctx.pmu);
1596	perf_ctx_unlock(cpuctx, task_ctx);
1597
1598	return 0;
1599}
1600
 
 
 
1601/*
1602 * Attach a performance event to a context
1603 *
1604 * First we add the event to the list with the hardware enable bit
1605 * in event->hw_config cleared.
1606 *
1607 * If the event is attached to a task which is on a CPU we use a smp
1608 * call to enable it in the task context. The task might have been
1609 * scheduled away, but we check this in the smp call again.
1610 */
1611static void
1612perf_install_in_context(struct perf_event_context *ctx,
1613			struct perf_event *event,
1614			int cpu)
1615{
1616	struct task_struct *task = ctx->task;
1617
1618	lockdep_assert_held(&ctx->mutex);
1619
1620	event->ctx = ctx;
 
 
 
 
 
 
 
 
 
1621
1622	if (!task) {
1623		/*
1624		 * Per cpu events are installed via an smp call and
1625		 * the install is always successful.
1626		 */
1627		cpu_function_call(cpu, __perf_install_in_context, event);
1628		return;
1629	}
1630
1631retry:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1632	if (!task_function_call(task, __perf_install_in_context, event))
1633		return;
1634
1635	raw_spin_lock_irq(&ctx->lock);
 
 
 
 
 
 
 
 
 
 
1636	/*
1637	 * If we failed to find a running task, but find the context active now
1638	 * that we've acquired the ctx->lock, retry.
1639	 */
1640	if (ctx->is_active) {
1641		raw_spin_unlock_irq(&ctx->lock);
1642		goto retry;
1643	}
1644
1645	/*
1646	 * Since the task isn't running, its safe to add the event, us holding
1647	 * the ctx->lock ensures the task won't get scheduled in.
1648	 */
1649	add_event_to_ctx(event, ctx);
1650	raw_spin_unlock_irq(&ctx->lock);
1651}
1652
1653/*
1654 * Put a event into inactive state and update time fields.
1655 * Enabling the leader of a group effectively enables all
1656 * the group members that aren't explicitly disabled, so we
1657 * have to update their ->tstamp_enabled also.
1658 * Note: this works for group members as well as group leaders
1659 * since the non-leader members' sibling_lists will be empty.
1660 */
1661static void __perf_event_mark_enabled(struct perf_event *event,
1662					struct perf_event_context *ctx)
1663{
1664	struct perf_event *sub;
1665	u64 tstamp = perf_event_time(event);
1666
1667	event->state = PERF_EVENT_STATE_INACTIVE;
1668	event->tstamp_enabled = tstamp - event->total_time_enabled;
1669	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1670		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1671			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1672	}
1673}
1674
1675/*
1676 * Cross CPU call to enable a performance event
1677 */
1678static int __perf_event_enable(void *info)
 
 
 
1679{
1680	struct perf_event *event = info;
1681	struct perf_event_context *ctx = event->ctx;
1682	struct perf_event *leader = event->group_leader;
1683	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1684	int err;
1685
1686	if (WARN_ON_ONCE(!ctx->is_active))
1687		return -EINVAL;
1688
1689	raw_spin_lock(&ctx->lock);
1690	update_context_time(ctx);
1691
1692	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1693		goto unlock;
1694
1695	/*
1696	 * set current task's cgroup time reference point
1697	 */
1698	perf_cgroup_set_timestamp(current, ctx);
1699
1700	__perf_event_mark_enabled(event, ctx);
 
1701
1702	if (!event_filter_match(event)) {
1703		if (is_cgroup_event(event))
1704			perf_cgroup_defer_enabled(event);
1705		goto unlock;
1706	}
1707
1708	/*
1709	 * If the event is in a group and isn't the group leader,
1710	 * then don't put it on unless the group is on.
1711	 */
1712	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1713		goto unlock;
1714
1715	if (!group_can_go_on(event, cpuctx, 1)) {
1716		err = -EEXIST;
1717	} else {
1718		if (event == leader)
1719			err = group_sched_in(event, cpuctx, ctx);
1720		else
1721			err = event_sched_in(event, cpuctx, ctx);
1722	}
1723
1724	if (err) {
1725		/*
1726		 * If this event can't go on and it's part of a
1727		 * group, then the whole group has to come off.
1728		 */
1729		if (leader != event)
1730			group_sched_out(leader, cpuctx, ctx);
1731		if (leader->attr.pinned) {
1732			update_group_times(leader);
1733			leader->state = PERF_EVENT_STATE_ERROR;
1734		}
1735	}
1736
1737unlock:
1738	raw_spin_unlock(&ctx->lock);
 
1739
1740	return 0;
1741}
1742
1743/*
1744 * Enable a event.
1745 *
1746 * If event->ctx is a cloned context, callers must make sure that
1747 * every task struct that event->ctx->task could possibly point to
1748 * remains valid.  This condition is satisfied when called through
1749 * perf_event_for_each_child or perf_event_for_each as described
1750 * for perf_event_disable.
1751 */
1752void perf_event_enable(struct perf_event *event)
1753{
1754	struct perf_event_context *ctx = event->ctx;
1755	struct task_struct *task = ctx->task;
1756
1757	if (!task) {
1758		/*
1759		 * Enable the event on the cpu that it's on
1760		 */
1761		cpu_function_call(event->cpu, __perf_event_enable, event);
1762		return;
1763	}
1764
1765	raw_spin_lock_irq(&ctx->lock);
1766	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1767		goto out;
1768
1769	/*
1770	 * If the event is in error state, clear that first.
1771	 * That way, if we see the event in error state below, we
1772	 * know that it has gone back into error state, as distinct
1773	 * from the task having been scheduled away before the
1774	 * cross-call arrived.
1775	 */
1776	if (event->state == PERF_EVENT_STATE_ERROR)
1777		event->state = PERF_EVENT_STATE_OFF;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1778
1779retry:
1780	if (!ctx->is_active) {
1781		__perf_event_mark_enabled(event, ctx);
1782		goto out;
1783	}
 
 
 
1784
1785	raw_spin_unlock_irq(&ctx->lock);
 
1786
1787	if (!task_function_call(task, __perf_event_enable, event))
1788		return;
 
 
 
 
1789
1790	raw_spin_lock_irq(&ctx->lock);
1791
1792	/*
1793	 * If the context is active and the event is still off,
1794	 * we need to retry the cross-call.
 
 
 
 
 
1795	 */
1796	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1797		/*
1798		 * task could have been flipped by a concurrent
1799		 * perf_event_context_sched_out()
 
1800		 */
1801		task = ctx->task;
1802		goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1803	}
1804
1805out:
1806	raw_spin_unlock_irq(&ctx->lock);
1807}
 
1808
1809int perf_event_refresh(struct perf_event *event, int refresh)
1810{
1811	/*
1812	 * not supported on inherited events
1813	 */
1814	if (event->attr.inherit || !is_sampling_event(event))
1815		return -EINVAL;
1816
1817	atomic_add(refresh, &event->event_limit);
1818	perf_event_enable(event);
1819
1820	return 0;
1821}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1822EXPORT_SYMBOL_GPL(perf_event_refresh);
1823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1824static void ctx_sched_out(struct perf_event_context *ctx,
1825			  struct perf_cpu_context *cpuctx,
1826			  enum event_type_t event_type)
1827{
1828	struct perf_event *event;
1829	int is_active = ctx->is_active;
1830
 
 
 
 
 
 
 
 
 
 
 
 
1831	ctx->is_active &= ~event_type;
1832	if (likely(!ctx->nr_events))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1833		return;
1834
1835	update_context_time(ctx);
1836	update_cgrp_time_from_cpuctx(cpuctx);
1837	if (!ctx->nr_active)
1838		return;
 
1839
1840	perf_pmu_disable(ctx->pmu);
1841	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1842		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1843			group_sched_out(event, cpuctx, ctx);
1844	}
1845
1846	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1847		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1848			group_sched_out(event, cpuctx, ctx);
1849	}
1850	perf_pmu_enable(ctx->pmu);
1851}
1852
1853/*
1854 * Test whether two contexts are equivalent, i.e. whether they
1855 * have both been cloned from the same version of the same context
1856 * and they both have the same number of enabled events.
1857 * If the number of enabled events is the same, then the set
1858 * of enabled events should be the same, because these are both
1859 * inherited contexts, therefore we can't access individual events
1860 * in them directly with an fd; we can only enable/disable all
1861 * events via prctl, or enable/disable all events in a family
1862 * via ioctl, which will have the same effect on both contexts.
1863 */
1864static int context_equiv(struct perf_event_context *ctx1,
1865			 struct perf_event_context *ctx2)
1866{
1867	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1868		&& ctx1->parent_gen == ctx2->parent_gen
1869		&& !ctx1->pin_count && !ctx2->pin_count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1870}
1871
1872static void __perf_event_sync_stat(struct perf_event *event,
1873				     struct perf_event *next_event)
1874{
1875	u64 value;
1876
1877	if (!event->attr.inherit_stat)
1878		return;
1879
1880	/*
1881	 * Update the event value, we cannot use perf_event_read()
1882	 * because we're in the middle of a context switch and have IRQs
1883	 * disabled, which upsets smp_call_function_single(), however
1884	 * we know the event must be on the current CPU, therefore we
1885	 * don't need to use it.
1886	 */
1887	switch (event->state) {
1888	case PERF_EVENT_STATE_ACTIVE:
1889		event->pmu->read(event);
1890		/* fall-through */
1891
1892	case PERF_EVENT_STATE_INACTIVE:
1893		update_event_times(event);
1894		break;
1895
1896	default:
1897		break;
1898	}
1899
1900	/*
1901	 * In order to keep per-task stats reliable we need to flip the event
1902	 * values when we flip the contexts.
1903	 */
1904	value = local64_read(&next_event->count);
1905	value = local64_xchg(&event->count, value);
1906	local64_set(&next_event->count, value);
1907
1908	swap(event->total_time_enabled, next_event->total_time_enabled);
1909	swap(event->total_time_running, next_event->total_time_running);
1910
1911	/*
1912	 * Since we swizzled the values, update the user visible data too.
1913	 */
1914	perf_event_update_userpage(event);
1915	perf_event_update_userpage(next_event);
1916}
1917
1918#define list_next_entry(pos, member) \
1919	list_entry(pos->member.next, typeof(*pos), member)
1920
1921static void perf_event_sync_stat(struct perf_event_context *ctx,
1922				   struct perf_event_context *next_ctx)
1923{
1924	struct perf_event *event, *next_event;
1925
1926	if (!ctx->nr_stat)
1927		return;
1928
1929	update_context_time(ctx);
1930
1931	event = list_first_entry(&ctx->event_list,
1932				   struct perf_event, event_entry);
1933
1934	next_event = list_first_entry(&next_ctx->event_list,
1935					struct perf_event, event_entry);
1936
1937	while (&event->event_entry != &ctx->event_list &&
1938	       &next_event->event_entry != &next_ctx->event_list) {
1939
1940		__perf_event_sync_stat(event, next_event);
1941
1942		event = list_next_entry(event, event_entry);
1943		next_event = list_next_entry(next_event, event_entry);
1944	}
1945}
1946
1947static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1948					 struct task_struct *next)
1949{
1950	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1951	struct perf_event_context *next_ctx;
1952	struct perf_event_context *parent;
1953	struct perf_cpu_context *cpuctx;
1954	int do_switch = 1;
1955
1956	if (likely(!ctx))
1957		return;
1958
1959	cpuctx = __get_cpu_context(ctx);
1960	if (!cpuctx->task_ctx)
1961		return;
1962
1963	rcu_read_lock();
 
 
 
 
1964	parent = rcu_dereference(ctx->parent_ctx);
1965	next_ctx = next->perf_event_ctxp[ctxn];
1966	if (parent && next_ctx &&
1967	    rcu_dereference(next_ctx->parent_ctx) == parent) {
 
 
 
 
1968		/*
1969		 * Looks like the two contexts are clones, so we might be
1970		 * able to optimize the context switch.  We lock both
1971		 * contexts and check that they are clones under the
1972		 * lock (including re-checking that neither has been
1973		 * uncloned in the meantime).  It doesn't matter which
1974		 * order we take the locks because no other cpu could
1975		 * be trying to lock both of these tasks.
1976		 */
1977		raw_spin_lock(&ctx->lock);
1978		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1979		if (context_equiv(ctx, next_ctx)) {
 
 
 
 
 
1980			/*
1981			 * XXX do we need a memory barrier of sorts
1982			 * wrt to rcu_dereference() of perf_event_ctxp
 
 
 
1983			 */
1984			task->perf_event_ctxp[ctxn] = next_ctx;
1985			next->perf_event_ctxp[ctxn] = ctx;
1986			ctx->task = next;
1987			next_ctx->task = task;
1988			do_switch = 0;
1989
1990			perf_event_sync_stat(ctx, next_ctx);
1991		}
1992		raw_spin_unlock(&next_ctx->lock);
1993		raw_spin_unlock(&ctx->lock);
1994	}
 
1995	rcu_read_unlock();
1996
1997	if (do_switch) {
1998		raw_spin_lock(&ctx->lock);
1999		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2000		cpuctx->task_ctx = NULL;
2001		raw_spin_unlock(&ctx->lock);
2002	}
2003}
2004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2005#define for_each_task_context_nr(ctxn)					\
2006	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2007
2008/*
2009 * Called from scheduler to remove the events of the current task,
2010 * with interrupts disabled.
2011 *
2012 * We stop each event and update the event value in event->count.
2013 *
2014 * This does not protect us against NMI, but disable()
2015 * sets the disabled bit in the control field of event _before_
2016 * accessing the event control register. If a NMI hits, then it will
2017 * not restart the event.
2018 */
2019void __perf_event_task_sched_out(struct task_struct *task,
2020				 struct task_struct *next)
2021{
2022	int ctxn;
2023
 
 
 
 
 
 
2024	for_each_task_context_nr(ctxn)
2025		perf_event_context_sched_out(task, ctxn, next);
2026
2027	/*
2028	 * if cgroup events exist on this CPU, then we need
2029	 * to check if we have to switch out PMU state.
2030	 * cgroup event are system-wide mode only
2031	 */
2032	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2033		perf_cgroup_sched_out(task, next);
2034}
2035
2036static void task_ctx_sched_out(struct perf_event_context *ctx)
2037{
2038	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2039
2040	if (!cpuctx->task_ctx)
2041		return;
2042
2043	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2044		return;
2045
2046	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2047	cpuctx->task_ctx = NULL;
2048}
2049
2050/*
2051 * Called with IRQs disabled
2052 */
2053static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2054			      enum event_type_t event_type)
2055{
2056	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2057}
2058
2059static void
2060ctx_pinned_sched_in(struct perf_event_context *ctx,
2061		    struct perf_cpu_context *cpuctx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2062{
2063	struct perf_event *event;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2064
2065	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2066		if (event->state <= PERF_EVENT_STATE_OFF)
2067			continue;
2068		if (!event_filter_match(event))
2069			continue;
2070
2071		/* may need to reset tstamp_enabled */
2072		if (is_cgroup_event(event))
2073			perf_cgroup_mark_enabled(event, ctx);
2074
2075		if (group_can_go_on(event, cpuctx, 1))
2076			group_sched_in(event, cpuctx, ctx);
2077
2078		/*
2079		 * If this pinned group hasn't been scheduled,
2080		 * put it in error state.
2081		 */
2082		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2083			update_group_times(event);
2084			event->state = PERF_EVENT_STATE_ERROR;
2085		}
 
2086	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2087}
2088
2089static void
2090ctx_flexible_sched_in(struct perf_event_context *ctx,
2091		      struct perf_cpu_context *cpuctx)
2092{
2093	struct perf_event *event;
2094	int can_add_hw = 1;
2095
2096	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2097		/* Ignore events in OFF or ERROR state */
2098		if (event->state <= PERF_EVENT_STATE_OFF)
2099			continue;
2100		/*
2101		 * Listen to the 'cpu' scheduling filter constraint
2102		 * of events:
2103		 */
2104		if (!event_filter_match(event))
2105			continue;
2106
2107		/* may need to reset tstamp_enabled */
2108		if (is_cgroup_event(event))
2109			perf_cgroup_mark_enabled(event, ctx);
2110
2111		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2112			if (group_sched_in(event, cpuctx, ctx))
2113				can_add_hw = 0;
2114		}
2115	}
2116}
2117
2118static void
2119ctx_sched_in(struct perf_event_context *ctx,
2120	     struct perf_cpu_context *cpuctx,
2121	     enum event_type_t event_type,
2122	     struct task_struct *task)
2123{
 
2124	u64 now;
2125	int is_active = ctx->is_active;
2126
2127	ctx->is_active |= event_type;
 
2128	if (likely(!ctx->nr_events))
2129		return;
2130
2131	now = perf_clock();
2132	ctx->timestamp = now;
2133	perf_cgroup_set_timestamp(task, ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2134	/*
2135	 * First go through the list and put on any pinned groups
2136	 * in order to give them the best chance of going on.
2137	 */
2138	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2139		ctx_pinned_sched_in(ctx, cpuctx);
2140
2141	/* Then walk through the lower prio flexible groups */
2142	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2143		ctx_flexible_sched_in(ctx, cpuctx);
2144}
2145
2146static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2147			     enum event_type_t event_type,
2148			     struct task_struct *task)
2149{
2150	struct perf_event_context *ctx = &cpuctx->ctx;
2151
2152	ctx_sched_in(ctx, cpuctx, event_type, task);
2153}
2154
2155static void perf_event_context_sched_in(struct perf_event_context *ctx,
2156					struct task_struct *task)
2157{
2158	struct perf_cpu_context *cpuctx;
2159
2160	cpuctx = __get_cpu_context(ctx);
2161	if (cpuctx->task_ctx == ctx)
2162		return;
2163
2164	perf_ctx_lock(cpuctx, ctx);
 
 
 
 
 
 
 
2165	perf_pmu_disable(ctx->pmu);
2166	/*
2167	 * We want to keep the following priority order:
2168	 * cpu pinned (that don't need to move), task pinned,
2169	 * cpu flexible, task flexible.
 
 
 
2170	 */
2171	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2172
2173	perf_event_sched_in(cpuctx, ctx, task);
 
2174
2175	cpuctx->task_ctx = ctx;
2176
2177	perf_pmu_enable(ctx->pmu);
2178	perf_ctx_unlock(cpuctx, ctx);
2179
2180	/*
2181	 * Since these rotations are per-cpu, we need to ensure the
2182	 * cpu-context we got scheduled on is actually rotating.
2183	 */
2184	perf_pmu_rotate_start(ctx->pmu);
2185}
2186
2187/*
2188 * Called from scheduler to add the events of the current task
2189 * with interrupts disabled.
2190 *
2191 * We restore the event value and then enable it.
2192 *
2193 * This does not protect us against NMI, but enable()
2194 * sets the enabled bit in the control field of event _before_
2195 * accessing the event control register. If a NMI hits, then it will
2196 * keep the event running.
2197 */
2198void __perf_event_task_sched_in(struct task_struct *prev,
2199				struct task_struct *task)
2200{
2201	struct perf_event_context *ctx;
2202	int ctxn;
2203
 
 
 
 
 
 
 
 
 
 
2204	for_each_task_context_nr(ctxn) {
2205		ctx = task->perf_event_ctxp[ctxn];
2206		if (likely(!ctx))
2207			continue;
2208
2209		perf_event_context_sched_in(ctx, task);
2210	}
2211	/*
2212	 * if cgroup events exist on this CPU, then we need
2213	 * to check if we have to switch in PMU state.
2214	 * cgroup event are system-wide mode only
2215	 */
2216	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2217		perf_cgroup_sched_in(prev, task);
2218}
2219
2220static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2221{
2222	u64 frequency = event->attr.sample_freq;
2223	u64 sec = NSEC_PER_SEC;
2224	u64 divisor, dividend;
2225
2226	int count_fls, nsec_fls, frequency_fls, sec_fls;
2227
2228	count_fls = fls64(count);
2229	nsec_fls = fls64(nsec);
2230	frequency_fls = fls64(frequency);
2231	sec_fls = 30;
2232
2233	/*
2234	 * We got @count in @nsec, with a target of sample_freq HZ
2235	 * the target period becomes:
2236	 *
2237	 *             @count * 10^9
2238	 * period = -------------------
2239	 *          @nsec * sample_freq
2240	 *
2241	 */
2242
2243	/*
2244	 * Reduce accuracy by one bit such that @a and @b converge
2245	 * to a similar magnitude.
2246	 */
2247#define REDUCE_FLS(a, b)		\
2248do {					\
2249	if (a##_fls > b##_fls) {	\
2250		a >>= 1;		\
2251		a##_fls--;		\
2252	} else {			\
2253		b >>= 1;		\
2254		b##_fls--;		\
2255	}				\
2256} while (0)
2257
2258	/*
2259	 * Reduce accuracy until either term fits in a u64, then proceed with
2260	 * the other, so that finally we can do a u64/u64 division.
2261	 */
2262	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2263		REDUCE_FLS(nsec, frequency);
2264		REDUCE_FLS(sec, count);
2265	}
2266
2267	if (count_fls + sec_fls > 64) {
2268		divisor = nsec * frequency;
2269
2270		while (count_fls + sec_fls > 64) {
2271			REDUCE_FLS(count, sec);
2272			divisor >>= 1;
2273		}
2274
2275		dividend = count * sec;
2276	} else {
2277		dividend = count * sec;
2278
2279		while (nsec_fls + frequency_fls > 64) {
2280			REDUCE_FLS(nsec, frequency);
2281			dividend >>= 1;
2282		}
2283
2284		divisor = nsec * frequency;
2285	}
2286
2287	if (!divisor)
2288		return dividend;
2289
2290	return div64_u64(dividend, divisor);
2291}
2292
2293static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
 
 
 
2294{
2295	struct hw_perf_event *hwc = &event->hw;
2296	s64 period, sample_period;
2297	s64 delta;
2298
2299	period = perf_calculate_period(event, nsec, count);
2300
2301	delta = (s64)(period - hwc->sample_period);
2302	delta = (delta + 7) / 8; /* low pass filter */
2303
2304	sample_period = hwc->sample_period + delta;
2305
2306	if (!sample_period)
2307		sample_period = 1;
2308
2309	hwc->sample_period = sample_period;
2310
2311	if (local64_read(&hwc->period_left) > 8*sample_period) {
2312		event->pmu->stop(event, PERF_EF_UPDATE);
 
 
2313		local64_set(&hwc->period_left, 0);
2314		event->pmu->start(event, PERF_EF_RELOAD);
 
 
2315	}
2316}
2317
2318static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
 
 
 
 
 
 
2319{
2320	struct perf_event *event;
2321	struct hw_perf_event *hwc;
2322	u64 interrupts, now;
2323	s64 delta;
2324
 
 
 
 
 
 
 
 
 
 
 
2325	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2326		if (event->state != PERF_EVENT_STATE_ACTIVE)
2327			continue;
2328
2329		if (!event_filter_match(event))
2330			continue;
2331
 
 
2332		hwc = &event->hw;
2333
2334		interrupts = hwc->interrupts;
2335		hwc->interrupts = 0;
2336
2337		/*
2338		 * unthrottle events on the tick
2339		 */
2340		if (interrupts == MAX_INTERRUPTS) {
2341			perf_log_throttle(event, 1);
2342			event->pmu->start(event, 0);
2343		}
2344
2345		if (!event->attr.freq || !event->attr.sample_freq)
2346			continue;
 
 
 
 
 
2347
2348		event->pmu->read(event);
2349		now = local64_read(&event->count);
2350		delta = now - hwc->freq_count_stamp;
2351		hwc->freq_count_stamp = now;
2352
 
 
 
 
 
 
 
2353		if (delta > 0)
2354			perf_adjust_period(event, period, delta);
 
 
 
 
2355	}
 
 
 
2356}
2357
2358/*
2359 * Round-robin a context's events:
2360 */
2361static void rotate_ctx(struct perf_event_context *ctx)
2362{
2363	/*
2364	 * Rotate the first entry last of non-pinned groups. Rotation might be
2365	 * disabled by the inheritance code.
2366	 */
2367	if (!ctx->rotate_disable)
2368		list_rotate_left(&ctx->flexible_groups);
 
 
 
2369}
2370
2371/*
2372 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2373 * because they're strictly cpu affine and rotate_start is called with IRQs
2374 * disabled, while rotate_context is called from IRQ context.
2375 */
2376static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2377{
2378	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
2379	struct perf_event_context *ctx = NULL;
2380	int rotate = 0, remove = 1;
2381
2382	if (cpuctx->ctx.nr_events) {
2383		remove = 0;
2384		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2385			rotate = 1;
 
 
 
 
2386	}
2387
2388	ctx = cpuctx->task_ctx;
2389	if (ctx && ctx->nr_events) {
2390		remove = 0;
2391		if (ctx->nr_events != ctx->nr_active)
2392			rotate = 1;
2393	}
 
 
2394
2395	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2396	perf_pmu_disable(cpuctx->ctx.pmu);
2397	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2398	if (ctx)
2399		perf_ctx_adjust_freq(ctx, interval);
2400
2401	if (!rotate)
2402		goto done;
 
2403
2404	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2405	if (ctx)
2406		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2407
2408	rotate_ctx(&cpuctx->ctx);
2409	if (ctx)
2410		rotate_ctx(ctx);
2411
2412	perf_event_sched_in(cpuctx, ctx, current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2413
2414done:
2415	if (remove)
2416		list_del_init(&cpuctx->rotation_list);
2417
2418	perf_pmu_enable(cpuctx->ctx.pmu);
2419	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
 
 
2420}
2421
2422void perf_event_task_tick(void)
2423{
2424	struct list_head *head = &__get_cpu_var(rotation_list);
2425	struct perf_cpu_context *cpuctx, *tmp;
 
 
 
 
 
 
 
2426
2427	WARN_ON(!irqs_disabled());
2428
2429	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2430		if (cpuctx->jiffies_interval == 1 ||
2431				!(jiffies % cpuctx->jiffies_interval))
2432			perf_rotate_context(cpuctx);
2433	}
2434}
2435
2436static int event_enable_on_exec(struct perf_event *event,
2437				struct perf_event_context *ctx)
2438{
2439	if (!event->attr.enable_on_exec)
2440		return 0;
2441
2442	event->attr.enable_on_exec = 0;
2443	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2444		return 0;
2445
2446	__perf_event_mark_enabled(event, ctx);
2447
2448	return 1;
2449}
2450
2451/*
2452 * Enable all of a task's events that have been marked enable-on-exec.
2453 * This expects task == current.
2454 */
2455static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2456{
 
 
 
2457	struct perf_event *event;
2458	unsigned long flags;
2459	int enabled = 0;
2460	int ret;
2461
2462	local_irq_save(flags);
 
2463	if (!ctx || !ctx->nr_events)
2464		goto out;
2465
 
 
 
 
 
 
 
 
2466	/*
2467	 * We must ctxsw out cgroup events to avoid conflict
2468	 * when invoking perf_task_event_sched_in() later on
2469	 * in this function. Otherwise we end up trying to
2470	 * ctxswin cgroup events which are already scheduled
2471	 * in.
2472	 */
2473	perf_cgroup_sched_out(current, NULL);
 
 
 
 
 
 
2474
2475	raw_spin_lock(&ctx->lock);
2476	task_ctx_sched_out(ctx);
 
 
 
 
 
 
 
 
 
 
2477
2478	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2479		ret = event_enable_on_exec(event, ctx);
2480		if (ret)
2481			enabled = 1;
2482	}
2483
2484	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2485		ret = event_enable_on_exec(event, ctx);
2486		if (ret)
2487			enabled = 1;
2488	}
2489
2490	/*
2491	 * Unclone this context if we enabled any event.
2492	 */
2493	if (enabled)
2494		unclone_ctx(ctx);
2495
2496	raw_spin_unlock(&ctx->lock);
 
 
2497
2498	/*
2499	 * Also calls ctxswin for cgroup events, if any:
2500	 */
2501	perf_event_context_sched_in(ctx, ctx->task);
2502out:
2503	local_irq_restore(flags);
2504}
2505
2506/*
2507 * Cross CPU call to read the hardware event
2508 */
2509static void __perf_event_read(void *info)
2510{
2511	struct perf_event *event = info;
 
2512	struct perf_event_context *ctx = event->ctx;
2513	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 
2514
2515	/*
2516	 * If this is a task context, we need to check whether it is
2517	 * the current task context of this cpu.  If not it has been
2518	 * scheduled out before the smp call arrived.  In that case
2519	 * event->count would have been updated to a recent sample
2520	 * when the event was scheduled out.
2521	 */
2522	if (ctx->task && cpuctx->task_ctx != ctx)
2523		return;
2524
2525	raw_spin_lock(&ctx->lock);
2526	if (ctx->is_active) {
2527		update_context_time(ctx);
2528		update_cgrp_time_from_event(event);
2529	}
2530	update_event_times(event);
2531	if (event->state == PERF_EVENT_STATE_ACTIVE)
2532		event->pmu->read(event);
2533	raw_spin_unlock(&ctx->lock);
2534}
2535
2536static inline u64 perf_event_count(struct perf_event *event)
2537{
2538	return local64_read(&event->count) + atomic64_read(&event->child_count);
2539}
2540
2541static u64 perf_event_read(struct perf_event *event)
2542{
2543	/*
2544	 * If event is enabled and currently active on a CPU, update the
2545	 * value in the event structure:
2546	 */
2547	if (event->state == PERF_EVENT_STATE_ACTIVE) {
2548		smp_call_function_single(event->oncpu,
2549					 __perf_event_read, event, 1);
2550	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2551		struct perf_event_context *ctx = event->ctx;
2552		unsigned long flags;
2553
2554		raw_spin_lock_irqsave(&ctx->lock, flags);
2555		/*
2556		 * may read while context is not active
2557		 * (e.g., thread is blocked), in that case
2558		 * we cannot update context time
2559		 */
2560		if (ctx->is_active) {
2561			update_context_time(ctx);
2562			update_cgrp_time_from_event(event);
2563		}
2564		update_event_times(event);
2565		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2566	}
2567
2568	return perf_event_count(event);
2569}
2570
2571/*
2572 * Callchain support
2573 */
2574
2575struct callchain_cpus_entries {
2576	struct rcu_head			rcu_head;
2577	struct perf_callchain_entry	*cpu_entries[0];
2578};
2579
2580static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2581static atomic_t nr_callchain_events;
2582static DEFINE_MUTEX(callchain_mutex);
2583struct callchain_cpus_entries *callchain_cpus_entries;
 
 
 
 
 
2584
 
2585
2586__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
2587				  struct pt_regs *regs)
2588{
2589}
2590
2591__weak void perf_callchain_user(struct perf_callchain_entry *entry,
2592				struct pt_regs *regs)
2593{
 
2594}
2595
2596static void release_callchain_buffers_rcu(struct rcu_head *head)
 
 
 
 
 
 
 
 
 
2597{
2598	struct callchain_cpus_entries *entries;
2599	int cpu;
2600
2601	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
2602
2603	for_each_possible_cpu(cpu)
2604		kfree(entries->cpu_entries[cpu]);
2605
2606	kfree(entries);
2607}
2608
2609static void release_callchain_buffers(void)
2610{
2611	struct callchain_cpus_entries *entries;
2612
2613	entries = callchain_cpus_entries;
2614	rcu_assign_pointer(callchain_cpus_entries, NULL);
2615	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
2616}
2617
2618static int alloc_callchain_buffers(void)
2619{
2620	int cpu;
2621	int size;
2622	struct callchain_cpus_entries *entries;
2623
2624	/*
2625	 * We can't use the percpu allocation API for data that can be
2626	 * accessed from NMI. Use a temporary manual per cpu allocation
2627	 * until that gets sorted out.
2628	 */
2629	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
 
 
 
2630
2631	entries = kzalloc(size, GFP_KERNEL);
2632	if (!entries)
2633		return -ENOMEM;
2634
2635	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
2636
2637	for_each_possible_cpu(cpu) {
2638		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
2639							 cpu_to_node(cpu));
2640		if (!entries->cpu_entries[cpu])
2641			goto fail;
2642	}
2643
2644	rcu_assign_pointer(callchain_cpus_entries, entries);
2645
2646	return 0;
2647
2648fail:
2649	for_each_possible_cpu(cpu)
2650		kfree(entries->cpu_entries[cpu]);
2651	kfree(entries);
2652
2653	return -ENOMEM;
2654}
2655
2656static int get_callchain_buffers(void)
2657{
2658	int err = 0;
2659	int count;
2660
2661	mutex_lock(&callchain_mutex);
2662
2663	count = atomic_inc_return(&nr_callchain_events);
2664	if (WARN_ON_ONCE(count < 1)) {
2665		err = -EINVAL;
2666		goto exit;
2667	}
2668
2669	if (count > 1) {
2670		/* If the allocation failed, give up */
2671		if (!callchain_cpus_entries)
2672			err = -ENOMEM;
2673		goto exit;
2674	}
2675
2676	err = alloc_callchain_buffers();
2677	if (err)
2678		release_callchain_buffers();
2679exit:
2680	mutex_unlock(&callchain_mutex);
2681
2682	return err;
2683}
2684
2685static void put_callchain_buffers(void)
2686{
2687	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2688		release_callchain_buffers();
2689		mutex_unlock(&callchain_mutex);
 
 
 
 
 
2690	}
2691}
 
2692
2693static int get_recursion_context(int *recursion)
2694{
2695	int rctx;
2696
2697	if (in_nmi())
2698		rctx = 3;
2699	else if (in_irq())
2700		rctx = 2;
2701	else if (in_softirq())
2702		rctx = 1;
2703	else
2704		rctx = 0;
2705
2706	if (recursion[rctx])
2707		return -1;
2708
2709	recursion[rctx]++;
2710	barrier();
2711
2712	return rctx;
2713}
2714
2715static inline void put_recursion_context(int *recursion, int rctx)
2716{
2717	barrier();
2718	recursion[rctx]--;
2719}
2720
2721static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2722{
2723	int cpu;
2724	struct callchain_cpus_entries *entries;
 
 
 
2725
2726	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2727	if (*rctx == -1)
2728		return NULL;
 
 
 
 
2729
2730	entries = rcu_dereference(callchain_cpus_entries);
2731	if (!entries)
2732		return NULL;
 
 
 
 
 
 
2733
2734	cpu = smp_processor_id();
 
2735
2736	return &entries->cpu_entries[cpu][*rctx];
2737}
 
 
 
 
 
 
 
 
 
 
 
2738
2739static void
2740put_callchain_entry(int rctx)
2741{
2742	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2743}
2744
2745static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2746{
2747	int rctx;
2748	struct perf_callchain_entry *entry;
 
 
2749
 
 
 
 
 
 
 
 
2750
2751	entry = get_callchain_entry(&rctx);
2752	if (rctx == -1)
2753		return NULL;
2754
2755	if (!entry)
2756		goto exit_put;
2757
2758	entry->nr = 0;
2759
2760	if (!user_mode(regs)) {
2761		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2762		perf_callchain_kernel(entry, regs);
2763		if (current->mm)
2764			regs = task_pt_regs(current);
2765		else
2766			regs = NULL;
2767	}
2768
2769	if (regs) {
2770		perf_callchain_store(entry, PERF_CONTEXT_USER);
2771		perf_callchain_user(entry, regs);
2772	}
2773
2774exit_put:
2775	put_callchain_entry(rctx);
2776
2777	return entry;
2778}
2779
2780/*
2781 * Initialize the perf_event context in a task_struct:
2782 */
2783static void __perf_event_init_context(struct perf_event_context *ctx)
2784{
2785	raw_spin_lock_init(&ctx->lock);
2786	mutex_init(&ctx->mutex);
2787	INIT_LIST_HEAD(&ctx->pinned_groups);
2788	INIT_LIST_HEAD(&ctx->flexible_groups);
 
2789	INIT_LIST_HEAD(&ctx->event_list);
2790	atomic_set(&ctx->refcount, 1);
 
 
2791}
2792
2793static struct perf_event_context *
2794alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2795{
2796	struct perf_event_context *ctx;
2797
2798	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2799	if (!ctx)
2800		return NULL;
2801
2802	__perf_event_init_context(ctx);
2803	if (task) {
2804		ctx->task = task;
2805		get_task_struct(task);
2806	}
2807	ctx->pmu = pmu;
2808
2809	return ctx;
2810}
2811
2812static struct task_struct *
2813find_lively_task_by_vpid(pid_t vpid)
2814{
2815	struct task_struct *task;
2816	int err;
2817
2818	rcu_read_lock();
2819	if (!vpid)
2820		task = current;
2821	else
2822		task = find_task_by_vpid(vpid);
2823	if (task)
2824		get_task_struct(task);
2825	rcu_read_unlock();
2826
2827	if (!task)
2828		return ERR_PTR(-ESRCH);
2829
2830	/* Reuse ptrace permission checks for now. */
2831	err = -EACCES;
2832	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2833		goto errout;
2834
2835	return task;
2836errout:
2837	put_task_struct(task);
2838	return ERR_PTR(err);
2839
2840}
2841
2842/*
2843 * Returns a matching context with refcount and pincount.
2844 */
2845static struct perf_event_context *
2846find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
 
2847{
2848	struct perf_event_context *ctx;
2849	struct perf_cpu_context *cpuctx;
 
2850	unsigned long flags;
2851	int ctxn, err;
 
2852
2853	if (!task) {
2854		/* Must be root to operate on a CPU event: */
2855		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2856			return ERR_PTR(-EACCES);
2857
2858		/*
2859		 * We could be clever and allow to attach a event to an
2860		 * offline CPU and activate it when the CPU comes up, but
2861		 * that's for later.
2862		 */
2863		if (!cpu_online(cpu))
2864			return ERR_PTR(-ENODEV);
2865
2866		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2867		ctx = &cpuctx->ctx;
2868		get_ctx(ctx);
2869		++ctx->pin_count;
2870
2871		return ctx;
2872	}
2873
2874	err = -EINVAL;
2875	ctxn = pmu->task_ctx_nr;
2876	if (ctxn < 0)
2877		goto errout;
2878
 
 
 
 
 
 
 
 
2879retry:
2880	ctx = perf_lock_task_context(task, ctxn, &flags);
2881	if (ctx) {
2882		unclone_ctx(ctx);
2883		++ctx->pin_count;
 
 
 
 
 
2884		raw_spin_unlock_irqrestore(&ctx->lock, flags);
 
 
 
2885	} else {
2886		ctx = alloc_perf_context(pmu, task);
2887		err = -ENOMEM;
2888		if (!ctx)
2889			goto errout;
2890
 
 
 
 
 
2891		err = 0;
2892		mutex_lock(&task->perf_event_mutex);
2893		/*
2894		 * If it has already passed perf_event_exit_task().
2895		 * we must see PF_EXITING, it takes this mutex too.
2896		 */
2897		if (task->flags & PF_EXITING)
2898			err = -ESRCH;
2899		else if (task->perf_event_ctxp[ctxn])
2900			err = -EAGAIN;
2901		else {
2902			get_ctx(ctx);
2903			++ctx->pin_count;
2904			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2905		}
2906		mutex_unlock(&task->perf_event_mutex);
2907
2908		if (unlikely(err)) {
2909			put_ctx(ctx);
2910
2911			if (err == -EAGAIN)
2912				goto retry;
2913			goto errout;
2914		}
2915	}
2916
 
2917	return ctx;
2918
2919errout:
 
2920	return ERR_PTR(err);
2921}
2922
2923static void perf_event_free_filter(struct perf_event *event);
 
2924
2925static void free_event_rcu(struct rcu_head *head)
2926{
2927	struct perf_event *event;
2928
2929	event = container_of(head, struct perf_event, rcu_head);
2930	if (event->ns)
2931		put_pid_ns(event->ns);
2932	perf_event_free_filter(event);
2933	kfree(event);
2934}
2935
2936static void ring_buffer_put(struct ring_buffer *rb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2937
2938static void free_event(struct perf_event *event)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2939{
2940	irq_work_sync(&event->pending);
2941
2942	if (!event->parent) {
2943		if (event->attach_state & PERF_ATTACH_TASK)
2944			jump_label_dec(&perf_sched_events);
2945		if (event->attr.mmap || event->attr.mmap_data)
2946			atomic_dec(&nr_mmap_events);
2947		if (event->attr.comm)
2948			atomic_dec(&nr_comm_events);
2949		if (event->attr.task)
2950			atomic_dec(&nr_task_events);
2951		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2952			put_callchain_buffers();
2953		if (is_cgroup_event(event)) {
2954			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2955			jump_label_dec(&perf_sched_events);
2956		}
2957	}
2958
2959	if (event->rb) {
2960		ring_buffer_put(event->rb);
2961		event->rb = NULL;
 
 
 
 
 
 
 
2962	}
2963
2964	if (is_cgroup_event(event))
2965		perf_detach_cgroup(event);
2966
 
 
 
 
 
 
 
 
 
2967	if (event->destroy)
2968		event->destroy(event);
2969
 
 
 
 
 
 
 
 
 
 
 
2970	if (event->ctx)
2971		put_ctx(event->ctx);
2972
 
 
 
2973	call_rcu(&event->rcu_head, free_event_rcu);
2974}
2975
2976int perf_event_release_kernel(struct perf_event *event)
 
 
 
 
2977{
2978	struct perf_event_context *ctx = event->ctx;
 
 
 
 
 
2979
2980	WARN_ON_ONCE(ctx->parent_ctx);
2981	/*
2982	 * There are two ways this annotation is useful:
2983	 *
2984	 *  1) there is a lock recursion from perf_event_exit_task
2985	 *     see the comment there.
2986	 *
2987	 *  2) there is a lock-inversion with mmap_sem through
2988	 *     perf_event_read_group(), which takes faults while
2989	 *     holding ctx->mutex, however this is called after
2990	 *     the last filedesc died, so there is no possibility
2991	 *     to trigger the AB-BA case.
2992	 */
2993	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2994	raw_spin_lock_irq(&ctx->lock);
2995	perf_group_detach(event);
2996	raw_spin_unlock_irq(&ctx->lock);
2997	perf_remove_from_context(event);
2998	mutex_unlock(&ctx->mutex);
2999
3000	free_event(event);
3001
3002	return 0;
3003}
3004EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3005
3006/*
3007 * Called when the last reference to the file is gone.
3008 */
3009static int perf_release(struct inode *inode, struct file *file)
3010{
3011	struct perf_event *event = file->private_data;
3012	struct task_struct *owner;
3013
3014	file->private_data = NULL;
3015
3016	rcu_read_lock();
3017	owner = ACCESS_ONCE(event->owner);
3018	/*
3019	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3020	 * !owner it means the list deletion is complete and we can indeed
3021	 * free this event, otherwise we need to serialize on
3022	 * owner->perf_event_mutex.
3023	 */
3024	smp_read_barrier_depends();
3025	if (owner) {
3026		/*
3027		 * Since delayed_put_task_struct() also drops the last
3028		 * task reference we can safely take a new reference
3029		 * while holding the rcu_read_lock().
3030		 */
3031		get_task_struct(owner);
3032	}
3033	rcu_read_unlock();
3034
3035	if (owner) {
3036		mutex_lock(&owner->perf_event_mutex);
 
 
 
 
 
 
 
 
 
3037		/*
3038		 * We have to re-check the event->owner field, if it is cleared
3039		 * we raced with perf_event_exit_task(), acquiring the mutex
3040		 * ensured they're done, and we can proceed with freeing the
3041		 * event.
3042		 */
3043		if (event->owner)
3044			list_del_init(&event->owner_entry);
 
 
3045		mutex_unlock(&owner->perf_event_mutex);
3046		put_task_struct(owner);
3047	}
 
3048
3049	return perf_event_release_kernel(event);
 
 
 
 
 
3050}
3051
3052u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3053{
3054	struct perf_event *child;
3055	u64 total = 0;
3056
3057	*enabled = 0;
3058	*running = 0;
3059
3060	mutex_lock(&event->child_mutex);
3061	total += perf_event_read(event);
 
 
 
3062	*enabled += event->total_time_enabled +
3063			atomic64_read(&event->child_total_time_enabled);
3064	*running += event->total_time_running +
3065			atomic64_read(&event->child_total_time_running);
3066
3067	list_for_each_entry(child, &event->child_list, child_list) {
3068		total += perf_event_read(child);
 
3069		*enabled += child->total_time_enabled;
3070		*running += child->total_time_running;
3071	}
3072	mutex_unlock(&event->child_mutex);
3073
3074	return total;
3075}
 
 
 
 
 
 
 
 
 
 
 
 
3076EXPORT_SYMBOL_GPL(perf_event_read_value);
3077
3078static int perf_event_read_group(struct perf_event *event,
3079				   u64 read_format, char __user *buf)
3080{
3081	struct perf_event *leader = event->group_leader, *sub;
3082	int n = 0, size = 0, ret = -EFAULT;
3083	struct perf_event_context *ctx = leader->ctx;
3084	u64 values[5];
3085	u64 count, enabled, running;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3086
3087	mutex_lock(&ctx->mutex);
3088	count = perf_event_read_value(leader, &enabled, &running);
 
 
3089
3090	values[n++] = 1 + leader->nr_siblings;
3091	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3092		values[n++] = enabled;
3093	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3094		values[n++] = running;
3095	values[n++] = count;
3096	if (read_format & PERF_FORMAT_ID)
3097		values[n++] = primary_event_id(leader);
3098
3099	size = n * sizeof(u64);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3100
3101	if (copy_to_user(buf, values, size))
3102		goto unlock;
3103
3104	ret = size;
 
 
3105
3106	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3107		n = 0;
3108
3109		values[n++] = perf_event_read_value(sub, &enabled, &running);
3110		if (read_format & PERF_FORMAT_ID)
3111			values[n++] = primary_event_id(sub);
 
 
3112
3113		size = n * sizeof(u64);
 
 
3114
3115		if (copy_to_user(buf + ret, values, size)) {
3116			ret = -EFAULT;
 
3117			goto unlock;
3118		}
 
 
 
 
 
 
 
3119
3120		ret += size;
3121	}
3122unlock:
3123	mutex_unlock(&ctx->mutex);
3124
 
3125	return ret;
3126}
3127
3128static int perf_event_read_one(struct perf_event *event,
3129				 u64 read_format, char __user *buf)
3130{
3131	u64 enabled, running;
3132	u64 values[4];
3133	int n = 0;
3134
3135	values[n++] = perf_event_read_value(event, &enabled, &running);
3136	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3137		values[n++] = enabled;
3138	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3139		values[n++] = running;
3140	if (read_format & PERF_FORMAT_ID)
3141		values[n++] = primary_event_id(event);
3142
3143	if (copy_to_user(buf, values, n * sizeof(u64)))
3144		return -EFAULT;
3145
3146	return n * sizeof(u64);
3147}
3148
 
 
 
 
 
 
 
 
 
 
 
 
 
3149/*
3150 * Read the performance event - simple non blocking version for now
3151 */
3152static ssize_t
3153perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3154{
3155	u64 read_format = event->attr.read_format;
3156	int ret;
3157
3158	/*
3159	 * Return end-of-file for a read on a event that is in
3160	 * error state (i.e. because it was pinned but it couldn't be
3161	 * scheduled on to the CPU at some point).
3162	 */
3163	if (event->state == PERF_EVENT_STATE_ERROR)
3164		return 0;
3165
3166	if (count < event->read_size)
3167		return -ENOSPC;
3168
3169	WARN_ON_ONCE(event->ctx->parent_ctx);
3170	if (read_format & PERF_FORMAT_GROUP)
3171		ret = perf_event_read_group(event, read_format, buf);
3172	else
3173		ret = perf_event_read_one(event, read_format, buf);
3174
3175	return ret;
3176}
3177
3178static ssize_t
3179perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3180{
3181	struct perf_event *event = file->private_data;
 
 
 
 
 
 
3182
3183	return perf_read_hw(event, buf, count);
3184}
3185
3186static unsigned int perf_poll(struct file *file, poll_table *wait)
3187{
3188	struct perf_event *event = file->private_data;
3189	struct ring_buffer *rb;
3190	unsigned int events = POLL_HUP;
 
 
 
 
 
3191
3192	rcu_read_lock();
3193	rb = rcu_dereference(event->rb);
 
 
 
 
3194	if (rb)
3195		events = atomic_xchg(&rb->poll, 0);
3196	rcu_read_unlock();
3197
3198	poll_wait(file, &event->waitq, wait);
3199
3200	return events;
3201}
3202
3203static void perf_event_reset(struct perf_event *event)
3204{
3205	(void)perf_event_read(event);
3206	local64_set(&event->count, 0);
3207	perf_event_update_userpage(event);
3208}
3209
3210/*
3211 * Holding the top-level event's child_mutex means that any
3212 * descendant process that has inherited this event will block
3213 * in sync_child_event if it goes to exit, thus satisfying the
3214 * task existence requirements of perf_event_enable/disable.
3215 */
3216static void perf_event_for_each_child(struct perf_event *event,
3217					void (*func)(struct perf_event *))
3218{
3219	struct perf_event *child;
3220
3221	WARN_ON_ONCE(event->ctx->parent_ctx);
 
3222	mutex_lock(&event->child_mutex);
3223	func(event);
3224	list_for_each_entry(child, &event->child_list, child_list)
3225		func(child);
3226	mutex_unlock(&event->child_mutex);
3227}
3228
3229static void perf_event_for_each(struct perf_event *event,
3230				  void (*func)(struct perf_event *))
3231{
3232	struct perf_event_context *ctx = event->ctx;
3233	struct perf_event *sibling;
3234
3235	WARN_ON_ONCE(ctx->parent_ctx);
3236	mutex_lock(&ctx->mutex);
3237	event = event->group_leader;
3238
3239	perf_event_for_each_child(event, func);
3240	func(event);
3241	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3242		perf_event_for_each_child(event, func);
3243	mutex_unlock(&ctx->mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3244}
3245
3246static int perf_event_period(struct perf_event *event, u64 __user *arg)
3247{
3248	struct perf_event_context *ctx = event->ctx;
3249	int ret = 0;
3250	u64 value;
3251
3252	if (!is_sampling_event(event))
3253		return -EINVAL;
3254
3255	if (copy_from_user(&value, arg, sizeof(value)))
3256		return -EFAULT;
3257
3258	if (!value)
3259		return -EINVAL;
3260
3261	raw_spin_lock_irq(&ctx->lock);
3262	if (event->attr.freq) {
3263		if (value > sysctl_perf_event_sample_rate) {
3264			ret = -EINVAL;
3265			goto unlock;
3266		}
 
 
3267
3268		event->attr.sample_freq = value;
3269	} else {
3270		event->attr.sample_period = value;
3271		event->hw.sample_period = value;
3272	}
3273unlock:
3274	raw_spin_unlock_irq(&ctx->lock);
3275
3276	return ret;
3277}
3278
3279static const struct file_operations perf_fops;
3280
3281static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3282{
3283	struct file *file;
 
 
3284
3285	file = fget_light(fd, fput_needed);
3286	if (!file)
3287		return ERR_PTR(-EBADF);
3288
3289	if (file->f_op != &perf_fops) {
3290		fput_light(file, *fput_needed);
3291		*fput_needed = 0;
3292		return ERR_PTR(-EBADF);
3293	}
3294
3295	return file->private_data;
3296}
3297
3298static int perf_event_set_output(struct perf_event *event,
3299				 struct perf_event *output_event);
3300static int perf_event_set_filter(struct perf_event *event, void __user *arg);
 
 
 
3301
3302static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3303{
3304	struct perf_event *event = file->private_data;
3305	void (*func)(struct perf_event *);
3306	u32 flags = arg;
3307
3308	switch (cmd) {
3309	case PERF_EVENT_IOC_ENABLE:
3310		func = perf_event_enable;
3311		break;
3312	case PERF_EVENT_IOC_DISABLE:
3313		func = perf_event_disable;
3314		break;
3315	case PERF_EVENT_IOC_RESET:
3316		func = perf_event_reset;
3317		break;
3318
3319	case PERF_EVENT_IOC_REFRESH:
3320		return perf_event_refresh(event, arg);
3321
3322	case PERF_EVENT_IOC_PERIOD:
3323		return perf_event_period(event, (u64 __user *)arg);
3324
 
 
 
 
 
 
 
 
 
3325	case PERF_EVENT_IOC_SET_OUTPUT:
3326	{
3327		struct perf_event *output_event = NULL;
3328		int fput_needed = 0;
3329		int ret;
3330
3331		if (arg != -1) {
3332			output_event = perf_fget_light(arg, &fput_needed);
3333			if (IS_ERR(output_event))
3334				return PTR_ERR(output_event);
 
 
 
 
 
 
 
3335		}
3336
3337		ret = perf_event_set_output(event, output_event);
3338		if (output_event)
3339			fput_light(output_event->filp, fput_needed);
3340
3341		return ret;
3342	}
3343
3344	case PERF_EVENT_IOC_SET_FILTER:
3345		return perf_event_set_filter(event, (void __user *)arg);
3346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3347	default:
3348		return -ENOTTY;
3349	}
3350
3351	if (flags & PERF_IOC_FLAG_GROUP)
3352		perf_event_for_each(event, func);
3353	else
3354		perf_event_for_each_child(event, func);
3355
3356	return 0;
3357}
3358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3359int perf_event_task_enable(void)
3360{
 
3361	struct perf_event *event;
3362
3363	mutex_lock(&current->perf_event_mutex);
3364	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3365		perf_event_for_each_child(event, perf_event_enable);
 
 
 
3366	mutex_unlock(&current->perf_event_mutex);
3367
3368	return 0;
3369}
3370
3371int perf_event_task_disable(void)
3372{
 
3373	struct perf_event *event;
3374
3375	mutex_lock(&current->perf_event_mutex);
3376	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3377		perf_event_for_each_child(event, perf_event_disable);
 
 
 
3378	mutex_unlock(&current->perf_event_mutex);
3379
3380	return 0;
3381}
3382
3383#ifndef PERF_EVENT_INDEX_OFFSET
3384# define PERF_EVENT_INDEX_OFFSET 0
3385#endif
3386
3387static int perf_event_index(struct perf_event *event)
3388{
3389	if (event->hw.state & PERF_HES_STOPPED)
3390		return 0;
3391
3392	if (event->state != PERF_EVENT_STATE_ACTIVE)
3393		return 0;
3394
3395	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3396}
3397
3398static void calc_timer_values(struct perf_event *event,
 
3399				u64 *enabled,
3400				u64 *running)
3401{
3402	u64 now, ctx_time;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3403
3404	now = perf_clock();
3405	ctx_time = event->shadow_ctx_time + now;
3406	*enabled = ctx_time - event->tstamp_enabled;
3407	*running = ctx_time - event->tstamp_running;
 
 
 
 
 
 
 
 
 
3408}
3409
3410/*
3411 * Callers need to ensure there can be no nesting of this function, otherwise
3412 * the seqlock logic goes bad. We can not serialize this because the arch
3413 * code calls this from NMI context.
3414 */
3415void perf_event_update_userpage(struct perf_event *event)
3416{
3417	struct perf_event_mmap_page *userpg;
3418	struct ring_buffer *rb;
3419	u64 enabled, running;
3420
3421	rcu_read_lock();
 
 
 
 
3422	/*
3423	 * compute total_time_enabled, total_time_running
3424	 * based on snapshot values taken when the event
3425	 * was last scheduled in.
3426	 *
3427	 * we cannot simply called update_context_time()
3428	 * because of locking issue as we can be called in
3429	 * NMI context
3430	 */
3431	calc_timer_values(event, &enabled, &running);
3432	rb = rcu_dereference(event->rb);
3433	if (!rb)
3434		goto unlock;
3435
3436	userpg = rb->user_page;
3437
3438	/*
3439	 * Disable preemption so as to not let the corresponding user-space
3440	 * spin too long if we get preempted.
3441	 */
3442	preempt_disable();
3443	++userpg->lock;
3444	barrier();
3445	userpg->index = perf_event_index(event);
3446	userpg->offset = perf_event_count(event);
3447	if (event->state == PERF_EVENT_STATE_ACTIVE)
3448		userpg->offset -= local64_read(&event->hw.prev_count);
3449
3450	userpg->time_enabled = enabled +
3451			atomic64_read(&event->child_total_time_enabled);
3452
3453	userpg->time_running = running +
3454			atomic64_read(&event->child_total_time_running);
3455
 
 
3456	barrier();
3457	++userpg->lock;
3458	preempt_enable();
3459unlock:
3460	rcu_read_unlock();
3461}
 
3462
3463static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3464{
3465	struct perf_event *event = vma->vm_file->private_data;
3466	struct ring_buffer *rb;
3467	int ret = VM_FAULT_SIGBUS;
3468
3469	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3470		if (vmf->pgoff == 0)
3471			ret = 0;
3472		return ret;
3473	}
3474
3475	rcu_read_lock();
3476	rb = rcu_dereference(event->rb);
3477	if (!rb)
3478		goto unlock;
3479
3480	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3481		goto unlock;
3482
3483	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3484	if (!vmf->page)
3485		goto unlock;
3486
3487	get_page(vmf->page);
3488	vmf->page->mapping = vma->vm_file->f_mapping;
3489	vmf->page->index   = vmf->pgoff;
3490
3491	ret = 0;
3492unlock:
3493	rcu_read_unlock();
3494
3495	return ret;
3496}
3497
3498static void rb_free_rcu(struct rcu_head *rcu_head)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3499{
3500	struct ring_buffer *rb;
3501
3502	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3503	rb_free(rb);
 
 
 
 
 
3504}
3505
3506static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3507{
3508	struct ring_buffer *rb;
3509
3510	rcu_read_lock();
3511	rb = rcu_dereference(event->rb);
3512	if (rb) {
3513		if (!atomic_inc_not_zero(&rb->refcount))
3514			rb = NULL;
3515	}
3516	rcu_read_unlock();
3517
3518	return rb;
3519}
3520
3521static void ring_buffer_put(struct ring_buffer *rb)
3522{
3523	if (!atomic_dec_and_test(&rb->refcount))
3524		return;
3525
 
 
3526	call_rcu(&rb->rcu_head, rb_free_rcu);
3527}
3528
3529static void perf_mmap_open(struct vm_area_struct *vma)
3530{
3531	struct perf_event *event = vma->vm_file->private_data;
3532
3533	atomic_inc(&event->mmap_count);
 
 
 
 
 
 
 
3534}
3535
 
 
 
 
 
 
 
 
 
 
3536static void perf_mmap_close(struct vm_area_struct *vma)
3537{
3538	struct perf_event *event = vma->vm_file->private_data;
3539
3540	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3541		unsigned long size = perf_data_size(event->rb);
3542		struct user_struct *user = event->mmap_user;
3543		struct ring_buffer *rb = event->rb;
3544
3545		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3546		vma->vm_mm->locked_vm -= event->mmap_locked;
3547		rcu_assign_pointer(event->rb, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3548		mutex_unlock(&event->mmap_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3549
3550		ring_buffer_put(rb);
3551		free_uid(user);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3552	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3553}
3554
3555static const struct vm_operations_struct perf_mmap_vmops = {
3556	.open		= perf_mmap_open,
3557	.close		= perf_mmap_close,
3558	.fault		= perf_mmap_fault,
3559	.page_mkwrite	= perf_mmap_fault,
3560};
3561
3562static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3563{
3564	struct perf_event *event = file->private_data;
3565	unsigned long user_locked, user_lock_limit;
3566	struct user_struct *user = current_user();
3567	unsigned long locked, lock_limit;
3568	struct ring_buffer *rb;
3569	unsigned long vma_size;
3570	unsigned long nr_pages;
3571	long user_extra, extra;
3572	int ret = 0, flags = 0;
3573
3574	/*
3575	 * Don't allow mmap() of inherited per-task counters. This would
3576	 * create a performance issue due to all children writing to the
3577	 * same rb.
3578	 */
3579	if (event->cpu == -1 && event->attr.inherit)
3580		return -EINVAL;
3581
3582	if (!(vma->vm_flags & VM_SHARED))
3583		return -EINVAL;
3584
3585	vma_size = vma->vm_end - vma->vm_start;
3586	nr_pages = (vma_size / PAGE_SIZE) - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3587
3588	/*
3589	 * If we have rb pages ensure they're a power-of-two number, so we
3590	 * can do bitmasks instead of modulo.
3591	 */
3592	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3593		return -EINVAL;
3594
3595	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3596		return -EINVAL;
3597
3598	if (vma->vm_pgoff != 0)
3599		return -EINVAL;
3600
3601	WARN_ON_ONCE(event->ctx->parent_ctx);
 
3602	mutex_lock(&event->mmap_mutex);
3603	if (event->rb) {
3604		if (event->rb->nr_pages == nr_pages)
3605			atomic_inc(&event->rb->refcount);
3606		else
3607			ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
3608		goto unlock;
3609	}
3610
3611	user_extra = nr_pages + 1;
 
 
3612	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3613
3614	/*
3615	 * Increase the limit linearly with more CPUs:
3616	 */
3617	user_lock_limit *= num_online_cpus();
3618
3619	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3620
3621	extra = 0;
3622	if (user_locked > user_lock_limit)
 
 
 
 
 
 
 
 
 
3623		extra = user_locked - user_lock_limit;
 
 
3624
3625	lock_limit = rlimit(RLIMIT_MEMLOCK);
3626	lock_limit >>= PAGE_SHIFT;
3627	locked = vma->vm_mm->locked_vm + extra;
3628
3629	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3630		!capable(CAP_IPC_LOCK)) {
3631		ret = -EPERM;
3632		goto unlock;
3633	}
3634
3635	WARN_ON(event->rb);
3636
3637	if (vma->vm_flags & VM_WRITE)
3638		flags |= RING_BUFFER_WRITABLE;
3639
3640	rb = rb_alloc(nr_pages, 
3641		event->attr.watermark ? event->attr.wakeup_watermark : 0,
3642		event->cpu, flags);
 
 
 
 
 
 
 
 
 
 
3643
3644	if (!rb) {
3645		ret = -ENOMEM;
3646		goto unlock;
 
 
 
 
 
 
3647	}
3648	rcu_assign_pointer(event->rb, rb);
3649
3650	atomic_long_add(user_extra, &user->locked_vm);
3651	event->mmap_locked = extra;
3652	event->mmap_user = get_current_user();
3653	vma->vm_mm->locked_vm += event->mmap_locked;
3654
3655unlock:
3656	if (!ret)
3657		atomic_inc(&event->mmap_count);
 
 
 
 
3658	mutex_unlock(&event->mmap_mutex);
3659
3660	vma->vm_flags |= VM_RESERVED;
 
 
 
 
3661	vma->vm_ops = &perf_mmap_vmops;
3662
 
 
 
3663	return ret;
3664}
3665
3666static int perf_fasync(int fd, struct file *filp, int on)
3667{
3668	struct inode *inode = filp->f_path.dentry->d_inode;
3669	struct perf_event *event = filp->private_data;
3670	int retval;
3671
3672	mutex_lock(&inode->i_mutex);
3673	retval = fasync_helper(fd, filp, on, &event->fasync);
3674	mutex_unlock(&inode->i_mutex);
3675
3676	if (retval < 0)
3677		return retval;
3678
3679	return 0;
3680}
3681
3682static const struct file_operations perf_fops = {
3683	.llseek			= no_llseek,
3684	.release		= perf_release,
3685	.read			= perf_read,
3686	.poll			= perf_poll,
3687	.unlocked_ioctl		= perf_ioctl,
3688	.compat_ioctl		= perf_ioctl,
3689	.mmap			= perf_mmap,
3690	.fasync			= perf_fasync,
3691};
3692
3693/*
3694 * Perf event wakeup
3695 *
3696 * If there's data, ensure we set the poll() state and publish everything
3697 * to user-space before waking everybody up.
3698 */
3699
 
 
 
 
 
 
 
 
3700void perf_event_wakeup(struct perf_event *event)
3701{
3702	wake_up_all(&event->waitq);
3703
3704	if (event->pending_kill) {
3705		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3706		event->pending_kill = 0;
3707	}
3708}
3709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3710static void perf_pending_event(struct irq_work *entry)
3711{
3712	struct perf_event *event = container_of(entry,
3713			struct perf_event, pending);
 
 
 
 
 
 
3714
3715	if (event->pending_disable) {
3716		event->pending_disable = 0;
3717		__perf_event_disable(event);
3718	}
3719
3720	if (event->pending_wakeup) {
3721		event->pending_wakeup = 0;
3722		perf_event_wakeup(event);
3723	}
 
 
 
3724}
3725
3726/*
3727 * We assume there is only KVM supporting the callbacks.
3728 * Later on, we might change it to a list if there is
3729 * another virtualization implementation supporting the callbacks.
3730 */
3731struct perf_guest_info_callbacks *perf_guest_cbs;
3732
3733int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3734{
3735	perf_guest_cbs = cbs;
3736	return 0;
3737}
3738EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3739
3740int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3741{
3742	perf_guest_cbs = NULL;
3743	return 0;
3744}
3745EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3747static void __perf_event_header__init_id(struct perf_event_header *header,
3748					 struct perf_sample_data *data,
3749					 struct perf_event *event)
3750{
3751	u64 sample_type = event->attr.sample_type;
3752
3753	data->type = sample_type;
3754	header->size += event->id_header_size;
3755
3756	if (sample_type & PERF_SAMPLE_TID) {
3757		/* namespace issues */
3758		data->tid_entry.pid = perf_event_pid(event, current);
3759		data->tid_entry.tid = perf_event_tid(event, current);
3760	}
3761
3762	if (sample_type & PERF_SAMPLE_TIME)
3763		data->time = perf_clock();
3764
3765	if (sample_type & PERF_SAMPLE_ID)
3766		data->id = primary_event_id(event);
3767
3768	if (sample_type & PERF_SAMPLE_STREAM_ID)
3769		data->stream_id = event->id;
3770
3771	if (sample_type & PERF_SAMPLE_CPU) {
3772		data->cpu_entry.cpu	 = raw_smp_processor_id();
3773		data->cpu_entry.reserved = 0;
3774	}
3775}
3776
3777void perf_event_header__init_id(struct perf_event_header *header,
3778				struct perf_sample_data *data,
3779				struct perf_event *event)
3780{
3781	if (event->attr.sample_id_all)
3782		__perf_event_header__init_id(header, data, event);
3783}
3784
3785static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3786					   struct perf_sample_data *data)
3787{
3788	u64 sample_type = data->type;
3789
3790	if (sample_type & PERF_SAMPLE_TID)
3791		perf_output_put(handle, data->tid_entry);
3792
3793	if (sample_type & PERF_SAMPLE_TIME)
3794		perf_output_put(handle, data->time);
3795
3796	if (sample_type & PERF_SAMPLE_ID)
3797		perf_output_put(handle, data->id);
3798
3799	if (sample_type & PERF_SAMPLE_STREAM_ID)
3800		perf_output_put(handle, data->stream_id);
3801
3802	if (sample_type & PERF_SAMPLE_CPU)
3803		perf_output_put(handle, data->cpu_entry);
 
 
 
3804}
3805
3806void perf_event__output_id_sample(struct perf_event *event,
3807				  struct perf_output_handle *handle,
3808				  struct perf_sample_data *sample)
3809{
3810	if (event->attr.sample_id_all)
3811		__perf_event__output_id_sample(handle, sample);
3812}
3813
3814static void perf_output_read_one(struct perf_output_handle *handle,
3815				 struct perf_event *event,
3816				 u64 enabled, u64 running)
3817{
3818	u64 read_format = event->attr.read_format;
3819	u64 values[4];
3820	int n = 0;
3821
3822	values[n++] = perf_event_count(event);
3823	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3824		values[n++] = enabled +
3825			atomic64_read(&event->child_total_time_enabled);
3826	}
3827	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3828		values[n++] = running +
3829			atomic64_read(&event->child_total_time_running);
3830	}
3831	if (read_format & PERF_FORMAT_ID)
3832		values[n++] = primary_event_id(event);
3833
3834	__output_copy(handle, values, n * sizeof(u64));
3835}
3836
3837/*
3838 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3839 */
3840static void perf_output_read_group(struct perf_output_handle *handle,
3841			    struct perf_event *event,
3842			    u64 enabled, u64 running)
3843{
3844	struct perf_event *leader = event->group_leader, *sub;
3845	u64 read_format = event->attr.read_format;
3846	u64 values[5];
3847	int n = 0;
3848
3849	values[n++] = 1 + leader->nr_siblings;
3850
3851	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3852		values[n++] = enabled;
3853
3854	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3855		values[n++] = running;
3856
3857	if (leader != event)
 
3858		leader->pmu->read(leader);
3859
3860	values[n++] = perf_event_count(leader);
3861	if (read_format & PERF_FORMAT_ID)
3862		values[n++] = primary_event_id(leader);
3863
3864	__output_copy(handle, values, n * sizeof(u64));
3865
3866	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3867		n = 0;
3868
3869		if (sub != event)
 
3870			sub->pmu->read(sub);
3871
3872		values[n++] = perf_event_count(sub);
3873		if (read_format & PERF_FORMAT_ID)
3874			values[n++] = primary_event_id(sub);
3875
3876		__output_copy(handle, values, n * sizeof(u64));
3877	}
3878}
3879
3880#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3881				 PERF_FORMAT_TOTAL_TIME_RUNNING)
3882
 
 
 
 
 
 
 
3883static void perf_output_read(struct perf_output_handle *handle,
3884			     struct perf_event *event)
3885{
3886	u64 enabled = 0, running = 0;
3887	u64 read_format = event->attr.read_format;
3888
3889	/*
3890	 * compute total_time_enabled, total_time_running
3891	 * based on snapshot values taken when the event
3892	 * was last scheduled in.
3893	 *
3894	 * we cannot simply called update_context_time()
3895	 * because of locking issue as we are called in
3896	 * NMI context
3897	 */
3898	if (read_format & PERF_FORMAT_TOTAL_TIMES)
3899		calc_timer_values(event, &enabled, &running);
3900
3901	if (event->attr.read_format & PERF_FORMAT_GROUP)
3902		perf_output_read_group(handle, event, enabled, running);
3903	else
3904		perf_output_read_one(handle, event, enabled, running);
3905}
3906
3907void perf_output_sample(struct perf_output_handle *handle,
3908			struct perf_event_header *header,
3909			struct perf_sample_data *data,
3910			struct perf_event *event)
3911{
3912	u64 sample_type = data->type;
3913
3914	perf_output_put(handle, *header);
3915
 
 
 
3916	if (sample_type & PERF_SAMPLE_IP)
3917		perf_output_put(handle, data->ip);
3918
3919	if (sample_type & PERF_SAMPLE_TID)
3920		perf_output_put(handle, data->tid_entry);
3921
3922	if (sample_type & PERF_SAMPLE_TIME)
3923		perf_output_put(handle, data->time);
3924
3925	if (sample_type & PERF_SAMPLE_ADDR)
3926		perf_output_put(handle, data->addr);
3927
3928	if (sample_type & PERF_SAMPLE_ID)
3929		perf_output_put(handle, data->id);
3930
3931	if (sample_type & PERF_SAMPLE_STREAM_ID)
3932		perf_output_put(handle, data->stream_id);
3933
3934	if (sample_type & PERF_SAMPLE_CPU)
3935		perf_output_put(handle, data->cpu_entry);
3936
3937	if (sample_type & PERF_SAMPLE_PERIOD)
3938		perf_output_put(handle, data->period);
3939
3940	if (sample_type & PERF_SAMPLE_READ)
3941		perf_output_read(handle, event);
3942
3943	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3944		if (data->callchain) {
3945			int size = 1;
3946
3947			if (data->callchain)
3948				size += data->callchain->nr;
 
 
3949
3950			size *= sizeof(u64);
 
3951
3952			__output_copy(handle, data->callchain, size);
3953		} else {
3954			u64 nr = 0;
3955			perf_output_put(handle, nr);
3956		}
3957	}
3958
3959	if (sample_type & PERF_SAMPLE_RAW) {
3960		if (data->raw) {
3961			perf_output_put(handle, data->raw->size);
3962			__output_copy(handle, data->raw->data,
3963					   data->raw->size);
 
 
 
 
 
 
 
 
 
 
3964		} else {
3965			struct {
3966				u32	size;
3967				u32	data;
3968			} raw = {
3969				.size = sizeof(u32),
3970				.data = 0,
3971			};
3972			perf_output_put(handle, raw);
3973		}
3974	}
3975
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3976	if (!event->attr.watermark) {
3977		int wakeup_events = event->attr.wakeup_events;
3978
3979		if (wakeup_events) {
3980			struct ring_buffer *rb = handle->rb;
3981			int events = local_inc_return(&rb->events);
3982
3983			if (events >= wakeup_events) {
3984				local_sub(wakeup_events, &rb->events);
3985				local_inc(&rb->wakeup);
3986			}
3987		}
3988	}
3989}
3990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3991void perf_prepare_sample(struct perf_event_header *header,
3992			 struct perf_sample_data *data,
3993			 struct perf_event *event,
3994			 struct pt_regs *regs)
3995{
3996	u64 sample_type = event->attr.sample_type;
3997
3998	header->type = PERF_RECORD_SAMPLE;
3999	header->size = sizeof(*header) + event->header_size;
4000
4001	header->misc = 0;
4002	header->misc |= perf_misc_flags(regs);
4003
4004	__perf_event_header__init_id(header, data, event);
4005
4006	if (sample_type & PERF_SAMPLE_IP)
4007		data->ip = perf_instruction_pointer(regs);
4008
4009	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4010		int size = 1;
4011
4012		data->callchain = perf_callchain(regs);
 
4013
4014		if (data->callchain)
4015			size += data->callchain->nr;
4016
4017		header->size += size * sizeof(u64);
4018	}
4019
4020	if (sample_type & PERF_SAMPLE_RAW) {
4021		int size = sizeof(u32);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4022
4023		if (data->raw)
4024			size += data->raw->size;
4025		else
4026			size += sizeof(u32);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4027
4028		WARN_ON_ONCE(size & (sizeof(u64)-1));
4029		header->size += size;
4030	}
 
 
 
4031}
4032
4033static void perf_event_output(struct perf_event *event,
4034				struct perf_sample_data *data,
4035				struct pt_regs *regs)
 
 
 
 
4036{
4037	struct perf_output_handle handle;
4038	struct perf_event_header header;
 
4039
4040	/* protect the callchain buffers */
4041	rcu_read_lock();
4042
4043	perf_prepare_sample(&header, data, event, regs);
4044
4045	if (perf_output_begin(&handle, event, header.size))
 
4046		goto exit;
4047
4048	perf_output_sample(&handle, &header, data, event);
4049
4050	perf_output_end(&handle);
4051
4052exit:
4053	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4054}
4055
4056/*
4057 * read event_id
4058 */
4059
4060struct perf_read_event {
4061	struct perf_event_header	header;
4062
4063	u32				pid;
4064	u32				tid;
4065};
4066
4067static void
4068perf_event_read_event(struct perf_event *event,
4069			struct task_struct *task)
4070{
4071	struct perf_output_handle handle;
4072	struct perf_sample_data sample;
4073	struct perf_read_event read_event = {
4074		.header = {
4075			.type = PERF_RECORD_READ,
4076			.misc = 0,
4077			.size = sizeof(read_event) + event->read_size,
4078		},
4079		.pid = perf_event_pid(event, task),
4080		.tid = perf_event_tid(event, task),
4081	};
4082	int ret;
4083
4084	perf_event_header__init_id(&read_event.header, &sample, event);
4085	ret = perf_output_begin(&handle, event, read_event.header.size);
4086	if (ret)
4087		return;
4088
4089	perf_output_put(&handle, read_event);
4090	perf_output_read(&handle, event);
4091	perf_event__output_id_sample(event, &handle, &sample);
4092
4093	perf_output_end(&handle);
4094}
4095
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4096/*
4097 * task tracking -- fork/exit
4098 *
4099 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4100 */
4101
4102struct perf_task_event {
4103	struct task_struct		*task;
4104	struct perf_event_context	*task_ctx;
4105
4106	struct {
4107		struct perf_event_header	header;
4108
4109		u32				pid;
4110		u32				ppid;
4111		u32				tid;
4112		u32				ptid;
4113		u64				time;
4114	} event_id;
4115};
4116
 
 
 
 
 
 
 
4117static void perf_event_task_output(struct perf_event *event,
4118				     struct perf_task_event *task_event)
4119{
 
4120	struct perf_output_handle handle;
4121	struct perf_sample_data	sample;
4122	struct task_struct *task = task_event->task;
4123	int ret, size = task_event->event_id.header.size;
4124
 
 
 
4125	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4126
4127	ret = perf_output_begin(&handle, event,
4128				task_event->event_id.header.size);
4129	if (ret)
4130		goto out;
4131
4132	task_event->event_id.pid = perf_event_pid(event, task);
4133	task_event->event_id.ppid = perf_event_pid(event, current);
4134
4135	task_event->event_id.tid = perf_event_tid(event, task);
4136	task_event->event_id.ptid = perf_event_tid(event, current);
4137
 
 
4138	perf_output_put(&handle, task_event->event_id);
4139
4140	perf_event__output_id_sample(event, &handle, &sample);
4141
4142	perf_output_end(&handle);
4143out:
4144	task_event->event_id.header.size = size;
4145}
4146
4147static int perf_event_task_match(struct perf_event *event)
4148{
4149	if (event->state < PERF_EVENT_STATE_INACTIVE)
4150		return 0;
4151
4152	if (!event_filter_match(event))
4153		return 0;
4154
4155	if (event->attr.comm || event->attr.mmap ||
4156	    event->attr.mmap_data || event->attr.task)
4157		return 1;
4158
4159	return 0;
4160}
4161
4162static void perf_event_task_ctx(struct perf_event_context *ctx,
4163				  struct perf_task_event *task_event)
4164{
4165	struct perf_event *event;
4166
4167	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4168		if (perf_event_task_match(event))
4169			perf_event_task_output(event, task_event);
4170	}
4171}
4172
4173static void perf_event_task_event(struct perf_task_event *task_event)
4174{
4175	struct perf_cpu_context *cpuctx;
4176	struct perf_event_context *ctx;
4177	struct pmu *pmu;
4178	int ctxn;
4179
4180	rcu_read_lock();
4181	list_for_each_entry_rcu(pmu, &pmus, entry) {
4182		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4183		if (cpuctx->active_pmu != pmu)
4184			goto next;
4185		perf_event_task_ctx(&cpuctx->ctx, task_event);
4186
4187		ctx = task_event->task_ctx;
4188		if (!ctx) {
4189			ctxn = pmu->task_ctx_nr;
4190			if (ctxn < 0)
4191				goto next;
4192			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4193		}
4194		if (ctx)
4195			perf_event_task_ctx(ctx, task_event);
4196next:
4197		put_cpu_ptr(pmu->pmu_cpu_context);
4198	}
4199	rcu_read_unlock();
4200}
4201
4202static void perf_event_task(struct task_struct *task,
4203			      struct perf_event_context *task_ctx,
4204			      int new)
4205{
4206	struct perf_task_event task_event;
4207
4208	if (!atomic_read(&nr_comm_events) &&
4209	    !atomic_read(&nr_mmap_events) &&
4210	    !atomic_read(&nr_task_events))
4211		return;
4212
4213	task_event = (struct perf_task_event){
4214		.task	  = task,
4215		.task_ctx = task_ctx,
4216		.event_id    = {
4217			.header = {
4218				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4219				.misc = 0,
4220				.size = sizeof(task_event.event_id),
4221			},
4222			/* .pid  */
4223			/* .ppid */
4224			/* .tid  */
4225			/* .ptid */
4226			.time = perf_clock(),
4227		},
4228	};
4229
4230	perf_event_task_event(&task_event);
 
 
4231}
4232
4233void perf_event_fork(struct task_struct *task)
4234{
4235	perf_event_task(task, NULL, 1);
 
4236}
4237
4238/*
4239 * comm tracking
4240 */
4241
4242struct perf_comm_event {
4243	struct task_struct	*task;
4244	char			*comm;
4245	int			comm_size;
4246
4247	struct {
4248		struct perf_event_header	header;
4249
4250		u32				pid;
4251		u32				tid;
4252	} event_id;
4253};
4254
 
 
 
 
 
4255static void perf_event_comm_output(struct perf_event *event,
4256				     struct perf_comm_event *comm_event)
4257{
 
4258	struct perf_output_handle handle;
4259	struct perf_sample_data sample;
4260	int size = comm_event->event_id.header.size;
4261	int ret;
4262
 
 
 
4263	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4264	ret = perf_output_begin(&handle, event,
4265				comm_event->event_id.header.size);
4266
4267	if (ret)
4268		goto out;
4269
4270	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4271	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4272
4273	perf_output_put(&handle, comm_event->event_id);
4274	__output_copy(&handle, comm_event->comm,
4275				   comm_event->comm_size);
4276
4277	perf_event__output_id_sample(event, &handle, &sample);
4278
4279	perf_output_end(&handle);
4280out:
4281	comm_event->event_id.header.size = size;
4282}
4283
4284static int perf_event_comm_match(struct perf_event *event)
4285{
4286	if (event->state < PERF_EVENT_STATE_INACTIVE)
4287		return 0;
4288
4289	if (!event_filter_match(event))
4290		return 0;
4291
4292	if (event->attr.comm)
4293		return 1;
4294
4295	return 0;
4296}
4297
4298static void perf_event_comm_ctx(struct perf_event_context *ctx,
4299				  struct perf_comm_event *comm_event)
4300{
4301	struct perf_event *event;
4302
4303	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4304		if (perf_event_comm_match(event))
4305			perf_event_comm_output(event, comm_event);
4306	}
4307}
4308
4309static void perf_event_comm_event(struct perf_comm_event *comm_event)
4310{
4311	struct perf_cpu_context *cpuctx;
4312	struct perf_event_context *ctx;
4313	char comm[TASK_COMM_LEN];
4314	unsigned int size;
4315	struct pmu *pmu;
4316	int ctxn;
4317
4318	memset(comm, 0, sizeof(comm));
4319	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4320	size = ALIGN(strlen(comm)+1, sizeof(u64));
4321
4322	comm_event->comm = comm;
4323	comm_event->comm_size = size;
4324
4325	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4326	rcu_read_lock();
4327	list_for_each_entry_rcu(pmu, &pmus, entry) {
4328		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4329		if (cpuctx->active_pmu != pmu)
4330			goto next;
4331		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4332
4333		ctxn = pmu->task_ctx_nr;
4334		if (ctxn < 0)
4335			goto next;
4336
4337		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4338		if (ctx)
4339			perf_event_comm_ctx(ctx, comm_event);
4340next:
4341		put_cpu_ptr(pmu->pmu_cpu_context);
4342	}
4343	rcu_read_unlock();
4344}
4345
4346void perf_event_comm(struct task_struct *task)
4347{
4348	struct perf_comm_event comm_event;
4349	struct perf_event_context *ctx;
4350	int ctxn;
4351
4352	for_each_task_context_nr(ctxn) {
4353		ctx = task->perf_event_ctxp[ctxn];
4354		if (!ctx)
4355			continue;
4356
4357		perf_event_enable_on_exec(ctx);
4358	}
4359
4360	if (!atomic_read(&nr_comm_events))
4361		return;
4362
4363	comm_event = (struct perf_comm_event){
4364		.task	= task,
4365		/* .comm      */
4366		/* .comm_size */
4367		.event_id  = {
4368			.header = {
4369				.type = PERF_RECORD_COMM,
4370				.misc = 0,
4371				/* .size */
4372			},
4373			/* .pid */
4374			/* .tid */
4375		},
4376	};
4377
4378	perf_event_comm_event(&comm_event);
4379}
4380
4381/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4382 * mmap tracking
4383 */
4384
4385struct perf_mmap_event {
4386	struct vm_area_struct	*vma;
4387
4388	const char		*file_name;
4389	int			file_size;
 
 
 
 
4390
4391	struct {
4392		struct perf_event_header	header;
4393
4394		u32				pid;
4395		u32				tid;
4396		u64				start;
4397		u64				len;
4398		u64				pgoff;
4399	} event_id;
4400};
4401
 
 
 
 
 
 
 
 
 
 
 
4402static void perf_event_mmap_output(struct perf_event *event,
4403				     struct perf_mmap_event *mmap_event)
4404{
 
4405	struct perf_output_handle handle;
4406	struct perf_sample_data sample;
4407	int size = mmap_event->event_id.header.size;
 
4408	int ret;
4409
 
 
 
 
 
 
 
 
 
 
 
 
 
4410	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4411	ret = perf_output_begin(&handle, event,
4412				mmap_event->event_id.header.size);
4413	if (ret)
4414		goto out;
4415
4416	mmap_event->event_id.pid = perf_event_pid(event, current);
4417	mmap_event->event_id.tid = perf_event_tid(event, current);
4418
4419	perf_output_put(&handle, mmap_event->event_id);
 
 
 
 
 
 
 
 
 
 
4420	__output_copy(&handle, mmap_event->file_name,
4421				   mmap_event->file_size);
4422
4423	perf_event__output_id_sample(event, &handle, &sample);
4424
4425	perf_output_end(&handle);
4426out:
4427	mmap_event->event_id.header.size = size;
4428}
4429
4430static int perf_event_mmap_match(struct perf_event *event,
4431				   struct perf_mmap_event *mmap_event,
4432				   int executable)
4433{
4434	if (event->state < PERF_EVENT_STATE_INACTIVE)
4435		return 0;
4436
4437	if (!event_filter_match(event))
4438		return 0;
4439
4440	if ((!executable && event->attr.mmap_data) ||
4441	    (executable && event->attr.mmap))
4442		return 1;
4443
4444	return 0;
4445}
4446
4447static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4448				  struct perf_mmap_event *mmap_event,
4449				  int executable)
4450{
4451	struct perf_event *event;
4452
4453	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4454		if (perf_event_mmap_match(event, mmap_event, executable))
4455			perf_event_mmap_output(event, mmap_event);
4456	}
4457}
4458
4459static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4460{
4461	struct perf_cpu_context *cpuctx;
4462	struct perf_event_context *ctx;
4463	struct vm_area_struct *vma = mmap_event->vma;
4464	struct file *file = vma->vm_file;
 
 
 
4465	unsigned int size;
4466	char tmp[16];
4467	char *buf = NULL;
4468	const char *name;
4469	struct pmu *pmu;
4470	int ctxn;
 
 
 
 
 
 
 
 
 
 
4471
4472	memset(tmp, 0, sizeof(tmp));
 
 
 
 
 
 
 
4473
4474	if (file) {
 
 
 
 
 
 
 
 
4475		/*
4476		 * d_path works from the end of the rb backwards, so we
4477		 * need to add enough zero bytes after the string to handle
4478		 * the 64bit alignment we do later.
4479		 */
4480		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4481		if (!buf) {
4482			name = strncpy(tmp, "//enomem", sizeof(tmp));
4483			goto got_name;
4484		}
4485		name = d_path(&file->f_path, buf, PATH_MAX);
4486		if (IS_ERR(name)) {
4487			name = strncpy(tmp, "//toolong", sizeof(tmp));
4488			goto got_name;
4489		}
 
 
 
 
 
 
 
 
4490	} else {
4491		if (arch_vma_name(mmap_event->vma)) {
4492			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4493				       sizeof(tmp));
4494			goto got_name;
4495		}
4496
4497		if (!vma->vm_mm) {
4498			name = strncpy(tmp, "[vdso]", sizeof(tmp));
4499			goto got_name;
4500		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
 
4501				vma->vm_end >= vma->vm_mm->brk) {
4502			name = strncpy(tmp, "[heap]", sizeof(tmp));
4503			goto got_name;
4504		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
 
4505				vma->vm_end >= vma->vm_mm->start_stack) {
4506			name = strncpy(tmp, "[stack]", sizeof(tmp));
4507			goto got_name;
4508		}
4509
4510		name = strncpy(tmp, "//anon", sizeof(tmp));
4511		goto got_name;
4512	}
4513
 
 
 
4514got_name:
4515	size = ALIGN(strlen(name)+1, sizeof(u64));
 
 
 
 
 
 
 
4516
4517	mmap_event->file_name = name;
4518	mmap_event->file_size = size;
 
 
 
 
 
 
 
 
 
4519
4520	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4521
4522	rcu_read_lock();
4523	list_for_each_entry_rcu(pmu, &pmus, entry) {
4524		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4525		if (cpuctx->active_pmu != pmu)
4526			goto next;
4527		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4528					vma->vm_flags & VM_EXEC);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4529
4530		ctxn = pmu->task_ctx_nr;
4531		if (ctxn < 0)
4532			goto next;
 
 
 
4533
 
 
4534		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4535		if (ctx) {
4536			perf_event_mmap_ctx(ctx, mmap_event,
4537					vma->vm_flags & VM_EXEC);
4538		}
4539next:
4540		put_cpu_ptr(pmu->pmu_cpu_context);
4541	}
4542	rcu_read_unlock();
4543
4544	kfree(buf);
4545}
4546
4547void perf_event_mmap(struct vm_area_struct *vma)
4548{
4549	struct perf_mmap_event mmap_event;
4550
4551	if (!atomic_read(&nr_mmap_events))
4552		return;
4553
4554	mmap_event = (struct perf_mmap_event){
4555		.vma	= vma,
4556		/* .file_name */
4557		/* .file_size */
4558		.event_id  = {
4559			.header = {
4560				.type = PERF_RECORD_MMAP,
4561				.misc = PERF_RECORD_MISC_USER,
4562				/* .size */
4563			},
4564			/* .pid */
4565			/* .tid */
4566			.start  = vma->vm_start,
4567			.len    = vma->vm_end - vma->vm_start,
4568			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4569		},
 
 
 
 
 
 
4570	};
4571
 
4572	perf_event_mmap_event(&mmap_event);
4573}
4574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4575/*
4576 * IRQ throttle logging
4577 */
4578
4579static void perf_log_throttle(struct perf_event *event, int enable)
4580{
4581	struct perf_output_handle handle;
4582	struct perf_sample_data sample;
4583	int ret;
4584
4585	struct {
4586		struct perf_event_header	header;
4587		u64				time;
4588		u64				id;
4589		u64				stream_id;
4590	} throttle_event = {
4591		.header = {
4592			.type = PERF_RECORD_THROTTLE,
4593			.misc = 0,
4594			.size = sizeof(throttle_event),
4595		},
4596		.time		= perf_clock(),
4597		.id		= primary_event_id(event),
4598		.stream_id	= event->id,
4599	};
4600
4601	if (enable)
4602		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4603
4604	perf_event_header__init_id(&throttle_event.header, &sample, event);
4605
4606	ret = perf_output_begin(&handle, event,
4607				throttle_event.header.size);
4608	if (ret)
4609		return;
4610
4611	perf_output_put(&handle, throttle_event);
4612	perf_event__output_id_sample(event, &handle, &sample);
4613	perf_output_end(&handle);
4614}
4615
4616/*
4617 * Generic event overflow handling, sampling.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4618 */
4619
4620static int __perf_event_overflow(struct perf_event *event,
4621				   int throttle, struct perf_sample_data *data,
4622				   struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4623{
4624	int events = atomic_read(&event->event_limit);
4625	struct hw_perf_event *hwc = &event->hw;
4626	int ret = 0;
 
4627
4628	/*
4629	 * Non-sampling counters might still use the PMI to fold short
4630	 * hardware counters, ignore those.
4631	 */
4632	if (unlikely(!is_sampling_event(event)))
4633		return 0;
4634
4635	if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
4636		if (throttle) {
 
4637			hwc->interrupts = MAX_INTERRUPTS;
4638			perf_log_throttle(event, 0);
4639			ret = 1;
4640		}
4641	} else
4642		hwc->interrupts++;
4643
4644	if (event->attr.freq) {
4645		u64 now = perf_clock();
4646		s64 delta = now - hwc->freq_time_stamp;
4647
4648		hwc->freq_time_stamp = now;
4649
4650		if (delta > 0 && delta < 2*TICK_NSEC)
4651			perf_adjust_period(event, delta, hwc->last_period);
4652	}
4653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4654	/*
4655	 * XXX event_limit might not quite work as expected on inherited
4656	 * events
4657	 */
4658
4659	event->pending_kill = POLL_IN;
4660	if (events && atomic_dec_and_test(&event->event_limit)) {
4661		ret = 1;
4662		event->pending_kill = POLL_HUP;
4663		event->pending_disable = 1;
4664		irq_work_queue(&event->pending);
4665	}
4666
4667	if (event->overflow_handler)
4668		event->overflow_handler(event, data, regs);
4669	else
4670		perf_event_output(event, data, regs);
4671
4672	if (event->fasync && event->pending_kill) {
4673		event->pending_wakeup = 1;
4674		irq_work_queue(&event->pending);
4675	}
4676
4677	return ret;
4678}
4679
4680int perf_event_overflow(struct perf_event *event,
4681			  struct perf_sample_data *data,
4682			  struct pt_regs *regs)
4683{
4684	return __perf_event_overflow(event, 1, data, regs);
4685}
4686
4687/*
4688 * Generic software event infrastructure
4689 */
4690
4691struct swevent_htable {
4692	struct swevent_hlist		*swevent_hlist;
4693	struct mutex			hlist_mutex;
4694	int				hlist_refcount;
4695
4696	/* Recursion avoidance in each contexts */
4697	int				recursion[PERF_NR_CONTEXTS];
4698};
4699
4700static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4701
4702/*
4703 * We directly increment event->count and keep a second value in
4704 * event->hw.period_left to count intervals. This period event
4705 * is kept in the range [-sample_period, 0] so that we can use the
4706 * sign as trigger.
4707 */
4708
4709static u64 perf_swevent_set_period(struct perf_event *event)
4710{
4711	struct hw_perf_event *hwc = &event->hw;
4712	u64 period = hwc->last_period;
4713	u64 nr, offset;
4714	s64 old, val;
4715
4716	hwc->last_period = hwc->sample_period;
4717
4718again:
4719	old = val = local64_read(&hwc->period_left);
4720	if (val < 0)
4721		return 0;
4722
4723	nr = div64_u64(period + val, period);
4724	offset = nr * period;
4725	val -= offset;
4726	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4727		goto again;
4728
4729	return nr;
4730}
4731
4732static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4733				    struct perf_sample_data *data,
4734				    struct pt_regs *regs)
4735{
4736	struct hw_perf_event *hwc = &event->hw;
4737	int throttle = 0;
4738
4739	data->period = event->hw.last_period;
4740	if (!overflow)
4741		overflow = perf_swevent_set_period(event);
4742
4743	if (hwc->interrupts == MAX_INTERRUPTS)
4744		return;
4745
4746	for (; overflow; overflow--) {
4747		if (__perf_event_overflow(event, throttle,
4748					    data, regs)) {
4749			/*
4750			 * We inhibit the overflow from happening when
4751			 * hwc->interrupts == MAX_INTERRUPTS.
4752			 */
4753			break;
4754		}
4755		throttle = 1;
4756	}
4757}
4758
4759static void perf_swevent_event(struct perf_event *event, u64 nr,
4760			       struct perf_sample_data *data,
4761			       struct pt_regs *regs)
4762{
4763	struct hw_perf_event *hwc = &event->hw;
4764
4765	local64_add(nr, &event->count);
4766
4767	if (!regs)
4768		return;
4769
4770	if (!is_sampling_event(event))
4771		return;
4772
 
 
 
 
 
 
4773	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4774		return perf_swevent_overflow(event, 1, data, regs);
4775
4776	if (local64_add_negative(nr, &hwc->period_left))
4777		return;
4778
4779	perf_swevent_overflow(event, 0, data, regs);
4780}
4781
4782static int perf_exclude_event(struct perf_event *event,
4783			      struct pt_regs *regs)
4784{
4785	if (event->hw.state & PERF_HES_STOPPED)
4786		return 1;
4787
4788	if (regs) {
4789		if (event->attr.exclude_user && user_mode(regs))
4790			return 1;
4791
4792		if (event->attr.exclude_kernel && !user_mode(regs))
4793			return 1;
4794	}
4795
4796	return 0;
4797}
4798
4799static int perf_swevent_match(struct perf_event *event,
4800				enum perf_type_id type,
4801				u32 event_id,
4802				struct perf_sample_data *data,
4803				struct pt_regs *regs)
4804{
4805	if (event->attr.type != type)
4806		return 0;
4807
4808	if (event->attr.config != event_id)
4809		return 0;
4810
4811	if (perf_exclude_event(event, regs))
4812		return 0;
4813
4814	return 1;
4815}
4816
4817static inline u64 swevent_hash(u64 type, u32 event_id)
4818{
4819	u64 val = event_id | (type << 32);
4820
4821	return hash_64(val, SWEVENT_HLIST_BITS);
4822}
4823
4824static inline struct hlist_head *
4825__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4826{
4827	u64 hash = swevent_hash(type, event_id);
4828
4829	return &hlist->heads[hash];
4830}
4831
4832/* For the read side: events when they trigger */
4833static inline struct hlist_head *
4834find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4835{
4836	struct swevent_hlist *hlist;
4837
4838	hlist = rcu_dereference(swhash->swevent_hlist);
4839	if (!hlist)
4840		return NULL;
4841
4842	return __find_swevent_head(hlist, type, event_id);
4843}
4844
4845/* For the event head insertion and removal in the hlist */
4846static inline struct hlist_head *
4847find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4848{
4849	struct swevent_hlist *hlist;
4850	u32 event_id = event->attr.config;
4851	u64 type = event->attr.type;
4852
4853	/*
4854	 * Event scheduling is always serialized against hlist allocation
4855	 * and release. Which makes the protected version suitable here.
4856	 * The context lock guarantees that.
4857	 */
4858	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4859					  lockdep_is_held(&event->ctx->lock));
4860	if (!hlist)
4861		return NULL;
4862
4863	return __find_swevent_head(hlist, type, event_id);
4864}
4865
4866static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4867				    u64 nr,
4868				    struct perf_sample_data *data,
4869				    struct pt_regs *regs)
4870{
4871	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4872	struct perf_event *event;
4873	struct hlist_node *node;
4874	struct hlist_head *head;
4875
4876	rcu_read_lock();
4877	head = find_swevent_head_rcu(swhash, type, event_id);
4878	if (!head)
4879		goto end;
4880
4881	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4882		if (perf_swevent_match(event, type, event_id, data, regs))
4883			perf_swevent_event(event, nr, data, regs);
4884	}
4885end:
4886	rcu_read_unlock();
4887}
4888
 
 
4889int perf_swevent_get_recursion_context(void)
4890{
4891	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4892
4893	return get_recursion_context(swhash->recursion);
4894}
4895EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4896
4897inline void perf_swevent_put_recursion_context(int rctx)
4898{
4899	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4900
4901	put_recursion_context(swhash->recursion, rctx);
4902}
4903
 
 
 
 
 
 
 
 
 
 
 
4904void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4905{
4906	struct perf_sample_data data;
4907	int rctx;
4908
4909	preempt_disable_notrace();
4910	rctx = perf_swevent_get_recursion_context();
4911	if (rctx < 0)
4912		return;
4913
4914	perf_sample_data_init(&data, addr);
4915
4916	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4917
4918	perf_swevent_put_recursion_context(rctx);
 
4919	preempt_enable_notrace();
4920}
4921
4922static void perf_swevent_read(struct perf_event *event)
4923{
4924}
4925
4926static int perf_swevent_add(struct perf_event *event, int flags)
4927{
4928	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4929	struct hw_perf_event *hwc = &event->hw;
4930	struct hlist_head *head;
4931
4932	if (is_sampling_event(event)) {
4933		hwc->last_period = hwc->sample_period;
4934		perf_swevent_set_period(event);
4935	}
4936
4937	hwc->state = !(flags & PERF_EF_START);
4938
4939	head = find_swevent_head(swhash, event);
4940	if (WARN_ON_ONCE(!head))
4941		return -EINVAL;
4942
4943	hlist_add_head_rcu(&event->hlist_entry, head);
 
4944
4945	return 0;
4946}
4947
4948static void perf_swevent_del(struct perf_event *event, int flags)
4949{
4950	hlist_del_rcu(&event->hlist_entry);
4951}
4952
4953static void perf_swevent_start(struct perf_event *event, int flags)
4954{
4955	event->hw.state = 0;
4956}
4957
4958static void perf_swevent_stop(struct perf_event *event, int flags)
4959{
4960	event->hw.state = PERF_HES_STOPPED;
4961}
4962
4963/* Deref the hlist from the update side */
4964static inline struct swevent_hlist *
4965swevent_hlist_deref(struct swevent_htable *swhash)
4966{
4967	return rcu_dereference_protected(swhash->swevent_hlist,
4968					 lockdep_is_held(&swhash->hlist_mutex));
4969}
4970
4971static void swevent_hlist_release(struct swevent_htable *swhash)
4972{
4973	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4974
4975	if (!hlist)
4976		return;
4977
4978	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4979	kfree_rcu(hlist, rcu_head);
4980}
4981
4982static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4983{
4984	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4985
4986	mutex_lock(&swhash->hlist_mutex);
4987
4988	if (!--swhash->hlist_refcount)
4989		swevent_hlist_release(swhash);
4990
4991	mutex_unlock(&swhash->hlist_mutex);
4992}
4993
4994static void swevent_hlist_put(struct perf_event *event)
4995{
4996	int cpu;
4997
4998	if (event->cpu != -1) {
4999		swevent_hlist_put_cpu(event, event->cpu);
5000		return;
5001	}
5002
5003	for_each_possible_cpu(cpu)
5004		swevent_hlist_put_cpu(event, cpu);
5005}
5006
5007static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5008{
5009	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5010	int err = 0;
5011
5012	mutex_lock(&swhash->hlist_mutex);
5013
5014	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5015		struct swevent_hlist *hlist;
5016
5017		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5018		if (!hlist) {
5019			err = -ENOMEM;
5020			goto exit;
5021		}
5022		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5023	}
5024	swhash->hlist_refcount++;
5025exit:
5026	mutex_unlock(&swhash->hlist_mutex);
5027
5028	return err;
5029}
5030
5031static int swevent_hlist_get(struct perf_event *event)
5032{
5033	int err;
5034	int cpu, failed_cpu;
5035
5036	if (event->cpu != -1)
5037		return swevent_hlist_get_cpu(event, event->cpu);
5038
5039	get_online_cpus();
5040	for_each_possible_cpu(cpu) {
5041		err = swevent_hlist_get_cpu(event, cpu);
5042		if (err) {
5043			failed_cpu = cpu;
5044			goto fail;
5045		}
5046	}
5047	put_online_cpus();
5048
5049	return 0;
5050fail:
5051	for_each_possible_cpu(cpu) {
5052		if (cpu == failed_cpu)
5053			break;
5054		swevent_hlist_put_cpu(event, cpu);
5055	}
5056
5057	put_online_cpus();
5058	return err;
5059}
5060
5061struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5062
5063static void sw_perf_event_destroy(struct perf_event *event)
5064{
5065	u64 event_id = event->attr.config;
5066
5067	WARN_ON(event->parent);
5068
5069	jump_label_dec(&perf_swevent_enabled[event_id]);
5070	swevent_hlist_put(event);
5071}
5072
5073static int perf_swevent_init(struct perf_event *event)
5074{
5075	int event_id = event->attr.config;
5076
5077	if (event->attr.type != PERF_TYPE_SOFTWARE)
5078		return -ENOENT;
5079
 
 
 
 
 
 
5080	switch (event_id) {
5081	case PERF_COUNT_SW_CPU_CLOCK:
5082	case PERF_COUNT_SW_TASK_CLOCK:
5083		return -ENOENT;
5084
5085	default:
5086		break;
5087	}
5088
5089	if (event_id >= PERF_COUNT_SW_MAX)
5090		return -ENOENT;
5091
5092	if (!event->parent) {
5093		int err;
5094
5095		err = swevent_hlist_get(event);
5096		if (err)
5097			return err;
5098
5099		jump_label_inc(&perf_swevent_enabled[event_id]);
5100		event->destroy = sw_perf_event_destroy;
5101	}
5102
5103	return 0;
5104}
5105
5106static struct pmu perf_swevent = {
5107	.task_ctx_nr	= perf_sw_context,
5108
 
 
5109	.event_init	= perf_swevent_init,
5110	.add		= perf_swevent_add,
5111	.del		= perf_swevent_del,
5112	.start		= perf_swevent_start,
5113	.stop		= perf_swevent_stop,
5114	.read		= perf_swevent_read,
5115};
5116
5117#ifdef CONFIG_EVENT_TRACING
5118
5119static int perf_tp_filter_match(struct perf_event *event,
5120				struct perf_sample_data *data)
5121{
5122	void *record = data->raw->data;
 
 
 
 
5123
5124	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5125		return 1;
5126	return 0;
5127}
5128
5129static int perf_tp_event_match(struct perf_event *event,
5130				struct perf_sample_data *data,
5131				struct pt_regs *regs)
5132{
5133	if (event->hw.state & PERF_HES_STOPPED)
5134		return 0;
5135	/*
5136	 * All tracepoints are from kernel-space.
5137	 */
5138	if (event->attr.exclude_kernel)
5139		return 0;
5140
5141	if (!perf_tp_filter_match(event, data))
5142		return 0;
5143
5144	return 1;
5145}
5146
5147void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5148		   struct pt_regs *regs, struct hlist_head *head, int rctx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5149{
5150	struct perf_sample_data data;
5151	struct perf_event *event;
5152	struct hlist_node *node;
5153
5154	struct perf_raw_record raw = {
5155		.size = entry_size,
5156		.data = record,
 
 
5157	};
5158
5159	perf_sample_data_init(&data, addr);
5160	data.raw = &raw;
5161
5162	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
 
 
5163		if (perf_tp_event_match(event, &data, regs))
5164			perf_swevent_event(event, count, &data, regs);
5165	}
5166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5167	perf_swevent_put_recursion_context(rctx);
5168}
5169EXPORT_SYMBOL_GPL(perf_tp_event);
5170
5171static void tp_perf_event_destroy(struct perf_event *event)
5172{
5173	perf_trace_destroy(event);
5174}
5175
5176static int perf_tp_event_init(struct perf_event *event)
5177{
5178	int err;
5179
5180	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5181		return -ENOENT;
5182
 
 
 
 
 
 
5183	err = perf_trace_init(event);
5184	if (err)
5185		return err;
5186
5187	event->destroy = tp_perf_event_destroy;
5188
5189	return 0;
5190}
5191
5192static struct pmu perf_tracepoint = {
5193	.task_ctx_nr	= perf_sw_context,
5194
5195	.event_init	= perf_tp_event_init,
5196	.add		= perf_trace_add,
5197	.del		= perf_trace_del,
5198	.start		= perf_swevent_start,
5199	.stop		= perf_swevent_stop,
5200	.read		= perf_swevent_read,
5201};
5202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5203static inline void perf_tp_register(void)
5204{
5205	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5206}
5207
5208static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5209{
5210	char *filter_str;
 
5211	int ret;
5212
5213	if (event->attr.type != PERF_TYPE_TRACEPOINT)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5214		return -EINVAL;
 
5215
5216	filter_str = strndup_user(arg, PAGE_SIZE);
5217	if (IS_ERR(filter_str))
5218		return PTR_ERR(filter_str);
5219
5220	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
 
 
 
 
5221
5222	kfree(filter_str);
 
 
5223	return ret;
5224}
5225
5226static void perf_event_free_filter(struct perf_event *event)
5227{
5228	ftrace_profile_free_filter(event);
 
 
 
 
5229}
5230
5231#else
5232
5233static inline void perf_tp_register(void)
5234{
5235}
5236
5237static int perf_event_set_filter(struct perf_event *event, void __user *arg)
 
 
 
 
5238{
5239	return -ENOENT;
5240}
5241
5242static void perf_event_free_filter(struct perf_event *event)
5243{
5244}
5245
5246#endif /* CONFIG_EVENT_TRACING */
5247
5248#ifdef CONFIG_HAVE_HW_BREAKPOINT
5249void perf_bp_event(struct perf_event *bp, void *data)
5250{
5251	struct perf_sample_data sample;
5252	struct pt_regs *regs = data;
5253
5254	perf_sample_data_init(&sample, bp->attr.bp_addr);
5255
5256	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5257		perf_swevent_event(bp, 1, &sample, regs);
5258}
5259#endif
5260
5261/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5262 * hrtimer based swevent callback
5263 */
5264
5265static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5266{
5267	enum hrtimer_restart ret = HRTIMER_RESTART;
5268	struct perf_sample_data data;
5269	struct pt_regs *regs;
5270	struct perf_event *event;
5271	u64 period;
5272
5273	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5274
5275	if (event->state != PERF_EVENT_STATE_ACTIVE)
5276		return HRTIMER_NORESTART;
5277
5278	event->pmu->read(event);
5279
5280	perf_sample_data_init(&data, 0);
5281	data.period = event->hw.last_period;
5282	regs = get_irq_regs();
5283
5284	if (regs && !perf_exclude_event(event, regs)) {
5285		if (!(event->attr.exclude_idle && current->pid == 0))
5286			if (perf_event_overflow(event, &data, regs))
5287				ret = HRTIMER_NORESTART;
5288	}
5289
5290	period = max_t(u64, 10000, event->hw.sample_period);
5291	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5292
5293	return ret;
5294}
5295
5296static void perf_swevent_start_hrtimer(struct perf_event *event)
5297{
5298	struct hw_perf_event *hwc = &event->hw;
5299	s64 period;
5300
5301	if (!is_sampling_event(event))
5302		return;
5303
5304	period = local64_read(&hwc->period_left);
5305	if (period) {
5306		if (period < 0)
5307			period = 10000;
5308
5309		local64_set(&hwc->period_left, 0);
5310	} else {
5311		period = max_t(u64, 10000, hwc->sample_period);
5312	}
5313	__hrtimer_start_range_ns(&hwc->hrtimer,
5314				ns_to_ktime(period), 0,
5315				HRTIMER_MODE_REL_PINNED, 0);
5316}
5317
5318static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5319{
5320	struct hw_perf_event *hwc = &event->hw;
5321
5322	if (is_sampling_event(event)) {
5323		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5324		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5325
5326		hrtimer_cancel(&hwc->hrtimer);
5327	}
5328}
5329
5330static void perf_swevent_init_hrtimer(struct perf_event *event)
5331{
5332	struct hw_perf_event *hwc = &event->hw;
5333
5334	if (!is_sampling_event(event))
5335		return;
5336
5337	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5338	hwc->hrtimer.function = perf_swevent_hrtimer;
5339
5340	/*
5341	 * Since hrtimers have a fixed rate, we can do a static freq->period
5342	 * mapping and avoid the whole period adjust feedback stuff.
5343	 */
5344	if (event->attr.freq) {
5345		long freq = event->attr.sample_freq;
5346
5347		event->attr.sample_period = NSEC_PER_SEC / freq;
5348		hwc->sample_period = event->attr.sample_period;
5349		local64_set(&hwc->period_left, hwc->sample_period);
 
5350		event->attr.freq = 0;
5351	}
5352}
5353
5354/*
5355 * Software event: cpu wall time clock
5356 */
5357
5358static void cpu_clock_event_update(struct perf_event *event)
5359{
5360	s64 prev;
5361	u64 now;
5362
5363	now = local_clock();
5364	prev = local64_xchg(&event->hw.prev_count, now);
5365	local64_add(now - prev, &event->count);
5366}
5367
5368static void cpu_clock_event_start(struct perf_event *event, int flags)
5369{
5370	local64_set(&event->hw.prev_count, local_clock());
5371	perf_swevent_start_hrtimer(event);
5372}
5373
5374static void cpu_clock_event_stop(struct perf_event *event, int flags)
5375{
5376	perf_swevent_cancel_hrtimer(event);
5377	cpu_clock_event_update(event);
5378}
5379
5380static int cpu_clock_event_add(struct perf_event *event, int flags)
5381{
5382	if (flags & PERF_EF_START)
5383		cpu_clock_event_start(event, flags);
 
5384
5385	return 0;
5386}
5387
5388static void cpu_clock_event_del(struct perf_event *event, int flags)
5389{
5390	cpu_clock_event_stop(event, flags);
5391}
5392
5393static void cpu_clock_event_read(struct perf_event *event)
5394{
5395	cpu_clock_event_update(event);
5396}
5397
5398static int cpu_clock_event_init(struct perf_event *event)
5399{
5400	if (event->attr.type != PERF_TYPE_SOFTWARE)
5401		return -ENOENT;
5402
5403	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5404		return -ENOENT;
5405
 
 
 
 
 
 
5406	perf_swevent_init_hrtimer(event);
5407
5408	return 0;
5409}
5410
5411static struct pmu perf_cpu_clock = {
5412	.task_ctx_nr	= perf_sw_context,
5413
 
 
5414	.event_init	= cpu_clock_event_init,
5415	.add		= cpu_clock_event_add,
5416	.del		= cpu_clock_event_del,
5417	.start		= cpu_clock_event_start,
5418	.stop		= cpu_clock_event_stop,
5419	.read		= cpu_clock_event_read,
5420};
5421
5422/*
5423 * Software event: task time clock
5424 */
5425
5426static void task_clock_event_update(struct perf_event *event, u64 now)
5427{
5428	u64 prev;
5429	s64 delta;
5430
5431	prev = local64_xchg(&event->hw.prev_count, now);
5432	delta = now - prev;
5433	local64_add(delta, &event->count);
5434}
5435
5436static void task_clock_event_start(struct perf_event *event, int flags)
5437{
5438	local64_set(&event->hw.prev_count, event->ctx->time);
5439	perf_swevent_start_hrtimer(event);
5440}
5441
5442static void task_clock_event_stop(struct perf_event *event, int flags)
5443{
5444	perf_swevent_cancel_hrtimer(event);
5445	task_clock_event_update(event, event->ctx->time);
5446}
5447
5448static int task_clock_event_add(struct perf_event *event, int flags)
5449{
5450	if (flags & PERF_EF_START)
5451		task_clock_event_start(event, flags);
 
5452
5453	return 0;
5454}
5455
5456static void task_clock_event_del(struct perf_event *event, int flags)
5457{
5458	task_clock_event_stop(event, PERF_EF_UPDATE);
5459}
5460
5461static void task_clock_event_read(struct perf_event *event)
5462{
5463	u64 now = perf_clock();
5464	u64 delta = now - event->ctx->timestamp;
5465	u64 time = event->ctx->time + delta;
5466
5467	task_clock_event_update(event, time);
5468}
5469
5470static int task_clock_event_init(struct perf_event *event)
5471{
5472	if (event->attr.type != PERF_TYPE_SOFTWARE)
5473		return -ENOENT;
5474
5475	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5476		return -ENOENT;
5477
 
 
 
 
 
 
5478	perf_swevent_init_hrtimer(event);
5479
5480	return 0;
5481}
5482
5483static struct pmu perf_task_clock = {
5484	.task_ctx_nr	= perf_sw_context,
5485
 
 
5486	.event_init	= task_clock_event_init,
5487	.add		= task_clock_event_add,
5488	.del		= task_clock_event_del,
5489	.start		= task_clock_event_start,
5490	.stop		= task_clock_event_stop,
5491	.read		= task_clock_event_read,
5492};
5493
5494static void perf_pmu_nop_void(struct pmu *pmu)
5495{
5496}
5497
 
 
 
 
5498static int perf_pmu_nop_int(struct pmu *pmu)
5499{
5500	return 0;
5501}
5502
5503static void perf_pmu_start_txn(struct pmu *pmu)
 
 
 
 
 
 
 
5504{
 
 
 
 
 
5505	perf_pmu_disable(pmu);
5506}
5507
5508static int perf_pmu_commit_txn(struct pmu *pmu)
5509{
 
 
 
 
 
 
 
5510	perf_pmu_enable(pmu);
5511	return 0;
5512}
5513
5514static void perf_pmu_cancel_txn(struct pmu *pmu)
5515{
 
 
 
 
 
 
 
5516	perf_pmu_enable(pmu);
5517}
5518
 
 
 
 
 
5519/*
5520 * Ensures all contexts with the same task_ctx_nr have the same
5521 * pmu_cpu_context too.
5522 */
5523static void *find_pmu_context(int ctxn)
5524{
5525	struct pmu *pmu;
5526
5527	if (ctxn < 0)
5528		return NULL;
5529
5530	list_for_each_entry(pmu, &pmus, entry) {
5531		if (pmu->task_ctx_nr == ctxn)
5532			return pmu->pmu_cpu_context;
5533	}
5534
5535	return NULL;
5536}
5537
5538static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5539{
5540	int cpu;
 
 
 
 
 
 
5541
5542	for_each_possible_cpu(cpu) {
5543		struct perf_cpu_context *cpuctx;
5544
5545		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
 
 
 
 
 
 
 
5546
5547		if (cpuctx->active_pmu == old_pmu)
5548			cpuctx->active_pmu = pmu;
5549	}
5550}
 
 
 
5551
5552static void free_pmu_context(struct pmu *pmu)
 
5553{
5554	struct pmu *i;
5555
5556	mutex_lock(&pmus_lock);
5557	/*
5558	 * Like a real lame refcount.
5559	 */
5560	list_for_each_entry(i, &pmus, entry) {
5561		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5562			update_pmu_context(i, pmu);
5563			goto out;
5564		}
5565	}
5566
5567	free_percpu(pmu->pmu_cpu_context);
5568out:
5569	mutex_unlock(&pmus_lock);
5570}
5571static struct idr pmu_idr;
 
5572
5573static ssize_t
5574type_show(struct device *dev, struct device_attribute *attr, char *page)
 
 
5575{
5576	struct pmu *pmu = dev_get_drvdata(dev);
 
 
 
 
 
5577
5578	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5579}
 
5580
5581static struct device_attribute pmu_dev_attrs[] = {
5582       __ATTR_RO(type),
5583       __ATTR_NULL,
 
5584};
 
5585
5586static int pmu_bus_running;
5587static struct bus_type pmu_bus = {
5588	.name		= "event_source",
5589	.dev_attrs	= pmu_dev_attrs,
5590};
5591
5592static void pmu_dev_release(struct device *dev)
5593{
5594	kfree(dev);
5595}
5596
5597static int pmu_dev_alloc(struct pmu *pmu)
5598{
5599	int ret = -ENOMEM;
5600
5601	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5602	if (!pmu->dev)
5603		goto out;
5604
 
5605	device_initialize(pmu->dev);
5606	ret = dev_set_name(pmu->dev, "%s", pmu->name);
5607	if (ret)
5608		goto free_dev;
5609
5610	dev_set_drvdata(pmu->dev, pmu);
5611	pmu->dev->bus = &pmu_bus;
5612	pmu->dev->release = pmu_dev_release;
5613	ret = device_add(pmu->dev);
5614	if (ret)
5615		goto free_dev;
5616
 
 
 
 
 
 
 
 
 
 
 
 
 
5617out:
5618	return ret;
5619
 
 
 
5620free_dev:
5621	put_device(pmu->dev);
5622	goto out;
5623}
5624
5625static struct lock_class_key cpuctx_mutex;
5626static struct lock_class_key cpuctx_lock;
5627
5628int perf_pmu_register(struct pmu *pmu, char *name, int type)
5629{
5630	int cpu, ret;
5631
5632	mutex_lock(&pmus_lock);
5633	ret = -ENOMEM;
5634	pmu->pmu_disable_count = alloc_percpu(int);
5635	if (!pmu->pmu_disable_count)
5636		goto unlock;
5637
5638	pmu->type = -1;
5639	if (!name)
5640		goto skip_type;
5641	pmu->name = name;
5642
5643	if (type < 0) {
5644		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5645		if (!err)
5646			goto free_pdc;
5647
5648		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5649		if (err) {
5650			ret = err;
5651			goto free_pdc;
5652		}
5653	}
5654	pmu->type = type;
5655
5656	if (pmu_bus_running) {
5657		ret = pmu_dev_alloc(pmu);
5658		if (ret)
5659			goto free_idr;
5660	}
5661
5662skip_type:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5663	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5664	if (pmu->pmu_cpu_context)
5665		goto got_cpu_context;
5666
 
5667	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5668	if (!pmu->pmu_cpu_context)
5669		goto free_dev;
5670
5671	for_each_possible_cpu(cpu) {
5672		struct perf_cpu_context *cpuctx;
5673
5674		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5675		__perf_event_init_context(&cpuctx->ctx);
5676		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5677		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5678		cpuctx->ctx.type = cpu_context;
5679		cpuctx->ctx.pmu = pmu;
5680		cpuctx->jiffies_interval = 1;
5681		INIT_LIST_HEAD(&cpuctx->rotation_list);
5682		cpuctx->active_pmu = pmu;
5683	}
5684
5685got_cpu_context:
5686	if (!pmu->start_txn) {
5687		if (pmu->pmu_enable) {
5688			/*
5689			 * If we have pmu_enable/pmu_disable calls, install
5690			 * transaction stubs that use that to try and batch
5691			 * hardware accesses.
5692			 */
5693			pmu->start_txn  = perf_pmu_start_txn;
5694			pmu->commit_txn = perf_pmu_commit_txn;
5695			pmu->cancel_txn = perf_pmu_cancel_txn;
5696		} else {
5697			pmu->start_txn  = perf_pmu_nop_void;
5698			pmu->commit_txn = perf_pmu_nop_int;
5699			pmu->cancel_txn = perf_pmu_nop_void;
5700		}
5701	}
5702
5703	if (!pmu->pmu_enable) {
5704		pmu->pmu_enable  = perf_pmu_nop_void;
5705		pmu->pmu_disable = perf_pmu_nop_void;
5706	}
5707
 
 
 
 
 
 
5708	list_add_rcu(&pmu->entry, &pmus);
 
5709	ret = 0;
5710unlock:
5711	mutex_unlock(&pmus_lock);
5712
5713	return ret;
5714
5715free_dev:
5716	device_del(pmu->dev);
5717	put_device(pmu->dev);
5718
5719free_idr:
5720	if (pmu->type >= PERF_TYPE_MAX)
5721		idr_remove(&pmu_idr, pmu->type);
5722
5723free_pdc:
5724	free_percpu(pmu->pmu_disable_count);
5725	goto unlock;
5726}
 
5727
5728void perf_pmu_unregister(struct pmu *pmu)
5729{
5730	mutex_lock(&pmus_lock);
5731	list_del_rcu(&pmu->entry);
5732	mutex_unlock(&pmus_lock);
5733
5734	/*
5735	 * We dereference the pmu list under both SRCU and regular RCU, so
5736	 * synchronize against both of those.
5737	 */
5738	synchronize_srcu(&pmus_srcu);
5739	synchronize_rcu();
5740
5741	free_percpu(pmu->pmu_disable_count);
5742	if (pmu->type >= PERF_TYPE_MAX)
5743		idr_remove(&pmu_idr, pmu->type);
5744	device_del(pmu->dev);
5745	put_device(pmu->dev);
 
 
 
 
5746	free_pmu_context(pmu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5747}
5748
5749struct pmu *perf_init_event(struct perf_event *event)
5750{
5751	struct pmu *pmu = NULL;
5752	int idx;
5753	int ret;
5754
5755	idx = srcu_read_lock(&pmus_srcu);
5756
 
 
 
 
 
 
 
 
5757	rcu_read_lock();
5758	pmu = idr_find(&pmu_idr, event->attr.type);
5759	rcu_read_unlock();
5760	if (pmu) {
5761		ret = pmu->event_init(event);
5762		if (ret)
5763			pmu = ERR_PTR(ret);
5764		goto unlock;
5765	}
5766
5767	list_for_each_entry_rcu(pmu, &pmus, entry) {
5768		ret = pmu->event_init(event);
5769		if (!ret)
5770			goto unlock;
5771
5772		if (ret != -ENOENT) {
5773			pmu = ERR_PTR(ret);
5774			goto unlock;
5775		}
5776	}
5777	pmu = ERR_PTR(-ENOENT);
5778unlock:
5779	srcu_read_unlock(&pmus_srcu, idx);
5780
5781	return pmu;
5782}
5783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5784/*
5785 * Allocate and initialize a event structure
5786 */
5787static struct perf_event *
5788perf_event_alloc(struct perf_event_attr *attr, int cpu,
5789		 struct task_struct *task,
5790		 struct perf_event *group_leader,
5791		 struct perf_event *parent_event,
5792		 perf_overflow_handler_t overflow_handler,
5793		 void *context)
5794{
5795	struct pmu *pmu;
5796	struct perf_event *event;
5797	struct hw_perf_event *hwc;
5798	long err;
5799
5800	if ((unsigned)cpu >= nr_cpu_ids) {
5801		if (!task || cpu != -1)
5802			return ERR_PTR(-EINVAL);
5803	}
5804
5805	event = kzalloc(sizeof(*event), GFP_KERNEL);
5806	if (!event)
5807		return ERR_PTR(-ENOMEM);
5808
5809	/*
5810	 * Single events are their own group leaders, with an
5811	 * empty sibling list:
5812	 */
5813	if (!group_leader)
5814		group_leader = event;
5815
5816	mutex_init(&event->child_mutex);
5817	INIT_LIST_HEAD(&event->child_list);
5818
5819	INIT_LIST_HEAD(&event->group_entry);
5820	INIT_LIST_HEAD(&event->event_entry);
5821	INIT_LIST_HEAD(&event->sibling_list);
 
 
 
 
 
 
 
 
5822	init_waitqueue_head(&event->waitq);
 
5823	init_irq_work(&event->pending, perf_pending_event);
5824
5825	mutex_init(&event->mmap_mutex);
 
5826
 
5827	event->cpu		= cpu;
5828	event->attr		= *attr;
5829	event->group_leader	= group_leader;
5830	event->pmu		= NULL;
5831	event->oncpu		= -1;
5832
5833	event->parent		= parent_event;
5834
5835	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
5836	event->id		= atomic64_inc_return(&perf_event_id);
5837
5838	event->state		= PERF_EVENT_STATE_INACTIVE;
5839
5840	if (task) {
5841		event->attach_state = PERF_ATTACH_TASK;
5842#ifdef CONFIG_HAVE_HW_BREAKPOINT
5843		/*
5844		 * hw_breakpoint is a bit difficult here..
 
 
5845		 */
5846		if (attr->type == PERF_TYPE_BREAKPOINT)
5847			event->hw.bp_target = task;
5848#endif
5849	}
5850
 
 
 
 
5851	if (!overflow_handler && parent_event) {
5852		overflow_handler = parent_event->overflow_handler;
5853		context = parent_event->overflow_handler_context;
 
 
 
 
 
 
 
 
 
 
 
 
 
5854	}
5855
5856	event->overflow_handler	= overflow_handler;
5857	event->overflow_handler_context = context;
 
 
 
 
 
 
 
 
5858
5859	if (attr->disabled)
5860		event->state = PERF_EVENT_STATE_OFF;
5861
5862	pmu = NULL;
5863
5864	hwc = &event->hw;
5865	hwc->sample_period = attr->sample_period;
5866	if (attr->freq && attr->sample_freq)
5867		hwc->sample_period = 1;
5868	hwc->last_period = hwc->sample_period;
5869
5870	local64_set(&hwc->period_left, hwc->sample_period);
5871
5872	/*
5873	 * we currently do not support PERF_FORMAT_GROUP on inherited events
 
5874	 */
5875	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5876		goto done;
 
 
 
 
 
 
 
 
 
5877
5878	pmu = perf_init_event(event);
 
 
 
 
5879
5880done:
5881	err = 0;
5882	if (!pmu)
 
 
5883		err = -EINVAL;
5884	else if (IS_ERR(pmu))
5885		err = PTR_ERR(pmu);
5886
5887	if (err) {
5888		if (event->ns)
5889			put_pid_ns(event->ns);
5890		kfree(event);
5891		return ERR_PTR(err);
5892	}
5893
5894	event->pmu = pmu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5895
5896	if (!event->parent) {
5897		if (event->attach_state & PERF_ATTACH_TASK)
5898			jump_label_inc(&perf_sched_events);
5899		if (event->attr.mmap || event->attr.mmap_data)
5900			atomic_inc(&nr_mmap_events);
5901		if (event->attr.comm)
5902			atomic_inc(&nr_comm_events);
5903		if (event->attr.task)
5904			atomic_inc(&nr_task_events);
5905		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5906			err = get_callchain_buffers();
5907			if (err) {
5908				free_event(event);
5909				return ERR_PTR(err);
5910			}
5911		}
5912	}
5913
 
 
 
5914	return event;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5915}
5916
5917static int perf_copy_attr(struct perf_event_attr __user *uattr,
5918			  struct perf_event_attr *attr)
5919{
5920	u32 size;
5921	int ret;
5922
5923	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5924		return -EFAULT;
5925
5926	/*
5927	 * zero the full structure, so that a short copy will be nice.
5928	 */
5929	memset(attr, 0, sizeof(*attr));
5930
5931	ret = get_user(size, &uattr->size);
5932	if (ret)
5933		return ret;
5934
5935	if (size > PAGE_SIZE)	/* silly large */
5936		goto err_size;
5937
5938	if (!size)		/* abi compat */
5939		size = PERF_ATTR_SIZE_VER0;
5940
5941	if (size < PERF_ATTR_SIZE_VER0)
5942		goto err_size;
5943
5944	/*
5945	 * If we're handed a bigger struct than we know of,
5946	 * ensure all the unknown bits are 0 - i.e. new
5947	 * user-space does not rely on any kernel feature
5948	 * extensions we dont know about yet.
5949	 */
5950	if (size > sizeof(*attr)) {
5951		unsigned char __user *addr;
5952		unsigned char __user *end;
5953		unsigned char val;
5954
5955		addr = (void __user *)uattr + sizeof(*attr);
5956		end  = (void __user *)uattr + size;
5957
5958		for (; addr < end; addr++) {
5959			ret = get_user(val, addr);
5960			if (ret)
5961				return ret;
5962			if (val)
5963				goto err_size;
5964		}
5965		size = sizeof(*attr);
5966	}
5967
5968	ret = copy_from_user(attr, uattr, size);
5969	if (ret)
5970		return -EFAULT;
5971
5972	if (attr->__reserved_1)
5973		return -EINVAL;
5974
5975	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5976		return -EINVAL;
5977
5978	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5979		return -EINVAL;
5980
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5981out:
5982	return ret;
5983
5984err_size:
5985	put_user(sizeof(*attr), &uattr->size);
5986	ret = -E2BIG;
5987	goto out;
5988}
5989
5990static int
5991perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5992{
5993	struct ring_buffer *rb = NULL, *old_rb = NULL;
5994	int ret = -EINVAL;
5995
5996	if (!output_event)
5997		goto set;
5998
5999	/* don't allow circular references */
6000	if (event == output_event)
6001		goto out;
6002
6003	/*
6004	 * Don't allow cross-cpu buffers
6005	 */
6006	if (output_event->cpu != event->cpu)
6007		goto out;
6008
6009	/*
6010	 * If its not a per-cpu rb, it must be the same task.
6011	 */
6012	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6013		goto out;
6014
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6015set:
6016	mutex_lock(&event->mmap_mutex);
6017	/* Can't redirect output if we've got an active mmap() */
6018	if (atomic_read(&event->mmap_count))
6019		goto unlock;
6020
6021	if (output_event) {
6022		/* get the rb we want to redirect to */
6023		rb = ring_buffer_get(output_event);
6024		if (!rb)
6025			goto unlock;
6026	}
6027
6028	old_rb = event->rb;
6029	rcu_assign_pointer(event->rb, rb);
6030	ret = 0;
6031unlock:
6032	mutex_unlock(&event->mmap_mutex);
6033
6034	if (old_rb)
6035		ring_buffer_put(old_rb);
6036out:
6037	return ret;
6038}
6039
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6040/**
6041 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6042 *
6043 * @attr_uptr:	event_id type attributes for monitoring/sampling
6044 * @pid:		target pid
6045 * @cpu:		target cpu
6046 * @group_fd:		group leader event fd
6047 */
6048SYSCALL_DEFINE5(perf_event_open,
6049		struct perf_event_attr __user *, attr_uptr,
6050		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6051{
6052	struct perf_event *group_leader = NULL, *output_event = NULL;
6053	struct perf_event *event, *sibling;
6054	struct perf_event_attr attr;
6055	struct perf_event_context *ctx;
6056	struct file *event_file = NULL;
6057	struct file *group_file = NULL;
6058	struct task_struct *task = NULL;
6059	struct pmu *pmu;
6060	int event_fd;
6061	int move_group = 0;
6062	int fput_needed = 0;
6063	int err;
 
 
6064
6065	/* for future expandability... */
6066	if (flags & ~PERF_FLAG_ALL)
6067		return -EINVAL;
6068
6069	err = perf_copy_attr(attr_uptr, &attr);
6070	if (err)
6071		return err;
6072
6073	if (!attr.exclude_kernel) {
6074		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6075			return -EACCES;
6076	}
6077
 
 
 
 
 
6078	if (attr.freq) {
6079		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6080			return -EINVAL;
 
 
 
6081	}
6082
 
 
 
 
 
 
 
 
 
 
 
 
6083	/*
6084	 * In cgroup mode, the pid argument is used to pass the fd
6085	 * opened to the cgroup directory in cgroupfs. The cpu argument
6086	 * designates the cpu on which to monitor threads from that
6087	 * cgroup.
6088	 */
6089	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6090		return -EINVAL;
6091
6092	event_fd = get_unused_fd_flags(O_RDWR);
 
 
 
6093	if (event_fd < 0)
6094		return event_fd;
6095
6096	if (group_fd != -1) {
6097		group_leader = perf_fget_light(group_fd, &fput_needed);
6098		if (IS_ERR(group_leader)) {
6099			err = PTR_ERR(group_leader);
6100			goto err_fd;
6101		}
6102		group_file = group_leader->filp;
6103		if (flags & PERF_FLAG_FD_OUTPUT)
6104			output_event = group_leader;
6105		if (flags & PERF_FLAG_FD_NO_GROUP)
6106			group_leader = NULL;
6107	}
6108
6109	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6110		task = find_lively_task_by_vpid(pid);
6111		if (IS_ERR(task)) {
6112			err = PTR_ERR(task);
6113			goto err_group_fd;
6114		}
6115	}
6116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6117	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6118				 NULL, NULL);
6119	if (IS_ERR(event)) {
6120		err = PTR_ERR(event);
6121		goto err_task;
6122	}
6123
6124	if (flags & PERF_FLAG_PID_CGROUP) {
6125		err = perf_cgroup_connect(pid, event, &attr, group_leader);
6126		if (err)
6127			goto err_alloc;
6128		/*
6129		 * one more event:
6130		 * - that has cgroup constraint on event->cpu
6131		 * - that may need work on context switch
6132		 */
6133		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6134		jump_label_inc(&perf_sched_events);
6135	}
6136
6137	/*
6138	 * Special case software events and allow them to be part of
6139	 * any hardware group.
6140	 */
6141	pmu = event->pmu;
6142
6143	if (group_leader &&
6144	    (is_software_event(event) != is_software_event(group_leader))) {
6145		if (is_software_event(event)) {
 
 
 
 
 
 
 
 
 
6146			/*
6147			 * If event and group_leader are not both a software
6148			 * event, and event is, then group leader is not.
6149			 *
6150			 * Allow the addition of software events to !software
6151			 * groups, this is safe because software events never
6152			 * fail to schedule.
6153			 */
6154			pmu = group_leader->pmu;
6155		} else if (is_software_event(group_leader) &&
6156			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
 
6157			/*
6158			 * In case the group is a pure software group, and we
6159			 * try to add a hardware event, move the whole group to
6160			 * the hardware context.
6161			 */
6162			move_group = 1;
6163		}
6164	}
6165
6166	/*
6167	 * Get the target context (task or percpu):
6168	 */
6169	ctx = find_get_context(pmu, task, cpu);
6170	if (IS_ERR(ctx)) {
6171		err = PTR_ERR(ctx);
6172		goto err_alloc;
6173	}
6174
6175	if (task) {
6176		put_task_struct(task);
6177		task = NULL;
6178	}
6179
6180	/*
6181	 * Look up the group leader (we will attach this event to it):
6182	 */
6183	if (group_leader) {
6184		err = -EINVAL;
6185
6186		/*
6187		 * Do not allow a recursive hierarchy (this new sibling
6188		 * becoming part of another group-sibling):
6189		 */
6190		if (group_leader->group_leader != group_leader)
6191			goto err_context;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6192		/*
6193		 * Do not allow to attach to a group in a different
6194		 * task or CPU context:
 
6195		 */
6196		if (move_group) {
6197			if (group_leader->ctx->type != ctx->type)
6198				goto err_context;
6199		} else {
6200			if (group_leader->ctx != ctx)
6201				goto err_context;
6202		}
6203
6204		/*
6205		 * Only a group leader can be exclusive or pinned
6206		 */
6207		if (attr.exclusive || attr.pinned)
6208			goto err_context;
6209	}
6210
6211	if (output_event) {
6212		err = perf_event_set_output(event, output_event);
6213		if (err)
6214			goto err_context;
6215	}
6216
6217	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
 
6218	if (IS_ERR(event_file)) {
6219		err = PTR_ERR(event_file);
 
6220		goto err_context;
6221	}
6222
6223	if (move_group) {
6224		struct perf_event_context *gctx = group_leader->ctx;
6225
6226		mutex_lock(&gctx->mutex);
6227		perf_remove_from_context(group_leader);
6228		list_for_each_entry(sibling, &group_leader->sibling_list,
6229				    group_entry) {
6230			perf_remove_from_context(sibling);
6231			put_ctx(gctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6232		}
6233		mutex_unlock(&gctx->mutex);
6234		put_ctx(gctx);
6235	}
6236
6237	event->filp = event_file;
 
 
 
 
 
 
 
 
 
 
 
6238	WARN_ON_ONCE(ctx->parent_ctx);
6239	mutex_lock(&ctx->mutex);
 
 
 
 
6240
6241	if (move_group) {
6242		perf_install_in_context(ctx, group_leader, cpu);
6243		get_ctx(ctx);
6244		list_for_each_entry(sibling, &group_leader->sibling_list,
6245				    group_entry) {
6246			perf_install_in_context(ctx, sibling, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6247			get_ctx(ctx);
6248		}
 
 
 
 
 
 
 
 
 
6249	}
6250
6251	perf_install_in_context(ctx, event, cpu);
6252	++ctx->generation;
 
 
 
 
 
 
 
 
 
 
6253	perf_unpin_context(ctx);
 
 
 
6254	mutex_unlock(&ctx->mutex);
6255
6256	event->owner = current;
 
 
 
6257
6258	mutex_lock(&current->perf_event_mutex);
6259	list_add_tail(&event->owner_entry, &current->perf_event_list);
6260	mutex_unlock(&current->perf_event_mutex);
6261
6262	/*
6263	 * Precalculate sample_data sizes
6264	 */
6265	perf_event__header_size(event);
6266	perf_event__id_header_size(event);
6267
6268	/*
6269	 * Drop the reference on the group_event after placing the
6270	 * new event on the sibling_list. This ensures destruction
6271	 * of the group leader will find the pointer to itself in
6272	 * perf_group_detach().
6273	 */
6274	fput_light(group_file, fput_needed);
6275	fd_install(event_fd, event_file);
6276	return event_fd;
6277
 
 
 
 
 
 
6278err_context:
6279	perf_unpin_context(ctx);
6280	put_ctx(ctx);
6281err_alloc:
6282	free_event(event);
 
 
 
 
 
 
 
 
6283err_task:
6284	if (task)
6285		put_task_struct(task);
6286err_group_fd:
6287	fput_light(group_file, fput_needed);
6288err_fd:
6289	put_unused_fd(event_fd);
6290	return err;
6291}
6292
6293/**
6294 * perf_event_create_kernel_counter
6295 *
6296 * @attr: attributes of the counter to create
6297 * @cpu: cpu in which the counter is bound
6298 * @task: task to profile (NULL for percpu)
6299 */
6300struct perf_event *
6301perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6302				 struct task_struct *task,
6303				 perf_overflow_handler_t overflow_handler,
6304				 void *context)
6305{
6306	struct perf_event_context *ctx;
6307	struct perf_event *event;
6308	int err;
6309
6310	/*
6311	 * Get the target context (task or percpu):
 
6312	 */
 
 
6313
6314	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6315				 overflow_handler, context);
6316	if (IS_ERR(event)) {
6317		err = PTR_ERR(event);
6318		goto err;
6319	}
6320
6321	ctx = find_get_context(event->pmu, task, cpu);
 
 
 
 
 
 
6322	if (IS_ERR(ctx)) {
6323		err = PTR_ERR(ctx);
6324		goto err_free;
6325	}
6326
6327	event->filp = NULL;
6328	WARN_ON_ONCE(ctx->parent_ctx);
6329	mutex_lock(&ctx->mutex);
6330	perf_install_in_context(ctx, event, cpu);
6331	++ctx->generation;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6332	perf_unpin_context(ctx);
6333	mutex_unlock(&ctx->mutex);
6334
6335	return event;
6336
 
 
 
 
6337err_free:
6338	free_event(event);
6339err:
6340	return ERR_PTR(err);
6341}
6342EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6344static void sync_child_event(struct perf_event *child_event,
6345			       struct task_struct *child)
6346{
6347	struct perf_event *parent_event = child_event->parent;
6348	u64 child_val;
6349
6350	if (child_event->attr.inherit_stat)
6351		perf_event_read_event(child_event, child);
6352
6353	child_val = perf_event_count(child_event);
6354
6355	/*
6356	 * Add back the child's count to the parent's count:
6357	 */
6358	atomic64_add(child_val, &parent_event->child_count);
6359	atomic64_add(child_event->total_time_enabled,
6360		     &parent_event->child_total_time_enabled);
6361	atomic64_add(child_event->total_time_running,
6362		     &parent_event->child_total_time_running);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6363
6364	/*
6365	 * Remove this event from the parent's list
6366	 */
6367	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6368	mutex_lock(&parent_event->child_mutex);
6369	list_del_init(&child_event->child_list);
6370	mutex_unlock(&parent_event->child_mutex);
6371
6372	/*
6373	 * Release the parent event, if this was the last
6374	 * reference to it.
6375	 */
6376	fput(parent_event->filp);
 
 
6377}
6378
6379static void
6380__perf_event_exit_task(struct perf_event *child_event,
6381			 struct perf_event_context *child_ctx,
6382			 struct task_struct *child)
6383{
6384	if (child_event->parent) {
6385		raw_spin_lock_irq(&child_ctx->lock);
6386		perf_group_detach(child_event);
6387		raw_spin_unlock_irq(&child_ctx->lock);
6388	}
6389
6390	perf_remove_from_context(child_event);
6391
6392	/*
6393	 * It can happen that the parent exits first, and has events
6394	 * that are still around due to the child reference. These
6395	 * events need to be zapped.
6396	 */
6397	if (child_event->parent) {
6398		sync_child_event(child_event, child);
6399		free_event(child_event);
6400	}
6401}
6402
6403static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6404{
6405	struct perf_event *child_event, *tmp;
6406	struct perf_event_context *child_ctx;
6407	unsigned long flags;
6408
6409	if (likely(!child->perf_event_ctxp[ctxn])) {
6410		perf_event_task(child, NULL, 0);
6411		return;
6412	}
6413
6414	local_irq_save(flags);
6415	/*
6416	 * We can't reschedule here because interrupts are disabled,
6417	 * and either child is current or it is a task that can't be
6418	 * scheduled, so we are now safe from rescheduling changing
6419	 * our context.
 
 
 
 
6420	 */
6421	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6422
6423	/*
6424	 * Take the context lock here so that if find_get_context is
6425	 * reading child->perf_event_ctxp, we wait until it has
6426	 * incremented the context's refcount before we do put_ctx below.
6427	 */
6428	raw_spin_lock(&child_ctx->lock);
6429	task_ctx_sched_out(child_ctx);
6430	child->perf_event_ctxp[ctxn] = NULL;
6431	/*
6432	 * If this context is a clone; unclone it so it can't get
6433	 * swapped to another process while we're removing all
6434	 * the events from it.
6435	 */
6436	unclone_ctx(child_ctx);
6437	update_context_time(child_ctx);
6438	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
 
 
 
 
 
 
 
6439
6440	/*
6441	 * Report the task dead after unscheduling the events so that we
6442	 * won't get any samples after PERF_RECORD_EXIT. We can however still
6443	 * get a few PERF_RECORD_READ events.
6444	 */
6445	perf_event_task(child, child_ctx, 0);
6446
6447	/*
6448	 * We can recurse on the same lock type through:
6449	 *
6450	 *   __perf_event_exit_task()
6451	 *     sync_child_event()
6452	 *       fput(parent_event->filp)
6453	 *         perf_release()
6454	 *           mutex_lock(&ctx->mutex)
6455	 *
6456	 * But since its the parent context it won't be the same instance.
6457	 */
6458	mutex_lock(&child_ctx->mutex);
6459
6460again:
6461	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6462				 group_entry)
6463		__perf_event_exit_task(child_event, child_ctx, child);
6464
6465	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6466				 group_entry)
6467		__perf_event_exit_task(child_event, child_ctx, child);
6468
6469	/*
6470	 * If the last event was a group event, it will have appended all
6471	 * its siblings to the list, but we obtained 'tmp' before that which
6472	 * will still point to the list head terminating the iteration.
6473	 */
6474	if (!list_empty(&child_ctx->pinned_groups) ||
6475	    !list_empty(&child_ctx->flexible_groups))
6476		goto again;
6477
6478	mutex_unlock(&child_ctx->mutex);
6479
6480	put_ctx(child_ctx);
6481}
6482
6483/*
6484 * When a child task exits, feed back event values to parent events.
 
 
 
6485 */
6486void perf_event_exit_task(struct task_struct *child)
6487{
6488	struct perf_event *event, *tmp;
6489	int ctxn;
6490
6491	mutex_lock(&child->perf_event_mutex);
6492	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6493				 owner_entry) {
6494		list_del_init(&event->owner_entry);
6495
6496		/*
6497		 * Ensure the list deletion is visible before we clear
6498		 * the owner, closes a race against perf_release() where
6499		 * we need to serialize on the owner->perf_event_mutex.
6500		 */
6501		smp_wmb();
6502		event->owner = NULL;
6503	}
6504	mutex_unlock(&child->perf_event_mutex);
6505
6506	for_each_task_context_nr(ctxn)
6507		perf_event_exit_task_context(child, ctxn);
 
 
 
 
 
 
 
 
6508}
6509
6510static void perf_free_event(struct perf_event *event,
6511			    struct perf_event_context *ctx)
6512{
6513	struct perf_event *parent = event->parent;
6514
6515	if (WARN_ON_ONCE(!parent))
6516		return;
6517
6518	mutex_lock(&parent->child_mutex);
6519	list_del_init(&event->child_list);
6520	mutex_unlock(&parent->child_mutex);
6521
6522	fput(parent->filp);
6523
 
6524	perf_group_detach(event);
6525	list_del_event(event, ctx);
 
6526	free_event(event);
6527}
6528
6529/*
6530 * free an unexposed, unused context as created by inheritance by
6531 * perf_event_init_task below, used by fork() in case of fail.
 
 
 
6532 */
6533void perf_event_free_task(struct task_struct *task)
6534{
6535	struct perf_event_context *ctx;
6536	struct perf_event *event, *tmp;
6537	int ctxn;
6538
6539	for_each_task_context_nr(ctxn) {
6540		ctx = task->perf_event_ctxp[ctxn];
6541		if (!ctx)
6542			continue;
6543
6544		mutex_lock(&ctx->mutex);
6545again:
6546		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6547				group_entry)
6548			perf_free_event(event, ctx);
 
 
 
 
 
 
 
6549
6550		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6551				group_entry)
6552			perf_free_event(event, ctx);
6553
6554		if (!list_empty(&ctx->pinned_groups) ||
6555				!list_empty(&ctx->flexible_groups))
6556			goto again;
6557
6558		mutex_unlock(&ctx->mutex);
6559
6560		put_ctx(ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6561	}
6562}
6563
6564void perf_event_delayed_put(struct task_struct *task)
6565{
6566	int ctxn;
6567
6568	for_each_task_context_nr(ctxn)
6569		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6570}
6571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6572/*
6573 * inherit a event from parent task to child task:
 
 
 
 
 
6574 */
6575static struct perf_event *
6576inherit_event(struct perf_event *parent_event,
6577	      struct task_struct *parent,
6578	      struct perf_event_context *parent_ctx,
6579	      struct task_struct *child,
6580	      struct perf_event *group_leader,
6581	      struct perf_event_context *child_ctx)
6582{
 
6583	struct perf_event *child_event;
6584	unsigned long flags;
6585
6586	/*
6587	 * Instead of creating recursive hierarchies of events,
6588	 * we link inherited events back to the original parent,
6589	 * which has a filp for sure, which we use as the reference
6590	 * count:
6591	 */
6592	if (parent_event->parent)
6593		parent_event = parent_event->parent;
6594
6595	child_event = perf_event_alloc(&parent_event->attr,
6596					   parent_event->cpu,
6597					   child,
6598					   group_leader, parent_event,
6599				           NULL, NULL);
6600	if (IS_ERR(child_event))
6601		return child_event;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6602	get_ctx(child_ctx);
6603
6604	/*
6605	 * Make the child state follow the state of the parent event,
6606	 * not its attr.disabled bit.  We hold the parent's mutex,
6607	 * so we won't race with perf_event_{en, dis}able_family.
6608	 */
6609	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6610		child_event->state = PERF_EVENT_STATE_INACTIVE;
6611	else
6612		child_event->state = PERF_EVENT_STATE_OFF;
6613
6614	if (parent_event->attr.freq) {
6615		u64 sample_period = parent_event->hw.sample_period;
6616		struct hw_perf_event *hwc = &child_event->hw;
6617
6618		hwc->sample_period = sample_period;
6619		hwc->last_period   = sample_period;
6620
6621		local64_set(&hwc->period_left, sample_period);
6622	}
6623
6624	child_event->ctx = child_ctx;
6625	child_event->overflow_handler = parent_event->overflow_handler;
6626	child_event->overflow_handler_context
6627		= parent_event->overflow_handler_context;
6628
6629	/*
6630	 * Precalculate sample_data sizes
6631	 */
6632	perf_event__header_size(child_event);
6633	perf_event__id_header_size(child_event);
6634
6635	/*
6636	 * Link it up in the child's context:
6637	 */
6638	raw_spin_lock_irqsave(&child_ctx->lock, flags);
6639	add_event_to_ctx(child_event, child_ctx);
6640	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6641
6642	/*
6643	 * Get a reference to the parent filp - we will fput it
6644	 * when the child event exits. This is safe to do because
6645	 * we are in the parent and we know that the filp still
6646	 * exists and has a nonzero count:
6647	 */
6648	atomic_long_inc(&parent_event->filp->f_count);
6649
6650	/*
6651	 * Link this into the parent event's child list
6652	 */
6653	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6654	mutex_lock(&parent_event->child_mutex);
6655	list_add_tail(&child_event->child_list, &parent_event->child_list);
6656	mutex_unlock(&parent_event->child_mutex);
6657
6658	return child_event;
6659}
6660
 
 
 
 
 
 
 
 
 
 
6661static int inherit_group(struct perf_event *parent_event,
6662	      struct task_struct *parent,
6663	      struct perf_event_context *parent_ctx,
6664	      struct task_struct *child,
6665	      struct perf_event_context *child_ctx)
6666{
6667	struct perf_event *leader;
6668	struct perf_event *sub;
6669	struct perf_event *child_ctr;
6670
6671	leader = inherit_event(parent_event, parent, parent_ctx,
6672				 child, NULL, child_ctx);
6673	if (IS_ERR(leader))
6674		return PTR_ERR(leader);
6675	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
 
 
 
 
 
6676		child_ctr = inherit_event(sub, parent, parent_ctx,
6677					    child, leader, child_ctx);
6678		if (IS_ERR(child_ctr))
6679			return PTR_ERR(child_ctr);
 
 
 
 
6680	}
6681	return 0;
6682}
6683
 
 
 
 
 
 
 
 
 
 
 
6684static int
6685inherit_task_group(struct perf_event *event, struct task_struct *parent,
6686		   struct perf_event_context *parent_ctx,
6687		   struct task_struct *child, int ctxn,
6688		   int *inherited_all)
6689{
6690	int ret;
6691	struct perf_event_context *child_ctx;
6692
6693	if (!event->attr.inherit) {
6694		*inherited_all = 0;
6695		return 0;
6696	}
6697
6698	child_ctx = child->perf_event_ctxp[ctxn];
6699	if (!child_ctx) {
6700		/*
6701		 * This is executed from the parent task context, so
6702		 * inherit events that have been marked for cloning.
6703		 * First allocate and initialize a context for the
6704		 * child.
6705		 */
6706
6707		child_ctx = alloc_perf_context(event->pmu, child);
6708		if (!child_ctx)
6709			return -ENOMEM;
6710
6711		child->perf_event_ctxp[ctxn] = child_ctx;
6712	}
6713
6714	ret = inherit_group(event, parent, parent_ctx,
6715			    child, child_ctx);
6716
6717	if (ret)
6718		*inherited_all = 0;
6719
6720	return ret;
6721}
6722
6723/*
6724 * Initialize the perf_event context in task_struct
6725 */
6726int perf_event_init_context(struct task_struct *child, int ctxn)
6727{
6728	struct perf_event_context *child_ctx, *parent_ctx;
6729	struct perf_event_context *cloned_ctx;
6730	struct perf_event *event;
6731	struct task_struct *parent = current;
6732	int inherited_all = 1;
6733	unsigned long flags;
6734	int ret = 0;
6735
6736	if (likely(!parent->perf_event_ctxp[ctxn]))
6737		return 0;
6738
6739	/*
6740	 * If the parent's context is a clone, pin it so it won't get
6741	 * swapped under us.
6742	 */
6743	parent_ctx = perf_pin_task_context(parent, ctxn);
 
 
6744
6745	/*
6746	 * No need to check if parent_ctx != NULL here; since we saw
6747	 * it non-NULL earlier, the only reason for it to become NULL
6748	 * is if we exit, and since we're currently in the middle of
6749	 * a fork we can't be exiting at the same time.
6750	 */
6751
6752	/*
6753	 * Lock the parent list. No need to lock the child - not PID
6754	 * hashed yet and not running, so nobody can access it.
6755	 */
6756	mutex_lock(&parent_ctx->mutex);
6757
6758	/*
6759	 * We dont have to disable NMIs - we are only looking at
6760	 * the list, not manipulating it:
6761	 */
6762	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6763		ret = inherit_task_group(event, parent, parent_ctx,
6764					 child, ctxn, &inherited_all);
6765		if (ret)
6766			break;
6767	}
6768
6769	/*
6770	 * We can't hold ctx->lock when iterating the ->flexible_group list due
6771	 * to allocations, but we need to prevent rotation because
6772	 * rotate_ctx() will change the list from interrupt context.
6773	 */
6774	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6775	parent_ctx->rotate_disable = 1;
6776	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6777
6778	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6779		ret = inherit_task_group(event, parent, parent_ctx,
6780					 child, ctxn, &inherited_all);
6781		if (ret)
6782			break;
6783	}
6784
6785	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6786	parent_ctx->rotate_disable = 0;
6787
6788	child_ctx = child->perf_event_ctxp[ctxn];
6789
6790	if (child_ctx && inherited_all) {
6791		/*
6792		 * Mark the child context as a clone of the parent
6793		 * context, or of whatever the parent is a clone of.
6794		 *
6795		 * Note that if the parent is a clone, the holding of
6796		 * parent_ctx->lock avoids it from being uncloned.
6797		 */
6798		cloned_ctx = parent_ctx->parent_ctx;
6799		if (cloned_ctx) {
6800			child_ctx->parent_ctx = cloned_ctx;
6801			child_ctx->parent_gen = parent_ctx->parent_gen;
6802		} else {
6803			child_ctx->parent_ctx = parent_ctx;
6804			child_ctx->parent_gen = parent_ctx->generation;
6805		}
6806		get_ctx(child_ctx->parent_ctx);
6807	}
6808
6809	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
 
6810	mutex_unlock(&parent_ctx->mutex);
6811
6812	perf_unpin_context(parent_ctx);
6813	put_ctx(parent_ctx);
6814
6815	return ret;
6816}
6817
6818/*
6819 * Initialize the perf_event context in task_struct
6820 */
6821int perf_event_init_task(struct task_struct *child)
6822{
6823	int ctxn, ret;
6824
6825	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6826	mutex_init(&child->perf_event_mutex);
6827	INIT_LIST_HEAD(&child->perf_event_list);
6828
6829	for_each_task_context_nr(ctxn) {
6830		ret = perf_event_init_context(child, ctxn);
6831		if (ret)
 
6832			return ret;
 
6833	}
6834
6835	return 0;
6836}
6837
6838static void __init perf_event_init_all_cpus(void)
6839{
6840	struct swevent_htable *swhash;
6841	int cpu;
6842
 
 
6843	for_each_possible_cpu(cpu) {
6844		swhash = &per_cpu(swevent_htable, cpu);
6845		mutex_init(&swhash->hlist_mutex);
6846		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
 
 
 
 
 
 
 
 
6847	}
6848}
6849
6850static void __cpuinit perf_event_init_cpu(int cpu)
6851{
6852	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6853
6854	mutex_lock(&swhash->hlist_mutex);
6855	if (swhash->hlist_refcount > 0) {
6856		struct swevent_hlist *hlist;
6857
6858		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6859		WARN_ON(!hlist);
6860		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6861	}
6862	mutex_unlock(&swhash->hlist_mutex);
6863}
6864
6865#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6866static void perf_pmu_rotate_stop(struct pmu *pmu)
6867{
6868	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6869
6870	WARN_ON(!irqs_disabled());
6871
6872	list_del_init(&cpuctx->rotation_list);
6873}
6874
6875static void __perf_event_exit_context(void *__info)
6876{
6877	struct perf_event_context *ctx = __info;
6878	struct perf_event *event, *tmp;
 
6879
6880	perf_pmu_rotate_stop(ctx->pmu);
6881
6882	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6883		__perf_remove_from_context(event);
6884	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6885		__perf_remove_from_context(event);
6886}
6887
6888static void perf_event_exit_cpu_context(int cpu)
6889{
 
6890	struct perf_event_context *ctx;
6891	struct pmu *pmu;
6892	int idx;
6893
6894	idx = srcu_read_lock(&pmus_srcu);
6895	list_for_each_entry_rcu(pmu, &pmus, entry) {
6896		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
 
6897
6898		mutex_lock(&ctx->mutex);
6899		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
 
6900		mutex_unlock(&ctx->mutex);
6901	}
6902	srcu_read_unlock(&pmus_srcu, idx);
 
6903}
 
6904
6905static void perf_event_exit_cpu(int cpu)
 
 
 
 
6906{
6907	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6908
6909	mutex_lock(&swhash->hlist_mutex);
6910	swevent_hlist_release(swhash);
6911	mutex_unlock(&swhash->hlist_mutex);
6912
 
 
6913	perf_event_exit_cpu_context(cpu);
 
6914}
6915#else
6916static inline void perf_event_exit_cpu(int cpu) { }
6917#endif
6918
6919static int
6920perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6921{
6922	int cpu;
6923
6924	for_each_online_cpu(cpu)
6925		perf_event_exit_cpu(cpu);
6926
6927	return NOTIFY_OK;
6928}
6929
6930/*
6931 * Run the perf reboot notifier at the very last possible moment so that
6932 * the generic watchdog code runs as long as possible.
6933 */
6934static struct notifier_block perf_reboot_notifier = {
6935	.notifier_call = perf_reboot,
6936	.priority = INT_MIN,
6937};
6938
6939static int __cpuinit
6940perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6941{
6942	unsigned int cpu = (long)hcpu;
6943
6944	switch (action & ~CPU_TASKS_FROZEN) {
6945
6946	case CPU_UP_PREPARE:
6947	case CPU_DOWN_FAILED:
6948		perf_event_init_cpu(cpu);
6949		break;
6950
6951	case CPU_UP_CANCELED:
6952	case CPU_DOWN_PREPARE:
6953		perf_event_exit_cpu(cpu);
6954		break;
6955
6956	default:
6957		break;
6958	}
6959
6960	return NOTIFY_OK;
6961}
6962
6963void __init perf_event_init(void)
6964{
6965	int ret;
6966
6967	idr_init(&pmu_idr);
6968
6969	perf_event_init_all_cpus();
6970	init_srcu_struct(&pmus_srcu);
6971	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
6972	perf_pmu_register(&perf_cpu_clock, NULL, -1);
6973	perf_pmu_register(&perf_task_clock, NULL, -1);
6974	perf_tp_register();
6975	perf_cpu_notifier(perf_cpu_notify);
6976	register_reboot_notifier(&perf_reboot_notifier);
6977
6978	ret = init_hw_breakpoint();
6979	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
 
 
 
 
 
 
 
6980}
6981
 
 
 
 
 
 
 
 
 
 
 
 
 
6982static int __init perf_event_sysfs_init(void)
6983{
6984	struct pmu *pmu;
6985	int ret;
6986
6987	mutex_lock(&pmus_lock);
6988
6989	ret = bus_register(&pmu_bus);
6990	if (ret)
6991		goto unlock;
6992
6993	list_for_each_entry(pmu, &pmus, entry) {
6994		if (!pmu->name || pmu->type < 0)
6995			continue;
6996
6997		ret = pmu_dev_alloc(pmu);
6998		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
6999	}
7000	pmu_bus_running = 1;
7001	ret = 0;
7002
7003unlock:
7004	mutex_unlock(&pmus_lock);
7005
7006	return ret;
7007}
7008device_initcall(perf_event_sysfs_init);
7009
7010#ifdef CONFIG_CGROUP_PERF
7011static struct cgroup_subsys_state *perf_cgroup_create(
7012	struct cgroup_subsys *ss, struct cgroup *cont)
7013{
7014	struct perf_cgroup *jc;
7015
7016	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7017	if (!jc)
7018		return ERR_PTR(-ENOMEM);
7019
7020	jc->info = alloc_percpu(struct perf_cgroup_info);
7021	if (!jc->info) {
7022		kfree(jc);
7023		return ERR_PTR(-ENOMEM);
7024	}
7025
7026	return &jc->css;
7027}
7028
7029static void perf_cgroup_destroy(struct cgroup_subsys *ss,
7030				struct cgroup *cont)
7031{
7032	struct perf_cgroup *jc;
7033	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7034			  struct perf_cgroup, css);
7035	free_percpu(jc->info);
7036	kfree(jc);
7037}
7038
7039static int __perf_cgroup_move(void *info)
7040{
7041	struct task_struct *task = info;
 
7042	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
 
7043	return 0;
7044}
7045
7046static void
7047perf_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *task)
7048{
7049	task_function_call(task, __perf_cgroup_move, task);
 
 
 
 
7050}
7051
7052static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7053		struct cgroup *old_cgrp, struct task_struct *task)
7054{
 
7055	/*
7056	 * cgroup_exit() is called in the copy_process() failure path.
7057	 * Ignore this case since the task hasn't ran yet, this avoids
7058	 * trying to poke a half freed task state from generic code.
7059	 */
7060	if (!(task->flags & PF_EXITING))
7061		return;
7062
7063	perf_cgroup_attach_task(cgrp, task);
7064}
7065
7066struct cgroup_subsys perf_subsys = {
7067	.name		= "perf_event",
7068	.subsys_id	= perf_subsys_id,
7069	.create		= perf_cgroup_create,
7070	.destroy	= perf_cgroup_destroy,
7071	.exit		= perf_cgroup_exit,
7072	.attach_task	= perf_cgroup_attach_task,
7073};
7074#endif /* CONFIG_CGROUP_PERF */