Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/* bpf/cpumap.c
  3 *
  4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
  5 */
  6
  7/* The 'cpumap' is primarily used as a backend map for XDP BPF helper
  8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
  9 *
 10 * Unlike devmap which redirects XDP frames out another NIC device,
 11 * this map type redirects raw XDP frames to another CPU.  The remote
 12 * CPU will do SKB-allocation and call the normal network stack.
 13 *
 14 * This is a scalability and isolation mechanism, that allow
 15 * separating the early driver network XDP layer, from the rest of the
 16 * netstack, and assigning dedicated CPUs for this stage.  This
 17 * basically allows for 10G wirespeed pre-filtering via bpf.
 18 */
 19#include <linux/bpf.h>
 20#include <linux/filter.h>
 21#include <linux/ptr_ring.h>
 22#include <net/xdp.h>
 23
 24#include <linux/sched.h>
 25#include <linux/workqueue.h>
 26#include <linux/kthread.h>
 27#include <linux/capability.h>
 28#include <trace/events/xdp.h>
 29
 30#include <linux/netdevice.h>   /* netif_receive_skb_core */
 31#include <linux/etherdevice.h> /* eth_type_trans */
 32
 33/* General idea: XDP packets getting XDP redirected to another CPU,
 34 * will maximum be stored/queued for one driver ->poll() call.  It is
 35 * guaranteed that queueing the frame and the flush operation happen on
 36 * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
 37 * which queue in bpf_cpu_map_entry contains packets.
 38 */
 39
 40#define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
 41struct bpf_cpu_map_entry;
 42struct bpf_cpu_map;
 43
 44struct xdp_bulk_queue {
 45	void *q[CPU_MAP_BULK_SIZE];
 46	struct list_head flush_node;
 47	struct bpf_cpu_map_entry *obj;
 48	unsigned int count;
 49};
 50
 51/* Struct for every remote "destination" CPU in map */
 52struct bpf_cpu_map_entry {
 53	u32 cpu;    /* kthread CPU and map index */
 54	int map_id; /* Back reference to map */
 55	u32 qsize;  /* Queue size placeholder for map lookup */
 56
 57	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
 58	struct xdp_bulk_queue __percpu *bulkq;
 59
 60	struct bpf_cpu_map *cmap;
 61
 62	/* Queue with potential multi-producers, and single-consumer kthread */
 63	struct ptr_ring *queue;
 64	struct task_struct *kthread;
 65	struct work_struct kthread_stop_wq;
 66
 67	atomic_t refcnt; /* Control when this struct can be free'ed */
 68	struct rcu_head rcu;
 69};
 70
 71struct bpf_cpu_map {
 72	struct bpf_map map;
 73	/* Below members specific for map type */
 74	struct bpf_cpu_map_entry **cpu_map;
 75	struct list_head __percpu *flush_list;
 76};
 77
 78static int bq_flush_to_queue(struct xdp_bulk_queue *bq, bool in_napi_ctx);
 79
 80static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
 81{
 82	struct bpf_cpu_map *cmap;
 83	int err = -ENOMEM;
 84	int ret, cpu;
 85	u64 cost;
 86
 87	if (!capable(CAP_SYS_ADMIN))
 88		return ERR_PTR(-EPERM);
 89
 90	/* check sanity of attributes */
 91	if (attr->max_entries == 0 || attr->key_size != 4 ||
 92	    attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
 93		return ERR_PTR(-EINVAL);
 94
 95	cmap = kzalloc(sizeof(*cmap), GFP_USER);
 96	if (!cmap)
 97		return ERR_PTR(-ENOMEM);
 98
 99	bpf_map_init_from_attr(&cmap->map, attr);
100
101	/* Pre-limit array size based on NR_CPUS, not final CPU check */
102	if (cmap->map.max_entries > NR_CPUS) {
103		err = -E2BIG;
104		goto free_cmap;
105	}
106
107	/* make sure page count doesn't overflow */
108	cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
109	cost += sizeof(struct list_head) * num_possible_cpus();
110
111	/* Notice returns -EPERM on if map size is larger than memlock limit */
112	ret = bpf_map_charge_init(&cmap->map.memory, cost);
113	if (ret) {
114		err = ret;
115		goto free_cmap;
116	}
117
118	cmap->flush_list = alloc_percpu(struct list_head);
119	if (!cmap->flush_list)
120		goto free_charge;
121
122	for_each_possible_cpu(cpu)
123		INIT_LIST_HEAD(per_cpu_ptr(cmap->flush_list, cpu));
124
125	/* Alloc array for possible remote "destination" CPUs */
126	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
127					   sizeof(struct bpf_cpu_map_entry *),
128					   cmap->map.numa_node);
129	if (!cmap->cpu_map)
130		goto free_percpu;
131
132	return &cmap->map;
133free_percpu:
134	free_percpu(cmap->flush_list);
135free_charge:
136	bpf_map_charge_finish(&cmap->map.memory);
137free_cmap:
138	kfree(cmap);
139	return ERR_PTR(err);
140}
141
142static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
143{
144	atomic_inc(&rcpu->refcnt);
145}
146
147/* called from workqueue, to workaround syscall using preempt_disable */
148static void cpu_map_kthread_stop(struct work_struct *work)
149{
150	struct bpf_cpu_map_entry *rcpu;
151
152	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
153
154	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
155	 * as it waits until all in-flight call_rcu() callbacks complete.
156	 */
157	rcu_barrier();
158
159	/* kthread_stop will wake_up_process and wait for it to complete */
160	kthread_stop(rcpu->kthread);
161}
162
163static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
164					 struct xdp_frame *xdpf,
165					 struct sk_buff *skb)
166{
167	unsigned int hard_start_headroom;
168	unsigned int frame_size;
169	void *pkt_data_start;
170
171	/* Part of headroom was reserved to xdpf */
172	hard_start_headroom = sizeof(struct xdp_frame) +  xdpf->headroom;
173
174	/* build_skb need to place skb_shared_info after SKB end, and
175	 * also want to know the memory "truesize".  Thus, need to
176	 * know the memory frame size backing xdp_buff.
177	 *
178	 * XDP was designed to have PAGE_SIZE frames, but this
179	 * assumption is not longer true with ixgbe and i40e.  It
180	 * would be preferred to set frame_size to 2048 or 4096
181	 * depending on the driver.
182	 *   frame_size = 2048;
183	 *   frame_len  = frame_size - sizeof(*xdp_frame);
184	 *
185	 * Instead, with info avail, skb_shared_info in placed after
186	 * packet len.  This, unfortunately fakes the truesize.
187	 * Another disadvantage of this approach, the skb_shared_info
188	 * is not at a fixed memory location, with mixed length
189	 * packets, which is bad for cache-line hotness.
190	 */
191	frame_size = SKB_DATA_ALIGN(xdpf->len + hard_start_headroom) +
192		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
193
194	pkt_data_start = xdpf->data - hard_start_headroom;
195	skb = build_skb_around(skb, pkt_data_start, frame_size);
196	if (unlikely(!skb))
197		return NULL;
198
199	skb_reserve(skb, hard_start_headroom);
200	__skb_put(skb, xdpf->len);
201	if (xdpf->metasize)
202		skb_metadata_set(skb, xdpf->metasize);
203
204	/* Essential SKB info: protocol and skb->dev */
205	skb->protocol = eth_type_trans(skb, xdpf->dev_rx);
206
207	/* Optional SKB info, currently missing:
208	 * - HW checksum info		(skb->ip_summed)
209	 * - HW RX hash			(skb_set_hash)
210	 * - RX ring dev queue index	(skb_record_rx_queue)
211	 */
212
213	/* Until page_pool get SKB return path, release DMA here */
214	xdp_release_frame(xdpf);
215
216	/* Allow SKB to reuse area used by xdp_frame */
217	xdp_scrub_frame(xdpf);
218
219	return skb;
220}
221
222static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
223{
224	/* The tear-down procedure should have made sure that queue is
225	 * empty.  See __cpu_map_entry_replace() and work-queue
226	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
227	 * gracefully and warn once.
228	 */
229	struct xdp_frame *xdpf;
230
231	while ((xdpf = ptr_ring_consume(ring)))
232		if (WARN_ON_ONCE(xdpf))
233			xdp_return_frame(xdpf);
234}
235
236static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
237{
238	if (atomic_dec_and_test(&rcpu->refcnt)) {
239		/* The queue should be empty at this point */
240		__cpu_map_ring_cleanup(rcpu->queue);
241		ptr_ring_cleanup(rcpu->queue, NULL);
242		kfree(rcpu->queue);
243		kfree(rcpu);
244	}
245}
246
247#define CPUMAP_BATCH 8
248
249static int cpu_map_kthread_run(void *data)
250{
251	struct bpf_cpu_map_entry *rcpu = data;
252
253	set_current_state(TASK_INTERRUPTIBLE);
254
255	/* When kthread gives stop order, then rcpu have been disconnected
256	 * from map, thus no new packets can enter. Remaining in-flight
257	 * per CPU stored packets are flushed to this queue.  Wait honoring
258	 * kthread_stop signal until queue is empty.
259	 */
260	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
261		unsigned int drops = 0, sched = 0;
262		void *frames[CPUMAP_BATCH];
263		void *skbs[CPUMAP_BATCH];
264		gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
265		int i, n, m;
266
267		/* Release CPU reschedule checks */
268		if (__ptr_ring_empty(rcpu->queue)) {
269			set_current_state(TASK_INTERRUPTIBLE);
270			/* Recheck to avoid lost wake-up */
271			if (__ptr_ring_empty(rcpu->queue)) {
272				schedule();
273				sched = 1;
274			} else {
275				__set_current_state(TASK_RUNNING);
276			}
277		} else {
278			sched = cond_resched();
279		}
280
281		/*
282		 * The bpf_cpu_map_entry is single consumer, with this
283		 * kthread CPU pinned. Lockless access to ptr_ring
284		 * consume side valid as no-resize allowed of queue.
285		 */
286		n = ptr_ring_consume_batched(rcpu->queue, frames, CPUMAP_BATCH);
287
288		for (i = 0; i < n; i++) {
289			void *f = frames[i];
290			struct page *page = virt_to_page(f);
291
292			/* Bring struct page memory area to curr CPU. Read by
293			 * build_skb_around via page_is_pfmemalloc(), and when
294			 * freed written by page_frag_free call.
295			 */
296			prefetchw(page);
297		}
298
299		m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, n, skbs);
300		if (unlikely(m == 0)) {
301			for (i = 0; i < n; i++)
302				skbs[i] = NULL; /* effect: xdp_return_frame */
303			drops = n;
304		}
305
306		local_bh_disable();
307		for (i = 0; i < n; i++) {
308			struct xdp_frame *xdpf = frames[i];
309			struct sk_buff *skb = skbs[i];
310			int ret;
311
312			skb = cpu_map_build_skb(rcpu, xdpf, skb);
313			if (!skb) {
314				xdp_return_frame(xdpf);
315				continue;
316			}
317
318			/* Inject into network stack */
319			ret = netif_receive_skb_core(skb);
320			if (ret == NET_RX_DROP)
321				drops++;
322		}
323		/* Feedback loop via tracepoint */
324		trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched);
325
326		local_bh_enable(); /* resched point, may call do_softirq() */
327	}
328	__set_current_state(TASK_RUNNING);
329
330	put_cpu_map_entry(rcpu);
331	return 0;
332}
333
334static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu,
335						       int map_id)
336{
337	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
338	struct bpf_cpu_map_entry *rcpu;
339	struct xdp_bulk_queue *bq;
340	int numa, err, i;
341
342	/* Have map->numa_node, but choose node of redirect target CPU */
343	numa = cpu_to_node(cpu);
344
345	rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
346	if (!rcpu)
347		return NULL;
348
349	/* Alloc percpu bulkq */
350	rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
351					 sizeof(void *), gfp);
352	if (!rcpu->bulkq)
353		goto free_rcu;
354
355	for_each_possible_cpu(i) {
356		bq = per_cpu_ptr(rcpu->bulkq, i);
357		bq->obj = rcpu;
358	}
359
360	/* Alloc queue */
361	rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
362	if (!rcpu->queue)
363		goto free_bulkq;
364
365	err = ptr_ring_init(rcpu->queue, qsize, gfp);
366	if (err)
367		goto free_queue;
368
369	rcpu->cpu    = cpu;
370	rcpu->map_id = map_id;
371	rcpu->qsize  = qsize;
372
373	/* Setup kthread */
374	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
375					       "cpumap/%d/map:%d", cpu, map_id);
376	if (IS_ERR(rcpu->kthread))
377		goto free_ptr_ring;
378
379	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
380	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
381
382	/* Make sure kthread runs on a single CPU */
383	kthread_bind(rcpu->kthread, cpu);
384	wake_up_process(rcpu->kthread);
385
386	return rcpu;
387
388free_ptr_ring:
389	ptr_ring_cleanup(rcpu->queue, NULL);
390free_queue:
391	kfree(rcpu->queue);
392free_bulkq:
393	free_percpu(rcpu->bulkq);
394free_rcu:
395	kfree(rcpu);
396	return NULL;
397}
398
399static void __cpu_map_entry_free(struct rcu_head *rcu)
400{
401	struct bpf_cpu_map_entry *rcpu;
402	int cpu;
403
404	/* This cpu_map_entry have been disconnected from map and one
405	 * RCU graze-period have elapsed.  Thus, XDP cannot queue any
406	 * new packets and cannot change/set flush_needed that can
407	 * find this entry.
408	 */
409	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
410
411	/* Flush remaining packets in percpu bulkq */
412	for_each_online_cpu(cpu) {
413		struct xdp_bulk_queue *bq = per_cpu_ptr(rcpu->bulkq, cpu);
414
415		/* No concurrent bq_enqueue can run at this point */
416		bq_flush_to_queue(bq, false);
417	}
418	free_percpu(rcpu->bulkq);
419	/* Cannot kthread_stop() here, last put free rcpu resources */
420	put_cpu_map_entry(rcpu);
421}
422
423/* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
424 * ensure any driver rcu critical sections have completed, but this
425 * does not guarantee a flush has happened yet. Because driver side
426 * rcu_read_lock/unlock only protects the running XDP program.  The
427 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
428 * pending flush op doesn't fail.
429 *
430 * The bpf_cpu_map_entry is still used by the kthread, and there can
431 * still be pending packets (in queue and percpu bulkq).  A refcnt
432 * makes sure to last user (kthread_stop vs. call_rcu) free memory
433 * resources.
434 *
435 * The rcu callback __cpu_map_entry_free flush remaining packets in
436 * percpu bulkq to queue.  Due to caller map_delete_elem() disable
437 * preemption, cannot call kthread_stop() to make sure queue is empty.
438 * Instead a work_queue is started for stopping kthread,
439 * cpu_map_kthread_stop, which waits for an RCU graze period before
440 * stopping kthread, emptying the queue.
441 */
442static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
443				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
444{
445	struct bpf_cpu_map_entry *old_rcpu;
446
447	old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
448	if (old_rcpu) {
449		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
450		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
451		schedule_work(&old_rcpu->kthread_stop_wq);
452	}
453}
454
455static int cpu_map_delete_elem(struct bpf_map *map, void *key)
456{
457	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
458	u32 key_cpu = *(u32 *)key;
459
460	if (key_cpu >= map->max_entries)
461		return -EINVAL;
462
463	/* notice caller map_delete_elem() use preempt_disable() */
464	__cpu_map_entry_replace(cmap, key_cpu, NULL);
465	return 0;
466}
467
468static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
469			       u64 map_flags)
470{
471	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
472	struct bpf_cpu_map_entry *rcpu;
473
474	/* Array index key correspond to CPU number */
475	u32 key_cpu = *(u32 *)key;
476	/* Value is the queue size */
477	u32 qsize = *(u32 *)value;
478
479	if (unlikely(map_flags > BPF_EXIST))
480		return -EINVAL;
481	if (unlikely(key_cpu >= cmap->map.max_entries))
482		return -E2BIG;
483	if (unlikely(map_flags == BPF_NOEXIST))
484		return -EEXIST;
485	if (unlikely(qsize > 16384)) /* sanity limit on qsize */
486		return -EOVERFLOW;
487
488	/* Make sure CPU is a valid possible cpu */
489	if (!cpu_possible(key_cpu))
490		return -ENODEV;
491
492	if (qsize == 0) {
493		rcpu = NULL; /* Same as deleting */
494	} else {
495		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
496		rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id);
497		if (!rcpu)
498			return -ENOMEM;
499		rcpu->cmap = cmap;
500	}
501	rcu_read_lock();
502	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
503	rcu_read_unlock();
504	return 0;
505}
506
507static void cpu_map_free(struct bpf_map *map)
508{
509	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
510	int cpu;
511	u32 i;
512
513	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
514	 * so the bpf programs (can be more than one that used this map) were
515	 * disconnected from events. Wait for outstanding critical sections in
516	 * these programs to complete. The rcu critical section only guarantees
517	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
518	 * It does __not__ ensure pending flush operations (if any) are
519	 * complete.
520	 */
521
522	bpf_clear_redirect_map(map);
523	synchronize_rcu();
524
525	/* To ensure all pending flush operations have completed wait for flush
526	 * list be empty on _all_ cpus. Because the above synchronize_rcu()
527	 * ensures the map is disconnected from the program we can assume no new
528	 * items will be added to the list.
529	 */
530	for_each_online_cpu(cpu) {
531		struct list_head *flush_list = per_cpu_ptr(cmap->flush_list, cpu);
532
533		while (!list_empty(flush_list))
534			cond_resched();
535	}
536
537	/* For cpu_map the remote CPUs can still be using the entries
538	 * (struct bpf_cpu_map_entry).
539	 */
540	for (i = 0; i < cmap->map.max_entries; i++) {
541		struct bpf_cpu_map_entry *rcpu;
542
543		rcpu = READ_ONCE(cmap->cpu_map[i]);
544		if (!rcpu)
545			continue;
546
547		/* bq flush and cleanup happens after RCU graze-period */
548		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
549	}
550	free_percpu(cmap->flush_list);
551	bpf_map_area_free(cmap->cpu_map);
552	kfree(cmap);
553}
554
555struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
556{
557	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
558	struct bpf_cpu_map_entry *rcpu;
559
560	if (key >= map->max_entries)
561		return NULL;
562
563	rcpu = READ_ONCE(cmap->cpu_map[key]);
564	return rcpu;
565}
566
567static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
568{
569	struct bpf_cpu_map_entry *rcpu =
570		__cpu_map_lookup_elem(map, *(u32 *)key);
571
572	return rcpu ? &rcpu->qsize : NULL;
573}
574
575static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
576{
577	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
578	u32 index = key ? *(u32 *)key : U32_MAX;
579	u32 *next = next_key;
580
581	if (index >= cmap->map.max_entries) {
582		*next = 0;
583		return 0;
584	}
585
586	if (index == cmap->map.max_entries - 1)
587		return -ENOENT;
588	*next = index + 1;
589	return 0;
590}
591
592const struct bpf_map_ops cpu_map_ops = {
593	.map_alloc		= cpu_map_alloc,
594	.map_free		= cpu_map_free,
595	.map_delete_elem	= cpu_map_delete_elem,
596	.map_update_elem	= cpu_map_update_elem,
597	.map_lookup_elem	= cpu_map_lookup_elem,
598	.map_get_next_key	= cpu_map_get_next_key,
599	.map_check_btf		= map_check_no_btf,
600};
601
602static int bq_flush_to_queue(struct xdp_bulk_queue *bq, bool in_napi_ctx)
603{
604	struct bpf_cpu_map_entry *rcpu = bq->obj;
605	unsigned int processed = 0, drops = 0;
606	const int to_cpu = rcpu->cpu;
607	struct ptr_ring *q;
608	int i;
609
610	if (unlikely(!bq->count))
611		return 0;
612
613	q = rcpu->queue;
614	spin_lock(&q->producer_lock);
615
616	for (i = 0; i < bq->count; i++) {
617		struct xdp_frame *xdpf = bq->q[i];
618		int err;
619
620		err = __ptr_ring_produce(q, xdpf);
621		if (err) {
622			drops++;
623			if (likely(in_napi_ctx))
624				xdp_return_frame_rx_napi(xdpf);
625			else
626				xdp_return_frame(xdpf);
627		}
628		processed++;
629	}
630	bq->count = 0;
631	spin_unlock(&q->producer_lock);
632
633	__list_del_clearprev(&bq->flush_node);
634
635	/* Feedback loop via tracepoints */
636	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
637	return 0;
638}
639
640/* Runs under RCU-read-side, plus in softirq under NAPI protection.
641 * Thus, safe percpu variable access.
642 */
643static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
644{
645	struct list_head *flush_list = this_cpu_ptr(rcpu->cmap->flush_list);
646	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
647
648	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
649		bq_flush_to_queue(bq, true);
650
651	/* Notice, xdp_buff/page MUST be queued here, long enough for
652	 * driver to code invoking us to finished, due to driver
653	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
654	 *
655	 * Thus, incoming xdp_frame is always queued here (else we race
656	 * with another CPU on page-refcnt and remaining driver code).
657	 * Queue time is very short, as driver will invoke flush
658	 * operation, when completing napi->poll call.
659	 */
660	bq->q[bq->count++] = xdpf;
661
662	if (!bq->flush_node.prev)
663		list_add(&bq->flush_node, flush_list);
664
665	return 0;
666}
667
668int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
669		    struct net_device *dev_rx)
670{
671	struct xdp_frame *xdpf;
672
673	xdpf = convert_to_xdp_frame(xdp);
674	if (unlikely(!xdpf))
675		return -EOVERFLOW;
676
677	/* Info needed when constructing SKB on remote CPU */
678	xdpf->dev_rx = dev_rx;
679
680	bq_enqueue(rcpu, xdpf);
681	return 0;
682}
683
684void __cpu_map_flush(struct bpf_map *map)
685{
686	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
687	struct list_head *flush_list = this_cpu_ptr(cmap->flush_list);
688	struct xdp_bulk_queue *bq, *tmp;
689
690	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
691		bq_flush_to_queue(bq, true);
692
693		/* If already running, costs spin_lock_irqsave + smb_mb */
694		wake_up_process(bq->obj->kthread);
695	}
696}