Loading...
1/* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47#include <linux/init.h>
48#include <asm/types.h>
49#include <linux/atomic.h>
50#include <linux/fs.h>
51#include <linux/namei.h>
52#include <linux/mm.h>
53#include <linux/export.h>
54#include <linux/slab.h>
55#include <linux/mount.h>
56#include <linux/socket.h>
57#include <linux/mqueue.h>
58#include <linux/audit.h>
59#include <linux/personality.h>
60#include <linux/time.h>
61#include <linux/netlink.h>
62#include <linux/compiler.h>
63#include <asm/unistd.h>
64#include <linux/security.h>
65#include <linux/list.h>
66#include <linux/binfmts.h>
67#include <linux/highmem.h>
68#include <linux/syscalls.h>
69#include <asm/syscall.h>
70#include <linux/capability.h>
71#include <linux/fs_struct.h>
72#include <linux/compat.h>
73#include <linux/ctype.h>
74#include <linux/string.h>
75#include <linux/uaccess.h>
76#include <linux/fsnotify_backend.h>
77#include <uapi/linux/limits.h>
78
79#include "audit.h"
80
81/* flags stating the success for a syscall */
82#define AUDITSC_INVALID 0
83#define AUDITSC_SUCCESS 1
84#define AUDITSC_FAILURE 2
85
86/* no execve audit message should be longer than this (userspace limits),
87 * see the note near the top of audit_log_execve_info() about this value */
88#define MAX_EXECVE_AUDIT_LEN 7500
89
90/* max length to print of cmdline/proctitle value during audit */
91#define MAX_PROCTITLE_AUDIT_LEN 128
92
93/* number of audit rules */
94int audit_n_rules;
95
96/* determines whether we collect data for signals sent */
97int audit_signals;
98
99struct audit_aux_data {
100 struct audit_aux_data *next;
101 int type;
102};
103
104#define AUDIT_AUX_IPCPERM 0
105
106/* Number of target pids per aux struct. */
107#define AUDIT_AUX_PIDS 16
108
109struct audit_aux_data_pids {
110 struct audit_aux_data d;
111 pid_t target_pid[AUDIT_AUX_PIDS];
112 kuid_t target_auid[AUDIT_AUX_PIDS];
113 kuid_t target_uid[AUDIT_AUX_PIDS];
114 unsigned int target_sessionid[AUDIT_AUX_PIDS];
115 u32 target_sid[AUDIT_AUX_PIDS];
116 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
117 int pid_count;
118};
119
120struct audit_aux_data_bprm_fcaps {
121 struct audit_aux_data d;
122 struct audit_cap_data fcap;
123 unsigned int fcap_ver;
124 struct audit_cap_data old_pcap;
125 struct audit_cap_data new_pcap;
126};
127
128struct audit_tree_refs {
129 struct audit_tree_refs *next;
130 struct audit_chunk *c[31];
131};
132
133static int audit_match_perm(struct audit_context *ctx, int mask)
134{
135 unsigned n;
136 if (unlikely(!ctx))
137 return 0;
138 n = ctx->major;
139
140 switch (audit_classify_syscall(ctx->arch, n)) {
141 case 0: /* native */
142 if ((mask & AUDIT_PERM_WRITE) &&
143 audit_match_class(AUDIT_CLASS_WRITE, n))
144 return 1;
145 if ((mask & AUDIT_PERM_READ) &&
146 audit_match_class(AUDIT_CLASS_READ, n))
147 return 1;
148 if ((mask & AUDIT_PERM_ATTR) &&
149 audit_match_class(AUDIT_CLASS_CHATTR, n))
150 return 1;
151 return 0;
152 case 1: /* 32bit on biarch */
153 if ((mask & AUDIT_PERM_WRITE) &&
154 audit_match_class(AUDIT_CLASS_WRITE_32, n))
155 return 1;
156 if ((mask & AUDIT_PERM_READ) &&
157 audit_match_class(AUDIT_CLASS_READ_32, n))
158 return 1;
159 if ((mask & AUDIT_PERM_ATTR) &&
160 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
161 return 1;
162 return 0;
163 case 2: /* open */
164 return mask & ACC_MODE(ctx->argv[1]);
165 case 3: /* openat */
166 return mask & ACC_MODE(ctx->argv[2]);
167 case 4: /* socketcall */
168 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
169 case 5: /* execve */
170 return mask & AUDIT_PERM_EXEC;
171 default:
172 return 0;
173 }
174}
175
176static int audit_match_filetype(struct audit_context *ctx, int val)
177{
178 struct audit_names *n;
179 umode_t mode = (umode_t)val;
180
181 if (unlikely(!ctx))
182 return 0;
183
184 list_for_each_entry(n, &ctx->names_list, list) {
185 if ((n->ino != AUDIT_INO_UNSET) &&
186 ((n->mode & S_IFMT) == mode))
187 return 1;
188 }
189
190 return 0;
191}
192
193/*
194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195 * ->first_trees points to its beginning, ->trees - to the current end of data.
196 * ->tree_count is the number of free entries in array pointed to by ->trees.
197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
199 * it's going to remain 1-element for almost any setup) until we free context itself.
200 * References in it _are_ dropped - at the same time we free/drop aux stuff.
201 */
202
203static void audit_set_auditable(struct audit_context *ctx)
204{
205 if (!ctx->prio) {
206 ctx->prio = 1;
207 ctx->current_state = AUDIT_RECORD_CONTEXT;
208 }
209}
210
211static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
212{
213 struct audit_tree_refs *p = ctx->trees;
214 int left = ctx->tree_count;
215 if (likely(left)) {
216 p->c[--left] = chunk;
217 ctx->tree_count = left;
218 return 1;
219 }
220 if (!p)
221 return 0;
222 p = p->next;
223 if (p) {
224 p->c[30] = chunk;
225 ctx->trees = p;
226 ctx->tree_count = 30;
227 return 1;
228 }
229 return 0;
230}
231
232static int grow_tree_refs(struct audit_context *ctx)
233{
234 struct audit_tree_refs *p = ctx->trees;
235 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
236 if (!ctx->trees) {
237 ctx->trees = p;
238 return 0;
239 }
240 if (p)
241 p->next = ctx->trees;
242 else
243 ctx->first_trees = ctx->trees;
244 ctx->tree_count = 31;
245 return 1;
246}
247
248static void unroll_tree_refs(struct audit_context *ctx,
249 struct audit_tree_refs *p, int count)
250{
251 struct audit_tree_refs *q;
252 int n;
253 if (!p) {
254 /* we started with empty chain */
255 p = ctx->first_trees;
256 count = 31;
257 /* if the very first allocation has failed, nothing to do */
258 if (!p)
259 return;
260 }
261 n = count;
262 for (q = p; q != ctx->trees; q = q->next, n = 31) {
263 while (n--) {
264 audit_put_chunk(q->c[n]);
265 q->c[n] = NULL;
266 }
267 }
268 while (n-- > ctx->tree_count) {
269 audit_put_chunk(q->c[n]);
270 q->c[n] = NULL;
271 }
272 ctx->trees = p;
273 ctx->tree_count = count;
274}
275
276static void free_tree_refs(struct audit_context *ctx)
277{
278 struct audit_tree_refs *p, *q;
279 for (p = ctx->first_trees; p; p = q) {
280 q = p->next;
281 kfree(p);
282 }
283}
284
285static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
286{
287 struct audit_tree_refs *p;
288 int n;
289 if (!tree)
290 return 0;
291 /* full ones */
292 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
293 for (n = 0; n < 31; n++)
294 if (audit_tree_match(p->c[n], tree))
295 return 1;
296 }
297 /* partial */
298 if (p) {
299 for (n = ctx->tree_count; n < 31; n++)
300 if (audit_tree_match(p->c[n], tree))
301 return 1;
302 }
303 return 0;
304}
305
306static int audit_compare_uid(kuid_t uid,
307 struct audit_names *name,
308 struct audit_field *f,
309 struct audit_context *ctx)
310{
311 struct audit_names *n;
312 int rc;
313
314 if (name) {
315 rc = audit_uid_comparator(uid, f->op, name->uid);
316 if (rc)
317 return rc;
318 }
319
320 if (ctx) {
321 list_for_each_entry(n, &ctx->names_list, list) {
322 rc = audit_uid_comparator(uid, f->op, n->uid);
323 if (rc)
324 return rc;
325 }
326 }
327 return 0;
328}
329
330static int audit_compare_gid(kgid_t gid,
331 struct audit_names *name,
332 struct audit_field *f,
333 struct audit_context *ctx)
334{
335 struct audit_names *n;
336 int rc;
337
338 if (name) {
339 rc = audit_gid_comparator(gid, f->op, name->gid);
340 if (rc)
341 return rc;
342 }
343
344 if (ctx) {
345 list_for_each_entry(n, &ctx->names_list, list) {
346 rc = audit_gid_comparator(gid, f->op, n->gid);
347 if (rc)
348 return rc;
349 }
350 }
351 return 0;
352}
353
354static int audit_field_compare(struct task_struct *tsk,
355 const struct cred *cred,
356 struct audit_field *f,
357 struct audit_context *ctx,
358 struct audit_names *name)
359{
360 switch (f->val) {
361 /* process to file object comparisons */
362 case AUDIT_COMPARE_UID_TO_OBJ_UID:
363 return audit_compare_uid(cred->uid, name, f, ctx);
364 case AUDIT_COMPARE_GID_TO_OBJ_GID:
365 return audit_compare_gid(cred->gid, name, f, ctx);
366 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
367 return audit_compare_uid(cred->euid, name, f, ctx);
368 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
369 return audit_compare_gid(cred->egid, name, f, ctx);
370 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
371 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
372 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
373 return audit_compare_uid(cred->suid, name, f, ctx);
374 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
375 return audit_compare_gid(cred->sgid, name, f, ctx);
376 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
377 return audit_compare_uid(cred->fsuid, name, f, ctx);
378 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
379 return audit_compare_gid(cred->fsgid, name, f, ctx);
380 /* uid comparisons */
381 case AUDIT_COMPARE_UID_TO_AUID:
382 return audit_uid_comparator(cred->uid, f->op,
383 audit_get_loginuid(tsk));
384 case AUDIT_COMPARE_UID_TO_EUID:
385 return audit_uid_comparator(cred->uid, f->op, cred->euid);
386 case AUDIT_COMPARE_UID_TO_SUID:
387 return audit_uid_comparator(cred->uid, f->op, cred->suid);
388 case AUDIT_COMPARE_UID_TO_FSUID:
389 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
390 /* auid comparisons */
391 case AUDIT_COMPARE_AUID_TO_EUID:
392 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
393 cred->euid);
394 case AUDIT_COMPARE_AUID_TO_SUID:
395 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
396 cred->suid);
397 case AUDIT_COMPARE_AUID_TO_FSUID:
398 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
399 cred->fsuid);
400 /* euid comparisons */
401 case AUDIT_COMPARE_EUID_TO_SUID:
402 return audit_uid_comparator(cred->euid, f->op, cred->suid);
403 case AUDIT_COMPARE_EUID_TO_FSUID:
404 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
405 /* suid comparisons */
406 case AUDIT_COMPARE_SUID_TO_FSUID:
407 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
408 /* gid comparisons */
409 case AUDIT_COMPARE_GID_TO_EGID:
410 return audit_gid_comparator(cred->gid, f->op, cred->egid);
411 case AUDIT_COMPARE_GID_TO_SGID:
412 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
413 case AUDIT_COMPARE_GID_TO_FSGID:
414 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
415 /* egid comparisons */
416 case AUDIT_COMPARE_EGID_TO_SGID:
417 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
418 case AUDIT_COMPARE_EGID_TO_FSGID:
419 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
420 /* sgid comparison */
421 case AUDIT_COMPARE_SGID_TO_FSGID:
422 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
423 default:
424 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
425 return 0;
426 }
427 return 0;
428}
429
430/* Determine if any context name data matches a rule's watch data */
431/* Compare a task_struct with an audit_rule. Return 1 on match, 0
432 * otherwise.
433 *
434 * If task_creation is true, this is an explicit indication that we are
435 * filtering a task rule at task creation time. This and tsk == current are
436 * the only situations where tsk->cred may be accessed without an rcu read lock.
437 */
438static int audit_filter_rules(struct task_struct *tsk,
439 struct audit_krule *rule,
440 struct audit_context *ctx,
441 struct audit_names *name,
442 enum audit_state *state,
443 bool task_creation)
444{
445 const struct cred *cred;
446 int i, need_sid = 1;
447 u32 sid;
448 unsigned int sessionid;
449
450 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
451
452 for (i = 0; i < rule->field_count; i++) {
453 struct audit_field *f = &rule->fields[i];
454 struct audit_names *n;
455 int result = 0;
456 pid_t pid;
457
458 switch (f->type) {
459 case AUDIT_PID:
460 pid = task_tgid_nr(tsk);
461 result = audit_comparator(pid, f->op, f->val);
462 break;
463 case AUDIT_PPID:
464 if (ctx) {
465 if (!ctx->ppid)
466 ctx->ppid = task_ppid_nr(tsk);
467 result = audit_comparator(ctx->ppid, f->op, f->val);
468 }
469 break;
470 case AUDIT_EXE:
471 result = audit_exe_compare(tsk, rule->exe);
472 if (f->op == Audit_not_equal)
473 result = !result;
474 break;
475 case AUDIT_UID:
476 result = audit_uid_comparator(cred->uid, f->op, f->uid);
477 break;
478 case AUDIT_EUID:
479 result = audit_uid_comparator(cred->euid, f->op, f->uid);
480 break;
481 case AUDIT_SUID:
482 result = audit_uid_comparator(cred->suid, f->op, f->uid);
483 break;
484 case AUDIT_FSUID:
485 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
486 break;
487 case AUDIT_GID:
488 result = audit_gid_comparator(cred->gid, f->op, f->gid);
489 if (f->op == Audit_equal) {
490 if (!result)
491 result = groups_search(cred->group_info, f->gid);
492 } else if (f->op == Audit_not_equal) {
493 if (result)
494 result = !groups_search(cred->group_info, f->gid);
495 }
496 break;
497 case AUDIT_EGID:
498 result = audit_gid_comparator(cred->egid, f->op, f->gid);
499 if (f->op == Audit_equal) {
500 if (!result)
501 result = groups_search(cred->group_info, f->gid);
502 } else if (f->op == Audit_not_equal) {
503 if (result)
504 result = !groups_search(cred->group_info, f->gid);
505 }
506 break;
507 case AUDIT_SGID:
508 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
509 break;
510 case AUDIT_FSGID:
511 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
512 break;
513 case AUDIT_SESSIONID:
514 sessionid = audit_get_sessionid(tsk);
515 result = audit_comparator(sessionid, f->op, f->val);
516 break;
517 case AUDIT_PERS:
518 result = audit_comparator(tsk->personality, f->op, f->val);
519 break;
520 case AUDIT_ARCH:
521 if (ctx)
522 result = audit_comparator(ctx->arch, f->op, f->val);
523 break;
524
525 case AUDIT_EXIT:
526 if (ctx && ctx->return_valid)
527 result = audit_comparator(ctx->return_code, f->op, f->val);
528 break;
529 case AUDIT_SUCCESS:
530 if (ctx && ctx->return_valid) {
531 if (f->val)
532 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
533 else
534 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
535 }
536 break;
537 case AUDIT_DEVMAJOR:
538 if (name) {
539 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
540 audit_comparator(MAJOR(name->rdev), f->op, f->val))
541 ++result;
542 } else if (ctx) {
543 list_for_each_entry(n, &ctx->names_list, list) {
544 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
545 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
546 ++result;
547 break;
548 }
549 }
550 }
551 break;
552 case AUDIT_DEVMINOR:
553 if (name) {
554 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
555 audit_comparator(MINOR(name->rdev), f->op, f->val))
556 ++result;
557 } else if (ctx) {
558 list_for_each_entry(n, &ctx->names_list, list) {
559 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
560 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
561 ++result;
562 break;
563 }
564 }
565 }
566 break;
567 case AUDIT_INODE:
568 if (name)
569 result = audit_comparator(name->ino, f->op, f->val);
570 else if (ctx) {
571 list_for_each_entry(n, &ctx->names_list, list) {
572 if (audit_comparator(n->ino, f->op, f->val)) {
573 ++result;
574 break;
575 }
576 }
577 }
578 break;
579 case AUDIT_OBJ_UID:
580 if (name) {
581 result = audit_uid_comparator(name->uid, f->op, f->uid);
582 } else if (ctx) {
583 list_for_each_entry(n, &ctx->names_list, list) {
584 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
585 ++result;
586 break;
587 }
588 }
589 }
590 break;
591 case AUDIT_OBJ_GID:
592 if (name) {
593 result = audit_gid_comparator(name->gid, f->op, f->gid);
594 } else if (ctx) {
595 list_for_each_entry(n, &ctx->names_list, list) {
596 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
597 ++result;
598 break;
599 }
600 }
601 }
602 break;
603 case AUDIT_WATCH:
604 if (name) {
605 result = audit_watch_compare(rule->watch,
606 name->ino,
607 name->dev);
608 if (f->op == Audit_not_equal)
609 result = !result;
610 }
611 break;
612 case AUDIT_DIR:
613 if (ctx) {
614 result = match_tree_refs(ctx, rule->tree);
615 if (f->op == Audit_not_equal)
616 result = !result;
617 }
618 break;
619 case AUDIT_LOGINUID:
620 result = audit_uid_comparator(audit_get_loginuid(tsk),
621 f->op, f->uid);
622 break;
623 case AUDIT_LOGINUID_SET:
624 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
625 break;
626 case AUDIT_SADDR_FAM:
627 if (ctx->sockaddr)
628 result = audit_comparator(ctx->sockaddr->ss_family,
629 f->op, f->val);
630 break;
631 case AUDIT_SUBJ_USER:
632 case AUDIT_SUBJ_ROLE:
633 case AUDIT_SUBJ_TYPE:
634 case AUDIT_SUBJ_SEN:
635 case AUDIT_SUBJ_CLR:
636 /* NOTE: this may return negative values indicating
637 a temporary error. We simply treat this as a
638 match for now to avoid losing information that
639 may be wanted. An error message will also be
640 logged upon error */
641 if (f->lsm_rule) {
642 if (need_sid) {
643 security_task_getsecid(tsk, &sid);
644 need_sid = 0;
645 }
646 result = security_audit_rule_match(sid, f->type,
647 f->op,
648 f->lsm_rule);
649 }
650 break;
651 case AUDIT_OBJ_USER:
652 case AUDIT_OBJ_ROLE:
653 case AUDIT_OBJ_TYPE:
654 case AUDIT_OBJ_LEV_LOW:
655 case AUDIT_OBJ_LEV_HIGH:
656 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
657 also applies here */
658 if (f->lsm_rule) {
659 /* Find files that match */
660 if (name) {
661 result = security_audit_rule_match(
662 name->osid,
663 f->type,
664 f->op,
665 f->lsm_rule);
666 } else if (ctx) {
667 list_for_each_entry(n, &ctx->names_list, list) {
668 if (security_audit_rule_match(
669 n->osid,
670 f->type,
671 f->op,
672 f->lsm_rule)) {
673 ++result;
674 break;
675 }
676 }
677 }
678 /* Find ipc objects that match */
679 if (!ctx || ctx->type != AUDIT_IPC)
680 break;
681 if (security_audit_rule_match(ctx->ipc.osid,
682 f->type, f->op,
683 f->lsm_rule))
684 ++result;
685 }
686 break;
687 case AUDIT_ARG0:
688 case AUDIT_ARG1:
689 case AUDIT_ARG2:
690 case AUDIT_ARG3:
691 if (ctx)
692 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
693 break;
694 case AUDIT_FILTERKEY:
695 /* ignore this field for filtering */
696 result = 1;
697 break;
698 case AUDIT_PERM:
699 result = audit_match_perm(ctx, f->val);
700 if (f->op == Audit_not_equal)
701 result = !result;
702 break;
703 case AUDIT_FILETYPE:
704 result = audit_match_filetype(ctx, f->val);
705 if (f->op == Audit_not_equal)
706 result = !result;
707 break;
708 case AUDIT_FIELD_COMPARE:
709 result = audit_field_compare(tsk, cred, f, ctx, name);
710 break;
711 }
712 if (!result)
713 return 0;
714 }
715
716 if (ctx) {
717 if (rule->prio <= ctx->prio)
718 return 0;
719 if (rule->filterkey) {
720 kfree(ctx->filterkey);
721 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
722 }
723 ctx->prio = rule->prio;
724 }
725 switch (rule->action) {
726 case AUDIT_NEVER:
727 *state = AUDIT_DISABLED;
728 break;
729 case AUDIT_ALWAYS:
730 *state = AUDIT_RECORD_CONTEXT;
731 break;
732 }
733 return 1;
734}
735
736/* At process creation time, we can determine if system-call auditing is
737 * completely disabled for this task. Since we only have the task
738 * structure at this point, we can only check uid and gid.
739 */
740static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
741{
742 struct audit_entry *e;
743 enum audit_state state;
744
745 rcu_read_lock();
746 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
747 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
748 &state, true)) {
749 if (state == AUDIT_RECORD_CONTEXT)
750 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
751 rcu_read_unlock();
752 return state;
753 }
754 }
755 rcu_read_unlock();
756 return AUDIT_BUILD_CONTEXT;
757}
758
759static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
760{
761 int word, bit;
762
763 if (val > 0xffffffff)
764 return false;
765
766 word = AUDIT_WORD(val);
767 if (word >= AUDIT_BITMASK_SIZE)
768 return false;
769
770 bit = AUDIT_BIT(val);
771
772 return rule->mask[word] & bit;
773}
774
775/* At syscall entry and exit time, this filter is called if the
776 * audit_state is not low enough that auditing cannot take place, but is
777 * also not high enough that we already know we have to write an audit
778 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
779 */
780static enum audit_state audit_filter_syscall(struct task_struct *tsk,
781 struct audit_context *ctx,
782 struct list_head *list)
783{
784 struct audit_entry *e;
785 enum audit_state state;
786
787 if (auditd_test_task(tsk))
788 return AUDIT_DISABLED;
789
790 rcu_read_lock();
791 list_for_each_entry_rcu(e, list, list) {
792 if (audit_in_mask(&e->rule, ctx->major) &&
793 audit_filter_rules(tsk, &e->rule, ctx, NULL,
794 &state, false)) {
795 rcu_read_unlock();
796 ctx->current_state = state;
797 return state;
798 }
799 }
800 rcu_read_unlock();
801 return AUDIT_BUILD_CONTEXT;
802}
803
804/*
805 * Given an audit_name check the inode hash table to see if they match.
806 * Called holding the rcu read lock to protect the use of audit_inode_hash
807 */
808static int audit_filter_inode_name(struct task_struct *tsk,
809 struct audit_names *n,
810 struct audit_context *ctx) {
811 int h = audit_hash_ino((u32)n->ino);
812 struct list_head *list = &audit_inode_hash[h];
813 struct audit_entry *e;
814 enum audit_state state;
815
816 list_for_each_entry_rcu(e, list, list) {
817 if (audit_in_mask(&e->rule, ctx->major) &&
818 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
819 ctx->current_state = state;
820 return 1;
821 }
822 }
823 return 0;
824}
825
826/* At syscall exit time, this filter is called if any audit_names have been
827 * collected during syscall processing. We only check rules in sublists at hash
828 * buckets applicable to the inode numbers in audit_names.
829 * Regarding audit_state, same rules apply as for audit_filter_syscall().
830 */
831void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
832{
833 struct audit_names *n;
834
835 if (auditd_test_task(tsk))
836 return;
837
838 rcu_read_lock();
839
840 list_for_each_entry(n, &ctx->names_list, list) {
841 if (audit_filter_inode_name(tsk, n, ctx))
842 break;
843 }
844 rcu_read_unlock();
845}
846
847static inline void audit_proctitle_free(struct audit_context *context)
848{
849 kfree(context->proctitle.value);
850 context->proctitle.value = NULL;
851 context->proctitle.len = 0;
852}
853
854static inline void audit_free_module(struct audit_context *context)
855{
856 if (context->type == AUDIT_KERN_MODULE) {
857 kfree(context->module.name);
858 context->module.name = NULL;
859 }
860}
861static inline void audit_free_names(struct audit_context *context)
862{
863 struct audit_names *n, *next;
864
865 list_for_each_entry_safe(n, next, &context->names_list, list) {
866 list_del(&n->list);
867 if (n->name)
868 putname(n->name);
869 if (n->should_free)
870 kfree(n);
871 }
872 context->name_count = 0;
873 path_put(&context->pwd);
874 context->pwd.dentry = NULL;
875 context->pwd.mnt = NULL;
876}
877
878static inline void audit_free_aux(struct audit_context *context)
879{
880 struct audit_aux_data *aux;
881
882 while ((aux = context->aux)) {
883 context->aux = aux->next;
884 kfree(aux);
885 }
886 while ((aux = context->aux_pids)) {
887 context->aux_pids = aux->next;
888 kfree(aux);
889 }
890}
891
892static inline struct audit_context *audit_alloc_context(enum audit_state state)
893{
894 struct audit_context *context;
895
896 context = kzalloc(sizeof(*context), GFP_KERNEL);
897 if (!context)
898 return NULL;
899 context->state = state;
900 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
901 INIT_LIST_HEAD(&context->killed_trees);
902 INIT_LIST_HEAD(&context->names_list);
903 return context;
904}
905
906/**
907 * audit_alloc - allocate an audit context block for a task
908 * @tsk: task
909 *
910 * Filter on the task information and allocate a per-task audit context
911 * if necessary. Doing so turns on system call auditing for the
912 * specified task. This is called from copy_process, so no lock is
913 * needed.
914 */
915int audit_alloc(struct task_struct *tsk)
916{
917 struct audit_context *context;
918 enum audit_state state;
919 char *key = NULL;
920
921 if (likely(!audit_ever_enabled))
922 return 0; /* Return if not auditing. */
923
924 state = audit_filter_task(tsk, &key);
925 if (state == AUDIT_DISABLED) {
926 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
927 return 0;
928 }
929
930 if (!(context = audit_alloc_context(state))) {
931 kfree(key);
932 audit_log_lost("out of memory in audit_alloc");
933 return -ENOMEM;
934 }
935 context->filterkey = key;
936
937 audit_set_context(tsk, context);
938 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
939 return 0;
940}
941
942static inline void audit_free_context(struct audit_context *context)
943{
944 audit_free_module(context);
945 audit_free_names(context);
946 unroll_tree_refs(context, NULL, 0);
947 free_tree_refs(context);
948 audit_free_aux(context);
949 kfree(context->filterkey);
950 kfree(context->sockaddr);
951 audit_proctitle_free(context);
952 kfree(context);
953}
954
955static int audit_log_pid_context(struct audit_context *context, pid_t pid,
956 kuid_t auid, kuid_t uid, unsigned int sessionid,
957 u32 sid, char *comm)
958{
959 struct audit_buffer *ab;
960 char *ctx = NULL;
961 u32 len;
962 int rc = 0;
963
964 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
965 if (!ab)
966 return rc;
967
968 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
969 from_kuid(&init_user_ns, auid),
970 from_kuid(&init_user_ns, uid), sessionid);
971 if (sid) {
972 if (security_secid_to_secctx(sid, &ctx, &len)) {
973 audit_log_format(ab, " obj=(none)");
974 rc = 1;
975 } else {
976 audit_log_format(ab, " obj=%s", ctx);
977 security_release_secctx(ctx, len);
978 }
979 }
980 audit_log_format(ab, " ocomm=");
981 audit_log_untrustedstring(ab, comm);
982 audit_log_end(ab);
983
984 return rc;
985}
986
987static void audit_log_execve_info(struct audit_context *context,
988 struct audit_buffer **ab)
989{
990 long len_max;
991 long len_rem;
992 long len_full;
993 long len_buf;
994 long len_abuf = 0;
995 long len_tmp;
996 bool require_data;
997 bool encode;
998 unsigned int iter;
999 unsigned int arg;
1000 char *buf_head;
1001 char *buf;
1002 const char __user *p = (const char __user *)current->mm->arg_start;
1003
1004 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1005 * data we put in the audit record for this argument (see the
1006 * code below) ... at this point in time 96 is plenty */
1007 char abuf[96];
1008
1009 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1010 * current value of 7500 is not as important as the fact that it
1011 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1012 * room if we go over a little bit in the logging below */
1013 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1014 len_max = MAX_EXECVE_AUDIT_LEN;
1015
1016 /* scratch buffer to hold the userspace args */
1017 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1018 if (!buf_head) {
1019 audit_panic("out of memory for argv string");
1020 return;
1021 }
1022 buf = buf_head;
1023
1024 audit_log_format(*ab, "argc=%d", context->execve.argc);
1025
1026 len_rem = len_max;
1027 len_buf = 0;
1028 len_full = 0;
1029 require_data = true;
1030 encode = false;
1031 iter = 0;
1032 arg = 0;
1033 do {
1034 /* NOTE: we don't ever want to trust this value for anything
1035 * serious, but the audit record format insists we
1036 * provide an argument length for really long arguments,
1037 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1038 * to use strncpy_from_user() to obtain this value for
1039 * recording in the log, although we don't use it
1040 * anywhere here to avoid a double-fetch problem */
1041 if (len_full == 0)
1042 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1043
1044 /* read more data from userspace */
1045 if (require_data) {
1046 /* can we make more room in the buffer? */
1047 if (buf != buf_head) {
1048 memmove(buf_head, buf, len_buf);
1049 buf = buf_head;
1050 }
1051
1052 /* fetch as much as we can of the argument */
1053 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1054 len_max - len_buf);
1055 if (len_tmp == -EFAULT) {
1056 /* unable to copy from userspace */
1057 send_sig(SIGKILL, current, 0);
1058 goto out;
1059 } else if (len_tmp == (len_max - len_buf)) {
1060 /* buffer is not large enough */
1061 require_data = true;
1062 /* NOTE: if we are going to span multiple
1063 * buffers force the encoding so we stand
1064 * a chance at a sane len_full value and
1065 * consistent record encoding */
1066 encode = true;
1067 len_full = len_full * 2;
1068 p += len_tmp;
1069 } else {
1070 require_data = false;
1071 if (!encode)
1072 encode = audit_string_contains_control(
1073 buf, len_tmp);
1074 /* try to use a trusted value for len_full */
1075 if (len_full < len_max)
1076 len_full = (encode ?
1077 len_tmp * 2 : len_tmp);
1078 p += len_tmp + 1;
1079 }
1080 len_buf += len_tmp;
1081 buf_head[len_buf] = '\0';
1082
1083 /* length of the buffer in the audit record? */
1084 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1085 }
1086
1087 /* write as much as we can to the audit log */
1088 if (len_buf >= 0) {
1089 /* NOTE: some magic numbers here - basically if we
1090 * can't fit a reasonable amount of data into the
1091 * existing audit buffer, flush it and start with
1092 * a new buffer */
1093 if ((sizeof(abuf) + 8) > len_rem) {
1094 len_rem = len_max;
1095 audit_log_end(*ab);
1096 *ab = audit_log_start(context,
1097 GFP_KERNEL, AUDIT_EXECVE);
1098 if (!*ab)
1099 goto out;
1100 }
1101
1102 /* create the non-arg portion of the arg record */
1103 len_tmp = 0;
1104 if (require_data || (iter > 0) ||
1105 ((len_abuf + sizeof(abuf)) > len_rem)) {
1106 if (iter == 0) {
1107 len_tmp += snprintf(&abuf[len_tmp],
1108 sizeof(abuf) - len_tmp,
1109 " a%d_len=%lu",
1110 arg, len_full);
1111 }
1112 len_tmp += snprintf(&abuf[len_tmp],
1113 sizeof(abuf) - len_tmp,
1114 " a%d[%d]=", arg, iter++);
1115 } else
1116 len_tmp += snprintf(&abuf[len_tmp],
1117 sizeof(abuf) - len_tmp,
1118 " a%d=", arg);
1119 WARN_ON(len_tmp >= sizeof(abuf));
1120 abuf[sizeof(abuf) - 1] = '\0';
1121
1122 /* log the arg in the audit record */
1123 audit_log_format(*ab, "%s", abuf);
1124 len_rem -= len_tmp;
1125 len_tmp = len_buf;
1126 if (encode) {
1127 if (len_abuf > len_rem)
1128 len_tmp = len_rem / 2; /* encoding */
1129 audit_log_n_hex(*ab, buf, len_tmp);
1130 len_rem -= len_tmp * 2;
1131 len_abuf -= len_tmp * 2;
1132 } else {
1133 if (len_abuf > len_rem)
1134 len_tmp = len_rem - 2; /* quotes */
1135 audit_log_n_string(*ab, buf, len_tmp);
1136 len_rem -= len_tmp + 2;
1137 /* don't subtract the "2" because we still need
1138 * to add quotes to the remaining string */
1139 len_abuf -= len_tmp;
1140 }
1141 len_buf -= len_tmp;
1142 buf += len_tmp;
1143 }
1144
1145 /* ready to move to the next argument? */
1146 if ((len_buf == 0) && !require_data) {
1147 arg++;
1148 iter = 0;
1149 len_full = 0;
1150 require_data = true;
1151 encode = false;
1152 }
1153 } while (arg < context->execve.argc);
1154
1155 /* NOTE: the caller handles the final audit_log_end() call */
1156
1157out:
1158 kfree(buf_head);
1159}
1160
1161static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1162 kernel_cap_t *cap)
1163{
1164 int i;
1165
1166 if (cap_isclear(*cap)) {
1167 audit_log_format(ab, " %s=0", prefix);
1168 return;
1169 }
1170 audit_log_format(ab, " %s=", prefix);
1171 CAP_FOR_EACH_U32(i)
1172 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1173}
1174
1175static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1176{
1177 if (name->fcap_ver == -1) {
1178 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1179 return;
1180 }
1181 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1182 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1183 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1184 name->fcap.fE, name->fcap_ver,
1185 from_kuid(&init_user_ns, name->fcap.rootid));
1186}
1187
1188static void show_special(struct audit_context *context, int *call_panic)
1189{
1190 struct audit_buffer *ab;
1191 int i;
1192
1193 ab = audit_log_start(context, GFP_KERNEL, context->type);
1194 if (!ab)
1195 return;
1196
1197 switch (context->type) {
1198 case AUDIT_SOCKETCALL: {
1199 int nargs = context->socketcall.nargs;
1200 audit_log_format(ab, "nargs=%d", nargs);
1201 for (i = 0; i < nargs; i++)
1202 audit_log_format(ab, " a%d=%lx", i,
1203 context->socketcall.args[i]);
1204 break; }
1205 case AUDIT_IPC: {
1206 u32 osid = context->ipc.osid;
1207
1208 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1209 from_kuid(&init_user_ns, context->ipc.uid),
1210 from_kgid(&init_user_ns, context->ipc.gid),
1211 context->ipc.mode);
1212 if (osid) {
1213 char *ctx = NULL;
1214 u32 len;
1215 if (security_secid_to_secctx(osid, &ctx, &len)) {
1216 audit_log_format(ab, " osid=%u", osid);
1217 *call_panic = 1;
1218 } else {
1219 audit_log_format(ab, " obj=%s", ctx);
1220 security_release_secctx(ctx, len);
1221 }
1222 }
1223 if (context->ipc.has_perm) {
1224 audit_log_end(ab);
1225 ab = audit_log_start(context, GFP_KERNEL,
1226 AUDIT_IPC_SET_PERM);
1227 if (unlikely(!ab))
1228 return;
1229 audit_log_format(ab,
1230 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1231 context->ipc.qbytes,
1232 context->ipc.perm_uid,
1233 context->ipc.perm_gid,
1234 context->ipc.perm_mode);
1235 }
1236 break; }
1237 case AUDIT_MQ_OPEN:
1238 audit_log_format(ab,
1239 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1240 "mq_msgsize=%ld mq_curmsgs=%ld",
1241 context->mq_open.oflag, context->mq_open.mode,
1242 context->mq_open.attr.mq_flags,
1243 context->mq_open.attr.mq_maxmsg,
1244 context->mq_open.attr.mq_msgsize,
1245 context->mq_open.attr.mq_curmsgs);
1246 break;
1247 case AUDIT_MQ_SENDRECV:
1248 audit_log_format(ab,
1249 "mqdes=%d msg_len=%zd msg_prio=%u "
1250 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1251 context->mq_sendrecv.mqdes,
1252 context->mq_sendrecv.msg_len,
1253 context->mq_sendrecv.msg_prio,
1254 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1255 context->mq_sendrecv.abs_timeout.tv_nsec);
1256 break;
1257 case AUDIT_MQ_NOTIFY:
1258 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1259 context->mq_notify.mqdes,
1260 context->mq_notify.sigev_signo);
1261 break;
1262 case AUDIT_MQ_GETSETATTR: {
1263 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1264 audit_log_format(ab,
1265 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1266 "mq_curmsgs=%ld ",
1267 context->mq_getsetattr.mqdes,
1268 attr->mq_flags, attr->mq_maxmsg,
1269 attr->mq_msgsize, attr->mq_curmsgs);
1270 break; }
1271 case AUDIT_CAPSET:
1272 audit_log_format(ab, "pid=%d", context->capset.pid);
1273 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1274 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1275 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1276 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1277 break;
1278 case AUDIT_MMAP:
1279 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1280 context->mmap.flags);
1281 break;
1282 case AUDIT_EXECVE:
1283 audit_log_execve_info(context, &ab);
1284 break;
1285 case AUDIT_KERN_MODULE:
1286 audit_log_format(ab, "name=");
1287 if (context->module.name) {
1288 audit_log_untrustedstring(ab, context->module.name);
1289 } else
1290 audit_log_format(ab, "(null)");
1291
1292 break;
1293 }
1294 audit_log_end(ab);
1295}
1296
1297static inline int audit_proctitle_rtrim(char *proctitle, int len)
1298{
1299 char *end = proctitle + len - 1;
1300 while (end > proctitle && !isprint(*end))
1301 end--;
1302
1303 /* catch the case where proctitle is only 1 non-print character */
1304 len = end - proctitle + 1;
1305 len -= isprint(proctitle[len-1]) == 0;
1306 return len;
1307}
1308
1309/*
1310 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1311 * @context: audit_context for the task
1312 * @n: audit_names structure with reportable details
1313 * @path: optional path to report instead of audit_names->name
1314 * @record_num: record number to report when handling a list of names
1315 * @call_panic: optional pointer to int that will be updated if secid fails
1316 */
1317static void audit_log_name(struct audit_context *context, struct audit_names *n,
1318 const struct path *path, int record_num, int *call_panic)
1319{
1320 struct audit_buffer *ab;
1321
1322 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1323 if (!ab)
1324 return;
1325
1326 audit_log_format(ab, "item=%d", record_num);
1327
1328 if (path)
1329 audit_log_d_path(ab, " name=", path);
1330 else if (n->name) {
1331 switch (n->name_len) {
1332 case AUDIT_NAME_FULL:
1333 /* log the full path */
1334 audit_log_format(ab, " name=");
1335 audit_log_untrustedstring(ab, n->name->name);
1336 break;
1337 case 0:
1338 /* name was specified as a relative path and the
1339 * directory component is the cwd
1340 */
1341 audit_log_d_path(ab, " name=", &context->pwd);
1342 break;
1343 default:
1344 /* log the name's directory component */
1345 audit_log_format(ab, " name=");
1346 audit_log_n_untrustedstring(ab, n->name->name,
1347 n->name_len);
1348 }
1349 } else
1350 audit_log_format(ab, " name=(null)");
1351
1352 if (n->ino != AUDIT_INO_UNSET)
1353 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1354 n->ino,
1355 MAJOR(n->dev),
1356 MINOR(n->dev),
1357 n->mode,
1358 from_kuid(&init_user_ns, n->uid),
1359 from_kgid(&init_user_ns, n->gid),
1360 MAJOR(n->rdev),
1361 MINOR(n->rdev));
1362 if (n->osid != 0) {
1363 char *ctx = NULL;
1364 u32 len;
1365
1366 if (security_secid_to_secctx(
1367 n->osid, &ctx, &len)) {
1368 audit_log_format(ab, " osid=%u", n->osid);
1369 if (call_panic)
1370 *call_panic = 2;
1371 } else {
1372 audit_log_format(ab, " obj=%s", ctx);
1373 security_release_secctx(ctx, len);
1374 }
1375 }
1376
1377 /* log the audit_names record type */
1378 switch (n->type) {
1379 case AUDIT_TYPE_NORMAL:
1380 audit_log_format(ab, " nametype=NORMAL");
1381 break;
1382 case AUDIT_TYPE_PARENT:
1383 audit_log_format(ab, " nametype=PARENT");
1384 break;
1385 case AUDIT_TYPE_CHILD_DELETE:
1386 audit_log_format(ab, " nametype=DELETE");
1387 break;
1388 case AUDIT_TYPE_CHILD_CREATE:
1389 audit_log_format(ab, " nametype=CREATE");
1390 break;
1391 default:
1392 audit_log_format(ab, " nametype=UNKNOWN");
1393 break;
1394 }
1395
1396 audit_log_fcaps(ab, n);
1397 audit_log_end(ab);
1398}
1399
1400static void audit_log_proctitle(void)
1401{
1402 int res;
1403 char *buf;
1404 char *msg = "(null)";
1405 int len = strlen(msg);
1406 struct audit_context *context = audit_context();
1407 struct audit_buffer *ab;
1408
1409 if (!context || context->dummy)
1410 return;
1411
1412 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1413 if (!ab)
1414 return; /* audit_panic or being filtered */
1415
1416 audit_log_format(ab, "proctitle=");
1417
1418 /* Not cached */
1419 if (!context->proctitle.value) {
1420 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1421 if (!buf)
1422 goto out;
1423 /* Historically called this from procfs naming */
1424 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1425 if (res == 0) {
1426 kfree(buf);
1427 goto out;
1428 }
1429 res = audit_proctitle_rtrim(buf, res);
1430 if (res == 0) {
1431 kfree(buf);
1432 goto out;
1433 }
1434 context->proctitle.value = buf;
1435 context->proctitle.len = res;
1436 }
1437 msg = context->proctitle.value;
1438 len = context->proctitle.len;
1439out:
1440 audit_log_n_untrustedstring(ab, msg, len);
1441 audit_log_end(ab);
1442}
1443
1444static void audit_log_exit(void)
1445{
1446 int i, call_panic = 0;
1447 struct audit_context *context = audit_context();
1448 struct audit_buffer *ab;
1449 struct audit_aux_data *aux;
1450 struct audit_names *n;
1451
1452 context->personality = current->personality;
1453
1454 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1455 if (!ab)
1456 return; /* audit_panic has been called */
1457 audit_log_format(ab, "arch=%x syscall=%d",
1458 context->arch, context->major);
1459 if (context->personality != PER_LINUX)
1460 audit_log_format(ab, " per=%lx", context->personality);
1461 if (context->return_valid)
1462 audit_log_format(ab, " success=%s exit=%ld",
1463 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1464 context->return_code);
1465
1466 audit_log_format(ab,
1467 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1468 context->argv[0],
1469 context->argv[1],
1470 context->argv[2],
1471 context->argv[3],
1472 context->name_count);
1473
1474 audit_log_task_info(ab);
1475 audit_log_key(ab, context->filterkey);
1476 audit_log_end(ab);
1477
1478 for (aux = context->aux; aux; aux = aux->next) {
1479
1480 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1481 if (!ab)
1482 continue; /* audit_panic has been called */
1483
1484 switch (aux->type) {
1485
1486 case AUDIT_BPRM_FCAPS: {
1487 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1488 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1489 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1490 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1491 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1492 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1493 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1494 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1495 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1496 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1497 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1498 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1499 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1500 audit_log_format(ab, " frootid=%d",
1501 from_kuid(&init_user_ns,
1502 axs->fcap.rootid));
1503 break; }
1504
1505 }
1506 audit_log_end(ab);
1507 }
1508
1509 if (context->type)
1510 show_special(context, &call_panic);
1511
1512 if (context->fds[0] >= 0) {
1513 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1514 if (ab) {
1515 audit_log_format(ab, "fd0=%d fd1=%d",
1516 context->fds[0], context->fds[1]);
1517 audit_log_end(ab);
1518 }
1519 }
1520
1521 if (context->sockaddr_len) {
1522 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1523 if (ab) {
1524 audit_log_format(ab, "saddr=");
1525 audit_log_n_hex(ab, (void *)context->sockaddr,
1526 context->sockaddr_len);
1527 audit_log_end(ab);
1528 }
1529 }
1530
1531 for (aux = context->aux_pids; aux; aux = aux->next) {
1532 struct audit_aux_data_pids *axs = (void *)aux;
1533
1534 for (i = 0; i < axs->pid_count; i++)
1535 if (audit_log_pid_context(context, axs->target_pid[i],
1536 axs->target_auid[i],
1537 axs->target_uid[i],
1538 axs->target_sessionid[i],
1539 axs->target_sid[i],
1540 axs->target_comm[i]))
1541 call_panic = 1;
1542 }
1543
1544 if (context->target_pid &&
1545 audit_log_pid_context(context, context->target_pid,
1546 context->target_auid, context->target_uid,
1547 context->target_sessionid,
1548 context->target_sid, context->target_comm))
1549 call_panic = 1;
1550
1551 if (context->pwd.dentry && context->pwd.mnt) {
1552 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1553 if (ab) {
1554 audit_log_d_path(ab, "cwd=", &context->pwd);
1555 audit_log_end(ab);
1556 }
1557 }
1558
1559 i = 0;
1560 list_for_each_entry(n, &context->names_list, list) {
1561 if (n->hidden)
1562 continue;
1563 audit_log_name(context, n, NULL, i++, &call_panic);
1564 }
1565
1566 audit_log_proctitle();
1567
1568 /* Send end of event record to help user space know we are finished */
1569 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1570 if (ab)
1571 audit_log_end(ab);
1572 if (call_panic)
1573 audit_panic("error converting sid to string");
1574}
1575
1576/**
1577 * __audit_free - free a per-task audit context
1578 * @tsk: task whose audit context block to free
1579 *
1580 * Called from copy_process and do_exit
1581 */
1582void __audit_free(struct task_struct *tsk)
1583{
1584 struct audit_context *context = tsk->audit_context;
1585
1586 if (!context)
1587 return;
1588
1589 if (!list_empty(&context->killed_trees))
1590 audit_kill_trees(context);
1591
1592 /* We are called either by do_exit() or the fork() error handling code;
1593 * in the former case tsk == current and in the latter tsk is a
1594 * random task_struct that doesn't doesn't have any meaningful data we
1595 * need to log via audit_log_exit().
1596 */
1597 if (tsk == current && !context->dummy && context->in_syscall) {
1598 context->return_valid = 0;
1599 context->return_code = 0;
1600
1601 audit_filter_syscall(tsk, context,
1602 &audit_filter_list[AUDIT_FILTER_EXIT]);
1603 audit_filter_inodes(tsk, context);
1604 if (context->current_state == AUDIT_RECORD_CONTEXT)
1605 audit_log_exit();
1606 }
1607
1608 audit_set_context(tsk, NULL);
1609 audit_free_context(context);
1610}
1611
1612/**
1613 * __audit_syscall_entry - fill in an audit record at syscall entry
1614 * @major: major syscall type (function)
1615 * @a1: additional syscall register 1
1616 * @a2: additional syscall register 2
1617 * @a3: additional syscall register 3
1618 * @a4: additional syscall register 4
1619 *
1620 * Fill in audit context at syscall entry. This only happens if the
1621 * audit context was created when the task was created and the state or
1622 * filters demand the audit context be built. If the state from the
1623 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1624 * then the record will be written at syscall exit time (otherwise, it
1625 * will only be written if another part of the kernel requests that it
1626 * be written).
1627 */
1628void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1629 unsigned long a3, unsigned long a4)
1630{
1631 struct audit_context *context = audit_context();
1632 enum audit_state state;
1633
1634 if (!audit_enabled || !context)
1635 return;
1636
1637 BUG_ON(context->in_syscall || context->name_count);
1638
1639 state = context->state;
1640 if (state == AUDIT_DISABLED)
1641 return;
1642
1643 context->dummy = !audit_n_rules;
1644 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1645 context->prio = 0;
1646 if (auditd_test_task(current))
1647 return;
1648 }
1649
1650 context->arch = syscall_get_arch(current);
1651 context->major = major;
1652 context->argv[0] = a1;
1653 context->argv[1] = a2;
1654 context->argv[2] = a3;
1655 context->argv[3] = a4;
1656 context->serial = 0;
1657 context->in_syscall = 1;
1658 context->current_state = state;
1659 context->ppid = 0;
1660 ktime_get_coarse_real_ts64(&context->ctime);
1661}
1662
1663/**
1664 * __audit_syscall_exit - deallocate audit context after a system call
1665 * @success: success value of the syscall
1666 * @return_code: return value of the syscall
1667 *
1668 * Tear down after system call. If the audit context has been marked as
1669 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1670 * filtering, or because some other part of the kernel wrote an audit
1671 * message), then write out the syscall information. In call cases,
1672 * free the names stored from getname().
1673 */
1674void __audit_syscall_exit(int success, long return_code)
1675{
1676 struct audit_context *context;
1677
1678 context = audit_context();
1679 if (!context)
1680 return;
1681
1682 if (!list_empty(&context->killed_trees))
1683 audit_kill_trees(context);
1684
1685 if (!context->dummy && context->in_syscall) {
1686 if (success)
1687 context->return_valid = AUDITSC_SUCCESS;
1688 else
1689 context->return_valid = AUDITSC_FAILURE;
1690
1691 /*
1692 * we need to fix up the return code in the audit logs if the
1693 * actual return codes are later going to be fixed up by the
1694 * arch specific signal handlers
1695 *
1696 * This is actually a test for:
1697 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1698 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1699 *
1700 * but is faster than a bunch of ||
1701 */
1702 if (unlikely(return_code <= -ERESTARTSYS) &&
1703 (return_code >= -ERESTART_RESTARTBLOCK) &&
1704 (return_code != -ENOIOCTLCMD))
1705 context->return_code = -EINTR;
1706 else
1707 context->return_code = return_code;
1708
1709 audit_filter_syscall(current, context,
1710 &audit_filter_list[AUDIT_FILTER_EXIT]);
1711 audit_filter_inodes(current, context);
1712 if (context->current_state == AUDIT_RECORD_CONTEXT)
1713 audit_log_exit();
1714 }
1715
1716 context->in_syscall = 0;
1717 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1718
1719 audit_free_module(context);
1720 audit_free_names(context);
1721 unroll_tree_refs(context, NULL, 0);
1722 audit_free_aux(context);
1723 context->aux = NULL;
1724 context->aux_pids = NULL;
1725 context->target_pid = 0;
1726 context->target_sid = 0;
1727 context->sockaddr_len = 0;
1728 context->type = 0;
1729 context->fds[0] = -1;
1730 if (context->state != AUDIT_RECORD_CONTEXT) {
1731 kfree(context->filterkey);
1732 context->filterkey = NULL;
1733 }
1734}
1735
1736static inline void handle_one(const struct inode *inode)
1737{
1738 struct audit_context *context;
1739 struct audit_tree_refs *p;
1740 struct audit_chunk *chunk;
1741 int count;
1742 if (likely(!inode->i_fsnotify_marks))
1743 return;
1744 context = audit_context();
1745 p = context->trees;
1746 count = context->tree_count;
1747 rcu_read_lock();
1748 chunk = audit_tree_lookup(inode);
1749 rcu_read_unlock();
1750 if (!chunk)
1751 return;
1752 if (likely(put_tree_ref(context, chunk)))
1753 return;
1754 if (unlikely(!grow_tree_refs(context))) {
1755 pr_warn("out of memory, audit has lost a tree reference\n");
1756 audit_set_auditable(context);
1757 audit_put_chunk(chunk);
1758 unroll_tree_refs(context, p, count);
1759 return;
1760 }
1761 put_tree_ref(context, chunk);
1762}
1763
1764static void handle_path(const struct dentry *dentry)
1765{
1766 struct audit_context *context;
1767 struct audit_tree_refs *p;
1768 const struct dentry *d, *parent;
1769 struct audit_chunk *drop;
1770 unsigned long seq;
1771 int count;
1772
1773 context = audit_context();
1774 p = context->trees;
1775 count = context->tree_count;
1776retry:
1777 drop = NULL;
1778 d = dentry;
1779 rcu_read_lock();
1780 seq = read_seqbegin(&rename_lock);
1781 for(;;) {
1782 struct inode *inode = d_backing_inode(d);
1783 if (inode && unlikely(inode->i_fsnotify_marks)) {
1784 struct audit_chunk *chunk;
1785 chunk = audit_tree_lookup(inode);
1786 if (chunk) {
1787 if (unlikely(!put_tree_ref(context, chunk))) {
1788 drop = chunk;
1789 break;
1790 }
1791 }
1792 }
1793 parent = d->d_parent;
1794 if (parent == d)
1795 break;
1796 d = parent;
1797 }
1798 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1799 rcu_read_unlock();
1800 if (!drop) {
1801 /* just a race with rename */
1802 unroll_tree_refs(context, p, count);
1803 goto retry;
1804 }
1805 audit_put_chunk(drop);
1806 if (grow_tree_refs(context)) {
1807 /* OK, got more space */
1808 unroll_tree_refs(context, p, count);
1809 goto retry;
1810 }
1811 /* too bad */
1812 pr_warn("out of memory, audit has lost a tree reference\n");
1813 unroll_tree_refs(context, p, count);
1814 audit_set_auditable(context);
1815 return;
1816 }
1817 rcu_read_unlock();
1818}
1819
1820static struct audit_names *audit_alloc_name(struct audit_context *context,
1821 unsigned char type)
1822{
1823 struct audit_names *aname;
1824
1825 if (context->name_count < AUDIT_NAMES) {
1826 aname = &context->preallocated_names[context->name_count];
1827 memset(aname, 0, sizeof(*aname));
1828 } else {
1829 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1830 if (!aname)
1831 return NULL;
1832 aname->should_free = true;
1833 }
1834
1835 aname->ino = AUDIT_INO_UNSET;
1836 aname->type = type;
1837 list_add_tail(&aname->list, &context->names_list);
1838
1839 context->name_count++;
1840 return aname;
1841}
1842
1843/**
1844 * __audit_reusename - fill out filename with info from existing entry
1845 * @uptr: userland ptr to pathname
1846 *
1847 * Search the audit_names list for the current audit context. If there is an
1848 * existing entry with a matching "uptr" then return the filename
1849 * associated with that audit_name. If not, return NULL.
1850 */
1851struct filename *
1852__audit_reusename(const __user char *uptr)
1853{
1854 struct audit_context *context = audit_context();
1855 struct audit_names *n;
1856
1857 list_for_each_entry(n, &context->names_list, list) {
1858 if (!n->name)
1859 continue;
1860 if (n->name->uptr == uptr) {
1861 n->name->refcnt++;
1862 return n->name;
1863 }
1864 }
1865 return NULL;
1866}
1867
1868/**
1869 * __audit_getname - add a name to the list
1870 * @name: name to add
1871 *
1872 * Add a name to the list of audit names for this context.
1873 * Called from fs/namei.c:getname().
1874 */
1875void __audit_getname(struct filename *name)
1876{
1877 struct audit_context *context = audit_context();
1878 struct audit_names *n;
1879
1880 if (!context->in_syscall)
1881 return;
1882
1883 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1884 if (!n)
1885 return;
1886
1887 n->name = name;
1888 n->name_len = AUDIT_NAME_FULL;
1889 name->aname = n;
1890 name->refcnt++;
1891
1892 if (!context->pwd.dentry)
1893 get_fs_pwd(current->fs, &context->pwd);
1894}
1895
1896static inline int audit_copy_fcaps(struct audit_names *name,
1897 const struct dentry *dentry)
1898{
1899 struct cpu_vfs_cap_data caps;
1900 int rc;
1901
1902 if (!dentry)
1903 return 0;
1904
1905 rc = get_vfs_caps_from_disk(dentry, &caps);
1906 if (rc)
1907 return rc;
1908
1909 name->fcap.permitted = caps.permitted;
1910 name->fcap.inheritable = caps.inheritable;
1911 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1912 name->fcap.rootid = caps.rootid;
1913 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1914 VFS_CAP_REVISION_SHIFT;
1915
1916 return 0;
1917}
1918
1919/* Copy inode data into an audit_names. */
1920static void audit_copy_inode(struct audit_names *name,
1921 const struct dentry *dentry,
1922 struct inode *inode, unsigned int flags)
1923{
1924 name->ino = inode->i_ino;
1925 name->dev = inode->i_sb->s_dev;
1926 name->mode = inode->i_mode;
1927 name->uid = inode->i_uid;
1928 name->gid = inode->i_gid;
1929 name->rdev = inode->i_rdev;
1930 security_inode_getsecid(inode, &name->osid);
1931 if (flags & AUDIT_INODE_NOEVAL) {
1932 name->fcap_ver = -1;
1933 return;
1934 }
1935 audit_copy_fcaps(name, dentry);
1936}
1937
1938/**
1939 * __audit_inode - store the inode and device from a lookup
1940 * @name: name being audited
1941 * @dentry: dentry being audited
1942 * @flags: attributes for this particular entry
1943 */
1944void __audit_inode(struct filename *name, const struct dentry *dentry,
1945 unsigned int flags)
1946{
1947 struct audit_context *context = audit_context();
1948 struct inode *inode = d_backing_inode(dentry);
1949 struct audit_names *n;
1950 bool parent = flags & AUDIT_INODE_PARENT;
1951 struct audit_entry *e;
1952 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1953 int i;
1954
1955 if (!context->in_syscall)
1956 return;
1957
1958 rcu_read_lock();
1959 list_for_each_entry_rcu(e, list, list) {
1960 for (i = 0; i < e->rule.field_count; i++) {
1961 struct audit_field *f = &e->rule.fields[i];
1962
1963 if (f->type == AUDIT_FSTYPE
1964 && audit_comparator(inode->i_sb->s_magic,
1965 f->op, f->val)
1966 && e->rule.action == AUDIT_NEVER) {
1967 rcu_read_unlock();
1968 return;
1969 }
1970 }
1971 }
1972 rcu_read_unlock();
1973
1974 if (!name)
1975 goto out_alloc;
1976
1977 /*
1978 * If we have a pointer to an audit_names entry already, then we can
1979 * just use it directly if the type is correct.
1980 */
1981 n = name->aname;
1982 if (n) {
1983 if (parent) {
1984 if (n->type == AUDIT_TYPE_PARENT ||
1985 n->type == AUDIT_TYPE_UNKNOWN)
1986 goto out;
1987 } else {
1988 if (n->type != AUDIT_TYPE_PARENT)
1989 goto out;
1990 }
1991 }
1992
1993 list_for_each_entry_reverse(n, &context->names_list, list) {
1994 if (n->ino) {
1995 /* valid inode number, use that for the comparison */
1996 if (n->ino != inode->i_ino ||
1997 n->dev != inode->i_sb->s_dev)
1998 continue;
1999 } else if (n->name) {
2000 /* inode number has not been set, check the name */
2001 if (strcmp(n->name->name, name->name))
2002 continue;
2003 } else
2004 /* no inode and no name (?!) ... this is odd ... */
2005 continue;
2006
2007 /* match the correct record type */
2008 if (parent) {
2009 if (n->type == AUDIT_TYPE_PARENT ||
2010 n->type == AUDIT_TYPE_UNKNOWN)
2011 goto out;
2012 } else {
2013 if (n->type != AUDIT_TYPE_PARENT)
2014 goto out;
2015 }
2016 }
2017
2018out_alloc:
2019 /* unable to find an entry with both a matching name and type */
2020 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2021 if (!n)
2022 return;
2023 if (name) {
2024 n->name = name;
2025 name->refcnt++;
2026 }
2027
2028out:
2029 if (parent) {
2030 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2031 n->type = AUDIT_TYPE_PARENT;
2032 if (flags & AUDIT_INODE_HIDDEN)
2033 n->hidden = true;
2034 } else {
2035 n->name_len = AUDIT_NAME_FULL;
2036 n->type = AUDIT_TYPE_NORMAL;
2037 }
2038 handle_path(dentry);
2039 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2040}
2041
2042void __audit_file(const struct file *file)
2043{
2044 __audit_inode(NULL, file->f_path.dentry, 0);
2045}
2046
2047/**
2048 * __audit_inode_child - collect inode info for created/removed objects
2049 * @parent: inode of dentry parent
2050 * @dentry: dentry being audited
2051 * @type: AUDIT_TYPE_* value that we're looking for
2052 *
2053 * For syscalls that create or remove filesystem objects, audit_inode
2054 * can only collect information for the filesystem object's parent.
2055 * This call updates the audit context with the child's information.
2056 * Syscalls that create a new filesystem object must be hooked after
2057 * the object is created. Syscalls that remove a filesystem object
2058 * must be hooked prior, in order to capture the target inode during
2059 * unsuccessful attempts.
2060 */
2061void __audit_inode_child(struct inode *parent,
2062 const struct dentry *dentry,
2063 const unsigned char type)
2064{
2065 struct audit_context *context = audit_context();
2066 struct inode *inode = d_backing_inode(dentry);
2067 const struct qstr *dname = &dentry->d_name;
2068 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2069 struct audit_entry *e;
2070 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2071 int i;
2072
2073 if (!context->in_syscall)
2074 return;
2075
2076 rcu_read_lock();
2077 list_for_each_entry_rcu(e, list, list) {
2078 for (i = 0; i < e->rule.field_count; i++) {
2079 struct audit_field *f = &e->rule.fields[i];
2080
2081 if (f->type == AUDIT_FSTYPE
2082 && audit_comparator(parent->i_sb->s_magic,
2083 f->op, f->val)
2084 && e->rule.action == AUDIT_NEVER) {
2085 rcu_read_unlock();
2086 return;
2087 }
2088 }
2089 }
2090 rcu_read_unlock();
2091
2092 if (inode)
2093 handle_one(inode);
2094
2095 /* look for a parent entry first */
2096 list_for_each_entry(n, &context->names_list, list) {
2097 if (!n->name ||
2098 (n->type != AUDIT_TYPE_PARENT &&
2099 n->type != AUDIT_TYPE_UNKNOWN))
2100 continue;
2101
2102 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2103 !audit_compare_dname_path(dname,
2104 n->name->name, n->name_len)) {
2105 if (n->type == AUDIT_TYPE_UNKNOWN)
2106 n->type = AUDIT_TYPE_PARENT;
2107 found_parent = n;
2108 break;
2109 }
2110 }
2111
2112 /* is there a matching child entry? */
2113 list_for_each_entry(n, &context->names_list, list) {
2114 /* can only match entries that have a name */
2115 if (!n->name ||
2116 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2117 continue;
2118
2119 if (!strcmp(dname->name, n->name->name) ||
2120 !audit_compare_dname_path(dname, n->name->name,
2121 found_parent ?
2122 found_parent->name_len :
2123 AUDIT_NAME_FULL)) {
2124 if (n->type == AUDIT_TYPE_UNKNOWN)
2125 n->type = type;
2126 found_child = n;
2127 break;
2128 }
2129 }
2130
2131 if (!found_parent) {
2132 /* create a new, "anonymous" parent record */
2133 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2134 if (!n)
2135 return;
2136 audit_copy_inode(n, NULL, parent, 0);
2137 }
2138
2139 if (!found_child) {
2140 found_child = audit_alloc_name(context, type);
2141 if (!found_child)
2142 return;
2143
2144 /* Re-use the name belonging to the slot for a matching parent
2145 * directory. All names for this context are relinquished in
2146 * audit_free_names() */
2147 if (found_parent) {
2148 found_child->name = found_parent->name;
2149 found_child->name_len = AUDIT_NAME_FULL;
2150 found_child->name->refcnt++;
2151 }
2152 }
2153
2154 if (inode)
2155 audit_copy_inode(found_child, dentry, inode, 0);
2156 else
2157 found_child->ino = AUDIT_INO_UNSET;
2158}
2159EXPORT_SYMBOL_GPL(__audit_inode_child);
2160
2161/**
2162 * auditsc_get_stamp - get local copies of audit_context values
2163 * @ctx: audit_context for the task
2164 * @t: timespec64 to store time recorded in the audit_context
2165 * @serial: serial value that is recorded in the audit_context
2166 *
2167 * Also sets the context as auditable.
2168 */
2169int auditsc_get_stamp(struct audit_context *ctx,
2170 struct timespec64 *t, unsigned int *serial)
2171{
2172 if (!ctx->in_syscall)
2173 return 0;
2174 if (!ctx->serial)
2175 ctx->serial = audit_serial();
2176 t->tv_sec = ctx->ctime.tv_sec;
2177 t->tv_nsec = ctx->ctime.tv_nsec;
2178 *serial = ctx->serial;
2179 if (!ctx->prio) {
2180 ctx->prio = 1;
2181 ctx->current_state = AUDIT_RECORD_CONTEXT;
2182 }
2183 return 1;
2184}
2185
2186/**
2187 * __audit_mq_open - record audit data for a POSIX MQ open
2188 * @oflag: open flag
2189 * @mode: mode bits
2190 * @attr: queue attributes
2191 *
2192 */
2193void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2194{
2195 struct audit_context *context = audit_context();
2196
2197 if (attr)
2198 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2199 else
2200 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2201
2202 context->mq_open.oflag = oflag;
2203 context->mq_open.mode = mode;
2204
2205 context->type = AUDIT_MQ_OPEN;
2206}
2207
2208/**
2209 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2210 * @mqdes: MQ descriptor
2211 * @msg_len: Message length
2212 * @msg_prio: Message priority
2213 * @abs_timeout: Message timeout in absolute time
2214 *
2215 */
2216void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2217 const struct timespec64 *abs_timeout)
2218{
2219 struct audit_context *context = audit_context();
2220 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2221
2222 if (abs_timeout)
2223 memcpy(p, abs_timeout, sizeof(*p));
2224 else
2225 memset(p, 0, sizeof(*p));
2226
2227 context->mq_sendrecv.mqdes = mqdes;
2228 context->mq_sendrecv.msg_len = msg_len;
2229 context->mq_sendrecv.msg_prio = msg_prio;
2230
2231 context->type = AUDIT_MQ_SENDRECV;
2232}
2233
2234/**
2235 * __audit_mq_notify - record audit data for a POSIX MQ notify
2236 * @mqdes: MQ descriptor
2237 * @notification: Notification event
2238 *
2239 */
2240
2241void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2242{
2243 struct audit_context *context = audit_context();
2244
2245 if (notification)
2246 context->mq_notify.sigev_signo = notification->sigev_signo;
2247 else
2248 context->mq_notify.sigev_signo = 0;
2249
2250 context->mq_notify.mqdes = mqdes;
2251 context->type = AUDIT_MQ_NOTIFY;
2252}
2253
2254/**
2255 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2256 * @mqdes: MQ descriptor
2257 * @mqstat: MQ flags
2258 *
2259 */
2260void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2261{
2262 struct audit_context *context = audit_context();
2263 context->mq_getsetattr.mqdes = mqdes;
2264 context->mq_getsetattr.mqstat = *mqstat;
2265 context->type = AUDIT_MQ_GETSETATTR;
2266}
2267
2268/**
2269 * __audit_ipc_obj - record audit data for ipc object
2270 * @ipcp: ipc permissions
2271 *
2272 */
2273void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2274{
2275 struct audit_context *context = audit_context();
2276 context->ipc.uid = ipcp->uid;
2277 context->ipc.gid = ipcp->gid;
2278 context->ipc.mode = ipcp->mode;
2279 context->ipc.has_perm = 0;
2280 security_ipc_getsecid(ipcp, &context->ipc.osid);
2281 context->type = AUDIT_IPC;
2282}
2283
2284/**
2285 * __audit_ipc_set_perm - record audit data for new ipc permissions
2286 * @qbytes: msgq bytes
2287 * @uid: msgq user id
2288 * @gid: msgq group id
2289 * @mode: msgq mode (permissions)
2290 *
2291 * Called only after audit_ipc_obj().
2292 */
2293void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2294{
2295 struct audit_context *context = audit_context();
2296
2297 context->ipc.qbytes = qbytes;
2298 context->ipc.perm_uid = uid;
2299 context->ipc.perm_gid = gid;
2300 context->ipc.perm_mode = mode;
2301 context->ipc.has_perm = 1;
2302}
2303
2304void __audit_bprm(struct linux_binprm *bprm)
2305{
2306 struct audit_context *context = audit_context();
2307
2308 context->type = AUDIT_EXECVE;
2309 context->execve.argc = bprm->argc;
2310}
2311
2312
2313/**
2314 * __audit_socketcall - record audit data for sys_socketcall
2315 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2316 * @args: args array
2317 *
2318 */
2319int __audit_socketcall(int nargs, unsigned long *args)
2320{
2321 struct audit_context *context = audit_context();
2322
2323 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2324 return -EINVAL;
2325 context->type = AUDIT_SOCKETCALL;
2326 context->socketcall.nargs = nargs;
2327 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2328 return 0;
2329}
2330
2331/**
2332 * __audit_fd_pair - record audit data for pipe and socketpair
2333 * @fd1: the first file descriptor
2334 * @fd2: the second file descriptor
2335 *
2336 */
2337void __audit_fd_pair(int fd1, int fd2)
2338{
2339 struct audit_context *context = audit_context();
2340 context->fds[0] = fd1;
2341 context->fds[1] = fd2;
2342}
2343
2344/**
2345 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2346 * @len: data length in user space
2347 * @a: data address in kernel space
2348 *
2349 * Returns 0 for success or NULL context or < 0 on error.
2350 */
2351int __audit_sockaddr(int len, void *a)
2352{
2353 struct audit_context *context = audit_context();
2354
2355 if (!context->sockaddr) {
2356 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2357 if (!p)
2358 return -ENOMEM;
2359 context->sockaddr = p;
2360 }
2361
2362 context->sockaddr_len = len;
2363 memcpy(context->sockaddr, a, len);
2364 return 0;
2365}
2366
2367void __audit_ptrace(struct task_struct *t)
2368{
2369 struct audit_context *context = audit_context();
2370
2371 context->target_pid = task_tgid_nr(t);
2372 context->target_auid = audit_get_loginuid(t);
2373 context->target_uid = task_uid(t);
2374 context->target_sessionid = audit_get_sessionid(t);
2375 security_task_getsecid(t, &context->target_sid);
2376 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2377}
2378
2379/**
2380 * audit_signal_info_syscall - record signal info for syscalls
2381 * @t: task being signaled
2382 *
2383 * If the audit subsystem is being terminated, record the task (pid)
2384 * and uid that is doing that.
2385 */
2386int audit_signal_info_syscall(struct task_struct *t)
2387{
2388 struct audit_aux_data_pids *axp;
2389 struct audit_context *ctx = audit_context();
2390 kuid_t t_uid = task_uid(t);
2391
2392 if (!audit_signals || audit_dummy_context())
2393 return 0;
2394
2395 /* optimize the common case by putting first signal recipient directly
2396 * in audit_context */
2397 if (!ctx->target_pid) {
2398 ctx->target_pid = task_tgid_nr(t);
2399 ctx->target_auid = audit_get_loginuid(t);
2400 ctx->target_uid = t_uid;
2401 ctx->target_sessionid = audit_get_sessionid(t);
2402 security_task_getsecid(t, &ctx->target_sid);
2403 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2404 return 0;
2405 }
2406
2407 axp = (void *)ctx->aux_pids;
2408 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2409 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2410 if (!axp)
2411 return -ENOMEM;
2412
2413 axp->d.type = AUDIT_OBJ_PID;
2414 axp->d.next = ctx->aux_pids;
2415 ctx->aux_pids = (void *)axp;
2416 }
2417 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2418
2419 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2420 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2421 axp->target_uid[axp->pid_count] = t_uid;
2422 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2423 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2424 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2425 axp->pid_count++;
2426
2427 return 0;
2428}
2429
2430/**
2431 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2432 * @bprm: pointer to the bprm being processed
2433 * @new: the proposed new credentials
2434 * @old: the old credentials
2435 *
2436 * Simply check if the proc already has the caps given by the file and if not
2437 * store the priv escalation info for later auditing at the end of the syscall
2438 *
2439 * -Eric
2440 */
2441int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2442 const struct cred *new, const struct cred *old)
2443{
2444 struct audit_aux_data_bprm_fcaps *ax;
2445 struct audit_context *context = audit_context();
2446 struct cpu_vfs_cap_data vcaps;
2447
2448 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2449 if (!ax)
2450 return -ENOMEM;
2451
2452 ax->d.type = AUDIT_BPRM_FCAPS;
2453 ax->d.next = context->aux;
2454 context->aux = (void *)ax;
2455
2456 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2457
2458 ax->fcap.permitted = vcaps.permitted;
2459 ax->fcap.inheritable = vcaps.inheritable;
2460 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2461 ax->fcap.rootid = vcaps.rootid;
2462 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2463
2464 ax->old_pcap.permitted = old->cap_permitted;
2465 ax->old_pcap.inheritable = old->cap_inheritable;
2466 ax->old_pcap.effective = old->cap_effective;
2467 ax->old_pcap.ambient = old->cap_ambient;
2468
2469 ax->new_pcap.permitted = new->cap_permitted;
2470 ax->new_pcap.inheritable = new->cap_inheritable;
2471 ax->new_pcap.effective = new->cap_effective;
2472 ax->new_pcap.ambient = new->cap_ambient;
2473 return 0;
2474}
2475
2476/**
2477 * __audit_log_capset - store information about the arguments to the capset syscall
2478 * @new: the new credentials
2479 * @old: the old (current) credentials
2480 *
2481 * Record the arguments userspace sent to sys_capset for later printing by the
2482 * audit system if applicable
2483 */
2484void __audit_log_capset(const struct cred *new, const struct cred *old)
2485{
2486 struct audit_context *context = audit_context();
2487 context->capset.pid = task_tgid_nr(current);
2488 context->capset.cap.effective = new->cap_effective;
2489 context->capset.cap.inheritable = new->cap_effective;
2490 context->capset.cap.permitted = new->cap_permitted;
2491 context->capset.cap.ambient = new->cap_ambient;
2492 context->type = AUDIT_CAPSET;
2493}
2494
2495void __audit_mmap_fd(int fd, int flags)
2496{
2497 struct audit_context *context = audit_context();
2498 context->mmap.fd = fd;
2499 context->mmap.flags = flags;
2500 context->type = AUDIT_MMAP;
2501}
2502
2503void __audit_log_kern_module(char *name)
2504{
2505 struct audit_context *context = audit_context();
2506
2507 context->module.name = kstrdup(name, GFP_KERNEL);
2508 if (!context->module.name)
2509 audit_log_lost("out of memory in __audit_log_kern_module");
2510 context->type = AUDIT_KERN_MODULE;
2511}
2512
2513void __audit_fanotify(unsigned int response)
2514{
2515 audit_log(audit_context(), GFP_KERNEL,
2516 AUDIT_FANOTIFY, "resp=%u", response);
2517}
2518
2519void __audit_tk_injoffset(struct timespec64 offset)
2520{
2521 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2522 "sec=%lli nsec=%li",
2523 (long long)offset.tv_sec, offset.tv_nsec);
2524}
2525
2526static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2527 const char *op, enum audit_ntp_type type)
2528{
2529 const struct audit_ntp_val *val = &ad->vals[type];
2530
2531 if (val->newval == val->oldval)
2532 return;
2533
2534 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2535 "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2536}
2537
2538void __audit_ntp_log(const struct audit_ntp_data *ad)
2539{
2540 audit_log_ntp_val(ad, "offset", AUDIT_NTP_OFFSET);
2541 audit_log_ntp_val(ad, "freq", AUDIT_NTP_FREQ);
2542 audit_log_ntp_val(ad, "status", AUDIT_NTP_STATUS);
2543 audit_log_ntp_val(ad, "tai", AUDIT_NTP_TAI);
2544 audit_log_ntp_val(ad, "tick", AUDIT_NTP_TICK);
2545 audit_log_ntp_val(ad, "adjust", AUDIT_NTP_ADJUST);
2546}
2547
2548static void audit_log_task(struct audit_buffer *ab)
2549{
2550 kuid_t auid, uid;
2551 kgid_t gid;
2552 unsigned int sessionid;
2553 char comm[sizeof(current->comm)];
2554
2555 auid = audit_get_loginuid(current);
2556 sessionid = audit_get_sessionid(current);
2557 current_uid_gid(&uid, &gid);
2558
2559 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2560 from_kuid(&init_user_ns, auid),
2561 from_kuid(&init_user_ns, uid),
2562 from_kgid(&init_user_ns, gid),
2563 sessionid);
2564 audit_log_task_context(ab);
2565 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2566 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2567 audit_log_d_path_exe(ab, current->mm);
2568}
2569
2570/**
2571 * audit_core_dumps - record information about processes that end abnormally
2572 * @signr: signal value
2573 *
2574 * If a process ends with a core dump, something fishy is going on and we
2575 * should record the event for investigation.
2576 */
2577void audit_core_dumps(long signr)
2578{
2579 struct audit_buffer *ab;
2580
2581 if (!audit_enabled)
2582 return;
2583
2584 if (signr == SIGQUIT) /* don't care for those */
2585 return;
2586
2587 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2588 if (unlikely(!ab))
2589 return;
2590 audit_log_task(ab);
2591 audit_log_format(ab, " sig=%ld res=1", signr);
2592 audit_log_end(ab);
2593}
2594
2595/**
2596 * audit_seccomp - record information about a seccomp action
2597 * @syscall: syscall number
2598 * @signr: signal value
2599 * @code: the seccomp action
2600 *
2601 * Record the information associated with a seccomp action. Event filtering for
2602 * seccomp actions that are not to be logged is done in seccomp_log().
2603 * Therefore, this function forces auditing independent of the audit_enabled
2604 * and dummy context state because seccomp actions should be logged even when
2605 * audit is not in use.
2606 */
2607void audit_seccomp(unsigned long syscall, long signr, int code)
2608{
2609 struct audit_buffer *ab;
2610
2611 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2612 if (unlikely(!ab))
2613 return;
2614 audit_log_task(ab);
2615 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2616 signr, syscall_get_arch(current), syscall,
2617 in_compat_syscall(), KSTK_EIP(current), code);
2618 audit_log_end(ab);
2619}
2620
2621void audit_seccomp_actions_logged(const char *names, const char *old_names,
2622 int res)
2623{
2624 struct audit_buffer *ab;
2625
2626 if (!audit_enabled)
2627 return;
2628
2629 ab = audit_log_start(audit_context(), GFP_KERNEL,
2630 AUDIT_CONFIG_CHANGE);
2631 if (unlikely(!ab))
2632 return;
2633
2634 audit_log_format(ab,
2635 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2636 names, old_names, res);
2637 audit_log_end(ab);
2638}
2639
2640struct list_head *audit_killed_trees(void)
2641{
2642 struct audit_context *ctx = audit_context();
2643 if (likely(!ctx || !ctx->in_syscall))
2644 return NULL;
2645 return &ctx->killed_trees;
2646}
1/* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45#include <linux/init.h>
46#include <asm/types.h>
47#include <linux/atomic.h>
48#include <linux/fs.h>
49#include <linux/namei.h>
50#include <linux/mm.h>
51#include <linux/module.h>
52#include <linux/slab.h>
53#include <linux/mount.h>
54#include <linux/socket.h>
55#include <linux/mqueue.h>
56#include <linux/audit.h>
57#include <linux/personality.h>
58#include <linux/time.h>
59#include <linux/netlink.h>
60#include <linux/compiler.h>
61#include <asm/unistd.h>
62#include <linux/security.h>
63#include <linux/list.h>
64#include <linux/tty.h>
65#include <linux/binfmts.h>
66#include <linux/highmem.h>
67#include <linux/syscalls.h>
68#include <linux/capability.h>
69#include <linux/fs_struct.h>
70
71#include "audit.h"
72
73/* AUDIT_NAMES is the number of slots we reserve in the audit_context
74 * for saving names from getname(). */
75#define AUDIT_NAMES 20
76
77/* Indicates that audit should log the full pathname. */
78#define AUDIT_NAME_FULL -1
79
80/* no execve audit message should be longer than this (userspace limits) */
81#define MAX_EXECVE_AUDIT_LEN 7500
82
83/* number of audit rules */
84int audit_n_rules;
85
86/* determines whether we collect data for signals sent */
87int audit_signals;
88
89struct audit_cap_data {
90 kernel_cap_t permitted;
91 kernel_cap_t inheritable;
92 union {
93 unsigned int fE; /* effective bit of a file capability */
94 kernel_cap_t effective; /* effective set of a process */
95 };
96};
97
98/* When fs/namei.c:getname() is called, we store the pointer in name and
99 * we don't let putname() free it (instead we free all of the saved
100 * pointers at syscall exit time).
101 *
102 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
103struct audit_names {
104 const char *name;
105 int name_len; /* number of name's characters to log */
106 unsigned name_put; /* call __putname() for this name */
107 unsigned long ino;
108 dev_t dev;
109 umode_t mode;
110 uid_t uid;
111 gid_t gid;
112 dev_t rdev;
113 u32 osid;
114 struct audit_cap_data fcap;
115 unsigned int fcap_ver;
116};
117
118struct audit_aux_data {
119 struct audit_aux_data *next;
120 int type;
121};
122
123#define AUDIT_AUX_IPCPERM 0
124
125/* Number of target pids per aux struct. */
126#define AUDIT_AUX_PIDS 16
127
128struct audit_aux_data_execve {
129 struct audit_aux_data d;
130 int argc;
131 int envc;
132 struct mm_struct *mm;
133};
134
135struct audit_aux_data_pids {
136 struct audit_aux_data d;
137 pid_t target_pid[AUDIT_AUX_PIDS];
138 uid_t target_auid[AUDIT_AUX_PIDS];
139 uid_t target_uid[AUDIT_AUX_PIDS];
140 unsigned int target_sessionid[AUDIT_AUX_PIDS];
141 u32 target_sid[AUDIT_AUX_PIDS];
142 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
143 int pid_count;
144};
145
146struct audit_aux_data_bprm_fcaps {
147 struct audit_aux_data d;
148 struct audit_cap_data fcap;
149 unsigned int fcap_ver;
150 struct audit_cap_data old_pcap;
151 struct audit_cap_data new_pcap;
152};
153
154struct audit_aux_data_capset {
155 struct audit_aux_data d;
156 pid_t pid;
157 struct audit_cap_data cap;
158};
159
160struct audit_tree_refs {
161 struct audit_tree_refs *next;
162 struct audit_chunk *c[31];
163};
164
165/* The per-task audit context. */
166struct audit_context {
167 int dummy; /* must be the first element */
168 int in_syscall; /* 1 if task is in a syscall */
169 enum audit_state state, current_state;
170 unsigned int serial; /* serial number for record */
171 int major; /* syscall number */
172 struct timespec ctime; /* time of syscall entry */
173 unsigned long argv[4]; /* syscall arguments */
174 long return_code;/* syscall return code */
175 u64 prio;
176 int return_valid; /* return code is valid */
177 int name_count;
178 struct audit_names names[AUDIT_NAMES];
179 char * filterkey; /* key for rule that triggered record */
180 struct path pwd;
181 struct audit_context *previous; /* For nested syscalls */
182 struct audit_aux_data *aux;
183 struct audit_aux_data *aux_pids;
184 struct sockaddr_storage *sockaddr;
185 size_t sockaddr_len;
186 /* Save things to print about task_struct */
187 pid_t pid, ppid;
188 uid_t uid, euid, suid, fsuid;
189 gid_t gid, egid, sgid, fsgid;
190 unsigned long personality;
191 int arch;
192
193 pid_t target_pid;
194 uid_t target_auid;
195 uid_t target_uid;
196 unsigned int target_sessionid;
197 u32 target_sid;
198 char target_comm[TASK_COMM_LEN];
199
200 struct audit_tree_refs *trees, *first_trees;
201 struct list_head killed_trees;
202 int tree_count;
203
204 int type;
205 union {
206 struct {
207 int nargs;
208 long args[6];
209 } socketcall;
210 struct {
211 uid_t uid;
212 gid_t gid;
213 mode_t mode;
214 u32 osid;
215 int has_perm;
216 uid_t perm_uid;
217 gid_t perm_gid;
218 mode_t perm_mode;
219 unsigned long qbytes;
220 } ipc;
221 struct {
222 mqd_t mqdes;
223 struct mq_attr mqstat;
224 } mq_getsetattr;
225 struct {
226 mqd_t mqdes;
227 int sigev_signo;
228 } mq_notify;
229 struct {
230 mqd_t mqdes;
231 size_t msg_len;
232 unsigned int msg_prio;
233 struct timespec abs_timeout;
234 } mq_sendrecv;
235 struct {
236 int oflag;
237 mode_t mode;
238 struct mq_attr attr;
239 } mq_open;
240 struct {
241 pid_t pid;
242 struct audit_cap_data cap;
243 } capset;
244 struct {
245 int fd;
246 int flags;
247 } mmap;
248 };
249 int fds[2];
250
251#if AUDIT_DEBUG
252 int put_count;
253 int ino_count;
254#endif
255};
256
257static inline int open_arg(int flags, int mask)
258{
259 int n = ACC_MODE(flags);
260 if (flags & (O_TRUNC | O_CREAT))
261 n |= AUDIT_PERM_WRITE;
262 return n & mask;
263}
264
265static int audit_match_perm(struct audit_context *ctx, int mask)
266{
267 unsigned n;
268 if (unlikely(!ctx))
269 return 0;
270 n = ctx->major;
271
272 switch (audit_classify_syscall(ctx->arch, n)) {
273 case 0: /* native */
274 if ((mask & AUDIT_PERM_WRITE) &&
275 audit_match_class(AUDIT_CLASS_WRITE, n))
276 return 1;
277 if ((mask & AUDIT_PERM_READ) &&
278 audit_match_class(AUDIT_CLASS_READ, n))
279 return 1;
280 if ((mask & AUDIT_PERM_ATTR) &&
281 audit_match_class(AUDIT_CLASS_CHATTR, n))
282 return 1;
283 return 0;
284 case 1: /* 32bit on biarch */
285 if ((mask & AUDIT_PERM_WRITE) &&
286 audit_match_class(AUDIT_CLASS_WRITE_32, n))
287 return 1;
288 if ((mask & AUDIT_PERM_READ) &&
289 audit_match_class(AUDIT_CLASS_READ_32, n))
290 return 1;
291 if ((mask & AUDIT_PERM_ATTR) &&
292 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
293 return 1;
294 return 0;
295 case 2: /* open */
296 return mask & ACC_MODE(ctx->argv[1]);
297 case 3: /* openat */
298 return mask & ACC_MODE(ctx->argv[2]);
299 case 4: /* socketcall */
300 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
301 case 5: /* execve */
302 return mask & AUDIT_PERM_EXEC;
303 default:
304 return 0;
305 }
306}
307
308static int audit_match_filetype(struct audit_context *ctx, int which)
309{
310 unsigned index = which & ~S_IFMT;
311 mode_t mode = which & S_IFMT;
312
313 if (unlikely(!ctx))
314 return 0;
315
316 if (index >= ctx->name_count)
317 return 0;
318 if (ctx->names[index].ino == -1)
319 return 0;
320 if ((ctx->names[index].mode ^ mode) & S_IFMT)
321 return 0;
322 return 1;
323}
324
325/*
326 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
327 * ->first_trees points to its beginning, ->trees - to the current end of data.
328 * ->tree_count is the number of free entries in array pointed to by ->trees.
329 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
330 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
331 * it's going to remain 1-element for almost any setup) until we free context itself.
332 * References in it _are_ dropped - at the same time we free/drop aux stuff.
333 */
334
335#ifdef CONFIG_AUDIT_TREE
336static void audit_set_auditable(struct audit_context *ctx)
337{
338 if (!ctx->prio) {
339 ctx->prio = 1;
340 ctx->current_state = AUDIT_RECORD_CONTEXT;
341 }
342}
343
344static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
345{
346 struct audit_tree_refs *p = ctx->trees;
347 int left = ctx->tree_count;
348 if (likely(left)) {
349 p->c[--left] = chunk;
350 ctx->tree_count = left;
351 return 1;
352 }
353 if (!p)
354 return 0;
355 p = p->next;
356 if (p) {
357 p->c[30] = chunk;
358 ctx->trees = p;
359 ctx->tree_count = 30;
360 return 1;
361 }
362 return 0;
363}
364
365static int grow_tree_refs(struct audit_context *ctx)
366{
367 struct audit_tree_refs *p = ctx->trees;
368 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
369 if (!ctx->trees) {
370 ctx->trees = p;
371 return 0;
372 }
373 if (p)
374 p->next = ctx->trees;
375 else
376 ctx->first_trees = ctx->trees;
377 ctx->tree_count = 31;
378 return 1;
379}
380#endif
381
382static void unroll_tree_refs(struct audit_context *ctx,
383 struct audit_tree_refs *p, int count)
384{
385#ifdef CONFIG_AUDIT_TREE
386 struct audit_tree_refs *q;
387 int n;
388 if (!p) {
389 /* we started with empty chain */
390 p = ctx->first_trees;
391 count = 31;
392 /* if the very first allocation has failed, nothing to do */
393 if (!p)
394 return;
395 }
396 n = count;
397 for (q = p; q != ctx->trees; q = q->next, n = 31) {
398 while (n--) {
399 audit_put_chunk(q->c[n]);
400 q->c[n] = NULL;
401 }
402 }
403 while (n-- > ctx->tree_count) {
404 audit_put_chunk(q->c[n]);
405 q->c[n] = NULL;
406 }
407 ctx->trees = p;
408 ctx->tree_count = count;
409#endif
410}
411
412static void free_tree_refs(struct audit_context *ctx)
413{
414 struct audit_tree_refs *p, *q;
415 for (p = ctx->first_trees; p; p = q) {
416 q = p->next;
417 kfree(p);
418 }
419}
420
421static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
422{
423#ifdef CONFIG_AUDIT_TREE
424 struct audit_tree_refs *p;
425 int n;
426 if (!tree)
427 return 0;
428 /* full ones */
429 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
430 for (n = 0; n < 31; n++)
431 if (audit_tree_match(p->c[n], tree))
432 return 1;
433 }
434 /* partial */
435 if (p) {
436 for (n = ctx->tree_count; n < 31; n++)
437 if (audit_tree_match(p->c[n], tree))
438 return 1;
439 }
440#endif
441 return 0;
442}
443
444/* Determine if any context name data matches a rule's watch data */
445/* Compare a task_struct with an audit_rule. Return 1 on match, 0
446 * otherwise.
447 *
448 * If task_creation is true, this is an explicit indication that we are
449 * filtering a task rule at task creation time. This and tsk == current are
450 * the only situations where tsk->cred may be accessed without an rcu read lock.
451 */
452static int audit_filter_rules(struct task_struct *tsk,
453 struct audit_krule *rule,
454 struct audit_context *ctx,
455 struct audit_names *name,
456 enum audit_state *state,
457 bool task_creation)
458{
459 const struct cred *cred;
460 int i, j, need_sid = 1;
461 u32 sid;
462
463 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
464
465 for (i = 0; i < rule->field_count; i++) {
466 struct audit_field *f = &rule->fields[i];
467 int result = 0;
468
469 switch (f->type) {
470 case AUDIT_PID:
471 result = audit_comparator(tsk->pid, f->op, f->val);
472 break;
473 case AUDIT_PPID:
474 if (ctx) {
475 if (!ctx->ppid)
476 ctx->ppid = sys_getppid();
477 result = audit_comparator(ctx->ppid, f->op, f->val);
478 }
479 break;
480 case AUDIT_UID:
481 result = audit_comparator(cred->uid, f->op, f->val);
482 break;
483 case AUDIT_EUID:
484 result = audit_comparator(cred->euid, f->op, f->val);
485 break;
486 case AUDIT_SUID:
487 result = audit_comparator(cred->suid, f->op, f->val);
488 break;
489 case AUDIT_FSUID:
490 result = audit_comparator(cred->fsuid, f->op, f->val);
491 break;
492 case AUDIT_GID:
493 result = audit_comparator(cred->gid, f->op, f->val);
494 break;
495 case AUDIT_EGID:
496 result = audit_comparator(cred->egid, f->op, f->val);
497 break;
498 case AUDIT_SGID:
499 result = audit_comparator(cred->sgid, f->op, f->val);
500 break;
501 case AUDIT_FSGID:
502 result = audit_comparator(cred->fsgid, f->op, f->val);
503 break;
504 case AUDIT_PERS:
505 result = audit_comparator(tsk->personality, f->op, f->val);
506 break;
507 case AUDIT_ARCH:
508 if (ctx)
509 result = audit_comparator(ctx->arch, f->op, f->val);
510 break;
511
512 case AUDIT_EXIT:
513 if (ctx && ctx->return_valid)
514 result = audit_comparator(ctx->return_code, f->op, f->val);
515 break;
516 case AUDIT_SUCCESS:
517 if (ctx && ctx->return_valid) {
518 if (f->val)
519 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
520 else
521 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
522 }
523 break;
524 case AUDIT_DEVMAJOR:
525 if (name)
526 result = audit_comparator(MAJOR(name->dev),
527 f->op, f->val);
528 else if (ctx) {
529 for (j = 0; j < ctx->name_count; j++) {
530 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
531 ++result;
532 break;
533 }
534 }
535 }
536 break;
537 case AUDIT_DEVMINOR:
538 if (name)
539 result = audit_comparator(MINOR(name->dev),
540 f->op, f->val);
541 else if (ctx) {
542 for (j = 0; j < ctx->name_count; j++) {
543 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
544 ++result;
545 break;
546 }
547 }
548 }
549 break;
550 case AUDIT_INODE:
551 if (name)
552 result = (name->ino == f->val);
553 else if (ctx) {
554 for (j = 0; j < ctx->name_count; j++) {
555 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
556 ++result;
557 break;
558 }
559 }
560 }
561 break;
562 case AUDIT_WATCH:
563 if (name)
564 result = audit_watch_compare(rule->watch, name->ino, name->dev);
565 break;
566 case AUDIT_DIR:
567 if (ctx)
568 result = match_tree_refs(ctx, rule->tree);
569 break;
570 case AUDIT_LOGINUID:
571 result = 0;
572 if (ctx)
573 result = audit_comparator(tsk->loginuid, f->op, f->val);
574 break;
575 case AUDIT_SUBJ_USER:
576 case AUDIT_SUBJ_ROLE:
577 case AUDIT_SUBJ_TYPE:
578 case AUDIT_SUBJ_SEN:
579 case AUDIT_SUBJ_CLR:
580 /* NOTE: this may return negative values indicating
581 a temporary error. We simply treat this as a
582 match for now to avoid losing information that
583 may be wanted. An error message will also be
584 logged upon error */
585 if (f->lsm_rule) {
586 if (need_sid) {
587 security_task_getsecid(tsk, &sid);
588 need_sid = 0;
589 }
590 result = security_audit_rule_match(sid, f->type,
591 f->op,
592 f->lsm_rule,
593 ctx);
594 }
595 break;
596 case AUDIT_OBJ_USER:
597 case AUDIT_OBJ_ROLE:
598 case AUDIT_OBJ_TYPE:
599 case AUDIT_OBJ_LEV_LOW:
600 case AUDIT_OBJ_LEV_HIGH:
601 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
602 also applies here */
603 if (f->lsm_rule) {
604 /* Find files that match */
605 if (name) {
606 result = security_audit_rule_match(
607 name->osid, f->type, f->op,
608 f->lsm_rule, ctx);
609 } else if (ctx) {
610 for (j = 0; j < ctx->name_count; j++) {
611 if (security_audit_rule_match(
612 ctx->names[j].osid,
613 f->type, f->op,
614 f->lsm_rule, ctx)) {
615 ++result;
616 break;
617 }
618 }
619 }
620 /* Find ipc objects that match */
621 if (!ctx || ctx->type != AUDIT_IPC)
622 break;
623 if (security_audit_rule_match(ctx->ipc.osid,
624 f->type, f->op,
625 f->lsm_rule, ctx))
626 ++result;
627 }
628 break;
629 case AUDIT_ARG0:
630 case AUDIT_ARG1:
631 case AUDIT_ARG2:
632 case AUDIT_ARG3:
633 if (ctx)
634 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
635 break;
636 case AUDIT_FILTERKEY:
637 /* ignore this field for filtering */
638 result = 1;
639 break;
640 case AUDIT_PERM:
641 result = audit_match_perm(ctx, f->val);
642 break;
643 case AUDIT_FILETYPE:
644 result = audit_match_filetype(ctx, f->val);
645 break;
646 }
647
648 if (!result)
649 return 0;
650 }
651
652 if (ctx) {
653 if (rule->prio <= ctx->prio)
654 return 0;
655 if (rule->filterkey) {
656 kfree(ctx->filterkey);
657 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
658 }
659 ctx->prio = rule->prio;
660 }
661 switch (rule->action) {
662 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
663 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
664 }
665 return 1;
666}
667
668/* At process creation time, we can determine if system-call auditing is
669 * completely disabled for this task. Since we only have the task
670 * structure at this point, we can only check uid and gid.
671 */
672static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
673{
674 struct audit_entry *e;
675 enum audit_state state;
676
677 rcu_read_lock();
678 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
679 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
680 &state, true)) {
681 if (state == AUDIT_RECORD_CONTEXT)
682 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
683 rcu_read_unlock();
684 return state;
685 }
686 }
687 rcu_read_unlock();
688 return AUDIT_BUILD_CONTEXT;
689}
690
691/* At syscall entry and exit time, this filter is called if the
692 * audit_state is not low enough that auditing cannot take place, but is
693 * also not high enough that we already know we have to write an audit
694 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
695 */
696static enum audit_state audit_filter_syscall(struct task_struct *tsk,
697 struct audit_context *ctx,
698 struct list_head *list)
699{
700 struct audit_entry *e;
701 enum audit_state state;
702
703 if (audit_pid && tsk->tgid == audit_pid)
704 return AUDIT_DISABLED;
705
706 rcu_read_lock();
707 if (!list_empty(list)) {
708 int word = AUDIT_WORD(ctx->major);
709 int bit = AUDIT_BIT(ctx->major);
710
711 list_for_each_entry_rcu(e, list, list) {
712 if ((e->rule.mask[word] & bit) == bit &&
713 audit_filter_rules(tsk, &e->rule, ctx, NULL,
714 &state, false)) {
715 rcu_read_unlock();
716 ctx->current_state = state;
717 return state;
718 }
719 }
720 }
721 rcu_read_unlock();
722 return AUDIT_BUILD_CONTEXT;
723}
724
725/* At syscall exit time, this filter is called if any audit_names[] have been
726 * collected during syscall processing. We only check rules in sublists at hash
727 * buckets applicable to the inode numbers in audit_names[].
728 * Regarding audit_state, same rules apply as for audit_filter_syscall().
729 */
730void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
731{
732 int i;
733 struct audit_entry *e;
734 enum audit_state state;
735
736 if (audit_pid && tsk->tgid == audit_pid)
737 return;
738
739 rcu_read_lock();
740 for (i = 0; i < ctx->name_count; i++) {
741 int word = AUDIT_WORD(ctx->major);
742 int bit = AUDIT_BIT(ctx->major);
743 struct audit_names *n = &ctx->names[i];
744 int h = audit_hash_ino((u32)n->ino);
745 struct list_head *list = &audit_inode_hash[h];
746
747 if (list_empty(list))
748 continue;
749
750 list_for_each_entry_rcu(e, list, list) {
751 if ((e->rule.mask[word] & bit) == bit &&
752 audit_filter_rules(tsk, &e->rule, ctx, n,
753 &state, false)) {
754 rcu_read_unlock();
755 ctx->current_state = state;
756 return;
757 }
758 }
759 }
760 rcu_read_unlock();
761}
762
763static inline struct audit_context *audit_get_context(struct task_struct *tsk,
764 int return_valid,
765 long return_code)
766{
767 struct audit_context *context = tsk->audit_context;
768
769 if (likely(!context))
770 return NULL;
771 context->return_valid = return_valid;
772
773 /*
774 * we need to fix up the return code in the audit logs if the actual
775 * return codes are later going to be fixed up by the arch specific
776 * signal handlers
777 *
778 * This is actually a test for:
779 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
780 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
781 *
782 * but is faster than a bunch of ||
783 */
784 if (unlikely(return_code <= -ERESTARTSYS) &&
785 (return_code >= -ERESTART_RESTARTBLOCK) &&
786 (return_code != -ENOIOCTLCMD))
787 context->return_code = -EINTR;
788 else
789 context->return_code = return_code;
790
791 if (context->in_syscall && !context->dummy) {
792 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
793 audit_filter_inodes(tsk, context);
794 }
795
796 tsk->audit_context = NULL;
797 return context;
798}
799
800static inline void audit_free_names(struct audit_context *context)
801{
802 int i;
803
804#if AUDIT_DEBUG == 2
805 if (context->put_count + context->ino_count != context->name_count) {
806 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
807 " name_count=%d put_count=%d"
808 " ino_count=%d [NOT freeing]\n",
809 __FILE__, __LINE__,
810 context->serial, context->major, context->in_syscall,
811 context->name_count, context->put_count,
812 context->ino_count);
813 for (i = 0; i < context->name_count; i++) {
814 printk(KERN_ERR "names[%d] = %p = %s\n", i,
815 context->names[i].name,
816 context->names[i].name ?: "(null)");
817 }
818 dump_stack();
819 return;
820 }
821#endif
822#if AUDIT_DEBUG
823 context->put_count = 0;
824 context->ino_count = 0;
825#endif
826
827 for (i = 0; i < context->name_count; i++) {
828 if (context->names[i].name && context->names[i].name_put)
829 __putname(context->names[i].name);
830 }
831 context->name_count = 0;
832 path_put(&context->pwd);
833 context->pwd.dentry = NULL;
834 context->pwd.mnt = NULL;
835}
836
837static inline void audit_free_aux(struct audit_context *context)
838{
839 struct audit_aux_data *aux;
840
841 while ((aux = context->aux)) {
842 context->aux = aux->next;
843 kfree(aux);
844 }
845 while ((aux = context->aux_pids)) {
846 context->aux_pids = aux->next;
847 kfree(aux);
848 }
849}
850
851static inline void audit_zero_context(struct audit_context *context,
852 enum audit_state state)
853{
854 memset(context, 0, sizeof(*context));
855 context->state = state;
856 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
857}
858
859static inline struct audit_context *audit_alloc_context(enum audit_state state)
860{
861 struct audit_context *context;
862
863 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
864 return NULL;
865 audit_zero_context(context, state);
866 INIT_LIST_HEAD(&context->killed_trees);
867 return context;
868}
869
870/**
871 * audit_alloc - allocate an audit context block for a task
872 * @tsk: task
873 *
874 * Filter on the task information and allocate a per-task audit context
875 * if necessary. Doing so turns on system call auditing for the
876 * specified task. This is called from copy_process, so no lock is
877 * needed.
878 */
879int audit_alloc(struct task_struct *tsk)
880{
881 struct audit_context *context;
882 enum audit_state state;
883 char *key = NULL;
884
885 if (likely(!audit_ever_enabled))
886 return 0; /* Return if not auditing. */
887
888 state = audit_filter_task(tsk, &key);
889 if (likely(state == AUDIT_DISABLED))
890 return 0;
891
892 if (!(context = audit_alloc_context(state))) {
893 kfree(key);
894 audit_log_lost("out of memory in audit_alloc");
895 return -ENOMEM;
896 }
897 context->filterkey = key;
898
899 tsk->audit_context = context;
900 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
901 return 0;
902}
903
904static inline void audit_free_context(struct audit_context *context)
905{
906 struct audit_context *previous;
907 int count = 0;
908
909 do {
910 previous = context->previous;
911 if (previous || (count && count < 10)) {
912 ++count;
913 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
914 " freeing multiple contexts (%d)\n",
915 context->serial, context->major,
916 context->name_count, count);
917 }
918 audit_free_names(context);
919 unroll_tree_refs(context, NULL, 0);
920 free_tree_refs(context);
921 audit_free_aux(context);
922 kfree(context->filterkey);
923 kfree(context->sockaddr);
924 kfree(context);
925 context = previous;
926 } while (context);
927 if (count >= 10)
928 printk(KERN_ERR "audit: freed %d contexts\n", count);
929}
930
931void audit_log_task_context(struct audit_buffer *ab)
932{
933 char *ctx = NULL;
934 unsigned len;
935 int error;
936 u32 sid;
937
938 security_task_getsecid(current, &sid);
939 if (!sid)
940 return;
941
942 error = security_secid_to_secctx(sid, &ctx, &len);
943 if (error) {
944 if (error != -EINVAL)
945 goto error_path;
946 return;
947 }
948
949 audit_log_format(ab, " subj=%s", ctx);
950 security_release_secctx(ctx, len);
951 return;
952
953error_path:
954 audit_panic("error in audit_log_task_context");
955 return;
956}
957
958EXPORT_SYMBOL(audit_log_task_context);
959
960static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
961{
962 char name[sizeof(tsk->comm)];
963 struct mm_struct *mm = tsk->mm;
964 struct vm_area_struct *vma;
965
966 /* tsk == current */
967
968 get_task_comm(name, tsk);
969 audit_log_format(ab, " comm=");
970 audit_log_untrustedstring(ab, name);
971
972 if (mm) {
973 down_read(&mm->mmap_sem);
974 vma = mm->mmap;
975 while (vma) {
976 if ((vma->vm_flags & VM_EXECUTABLE) &&
977 vma->vm_file) {
978 audit_log_d_path(ab, "exe=",
979 &vma->vm_file->f_path);
980 break;
981 }
982 vma = vma->vm_next;
983 }
984 up_read(&mm->mmap_sem);
985 }
986 audit_log_task_context(ab);
987}
988
989static int audit_log_pid_context(struct audit_context *context, pid_t pid,
990 uid_t auid, uid_t uid, unsigned int sessionid,
991 u32 sid, char *comm)
992{
993 struct audit_buffer *ab;
994 char *ctx = NULL;
995 u32 len;
996 int rc = 0;
997
998 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
999 if (!ab)
1000 return rc;
1001
1002 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1003 uid, sessionid);
1004 if (security_secid_to_secctx(sid, &ctx, &len)) {
1005 audit_log_format(ab, " obj=(none)");
1006 rc = 1;
1007 } else {
1008 audit_log_format(ab, " obj=%s", ctx);
1009 security_release_secctx(ctx, len);
1010 }
1011 audit_log_format(ab, " ocomm=");
1012 audit_log_untrustedstring(ab, comm);
1013 audit_log_end(ab);
1014
1015 return rc;
1016}
1017
1018/*
1019 * to_send and len_sent accounting are very loose estimates. We aren't
1020 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1021 * within about 500 bytes (next page boundary)
1022 *
1023 * why snprintf? an int is up to 12 digits long. if we just assumed when
1024 * logging that a[%d]= was going to be 16 characters long we would be wasting
1025 * space in every audit message. In one 7500 byte message we can log up to
1026 * about 1000 min size arguments. That comes down to about 50% waste of space
1027 * if we didn't do the snprintf to find out how long arg_num_len was.
1028 */
1029static int audit_log_single_execve_arg(struct audit_context *context,
1030 struct audit_buffer **ab,
1031 int arg_num,
1032 size_t *len_sent,
1033 const char __user *p,
1034 char *buf)
1035{
1036 char arg_num_len_buf[12];
1037 const char __user *tmp_p = p;
1038 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1039 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1040 size_t len, len_left, to_send;
1041 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1042 unsigned int i, has_cntl = 0, too_long = 0;
1043 int ret;
1044
1045 /* strnlen_user includes the null we don't want to send */
1046 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1047
1048 /*
1049 * We just created this mm, if we can't find the strings
1050 * we just copied into it something is _very_ wrong. Similar
1051 * for strings that are too long, we should not have created
1052 * any.
1053 */
1054 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1055 WARN_ON(1);
1056 send_sig(SIGKILL, current, 0);
1057 return -1;
1058 }
1059
1060 /* walk the whole argument looking for non-ascii chars */
1061 do {
1062 if (len_left > MAX_EXECVE_AUDIT_LEN)
1063 to_send = MAX_EXECVE_AUDIT_LEN;
1064 else
1065 to_send = len_left;
1066 ret = copy_from_user(buf, tmp_p, to_send);
1067 /*
1068 * There is no reason for this copy to be short. We just
1069 * copied them here, and the mm hasn't been exposed to user-
1070 * space yet.
1071 */
1072 if (ret) {
1073 WARN_ON(1);
1074 send_sig(SIGKILL, current, 0);
1075 return -1;
1076 }
1077 buf[to_send] = '\0';
1078 has_cntl = audit_string_contains_control(buf, to_send);
1079 if (has_cntl) {
1080 /*
1081 * hex messages get logged as 2 bytes, so we can only
1082 * send half as much in each message
1083 */
1084 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1085 break;
1086 }
1087 len_left -= to_send;
1088 tmp_p += to_send;
1089 } while (len_left > 0);
1090
1091 len_left = len;
1092
1093 if (len > max_execve_audit_len)
1094 too_long = 1;
1095
1096 /* rewalk the argument actually logging the message */
1097 for (i = 0; len_left > 0; i++) {
1098 int room_left;
1099
1100 if (len_left > max_execve_audit_len)
1101 to_send = max_execve_audit_len;
1102 else
1103 to_send = len_left;
1104
1105 /* do we have space left to send this argument in this ab? */
1106 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1107 if (has_cntl)
1108 room_left -= (to_send * 2);
1109 else
1110 room_left -= to_send;
1111 if (room_left < 0) {
1112 *len_sent = 0;
1113 audit_log_end(*ab);
1114 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1115 if (!*ab)
1116 return 0;
1117 }
1118
1119 /*
1120 * first record needs to say how long the original string was
1121 * so we can be sure nothing was lost.
1122 */
1123 if ((i == 0) && (too_long))
1124 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1125 has_cntl ? 2*len : len);
1126
1127 /*
1128 * normally arguments are small enough to fit and we already
1129 * filled buf above when we checked for control characters
1130 * so don't bother with another copy_from_user
1131 */
1132 if (len >= max_execve_audit_len)
1133 ret = copy_from_user(buf, p, to_send);
1134 else
1135 ret = 0;
1136 if (ret) {
1137 WARN_ON(1);
1138 send_sig(SIGKILL, current, 0);
1139 return -1;
1140 }
1141 buf[to_send] = '\0';
1142
1143 /* actually log it */
1144 audit_log_format(*ab, " a%d", arg_num);
1145 if (too_long)
1146 audit_log_format(*ab, "[%d]", i);
1147 audit_log_format(*ab, "=");
1148 if (has_cntl)
1149 audit_log_n_hex(*ab, buf, to_send);
1150 else
1151 audit_log_string(*ab, buf);
1152
1153 p += to_send;
1154 len_left -= to_send;
1155 *len_sent += arg_num_len;
1156 if (has_cntl)
1157 *len_sent += to_send * 2;
1158 else
1159 *len_sent += to_send;
1160 }
1161 /* include the null we didn't log */
1162 return len + 1;
1163}
1164
1165static void audit_log_execve_info(struct audit_context *context,
1166 struct audit_buffer **ab,
1167 struct audit_aux_data_execve *axi)
1168{
1169 int i;
1170 size_t len, len_sent = 0;
1171 const char __user *p;
1172 char *buf;
1173
1174 if (axi->mm != current->mm)
1175 return; /* execve failed, no additional info */
1176
1177 p = (const char __user *)axi->mm->arg_start;
1178
1179 audit_log_format(*ab, "argc=%d", axi->argc);
1180
1181 /*
1182 * we need some kernel buffer to hold the userspace args. Just
1183 * allocate one big one rather than allocating one of the right size
1184 * for every single argument inside audit_log_single_execve_arg()
1185 * should be <8k allocation so should be pretty safe.
1186 */
1187 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1188 if (!buf) {
1189 audit_panic("out of memory for argv string\n");
1190 return;
1191 }
1192
1193 for (i = 0; i < axi->argc; i++) {
1194 len = audit_log_single_execve_arg(context, ab, i,
1195 &len_sent, p, buf);
1196 if (len <= 0)
1197 break;
1198 p += len;
1199 }
1200 kfree(buf);
1201}
1202
1203static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1204{
1205 int i;
1206
1207 audit_log_format(ab, " %s=", prefix);
1208 CAP_FOR_EACH_U32(i) {
1209 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1210 }
1211}
1212
1213static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1214{
1215 kernel_cap_t *perm = &name->fcap.permitted;
1216 kernel_cap_t *inh = &name->fcap.inheritable;
1217 int log = 0;
1218
1219 if (!cap_isclear(*perm)) {
1220 audit_log_cap(ab, "cap_fp", perm);
1221 log = 1;
1222 }
1223 if (!cap_isclear(*inh)) {
1224 audit_log_cap(ab, "cap_fi", inh);
1225 log = 1;
1226 }
1227
1228 if (log)
1229 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1230}
1231
1232static void show_special(struct audit_context *context, int *call_panic)
1233{
1234 struct audit_buffer *ab;
1235 int i;
1236
1237 ab = audit_log_start(context, GFP_KERNEL, context->type);
1238 if (!ab)
1239 return;
1240
1241 switch (context->type) {
1242 case AUDIT_SOCKETCALL: {
1243 int nargs = context->socketcall.nargs;
1244 audit_log_format(ab, "nargs=%d", nargs);
1245 for (i = 0; i < nargs; i++)
1246 audit_log_format(ab, " a%d=%lx", i,
1247 context->socketcall.args[i]);
1248 break; }
1249 case AUDIT_IPC: {
1250 u32 osid = context->ipc.osid;
1251
1252 audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1253 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1254 if (osid) {
1255 char *ctx = NULL;
1256 u32 len;
1257 if (security_secid_to_secctx(osid, &ctx, &len)) {
1258 audit_log_format(ab, " osid=%u", osid);
1259 *call_panic = 1;
1260 } else {
1261 audit_log_format(ab, " obj=%s", ctx);
1262 security_release_secctx(ctx, len);
1263 }
1264 }
1265 if (context->ipc.has_perm) {
1266 audit_log_end(ab);
1267 ab = audit_log_start(context, GFP_KERNEL,
1268 AUDIT_IPC_SET_PERM);
1269 audit_log_format(ab,
1270 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1271 context->ipc.qbytes,
1272 context->ipc.perm_uid,
1273 context->ipc.perm_gid,
1274 context->ipc.perm_mode);
1275 if (!ab)
1276 return;
1277 }
1278 break; }
1279 case AUDIT_MQ_OPEN: {
1280 audit_log_format(ab,
1281 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1282 "mq_msgsize=%ld mq_curmsgs=%ld",
1283 context->mq_open.oflag, context->mq_open.mode,
1284 context->mq_open.attr.mq_flags,
1285 context->mq_open.attr.mq_maxmsg,
1286 context->mq_open.attr.mq_msgsize,
1287 context->mq_open.attr.mq_curmsgs);
1288 break; }
1289 case AUDIT_MQ_SENDRECV: {
1290 audit_log_format(ab,
1291 "mqdes=%d msg_len=%zd msg_prio=%u "
1292 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1293 context->mq_sendrecv.mqdes,
1294 context->mq_sendrecv.msg_len,
1295 context->mq_sendrecv.msg_prio,
1296 context->mq_sendrecv.abs_timeout.tv_sec,
1297 context->mq_sendrecv.abs_timeout.tv_nsec);
1298 break; }
1299 case AUDIT_MQ_NOTIFY: {
1300 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1301 context->mq_notify.mqdes,
1302 context->mq_notify.sigev_signo);
1303 break; }
1304 case AUDIT_MQ_GETSETATTR: {
1305 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1306 audit_log_format(ab,
1307 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1308 "mq_curmsgs=%ld ",
1309 context->mq_getsetattr.mqdes,
1310 attr->mq_flags, attr->mq_maxmsg,
1311 attr->mq_msgsize, attr->mq_curmsgs);
1312 break; }
1313 case AUDIT_CAPSET: {
1314 audit_log_format(ab, "pid=%d", context->capset.pid);
1315 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1316 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1317 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1318 break; }
1319 case AUDIT_MMAP: {
1320 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1321 context->mmap.flags);
1322 break; }
1323 }
1324 audit_log_end(ab);
1325}
1326
1327static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1328{
1329 const struct cred *cred;
1330 int i, call_panic = 0;
1331 struct audit_buffer *ab;
1332 struct audit_aux_data *aux;
1333 const char *tty;
1334
1335 /* tsk == current */
1336 context->pid = tsk->pid;
1337 if (!context->ppid)
1338 context->ppid = sys_getppid();
1339 cred = current_cred();
1340 context->uid = cred->uid;
1341 context->gid = cred->gid;
1342 context->euid = cred->euid;
1343 context->suid = cred->suid;
1344 context->fsuid = cred->fsuid;
1345 context->egid = cred->egid;
1346 context->sgid = cred->sgid;
1347 context->fsgid = cred->fsgid;
1348 context->personality = tsk->personality;
1349
1350 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1351 if (!ab)
1352 return; /* audit_panic has been called */
1353 audit_log_format(ab, "arch=%x syscall=%d",
1354 context->arch, context->major);
1355 if (context->personality != PER_LINUX)
1356 audit_log_format(ab, " per=%lx", context->personality);
1357 if (context->return_valid)
1358 audit_log_format(ab, " success=%s exit=%ld",
1359 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1360 context->return_code);
1361
1362 spin_lock_irq(&tsk->sighand->siglock);
1363 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1364 tty = tsk->signal->tty->name;
1365 else
1366 tty = "(none)";
1367 spin_unlock_irq(&tsk->sighand->siglock);
1368
1369 audit_log_format(ab,
1370 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1371 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1372 " euid=%u suid=%u fsuid=%u"
1373 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1374 context->argv[0],
1375 context->argv[1],
1376 context->argv[2],
1377 context->argv[3],
1378 context->name_count,
1379 context->ppid,
1380 context->pid,
1381 tsk->loginuid,
1382 context->uid,
1383 context->gid,
1384 context->euid, context->suid, context->fsuid,
1385 context->egid, context->sgid, context->fsgid, tty,
1386 tsk->sessionid);
1387
1388
1389 audit_log_task_info(ab, tsk);
1390 audit_log_key(ab, context->filterkey);
1391 audit_log_end(ab);
1392
1393 for (aux = context->aux; aux; aux = aux->next) {
1394
1395 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1396 if (!ab)
1397 continue; /* audit_panic has been called */
1398
1399 switch (aux->type) {
1400
1401 case AUDIT_EXECVE: {
1402 struct audit_aux_data_execve *axi = (void *)aux;
1403 audit_log_execve_info(context, &ab, axi);
1404 break; }
1405
1406 case AUDIT_BPRM_FCAPS: {
1407 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1408 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1409 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1410 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1411 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1412 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1413 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1414 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1415 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1416 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1417 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1418 break; }
1419
1420 }
1421 audit_log_end(ab);
1422 }
1423
1424 if (context->type)
1425 show_special(context, &call_panic);
1426
1427 if (context->fds[0] >= 0) {
1428 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1429 if (ab) {
1430 audit_log_format(ab, "fd0=%d fd1=%d",
1431 context->fds[0], context->fds[1]);
1432 audit_log_end(ab);
1433 }
1434 }
1435
1436 if (context->sockaddr_len) {
1437 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1438 if (ab) {
1439 audit_log_format(ab, "saddr=");
1440 audit_log_n_hex(ab, (void *)context->sockaddr,
1441 context->sockaddr_len);
1442 audit_log_end(ab);
1443 }
1444 }
1445
1446 for (aux = context->aux_pids; aux; aux = aux->next) {
1447 struct audit_aux_data_pids *axs = (void *)aux;
1448
1449 for (i = 0; i < axs->pid_count; i++)
1450 if (audit_log_pid_context(context, axs->target_pid[i],
1451 axs->target_auid[i],
1452 axs->target_uid[i],
1453 axs->target_sessionid[i],
1454 axs->target_sid[i],
1455 axs->target_comm[i]))
1456 call_panic = 1;
1457 }
1458
1459 if (context->target_pid &&
1460 audit_log_pid_context(context, context->target_pid,
1461 context->target_auid, context->target_uid,
1462 context->target_sessionid,
1463 context->target_sid, context->target_comm))
1464 call_panic = 1;
1465
1466 if (context->pwd.dentry && context->pwd.mnt) {
1467 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1468 if (ab) {
1469 audit_log_d_path(ab, "cwd=", &context->pwd);
1470 audit_log_end(ab);
1471 }
1472 }
1473 for (i = 0; i < context->name_count; i++) {
1474 struct audit_names *n = &context->names[i];
1475
1476 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1477 if (!ab)
1478 continue; /* audit_panic has been called */
1479
1480 audit_log_format(ab, "item=%d", i);
1481
1482 if (n->name) {
1483 switch(n->name_len) {
1484 case AUDIT_NAME_FULL:
1485 /* log the full path */
1486 audit_log_format(ab, " name=");
1487 audit_log_untrustedstring(ab, n->name);
1488 break;
1489 case 0:
1490 /* name was specified as a relative path and the
1491 * directory component is the cwd */
1492 audit_log_d_path(ab, "name=", &context->pwd);
1493 break;
1494 default:
1495 /* log the name's directory component */
1496 audit_log_format(ab, " name=");
1497 audit_log_n_untrustedstring(ab, n->name,
1498 n->name_len);
1499 }
1500 } else
1501 audit_log_format(ab, " name=(null)");
1502
1503 if (n->ino != (unsigned long)-1) {
1504 audit_log_format(ab, " inode=%lu"
1505 " dev=%02x:%02x mode=%#o"
1506 " ouid=%u ogid=%u rdev=%02x:%02x",
1507 n->ino,
1508 MAJOR(n->dev),
1509 MINOR(n->dev),
1510 n->mode,
1511 n->uid,
1512 n->gid,
1513 MAJOR(n->rdev),
1514 MINOR(n->rdev));
1515 }
1516 if (n->osid != 0) {
1517 char *ctx = NULL;
1518 u32 len;
1519 if (security_secid_to_secctx(
1520 n->osid, &ctx, &len)) {
1521 audit_log_format(ab, " osid=%u", n->osid);
1522 call_panic = 2;
1523 } else {
1524 audit_log_format(ab, " obj=%s", ctx);
1525 security_release_secctx(ctx, len);
1526 }
1527 }
1528
1529 audit_log_fcaps(ab, n);
1530
1531 audit_log_end(ab);
1532 }
1533
1534 /* Send end of event record to help user space know we are finished */
1535 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1536 if (ab)
1537 audit_log_end(ab);
1538 if (call_panic)
1539 audit_panic("error converting sid to string");
1540}
1541
1542/**
1543 * audit_free - free a per-task audit context
1544 * @tsk: task whose audit context block to free
1545 *
1546 * Called from copy_process and do_exit
1547 */
1548void audit_free(struct task_struct *tsk)
1549{
1550 struct audit_context *context;
1551
1552 context = audit_get_context(tsk, 0, 0);
1553 if (likely(!context))
1554 return;
1555
1556 /* Check for system calls that do not go through the exit
1557 * function (e.g., exit_group), then free context block.
1558 * We use GFP_ATOMIC here because we might be doing this
1559 * in the context of the idle thread */
1560 /* that can happen only if we are called from do_exit() */
1561 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1562 audit_log_exit(context, tsk);
1563 if (!list_empty(&context->killed_trees))
1564 audit_kill_trees(&context->killed_trees);
1565
1566 audit_free_context(context);
1567}
1568
1569/**
1570 * audit_syscall_entry - fill in an audit record at syscall entry
1571 * @arch: architecture type
1572 * @major: major syscall type (function)
1573 * @a1: additional syscall register 1
1574 * @a2: additional syscall register 2
1575 * @a3: additional syscall register 3
1576 * @a4: additional syscall register 4
1577 *
1578 * Fill in audit context at syscall entry. This only happens if the
1579 * audit context was created when the task was created and the state or
1580 * filters demand the audit context be built. If the state from the
1581 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1582 * then the record will be written at syscall exit time (otherwise, it
1583 * will only be written if another part of the kernel requests that it
1584 * be written).
1585 */
1586void audit_syscall_entry(int arch, int major,
1587 unsigned long a1, unsigned long a2,
1588 unsigned long a3, unsigned long a4)
1589{
1590 struct task_struct *tsk = current;
1591 struct audit_context *context = tsk->audit_context;
1592 enum audit_state state;
1593
1594 if (unlikely(!context))
1595 return;
1596
1597 /*
1598 * This happens only on certain architectures that make system
1599 * calls in kernel_thread via the entry.S interface, instead of
1600 * with direct calls. (If you are porting to a new
1601 * architecture, hitting this condition can indicate that you
1602 * got the _exit/_leave calls backward in entry.S.)
1603 *
1604 * i386 no
1605 * x86_64 no
1606 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1607 *
1608 * This also happens with vm86 emulation in a non-nested manner
1609 * (entries without exits), so this case must be caught.
1610 */
1611 if (context->in_syscall) {
1612 struct audit_context *newctx;
1613
1614#if AUDIT_DEBUG
1615 printk(KERN_ERR
1616 "audit(:%d) pid=%d in syscall=%d;"
1617 " entering syscall=%d\n",
1618 context->serial, tsk->pid, context->major, major);
1619#endif
1620 newctx = audit_alloc_context(context->state);
1621 if (newctx) {
1622 newctx->previous = context;
1623 context = newctx;
1624 tsk->audit_context = newctx;
1625 } else {
1626 /* If we can't alloc a new context, the best we
1627 * can do is to leak memory (any pending putname
1628 * will be lost). The only other alternative is
1629 * to abandon auditing. */
1630 audit_zero_context(context, context->state);
1631 }
1632 }
1633 BUG_ON(context->in_syscall || context->name_count);
1634
1635 if (!audit_enabled)
1636 return;
1637
1638 context->arch = arch;
1639 context->major = major;
1640 context->argv[0] = a1;
1641 context->argv[1] = a2;
1642 context->argv[2] = a3;
1643 context->argv[3] = a4;
1644
1645 state = context->state;
1646 context->dummy = !audit_n_rules;
1647 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1648 context->prio = 0;
1649 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1650 }
1651 if (likely(state == AUDIT_DISABLED))
1652 return;
1653
1654 context->serial = 0;
1655 context->ctime = CURRENT_TIME;
1656 context->in_syscall = 1;
1657 context->current_state = state;
1658 context->ppid = 0;
1659}
1660
1661void audit_finish_fork(struct task_struct *child)
1662{
1663 struct audit_context *ctx = current->audit_context;
1664 struct audit_context *p = child->audit_context;
1665 if (!p || !ctx)
1666 return;
1667 if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
1668 return;
1669 p->arch = ctx->arch;
1670 p->major = ctx->major;
1671 memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1672 p->ctime = ctx->ctime;
1673 p->dummy = ctx->dummy;
1674 p->in_syscall = ctx->in_syscall;
1675 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1676 p->ppid = current->pid;
1677 p->prio = ctx->prio;
1678 p->current_state = ctx->current_state;
1679}
1680
1681/**
1682 * audit_syscall_exit - deallocate audit context after a system call
1683 * @valid: success/failure flag
1684 * @return_code: syscall return value
1685 *
1686 * Tear down after system call. If the audit context has been marked as
1687 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1688 * filtering, or because some other part of the kernel write an audit
1689 * message), then write out the syscall information. In call cases,
1690 * free the names stored from getname().
1691 */
1692void audit_syscall_exit(int valid, long return_code)
1693{
1694 struct task_struct *tsk = current;
1695 struct audit_context *context;
1696
1697 context = audit_get_context(tsk, valid, return_code);
1698
1699 if (likely(!context))
1700 return;
1701
1702 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1703 audit_log_exit(context, tsk);
1704
1705 context->in_syscall = 0;
1706 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1707
1708 if (!list_empty(&context->killed_trees))
1709 audit_kill_trees(&context->killed_trees);
1710
1711 if (context->previous) {
1712 struct audit_context *new_context = context->previous;
1713 context->previous = NULL;
1714 audit_free_context(context);
1715 tsk->audit_context = new_context;
1716 } else {
1717 audit_free_names(context);
1718 unroll_tree_refs(context, NULL, 0);
1719 audit_free_aux(context);
1720 context->aux = NULL;
1721 context->aux_pids = NULL;
1722 context->target_pid = 0;
1723 context->target_sid = 0;
1724 context->sockaddr_len = 0;
1725 context->type = 0;
1726 context->fds[0] = -1;
1727 if (context->state != AUDIT_RECORD_CONTEXT) {
1728 kfree(context->filterkey);
1729 context->filterkey = NULL;
1730 }
1731 tsk->audit_context = context;
1732 }
1733}
1734
1735static inline void handle_one(const struct inode *inode)
1736{
1737#ifdef CONFIG_AUDIT_TREE
1738 struct audit_context *context;
1739 struct audit_tree_refs *p;
1740 struct audit_chunk *chunk;
1741 int count;
1742 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1743 return;
1744 context = current->audit_context;
1745 p = context->trees;
1746 count = context->tree_count;
1747 rcu_read_lock();
1748 chunk = audit_tree_lookup(inode);
1749 rcu_read_unlock();
1750 if (!chunk)
1751 return;
1752 if (likely(put_tree_ref(context, chunk)))
1753 return;
1754 if (unlikely(!grow_tree_refs(context))) {
1755 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1756 audit_set_auditable(context);
1757 audit_put_chunk(chunk);
1758 unroll_tree_refs(context, p, count);
1759 return;
1760 }
1761 put_tree_ref(context, chunk);
1762#endif
1763}
1764
1765static void handle_path(const struct dentry *dentry)
1766{
1767#ifdef CONFIG_AUDIT_TREE
1768 struct audit_context *context;
1769 struct audit_tree_refs *p;
1770 const struct dentry *d, *parent;
1771 struct audit_chunk *drop;
1772 unsigned long seq;
1773 int count;
1774
1775 context = current->audit_context;
1776 p = context->trees;
1777 count = context->tree_count;
1778retry:
1779 drop = NULL;
1780 d = dentry;
1781 rcu_read_lock();
1782 seq = read_seqbegin(&rename_lock);
1783 for(;;) {
1784 struct inode *inode = d->d_inode;
1785 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1786 struct audit_chunk *chunk;
1787 chunk = audit_tree_lookup(inode);
1788 if (chunk) {
1789 if (unlikely(!put_tree_ref(context, chunk))) {
1790 drop = chunk;
1791 break;
1792 }
1793 }
1794 }
1795 parent = d->d_parent;
1796 if (parent == d)
1797 break;
1798 d = parent;
1799 }
1800 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1801 rcu_read_unlock();
1802 if (!drop) {
1803 /* just a race with rename */
1804 unroll_tree_refs(context, p, count);
1805 goto retry;
1806 }
1807 audit_put_chunk(drop);
1808 if (grow_tree_refs(context)) {
1809 /* OK, got more space */
1810 unroll_tree_refs(context, p, count);
1811 goto retry;
1812 }
1813 /* too bad */
1814 printk(KERN_WARNING
1815 "out of memory, audit has lost a tree reference\n");
1816 unroll_tree_refs(context, p, count);
1817 audit_set_auditable(context);
1818 return;
1819 }
1820 rcu_read_unlock();
1821#endif
1822}
1823
1824/**
1825 * audit_getname - add a name to the list
1826 * @name: name to add
1827 *
1828 * Add a name to the list of audit names for this context.
1829 * Called from fs/namei.c:getname().
1830 */
1831void __audit_getname(const char *name)
1832{
1833 struct audit_context *context = current->audit_context;
1834
1835 if (IS_ERR(name) || !name)
1836 return;
1837
1838 if (!context->in_syscall) {
1839#if AUDIT_DEBUG == 2
1840 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1841 __FILE__, __LINE__, context->serial, name);
1842 dump_stack();
1843#endif
1844 return;
1845 }
1846 BUG_ON(context->name_count >= AUDIT_NAMES);
1847 context->names[context->name_count].name = name;
1848 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1849 context->names[context->name_count].name_put = 1;
1850 context->names[context->name_count].ino = (unsigned long)-1;
1851 context->names[context->name_count].osid = 0;
1852 ++context->name_count;
1853 if (!context->pwd.dentry)
1854 get_fs_pwd(current->fs, &context->pwd);
1855}
1856
1857/* audit_putname - intercept a putname request
1858 * @name: name to intercept and delay for putname
1859 *
1860 * If we have stored the name from getname in the audit context,
1861 * then we delay the putname until syscall exit.
1862 * Called from include/linux/fs.h:putname().
1863 */
1864void audit_putname(const char *name)
1865{
1866 struct audit_context *context = current->audit_context;
1867
1868 BUG_ON(!context);
1869 if (!context->in_syscall) {
1870#if AUDIT_DEBUG == 2
1871 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1872 __FILE__, __LINE__, context->serial, name);
1873 if (context->name_count) {
1874 int i;
1875 for (i = 0; i < context->name_count; i++)
1876 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1877 context->names[i].name,
1878 context->names[i].name ?: "(null)");
1879 }
1880#endif
1881 __putname(name);
1882 }
1883#if AUDIT_DEBUG
1884 else {
1885 ++context->put_count;
1886 if (context->put_count > context->name_count) {
1887 printk(KERN_ERR "%s:%d(:%d): major=%d"
1888 " in_syscall=%d putname(%p) name_count=%d"
1889 " put_count=%d\n",
1890 __FILE__, __LINE__,
1891 context->serial, context->major,
1892 context->in_syscall, name, context->name_count,
1893 context->put_count);
1894 dump_stack();
1895 }
1896 }
1897#endif
1898}
1899
1900static int audit_inc_name_count(struct audit_context *context,
1901 const struct inode *inode)
1902{
1903 if (context->name_count >= AUDIT_NAMES) {
1904 if (inode)
1905 printk(KERN_DEBUG "audit: name_count maxed, losing inode data: "
1906 "dev=%02x:%02x, inode=%lu\n",
1907 MAJOR(inode->i_sb->s_dev),
1908 MINOR(inode->i_sb->s_dev),
1909 inode->i_ino);
1910
1911 else
1912 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1913 return 1;
1914 }
1915 context->name_count++;
1916#if AUDIT_DEBUG
1917 context->ino_count++;
1918#endif
1919 return 0;
1920}
1921
1922
1923static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1924{
1925 struct cpu_vfs_cap_data caps;
1926 int rc;
1927
1928 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1929 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1930 name->fcap.fE = 0;
1931 name->fcap_ver = 0;
1932
1933 if (!dentry)
1934 return 0;
1935
1936 rc = get_vfs_caps_from_disk(dentry, &caps);
1937 if (rc)
1938 return rc;
1939
1940 name->fcap.permitted = caps.permitted;
1941 name->fcap.inheritable = caps.inheritable;
1942 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1943 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1944
1945 return 0;
1946}
1947
1948
1949/* Copy inode data into an audit_names. */
1950static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1951 const struct inode *inode)
1952{
1953 name->ino = inode->i_ino;
1954 name->dev = inode->i_sb->s_dev;
1955 name->mode = inode->i_mode;
1956 name->uid = inode->i_uid;
1957 name->gid = inode->i_gid;
1958 name->rdev = inode->i_rdev;
1959 security_inode_getsecid(inode, &name->osid);
1960 audit_copy_fcaps(name, dentry);
1961}
1962
1963/**
1964 * audit_inode - store the inode and device from a lookup
1965 * @name: name being audited
1966 * @dentry: dentry being audited
1967 *
1968 * Called from fs/namei.c:path_lookup().
1969 */
1970void __audit_inode(const char *name, const struct dentry *dentry)
1971{
1972 int idx;
1973 struct audit_context *context = current->audit_context;
1974 const struct inode *inode = dentry->d_inode;
1975
1976 if (!context->in_syscall)
1977 return;
1978 if (context->name_count
1979 && context->names[context->name_count-1].name
1980 && context->names[context->name_count-1].name == name)
1981 idx = context->name_count - 1;
1982 else if (context->name_count > 1
1983 && context->names[context->name_count-2].name
1984 && context->names[context->name_count-2].name == name)
1985 idx = context->name_count - 2;
1986 else {
1987 /* FIXME: how much do we care about inodes that have no
1988 * associated name? */
1989 if (audit_inc_name_count(context, inode))
1990 return;
1991 idx = context->name_count - 1;
1992 context->names[idx].name = NULL;
1993 }
1994 handle_path(dentry);
1995 audit_copy_inode(&context->names[idx], dentry, inode);
1996}
1997
1998/**
1999 * audit_inode_child - collect inode info for created/removed objects
2000 * @dentry: dentry being audited
2001 * @parent: inode of dentry parent
2002 *
2003 * For syscalls that create or remove filesystem objects, audit_inode
2004 * can only collect information for the filesystem object's parent.
2005 * This call updates the audit context with the child's information.
2006 * Syscalls that create a new filesystem object must be hooked after
2007 * the object is created. Syscalls that remove a filesystem object
2008 * must be hooked prior, in order to capture the target inode during
2009 * unsuccessful attempts.
2010 */
2011void __audit_inode_child(const struct dentry *dentry,
2012 const struct inode *parent)
2013{
2014 int idx;
2015 struct audit_context *context = current->audit_context;
2016 const char *found_parent = NULL, *found_child = NULL;
2017 const struct inode *inode = dentry->d_inode;
2018 const char *dname = dentry->d_name.name;
2019 int dirlen = 0;
2020
2021 if (!context->in_syscall)
2022 return;
2023
2024 if (inode)
2025 handle_one(inode);
2026
2027 /* parent is more likely, look for it first */
2028 for (idx = 0; idx < context->name_count; idx++) {
2029 struct audit_names *n = &context->names[idx];
2030
2031 if (!n->name)
2032 continue;
2033
2034 if (n->ino == parent->i_ino &&
2035 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2036 n->name_len = dirlen; /* update parent data in place */
2037 found_parent = n->name;
2038 goto add_names;
2039 }
2040 }
2041
2042 /* no matching parent, look for matching child */
2043 for (idx = 0; idx < context->name_count; idx++) {
2044 struct audit_names *n = &context->names[idx];
2045
2046 if (!n->name)
2047 continue;
2048
2049 /* strcmp() is the more likely scenario */
2050 if (!strcmp(dname, n->name) ||
2051 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2052 if (inode)
2053 audit_copy_inode(n, NULL, inode);
2054 else
2055 n->ino = (unsigned long)-1;
2056 found_child = n->name;
2057 goto add_names;
2058 }
2059 }
2060
2061add_names:
2062 if (!found_parent) {
2063 if (audit_inc_name_count(context, parent))
2064 return;
2065 idx = context->name_count - 1;
2066 context->names[idx].name = NULL;
2067 audit_copy_inode(&context->names[idx], NULL, parent);
2068 }
2069
2070 if (!found_child) {
2071 if (audit_inc_name_count(context, inode))
2072 return;
2073 idx = context->name_count - 1;
2074
2075 /* Re-use the name belonging to the slot for a matching parent
2076 * directory. All names for this context are relinquished in
2077 * audit_free_names() */
2078 if (found_parent) {
2079 context->names[idx].name = found_parent;
2080 context->names[idx].name_len = AUDIT_NAME_FULL;
2081 /* don't call __putname() */
2082 context->names[idx].name_put = 0;
2083 } else {
2084 context->names[idx].name = NULL;
2085 }
2086
2087 if (inode)
2088 audit_copy_inode(&context->names[idx], NULL, inode);
2089 else
2090 context->names[idx].ino = (unsigned long)-1;
2091 }
2092}
2093EXPORT_SYMBOL_GPL(__audit_inode_child);
2094
2095/**
2096 * auditsc_get_stamp - get local copies of audit_context values
2097 * @ctx: audit_context for the task
2098 * @t: timespec to store time recorded in the audit_context
2099 * @serial: serial value that is recorded in the audit_context
2100 *
2101 * Also sets the context as auditable.
2102 */
2103int auditsc_get_stamp(struct audit_context *ctx,
2104 struct timespec *t, unsigned int *serial)
2105{
2106 if (!ctx->in_syscall)
2107 return 0;
2108 if (!ctx->serial)
2109 ctx->serial = audit_serial();
2110 t->tv_sec = ctx->ctime.tv_sec;
2111 t->tv_nsec = ctx->ctime.tv_nsec;
2112 *serial = ctx->serial;
2113 if (!ctx->prio) {
2114 ctx->prio = 1;
2115 ctx->current_state = AUDIT_RECORD_CONTEXT;
2116 }
2117 return 1;
2118}
2119
2120/* global counter which is incremented every time something logs in */
2121static atomic_t session_id = ATOMIC_INIT(0);
2122
2123/**
2124 * audit_set_loginuid - set a task's audit_context loginuid
2125 * @task: task whose audit context is being modified
2126 * @loginuid: loginuid value
2127 *
2128 * Returns 0.
2129 *
2130 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2131 */
2132int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2133{
2134 unsigned int sessionid = atomic_inc_return(&session_id);
2135 struct audit_context *context = task->audit_context;
2136
2137 if (context && context->in_syscall) {
2138 struct audit_buffer *ab;
2139
2140 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2141 if (ab) {
2142 audit_log_format(ab, "login pid=%d uid=%u "
2143 "old auid=%u new auid=%u"
2144 " old ses=%u new ses=%u",
2145 task->pid, task_uid(task),
2146 task->loginuid, loginuid,
2147 task->sessionid, sessionid);
2148 audit_log_end(ab);
2149 }
2150 }
2151 task->sessionid = sessionid;
2152 task->loginuid = loginuid;
2153 return 0;
2154}
2155
2156/**
2157 * __audit_mq_open - record audit data for a POSIX MQ open
2158 * @oflag: open flag
2159 * @mode: mode bits
2160 * @attr: queue attributes
2161 *
2162 */
2163void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
2164{
2165 struct audit_context *context = current->audit_context;
2166
2167 if (attr)
2168 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2169 else
2170 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2171
2172 context->mq_open.oflag = oflag;
2173 context->mq_open.mode = mode;
2174
2175 context->type = AUDIT_MQ_OPEN;
2176}
2177
2178/**
2179 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2180 * @mqdes: MQ descriptor
2181 * @msg_len: Message length
2182 * @msg_prio: Message priority
2183 * @abs_timeout: Message timeout in absolute time
2184 *
2185 */
2186void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2187 const struct timespec *abs_timeout)
2188{
2189 struct audit_context *context = current->audit_context;
2190 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2191
2192 if (abs_timeout)
2193 memcpy(p, abs_timeout, sizeof(struct timespec));
2194 else
2195 memset(p, 0, sizeof(struct timespec));
2196
2197 context->mq_sendrecv.mqdes = mqdes;
2198 context->mq_sendrecv.msg_len = msg_len;
2199 context->mq_sendrecv.msg_prio = msg_prio;
2200
2201 context->type = AUDIT_MQ_SENDRECV;
2202}
2203
2204/**
2205 * __audit_mq_notify - record audit data for a POSIX MQ notify
2206 * @mqdes: MQ descriptor
2207 * @notification: Notification event
2208 *
2209 */
2210
2211void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2212{
2213 struct audit_context *context = current->audit_context;
2214
2215 if (notification)
2216 context->mq_notify.sigev_signo = notification->sigev_signo;
2217 else
2218 context->mq_notify.sigev_signo = 0;
2219
2220 context->mq_notify.mqdes = mqdes;
2221 context->type = AUDIT_MQ_NOTIFY;
2222}
2223
2224/**
2225 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2226 * @mqdes: MQ descriptor
2227 * @mqstat: MQ flags
2228 *
2229 */
2230void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2231{
2232 struct audit_context *context = current->audit_context;
2233 context->mq_getsetattr.mqdes = mqdes;
2234 context->mq_getsetattr.mqstat = *mqstat;
2235 context->type = AUDIT_MQ_GETSETATTR;
2236}
2237
2238/**
2239 * audit_ipc_obj - record audit data for ipc object
2240 * @ipcp: ipc permissions
2241 *
2242 */
2243void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2244{
2245 struct audit_context *context = current->audit_context;
2246 context->ipc.uid = ipcp->uid;
2247 context->ipc.gid = ipcp->gid;
2248 context->ipc.mode = ipcp->mode;
2249 context->ipc.has_perm = 0;
2250 security_ipc_getsecid(ipcp, &context->ipc.osid);
2251 context->type = AUDIT_IPC;
2252}
2253
2254/**
2255 * audit_ipc_set_perm - record audit data for new ipc permissions
2256 * @qbytes: msgq bytes
2257 * @uid: msgq user id
2258 * @gid: msgq group id
2259 * @mode: msgq mode (permissions)
2260 *
2261 * Called only after audit_ipc_obj().
2262 */
2263void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2264{
2265 struct audit_context *context = current->audit_context;
2266
2267 context->ipc.qbytes = qbytes;
2268 context->ipc.perm_uid = uid;
2269 context->ipc.perm_gid = gid;
2270 context->ipc.perm_mode = mode;
2271 context->ipc.has_perm = 1;
2272}
2273
2274int audit_bprm(struct linux_binprm *bprm)
2275{
2276 struct audit_aux_data_execve *ax;
2277 struct audit_context *context = current->audit_context;
2278
2279 if (likely(!audit_enabled || !context || context->dummy))
2280 return 0;
2281
2282 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2283 if (!ax)
2284 return -ENOMEM;
2285
2286 ax->argc = bprm->argc;
2287 ax->envc = bprm->envc;
2288 ax->mm = bprm->mm;
2289 ax->d.type = AUDIT_EXECVE;
2290 ax->d.next = context->aux;
2291 context->aux = (void *)ax;
2292 return 0;
2293}
2294
2295
2296/**
2297 * audit_socketcall - record audit data for sys_socketcall
2298 * @nargs: number of args
2299 * @args: args array
2300 *
2301 */
2302void audit_socketcall(int nargs, unsigned long *args)
2303{
2304 struct audit_context *context = current->audit_context;
2305
2306 if (likely(!context || context->dummy))
2307 return;
2308
2309 context->type = AUDIT_SOCKETCALL;
2310 context->socketcall.nargs = nargs;
2311 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2312}
2313
2314/**
2315 * __audit_fd_pair - record audit data for pipe and socketpair
2316 * @fd1: the first file descriptor
2317 * @fd2: the second file descriptor
2318 *
2319 */
2320void __audit_fd_pair(int fd1, int fd2)
2321{
2322 struct audit_context *context = current->audit_context;
2323 context->fds[0] = fd1;
2324 context->fds[1] = fd2;
2325}
2326
2327/**
2328 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2329 * @len: data length in user space
2330 * @a: data address in kernel space
2331 *
2332 * Returns 0 for success or NULL context or < 0 on error.
2333 */
2334int audit_sockaddr(int len, void *a)
2335{
2336 struct audit_context *context = current->audit_context;
2337
2338 if (likely(!context || context->dummy))
2339 return 0;
2340
2341 if (!context->sockaddr) {
2342 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2343 if (!p)
2344 return -ENOMEM;
2345 context->sockaddr = p;
2346 }
2347
2348 context->sockaddr_len = len;
2349 memcpy(context->sockaddr, a, len);
2350 return 0;
2351}
2352
2353void __audit_ptrace(struct task_struct *t)
2354{
2355 struct audit_context *context = current->audit_context;
2356
2357 context->target_pid = t->pid;
2358 context->target_auid = audit_get_loginuid(t);
2359 context->target_uid = task_uid(t);
2360 context->target_sessionid = audit_get_sessionid(t);
2361 security_task_getsecid(t, &context->target_sid);
2362 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2363}
2364
2365/**
2366 * audit_signal_info - record signal info for shutting down audit subsystem
2367 * @sig: signal value
2368 * @t: task being signaled
2369 *
2370 * If the audit subsystem is being terminated, record the task (pid)
2371 * and uid that is doing that.
2372 */
2373int __audit_signal_info(int sig, struct task_struct *t)
2374{
2375 struct audit_aux_data_pids *axp;
2376 struct task_struct *tsk = current;
2377 struct audit_context *ctx = tsk->audit_context;
2378 uid_t uid = current_uid(), t_uid = task_uid(t);
2379
2380 if (audit_pid && t->tgid == audit_pid) {
2381 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2382 audit_sig_pid = tsk->pid;
2383 if (tsk->loginuid != -1)
2384 audit_sig_uid = tsk->loginuid;
2385 else
2386 audit_sig_uid = uid;
2387 security_task_getsecid(tsk, &audit_sig_sid);
2388 }
2389 if (!audit_signals || audit_dummy_context())
2390 return 0;
2391 }
2392
2393 /* optimize the common case by putting first signal recipient directly
2394 * in audit_context */
2395 if (!ctx->target_pid) {
2396 ctx->target_pid = t->tgid;
2397 ctx->target_auid = audit_get_loginuid(t);
2398 ctx->target_uid = t_uid;
2399 ctx->target_sessionid = audit_get_sessionid(t);
2400 security_task_getsecid(t, &ctx->target_sid);
2401 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2402 return 0;
2403 }
2404
2405 axp = (void *)ctx->aux_pids;
2406 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2407 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2408 if (!axp)
2409 return -ENOMEM;
2410
2411 axp->d.type = AUDIT_OBJ_PID;
2412 axp->d.next = ctx->aux_pids;
2413 ctx->aux_pids = (void *)axp;
2414 }
2415 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2416
2417 axp->target_pid[axp->pid_count] = t->tgid;
2418 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2419 axp->target_uid[axp->pid_count] = t_uid;
2420 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2421 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2422 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2423 axp->pid_count++;
2424
2425 return 0;
2426}
2427
2428/**
2429 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2430 * @bprm: pointer to the bprm being processed
2431 * @new: the proposed new credentials
2432 * @old: the old credentials
2433 *
2434 * Simply check if the proc already has the caps given by the file and if not
2435 * store the priv escalation info for later auditing at the end of the syscall
2436 *
2437 * -Eric
2438 */
2439int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2440 const struct cred *new, const struct cred *old)
2441{
2442 struct audit_aux_data_bprm_fcaps *ax;
2443 struct audit_context *context = current->audit_context;
2444 struct cpu_vfs_cap_data vcaps;
2445 struct dentry *dentry;
2446
2447 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2448 if (!ax)
2449 return -ENOMEM;
2450
2451 ax->d.type = AUDIT_BPRM_FCAPS;
2452 ax->d.next = context->aux;
2453 context->aux = (void *)ax;
2454
2455 dentry = dget(bprm->file->f_dentry);
2456 get_vfs_caps_from_disk(dentry, &vcaps);
2457 dput(dentry);
2458
2459 ax->fcap.permitted = vcaps.permitted;
2460 ax->fcap.inheritable = vcaps.inheritable;
2461 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2462 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2463
2464 ax->old_pcap.permitted = old->cap_permitted;
2465 ax->old_pcap.inheritable = old->cap_inheritable;
2466 ax->old_pcap.effective = old->cap_effective;
2467
2468 ax->new_pcap.permitted = new->cap_permitted;
2469 ax->new_pcap.inheritable = new->cap_inheritable;
2470 ax->new_pcap.effective = new->cap_effective;
2471 return 0;
2472}
2473
2474/**
2475 * __audit_log_capset - store information about the arguments to the capset syscall
2476 * @pid: target pid of the capset call
2477 * @new: the new credentials
2478 * @old: the old (current) credentials
2479 *
2480 * Record the aguments userspace sent to sys_capset for later printing by the
2481 * audit system if applicable
2482 */
2483void __audit_log_capset(pid_t pid,
2484 const struct cred *new, const struct cred *old)
2485{
2486 struct audit_context *context = current->audit_context;
2487 context->capset.pid = pid;
2488 context->capset.cap.effective = new->cap_effective;
2489 context->capset.cap.inheritable = new->cap_effective;
2490 context->capset.cap.permitted = new->cap_permitted;
2491 context->type = AUDIT_CAPSET;
2492}
2493
2494void __audit_mmap_fd(int fd, int flags)
2495{
2496 struct audit_context *context = current->audit_context;
2497 context->mmap.fd = fd;
2498 context->mmap.flags = flags;
2499 context->type = AUDIT_MMAP;
2500}
2501
2502/**
2503 * audit_core_dumps - record information about processes that end abnormally
2504 * @signr: signal value
2505 *
2506 * If a process ends with a core dump, something fishy is going on and we
2507 * should record the event for investigation.
2508 */
2509void audit_core_dumps(long signr)
2510{
2511 struct audit_buffer *ab;
2512 u32 sid;
2513 uid_t auid = audit_get_loginuid(current), uid;
2514 gid_t gid;
2515 unsigned int sessionid = audit_get_sessionid(current);
2516
2517 if (!audit_enabled)
2518 return;
2519
2520 if (signr == SIGQUIT) /* don't care for those */
2521 return;
2522
2523 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2524 current_uid_gid(&uid, &gid);
2525 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2526 auid, uid, gid, sessionid);
2527 security_task_getsecid(current, &sid);
2528 if (sid) {
2529 char *ctx = NULL;
2530 u32 len;
2531
2532 if (security_secid_to_secctx(sid, &ctx, &len))
2533 audit_log_format(ab, " ssid=%u", sid);
2534 else {
2535 audit_log_format(ab, " subj=%s", ctx);
2536 security_release_secctx(ctx, len);
2537 }
2538 }
2539 audit_log_format(ab, " pid=%d comm=", current->pid);
2540 audit_log_untrustedstring(ab, current->comm);
2541 audit_log_format(ab, " sig=%ld", signr);
2542 audit_log_end(ab);
2543}
2544
2545struct list_head *audit_killed_trees(void)
2546{
2547 struct audit_context *ctx = current->audit_context;
2548 if (likely(!ctx || !ctx->in_syscall))
2549 return NULL;
2550 return &ctx->killed_trees;
2551}