Linux Audio

Check our new training course

Loading...
v5.4
  1/*
  2 * balloc.c
  3 *
  4 * PURPOSE
  5 *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
  6 *
  7 * COPYRIGHT
  8 *	This file is distributed under the terms of the GNU General Public
  9 *	License (GPL). Copies of the GPL can be obtained from:
 10 *		ftp://prep.ai.mit.edu/pub/gnu/GPL
 11 *	Each contributing author retains all rights to their own work.
 12 *
 13 *  (C) 1999-2001 Ben Fennema
 14 *  (C) 1999 Stelias Computing Inc
 15 *
 16 * HISTORY
 17 *
 18 *  02/24/99 blf  Created.
 19 *
 20 */
 21
 22#include "udfdecl.h"
 23
 
 24#include <linux/bitops.h>
 25
 26#include "udf_i.h"
 27#include "udf_sb.h"
 28
 29#define udf_clear_bit	__test_and_clear_bit_le
 30#define udf_set_bit	__test_and_set_bit_le
 31#define udf_test_bit	test_bit_le
 32#define udf_find_next_one_bit	find_next_bit_le
 33
 34static int read_block_bitmap(struct super_block *sb,
 35			     struct udf_bitmap *bitmap, unsigned int block,
 36			     unsigned long bitmap_nr)
 37{
 38	struct buffer_head *bh = NULL;
 39	int retval = 0;
 40	struct kernel_lb_addr loc;
 41
 42	loc.logicalBlockNum = bitmap->s_extPosition;
 43	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
 44
 45	bh = udf_tread(sb, udf_get_lb_pblock(sb, &loc, block));
 46	if (!bh)
 47		retval = -EIO;
 48
 49	bitmap->s_block_bitmap[bitmap_nr] = bh;
 50	return retval;
 51}
 52
 53static int __load_block_bitmap(struct super_block *sb,
 54			       struct udf_bitmap *bitmap,
 55			       unsigned int block_group)
 56{
 57	int retval = 0;
 58	int nr_groups = bitmap->s_nr_groups;
 59
 60	if (block_group >= nr_groups) {
 61		udf_debug("block_group (%u) > nr_groups (%d)\n",
 62			  block_group, nr_groups);
 63	}
 64
 65	if (bitmap->s_block_bitmap[block_group])
 66		return block_group;
 67
 68	retval = read_block_bitmap(sb, bitmap, block_group, block_group);
 69	if (retval < 0)
 70		return retval;
 71
 72	return block_group;
 
 73}
 74
 75static inline int load_block_bitmap(struct super_block *sb,
 76				    struct udf_bitmap *bitmap,
 77				    unsigned int block_group)
 78{
 79	int slot;
 80
 81	slot = __load_block_bitmap(sb, bitmap, block_group);
 82
 83	if (slot < 0)
 84		return slot;
 85
 86	if (!bitmap->s_block_bitmap[slot])
 87		return -EIO;
 88
 89	return slot;
 90}
 91
 92static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
 93{
 94	struct udf_sb_info *sbi = UDF_SB(sb);
 95	struct logicalVolIntegrityDesc *lvid;
 96
 97	if (!sbi->s_lvid_bh)
 98		return;
 99
100	lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
101	le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
102	udf_updated_lvid(sb);
103}
104
105static void udf_bitmap_free_blocks(struct super_block *sb,
 
106				   struct udf_bitmap *bitmap,
107				   struct kernel_lb_addr *bloc,
108				   uint32_t offset,
109				   uint32_t count)
110{
111	struct udf_sb_info *sbi = UDF_SB(sb);
112	struct buffer_head *bh = NULL;
113	struct udf_part_map *partmap;
114	unsigned long block;
115	unsigned long block_group;
116	unsigned long bit;
117	unsigned long i;
118	int bitmap_nr;
119	unsigned long overflow;
120
121	mutex_lock(&sbi->s_alloc_mutex);
122	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
123	if (bloc->logicalBlockNum + count < count ||
124	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
125		udf_debug("%u < %d || %u + %u > %u\n",
126			  bloc->logicalBlockNum, 0,
127			  bloc->logicalBlockNum, count,
128			  partmap->s_partition_len);
129		goto error_return;
130	}
131
132	block = bloc->logicalBlockNum + offset +
133		(sizeof(struct spaceBitmapDesc) << 3);
134
135	do {
136		overflow = 0;
137		block_group = block >> (sb->s_blocksize_bits + 3);
138		bit = block % (sb->s_blocksize << 3);
139
140		/*
141		* Check to see if we are freeing blocks across a group boundary.
142		*/
143		if (bit + count > (sb->s_blocksize << 3)) {
144			overflow = bit + count - (sb->s_blocksize << 3);
145			count -= overflow;
146		}
147		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
148		if (bitmap_nr < 0)
149			goto error_return;
150
151		bh = bitmap->s_block_bitmap[bitmap_nr];
152		for (i = 0; i < count; i++) {
153			if (udf_set_bit(bit + i, bh->b_data)) {
154				udf_debug("bit %lu already set\n", bit + i);
155				udf_debug("byte=%2x\n",
156					  ((__u8 *)bh->b_data)[(bit + i) >> 3]);
157			}
158		}
159		udf_add_free_space(sb, sbi->s_partition, count);
160		mark_buffer_dirty(bh);
161		if (overflow) {
162			block += count;
163			count = overflow;
164		}
165	} while (overflow);
166
167error_return:
168	mutex_unlock(&sbi->s_alloc_mutex);
169}
170
171static int udf_bitmap_prealloc_blocks(struct super_block *sb,
 
172				      struct udf_bitmap *bitmap,
173				      uint16_t partition, uint32_t first_block,
174				      uint32_t block_count)
175{
176	struct udf_sb_info *sbi = UDF_SB(sb);
177	int alloc_count = 0;
178	int bit, block, block_group;
179	int bitmap_nr;
180	struct buffer_head *bh;
181	__u32 part_len;
182
183	mutex_lock(&sbi->s_alloc_mutex);
184	part_len = sbi->s_partmaps[partition].s_partition_len;
185	if (first_block >= part_len)
186		goto out;
187
188	if (first_block + block_count > part_len)
189		block_count = part_len - first_block;
190
191	do {
 
192		block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
193		block_group = block >> (sb->s_blocksize_bits + 3);
 
194
195		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
196		if (bitmap_nr < 0)
197			goto out;
198		bh = bitmap->s_block_bitmap[bitmap_nr];
199
200		bit = block % (sb->s_blocksize << 3);
201
202		while (bit < (sb->s_blocksize << 3) && block_count > 0) {
203			if (!udf_clear_bit(bit, bh->b_data))
204				goto out;
205			block_count--;
206			alloc_count++;
207			bit++;
208			block++;
209		}
210		mark_buffer_dirty(bh);
211	} while (block_count > 0);
212
213out:
214	udf_add_free_space(sb, partition, -alloc_count);
215	mutex_unlock(&sbi->s_alloc_mutex);
216	return alloc_count;
217}
218
219static udf_pblk_t udf_bitmap_new_block(struct super_block *sb,
 
220				struct udf_bitmap *bitmap, uint16_t partition,
221				uint32_t goal, int *err)
222{
223	struct udf_sb_info *sbi = UDF_SB(sb);
224	int newbit, bit = 0;
225	udf_pblk_t block;
226	int block_group, group_start;
227	int end_goal, nr_groups, bitmap_nr, i;
228	struct buffer_head *bh = NULL;
229	char *ptr;
230	udf_pblk_t newblock = 0;
231
232	*err = -ENOSPC;
233	mutex_lock(&sbi->s_alloc_mutex);
234
235repeat:
236	if (goal >= sbi->s_partmaps[partition].s_partition_len)
237		goal = 0;
238
239	nr_groups = bitmap->s_nr_groups;
240	block = goal + (sizeof(struct spaceBitmapDesc) << 3);
241	block_group = block >> (sb->s_blocksize_bits + 3);
242	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
243
244	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
245	if (bitmap_nr < 0)
246		goto error_return;
247	bh = bitmap->s_block_bitmap[bitmap_nr];
248	ptr = memscan((char *)bh->b_data + group_start, 0xFF,
249		      sb->s_blocksize - group_start);
250
251	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
252		bit = block % (sb->s_blocksize << 3);
253		if (udf_test_bit(bit, bh->b_data))
254			goto got_block;
255
256		end_goal = (bit + 63) & ~63;
257		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
258		if (bit < end_goal)
259			goto got_block;
260
261		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
262			      sb->s_blocksize - ((bit + 7) >> 3));
263		newbit = (ptr - ((char *)bh->b_data)) << 3;
264		if (newbit < sb->s_blocksize << 3) {
265			bit = newbit;
266			goto search_back;
267		}
268
269		newbit = udf_find_next_one_bit(bh->b_data,
270					       sb->s_blocksize << 3, bit);
271		if (newbit < sb->s_blocksize << 3) {
272			bit = newbit;
273			goto got_block;
274		}
275	}
276
277	for (i = 0; i < (nr_groups * 2); i++) {
278		block_group++;
279		if (block_group >= nr_groups)
280			block_group = 0;
281		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
282
283		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
284		if (bitmap_nr < 0)
285			goto error_return;
286		bh = bitmap->s_block_bitmap[bitmap_nr];
287		if (i < nr_groups) {
288			ptr = memscan((char *)bh->b_data + group_start, 0xFF,
289				      sb->s_blocksize - group_start);
290			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
291				bit = (ptr - ((char *)bh->b_data)) << 3;
292				break;
293			}
294		} else {
295			bit = udf_find_next_one_bit(bh->b_data,
296						    sb->s_blocksize << 3,
297						    group_start << 3);
298			if (bit < sb->s_blocksize << 3)
299				break;
300		}
301	}
302	if (i >= (nr_groups * 2)) {
303		mutex_unlock(&sbi->s_alloc_mutex);
304		return newblock;
305	}
306	if (bit < sb->s_blocksize << 3)
307		goto search_back;
308	else
309		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
310					    group_start << 3);
311	if (bit >= sb->s_blocksize << 3) {
312		mutex_unlock(&sbi->s_alloc_mutex);
313		return 0;
314	}
315
316search_back:
317	i = 0;
318	while (i < 7 && bit > (group_start << 3) &&
319	       udf_test_bit(bit - 1, bh->b_data)) {
320		++i;
321		--bit;
322	}
323
324got_block:
325	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
326		(sizeof(struct spaceBitmapDesc) << 3);
327
328	if (newblock >= sbi->s_partmaps[partition].s_partition_len) {
329		/*
330		 * Ran off the end of the bitmap, and bits following are
331		 * non-compliant (not all zero)
332		 */
333		udf_err(sb, "bitmap for partition %d corrupted (block %u marked"
334			" as free, partition length is %u)\n", partition,
335			newblock, sbi->s_partmaps[partition].s_partition_len);
336		goto error_return;
337	}
338
339	if (!udf_clear_bit(bit, bh->b_data)) {
340		udf_debug("bit already cleared for block %d\n", bit);
341		goto repeat;
342	}
343
344	mark_buffer_dirty(bh);
345
346	udf_add_free_space(sb, partition, -1);
347	mutex_unlock(&sbi->s_alloc_mutex);
348	*err = 0;
349	return newblock;
350
351error_return:
352	*err = -EIO;
353	mutex_unlock(&sbi->s_alloc_mutex);
354	return 0;
355}
356
357static void udf_table_free_blocks(struct super_block *sb,
 
358				  struct inode *table,
359				  struct kernel_lb_addr *bloc,
360				  uint32_t offset,
361				  uint32_t count)
362{
363	struct udf_sb_info *sbi = UDF_SB(sb);
364	struct udf_part_map *partmap;
365	uint32_t start, end;
366	uint32_t elen;
367	struct kernel_lb_addr eloc;
368	struct extent_position oepos, epos;
369	int8_t etype;
 
370	struct udf_inode_info *iinfo;
371
372	mutex_lock(&sbi->s_alloc_mutex);
373	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
374	if (bloc->logicalBlockNum + count < count ||
375	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
376		udf_debug("%u < %d || %u + %u > %u\n",
377			  bloc->logicalBlockNum, 0,
378			  bloc->logicalBlockNum, count,
379			  partmap->s_partition_len);
380		goto error_return;
381	}
382
383	iinfo = UDF_I(table);
384	udf_add_free_space(sb, sbi->s_partition, count);
385
386	start = bloc->logicalBlockNum + offset;
387	end = bloc->logicalBlockNum + offset + count - 1;
388
389	epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
390	elen = 0;
391	epos.block = oepos.block = iinfo->i_location;
392	epos.bh = oepos.bh = NULL;
393
394	while (count &&
395	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
396		if (((eloc.logicalBlockNum +
397			(elen >> sb->s_blocksize_bits)) == start)) {
398			if ((0x3FFFFFFF - elen) <
399					(count << sb->s_blocksize_bits)) {
400				uint32_t tmp = ((0x3FFFFFFF - elen) >>
401							sb->s_blocksize_bits);
402				count -= tmp;
403				start += tmp;
404				elen = (etype << 30) |
405					(0x40000000 - sb->s_blocksize);
406			} else {
407				elen = (etype << 30) |
408					(elen +
409					(count << sb->s_blocksize_bits));
410				start += count;
411				count = 0;
412			}
413			udf_write_aext(table, &oepos, &eloc, elen, 1);
414		} else if (eloc.logicalBlockNum == (end + 1)) {
415			if ((0x3FFFFFFF - elen) <
416					(count << sb->s_blocksize_bits)) {
417				uint32_t tmp = ((0x3FFFFFFF - elen) >>
418						sb->s_blocksize_bits);
419				count -= tmp;
420				end -= tmp;
421				eloc.logicalBlockNum -= tmp;
422				elen = (etype << 30) |
423					(0x40000000 - sb->s_blocksize);
424			} else {
425				eloc.logicalBlockNum = start;
426				elen = (etype << 30) |
427					(elen +
428					(count << sb->s_blocksize_bits));
429				end -= count;
430				count = 0;
431			}
432			udf_write_aext(table, &oepos, &eloc, elen, 1);
433		}
434
435		if (epos.bh != oepos.bh) {
 
436			oepos.block = epos.block;
437			brelse(oepos.bh);
438			get_bh(epos.bh);
439			oepos.bh = epos.bh;
440			oepos.offset = 0;
441		} else {
442			oepos.offset = epos.offset;
443		}
444	}
445
446	if (count) {
447		/*
448		 * NOTE: we CANNOT use udf_add_aext here, as it can try to
449		 * allocate a new block, and since we hold the super block
450		 * lock already very bad things would happen :)
451		 *
452		 * We copy the behavior of udf_add_aext, but instead of
453		 * trying to allocate a new block close to the existing one,
454		 * we just steal a block from the extent we are trying to add.
455		 *
456		 * It would be nice if the blocks were close together, but it
457		 * isn't required.
458		 */
459
460		int adsize;
 
 
 
461
462		eloc.logicalBlockNum = start;
463		elen = EXT_RECORDED_ALLOCATED |
464			(count << sb->s_blocksize_bits);
465
466		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
467			adsize = sizeof(struct short_ad);
468		else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
469			adsize = sizeof(struct long_ad);
470		else {
471			brelse(oepos.bh);
472			brelse(epos.bh);
473			goto error_return;
474		}
475
476		if (epos.offset + (2 * adsize) > sb->s_blocksize) {
477			/* Steal a block from the extent being free'd */
478			udf_setup_indirect_aext(table, eloc.logicalBlockNum,
479						&epos);
480
 
 
 
 
 
481			eloc.logicalBlockNum++;
482			elen -= sb->s_blocksize;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
483		}
484
485		/* It's possible that stealing the block emptied the extent */
486		if (elen)
487			__udf_add_aext(table, &epos, &eloc, elen, 1);
 
 
 
 
 
 
 
 
 
 
 
488	}
489
490	brelse(epos.bh);
491	brelse(oepos.bh);
492
493error_return:
494	mutex_unlock(&sbi->s_alloc_mutex);
495	return;
496}
497
498static int udf_table_prealloc_blocks(struct super_block *sb,
 
499				     struct inode *table, uint16_t partition,
500				     uint32_t first_block, uint32_t block_count)
501{
502	struct udf_sb_info *sbi = UDF_SB(sb);
503	int alloc_count = 0;
504	uint32_t elen, adsize;
505	struct kernel_lb_addr eloc;
506	struct extent_position epos;
507	int8_t etype = -1;
508	struct udf_inode_info *iinfo;
509
510	if (first_block >= sbi->s_partmaps[partition].s_partition_len)
511		return 0;
512
513	iinfo = UDF_I(table);
514	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
515		adsize = sizeof(struct short_ad);
516	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
517		adsize = sizeof(struct long_ad);
518	else
519		return 0;
520
521	mutex_lock(&sbi->s_alloc_mutex);
522	epos.offset = sizeof(struct unallocSpaceEntry);
523	epos.block = iinfo->i_location;
524	epos.bh = NULL;
525	eloc.logicalBlockNum = 0xFFFFFFFF;
526
527	while (first_block != eloc.logicalBlockNum &&
528	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
529		udf_debug("eloc=%u, elen=%u, first_block=%u\n",
530			  eloc.logicalBlockNum, elen, first_block);
531		; /* empty loop body */
532	}
533
534	if (first_block == eloc.logicalBlockNum) {
535		epos.offset -= adsize;
536
537		alloc_count = (elen >> sb->s_blocksize_bits);
538		if (alloc_count > block_count) {
539			alloc_count = block_count;
540			eloc.logicalBlockNum += alloc_count;
541			elen -= (alloc_count << sb->s_blocksize_bits);
542			udf_write_aext(table, &epos, &eloc,
543					(etype << 30) | elen, 1);
544		} else
545			udf_delete_aext(table, epos);
 
546	} else {
547		alloc_count = 0;
548	}
549
550	brelse(epos.bh);
551
552	if (alloc_count)
553		udf_add_free_space(sb, partition, -alloc_count);
554	mutex_unlock(&sbi->s_alloc_mutex);
555	return alloc_count;
556}
557
558static udf_pblk_t udf_table_new_block(struct super_block *sb,
 
559			       struct inode *table, uint16_t partition,
560			       uint32_t goal, int *err)
561{
562	struct udf_sb_info *sbi = UDF_SB(sb);
563	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
564	udf_pblk_t newblock = 0;
565	uint32_t adsize;
566	uint32_t elen, goal_elen = 0;
567	struct kernel_lb_addr eloc, uninitialized_var(goal_eloc);
568	struct extent_position epos, goal_epos;
569	int8_t etype;
570	struct udf_inode_info *iinfo = UDF_I(table);
571
572	*err = -ENOSPC;
573
574	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
575		adsize = sizeof(struct short_ad);
576	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
577		adsize = sizeof(struct long_ad);
578	else
579		return newblock;
580
581	mutex_lock(&sbi->s_alloc_mutex);
582	if (goal >= sbi->s_partmaps[partition].s_partition_len)
583		goal = 0;
584
585	/* We search for the closest matching block to goal. If we find
586	   a exact hit, we stop. Otherwise we keep going till we run out
587	   of extents. We store the buffer_head, bloc, and extoffset
588	   of the current closest match and use that when we are done.
589	 */
590	epos.offset = sizeof(struct unallocSpaceEntry);
591	epos.block = iinfo->i_location;
592	epos.bh = goal_epos.bh = NULL;
593
594	while (spread &&
595	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
596		if (goal >= eloc.logicalBlockNum) {
597			if (goal < eloc.logicalBlockNum +
598					(elen >> sb->s_blocksize_bits))
599				nspread = 0;
600			else
601				nspread = goal - eloc.logicalBlockNum -
602					(elen >> sb->s_blocksize_bits);
603		} else {
604			nspread = eloc.logicalBlockNum - goal;
605		}
606
607		if (nspread < spread) {
608			spread = nspread;
609			if (goal_epos.bh != epos.bh) {
610				brelse(goal_epos.bh);
611				goal_epos.bh = epos.bh;
612				get_bh(goal_epos.bh);
613			}
614			goal_epos.block = epos.block;
615			goal_epos.offset = epos.offset - adsize;
616			goal_eloc = eloc;
617			goal_elen = (etype << 30) | elen;
618		}
619	}
620
621	brelse(epos.bh);
622
623	if (spread == 0xFFFFFFFF) {
624		brelse(goal_epos.bh);
625		mutex_unlock(&sbi->s_alloc_mutex);
626		return 0;
627	}
628
629	/* Only allocate blocks from the beginning of the extent.
630	   That way, we only delete (empty) extents, never have to insert an
631	   extent because of splitting */
632	/* This works, but very poorly.... */
633
634	newblock = goal_eloc.logicalBlockNum;
635	goal_eloc.logicalBlockNum++;
636	goal_elen -= sb->s_blocksize;
637
638	if (goal_elen)
639		udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
640	else
641		udf_delete_aext(table, goal_epos);
642	brelse(goal_epos.bh);
643
644	udf_add_free_space(sb, partition, -1);
645
646	mutex_unlock(&sbi->s_alloc_mutex);
647	*err = 0;
648	return newblock;
649}
650
651void udf_free_blocks(struct super_block *sb, struct inode *inode,
652		     struct kernel_lb_addr *bloc, uint32_t offset,
653		     uint32_t count)
654{
655	uint16_t partition = bloc->partitionReferenceNum;
656	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
657
658	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
659		udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap,
660				       bloc, offset, count);
661	} else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
662		udf_table_free_blocks(sb, map->s_uspace.s_table,
 
 
 
 
 
 
663				      bloc, offset, count);
664	}
665
666	if (inode) {
667		inode_sub_bytes(inode,
668				((sector_t)count) << sb->s_blocksize_bits);
669	}
670}
671
672inline int udf_prealloc_blocks(struct super_block *sb,
673			       struct inode *inode,
674			       uint16_t partition, uint32_t first_block,
675			       uint32_t block_count)
676{
677	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
678	int allocated;
679
680	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
681		allocated = udf_bitmap_prealloc_blocks(sb,
682						       map->s_uspace.s_bitmap,
683						       partition, first_block,
684						       block_count);
685	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
686		allocated = udf_table_prealloc_blocks(sb,
687						      map->s_uspace.s_table,
688						      partition, first_block,
689						      block_count);
 
 
 
 
 
 
 
 
 
 
690	else
691		return 0;
692
693	if (inode && allocated > 0)
694		inode_add_bytes(inode, allocated << sb->s_blocksize_bits);
695	return allocated;
696}
697
698inline udf_pblk_t udf_new_block(struct super_block *sb,
699			 struct inode *inode,
700			 uint16_t partition, uint32_t goal, int *err)
701{
702	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
703	udf_pblk_t block;
704
705	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
706		block = udf_bitmap_new_block(sb,
707					     map->s_uspace.s_bitmap,
708					     partition, goal, err);
709	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
710		block = udf_table_new_block(sb,
711					    map->s_uspace.s_table,
 
 
 
 
712					    partition, goal, err);
 
 
 
 
713	else {
714		*err = -EIO;
715		return 0;
716	}
717	if (inode && block)
718		inode_add_bytes(inode, sb->s_blocksize);
719	return block;
720}
v3.1
  1/*
  2 * balloc.c
  3 *
  4 * PURPOSE
  5 *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
  6 *
  7 * COPYRIGHT
  8 *	This file is distributed under the terms of the GNU General Public
  9 *	License (GPL). Copies of the GPL can be obtained from:
 10 *		ftp://prep.ai.mit.edu/pub/gnu/GPL
 11 *	Each contributing author retains all rights to their own work.
 12 *
 13 *  (C) 1999-2001 Ben Fennema
 14 *  (C) 1999 Stelias Computing Inc
 15 *
 16 * HISTORY
 17 *
 18 *  02/24/99 blf  Created.
 19 *
 20 */
 21
 22#include "udfdecl.h"
 23
 24#include <linux/buffer_head.h>
 25#include <linux/bitops.h>
 26
 27#include "udf_i.h"
 28#include "udf_sb.h"
 29
 30#define udf_clear_bit	__test_and_clear_bit_le
 31#define udf_set_bit	__test_and_set_bit_le
 32#define udf_test_bit	test_bit_le
 33#define udf_find_next_one_bit	find_next_bit_le
 34
 35static int read_block_bitmap(struct super_block *sb,
 36			     struct udf_bitmap *bitmap, unsigned int block,
 37			     unsigned long bitmap_nr)
 38{
 39	struct buffer_head *bh = NULL;
 40	int retval = 0;
 41	struct kernel_lb_addr loc;
 42
 43	loc.logicalBlockNum = bitmap->s_extPosition;
 44	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
 45
 46	bh = udf_tread(sb, udf_get_lb_pblock(sb, &loc, block));
 47	if (!bh)
 48		retval = -EIO;
 49
 50	bitmap->s_block_bitmap[bitmap_nr] = bh;
 51	return retval;
 52}
 53
 54static int __load_block_bitmap(struct super_block *sb,
 55			       struct udf_bitmap *bitmap,
 56			       unsigned int block_group)
 57{
 58	int retval = 0;
 59	int nr_groups = bitmap->s_nr_groups;
 60
 61	if (block_group >= nr_groups) {
 62		udf_debug("block_group (%d) > nr_groups (%d)\n", block_group,
 63			  nr_groups);
 64	}
 65
 66	if (bitmap->s_block_bitmap[block_group]) {
 67		return block_group;
 68	} else {
 69		retval = read_block_bitmap(sb, bitmap, block_group,
 70					   block_group);
 71		if (retval < 0)
 72			return retval;
 73		return block_group;
 74	}
 75}
 76
 77static inline int load_block_bitmap(struct super_block *sb,
 78				    struct udf_bitmap *bitmap,
 79				    unsigned int block_group)
 80{
 81	int slot;
 82
 83	slot = __load_block_bitmap(sb, bitmap, block_group);
 84
 85	if (slot < 0)
 86		return slot;
 87
 88	if (!bitmap->s_block_bitmap[slot])
 89		return -EIO;
 90
 91	return slot;
 92}
 93
 94static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
 95{
 96	struct udf_sb_info *sbi = UDF_SB(sb);
 97	struct logicalVolIntegrityDesc *lvid;
 98
 99	if (!sbi->s_lvid_bh)
100		return;
101
102	lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
103	le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
104	udf_updated_lvid(sb);
105}
106
107static void udf_bitmap_free_blocks(struct super_block *sb,
108				   struct inode *inode,
109				   struct udf_bitmap *bitmap,
110				   struct kernel_lb_addr *bloc,
111				   uint32_t offset,
112				   uint32_t count)
113{
114	struct udf_sb_info *sbi = UDF_SB(sb);
115	struct buffer_head *bh = NULL;
116	struct udf_part_map *partmap;
117	unsigned long block;
118	unsigned long block_group;
119	unsigned long bit;
120	unsigned long i;
121	int bitmap_nr;
122	unsigned long overflow;
123
124	mutex_lock(&sbi->s_alloc_mutex);
125	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
126	if (bloc->logicalBlockNum + count < count ||
127	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
128		udf_debug("%d < %d || %d + %d > %d\n",
129			  bloc->logicalBlockNum, 0, bloc->logicalBlockNum,
130			  count, partmap->s_partition_len);
 
131		goto error_return;
132	}
133
134	block = bloc->logicalBlockNum + offset +
135		(sizeof(struct spaceBitmapDesc) << 3);
136
137	do {
138		overflow = 0;
139		block_group = block >> (sb->s_blocksize_bits + 3);
140		bit = block % (sb->s_blocksize << 3);
141
142		/*
143		* Check to see if we are freeing blocks across a group boundary.
144		*/
145		if (bit + count > (sb->s_blocksize << 3)) {
146			overflow = bit + count - (sb->s_blocksize << 3);
147			count -= overflow;
148		}
149		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
150		if (bitmap_nr < 0)
151			goto error_return;
152
153		bh = bitmap->s_block_bitmap[bitmap_nr];
154		for (i = 0; i < count; i++) {
155			if (udf_set_bit(bit + i, bh->b_data)) {
156				udf_debug("bit %ld already set\n", bit + i);
157				udf_debug("byte=%2x\n",
158					((char *)bh->b_data)[(bit + i) >> 3]);
159			}
160		}
161		udf_add_free_space(sb, sbi->s_partition, count);
162		mark_buffer_dirty(bh);
163		if (overflow) {
164			block += count;
165			count = overflow;
166		}
167	} while (overflow);
168
169error_return:
170	mutex_unlock(&sbi->s_alloc_mutex);
171}
172
173static int udf_bitmap_prealloc_blocks(struct super_block *sb,
174				      struct inode *inode,
175				      struct udf_bitmap *bitmap,
176				      uint16_t partition, uint32_t first_block,
177				      uint32_t block_count)
178{
179	struct udf_sb_info *sbi = UDF_SB(sb);
180	int alloc_count = 0;
181	int bit, block, block_group, group_start;
182	int nr_groups, bitmap_nr;
183	struct buffer_head *bh;
184	__u32 part_len;
185
186	mutex_lock(&sbi->s_alloc_mutex);
187	part_len = sbi->s_partmaps[partition].s_partition_len;
188	if (first_block >= part_len)
189		goto out;
190
191	if (first_block + block_count > part_len)
192		block_count = part_len - first_block;
193
194	do {
195		nr_groups = udf_compute_nr_groups(sb, partition);
196		block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
197		block_group = block >> (sb->s_blocksize_bits + 3);
198		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
199
200		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
201		if (bitmap_nr < 0)
202			goto out;
203		bh = bitmap->s_block_bitmap[bitmap_nr];
204
205		bit = block % (sb->s_blocksize << 3);
206
207		while (bit < (sb->s_blocksize << 3) && block_count > 0) {
208			if (!udf_clear_bit(bit, bh->b_data))
209				goto out;
210			block_count--;
211			alloc_count++;
212			bit++;
213			block++;
214		}
215		mark_buffer_dirty(bh);
216	} while (block_count > 0);
217
218out:
219	udf_add_free_space(sb, partition, -alloc_count);
220	mutex_unlock(&sbi->s_alloc_mutex);
221	return alloc_count;
222}
223
224static int udf_bitmap_new_block(struct super_block *sb,
225				struct inode *inode,
226				struct udf_bitmap *bitmap, uint16_t partition,
227				uint32_t goal, int *err)
228{
229	struct udf_sb_info *sbi = UDF_SB(sb);
230	int newbit, bit = 0, block, block_group, group_start;
 
 
231	int end_goal, nr_groups, bitmap_nr, i;
232	struct buffer_head *bh = NULL;
233	char *ptr;
234	int newblock = 0;
235
236	*err = -ENOSPC;
237	mutex_lock(&sbi->s_alloc_mutex);
238
239repeat:
240	if (goal >= sbi->s_partmaps[partition].s_partition_len)
241		goal = 0;
242
243	nr_groups = bitmap->s_nr_groups;
244	block = goal + (sizeof(struct spaceBitmapDesc) << 3);
245	block_group = block >> (sb->s_blocksize_bits + 3);
246	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
247
248	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
249	if (bitmap_nr < 0)
250		goto error_return;
251	bh = bitmap->s_block_bitmap[bitmap_nr];
252	ptr = memscan((char *)bh->b_data + group_start, 0xFF,
253		      sb->s_blocksize - group_start);
254
255	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
256		bit = block % (sb->s_blocksize << 3);
257		if (udf_test_bit(bit, bh->b_data))
258			goto got_block;
259
260		end_goal = (bit + 63) & ~63;
261		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
262		if (bit < end_goal)
263			goto got_block;
264
265		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
266			      sb->s_blocksize - ((bit + 7) >> 3));
267		newbit = (ptr - ((char *)bh->b_data)) << 3;
268		if (newbit < sb->s_blocksize << 3) {
269			bit = newbit;
270			goto search_back;
271		}
272
273		newbit = udf_find_next_one_bit(bh->b_data,
274					       sb->s_blocksize << 3, bit);
275		if (newbit < sb->s_blocksize << 3) {
276			bit = newbit;
277			goto got_block;
278		}
279	}
280
281	for (i = 0; i < (nr_groups * 2); i++) {
282		block_group++;
283		if (block_group >= nr_groups)
284			block_group = 0;
285		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
286
287		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
288		if (bitmap_nr < 0)
289			goto error_return;
290		bh = bitmap->s_block_bitmap[bitmap_nr];
291		if (i < nr_groups) {
292			ptr = memscan((char *)bh->b_data + group_start, 0xFF,
293				      sb->s_blocksize - group_start);
294			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
295				bit = (ptr - ((char *)bh->b_data)) << 3;
296				break;
297			}
298		} else {
299			bit = udf_find_next_one_bit(bh->b_data,
300						    sb->s_blocksize << 3,
301						    group_start << 3);
302			if (bit < sb->s_blocksize << 3)
303				break;
304		}
305	}
306	if (i >= (nr_groups * 2)) {
307		mutex_unlock(&sbi->s_alloc_mutex);
308		return newblock;
309	}
310	if (bit < sb->s_blocksize << 3)
311		goto search_back;
312	else
313		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
314					    group_start << 3);
315	if (bit >= sb->s_blocksize << 3) {
316		mutex_unlock(&sbi->s_alloc_mutex);
317		return 0;
318	}
319
320search_back:
321	i = 0;
322	while (i < 7 && bit > (group_start << 3) &&
323	       udf_test_bit(bit - 1, bh->b_data)) {
324		++i;
325		--bit;
326	}
327
328got_block:
329	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
330		(sizeof(struct spaceBitmapDesc) << 3);
331
 
 
 
 
 
 
 
 
 
 
 
332	if (!udf_clear_bit(bit, bh->b_data)) {
333		udf_debug("bit already cleared for block %d\n", bit);
334		goto repeat;
335	}
336
337	mark_buffer_dirty(bh);
338
339	udf_add_free_space(sb, partition, -1);
340	mutex_unlock(&sbi->s_alloc_mutex);
341	*err = 0;
342	return newblock;
343
344error_return:
345	*err = -EIO;
346	mutex_unlock(&sbi->s_alloc_mutex);
347	return 0;
348}
349
350static void udf_table_free_blocks(struct super_block *sb,
351				  struct inode *inode,
352				  struct inode *table,
353				  struct kernel_lb_addr *bloc,
354				  uint32_t offset,
355				  uint32_t count)
356{
357	struct udf_sb_info *sbi = UDF_SB(sb);
358	struct udf_part_map *partmap;
359	uint32_t start, end;
360	uint32_t elen;
361	struct kernel_lb_addr eloc;
362	struct extent_position oepos, epos;
363	int8_t etype;
364	int i;
365	struct udf_inode_info *iinfo;
366
367	mutex_lock(&sbi->s_alloc_mutex);
368	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
369	if (bloc->logicalBlockNum + count < count ||
370	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
371		udf_debug("%d < %d || %d + %d > %d\n",
372			  bloc->logicalBlockNum, 0, bloc->logicalBlockNum, count,
 
373			  partmap->s_partition_len);
374		goto error_return;
375	}
376
377	iinfo = UDF_I(table);
378	udf_add_free_space(sb, sbi->s_partition, count);
379
380	start = bloc->logicalBlockNum + offset;
381	end = bloc->logicalBlockNum + offset + count - 1;
382
383	epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
384	elen = 0;
385	epos.block = oepos.block = iinfo->i_location;
386	epos.bh = oepos.bh = NULL;
387
388	while (count &&
389	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
390		if (((eloc.logicalBlockNum +
391			(elen >> sb->s_blocksize_bits)) == start)) {
392			if ((0x3FFFFFFF - elen) <
393					(count << sb->s_blocksize_bits)) {
394				uint32_t tmp = ((0x3FFFFFFF - elen) >>
395							sb->s_blocksize_bits);
396				count -= tmp;
397				start += tmp;
398				elen = (etype << 30) |
399					(0x40000000 - sb->s_blocksize);
400			} else {
401				elen = (etype << 30) |
402					(elen +
403					(count << sb->s_blocksize_bits));
404				start += count;
405				count = 0;
406			}
407			udf_write_aext(table, &oepos, &eloc, elen, 1);
408		} else if (eloc.logicalBlockNum == (end + 1)) {
409			if ((0x3FFFFFFF - elen) <
410					(count << sb->s_blocksize_bits)) {
411				uint32_t tmp = ((0x3FFFFFFF - elen) >>
412						sb->s_blocksize_bits);
413				count -= tmp;
414				end -= tmp;
415				eloc.logicalBlockNum -= tmp;
416				elen = (etype << 30) |
417					(0x40000000 - sb->s_blocksize);
418			} else {
419				eloc.logicalBlockNum = start;
420				elen = (etype << 30) |
421					(elen +
422					(count << sb->s_blocksize_bits));
423				end -= count;
424				count = 0;
425			}
426			udf_write_aext(table, &oepos, &eloc, elen, 1);
427		}
428
429		if (epos.bh != oepos.bh) {
430			i = -1;
431			oepos.block = epos.block;
432			brelse(oepos.bh);
433			get_bh(epos.bh);
434			oepos.bh = epos.bh;
435			oepos.offset = 0;
436		} else {
437			oepos.offset = epos.offset;
438		}
439	}
440
441	if (count) {
442		/*
443		 * NOTE: we CANNOT use udf_add_aext here, as it can try to
444		 * allocate a new block, and since we hold the super block
445		 * lock already very bad things would happen :)
446		 *
447		 * We copy the behavior of udf_add_aext, but instead of
448		 * trying to allocate a new block close to the existing one,
449		 * we just steal a block from the extent we are trying to add.
450		 *
451		 * It would be nice if the blocks were close together, but it
452		 * isn't required.
453		 */
454
455		int adsize;
456		struct short_ad *sad = NULL;
457		struct long_ad *lad = NULL;
458		struct allocExtDesc *aed;
459
460		eloc.logicalBlockNum = start;
461		elen = EXT_RECORDED_ALLOCATED |
462			(count << sb->s_blocksize_bits);
463
464		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
465			adsize = sizeof(struct short_ad);
466		else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
467			adsize = sizeof(struct long_ad);
468		else {
469			brelse(oepos.bh);
470			brelse(epos.bh);
471			goto error_return;
472		}
473
474		if (epos.offset + (2 * adsize) > sb->s_blocksize) {
475			unsigned char *sptr, *dptr;
476			int loffset;
 
477
478			brelse(oepos.bh);
479			oepos = epos;
480
481			/* Steal a block from the extent being free'd */
482			epos.block.logicalBlockNum = eloc.logicalBlockNum;
483			eloc.logicalBlockNum++;
484			elen -= sb->s_blocksize;
485
486			epos.bh = udf_tread(sb,
487					udf_get_lb_pblock(sb, &epos.block, 0));
488			if (!epos.bh) {
489				brelse(oepos.bh);
490				goto error_return;
491			}
492			aed = (struct allocExtDesc *)(epos.bh->b_data);
493			aed->previousAllocExtLocation =
494				cpu_to_le32(oepos.block.logicalBlockNum);
495			if (epos.offset + adsize > sb->s_blocksize) {
496				loffset = epos.offset;
497				aed->lengthAllocDescs = cpu_to_le32(adsize);
498				sptr = iinfo->i_ext.i_data + epos.offset
499								- adsize;
500				dptr = epos.bh->b_data +
501					sizeof(struct allocExtDesc);
502				memcpy(dptr, sptr, adsize);
503				epos.offset = sizeof(struct allocExtDesc) +
504						adsize;
505			} else {
506				loffset = epos.offset + adsize;
507				aed->lengthAllocDescs = cpu_to_le32(0);
508				if (oepos.bh) {
509					sptr = oepos.bh->b_data + epos.offset;
510					aed = (struct allocExtDesc *)
511						oepos.bh->b_data;
512					le32_add_cpu(&aed->lengthAllocDescs,
513							adsize);
514				} else {
515					sptr = iinfo->i_ext.i_data +
516								epos.offset;
517					iinfo->i_lenAlloc += adsize;
518					mark_inode_dirty(table);
519				}
520				epos.offset = sizeof(struct allocExtDesc);
521			}
522			if (sbi->s_udfrev >= 0x0200)
523				udf_new_tag(epos.bh->b_data, TAG_IDENT_AED,
524					    3, 1, epos.block.logicalBlockNum,
525					    sizeof(struct tag));
526			else
527				udf_new_tag(epos.bh->b_data, TAG_IDENT_AED,
528					    2, 1, epos.block.logicalBlockNum,
529					    sizeof(struct tag));
530
531			switch (iinfo->i_alloc_type) {
532			case ICBTAG_FLAG_AD_SHORT:
533				sad = (struct short_ad *)sptr;
534				sad->extLength = cpu_to_le32(
535					EXT_NEXT_EXTENT_ALLOCDECS |
536					sb->s_blocksize);
537				sad->extPosition =
538					cpu_to_le32(epos.block.logicalBlockNum);
539				break;
540			case ICBTAG_FLAG_AD_LONG:
541				lad = (struct long_ad *)sptr;
542				lad->extLength = cpu_to_le32(
543					EXT_NEXT_EXTENT_ALLOCDECS |
544					sb->s_blocksize);
545				lad->extLocation =
546					cpu_to_lelb(epos.block);
547				break;
548			}
549			if (oepos.bh) {
550				udf_update_tag(oepos.bh->b_data, loffset);
551				mark_buffer_dirty(oepos.bh);
552			} else {
553				mark_inode_dirty(table);
554			}
555		}
556
557		/* It's possible that stealing the block emptied the extent */
558		if (elen) {
559			udf_write_aext(table, &epos, &eloc, elen, 1);
560
561			if (!epos.bh) {
562				iinfo->i_lenAlloc += adsize;
563				mark_inode_dirty(table);
564			} else {
565				aed = (struct allocExtDesc *)epos.bh->b_data;
566				le32_add_cpu(&aed->lengthAllocDescs, adsize);
567				udf_update_tag(epos.bh->b_data, epos.offset);
568				mark_buffer_dirty(epos.bh);
569			}
570		}
571	}
572
573	brelse(epos.bh);
574	brelse(oepos.bh);
575
576error_return:
577	mutex_unlock(&sbi->s_alloc_mutex);
578	return;
579}
580
581static int udf_table_prealloc_blocks(struct super_block *sb,
582				     struct inode *inode,
583				     struct inode *table, uint16_t partition,
584				     uint32_t first_block, uint32_t block_count)
585{
586	struct udf_sb_info *sbi = UDF_SB(sb);
587	int alloc_count = 0;
588	uint32_t elen, adsize;
589	struct kernel_lb_addr eloc;
590	struct extent_position epos;
591	int8_t etype = -1;
592	struct udf_inode_info *iinfo;
593
594	if (first_block >= sbi->s_partmaps[partition].s_partition_len)
595		return 0;
596
597	iinfo = UDF_I(table);
598	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
599		adsize = sizeof(struct short_ad);
600	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
601		adsize = sizeof(struct long_ad);
602	else
603		return 0;
604
605	mutex_lock(&sbi->s_alloc_mutex);
606	epos.offset = sizeof(struct unallocSpaceEntry);
607	epos.block = iinfo->i_location;
608	epos.bh = NULL;
609	eloc.logicalBlockNum = 0xFFFFFFFF;
610
611	while (first_block != eloc.logicalBlockNum &&
612	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
613		udf_debug("eloc=%d, elen=%d, first_block=%d\n",
614			  eloc.logicalBlockNum, elen, first_block);
615		; /* empty loop body */
616	}
617
618	if (first_block == eloc.logicalBlockNum) {
619		epos.offset -= adsize;
620
621		alloc_count = (elen >> sb->s_blocksize_bits);
622		if (alloc_count > block_count) {
623			alloc_count = block_count;
624			eloc.logicalBlockNum += alloc_count;
625			elen -= (alloc_count << sb->s_blocksize_bits);
626			udf_write_aext(table, &epos, &eloc,
627					(etype << 30) | elen, 1);
628		} else
629			udf_delete_aext(table, epos, eloc,
630					(etype << 30) | elen);
631	} else {
632		alloc_count = 0;
633	}
634
635	brelse(epos.bh);
636
637	if (alloc_count)
638		udf_add_free_space(sb, partition, -alloc_count);
639	mutex_unlock(&sbi->s_alloc_mutex);
640	return alloc_count;
641}
642
643static int udf_table_new_block(struct super_block *sb,
644			       struct inode *inode,
645			       struct inode *table, uint16_t partition,
646			       uint32_t goal, int *err)
647{
648	struct udf_sb_info *sbi = UDF_SB(sb);
649	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
650	uint32_t newblock = 0, adsize;
 
651	uint32_t elen, goal_elen = 0;
652	struct kernel_lb_addr eloc, uninitialized_var(goal_eloc);
653	struct extent_position epos, goal_epos;
654	int8_t etype;
655	struct udf_inode_info *iinfo = UDF_I(table);
656
657	*err = -ENOSPC;
658
659	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
660		adsize = sizeof(struct short_ad);
661	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
662		adsize = sizeof(struct long_ad);
663	else
664		return newblock;
665
666	mutex_lock(&sbi->s_alloc_mutex);
667	if (goal >= sbi->s_partmaps[partition].s_partition_len)
668		goal = 0;
669
670	/* We search for the closest matching block to goal. If we find
671	   a exact hit, we stop. Otherwise we keep going till we run out
672	   of extents. We store the buffer_head, bloc, and extoffset
673	   of the current closest match and use that when we are done.
674	 */
675	epos.offset = sizeof(struct unallocSpaceEntry);
676	epos.block = iinfo->i_location;
677	epos.bh = goal_epos.bh = NULL;
678
679	while (spread &&
680	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
681		if (goal >= eloc.logicalBlockNum) {
682			if (goal < eloc.logicalBlockNum +
683					(elen >> sb->s_blocksize_bits))
684				nspread = 0;
685			else
686				nspread = goal - eloc.logicalBlockNum -
687					(elen >> sb->s_blocksize_bits);
688		} else {
689			nspread = eloc.logicalBlockNum - goal;
690		}
691
692		if (nspread < spread) {
693			spread = nspread;
694			if (goal_epos.bh != epos.bh) {
695				brelse(goal_epos.bh);
696				goal_epos.bh = epos.bh;
697				get_bh(goal_epos.bh);
698			}
699			goal_epos.block = epos.block;
700			goal_epos.offset = epos.offset - adsize;
701			goal_eloc = eloc;
702			goal_elen = (etype << 30) | elen;
703		}
704	}
705
706	brelse(epos.bh);
707
708	if (spread == 0xFFFFFFFF) {
709		brelse(goal_epos.bh);
710		mutex_unlock(&sbi->s_alloc_mutex);
711		return 0;
712	}
713
714	/* Only allocate blocks from the beginning of the extent.
715	   That way, we only delete (empty) extents, never have to insert an
716	   extent because of splitting */
717	/* This works, but very poorly.... */
718
719	newblock = goal_eloc.logicalBlockNum;
720	goal_eloc.logicalBlockNum++;
721	goal_elen -= sb->s_blocksize;
722
723	if (goal_elen)
724		udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
725	else
726		udf_delete_aext(table, goal_epos, goal_eloc, goal_elen);
727	brelse(goal_epos.bh);
728
729	udf_add_free_space(sb, partition, -1);
730
731	mutex_unlock(&sbi->s_alloc_mutex);
732	*err = 0;
733	return newblock;
734}
735
736void udf_free_blocks(struct super_block *sb, struct inode *inode,
737		     struct kernel_lb_addr *bloc, uint32_t offset,
738		     uint32_t count)
739{
740	uint16_t partition = bloc->partitionReferenceNum;
741	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
742
743	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
744		udf_bitmap_free_blocks(sb, inode, map->s_uspace.s_bitmap,
745				       bloc, offset, count);
746	} else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
747		udf_table_free_blocks(sb, inode, map->s_uspace.s_table,
748				      bloc, offset, count);
749	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
750		udf_bitmap_free_blocks(sb, inode, map->s_fspace.s_bitmap,
751				       bloc, offset, count);
752	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
753		udf_table_free_blocks(sb, inode, map->s_fspace.s_table,
754				      bloc, offset, count);
 
 
 
 
 
755	}
756}
757
758inline int udf_prealloc_blocks(struct super_block *sb,
759			       struct inode *inode,
760			       uint16_t partition, uint32_t first_block,
761			       uint32_t block_count)
762{
763	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
 
764
765	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
766		return udf_bitmap_prealloc_blocks(sb, inode,
767						  map->s_uspace.s_bitmap,
768						  partition, first_block,
769						  block_count);
770	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
771		return udf_table_prealloc_blocks(sb, inode,
772						 map->s_uspace.s_table,
773						 partition, first_block,
774						 block_count);
775	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
776		return udf_bitmap_prealloc_blocks(sb, inode,
777						  map->s_fspace.s_bitmap,
778						  partition, first_block,
779						  block_count);
780	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
781		return udf_table_prealloc_blocks(sb, inode,
782						 map->s_fspace.s_table,
783						 partition, first_block,
784						 block_count);
785	else
786		return 0;
 
 
 
 
787}
788
789inline int udf_new_block(struct super_block *sb,
790			 struct inode *inode,
791			 uint16_t partition, uint32_t goal, int *err)
792{
793	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
 
794
795	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
796		return udf_bitmap_new_block(sb, inode,
797					   map->s_uspace.s_bitmap,
798					   partition, goal, err);
799	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
800		return udf_table_new_block(sb, inode,
801					   map->s_uspace.s_table,
802					   partition, goal, err);
803	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
804		return udf_bitmap_new_block(sb, inode,
805					    map->s_fspace.s_bitmap,
806					    partition, goal, err);
807	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
808		return udf_table_new_block(sb, inode,
809					   map->s_fspace.s_table,
810					   partition, goal, err);
811	else {
812		*err = -EIO;
813		return 0;
814	}
 
 
 
815}