Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
Note: File does not exist in v5.4.
   1/*
   2 * fs/logfs/readwrite.c
   3 *
   4 * As should be obvious for Linux kernel code, license is GPLv2
   5 *
   6 * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org>
   7 *
   8 *
   9 * Actually contains five sets of very similar functions:
  10 * read		read blocks from a file
  11 * seek_hole	find next hole
  12 * seek_data	find next data block
  13 * valid	check whether a block still belongs to a file
  14 * write	write blocks to a file
  15 * delete	delete a block (for directories and ifile)
  16 * rewrite	move existing blocks of a file to a new location (gc helper)
  17 * truncate	truncate a file
  18 */
  19#include "logfs.h"
  20#include <linux/sched.h>
  21#include <linux/slab.h>
  22
  23static u64 adjust_bix(u64 bix, level_t level)
  24{
  25	switch (level) {
  26	case 0:
  27		return bix;
  28	case LEVEL(1):
  29		return max_t(u64, bix, I0_BLOCKS);
  30	case LEVEL(2):
  31		return max_t(u64, bix, I1_BLOCKS);
  32	case LEVEL(3):
  33		return max_t(u64, bix, I2_BLOCKS);
  34	case LEVEL(4):
  35		return max_t(u64, bix, I3_BLOCKS);
  36	case LEVEL(5):
  37		return max_t(u64, bix, I4_BLOCKS);
  38	default:
  39		WARN_ON(1);
  40		return bix;
  41	}
  42}
  43
  44static inline u64 maxbix(u8 height)
  45{
  46	return 1ULL << (LOGFS_BLOCK_BITS * height);
  47}
  48
  49/**
  50 * The inode address space is cut in two halves.  Lower half belongs to data
  51 * pages, upper half to indirect blocks.  If the high bit (INDIRECT_BIT) is
  52 * set, the actual block index (bix) and level can be derived from the page
  53 * index.
  54 *
  55 * The lowest three bits of the block index are set to 0 after packing and
  56 * unpacking.  Since the lowest n bits (9 for 4KiB blocksize) are ignored
  57 * anyway this is harmless.
  58 */
  59#define ARCH_SHIFT	(BITS_PER_LONG - 32)
  60#define INDIRECT_BIT	(0x80000000UL << ARCH_SHIFT)
  61#define LEVEL_SHIFT	(28 + ARCH_SHIFT)
  62static inline pgoff_t first_indirect_block(void)
  63{
  64	return INDIRECT_BIT | (1ULL << LEVEL_SHIFT);
  65}
  66
  67pgoff_t logfs_pack_index(u64 bix, level_t level)
  68{
  69	pgoff_t index;
  70
  71	BUG_ON(bix >= INDIRECT_BIT);
  72	if (level == 0)
  73		return bix;
  74
  75	index  = INDIRECT_BIT;
  76	index |= (__force long)level << LEVEL_SHIFT;
  77	index |= bix >> ((__force u8)level * LOGFS_BLOCK_BITS);
  78	return index;
  79}
  80
  81void logfs_unpack_index(pgoff_t index, u64 *bix, level_t *level)
  82{
  83	u8 __level;
  84
  85	if (!(index & INDIRECT_BIT)) {
  86		*bix = index;
  87		*level = 0;
  88		return;
  89	}
  90
  91	__level = (index & ~INDIRECT_BIT) >> LEVEL_SHIFT;
  92	*level = LEVEL(__level);
  93	*bix = (index << (__level * LOGFS_BLOCK_BITS)) & ~INDIRECT_BIT;
  94	*bix = adjust_bix(*bix, *level);
  95	return;
  96}
  97#undef ARCH_SHIFT
  98#undef INDIRECT_BIT
  99#undef LEVEL_SHIFT
 100
 101/*
 102 * Time is stored as nanoseconds since the epoch.
 103 */
 104static struct timespec be64_to_timespec(__be64 betime)
 105{
 106	return ns_to_timespec(be64_to_cpu(betime));
 107}
 108
 109static __be64 timespec_to_be64(struct timespec tsp)
 110{
 111	return cpu_to_be64((u64)tsp.tv_sec * NSEC_PER_SEC + tsp.tv_nsec);
 112}
 113
 114static void logfs_disk_to_inode(struct logfs_disk_inode *di, struct inode*inode)
 115{
 116	struct logfs_inode *li = logfs_inode(inode);
 117	int i;
 118
 119	inode->i_mode	= be16_to_cpu(di->di_mode);
 120	li->li_height	= di->di_height;
 121	li->li_flags	= be32_to_cpu(di->di_flags);
 122	inode->i_uid	= be32_to_cpu(di->di_uid);
 123	inode->i_gid	= be32_to_cpu(di->di_gid);
 124	inode->i_size	= be64_to_cpu(di->di_size);
 125	logfs_set_blocks(inode, be64_to_cpu(di->di_used_bytes));
 126	inode->i_atime	= be64_to_timespec(di->di_atime);
 127	inode->i_ctime	= be64_to_timespec(di->di_ctime);
 128	inode->i_mtime	= be64_to_timespec(di->di_mtime);
 129	inode->i_nlink	= be32_to_cpu(di->di_refcount);
 130	inode->i_generation = be32_to_cpu(di->di_generation);
 131
 132	switch (inode->i_mode & S_IFMT) {
 133	case S_IFSOCK:	/* fall through */
 134	case S_IFBLK:	/* fall through */
 135	case S_IFCHR:	/* fall through */
 136	case S_IFIFO:
 137		inode->i_rdev = be64_to_cpu(di->di_data[0]);
 138		break;
 139	case S_IFDIR:	/* fall through */
 140	case S_IFREG:	/* fall through */
 141	case S_IFLNK:
 142		for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++)
 143			li->li_data[i] = be64_to_cpu(di->di_data[i]);
 144		break;
 145	default:
 146		BUG();
 147	}
 148}
 149
 150static void logfs_inode_to_disk(struct inode *inode, struct logfs_disk_inode*di)
 151{
 152	struct logfs_inode *li = logfs_inode(inode);
 153	int i;
 154
 155	di->di_mode	= cpu_to_be16(inode->i_mode);
 156	di->di_height	= li->li_height;
 157	di->di_pad	= 0;
 158	di->di_flags	= cpu_to_be32(li->li_flags);
 159	di->di_uid	= cpu_to_be32(inode->i_uid);
 160	di->di_gid	= cpu_to_be32(inode->i_gid);
 161	di->di_size	= cpu_to_be64(i_size_read(inode));
 162	di->di_used_bytes = cpu_to_be64(li->li_used_bytes);
 163	di->di_atime	= timespec_to_be64(inode->i_atime);
 164	di->di_ctime	= timespec_to_be64(inode->i_ctime);
 165	di->di_mtime	= timespec_to_be64(inode->i_mtime);
 166	di->di_refcount	= cpu_to_be32(inode->i_nlink);
 167	di->di_generation = cpu_to_be32(inode->i_generation);
 168
 169	switch (inode->i_mode & S_IFMT) {
 170	case S_IFSOCK:	/* fall through */
 171	case S_IFBLK:	/* fall through */
 172	case S_IFCHR:	/* fall through */
 173	case S_IFIFO:
 174		di->di_data[0] = cpu_to_be64(inode->i_rdev);
 175		break;
 176	case S_IFDIR:	/* fall through */
 177	case S_IFREG:	/* fall through */
 178	case S_IFLNK:
 179		for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++)
 180			di->di_data[i] = cpu_to_be64(li->li_data[i]);
 181		break;
 182	default:
 183		BUG();
 184	}
 185}
 186
 187static void __logfs_set_blocks(struct inode *inode)
 188{
 189	struct super_block *sb = inode->i_sb;
 190	struct logfs_inode *li = logfs_inode(inode);
 191
 192	inode->i_blocks = ULONG_MAX;
 193	if (li->li_used_bytes >> sb->s_blocksize_bits < ULONG_MAX)
 194		inode->i_blocks = ALIGN(li->li_used_bytes, 512) >> 9;
 195}
 196
 197void logfs_set_blocks(struct inode *inode, u64 bytes)
 198{
 199	struct logfs_inode *li = logfs_inode(inode);
 200
 201	li->li_used_bytes = bytes;
 202	__logfs_set_blocks(inode);
 203}
 204
 205static void prelock_page(struct super_block *sb, struct page *page, int lock)
 206{
 207	struct logfs_super *super = logfs_super(sb);
 208
 209	BUG_ON(!PageLocked(page));
 210	if (lock) {
 211		BUG_ON(PagePreLocked(page));
 212		SetPagePreLocked(page);
 213	} else {
 214		/* We are in GC path. */
 215		if (PagePreLocked(page))
 216			super->s_lock_count++;
 217		else
 218			SetPagePreLocked(page);
 219	}
 220}
 221
 222static void preunlock_page(struct super_block *sb, struct page *page, int lock)
 223{
 224	struct logfs_super *super = logfs_super(sb);
 225
 226	BUG_ON(!PageLocked(page));
 227	if (lock)
 228		ClearPagePreLocked(page);
 229	else {
 230		/* We are in GC path. */
 231		BUG_ON(!PagePreLocked(page));
 232		if (super->s_lock_count)
 233			super->s_lock_count--;
 234		else
 235			ClearPagePreLocked(page);
 236	}
 237}
 238
 239/*
 240 * Logfs is prone to an AB-BA deadlock where one task tries to acquire
 241 * s_write_mutex with a locked page and GC tries to get that page while holding
 242 * s_write_mutex.
 243 * To solve this issue logfs will ignore the page lock iff the page in question
 244 * is waiting for s_write_mutex.  We annotate this fact by setting PG_pre_locked
 245 * in addition to PG_locked.
 246 */
 247static void logfs_get_wblocks(struct super_block *sb, struct page *page,
 248		int lock)
 249{
 250	struct logfs_super *super = logfs_super(sb);
 251
 252	if (page)
 253		prelock_page(sb, page, lock);
 254
 255	if (lock) {
 256		mutex_lock(&super->s_write_mutex);
 257		logfs_gc_pass(sb);
 258		/* FIXME: We also have to check for shadowed space
 259		 * and mempool fill grade */
 260	}
 261}
 262
 263static void logfs_put_wblocks(struct super_block *sb, struct page *page,
 264		int lock)
 265{
 266	struct logfs_super *super = logfs_super(sb);
 267
 268	if (page)
 269		preunlock_page(sb, page, lock);
 270	/* Order matters - we must clear PG_pre_locked before releasing
 271	 * s_write_mutex or we could race against another task. */
 272	if (lock)
 273		mutex_unlock(&super->s_write_mutex);
 274}
 275
 276static struct page *logfs_get_read_page(struct inode *inode, u64 bix,
 277		level_t level)
 278{
 279	return find_or_create_page(inode->i_mapping,
 280			logfs_pack_index(bix, level), GFP_NOFS);
 281}
 282
 283static void logfs_put_read_page(struct page *page)
 284{
 285	unlock_page(page);
 286	page_cache_release(page);
 287}
 288
 289static void logfs_lock_write_page(struct page *page)
 290{
 291	int loop = 0;
 292
 293	while (unlikely(!trylock_page(page))) {
 294		if (loop++ > 0x1000) {
 295			/* Has been observed once so far... */
 296			printk(KERN_ERR "stack at %p\n", &loop);
 297			BUG();
 298		}
 299		if (PagePreLocked(page)) {
 300			/* Holder of page lock is waiting for us, it
 301			 * is safe to use this page. */
 302			break;
 303		}
 304		/* Some other process has this page locked and has
 305		 * nothing to do with us.  Wait for it to finish.
 306		 */
 307		schedule();
 308	}
 309	BUG_ON(!PageLocked(page));
 310}
 311
 312static struct page *logfs_get_write_page(struct inode *inode, u64 bix,
 313		level_t level)
 314{
 315	struct address_space *mapping = inode->i_mapping;
 316	pgoff_t index = logfs_pack_index(bix, level);
 317	struct page *page;
 318	int err;
 319
 320repeat:
 321	page = find_get_page(mapping, index);
 322	if (!page) {
 323		page = __page_cache_alloc(GFP_NOFS);
 324		if (!page)
 325			return NULL;
 326		err = add_to_page_cache_lru(page, mapping, index, GFP_NOFS);
 327		if (unlikely(err)) {
 328			page_cache_release(page);
 329			if (err == -EEXIST)
 330				goto repeat;
 331			return NULL;
 332		}
 333	} else logfs_lock_write_page(page);
 334	BUG_ON(!PageLocked(page));
 335	return page;
 336}
 337
 338static void logfs_unlock_write_page(struct page *page)
 339{
 340	if (!PagePreLocked(page))
 341		unlock_page(page);
 342}
 343
 344static void logfs_put_write_page(struct page *page)
 345{
 346	logfs_unlock_write_page(page);
 347	page_cache_release(page);
 348}
 349
 350static struct page *logfs_get_page(struct inode *inode, u64 bix, level_t level,
 351		int rw)
 352{
 353	if (rw == READ)
 354		return logfs_get_read_page(inode, bix, level);
 355	else
 356		return logfs_get_write_page(inode, bix, level);
 357}
 358
 359static void logfs_put_page(struct page *page, int rw)
 360{
 361	if (rw == READ)
 362		logfs_put_read_page(page);
 363	else
 364		logfs_put_write_page(page);
 365}
 366
 367static unsigned long __get_bits(u64 val, int skip, int no)
 368{
 369	u64 ret = val;
 370
 371	ret >>= skip * no;
 372	ret <<= 64 - no;
 373	ret >>= 64 - no;
 374	return ret;
 375}
 376
 377static unsigned long get_bits(u64 val, level_t skip)
 378{
 379	return __get_bits(val, (__force int)skip, LOGFS_BLOCK_BITS);
 380}
 381
 382static inline void init_shadow_tree(struct super_block *sb,
 383		struct shadow_tree *tree)
 384{
 385	struct logfs_super *super = logfs_super(sb);
 386
 387	btree_init_mempool64(&tree->new, super->s_btree_pool);
 388	btree_init_mempool64(&tree->old, super->s_btree_pool);
 389}
 390
 391static void indirect_write_block(struct logfs_block *block)
 392{
 393	struct page *page;
 394	struct inode *inode;
 395	int ret;
 396
 397	page = block->page;
 398	inode = page->mapping->host;
 399	logfs_lock_write_page(page);
 400	ret = logfs_write_buf(inode, page, 0);
 401	logfs_unlock_write_page(page);
 402	/*
 403	 * This needs some rework.  Unless you want your filesystem to run
 404	 * completely synchronously (you don't), the filesystem will always
 405	 * report writes as 'successful' before the actual work has been
 406	 * done.  The actual work gets done here and this is where any errors
 407	 * will show up.  And there isn't much we can do about it, really.
 408	 *
 409	 * Some attempts to fix the errors (move from bad blocks, retry io,...)
 410	 * have already been done, so anything left should be either a broken
 411	 * device or a bug somewhere in logfs itself.  Being relatively new,
 412	 * the odds currently favor a bug, so for now the line below isn't
 413	 * entirely tasteles.
 414	 */
 415	BUG_ON(ret);
 416}
 417
 418static void inode_write_block(struct logfs_block *block)
 419{
 420	struct inode *inode;
 421	int ret;
 422
 423	inode = block->inode;
 424	if (inode->i_ino == LOGFS_INO_MASTER)
 425		logfs_write_anchor(inode->i_sb);
 426	else {
 427		ret = __logfs_write_inode(inode, 0);
 428		/* see indirect_write_block comment */
 429		BUG_ON(ret);
 430	}
 431}
 432
 433/*
 434 * This silences a false, yet annoying gcc warning.  I hate it when my editor
 435 * jumps into bitops.h each time I recompile this file.
 436 * TODO: Complain to gcc folks about this and upgrade compiler.
 437 */
 438static unsigned long fnb(const unsigned long *addr,
 439		unsigned long size, unsigned long offset)
 440{
 441	return find_next_bit(addr, size, offset);
 442}
 443
 444static __be64 inode_val0(struct inode *inode)
 445{
 446	struct logfs_inode *li = logfs_inode(inode);
 447	u64 val;
 448
 449	/*
 450	 * Explicit shifting generates good code, but must match the format
 451	 * of the structure.  Add some paranoia just in case.
 452	 */
 453	BUILD_BUG_ON(offsetof(struct logfs_disk_inode, di_mode) != 0);
 454	BUILD_BUG_ON(offsetof(struct logfs_disk_inode, di_height) != 2);
 455	BUILD_BUG_ON(offsetof(struct logfs_disk_inode, di_flags) != 4);
 456
 457	val =	(u64)inode->i_mode << 48 |
 458		(u64)li->li_height << 40 |
 459		(u64)li->li_flags;
 460	return cpu_to_be64(val);
 461}
 462
 463static int inode_write_alias(struct super_block *sb,
 464		struct logfs_block *block, write_alias_t *write_one_alias)
 465{
 466	struct inode *inode = block->inode;
 467	struct logfs_inode *li = logfs_inode(inode);
 468	unsigned long pos;
 469	u64 ino , bix;
 470	__be64 val;
 471	level_t level;
 472	int err;
 473
 474	for (pos = 0; ; pos++) {
 475		pos = fnb(block->alias_map, LOGFS_BLOCK_FACTOR, pos);
 476		if (pos >= LOGFS_EMBEDDED_FIELDS + INODE_POINTER_OFS)
 477			return 0;
 478
 479		switch (pos) {
 480		case INODE_HEIGHT_OFS:
 481			val = inode_val0(inode);
 482			break;
 483		case INODE_USED_OFS:
 484			val = cpu_to_be64(li->li_used_bytes);
 485			break;
 486		case INODE_SIZE_OFS:
 487			val = cpu_to_be64(i_size_read(inode));
 488			break;
 489		case INODE_POINTER_OFS ... INODE_POINTER_OFS + LOGFS_EMBEDDED_FIELDS - 1:
 490			val = cpu_to_be64(li->li_data[pos - INODE_POINTER_OFS]);
 491			break;
 492		default:
 493			BUG();
 494		}
 495
 496		ino = LOGFS_INO_MASTER;
 497		bix = inode->i_ino;
 498		level = LEVEL(0);
 499		err = write_one_alias(sb, ino, bix, level, pos, val);
 500		if (err)
 501			return err;
 502	}
 503}
 504
 505static int indirect_write_alias(struct super_block *sb,
 506		struct logfs_block *block, write_alias_t *write_one_alias)
 507{
 508	unsigned long pos;
 509	struct page *page = block->page;
 510	u64 ino , bix;
 511	__be64 *child, val;
 512	level_t level;
 513	int err;
 514
 515	for (pos = 0; ; pos++) {
 516		pos = fnb(block->alias_map, LOGFS_BLOCK_FACTOR, pos);
 517		if (pos >= LOGFS_BLOCK_FACTOR)
 518			return 0;
 519
 520		ino = page->mapping->host->i_ino;
 521		logfs_unpack_index(page->index, &bix, &level);
 522		child = kmap_atomic(page, KM_USER0);
 523		val = child[pos];
 524		kunmap_atomic(child, KM_USER0);
 525		err = write_one_alias(sb, ino, bix, level, pos, val);
 526		if (err)
 527			return err;
 528	}
 529}
 530
 531int logfs_write_obj_aliases_pagecache(struct super_block *sb)
 532{
 533	struct logfs_super *super = logfs_super(sb);
 534	struct logfs_block *block;
 535	int err;
 536
 537	list_for_each_entry(block, &super->s_object_alias, alias_list) {
 538		err = block->ops->write_alias(sb, block, write_alias_journal);
 539		if (err)
 540			return err;
 541	}
 542	return 0;
 543}
 544
 545void __free_block(struct super_block *sb, struct logfs_block *block)
 546{
 547	BUG_ON(!list_empty(&block->item_list));
 548	list_del(&block->alias_list);
 549	mempool_free(block, logfs_super(sb)->s_block_pool);
 550}
 551
 552static void inode_free_block(struct super_block *sb, struct logfs_block *block)
 553{
 554	struct inode *inode = block->inode;
 555
 556	logfs_inode(inode)->li_block = NULL;
 557	__free_block(sb, block);
 558}
 559
 560static void indirect_free_block(struct super_block *sb,
 561		struct logfs_block *block)
 562{
 563	ClearPagePrivate(block->page);
 564	block->page->private = 0;
 565	__free_block(sb, block);
 566}
 567
 568
 569static struct logfs_block_ops inode_block_ops = {
 570	.write_block = inode_write_block,
 571	.free_block = inode_free_block,
 572	.write_alias = inode_write_alias,
 573};
 574
 575struct logfs_block_ops indirect_block_ops = {
 576	.write_block = indirect_write_block,
 577	.free_block = indirect_free_block,
 578	.write_alias = indirect_write_alias,
 579};
 580
 581struct logfs_block *__alloc_block(struct super_block *sb,
 582		u64 ino, u64 bix, level_t level)
 583{
 584	struct logfs_super *super = logfs_super(sb);
 585	struct logfs_block *block;
 586
 587	block = mempool_alloc(super->s_block_pool, GFP_NOFS);
 588	memset(block, 0, sizeof(*block));
 589	INIT_LIST_HEAD(&block->alias_list);
 590	INIT_LIST_HEAD(&block->item_list);
 591	block->sb = sb;
 592	block->ino = ino;
 593	block->bix = bix;
 594	block->level = level;
 595	return block;
 596}
 597
 598static void alloc_inode_block(struct inode *inode)
 599{
 600	struct logfs_inode *li = logfs_inode(inode);
 601	struct logfs_block *block;
 602
 603	if (li->li_block)
 604		return;
 605
 606	block = __alloc_block(inode->i_sb, LOGFS_INO_MASTER, inode->i_ino, 0);
 607	block->inode = inode;
 608	li->li_block = block;
 609	block->ops = &inode_block_ops;
 610}
 611
 612void initialize_block_counters(struct page *page, struct logfs_block *block,
 613		__be64 *array, int page_is_empty)
 614{
 615	u64 ptr;
 616	int i, start;
 617
 618	block->partial = 0;
 619	block->full = 0;
 620	start = 0;
 621	if (page->index < first_indirect_block()) {
 622		/* Counters are pointless on level 0 */
 623		return;
 624	}
 625	if (page->index == first_indirect_block()) {
 626		/* Skip unused pointers */
 627		start = I0_BLOCKS;
 628		block->full = I0_BLOCKS;
 629	}
 630	if (!page_is_empty) {
 631		for (i = start; i < LOGFS_BLOCK_FACTOR; i++) {
 632			ptr = be64_to_cpu(array[i]);
 633			if (ptr)
 634				block->partial++;
 635			if (ptr & LOGFS_FULLY_POPULATED)
 636				block->full++;
 637		}
 638	}
 639}
 640
 641static void alloc_data_block(struct inode *inode, struct page *page)
 642{
 643	struct logfs_block *block;
 644	u64 bix;
 645	level_t level;
 646
 647	if (PagePrivate(page))
 648		return;
 649
 650	logfs_unpack_index(page->index, &bix, &level);
 651	block = __alloc_block(inode->i_sb, inode->i_ino, bix, level);
 652	block->page = page;
 653	SetPagePrivate(page);
 654	page->private = (unsigned long)block;
 655	block->ops = &indirect_block_ops;
 656}
 657
 658static void alloc_indirect_block(struct inode *inode, struct page *page,
 659		int page_is_empty)
 660{
 661	struct logfs_block *block;
 662	__be64 *array;
 663
 664	if (PagePrivate(page))
 665		return;
 666
 667	alloc_data_block(inode, page);
 668
 669	block = logfs_block(page);
 670	array = kmap_atomic(page, KM_USER0);
 671	initialize_block_counters(page, block, array, page_is_empty);
 672	kunmap_atomic(array, KM_USER0);
 673}
 674
 675static void block_set_pointer(struct page *page, int index, u64 ptr)
 676{
 677	struct logfs_block *block = logfs_block(page);
 678	__be64 *array;
 679	u64 oldptr;
 680
 681	BUG_ON(!block);
 682	array = kmap_atomic(page, KM_USER0);
 683	oldptr = be64_to_cpu(array[index]);
 684	array[index] = cpu_to_be64(ptr);
 685	kunmap_atomic(array, KM_USER0);
 686	SetPageUptodate(page);
 687
 688	block->full += !!(ptr & LOGFS_FULLY_POPULATED)
 689		- !!(oldptr & LOGFS_FULLY_POPULATED);
 690	block->partial += !!ptr - !!oldptr;
 691}
 692
 693static u64 block_get_pointer(struct page *page, int index)
 694{
 695	__be64 *block;
 696	u64 ptr;
 697
 698	block = kmap_atomic(page, KM_USER0);
 699	ptr = be64_to_cpu(block[index]);
 700	kunmap_atomic(block, KM_USER0);
 701	return ptr;
 702}
 703
 704static int logfs_read_empty(struct page *page)
 705{
 706	zero_user_segment(page, 0, PAGE_CACHE_SIZE);
 707	return 0;
 708}
 709
 710static int logfs_read_direct(struct inode *inode, struct page *page)
 711{
 712	struct logfs_inode *li = logfs_inode(inode);
 713	pgoff_t index = page->index;
 714	u64 block;
 715
 716	block = li->li_data[index];
 717	if (!block)
 718		return logfs_read_empty(page);
 719
 720	return logfs_segment_read(inode, page, block, index, 0);
 721}
 722
 723static int logfs_read_loop(struct inode *inode, struct page *page,
 724		int rw_context)
 725{
 726	struct logfs_inode *li = logfs_inode(inode);
 727	u64 bix, bofs = li->li_data[INDIRECT_INDEX];
 728	level_t level, target_level;
 729	int ret;
 730	struct page *ipage;
 731
 732	logfs_unpack_index(page->index, &bix, &target_level);
 733	if (!bofs)
 734		return logfs_read_empty(page);
 735
 736	if (bix >= maxbix(li->li_height))
 737		return logfs_read_empty(page);
 738
 739	for (level = LEVEL(li->li_height);
 740			(__force u8)level > (__force u8)target_level;
 741			level = SUBLEVEL(level)){
 742		ipage = logfs_get_page(inode, bix, level, rw_context);
 743		if (!ipage)
 744			return -ENOMEM;
 745
 746		ret = logfs_segment_read(inode, ipage, bofs, bix, level);
 747		if (ret) {
 748			logfs_put_read_page(ipage);
 749			return ret;
 750		}
 751
 752		bofs = block_get_pointer(ipage, get_bits(bix, SUBLEVEL(level)));
 753		logfs_put_page(ipage, rw_context);
 754		if (!bofs)
 755			return logfs_read_empty(page);
 756	}
 757
 758	return logfs_segment_read(inode, page, bofs, bix, 0);
 759}
 760
 761static int logfs_read_block(struct inode *inode, struct page *page,
 762		int rw_context)
 763{
 764	pgoff_t index = page->index;
 765
 766	if (index < I0_BLOCKS)
 767		return logfs_read_direct(inode, page);
 768	return logfs_read_loop(inode, page, rw_context);
 769}
 770
 771static int logfs_exist_loop(struct inode *inode, u64 bix)
 772{
 773	struct logfs_inode *li = logfs_inode(inode);
 774	u64 bofs = li->li_data[INDIRECT_INDEX];
 775	level_t level;
 776	int ret;
 777	struct page *ipage;
 778
 779	if (!bofs)
 780		return 0;
 781	if (bix >= maxbix(li->li_height))
 782		return 0;
 783
 784	for (level = LEVEL(li->li_height); level != 0; level = SUBLEVEL(level)) {
 785		ipage = logfs_get_read_page(inode, bix, level);
 786		if (!ipage)
 787			return -ENOMEM;
 788
 789		ret = logfs_segment_read(inode, ipage, bofs, bix, level);
 790		if (ret) {
 791			logfs_put_read_page(ipage);
 792			return ret;
 793		}
 794
 795		bofs = block_get_pointer(ipage, get_bits(bix, SUBLEVEL(level)));
 796		logfs_put_read_page(ipage);
 797		if (!bofs)
 798			return 0;
 799	}
 800
 801	return 1;
 802}
 803
 804int logfs_exist_block(struct inode *inode, u64 bix)
 805{
 806	struct logfs_inode *li = logfs_inode(inode);
 807
 808	if (bix < I0_BLOCKS)
 809		return !!li->li_data[bix];
 810	return logfs_exist_loop(inode, bix);
 811}
 812
 813static u64 seek_holedata_direct(struct inode *inode, u64 bix, int data)
 814{
 815	struct logfs_inode *li = logfs_inode(inode);
 816
 817	for (; bix < I0_BLOCKS; bix++)
 818		if (data ^ (li->li_data[bix] == 0))
 819			return bix;
 820	return I0_BLOCKS;
 821}
 822
 823static u64 seek_holedata_loop(struct inode *inode, u64 bix, int data)
 824{
 825	struct logfs_inode *li = logfs_inode(inode);
 826	__be64 *rblock;
 827	u64 increment, bofs = li->li_data[INDIRECT_INDEX];
 828	level_t level;
 829	int ret, slot;
 830	struct page *page;
 831
 832	BUG_ON(!bofs);
 833
 834	for (level = LEVEL(li->li_height); level != 0; level = SUBLEVEL(level)) {
 835		increment = 1 << (LOGFS_BLOCK_BITS * ((__force u8)level-1));
 836		page = logfs_get_read_page(inode, bix, level);
 837		if (!page)
 838			return bix;
 839
 840		ret = logfs_segment_read(inode, page, bofs, bix, level);
 841		if (ret) {
 842			logfs_put_read_page(page);
 843			return bix;
 844		}
 845
 846		slot = get_bits(bix, SUBLEVEL(level));
 847		rblock = kmap_atomic(page, KM_USER0);
 848		while (slot < LOGFS_BLOCK_FACTOR) {
 849			if (data && (rblock[slot] != 0))
 850				break;
 851			if (!data && !(be64_to_cpu(rblock[slot]) & LOGFS_FULLY_POPULATED))
 852				break;
 853			slot++;
 854			bix += increment;
 855			bix &= ~(increment - 1);
 856		}
 857		if (slot >= LOGFS_BLOCK_FACTOR) {
 858			kunmap_atomic(rblock, KM_USER0);
 859			logfs_put_read_page(page);
 860			return bix;
 861		}
 862		bofs = be64_to_cpu(rblock[slot]);
 863		kunmap_atomic(rblock, KM_USER0);
 864		logfs_put_read_page(page);
 865		if (!bofs) {
 866			BUG_ON(data);
 867			return bix;
 868		}
 869	}
 870	return bix;
 871}
 872
 873/**
 874 * logfs_seek_hole - find next hole starting at a given block index
 875 * @inode:		inode to search in
 876 * @bix:		block index to start searching
 877 *
 878 * Returns next hole.  If the file doesn't contain any further holes, the
 879 * block address next to eof is returned instead.
 880 */
 881u64 logfs_seek_hole(struct inode *inode, u64 bix)
 882{
 883	struct logfs_inode *li = logfs_inode(inode);
 884
 885	if (bix < I0_BLOCKS) {
 886		bix = seek_holedata_direct(inode, bix, 0);
 887		if (bix < I0_BLOCKS)
 888			return bix;
 889	}
 890
 891	if (!li->li_data[INDIRECT_INDEX])
 892		return bix;
 893	else if (li->li_data[INDIRECT_INDEX] & LOGFS_FULLY_POPULATED)
 894		bix = maxbix(li->li_height);
 895	else if (bix >= maxbix(li->li_height))
 896		return bix;
 897	else {
 898		bix = seek_holedata_loop(inode, bix, 0);
 899		if (bix < maxbix(li->li_height))
 900			return bix;
 901		/* Should not happen anymore.  But if some port writes semi-
 902		 * corrupt images (as this one used to) we might run into it.
 903		 */
 904		WARN_ON_ONCE(bix == maxbix(li->li_height));
 905	}
 906
 907	return bix;
 908}
 909
 910static u64 __logfs_seek_data(struct inode *inode, u64 bix)
 911{
 912	struct logfs_inode *li = logfs_inode(inode);
 913
 914	if (bix < I0_BLOCKS) {
 915		bix = seek_holedata_direct(inode, bix, 1);
 916		if (bix < I0_BLOCKS)
 917			return bix;
 918	}
 919
 920	if (bix < maxbix(li->li_height)) {
 921		if (!li->li_data[INDIRECT_INDEX])
 922			bix = maxbix(li->li_height);
 923		else
 924			return seek_holedata_loop(inode, bix, 1);
 925	}
 926
 927	return bix;
 928}
 929
 930/**
 931 * logfs_seek_data - find next data block after a given block index
 932 * @inode:		inode to search in
 933 * @bix:		block index to start searching
 934 *
 935 * Returns next data block.  If the file doesn't contain any further data
 936 * blocks, the last block in the file is returned instead.
 937 */
 938u64 logfs_seek_data(struct inode *inode, u64 bix)
 939{
 940	struct super_block *sb = inode->i_sb;
 941	u64 ret, end;
 942
 943	ret = __logfs_seek_data(inode, bix);
 944	end = i_size_read(inode) >> sb->s_blocksize_bits;
 945	if (ret >= end)
 946		ret = max(bix, end);
 947	return ret;
 948}
 949
 950static int logfs_is_valid_direct(struct logfs_inode *li, u64 bix, u64 ofs)
 951{
 952	return pure_ofs(li->li_data[bix]) == ofs;
 953}
 954
 955static int __logfs_is_valid_loop(struct inode *inode, u64 bix,
 956		u64 ofs, u64 bofs)
 957{
 958	struct logfs_inode *li = logfs_inode(inode);
 959	level_t level;
 960	int ret;
 961	struct page *page;
 962
 963	for (level = LEVEL(li->li_height); level != 0; level = SUBLEVEL(level)){
 964		page = logfs_get_write_page(inode, bix, level);
 965		BUG_ON(!page);
 966
 967		ret = logfs_segment_read(inode, page, bofs, bix, level);
 968		if (ret) {
 969			logfs_put_write_page(page);
 970			return 0;
 971		}
 972
 973		bofs = block_get_pointer(page, get_bits(bix, SUBLEVEL(level)));
 974		logfs_put_write_page(page);
 975		if (!bofs)
 976			return 0;
 977
 978		if (pure_ofs(bofs) == ofs)
 979			return 1;
 980	}
 981	return 0;
 982}
 983
 984static int logfs_is_valid_loop(struct inode *inode, u64 bix, u64 ofs)
 985{
 986	struct logfs_inode *li = logfs_inode(inode);
 987	u64 bofs = li->li_data[INDIRECT_INDEX];
 988
 989	if (!bofs)
 990		return 0;
 991
 992	if (bix >= maxbix(li->li_height))
 993		return 0;
 994
 995	if (pure_ofs(bofs) == ofs)
 996		return 1;
 997
 998	return __logfs_is_valid_loop(inode, bix, ofs, bofs);
 999}
1000
1001static int __logfs_is_valid_block(struct inode *inode, u64 bix, u64 ofs)
1002{
1003	struct logfs_inode *li = logfs_inode(inode);
1004
1005	if ((inode->i_nlink == 0) && atomic_read(&inode->i_count) == 1)
1006		return 0;
1007
1008	if (bix < I0_BLOCKS)
1009		return logfs_is_valid_direct(li, bix, ofs);
1010	return logfs_is_valid_loop(inode, bix, ofs);
1011}
1012
1013/**
1014 * logfs_is_valid_block - check whether this block is still valid
1015 *
1016 * @sb	- superblock
1017 * @ofs	- block physical offset
1018 * @ino	- block inode number
1019 * @bix	- block index
1020 * @level - block level
1021 *
1022 * Returns 0 if the block is invalid, 1 if it is valid and 2 if it will
1023 * become invalid once the journal is written.
1024 */
1025int logfs_is_valid_block(struct super_block *sb, u64 ofs, u64 ino, u64 bix,
1026		gc_level_t gc_level)
1027{
1028	struct logfs_super *super = logfs_super(sb);
1029	struct inode *inode;
1030	int ret, cookie;
1031
1032	/* Umount closes a segment with free blocks remaining.  Those
1033	 * blocks are by definition invalid. */
1034	if (ino == -1)
1035		return 0;
1036
1037	LOGFS_BUG_ON((u64)(u_long)ino != ino, sb);
1038
1039	inode = logfs_safe_iget(sb, ino, &cookie);
1040	if (IS_ERR(inode))
1041		goto invalid;
1042
1043	ret = __logfs_is_valid_block(inode, bix, ofs);
1044	logfs_safe_iput(inode, cookie);
1045	if (ret)
1046		return ret;
1047
1048invalid:
1049	/* Block is nominally invalid, but may still sit in the shadow tree,
1050	 * waiting for a journal commit.
1051	 */
1052	if (btree_lookup64(&super->s_shadow_tree.old, ofs))
1053		return 2;
1054	return 0;
1055}
1056
1057int logfs_readpage_nolock(struct page *page)
1058{
1059	struct inode *inode = page->mapping->host;
1060	int ret = -EIO;
1061
1062	ret = logfs_read_block(inode, page, READ);
1063
1064	if (ret) {
1065		ClearPageUptodate(page);
1066		SetPageError(page);
1067	} else {
1068		SetPageUptodate(page);
1069		ClearPageError(page);
1070	}
1071	flush_dcache_page(page);
1072
1073	return ret;
1074}
1075
1076static int logfs_reserve_bytes(struct inode *inode, int bytes)
1077{
1078	struct logfs_super *super = logfs_super(inode->i_sb);
1079	u64 available = super->s_free_bytes + super->s_dirty_free_bytes
1080			- super->s_dirty_used_bytes - super->s_dirty_pages;
1081
1082	if (!bytes)
1083		return 0;
1084
1085	if (available < bytes)
1086		return -ENOSPC;
1087
1088	if (available < bytes + super->s_root_reserve &&
1089			!capable(CAP_SYS_RESOURCE))
1090		return -ENOSPC;
1091
1092	return 0;
1093}
1094
1095int get_page_reserve(struct inode *inode, struct page *page)
1096{
1097	struct logfs_super *super = logfs_super(inode->i_sb);
1098	struct logfs_block *block = logfs_block(page);
1099	int ret;
1100
1101	if (block && block->reserved_bytes)
1102		return 0;
1103
1104	logfs_get_wblocks(inode->i_sb, page, WF_LOCK);
1105	while ((ret = logfs_reserve_bytes(inode, 6 * LOGFS_MAX_OBJECTSIZE)) &&
1106			!list_empty(&super->s_writeback_list)) {
1107		block = list_entry(super->s_writeback_list.next,
1108				struct logfs_block, alias_list);
1109		block->ops->write_block(block);
1110	}
1111	if (!ret) {
1112		alloc_data_block(inode, page);
1113		block = logfs_block(page);
1114		block->reserved_bytes += 6 * LOGFS_MAX_OBJECTSIZE;
1115		super->s_dirty_pages += 6 * LOGFS_MAX_OBJECTSIZE;
1116		list_move_tail(&block->alias_list, &super->s_writeback_list);
1117	}
1118	logfs_put_wblocks(inode->i_sb, page, WF_LOCK);
1119	return ret;
1120}
1121
1122/*
1123 * We are protected by write lock.  Push victims up to superblock level
1124 * and release transaction when appropriate.
1125 */
1126/* FIXME: This is currently called from the wrong spots. */
1127static void logfs_handle_transaction(struct inode *inode,
1128		struct logfs_transaction *ta)
1129{
1130	struct logfs_super *super = logfs_super(inode->i_sb);
1131
1132	if (!ta)
1133		return;
1134	logfs_inode(inode)->li_block->ta = NULL;
1135
1136	if (inode->i_ino != LOGFS_INO_MASTER) {
1137		BUG(); /* FIXME: Yes, this needs more thought */
1138		/* just remember the transaction until inode is written */
1139		//BUG_ON(logfs_inode(inode)->li_transaction);
1140		//logfs_inode(inode)->li_transaction = ta;
1141		return;
1142	}
1143
1144	switch (ta->state) {
1145	case CREATE_1: /* fall through */
1146	case UNLINK_1:
1147		BUG_ON(super->s_victim_ino);
1148		super->s_victim_ino = ta->ino;
1149		break;
1150	case CREATE_2: /* fall through */
1151	case UNLINK_2:
1152		BUG_ON(super->s_victim_ino != ta->ino);
1153		super->s_victim_ino = 0;
1154		/* transaction ends here - free it */
1155		kfree(ta);
1156		break;
1157	case CROSS_RENAME_1:
1158		BUG_ON(super->s_rename_dir);
1159		BUG_ON(super->s_rename_pos);
1160		super->s_rename_dir = ta->dir;
1161		super->s_rename_pos = ta->pos;
1162		break;
1163	case CROSS_RENAME_2:
1164		BUG_ON(super->s_rename_dir != ta->dir);
1165		BUG_ON(super->s_rename_pos != ta->pos);
1166		super->s_rename_dir = 0;
1167		super->s_rename_pos = 0;
1168		kfree(ta);
1169		break;
1170	case TARGET_RENAME_1:
1171		BUG_ON(super->s_rename_dir);
1172		BUG_ON(super->s_rename_pos);
1173		BUG_ON(super->s_victim_ino);
1174		super->s_rename_dir = ta->dir;
1175		super->s_rename_pos = ta->pos;
1176		super->s_victim_ino = ta->ino;
1177		break;
1178	case TARGET_RENAME_2:
1179		BUG_ON(super->s_rename_dir != ta->dir);
1180		BUG_ON(super->s_rename_pos != ta->pos);
1181		BUG_ON(super->s_victim_ino != ta->ino);
1182		super->s_rename_dir = 0;
1183		super->s_rename_pos = 0;
1184		break;
1185	case TARGET_RENAME_3:
1186		BUG_ON(super->s_rename_dir);
1187		BUG_ON(super->s_rename_pos);
1188		BUG_ON(super->s_victim_ino != ta->ino);
1189		super->s_victim_ino = 0;
1190		kfree(ta);
1191		break;
1192	default:
1193		BUG();
1194	}
1195}
1196
1197/*
1198 * Not strictly a reservation, but rather a check that we still have enough
1199 * space to satisfy the write.
1200 */
1201static int logfs_reserve_blocks(struct inode *inode, int blocks)
1202{
1203	return logfs_reserve_bytes(inode, blocks * LOGFS_MAX_OBJECTSIZE);
1204}
1205
1206struct write_control {
1207	u64 ofs;
1208	long flags;
1209};
1210
1211static struct logfs_shadow *alloc_shadow(struct inode *inode, u64 bix,
1212		level_t level, u64 old_ofs)
1213{
1214	struct logfs_super *super = logfs_super(inode->i_sb);
1215	struct logfs_shadow *shadow;
1216
1217	shadow = mempool_alloc(super->s_shadow_pool, GFP_NOFS);
1218	memset(shadow, 0, sizeof(*shadow));
1219	shadow->ino = inode->i_ino;
1220	shadow->bix = bix;
1221	shadow->gc_level = expand_level(inode->i_ino, level);
1222	shadow->old_ofs = old_ofs & ~LOGFS_FULLY_POPULATED;
1223	return shadow;
1224}
1225
1226static void free_shadow(struct inode *inode, struct logfs_shadow *shadow)
1227{
1228	struct logfs_super *super = logfs_super(inode->i_sb);
1229
1230	mempool_free(shadow, super->s_shadow_pool);
1231}
1232
1233static void mark_segment(struct shadow_tree *tree, u32 segno)
1234{
1235	int err;
1236
1237	if (!btree_lookup32(&tree->segment_map, segno)) {
1238		err = btree_insert32(&tree->segment_map, segno, (void *)1,
1239				GFP_NOFS);
1240		BUG_ON(err);
1241		tree->no_shadowed_segments++;
1242	}
1243}
1244
1245/**
1246 * fill_shadow_tree - Propagate shadow tree changes due to a write
1247 * @inode:	Inode owning the page
1248 * @page:	Struct page that was written
1249 * @shadow:	Shadow for the current write
1250 *
1251 * Writes in logfs can result in two semi-valid objects.  The old object
1252 * is still valid as long as it can be reached by following pointers on
1253 * the medium.  Only when writes propagate all the way up to the journal
1254 * has the new object safely replaced the old one.
1255 *
1256 * To handle this problem, a struct logfs_shadow is used to represent
1257 * every single write.  It is attached to the indirect block, which is
1258 * marked dirty.  When the indirect block is written, its shadows are
1259 * handed up to the next indirect block (or inode).  Untimately they
1260 * will reach the master inode and be freed upon journal commit.
1261 *
1262 * This function handles a single step in the propagation.  It adds the
1263 * shadow for the current write to the tree, along with any shadows in
1264 * the page's tree, in case it was an indirect block.  If a page is
1265 * written, the inode parameter is left NULL, if an inode is written,
1266 * the page parameter is left NULL.
1267 */
1268static void fill_shadow_tree(struct inode *inode, struct page *page,
1269		struct logfs_shadow *shadow)
1270{
1271	struct logfs_super *super = logfs_super(inode->i_sb);
1272	struct logfs_block *block = logfs_block(page);
1273	struct shadow_tree *tree = &super->s_shadow_tree;
1274
1275	if (PagePrivate(page)) {
1276		if (block->alias_map)
1277			super->s_no_object_aliases -= bitmap_weight(
1278					block->alias_map, LOGFS_BLOCK_FACTOR);
1279		logfs_handle_transaction(inode, block->ta);
1280		block->ops->free_block(inode->i_sb, block);
1281	}
1282	if (shadow) {
1283		if (shadow->old_ofs)
1284			btree_insert64(&tree->old, shadow->old_ofs, shadow,
1285					GFP_NOFS);
1286		else
1287			btree_insert64(&tree->new, shadow->new_ofs, shadow,
1288					GFP_NOFS);
1289
1290		super->s_dirty_used_bytes += shadow->new_len;
1291		super->s_dirty_free_bytes += shadow->old_len;
1292		mark_segment(tree, shadow->old_ofs >> super->s_segshift);
1293		mark_segment(tree, shadow->new_ofs >> super->s_segshift);
1294	}
1295}
1296
1297static void logfs_set_alias(struct super_block *sb, struct logfs_block *block,
1298		long child_no)
1299{
1300	struct logfs_super *super = logfs_super(sb);
1301
1302	if (block->inode && block->inode->i_ino == LOGFS_INO_MASTER) {
1303		/* Aliases in the master inode are pointless. */
1304		return;
1305	}
1306
1307	if (!test_bit(child_no, block->alias_map)) {
1308		set_bit(child_no, block->alias_map);
1309		super->s_no_object_aliases++;
1310	}
1311	list_move_tail(&block->alias_list, &super->s_object_alias);
1312}
1313
1314/*
1315 * Object aliases can and often do change the size and occupied space of a
1316 * file.  So not only do we have to change the pointers, we also have to
1317 * change inode->i_size and li->li_used_bytes.  Which is done by setting
1318 * another two object aliases for the inode itself.
1319 */
1320static void set_iused(struct inode *inode, struct logfs_shadow *shadow)
1321{
1322	struct logfs_inode *li = logfs_inode(inode);
1323
1324	if (shadow->new_len == shadow->old_len)
1325		return;
1326
1327	alloc_inode_block(inode);
1328	li->li_used_bytes += shadow->new_len - shadow->old_len;
1329	__logfs_set_blocks(inode);
1330	logfs_set_alias(inode->i_sb, li->li_block, INODE_USED_OFS);
1331	logfs_set_alias(inode->i_sb, li->li_block, INODE_SIZE_OFS);
1332}
1333
1334static int logfs_write_i0(struct inode *inode, struct page *page,
1335		struct write_control *wc)
1336{
1337	struct logfs_shadow *shadow;
1338	u64 bix;
1339	level_t level;
1340	int full, err = 0;
1341
1342	logfs_unpack_index(page->index, &bix, &level);
1343	if (wc->ofs == 0)
1344		if (logfs_reserve_blocks(inode, 1))
1345			return -ENOSPC;
1346
1347	shadow = alloc_shadow(inode, bix, level, wc->ofs);
1348	if (wc->flags & WF_WRITE)
1349		err = logfs_segment_write(inode, page, shadow);
1350	if (wc->flags & WF_DELETE)
1351		logfs_segment_delete(inode, shadow);
1352	if (err) {
1353		free_shadow(inode, shadow);
1354		return err;
1355	}
1356
1357	set_iused(inode, shadow);
1358	full = 1;
1359	if (level != 0) {
1360		alloc_indirect_block(inode, page, 0);
1361		full = logfs_block(page)->full == LOGFS_BLOCK_FACTOR;
1362	}
1363	fill_shadow_tree(inode, page, shadow);
1364	wc->ofs = shadow->new_ofs;
1365	if (wc->ofs && full)
1366		wc->ofs |= LOGFS_FULLY_POPULATED;
1367	return 0;
1368}
1369
1370static int logfs_write_direct(struct inode *inode, struct page *page,
1371		long flags)
1372{
1373	struct logfs_inode *li = logfs_inode(inode);
1374	struct write_control wc = {
1375		.ofs = li->li_data[page->index],
1376		.flags = flags,
1377	};
1378	int err;
1379
1380	alloc_inode_block(inode);
1381
1382	err = logfs_write_i0(inode, page, &wc);
1383	if (err)
1384		return err;
1385
1386	li->li_data[page->index] = wc.ofs;
1387	logfs_set_alias(inode->i_sb, li->li_block,
1388			page->index + INODE_POINTER_OFS);
1389	return 0;
1390}
1391
1392static int ptr_change(u64 ofs, struct page *page)
1393{
1394	struct logfs_block *block = logfs_block(page);
1395	int empty0, empty1, full0, full1;
1396
1397	empty0 = ofs == 0;
1398	empty1 = block->partial == 0;
1399	if (empty0 != empty1)
1400		return 1;
1401
1402	/* The !! is necessary to shrink result to int */
1403	full0 = !!(ofs & LOGFS_FULLY_POPULATED);
1404	full1 = block->full == LOGFS_BLOCK_FACTOR;
1405	if (full0 != full1)
1406		return 1;
1407	return 0;
1408}
1409
1410static int __logfs_write_rec(struct inode *inode, struct page *page,
1411		struct write_control *this_wc,
1412		pgoff_t bix, level_t target_level, level_t level)
1413{
1414	int ret, page_empty = 0;
1415	int child_no = get_bits(bix, SUBLEVEL(level));
1416	struct page *ipage;
1417	struct write_control child_wc = {
1418		.flags = this_wc->flags,
1419	};
1420
1421	ipage = logfs_get_write_page(inode, bix, level);
1422	if (!ipage)
1423		return -ENOMEM;
1424
1425	if (this_wc->ofs) {
1426		ret = logfs_segment_read(inode, ipage, this_wc->ofs, bix, level);
1427		if (ret)
1428			goto out;
1429	} else if (!PageUptodate(ipage)) {
1430		page_empty = 1;
1431		logfs_read_empty(ipage);
1432	}
1433
1434	child_wc.ofs = block_get_pointer(ipage, child_no);
1435
1436	if ((__force u8)level-1 > (__force u8)target_level)
1437		ret = __logfs_write_rec(inode, page, &child_wc, bix,
1438				target_level, SUBLEVEL(level));
1439	else
1440		ret = logfs_write_i0(inode, page, &child_wc);
1441
1442	if (ret)
1443		goto out;
1444
1445	alloc_indirect_block(inode, ipage, page_empty);
1446	block_set_pointer(ipage, child_no, child_wc.ofs);
1447	/* FIXME: first condition seems superfluous */
1448	if (child_wc.ofs || logfs_block(ipage)->partial)
1449		this_wc->flags |= WF_WRITE;
1450	/* the condition on this_wc->ofs ensures that we won't consume extra
1451	 * space for indirect blocks in the future, which we cannot reserve */
1452	if (!this_wc->ofs || ptr_change(this_wc->ofs, ipage))
1453		ret = logfs_write_i0(inode, ipage, this_wc);
1454	else
1455		logfs_set_alias(inode->i_sb, logfs_block(ipage), child_no);
1456out:
1457	logfs_put_write_page(ipage);
1458	return ret;
1459}
1460
1461static int logfs_write_rec(struct inode *inode, struct page *page,
1462		pgoff_t bix, level_t target_level, long flags)
1463{
1464	struct logfs_inode *li = logfs_inode(inode);
1465	struct write_control wc = {
1466		.ofs = li->li_data[INDIRECT_INDEX],
1467		.flags = flags,
1468	};
1469	int ret;
1470
1471	alloc_inode_block(inode);
1472
1473	if (li->li_height > (__force u8)target_level)
1474		ret = __logfs_write_rec(inode, page, &wc, bix, target_level,
1475				LEVEL(li->li_height));
1476	else
1477		ret = logfs_write_i0(inode, page, &wc);
1478	if (ret)
1479		return ret;
1480
1481	if (li->li_data[INDIRECT_INDEX] != wc.ofs) {
1482		li->li_data[INDIRECT_INDEX] = wc.ofs;
1483		logfs_set_alias(inode->i_sb, li->li_block,
1484				INDIRECT_INDEX + INODE_POINTER_OFS);
1485	}
1486	return ret;
1487}
1488
1489void logfs_add_transaction(struct inode *inode, struct logfs_transaction *ta)
1490{
1491	alloc_inode_block(inode);
1492	logfs_inode(inode)->li_block->ta = ta;
1493}
1494
1495void logfs_del_transaction(struct inode *inode, struct logfs_transaction *ta)
1496{
1497	struct logfs_block *block = logfs_inode(inode)->li_block;
1498
1499	if (block && block->ta)
1500		block->ta = NULL;
1501}
1502
1503static int grow_inode(struct inode *inode, u64 bix, level_t level)
1504{
1505	struct logfs_inode *li = logfs_inode(inode);
1506	u8 height = (__force u8)level;
1507	struct page *page;
1508	struct write_control wc = {
1509		.flags = WF_WRITE,
1510	};
1511	int err;
1512
1513	BUG_ON(height > 5 || li->li_height > 5);
1514	while (height > li->li_height || bix >= maxbix(li->li_height)) {
1515		page = logfs_get_write_page(inode, I0_BLOCKS + 1,
1516				LEVEL(li->li_height + 1));
1517		if (!page)
1518			return -ENOMEM;
1519		logfs_read_empty(page);
1520		alloc_indirect_block(inode, page, 1);
1521		block_set_pointer(page, 0, li->li_data[INDIRECT_INDEX]);
1522		err = logfs_write_i0(inode, page, &wc);
1523		logfs_put_write_page(page);
1524		if (err)
1525			return err;
1526		li->li_data[INDIRECT_INDEX] = wc.ofs;
1527		wc.ofs = 0;
1528		li->li_height++;
1529		logfs_set_alias(inode->i_sb, li->li_block, INODE_HEIGHT_OFS);
1530	}
1531	return 0;
1532}
1533
1534static int __logfs_write_buf(struct inode *inode, struct page *page, long flags)
1535{
1536	struct logfs_super *super = logfs_super(inode->i_sb);
1537	pgoff_t index = page->index;
1538	u64 bix;
1539	level_t level;
1540	int err;
1541
1542	flags |= WF_WRITE | WF_DELETE;
1543	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1544
1545	logfs_unpack_index(index, &bix, &level);
1546	if (logfs_block(page) && logfs_block(page)->reserved_bytes)
1547		super->s_dirty_pages -= logfs_block(page)->reserved_bytes;
1548
1549	if (index < I0_BLOCKS)
1550		return logfs_write_direct(inode, page, flags);
1551
1552	bix = adjust_bix(bix, level);
1553	err = grow_inode(inode, bix, level);
1554	if (err)
1555		return err;
1556	return logfs_write_rec(inode, page, bix, level, flags);
1557}
1558
1559int logfs_write_buf(struct inode *inode, struct page *page, long flags)
1560{
1561	struct super_block *sb = inode->i_sb;
1562	int ret;
1563
1564	logfs_get_wblocks(sb, page, flags & WF_LOCK);
1565	ret = __logfs_write_buf(inode, page, flags);
1566	logfs_put_wblocks(sb, page, flags & WF_LOCK);
1567	return ret;
1568}
1569
1570static int __logfs_delete(struct inode *inode, struct page *page)
1571{
1572	long flags = WF_DELETE;
1573
1574	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1575
1576	if (page->index < I0_BLOCKS)
1577		return logfs_write_direct(inode, page, flags);
1578	return logfs_write_rec(inode, page, page->index, 0, flags);
1579}
1580
1581int logfs_delete(struct inode *inode, pgoff_t index,
1582		struct shadow_tree *shadow_tree)
1583{
1584	struct super_block *sb = inode->i_sb;
1585	struct page *page;
1586	int ret;
1587
1588	page = logfs_get_read_page(inode, index, 0);
1589	if (!page)
1590		return -ENOMEM;
1591
1592	logfs_get_wblocks(sb, page, 1);
1593	ret = __logfs_delete(inode, page);
1594	logfs_put_wblocks(sb, page, 1);
1595
1596	logfs_put_read_page(page);
1597
1598	return ret;
1599}
1600
1601int logfs_rewrite_block(struct inode *inode, u64 bix, u64 ofs,
1602		gc_level_t gc_level, long flags)
1603{
1604	level_t level = shrink_level(gc_level);
1605	struct page *page;
1606	int err;
1607
1608	page = logfs_get_write_page(inode, bix, level);
1609	if (!page)
1610		return -ENOMEM;
1611
1612	err = logfs_segment_read(inode, page, ofs, bix, level);
1613	if (!err) {
1614		if (level != 0)
1615			alloc_indirect_block(inode, page, 0);
1616		err = logfs_write_buf(inode, page, flags);
1617		if (!err && shrink_level(gc_level) == 0) {
1618			/* Rewrite cannot mark the inode dirty but has to
1619			 * write it immediately.
1620			 * Q: Can't we just create an alias for the inode
1621			 * instead?  And if not, why not?
1622			 */
1623			if (inode->i_ino == LOGFS_INO_MASTER)
1624				logfs_write_anchor(inode->i_sb);
1625			else {
1626				err = __logfs_write_inode(inode, flags);
1627			}
1628		}
1629	}
1630	logfs_put_write_page(page);
1631	return err;
1632}
1633
1634static int truncate_data_block(struct inode *inode, struct page *page,
1635		u64 ofs, struct logfs_shadow *shadow, u64 size)
1636{
1637	loff_t pageofs = page->index << inode->i_sb->s_blocksize_bits;
1638	u64 bix;
1639	level_t level;
1640	int err;
1641
1642	/* Does truncation happen within this page? */
1643	if (size <= pageofs || size - pageofs >= PAGE_SIZE)
1644		return 0;
1645
1646	logfs_unpack_index(page->index, &bix, &level);
1647	BUG_ON(level != 0);
1648
1649	err = logfs_segment_read(inode, page, ofs, bix, level);
1650	if (err)
1651		return err;
1652
1653	zero_user_segment(page, size - pageofs, PAGE_CACHE_SIZE);
1654	return logfs_segment_write(inode, page, shadow);
1655}
1656
1657static int logfs_truncate_i0(struct inode *inode, struct page *page,
1658		struct write_control *wc, u64 size)
1659{
1660	struct logfs_shadow *shadow;
1661	u64 bix;
1662	level_t level;
1663	int err = 0;
1664
1665	logfs_unpack_index(page->index, &bix, &level);
1666	BUG_ON(level != 0);
1667	shadow = alloc_shadow(inode, bix, level, wc->ofs);
1668
1669	err = truncate_data_block(inode, page, wc->ofs, shadow, size);
1670	if (err) {
1671		free_shadow(inode, shadow);
1672		return err;
1673	}
1674
1675	logfs_segment_delete(inode, shadow);
1676	set_iused(inode, shadow);
1677	fill_shadow_tree(inode, page, shadow);
1678	wc->ofs = shadow->new_ofs;
1679	return 0;
1680}
1681
1682static int logfs_truncate_direct(struct inode *inode, u64 size)
1683{
1684	struct logfs_inode *li = logfs_inode(inode);
1685	struct write_control wc;
1686	struct page *page;
1687	int e;
1688	int err;
1689
1690	alloc_inode_block(inode);
1691
1692	for (e = I0_BLOCKS - 1; e >= 0; e--) {
1693		if (size > (e+1) * LOGFS_BLOCKSIZE)
1694			break;
1695
1696		wc.ofs = li->li_data[e];
1697		if (!wc.ofs)
1698			continue;
1699
1700		page = logfs_get_write_page(inode, e, 0);
1701		if (!page)
1702			return -ENOMEM;
1703		err = logfs_segment_read(inode, page, wc.ofs, e, 0);
1704		if (err) {
1705			logfs_put_write_page(page);
1706			return err;
1707		}
1708		err = logfs_truncate_i0(inode, page, &wc, size);
1709		logfs_put_write_page(page);
1710		if (err)
1711			return err;
1712
1713		li->li_data[e] = wc.ofs;
1714	}
1715	return 0;
1716}
1717
1718/* FIXME: these need to become per-sb once we support different blocksizes */
1719static u64 __logfs_step[] = {
1720	1,
1721	I1_BLOCKS,
1722	I2_BLOCKS,
1723	I3_BLOCKS,
1724};
1725
1726static u64 __logfs_start_index[] = {
1727	I0_BLOCKS,
1728	I1_BLOCKS,
1729	I2_BLOCKS,
1730	I3_BLOCKS
1731};
1732
1733static inline u64 logfs_step(level_t level)
1734{
1735	return __logfs_step[(__force u8)level];
1736}
1737
1738static inline u64 logfs_factor(u8 level)
1739{
1740	return __logfs_step[level] * LOGFS_BLOCKSIZE;
1741}
1742
1743static inline u64 logfs_start_index(level_t level)
1744{
1745	return __logfs_start_index[(__force u8)level];
1746}
1747
1748static void logfs_unpack_raw_index(pgoff_t index, u64 *bix, level_t *level)
1749{
1750	logfs_unpack_index(index, bix, level);
1751	if (*bix <= logfs_start_index(SUBLEVEL(*level)))
1752		*bix = 0;
1753}
1754
1755static int __logfs_truncate_rec(struct inode *inode, struct page *ipage,
1756		struct write_control *this_wc, u64 size)
1757{
1758	int truncate_happened = 0;
1759	int e, err = 0;
1760	u64 bix, child_bix, next_bix;
1761	level_t level;
1762	struct page *page;
1763	struct write_control child_wc = { /* FIXME: flags */ };
1764
1765	logfs_unpack_raw_index(ipage->index, &bix, &level);
1766	err = logfs_segment_read(inode, ipage, this_wc->ofs, bix, level);
1767	if (err)
1768		return err;
1769
1770	for (e = LOGFS_BLOCK_FACTOR - 1; e >= 0; e--) {
1771		child_bix = bix + e * logfs_step(SUBLEVEL(level));
1772		next_bix = child_bix + logfs_step(SUBLEVEL(level));
1773		if (size > next_bix * LOGFS_BLOCKSIZE)
1774			break;
1775
1776		child_wc.ofs = pure_ofs(block_get_pointer(ipage, e));
1777		if (!child_wc.ofs)
1778			continue;
1779
1780		page = logfs_get_write_page(inode, child_bix, SUBLEVEL(level));
1781		if (!page)
1782			return -ENOMEM;
1783
1784		if ((__force u8)level > 1)
1785			err = __logfs_truncate_rec(inode, page, &child_wc, size);
1786		else
1787			err = logfs_truncate_i0(inode, page, &child_wc, size);
1788		logfs_put_write_page(page);
1789		if (err)
1790			return err;
1791
1792		truncate_happened = 1;
1793		alloc_indirect_block(inode, ipage, 0);
1794		block_set_pointer(ipage, e, child_wc.ofs);
1795	}
1796
1797	if (!truncate_happened) {
1798		printk("ineffectual truncate (%lx, %lx, %llx)\n", inode->i_ino, ipage->index, size);
1799		return 0;
1800	}
1801
1802	this_wc->flags = WF_DELETE;
1803	if (logfs_block(ipage)->partial)
1804		this_wc->flags |= WF_WRITE;
1805
1806	return logfs_write_i0(inode, ipage, this_wc);
1807}
1808
1809static int logfs_truncate_rec(struct inode *inode, u64 size)
1810{
1811	struct logfs_inode *li = logfs_inode(inode);
1812	struct write_control wc = {
1813		.ofs = li->li_data[INDIRECT_INDEX],
1814	};
1815	struct page *page;
1816	int err;
1817
1818	alloc_inode_block(inode);
1819
1820	if (!wc.ofs)
1821		return 0;
1822
1823	page = logfs_get_write_page(inode, 0, LEVEL(li->li_height));
1824	if (!page)
1825		return -ENOMEM;
1826
1827	err = __logfs_truncate_rec(inode, page, &wc, size);
1828	logfs_put_write_page(page);
1829	if (err)
1830		return err;
1831
1832	if (li->li_data[INDIRECT_INDEX] != wc.ofs)
1833		li->li_data[INDIRECT_INDEX] = wc.ofs;
1834	return 0;
1835}
1836
1837static int __logfs_truncate(struct inode *inode, u64 size)
1838{
1839	int ret;
1840
1841	if (size >= logfs_factor(logfs_inode(inode)->li_height))
1842		return 0;
1843
1844	ret = logfs_truncate_rec(inode, size);
1845	if (ret)
1846		return ret;
1847
1848	return logfs_truncate_direct(inode, size);
1849}
1850
1851/*
1852 * Truncate, by changing the segment file, can consume a fair amount
1853 * of resources.  So back off from time to time and do some GC.
1854 * 8 or 2048 blocks should be well within safety limits even if
1855 * every single block resided in a different segment.
1856 */
1857#define TRUNCATE_STEP	(8 * 1024 * 1024)
1858int logfs_truncate(struct inode *inode, u64 target)
1859{
1860	struct super_block *sb = inode->i_sb;
1861	u64 size = i_size_read(inode);
1862	int err = 0;
1863
1864	size = ALIGN(size, TRUNCATE_STEP);
1865	while (size > target) {
1866		if (size > TRUNCATE_STEP)
1867			size -= TRUNCATE_STEP;
1868		else
1869			size = 0;
1870		if (size < target)
1871			size = target;
1872
1873		logfs_get_wblocks(sb, NULL, 1);
1874		err = __logfs_truncate(inode, size);
1875		if (!err)
1876			err = __logfs_write_inode(inode, 0);
1877		logfs_put_wblocks(sb, NULL, 1);
1878	}
1879
1880	if (!err)
1881		err = vmtruncate(inode, target);
1882
1883	/* I don't trust error recovery yet. */
1884	WARN_ON(err);
1885	return err;
1886}
1887
1888static void move_page_to_inode(struct inode *inode, struct page *page)
1889{
1890	struct logfs_inode *li = logfs_inode(inode);
1891	struct logfs_block *block = logfs_block(page);
1892
1893	if (!block)
1894		return;
1895
1896	log_blockmove("move_page_to_inode(%llx, %llx, %x)\n",
1897			block->ino, block->bix, block->level);
1898	BUG_ON(li->li_block);
1899	block->ops = &inode_block_ops;
1900	block->inode = inode;
1901	li->li_block = block;
1902
1903	block->page = NULL;
1904	page->private = 0;
1905	ClearPagePrivate(page);
1906}
1907
1908static void move_inode_to_page(struct page *page, struct inode *inode)
1909{
1910	struct logfs_inode *li = logfs_inode(inode);
1911	struct logfs_block *block = li->li_block;
1912
1913	if (!block)
1914		return;
1915
1916	log_blockmove("move_inode_to_page(%llx, %llx, %x)\n",
1917			block->ino, block->bix, block->level);
1918	BUG_ON(PagePrivate(page));
1919	block->ops = &indirect_block_ops;
1920	block->page = page;
1921	page->private = (unsigned long)block;
1922	SetPagePrivate(page);
1923
1924	block->inode = NULL;
1925	li->li_block = NULL;
1926}
1927
1928int logfs_read_inode(struct inode *inode)
1929{
1930	struct super_block *sb = inode->i_sb;
1931	struct logfs_super *super = logfs_super(sb);
1932	struct inode *master_inode = super->s_master_inode;
1933	struct page *page;
1934	struct logfs_disk_inode *di;
1935	u64 ino = inode->i_ino;
1936
1937	if (ino << sb->s_blocksize_bits > i_size_read(master_inode))
1938		return -ENODATA;
1939	if (!logfs_exist_block(master_inode, ino))
1940		return -ENODATA;
1941
1942	page = read_cache_page(master_inode->i_mapping, ino,
1943			(filler_t *)logfs_readpage, NULL);
1944	if (IS_ERR(page))
1945		return PTR_ERR(page);
1946
1947	di = kmap_atomic(page, KM_USER0);
1948	logfs_disk_to_inode(di, inode);
1949	kunmap_atomic(di, KM_USER0);
1950	move_page_to_inode(inode, page);
1951	page_cache_release(page);
1952	return 0;
1953}
1954
1955/* Caller must logfs_put_write_page(page); */
1956static struct page *inode_to_page(struct inode *inode)
1957{
1958	struct inode *master_inode = logfs_super(inode->i_sb)->s_master_inode;
1959	struct logfs_disk_inode *di;
1960	struct page *page;
1961
1962	BUG_ON(inode->i_ino == LOGFS_INO_MASTER);
1963
1964	page = logfs_get_write_page(master_inode, inode->i_ino, 0);
1965	if (!page)
1966		return NULL;
1967
1968	di = kmap_atomic(page, KM_USER0);
1969	logfs_inode_to_disk(inode, di);
1970	kunmap_atomic(di, KM_USER0);
1971	move_inode_to_page(page, inode);
1972	return page;
1973}
1974
1975static int do_write_inode(struct inode *inode)
1976{
1977	struct super_block *sb = inode->i_sb;
1978	struct inode *master_inode = logfs_super(sb)->s_master_inode;
1979	loff_t size = (inode->i_ino + 1) << inode->i_sb->s_blocksize_bits;
1980	struct page *page;
1981	int err;
1982
1983	BUG_ON(inode->i_ino == LOGFS_INO_MASTER);
1984	/* FIXME: lock inode */
1985
1986	if (i_size_read(master_inode) < size)
1987		i_size_write(master_inode, size);
1988
1989	/* TODO: Tell vfs this inode is clean now */
1990
1991	page = inode_to_page(inode);
1992	if (!page)
1993		return -ENOMEM;
1994
1995	/* FIXME: transaction is part of logfs_block now.  Is that enough? */
1996	err = logfs_write_buf(master_inode, page, 0);
1997	if (err)
1998		move_page_to_inode(inode, page);
1999
2000	logfs_put_write_page(page);
2001	return err;
2002}
2003
2004static void logfs_mod_segment_entry(struct super_block *sb, u32 segno,
2005		int write,
2006		void (*change_se)(struct logfs_segment_entry *, long),
2007		long arg)
2008{
2009	struct logfs_super *super = logfs_super(sb);
2010	struct inode *inode;
2011	struct page *page;
2012	struct logfs_segment_entry *se;
2013	pgoff_t page_no;
2014	int child_no;
2015
2016	page_no = segno >> (sb->s_blocksize_bits - 3);
2017	child_no = segno & ((sb->s_blocksize >> 3) - 1);
2018
2019	inode = super->s_segfile_inode;
2020	page = logfs_get_write_page(inode, page_no, 0);
2021	BUG_ON(!page); /* FIXME: We need some reserve page for this case */
2022	if (!PageUptodate(page))
2023		logfs_read_block(inode, page, WRITE);
2024
2025	if (write)
2026		alloc_indirect_block(inode, page, 0);
2027	se = kmap_atomic(page, KM_USER0);
2028	change_se(se + child_no, arg);
2029	if (write) {
2030		logfs_set_alias(sb, logfs_block(page), child_no);
2031		BUG_ON((int)be32_to_cpu(se[child_no].valid) > super->s_segsize);
2032	}
2033	kunmap_atomic(se, KM_USER0);
2034
2035	logfs_put_write_page(page);
2036}
2037
2038static void __get_segment_entry(struct logfs_segment_entry *se, long _target)
2039{
2040	struct logfs_segment_entry *target = (void *)_target;
2041
2042	*target = *se;
2043}
2044
2045void logfs_get_segment_entry(struct super_block *sb, u32 segno,
2046		struct logfs_segment_entry *se)
2047{
2048	logfs_mod_segment_entry(sb, segno, 0, __get_segment_entry, (long)se);
2049}
2050
2051static void __set_segment_used(struct logfs_segment_entry *se, long increment)
2052{
2053	u32 valid;
2054
2055	valid = be32_to_cpu(se->valid);
2056	valid += increment;
2057	se->valid = cpu_to_be32(valid);
2058}
2059
2060void logfs_set_segment_used(struct super_block *sb, u64 ofs, int increment)
2061{
2062	struct logfs_super *super = logfs_super(sb);
2063	u32 segno = ofs >> super->s_segshift;
2064
2065	if (!increment)
2066		return;
2067
2068	logfs_mod_segment_entry(sb, segno, 1, __set_segment_used, increment);
2069}
2070
2071static void __set_segment_erased(struct logfs_segment_entry *se, long ec_level)
2072{
2073	se->ec_level = cpu_to_be32(ec_level);
2074}
2075
2076void logfs_set_segment_erased(struct super_block *sb, u32 segno, u32 ec,
2077		gc_level_t gc_level)
2078{
2079	u32 ec_level = ec << 4 | (__force u8)gc_level;
2080
2081	logfs_mod_segment_entry(sb, segno, 1, __set_segment_erased, ec_level);
2082}
2083
2084static void __set_segment_reserved(struct logfs_segment_entry *se, long ignore)
2085{
2086	se->valid = cpu_to_be32(RESERVED);
2087}
2088
2089void logfs_set_segment_reserved(struct super_block *sb, u32 segno)
2090{
2091	logfs_mod_segment_entry(sb, segno, 1, __set_segment_reserved, 0);
2092}
2093
2094static void __set_segment_unreserved(struct logfs_segment_entry *se,
2095		long ec_level)
2096{
2097	se->valid = 0;
2098	se->ec_level = cpu_to_be32(ec_level);
2099}
2100
2101void logfs_set_segment_unreserved(struct super_block *sb, u32 segno, u32 ec)
2102{
2103	u32 ec_level = ec << 4;
2104
2105	logfs_mod_segment_entry(sb, segno, 1, __set_segment_unreserved,
2106			ec_level);
2107}
2108
2109int __logfs_write_inode(struct inode *inode, long flags)
2110{
2111	struct super_block *sb = inode->i_sb;
2112	int ret;
2113
2114	logfs_get_wblocks(sb, NULL, flags & WF_LOCK);
2115	ret = do_write_inode(inode);
2116	logfs_put_wblocks(sb, NULL, flags & WF_LOCK);
2117	return ret;
2118}
2119
2120static int do_delete_inode(struct inode *inode)
2121{
2122	struct super_block *sb = inode->i_sb;
2123	struct inode *master_inode = logfs_super(sb)->s_master_inode;
2124	struct page *page;
2125	int ret;
2126
2127	page = logfs_get_write_page(master_inode, inode->i_ino, 0);
2128	if (!page)
2129		return -ENOMEM;
2130
2131	move_inode_to_page(page, inode);
2132
2133	logfs_get_wblocks(sb, page, 1);
2134	ret = __logfs_delete(master_inode, page);
2135	logfs_put_wblocks(sb, page, 1);
2136
2137	logfs_put_write_page(page);
2138	return ret;
2139}
2140
2141/*
2142 * ZOMBIE inodes have already been deleted before and should remain dead,
2143 * if it weren't for valid checking.  No need to kill them again here.
2144 */
2145void logfs_evict_inode(struct inode *inode)
2146{
2147	struct super_block *sb = inode->i_sb;
2148	struct logfs_inode *li = logfs_inode(inode);
2149	struct logfs_block *block = li->li_block;
2150	struct page *page;
2151
2152	if (!inode->i_nlink) {
2153		if (!(li->li_flags & LOGFS_IF_ZOMBIE)) {
2154			li->li_flags |= LOGFS_IF_ZOMBIE;
2155			if (i_size_read(inode) > 0)
2156				logfs_truncate(inode, 0);
2157			do_delete_inode(inode);
2158		}
2159	}
2160	truncate_inode_pages(&inode->i_data, 0);
2161	end_writeback(inode);
2162
2163	/* Cheaper version of write_inode.  All changes are concealed in
2164	 * aliases, which are moved back.  No write to the medium happens.
2165	 */
2166	/* Only deleted files may be dirty at this point */
2167	BUG_ON(inode->i_state & I_DIRTY && inode->i_nlink);
2168	if (!block)
2169		return;
2170	if ((logfs_super(sb)->s_flags & LOGFS_SB_FLAG_SHUTDOWN)) {
2171		block->ops->free_block(inode->i_sb, block);
2172		return;
2173	}
2174
2175	BUG_ON(inode->i_ino < LOGFS_RESERVED_INOS);
2176	page = inode_to_page(inode);
2177	BUG_ON(!page); /* FIXME: Use emergency page */
2178	logfs_put_write_page(page);
2179}
2180
2181void btree_write_block(struct logfs_block *block)
2182{
2183	struct inode *inode;
2184	struct page *page;
2185	int err, cookie;
2186
2187	inode = logfs_safe_iget(block->sb, block->ino, &cookie);
2188	page = logfs_get_write_page(inode, block->bix, block->level);
2189
2190	err = logfs_readpage_nolock(page);
2191	BUG_ON(err);
2192	BUG_ON(!PagePrivate(page));
2193	BUG_ON(logfs_block(page) != block);
2194	err = __logfs_write_buf(inode, page, 0);
2195	BUG_ON(err);
2196	BUG_ON(PagePrivate(page) || page->private);
2197
2198	logfs_put_write_page(page);
2199	logfs_safe_iput(inode, cookie);
2200}
2201
2202/**
2203 * logfs_inode_write - write inode or dentry objects
2204 *
2205 * @inode:		parent inode (ifile or directory)
2206 * @buf:		object to write (inode or dentry)
2207 * @n:			object size
2208 * @_pos:		object number (file position in blocks/objects)
2209 * @flags:		write flags
2210 * @lock:		0 if write lock is already taken, 1 otherwise
2211 * @shadow_tree:	shadow below this inode
2212 *
2213 * FIXME: All caller of this put a 200-300 byte variable on the stack,
2214 * only to call here and do a memcpy from that stack variable.  A good
2215 * example of wasted performance and stack space.
2216 */
2217int logfs_inode_write(struct inode *inode, const void *buf, size_t count,
2218		loff_t bix, long flags, struct shadow_tree *shadow_tree)
2219{
2220	loff_t pos = bix << inode->i_sb->s_blocksize_bits;
2221	int err;
2222	struct page *page;
2223	void *pagebuf;
2224
2225	BUG_ON(pos & (LOGFS_BLOCKSIZE-1));
2226	BUG_ON(count > LOGFS_BLOCKSIZE);
2227	page = logfs_get_write_page(inode, bix, 0);
2228	if (!page)
2229		return -ENOMEM;
2230
2231	pagebuf = kmap_atomic(page, KM_USER0);
2232	memcpy(pagebuf, buf, count);
2233	flush_dcache_page(page);
2234	kunmap_atomic(pagebuf, KM_USER0);
2235
2236	if (i_size_read(inode) < pos + LOGFS_BLOCKSIZE)
2237		i_size_write(inode, pos + LOGFS_BLOCKSIZE);
2238
2239	err = logfs_write_buf(inode, page, flags);
2240	logfs_put_write_page(page);
2241	return err;
2242}
2243
2244int logfs_open_segfile(struct super_block *sb)
2245{
2246	struct logfs_super *super = logfs_super(sb);
2247	struct inode *inode;
2248
2249	inode = logfs_read_meta_inode(sb, LOGFS_INO_SEGFILE);
2250	if (IS_ERR(inode))
2251		return PTR_ERR(inode);
2252	super->s_segfile_inode = inode;
2253	return 0;
2254}
2255
2256int logfs_init_rw(struct super_block *sb)
2257{
2258	struct logfs_super *super = logfs_super(sb);
2259	int min_fill = 3 * super->s_no_blocks;
2260
2261	INIT_LIST_HEAD(&super->s_object_alias);
2262	INIT_LIST_HEAD(&super->s_writeback_list);
2263	mutex_init(&super->s_write_mutex);
2264	super->s_block_pool = mempool_create_kmalloc_pool(min_fill,
2265			sizeof(struct logfs_block));
2266	super->s_shadow_pool = mempool_create_kmalloc_pool(min_fill,
2267			sizeof(struct logfs_shadow));
2268	return 0;
2269}
2270
2271void logfs_cleanup_rw(struct super_block *sb)
2272{
2273	struct logfs_super *super = logfs_super(sb);
2274
2275	logfs_mempool_destroy(super->s_block_pool);
2276	logfs_mempool_destroy(super->s_shadow_pool);
2277}