Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v5.4
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 *  linux/fs/hpfs/hpfs.h
  4 *
  5 *  HPFS structures by Chris Smith, 1993
  6 *
  7 *  a little bit modified by Mikulas Patocka, 1998-1999
  8 */
  9
 10/* The paper
 11
 12     Duncan, Roy
 13     Design goals and implementation of the new High Performance File System
 14     Microsoft Systems Journal  Sept 1989  v4 n5 p1(13)
 15
 16   describes what HPFS looked like when it was new, and it is the source
 17   of most of the information given here.  The rest is conjecture.
 18
 19   For definitive information on the Duncan paper, see it, not this file.
 20   For definitive information on HPFS, ask somebody else -- this is guesswork.
 21   There are certain to be many mistakes. */
 22
 23#if !defined(__LITTLE_ENDIAN) && !defined(__BIG_ENDIAN)
 24#error unknown endian
 25#endif
 26
 27/* Notation */
 28
 29typedef u32 secno;			/* sector number, partition relative */
 30
 31typedef secno dnode_secno;		/* sector number of a dnode */
 32typedef secno fnode_secno;		/* sector number of an fnode */
 33typedef secno anode_secno;		/* sector number of an anode */
 34
 35typedef u32 time32_t;		/* 32-bit time_t type */
 36
 37/* sector 0 */
 38
 39/* The boot block is very like a FAT boot block, except that the
 40   29h signature byte is 28h instead, and the ID string is "HPFS". */
 41
 42#define BB_MAGIC 0xaa55
 43
 44struct hpfs_boot_block
 45{
 46  u8 jmp[3];
 47  u8 oem_id[8];
 48  u8 bytes_per_sector[2];	/* 512 */
 49  u8 sectors_per_cluster;
 50  u8 n_reserved_sectors[2];
 51  u8 n_fats;
 52  u8 n_rootdir_entries[2];
 53  u8 n_sectors_s[2];
 54  u8 media_byte;
 55  __le16 sectors_per_fat;
 56  __le16 sectors_per_track;
 57  __le16 heads_per_cyl;
 58  __le32 n_hidden_sectors;
 59  __le32 n_sectors_l;		/* size of partition */
 60  u8 drive_number;
 61  u8 mbz;
 62  u8 sig_28h;			/* 28h */
 63  u8 vol_serno[4];
 64  u8 vol_label[11];
 65  u8 sig_hpfs[8];		/* "HPFS    " */
 66  u8 pad[448];
 67  __le16 magic;			/* aa55 */
 68};
 69
 70
 71/* sector 16 */
 72
 73/* The super block has the pointer to the root directory. */
 74
 75#define SB_MAGIC 0xf995e849
 76
 77struct hpfs_super_block
 78{
 79  __le32 magic;				/* f995 e849 */
 80  __le32 magic1;			/* fa53 e9c5, more magic? */
 81  u8 version;				/* version of a filesystem  usually 2 */
 82  u8 funcversion;			/* functional version - oldest version
 83  					   of filesystem that can understand
 84					   this disk */
 85  __le16 zero;				/* 0 */
 86  __le32 root;				/* fnode of root directory */
 87  __le32 n_sectors;			/* size of filesystem */
 88  __le32 n_badblocks;			/* number of bad blocks */
 89  __le32 bitmaps;			/* pointers to free space bit maps */
 90  __le32 zero1;				/* 0 */
 91  __le32 badblocks;			/* bad block list */
 92  __le32 zero3;				/* 0 */
 93  __le32 last_chkdsk;			/* date last checked, 0 if never */
 94  __le32 last_optimize;			/* date last optimized, 0 if never */
 95  __le32 n_dir_band;			/* number of sectors in dir band */
 96  __le32 dir_band_start;			/* first sector in dir band */
 97  __le32 dir_band_end;			/* last sector in dir band */
 98  __le32 dir_band_bitmap;		/* free space map, 1 dnode per bit */
 99  u8 volume_name[32];			/* not used */
100  __le32 user_id_table;			/* 8 preallocated sectors - user id */
101  u32 zero6[103];			/* 0 */
102};
103
104
105/* sector 17 */
106
107/* The spare block has pointers to spare sectors.  */
108
109#define SP_MAGIC 0xf9911849
110
111struct hpfs_spare_block
112{
113  __le32 magic;				/* f991 1849 */
114  __le32 magic1;				/* fa52 29c5, more magic? */
115
116#ifdef __LITTLE_ENDIAN
117  u8 dirty: 1;				/* 0 clean, 1 "improperly stopped" */
118  u8 sparedir_used: 1;			/* spare dirblks used */
119  u8 hotfixes_used: 1;			/* hotfixes used */
120  u8 bad_sector: 1;			/* bad sector, corrupted disk (???) */
121  u8 bad_bitmap: 1;			/* bad bitmap */
122  u8 fast: 1;				/* partition was fast formatted */
123  u8 old_wrote: 1;			/* old version wrote to partition */
124  u8 old_wrote_1: 1;			/* old version wrote to partition (?) */
125#else
126  u8 old_wrote_1: 1;			/* old version wrote to partition (?) */
127  u8 old_wrote: 1;			/* old version wrote to partition */
128  u8 fast: 1;				/* partition was fast formatted */
129  u8 bad_bitmap: 1;			/* bad bitmap */
130  u8 bad_sector: 1;			/* bad sector, corrupted disk (???) */
131  u8 hotfixes_used: 1;			/* hotfixes used */
132  u8 sparedir_used: 1;			/* spare dirblks used */
133  u8 dirty: 1;				/* 0 clean, 1 "improperly stopped" */
134#endif
135
136#ifdef __LITTLE_ENDIAN
137  u8 install_dasd_limits: 1;		/* HPFS386 flags */
138  u8 resynch_dasd_limits: 1;
139  u8 dasd_limits_operational: 1;
140  u8 multimedia_active: 1;
141  u8 dce_acls_active: 1;
142  u8 dasd_limits_dirty: 1;
143  u8 flag67: 2;
144#else
145  u8 flag67: 2;
146  u8 dasd_limits_dirty: 1;
147  u8 dce_acls_active: 1;
148  u8 multimedia_active: 1;
149  u8 dasd_limits_operational: 1;
150  u8 resynch_dasd_limits: 1;
151  u8 install_dasd_limits: 1;		/* HPFS386 flags */
152#endif
153
154  u8 mm_contlgulty;
155  u8 unused;
156
157  __le32 hotfix_map;			/* info about remapped bad sectors */
158  __le32 n_spares_used;			/* number of hotfixes */
159  __le32 n_spares;			/* number of spares in hotfix map */
160  __le32 n_dnode_spares_free;		/* spare dnodes unused */
161  __le32 n_dnode_spares;		/* length of spare_dnodes[] list,
162					   follows in this block*/
163  __le32 code_page_dir;			/* code page directory block */
164  __le32 n_code_pages;			/* number of code pages */
165  __le32 super_crc;			/* on HPFS386 and LAN Server this is
166  					   checksum of superblock, on normal
167					   OS/2 unused */
168  __le32 spare_crc;			/* on HPFS386 checksum of spareblock */
169  __le32 zero1[15];			/* unused */
170  __le32 spare_dnodes[100];		/* emergency free dnode list */
171  __le32 zero2[1];			/* room for more? */
172};
173
174/* The bad block list is 4 sectors long.  The first word must be zero,
175   the remaining words give n_badblocks bad block numbers.
176   I bet you can see it coming... */
177
178#define BAD_MAGIC 0
179       
180/* The hotfix map is 4 sectors long.  It looks like
181
182       secno from[n_spares];
183       secno to[n_spares];
184
185   The to[] list is initialized to point to n_spares preallocated empty
186   sectors.  The from[] list contains the sector numbers of bad blocks
187   which have been remapped to corresponding sectors in the to[] list.
188   n_spares_used gives the length of the from[] list. */
189
190
191/* Sectors 18 and 19 are preallocated and unused.
192   Maybe they're spares for 16 and 17, but simple substitution fails. */
193
194
195/* The code page info pointed to by the spare block consists of an index
196   block and blocks containing uppercasing tables.  I don't know what
197   these are for (CHKDSK, maybe?) -- OS/2 does not seem to use them
198   itself.  Linux doesn't use them either. */
199
200/* block pointed to by spareblock->code_page_dir */
201
202#define CP_DIR_MAGIC 0x494521f7
203
204struct code_page_directory
205{
206  __le32 magic;				/* 4945 21f7 */
207  __le32 n_code_pages;			/* number of pointers following */
208  __le32 zero1[2];
209  struct {
210    __le16 ix;				/* index */
211    __le16 code_page_number;		/* code page number */
212    __le32 bounds;			/* matches corresponding word
213					   in data block */
214    __le32 code_page_data;		/* sector number of a code_page_data
215					   containing c.p. array */
216    __le16 index;			/* index in c.p. array in that sector*/
217    __le16 unknown;			/* some unknown value; usually 0;
218    					   2 in Japanese version */
219  } array[31];				/* unknown length */
220};
221
222/* blocks pointed to by code_page_directory */
223
224#define CP_DATA_MAGIC 0x894521f7
225
226struct code_page_data
227{
228  __le32 magic;				/* 8945 21f7 */
229  __le32 n_used;			/* # elements used in c_p_data[] */
230  __le32 bounds[3];			/* looks a bit like
231					     (beg1,end1), (beg2,end2)
232					   one byte each */
233  __le16 offs[3];			/* offsets from start of sector
234					   to start of c_p_data[ix] */
235  struct {
236    __le16 ix;				/* index */
237    __le16 code_page_number;		/* code page number */
238    __le16 unknown;			/* the same as in cp directory */
239    u8 map[128];			/* upcase table for chars 80..ff */
240    __le16 zero2;
241  } code_page[3];
242  u8 incognita[78];
243};
244
245
246/* Free space bitmaps are 4 sectors long, which is 16384 bits.
247   16384 sectors is 8 meg, and each 8 meg band has a 4-sector bitmap.
248   Bit order in the maps is little-endian.  0 means taken, 1 means free.
249
250   Bit map sectors are marked allocated in the bit maps, and so are sectors 
251   off the end of the partition.
252
253   Band 0 is sectors 0-3fff, its map is in sectors 18-1b.
254   Band 1 is 4000-7fff, its map is in 7ffc-7fff.
255   Band 2 is 8000-ffff, its map is in 8000-8003.
256   The remaining bands have maps in their first (even) or last (odd) 4 sectors
257     -- if the last, partial, band is odd its map is in its last 4 sectors.
258
259   The bitmap locations are given in a table pointed to by the super block.
260   No doubt they aren't constrained to be at 18, 7ffc, 8000, ...; that is
261   just where they usually are.
262
263   The "directory band" is a bunch of sectors preallocated for dnodes.
264   It has a 4-sector free space bitmap of its own.  Each bit in the map
265   corresponds to one 4-sector dnode, bit 0 of the map corresponding to
266   the first 4 sectors of the directory band.  The entire band is marked
267   allocated in the main bitmap.   The super block gives the locations
268   of the directory band and its bitmap.  ("band" doesn't mean it is
269   8 meg long; it isn't.)  */
270
271
272/* dnode: directory.  4 sectors long */
273
274/* A directory is a tree of dnodes.  The fnode for a directory
275   contains one pointer, to the root dnode of the tree.  The fnode
276   never moves, the dnodes do the B-tree thing, splitting and merging
277   as files are added and removed.  */
278
279#define DNODE_MAGIC   0x77e40aae
280
281struct dnode {
282  __le32 magic;				/* 77e4 0aae */
283  __le32 first_free;			/* offset from start of dnode to
284					   first free dir entry */
285#ifdef __LITTLE_ENDIAN
286  u8 root_dnode: 1;			/* Is it root dnode? */
287  u8 increment_me: 7;			/* some kind of activity counter? */
288					/* Neither HPFS.IFS nor CHKDSK cares
289					   if you change this word */
290#else
291  u8 increment_me: 7;			/* some kind of activity counter? */
292					/* Neither HPFS.IFS nor CHKDSK cares
293					   if you change this word */
294  u8 root_dnode: 1;			/* Is it root dnode? */
295#endif
296  u8 increment_me2[3];
297  __le32 up;				/* (root dnode) directory's fnode
298					   (nonroot) parent dnode */
299  __le32 self;			/* pointer to this dnode */
300  u8 dirent[2028];			/* one or more dirents */
301};
302
303struct hpfs_dirent {
304  __le16 length;			/* offset to next dirent */
305
306#ifdef __LITTLE_ENDIAN
307  u8 first: 1;				/* set on phony ^A^A (".") entry */
308  u8 has_acl: 1;
309  u8 down: 1;				/* down pointer present (after name) */
310  u8 last: 1;				/* set on phony \377 entry */
311  u8 has_ea: 1;				/* entry has EA */
312  u8 has_xtd_perm: 1;			/* has extended perm list (???) */
313  u8 has_explicit_acl: 1;
314  u8 has_needea: 1;			/* ?? some EA has NEEDEA set
315					   I have no idea why this is
316					   interesting in a dir entry */
317#else
318  u8 has_needea: 1;			/* ?? some EA has NEEDEA set
319					   I have no idea why this is
320					   interesting in a dir entry */
321  u8 has_explicit_acl: 1;
322  u8 has_xtd_perm: 1;			/* has extended perm list (???) */
323  u8 has_ea: 1;				/* entry has EA */
324  u8 last: 1;				/* set on phony \377 entry */
325  u8 down: 1;				/* down pointer present (after name) */
326  u8 has_acl: 1;
327  u8 first: 1;				/* set on phony ^A^A (".") entry */
328#endif
329
330#ifdef __LITTLE_ENDIAN
331  u8 read_only: 1;			/* dos attrib */
332  u8 hidden: 1;				/* dos attrib */
333  u8 system: 1;				/* dos attrib */
334  u8 flag11: 1;				/* would be volume label dos attrib */
335  u8 directory: 1;			/* dos attrib */
336  u8 archive: 1;			/* dos attrib */
337  u8 not_8x3: 1;			/* name is not 8.3 */
338  u8 flag15: 1;
339#else
340  u8 flag15: 1;
341  u8 not_8x3: 1;			/* name is not 8.3 */
342  u8 archive: 1;			/* dos attrib */
343  u8 directory: 1;			/* dos attrib */
344  u8 flag11: 1;				/* would be volume label dos attrib */
345  u8 system: 1;				/* dos attrib */
346  u8 hidden: 1;				/* dos attrib */
347  u8 read_only: 1;			/* dos attrib */
348#endif
349
350  __le32 fnode;				/* fnode giving allocation info */
351  __le32 write_date;			/* mtime */
352  __le32 file_size;			/* file length, bytes */
353  __le32 read_date;			/* atime */
354  __le32 creation_date;			/* ctime */
355  __le32 ea_size;			/* total EA length, bytes */
356  u8 no_of_acls;			/* number of ACL's (low 3 bits) */
357  u8 ix;				/* code page index (of filename), see
358					   struct code_page_data */
359  u8 namelen, name[1];			/* file name */
360  /* dnode_secno down;	  btree down pointer, if present,
361     			  follows name on next word boundary, or maybe it
362			  precedes next dirent, which is on a word boundary. */
363};
364
365
366/* B+ tree: allocation info in fnodes and anodes */
367
368/* dnodes point to fnodes which are responsible for listing the sectors
369   assigned to the file.  This is done with trees of (length,address)
370   pairs.  (Actually triples, of (length, file-address, disk-address)
371   which can represent holes.  Find out if HPFS does that.)
372   At any rate, fnodes contain a small tree; if subtrees are needed
373   they occupy essentially a full block in anodes.  A leaf-level tree node
374   has 3-word entries giving sector runs, a non-leaf node has 2-word
375   entries giving subtree pointers.  A flag in the header says which. */
376
377struct bplus_leaf_node
378{
379  __le32 file_secno;			/* first file sector in extent */
380  __le32 length;			/* length, sectors */
381  __le32 disk_secno;			/* first corresponding disk sector */
382};
383
384struct bplus_internal_node
385{
386  __le32 file_secno;			/* subtree maps sectors < this  */
387  __le32 down;				/* pointer to subtree */
388};
389
390enum {
391	BP_hbff = 1,
392	BP_fnode_parent = 0x20,
393	BP_binary_search = 0x40,
394	BP_internal = 0x80
395};
396struct bplus_header
397{
398  u8 flags;				/* bit 0 - high bit of first free entry offset
399					   bit 5 - we're pointed to by an fnode,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
400					   the data btree or some ea or the
401					   main ea bootage pointer ea_secno
402					   bit 6 - suggest binary search (unused)
403					   bit 7 - 1 -> (internal) tree of anodes
404						   0 -> (leaf) list of extents */
 
 
 
 
405  u8 fill[3];
406  u8 n_free_nodes;			/* free nodes in following array */
407  u8 n_used_nodes;			/* used nodes in following array */
408  __le16 first_free;			/* offset from start of header to
409					   first free node in array */
410  union {
411    struct bplus_internal_node internal[0]; /* (internal) 2-word entries giving
412					       subtree pointers */
413    struct bplus_leaf_node external[0];	    /* (external) 3-word entries giving
414					       sector runs */
415  } u;
416};
417
418static inline bool bp_internal(struct bplus_header *bp)
419{
420	return bp->flags & BP_internal;
421}
422
423static inline bool bp_fnode_parent(struct bplus_header *bp)
424{
425	return bp->flags & BP_fnode_parent;
426}
427
428/* fnode: root of allocation b+ tree, and EA's */
429
430/* Every file and every directory has one fnode, pointed to by the directory
431   entry and pointing to the file's sectors or directory's root dnode.  EA's
432   are also stored here, and there are said to be ACL's somewhere here too. */
433
434#define FNODE_MAGIC 0xf7e40aae
435
436enum {FNODE_anode = cpu_to_le16(2), FNODE_dir = cpu_to_le16(256)};
437struct fnode
438{
439  __le32 magic;				/* f7e4 0aae */
440  __le32 zero1[2];			/* read history */
441  u8 len, name[15];			/* true length, truncated name */
442  __le32 up;				/* pointer to file's directory fnode */
443  __le32 acl_size_l;
444  __le32 acl_secno;
445  __le16 acl_size_s;
446  u8 acl_anode;
447  u8 zero2;				/* history bit count */
448  __le32 ea_size_l;			/* length of disk-resident ea's */
449  __le32 ea_secno;			/* first sector of disk-resident ea's*/
450  __le16 ea_size_s;			/* length of fnode-resident ea's */
 
 
 
 
 
 
 
 
 
 
451
452  __le16 flags;				/* bit 1 set -> ea_secno is an anode */
453					/* bit 8 set -> directory.  first & only extent
 
 
 
 
 
454					   points to dnode. */
 
 
455  struct bplus_header btree;		/* b+ tree, 8 extents or 12 subtrees */
456  union {
457    struct bplus_leaf_node external[8];
458    struct bplus_internal_node internal[12];
459  } u;
460
461  __le32 file_size;			/* file length, bytes */
462  __le32 n_needea;			/* number of EA's with NEEDEA set */
463  u8 user_id[16];			/* unused */
464  __le16 ea_offs;			/* offset from start of fnode
465					   to first fnode-resident ea */
466  u8 dasd_limit_treshhold;
467  u8 dasd_limit_delta;
468  __le32 dasd_limit;
469  __le32 dasd_usage;
470  u8 ea[316];				/* zero or more EA's, packed together
471					   with no alignment padding.
472					   (Do not use this name, get here
473					   via fnode + ea_offs. I think.) */
474};
475
476static inline bool fnode_in_anode(struct fnode *p)
477{
478	return (p->flags & FNODE_anode) != 0;
479}
480
481static inline bool fnode_is_dir(struct fnode *p)
482{
483	return (p->flags & FNODE_dir) != 0;
484}
485
486
487/* anode: 99.44% pure allocation tree */
488
489#define ANODE_MAGIC 0x37e40aae
490
491struct anode
492{
493  __le32 magic;				/* 37e4 0aae */
494  __le32 self;				/* pointer to this anode */
495  __le32 up;				/* parent anode or fnode */
496
497  struct bplus_header btree;		/* b+tree, 40 extents or 60 subtrees */
498  union {
499    struct bplus_leaf_node external[40];
500    struct bplus_internal_node internal[60];
501  } u;
502
503  __le32 fill[3];			/* unused */
504};
505
506
507/* extended attributes.
508
509   A file's EA info is stored as a list of (name,value) pairs.  It is
510   usually in the fnode, but (if it's large) it is moved to a single
511   sector run outside the fnode, or to multiple runs with an anode tree
512   that points to them.
513
514   The value of a single EA is stored along with the name, or (if large)
515   it is moved to a single sector run, or multiple runs pointed to by an
516   anode tree, pointed to by the value field of the (name,value) pair.
517
518   Flags in the EA tell whether the value is immediate, in a single sector
519   run, or in multiple runs.  Flags in the fnode tell whether the EA list
520   is immediate, in a single run, or in multiple runs. */
521
522enum {EA_indirect = 1, EA_anode = 2, EA_needea = 128 };
523struct extended_attribute
524{
525  u8 flags;				/* bit 0 set -> value gives sector number
 
526					   where real value starts */
527					/* bit 1 set -> sector is an anode
528					   that points to fragmented value */
529					/* bit 7 set -> required ea */
 
 
 
 
 
 
 
 
 
530  u8 namelen;				/* length of name, bytes */
531  u8 valuelen_lo;			/* length of value, bytes */
532  u8 valuelen_hi;			/* length of value, bytes */
533  u8 name[];
534  /*
535    u8 name[namelen];			ascii attrib name
536    u8 nul;				terminating '\0', not counted
537    u8 value[valuelen];			value, arbitrary
538      if this.flags & 1, valuelen is 8 and the value is
539        u32 length;			real length of value, bytes
540        secno secno;			sector address where it starts
541      if this.anode, the above sector number is the root of an anode tree
542        which points to the value.
543  */
544};
545
546static inline bool ea_indirect(struct extended_attribute *ea)
547{
548	return ea->flags & EA_indirect;
549}
550
551static inline bool ea_in_anode(struct extended_attribute *ea)
552{
553	return ea->flags & EA_anode;
554}
555
556/*
557   Local Variables:
558   comment-column: 40
559   End:
560*/
v3.1
 
  1/*
  2 *  linux/fs/hpfs/hpfs.h
  3 *
  4 *  HPFS structures by Chris Smith, 1993
  5 *
  6 *  a little bit modified by Mikulas Patocka, 1998-1999
  7 */
  8
  9/* The paper
 10
 11     Duncan, Roy
 12     Design goals and implementation of the new High Performance File System
 13     Microsoft Systems Journal  Sept 1989  v4 n5 p1(13)
 14
 15   describes what HPFS looked like when it was new, and it is the source
 16   of most of the information given here.  The rest is conjecture.
 17
 18   For definitive information on the Duncan paper, see it, not this file.
 19   For definitive information on HPFS, ask somebody else -- this is guesswork.
 20   There are certain to be many mistakes. */
 21
 22#if !defined(__LITTLE_ENDIAN) && !defined(__BIG_ENDIAN)
 23#error unknown endian
 24#endif
 25
 26/* Notation */
 27
 28typedef u32 secno;			/* sector number, partition relative */
 29
 30typedef secno dnode_secno;		/* sector number of a dnode */
 31typedef secno fnode_secno;		/* sector number of an fnode */
 32typedef secno anode_secno;		/* sector number of an anode */
 33
 34typedef u32 time32_t;		/* 32-bit time_t type */
 35
 36/* sector 0 */
 37
 38/* The boot block is very like a FAT boot block, except that the
 39   29h signature byte is 28h instead, and the ID string is "HPFS". */
 40
 41#define BB_MAGIC 0xaa55
 42
 43struct hpfs_boot_block
 44{
 45  u8 jmp[3];
 46  u8 oem_id[8];
 47  u8 bytes_per_sector[2];	/* 512 */
 48  u8 sectors_per_cluster;
 49  u8 n_reserved_sectors[2];
 50  u8 n_fats;
 51  u8 n_rootdir_entries[2];
 52  u8 n_sectors_s[2];
 53  u8 media_byte;
 54  u16 sectors_per_fat;
 55  u16 sectors_per_track;
 56  u16 heads_per_cyl;
 57  u32 n_hidden_sectors;
 58  u32 n_sectors_l;		/* size of partition */
 59  u8 drive_number;
 60  u8 mbz;
 61  u8 sig_28h;			/* 28h */
 62  u8 vol_serno[4];
 63  u8 vol_label[11];
 64  u8 sig_hpfs[8];		/* "HPFS    " */
 65  u8 pad[448];
 66  u16 magic;			/* aa55 */
 67};
 68
 69
 70/* sector 16 */
 71
 72/* The super block has the pointer to the root directory. */
 73
 74#define SB_MAGIC 0xf995e849
 75
 76struct hpfs_super_block
 77{
 78  u32 magic;				/* f995 e849 */
 79  u32 magic1;				/* fa53 e9c5, more magic? */
 80  u8 version;				/* version of a filesystem  usually 2 */
 81  u8 funcversion;			/* functional version - oldest version
 82  					   of filesystem that can understand
 83					   this disk */
 84  u16 zero;				/* 0 */
 85  fnode_secno root;			/* fnode of root directory */
 86  secno n_sectors;			/* size of filesystem */
 87  u32 n_badblocks;			/* number of bad blocks */
 88  secno bitmaps;			/* pointers to free space bit maps */
 89  u32 zero1;				/* 0 */
 90  secno badblocks;			/* bad block list */
 91  u32 zero3;				/* 0 */
 92  time32_t last_chkdsk;			/* date last checked, 0 if never */
 93  time32_t last_optimize;		/* date last optimized, 0 if never */
 94  secno n_dir_band;			/* number of sectors in dir band */
 95  secno dir_band_start;			/* first sector in dir band */
 96  secno dir_band_end;			/* last sector in dir band */
 97  secno dir_band_bitmap;		/* free space map, 1 dnode per bit */
 98  u8 volume_name[32];			/* not used */
 99  secno user_id_table;			/* 8 preallocated sectors - user id */
100  u32 zero6[103];			/* 0 */
101};
102
103
104/* sector 17 */
105
106/* The spare block has pointers to spare sectors.  */
107
108#define SP_MAGIC 0xf9911849
109
110struct hpfs_spare_block
111{
112  u32 magic;				/* f991 1849 */
113  u32 magic1;				/* fa52 29c5, more magic? */
114
115#ifdef __LITTLE_ENDIAN
116  u8 dirty: 1;				/* 0 clean, 1 "improperly stopped" */
117  u8 sparedir_used: 1;			/* spare dirblks used */
118  u8 hotfixes_used: 1;			/* hotfixes used */
119  u8 bad_sector: 1;			/* bad sector, corrupted disk (???) */
120  u8 bad_bitmap: 1;			/* bad bitmap */
121  u8 fast: 1;				/* partition was fast formatted */
122  u8 old_wrote: 1;			/* old version wrote to partion */
123  u8 old_wrote_1: 1;			/* old version wrote to partion (?) */
124#else
125  u8 old_wrote_1: 1;			/* old version wrote to partion (?) */
126  u8 old_wrote: 1;			/* old version wrote to partion */
127  u8 fast: 1;				/* partition was fast formatted */
128  u8 bad_bitmap: 1;			/* bad bitmap */
129  u8 bad_sector: 1;			/* bad sector, corrupted disk (???) */
130  u8 hotfixes_used: 1;			/* hotfixes used */
131  u8 sparedir_used: 1;			/* spare dirblks used */
132  u8 dirty: 1;				/* 0 clean, 1 "improperly stopped" */
133#endif
134
135#ifdef __LITTLE_ENDIAN
136  u8 install_dasd_limits: 1;		/* HPFS386 flags */
137  u8 resynch_dasd_limits: 1;
138  u8 dasd_limits_operational: 1;
139  u8 multimedia_active: 1;
140  u8 dce_acls_active: 1;
141  u8 dasd_limits_dirty: 1;
142  u8 flag67: 2;
143#else
144  u8 flag67: 2;
145  u8 dasd_limits_dirty: 1;
146  u8 dce_acls_active: 1;
147  u8 multimedia_active: 1;
148  u8 dasd_limits_operational: 1;
149  u8 resynch_dasd_limits: 1;
150  u8 install_dasd_limits: 1;		/* HPFS386 flags */
151#endif
152
153  u8 mm_contlgulty;
154  u8 unused;
155
156  secno hotfix_map;			/* info about remapped bad sectors */
157  u32 n_spares_used;			/* number of hotfixes */
158  u32 n_spares;				/* number of spares in hotfix map */
159  u32 n_dnode_spares_free;		/* spare dnodes unused */
160  u32 n_dnode_spares;			/* length of spare_dnodes[] list,
161					   follows in this block*/
162  secno code_page_dir;			/* code page directory block */
163  u32 n_code_pages;			/* number of code pages */
164  u32 super_crc;			/* on HPFS386 and LAN Server this is
165  					   checksum of superblock, on normal
166					   OS/2 unused */
167  u32 spare_crc;			/* on HPFS386 checksum of spareblock */
168  u32 zero1[15];			/* unused */
169  dnode_secno spare_dnodes[100];	/* emergency free dnode list */
170  u32 zero2[1];				/* room for more? */
171};
172
173/* The bad block list is 4 sectors long.  The first word must be zero,
174   the remaining words give n_badblocks bad block numbers.
175   I bet you can see it coming... */
176
177#define BAD_MAGIC 0
178       
179/* The hotfix map is 4 sectors long.  It looks like
180
181       secno from[n_spares];
182       secno to[n_spares];
183
184   The to[] list is initialized to point to n_spares preallocated empty
185   sectors.  The from[] list contains the sector numbers of bad blocks
186   which have been remapped to corresponding sectors in the to[] list.
187   n_spares_used gives the length of the from[] list. */
188
189
190/* Sectors 18 and 19 are preallocated and unused.
191   Maybe they're spares for 16 and 17, but simple substitution fails. */
192
193
194/* The code page info pointed to by the spare block consists of an index
195   block and blocks containing uppercasing tables.  I don't know what
196   these are for (CHKDSK, maybe?) -- OS/2 does not seem to use them
197   itself.  Linux doesn't use them either. */
198
199/* block pointed to by spareblock->code_page_dir */
200
201#define CP_DIR_MAGIC 0x494521f7
202
203struct code_page_directory
204{
205  u32 magic;				/* 4945 21f7 */
206  u32 n_code_pages;			/* number of pointers following */
207  u32 zero1[2];
208  struct {
209    u16 ix;				/* index */
210    u16 code_page_number;		/* code page number */
211    u32 bounds;				/* matches corresponding word
212					   in data block */
213    secno code_page_data;		/* sector number of a code_page_data
214					   containing c.p. array */
215    u16 index;				/* index in c.p. array in that sector*/
216    u16 unknown;			/* some unknown value; usually 0;
217    					   2 in Japanese version */
218  } array[31];				/* unknown length */
219};
220
221/* blocks pointed to by code_page_directory */
222
223#define CP_DATA_MAGIC 0x894521f7
224
225struct code_page_data
226{
227  u32 magic;				/* 8945 21f7 */
228  u32 n_used;				/* # elements used in c_p_data[] */
229  u32 bounds[3];			/* looks a bit like
230					     (beg1,end1), (beg2,end2)
231					   one byte each */
232  u16 offs[3];				/* offsets from start of sector
233					   to start of c_p_data[ix] */
234  struct {
235    u16 ix;				/* index */
236    u16 code_page_number;		/* code page number */
237    u16 unknown;			/* the same as in cp directory */
238    u8 map[128];			/* upcase table for chars 80..ff */
239    u16 zero2;
240  } code_page[3];
241  u8 incognita[78];
242};
243
244
245/* Free space bitmaps are 4 sectors long, which is 16384 bits.
246   16384 sectors is 8 meg, and each 8 meg band has a 4-sector bitmap.
247   Bit order in the maps is little-endian.  0 means taken, 1 means free.
248
249   Bit map sectors are marked allocated in the bit maps, and so are sectors 
250   off the end of the partition.
251
252   Band 0 is sectors 0-3fff, its map is in sectors 18-1b.
253   Band 1 is 4000-7fff, its map is in 7ffc-7fff.
254   Band 2 is 8000-ffff, its map is in 8000-8003.
255   The remaining bands have maps in their first (even) or last (odd) 4 sectors
256     -- if the last, partial, band is odd its map is in its last 4 sectors.
257
258   The bitmap locations are given in a table pointed to by the super block.
259   No doubt they aren't constrained to be at 18, 7ffc, 8000, ...; that is
260   just where they usually are.
261
262   The "directory band" is a bunch of sectors preallocated for dnodes.
263   It has a 4-sector free space bitmap of its own.  Each bit in the map
264   corresponds to one 4-sector dnode, bit 0 of the map corresponding to
265   the first 4 sectors of the directory band.  The entire band is marked
266   allocated in the main bitmap.   The super block gives the locations
267   of the directory band and its bitmap.  ("band" doesn't mean it is
268   8 meg long; it isn't.)  */
269
270
271/* dnode: directory.  4 sectors long */
272
273/* A directory is a tree of dnodes.  The fnode for a directory
274   contains one pointer, to the root dnode of the tree.  The fnode
275   never moves, the dnodes do the B-tree thing, splitting and merging
276   as files are added and removed.  */
277
278#define DNODE_MAGIC   0x77e40aae
279
280struct dnode {
281  u32 magic;				/* 77e4 0aae */
282  u32 first_free;			/* offset from start of dnode to
283					   first free dir entry */
284#ifdef __LITTLE_ENDIAN
285  u8 root_dnode: 1;			/* Is it root dnode? */
286  u8 increment_me: 7;			/* some kind of activity counter? */
287					/* Neither HPFS.IFS nor CHKDSK cares
288					   if you change this word */
289#else
290  u8 increment_me: 7;			/* some kind of activity counter? */
291					/* Neither HPFS.IFS nor CHKDSK cares
292					   if you change this word */
293  u8 root_dnode: 1;			/* Is it root dnode? */
294#endif
295  u8 increment_me2[3];
296  secno up;				/* (root dnode) directory's fnode
297					   (nonroot) parent dnode */
298  dnode_secno self;			/* pointer to this dnode */
299  u8 dirent[2028];			/* one or more dirents */
300};
301
302struct hpfs_dirent {
303  u16 length;				/* offset to next dirent */
304
305#ifdef __LITTLE_ENDIAN
306  u8 first: 1;				/* set on phony ^A^A (".") entry */
307  u8 has_acl: 1;
308  u8 down: 1;				/* down pointer present (after name) */
309  u8 last: 1;				/* set on phony \377 entry */
310  u8 has_ea: 1;				/* entry has EA */
311  u8 has_xtd_perm: 1;			/* has extended perm list (???) */
312  u8 has_explicit_acl: 1;
313  u8 has_needea: 1;			/* ?? some EA has NEEDEA set
314					   I have no idea why this is
315					   interesting in a dir entry */
316#else
317  u8 has_needea: 1;			/* ?? some EA has NEEDEA set
318					   I have no idea why this is
319					   interesting in a dir entry */
320  u8 has_explicit_acl: 1;
321  u8 has_xtd_perm: 1;			/* has extended perm list (???) */
322  u8 has_ea: 1;				/* entry has EA */
323  u8 last: 1;				/* set on phony \377 entry */
324  u8 down: 1;				/* down pointer present (after name) */
325  u8 has_acl: 1;
326  u8 first: 1;				/* set on phony ^A^A (".") entry */
327#endif
328
329#ifdef __LITTLE_ENDIAN
330  u8 read_only: 1;			/* dos attrib */
331  u8 hidden: 1;				/* dos attrib */
332  u8 system: 1;				/* dos attrib */
333  u8 flag11: 1;				/* would be volume label dos attrib */
334  u8 directory: 1;			/* dos attrib */
335  u8 archive: 1;			/* dos attrib */
336  u8 not_8x3: 1;			/* name is not 8.3 */
337  u8 flag15: 1;
338#else
339  u8 flag15: 1;
340  u8 not_8x3: 1;			/* name is not 8.3 */
341  u8 archive: 1;			/* dos attrib */
342  u8 directory: 1;			/* dos attrib */
343  u8 flag11: 1;				/* would be volume label dos attrib */
344  u8 system: 1;				/* dos attrib */
345  u8 hidden: 1;				/* dos attrib */
346  u8 read_only: 1;			/* dos attrib */
347#endif
348
349  fnode_secno fnode;			/* fnode giving allocation info */
350  time32_t write_date;			/* mtime */
351  u32 file_size;			/* file length, bytes */
352  time32_t read_date;			/* atime */
353  time32_t creation_date;			/* ctime */
354  u32 ea_size;				/* total EA length, bytes */
355  u8 no_of_acls;			/* number of ACL's (low 3 bits) */
356  u8 ix;				/* code page index (of filename), see
357					   struct code_page_data */
358  u8 namelen, name[1];			/* file name */
359  /* dnode_secno down;	  btree down pointer, if present,
360     			  follows name on next word boundary, or maybe it
361			  precedes next dirent, which is on a word boundary. */
362};
363
364
365/* B+ tree: allocation info in fnodes and anodes */
366
367/* dnodes point to fnodes which are responsible for listing the sectors
368   assigned to the file.  This is done with trees of (length,address)
369   pairs.  (Actually triples, of (length, file-address, disk-address)
370   which can represent holes.  Find out if HPFS does that.)
371   At any rate, fnodes contain a small tree; if subtrees are needed
372   they occupy essentially a full block in anodes.  A leaf-level tree node
373   has 3-word entries giving sector runs, a non-leaf node has 2-word
374   entries giving subtree pointers.  A flag in the header says which. */
375
376struct bplus_leaf_node
377{
378  u32 file_secno;			/* first file sector in extent */
379  u32 length;				/* length, sectors */
380  secno disk_secno;			/* first corresponding disk sector */
381};
382
383struct bplus_internal_node
384{
385  u32 file_secno;			/* subtree maps sectors < this  */
386  anode_secno down;			/* pointer to subtree */
387};
388
 
 
 
 
 
 
389struct bplus_header
390{
391#ifdef __LITTLE_ENDIAN
392  u8 hbff: 1;			/* high bit of first free entry offset */
393  u8 flag1234: 4;
394  u8 fnode_parent: 1;			/* ? we're pointed to by an fnode,
395					   the data btree or some ea or the
396					   main ea bootage pointer ea_secno */
397					/* also can get set in fnodes, which
398					   may be a chkdsk glitch or may mean
399					   this bit is irrelevant in fnodes,
400					   or this interpretation is all wet */
401  u8 binary_search: 1;			/* suggest binary search (unused) */
402  u8 internal: 1;			/* 1 -> (internal) tree of anodes
403					   0 -> (leaf) list of extents */
404#else
405  u8 internal: 1;			/* 1 -> (internal) tree of anodes
406					   0 -> (leaf) list of extents */
407  u8 binary_search: 1;			/* suggest binary search (unused) */
408  u8 fnode_parent: 1;			/* ? we're pointed to by an fnode,
409					   the data btree or some ea or the
410					   main ea bootage pointer ea_secno */
411					/* also can get set in fnodes, which
412					   may be a chkdsk glitch or may mean
413					   this bit is irrelevant in fnodes,
414					   or this interpretation is all wet */
415  u8 flag1234: 4;
416  u8 hbff: 1;			/* high bit of first free entry offset */
417#endif
418  u8 fill[3];
419  u8 n_free_nodes;			/* free nodes in following array */
420  u8 n_used_nodes;			/* used nodes in following array */
421  u16 first_free;			/* offset from start of header to
422					   first free node in array */
423  union {
424    struct bplus_internal_node internal[0]; /* (internal) 2-word entries giving
425					       subtree pointers */
426    struct bplus_leaf_node external[0];	    /* (external) 3-word entries giving
427					       sector runs */
428  } u;
429};
430
 
 
 
 
 
 
 
 
 
 
431/* fnode: root of allocation b+ tree, and EA's */
432
433/* Every file and every directory has one fnode, pointed to by the directory
434   entry and pointing to the file's sectors or directory's root dnode.  EA's
435   are also stored here, and there are said to be ACL's somewhere here too. */
436
437#define FNODE_MAGIC 0xf7e40aae
438
 
439struct fnode
440{
441  u32 magic;				/* f7e4 0aae */
442  u32 zero1[2];				/* read history */
443  u8 len, name[15];			/* true length, truncated name */
444  fnode_secno up;			/* pointer to file's directory fnode */
445  secno acl_size_l;
446  secno acl_secno;
447  u16 acl_size_s;
448  u8 acl_anode;
449  u8 zero2;				/* history bit count */
450  u32 ea_size_l;			/* length of disk-resident ea's */
451  secno ea_secno;			/* first sector of disk-resident ea's*/
452  u16 ea_size_s;			/* length of fnode-resident ea's */
453
454#ifdef __LITTLE_ENDIAN
455  u8 flag0: 1;
456  u8 ea_anode: 1;			/* 1 -> ea_secno is an anode */
457  u8 flag234567: 6;
458#else
459  u8 flag234567: 6;
460  u8 ea_anode: 1;			/* 1 -> ea_secno is an anode */
461  u8 flag0: 1;
462#endif
463
464#ifdef __LITTLE_ENDIAN
465  u8 dirflag: 1;			/* 1 -> directory.  first & only extent
466					   points to dnode. */
467  u8 flag9012345: 7;
468#else
469  u8 flag9012345: 7;
470  u8 dirflag: 1;			/* 1 -> directory.  first & only extent
471					   points to dnode. */
472#endif
473
474  struct bplus_header btree;		/* b+ tree, 8 extents or 12 subtrees */
475  union {
476    struct bplus_leaf_node external[8];
477    struct bplus_internal_node internal[12];
478  } u;
479
480  u32 file_size;			/* file length, bytes */
481  u32 n_needea;				/* number of EA's with NEEDEA set */
482  u8 user_id[16];			/* unused */
483  u16 ea_offs;				/* offset from start of fnode
484					   to first fnode-resident ea */
485  u8 dasd_limit_treshhold;
486  u8 dasd_limit_delta;
487  u32 dasd_limit;
488  u32 dasd_usage;
489  u8 ea[316];				/* zero or more EA's, packed together
490					   with no alignment padding.
491					   (Do not use this name, get here
492					   via fnode + ea_offs. I think.) */
493};
494
 
 
 
 
 
 
 
 
 
 
495
496/* anode: 99.44% pure allocation tree */
497
498#define ANODE_MAGIC 0x37e40aae
499
500struct anode
501{
502  u32 magic;				/* 37e4 0aae */
503  anode_secno self;			/* pointer to this anode */
504  secno up;				/* parent anode or fnode */
505
506  struct bplus_header btree;		/* b+tree, 40 extents or 60 subtrees */
507  union {
508    struct bplus_leaf_node external[40];
509    struct bplus_internal_node internal[60];
510  } u;
511
512  u32 fill[3];				/* unused */
513};
514
515
516/* extended attributes.
517
518   A file's EA info is stored as a list of (name,value) pairs.  It is
519   usually in the fnode, but (if it's large) it is moved to a single
520   sector run outside the fnode, or to multiple runs with an anode tree
521   that points to them.
522
523   The value of a single EA is stored along with the name, or (if large)
524   it is moved to a single sector run, or multiple runs pointed to by an
525   anode tree, pointed to by the value field of the (name,value) pair.
526
527   Flags in the EA tell whether the value is immediate, in a single sector
528   run, or in multiple runs.  Flags in the fnode tell whether the EA list
529   is immediate, in a single run, or in multiple runs. */
530
 
531struct extended_attribute
532{
533#ifdef __LITTLE_ENDIAN
534  u8 indirect: 1;			/* 1 -> value gives sector number
535					   where real value starts */
536  u8 anode: 1;				/* 1 -> sector is an anode
537					   that points to fragmented value */
538  u8 flag23456: 5;
539  u8 needea: 1;				/* required ea */
540#else
541  u8 needea: 1;				/* required ea */
542  u8 flag23456: 5;
543  u8 anode: 1;				/* 1 -> sector is an anode
544					   that points to fragmented value */
545  u8 indirect: 1;			/* 1 -> value gives sector number
546					   where real value starts */
547#endif
548  u8 namelen;				/* length of name, bytes */
549  u8 valuelen_lo;			/* length of value, bytes */
550  u8 valuelen_hi;			/* length of value, bytes */
551  u8 name[0];
552  /*
553    u8 name[namelen];			ascii attrib name
554    u8 nul;				terminating '\0', not counted
555    u8 value[valuelen];			value, arbitrary
556      if this.indirect, valuelen is 8 and the value is
557        u32 length;			real length of value, bytes
558        secno secno;			sector address where it starts
559      if this.anode, the above sector number is the root of an anode tree
560        which points to the value.
561  */
562};
 
 
 
 
 
 
 
 
 
 
563
564/*
565   Local Variables:
566   comment-column: 40
567   End:
568*/