Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
  1/*
  2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3 *
  4 *   This program is free software; you can redistribute it and/or
  5 *   modify it under the terms of the GNU General Public License
  6 *   as published by the Free Software Foundation, version 2.
  7 *
  8 *   This program is distributed in the hope that it will be useful, but
  9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 11 *   NON INFRINGEMENT.  See the GNU General Public License for
 12 *   more details.
 13 *
 14 * This file contains the functions and defines necessary to modify and use
 15 * the TILE page table tree.
 16 */
 17
 18#ifndef _ASM_TILE_PGTABLE_H
 19#define _ASM_TILE_PGTABLE_H
 20
 21#include <hv/hypervisor.h>
 22
 23#ifndef __ASSEMBLY__
 24
 25#include <linux/bitops.h>
 26#include <linux/threads.h>
 27#include <linux/slab.h>
 28#include <linux/list.h>
 29#include <linux/spinlock.h>
 30#include <asm/processor.h>
 31#include <asm/fixmap.h>
 32#include <asm/system.h>
 33
 34struct mm_struct;
 35struct vm_area_struct;
 36
 37/*
 38 * ZERO_PAGE is a global shared page that is always zero: used
 39 * for zero-mapped memory areas etc..
 40 */
 41extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
 42#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
 43
 44extern pgd_t swapper_pg_dir[];
 45extern pgprot_t swapper_pgprot;
 46extern struct kmem_cache *pgd_cache;
 47extern spinlock_t pgd_lock;
 48extern struct list_head pgd_list;
 49
 50/*
 51 * The very last slots in the pgd_t are for addresses unusable by Linux
 52 * (pgd_addr_invalid() returns true).  So we use them for the list structure.
 53 * The x86 code we are modelled on uses the page->private/index fields
 54 * (older 2.6 kernels) or the lru list (newer 2.6 kernels), but since
 55 * our pgds are so much smaller than a page, it seems a waste to
 56 * spend a whole page on each pgd.
 57 */
 58#define PGD_LIST_OFFSET \
 59  ((PTRS_PER_PGD * sizeof(pgd_t)) - sizeof(struct list_head))
 60#define pgd_to_list(pgd) \
 61  ((struct list_head *)((char *)(pgd) + PGD_LIST_OFFSET))
 62#define list_to_pgd(list) \
 63  ((pgd_t *)((char *)(list) - PGD_LIST_OFFSET))
 64
 65extern void pgtable_cache_init(void);
 66extern void paging_init(void);
 67extern void set_page_homes(void);
 68
 69#define FIRST_USER_ADDRESS	0
 70
 71#define _PAGE_PRESENT           HV_PTE_PRESENT
 72#define _PAGE_HUGE_PAGE         HV_PTE_PAGE
 73#define _PAGE_READABLE          HV_PTE_READABLE
 74#define _PAGE_WRITABLE          HV_PTE_WRITABLE
 75#define _PAGE_EXECUTABLE        HV_PTE_EXECUTABLE
 76#define _PAGE_ACCESSED          HV_PTE_ACCESSED
 77#define _PAGE_DIRTY             HV_PTE_DIRTY
 78#define _PAGE_GLOBAL            HV_PTE_GLOBAL
 79#define _PAGE_USER              HV_PTE_USER
 80
 81/*
 82 * All the "standard" bits.  Cache-control bits are managed elsewhere.
 83 * This is used to test for valid level-2 page table pointers by checking
 84 * all the bits, and to mask away the cache control bits for mprotect.
 85 */
 86#define _PAGE_ALL (\
 87  _PAGE_PRESENT | \
 88  _PAGE_HUGE_PAGE | \
 89  _PAGE_READABLE | \
 90  _PAGE_WRITABLE | \
 91  _PAGE_EXECUTABLE | \
 92  _PAGE_ACCESSED | \
 93  _PAGE_DIRTY | \
 94  _PAGE_GLOBAL | \
 95  _PAGE_USER \
 96)
 97
 98#define PAGE_NONE \
 99	__pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
100#define PAGE_SHARED \
101	__pgprot(_PAGE_PRESENT | _PAGE_READABLE | _PAGE_WRITABLE | \
102		 _PAGE_USER | _PAGE_ACCESSED)
103
104#define PAGE_SHARED_EXEC \
105	__pgprot(_PAGE_PRESENT | _PAGE_READABLE | _PAGE_WRITABLE | \
106		 _PAGE_EXECUTABLE | _PAGE_USER | _PAGE_ACCESSED)
107#define PAGE_COPY_NOEXEC \
108	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_READABLE)
109#define PAGE_COPY_EXEC \
110	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | \
111		 _PAGE_READABLE | _PAGE_EXECUTABLE)
112#define PAGE_COPY \
113	PAGE_COPY_NOEXEC
114#define PAGE_READONLY \
115	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_READABLE)
116#define PAGE_READONLY_EXEC \
117	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | \
118		 _PAGE_READABLE | _PAGE_EXECUTABLE)
119
120#define _PAGE_KERNEL_RO \
121 (_PAGE_PRESENT | _PAGE_GLOBAL | _PAGE_READABLE | _PAGE_ACCESSED)
122#define _PAGE_KERNEL \
123 (_PAGE_KERNEL_RO | _PAGE_WRITABLE | _PAGE_DIRTY)
124#define _PAGE_KERNEL_EXEC       (_PAGE_KERNEL_RO | _PAGE_EXECUTABLE)
125
126#define PAGE_KERNEL		__pgprot(_PAGE_KERNEL)
127#define PAGE_KERNEL_RO		__pgprot(_PAGE_KERNEL_RO)
128#define PAGE_KERNEL_EXEC	__pgprot(_PAGE_KERNEL_EXEC)
129
130#define page_to_kpgprot(p) PAGE_KERNEL
131
132/*
133 * We could tighten these up, but for now writable or executable
134 * implies readable.
135 */
136#define __P000	PAGE_NONE
137#define __P001	PAGE_READONLY
138#define __P010	PAGE_COPY      /* this is write-only, which we won't support */
139#define __P011	PAGE_COPY
140#define __P100	PAGE_READONLY_EXEC
141#define __P101	PAGE_READONLY_EXEC
142#define __P110	PAGE_COPY_EXEC
143#define __P111	PAGE_COPY_EXEC
144
145#define __S000	PAGE_NONE
146#define __S001	PAGE_READONLY
147#define __S010	PAGE_SHARED
148#define __S011	PAGE_SHARED
149#define __S100	PAGE_READONLY_EXEC
150#define __S101	PAGE_READONLY_EXEC
151#define __S110	PAGE_SHARED_EXEC
152#define __S111	PAGE_SHARED_EXEC
153
154/*
155 * All the normal _PAGE_ALL bits are ignored for PMDs, except PAGE_PRESENT
156 * and PAGE_HUGE_PAGE, which must be one and zero, respectively.
157 * We set the ignored bits to zero.
158 */
159#define _PAGE_TABLE     _PAGE_PRESENT
160
161/* Inherit the caching flags from the old protection bits. */
162#define pgprot_modify(oldprot, newprot) \
163  (pgprot_t) { ((oldprot).val & ~_PAGE_ALL) | (newprot).val }
164
165/* Just setting the PFN to zero suffices. */
166#define pte_pgprot(x) hv_pte_set_pfn((x), 0)
167
168/*
169 * For PTEs and PDEs, we must clear the Present bit first when
170 * clearing a page table entry, so clear the bottom half first and
171 * enforce ordering with a barrier.
172 */
173static inline void __pte_clear(pte_t *ptep)
174{
175#ifdef __tilegx__
176	ptep->val = 0;
177#else
178	u32 *tmp = (u32 *)ptep;
179	tmp[0] = 0;
180	barrier();
181	tmp[1] = 0;
182#endif
183}
184#define pte_clear(mm, addr, ptep) __pte_clear(ptep)
185
186/*
187 * The following only work if pte_present() is true.
188 * Undefined behaviour if not..
189 */
190#define pte_present hv_pte_get_present
191#define pte_user hv_pte_get_user
192#define pte_read hv_pte_get_readable
193#define pte_dirty hv_pte_get_dirty
194#define pte_young hv_pte_get_accessed
195#define pte_write hv_pte_get_writable
196#define pte_exec hv_pte_get_executable
197#define pte_huge hv_pte_get_page
198#define pte_rdprotect hv_pte_clear_readable
199#define pte_exprotect hv_pte_clear_executable
200#define pte_mkclean hv_pte_clear_dirty
201#define pte_mkold hv_pte_clear_accessed
202#define pte_wrprotect hv_pte_clear_writable
203#define pte_mksmall hv_pte_clear_page
204#define pte_mkread hv_pte_set_readable
205#define pte_mkexec hv_pte_set_executable
206#define pte_mkdirty hv_pte_set_dirty
207#define pte_mkyoung hv_pte_set_accessed
208#define pte_mkwrite hv_pte_set_writable
209#define pte_mkhuge hv_pte_set_page
210
211#define pte_special(pte) 0
212#define pte_mkspecial(pte) (pte)
213
214/*
215 * Use some spare bits in the PTE for user-caching tags.
216 */
217#define pte_set_forcecache hv_pte_set_client0
218#define pte_get_forcecache hv_pte_get_client0
219#define pte_clear_forcecache hv_pte_clear_client0
220#define pte_set_anyhome hv_pte_set_client1
221#define pte_get_anyhome hv_pte_get_client1
222#define pte_clear_anyhome hv_pte_clear_client1
223
224/*
225 * A migrating PTE has PAGE_PRESENT clear but all the other bits preserved.
226 */
227#define pte_migrating hv_pte_get_migrating
228#define pte_mkmigrate(x) hv_pte_set_migrating(hv_pte_clear_present(x))
229#define pte_donemigrate(x) hv_pte_set_present(hv_pte_clear_migrating(x))
230
231#define pte_ERROR(e) \
232	pr_err("%s:%d: bad pte 0x%016llx.\n", __FILE__, __LINE__, pte_val(e))
233#define pgd_ERROR(e) \
234	pr_err("%s:%d: bad pgd 0x%016llx.\n", __FILE__, __LINE__, pgd_val(e))
235
236/* Return PA and protection info for a given kernel VA. */
237int va_to_cpa_and_pte(void *va, phys_addr_t *cpa, pte_t *pte);
238
239/*
240 * __set_pte() ensures we write the 64-bit PTE with 32-bit words in
241 * the right order on 32-bit platforms and also allows us to write
242 * hooks to check valid PTEs, etc., if we want.
243 */
244void __set_pte(pte_t *ptep, pte_t pte);
245
246/*
247 * set_pte() sets the given PTE and also sanity-checks the
248 * requested PTE against the page homecaching.  Unspecified parts
249 * of the PTE are filled in when it is written to memory, i.e. all
250 * caching attributes if "!forcecache", or the home cpu if "anyhome".
251 */
252extern void set_pte(pte_t *ptep, pte_t pte);
253#define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval)
254#define set_pte_atomic(pteptr, pteval) set_pte(pteptr, pteval)
255
256#define pte_page(x)		pfn_to_page(pte_pfn(x))
257
258static inline int pte_none(pte_t pte)
259{
260	return !pte.val;
261}
262
263static inline unsigned long pte_pfn(pte_t pte)
264{
265	return hv_pte_get_pfn(pte);
266}
267
268/* Set or get the remote cache cpu in a pgprot with remote caching. */
269extern pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu);
270extern int get_remote_cache_cpu(pgprot_t prot);
271
272static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
273{
274	return hv_pte_set_pfn(prot, pfn);
275}
276
277/* Support for priority mappings. */
278extern void start_mm_caching(struct mm_struct *mm);
279extern void check_mm_caching(struct mm_struct *prev, struct mm_struct *next);
280
281/*
282 * Support non-linear file mappings (see sys_remap_file_pages).
283 * This is defined by CLIENT1 set but CLIENT0 and _PAGE_PRESENT clear, and the
284 * file offset in the 32 high bits.
285 */
286#define _PAGE_FILE        HV_PTE_CLIENT1
287#define PTE_FILE_MAX_BITS 32
288#define pte_file(pte)     (hv_pte_get_client1(pte) && !hv_pte_get_client0(pte))
289#define pte_to_pgoff(pte) ((pte).val >> 32)
290#define pgoff_to_pte(off) ((pte_t) { (((long long)(off)) << 32) | _PAGE_FILE })
291
292/*
293 * Encode and de-code a swap entry (see <linux/swapops.h>).
294 * We put the swap file type+offset in the 32 high bits;
295 * I believe we can just leave the low bits clear.
296 */
297#define __swp_type(swp)		((swp).val & 0x1f)
298#define __swp_offset(swp)	((swp).val >> 5)
299#define __swp_entry(type, off)	((swp_entry_t) { (type) | ((off) << 5) })
300#define __pte_to_swp_entry(pte)	((swp_entry_t) { (pte).val >> 32 })
301#define __swp_entry_to_pte(swp)	((pte_t) { (((long long) ((swp).val)) << 32) })
302
303/*
304 * Conversion functions: convert a page and protection to a page entry,
305 * and a page entry and page directory to the page they refer to.
306 */
307
308#define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot))
309
310/*
311 * If we are doing an mprotect(), just accept the new vma->vm_page_prot
312 * value and combine it with the PFN from the old PTE to get a new PTE.
313 */
314static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
315{
316	return pfn_pte(hv_pte_get_pfn(pte), newprot);
317}
318
319/*
320 * The pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
321 *
322 * This macro returns the index of the entry in the pgd page which would
323 * control the given virtual address.
324 */
325#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
326
327/*
328 * pgd_offset() returns a (pgd_t *)
329 * pgd_index() is used get the offset into the pgd page's array of pgd_t's.
330 */
331#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
332
333/*
334 * A shortcut which implies the use of the kernel's pgd, instead
335 * of a process's.
336 */
337#define pgd_offset_k(address) pgd_offset(&init_mm, address)
338
339#if defined(CONFIG_HIGHPTE)
340extern pte_t *pte_offset_map(pmd_t *, unsigned long address);
341#define pte_unmap(pte) kunmap_atomic(pte)
342#else
343#define pte_offset_map(dir, address) pte_offset_kernel(dir, address)
344#define pte_unmap(pte) do { } while (0)
345#endif
346
347/* Clear a non-executable kernel PTE and flush it from the TLB. */
348#define kpte_clear_flush(ptep, vaddr)		\
349do {						\
350	pte_clear(&init_mm, (vaddr), (ptep));	\
351	local_flush_tlb_page(FLUSH_NONEXEC, (vaddr), PAGE_SIZE); \
352} while (0)
353
354/*
355 * The kernel page tables contain what we need, and we flush when we
356 * change specific page table entries.
357 */
358#define update_mmu_cache(vma, address, pte) do { } while (0)
359
360#ifdef CONFIG_FLATMEM
361#define kern_addr_valid(addr)	(1)
362#endif /* CONFIG_FLATMEM */
363
364#define io_remap_pfn_range(vma, vaddr, pfn, size, prot)		\
365		remap_pfn_range(vma, vaddr, pfn, size, prot)
366
367extern void vmalloc_sync_all(void);
368
369#endif /* !__ASSEMBLY__ */
370
371#ifdef __tilegx__
372#include <asm/pgtable_64.h>
373#else
374#include <asm/pgtable_32.h>
375#endif
376
377#ifndef __ASSEMBLY__
378
379static inline int pmd_none(pmd_t pmd)
380{
381	/*
382	 * Only check low word on 32-bit platforms, since it might be
383	 * out of sync with upper half.
384	 */
385	return (unsigned long)pmd_val(pmd) == 0;
386}
387
388static inline int pmd_present(pmd_t pmd)
389{
390	return pmd_val(pmd) & _PAGE_PRESENT;
391}
392
393static inline int pmd_bad(pmd_t pmd)
394{
395	return ((pmd_val(pmd) & _PAGE_ALL) != _PAGE_TABLE);
396}
397
398static inline unsigned long pages_to_mb(unsigned long npg)
399{
400	return npg >> (20 - PAGE_SHIFT);
401}
402
403/*
404 * The pmd can be thought of an array like this: pmd_t[PTRS_PER_PMD]
405 *
406 * This function returns the index of the entry in the pmd which would
407 * control the given virtual address.
408 */
409static inline unsigned long pmd_index(unsigned long address)
410{
411	return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
412}
413
414/*
415 * A given kernel pmd_t maps to a specific virtual address (either a
416 * kernel huge page or a kernel pte_t table).  Since kernel pte_t
417 * tables can be aligned at sub-page granularity, this function can
418 * return non-page-aligned pointers, despite its name.
419 */
420static inline unsigned long pmd_page_vaddr(pmd_t pmd)
421{
422	phys_addr_t pa =
423		(phys_addr_t)pmd_ptfn(pmd) << HV_LOG2_PAGE_TABLE_ALIGN;
424	return (unsigned long)__va(pa);
425}
426
427/*
428 * A pmd_t points to the base of a huge page or to a pte_t array.
429 * If a pte_t array, since we can have multiple per page, we don't
430 * have a one-to-one mapping of pmd_t's to pages.  However, this is
431 * OK for pte_lockptr(), since we just end up with potentially one
432 * lock being used for several pte_t arrays.
433 */
434#define pmd_page(pmd) pfn_to_page(HV_PTFN_TO_PFN(pmd_ptfn(pmd)))
435
436/*
437 * The pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
438 *
439 * This macro returns the index of the entry in the pte page which would
440 * control the given virtual address.
441 */
442static inline unsigned long pte_index(unsigned long address)
443{
444	return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
445}
446
447static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
448{
449       return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
450}
451
452static inline int pmd_huge_page(pmd_t pmd)
453{
454	return pmd_val(pmd) & _PAGE_HUGE_PAGE;
455}
456
457#include <asm-generic/pgtable.h>
458
459/* Support /proc/NN/pgtable API. */
460struct seq_file;
461int arch_proc_pgtable_show(struct seq_file *m, struct mm_struct *mm,
462			   unsigned long vaddr, pte_t *ptep, void **datap);
463
464#endif /* !__ASSEMBLY__ */
465
466#endif /* _ASM_TILE_PGTABLE_H */