Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Performance event support framework for SuperH hardware counters.
  4 *
  5 *  Copyright (C) 2009  Paul Mundt
  6 *
  7 * Heavily based on the x86 and PowerPC implementations.
  8 *
  9 * x86:
 10 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 11 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 12 *  Copyright (C) 2009 Jaswinder Singh Rajput
 13 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
 14 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
 15 *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
 16 *
 17 * ppc:
 18 *  Copyright 2008-2009 Paul Mackerras, IBM Corporation.
 
 
 
 
 19 */
 20#include <linux/kernel.h>
 21#include <linux/init.h>
 22#include <linux/io.h>
 23#include <linux/irq.h>
 24#include <linux/perf_event.h>
 25#include <linux/export.h>
 26#include <asm/processor.h>
 27
 28struct cpu_hw_events {
 29	struct perf_event	*events[MAX_HWEVENTS];
 30	unsigned long		used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
 31	unsigned long		active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
 32};
 33
 34DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
 35
 36static struct sh_pmu *sh_pmu __read_mostly;
 37
 38/* Number of perf_events counting hardware events */
 39static atomic_t num_events;
 40/* Used to avoid races in calling reserve/release_pmc_hardware */
 41static DEFINE_MUTEX(pmc_reserve_mutex);
 42
 43/*
 44 * Stub these out for now, do something more profound later.
 45 */
 46int reserve_pmc_hardware(void)
 47{
 48	return 0;
 49}
 50
 51void release_pmc_hardware(void)
 52{
 53}
 54
 55static inline int sh_pmu_initialized(void)
 56{
 57	return !!sh_pmu;
 58}
 59
 60const char *perf_pmu_name(void)
 61{
 62	if (!sh_pmu)
 63		return NULL;
 64
 65	return sh_pmu->name;
 66}
 67EXPORT_SYMBOL_GPL(perf_pmu_name);
 68
 69int perf_num_counters(void)
 70{
 71	if (!sh_pmu)
 72		return 0;
 73
 74	return sh_pmu->num_events;
 75}
 76EXPORT_SYMBOL_GPL(perf_num_counters);
 77
 78/*
 79 * Release the PMU if this is the last perf_event.
 80 */
 81static void hw_perf_event_destroy(struct perf_event *event)
 82{
 83	if (!atomic_add_unless(&num_events, -1, 1)) {
 84		mutex_lock(&pmc_reserve_mutex);
 85		if (atomic_dec_return(&num_events) == 0)
 86			release_pmc_hardware();
 87		mutex_unlock(&pmc_reserve_mutex);
 88	}
 89}
 90
 91static int hw_perf_cache_event(int config, int *evp)
 92{
 93	unsigned long type, op, result;
 94	int ev;
 95
 96	if (!sh_pmu->cache_events)
 97		return -EINVAL;
 98
 99	/* unpack config */
100	type = config & 0xff;
101	op = (config >> 8) & 0xff;
102	result = (config >> 16) & 0xff;
103
104	if (type >= PERF_COUNT_HW_CACHE_MAX ||
105	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
106	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
107		return -EINVAL;
108
109	ev = (*sh_pmu->cache_events)[type][op][result];
110	if (ev == 0)
111		return -EOPNOTSUPP;
112	if (ev == -1)
113		return -EINVAL;
114	*evp = ev;
115	return 0;
116}
117
118static int __hw_perf_event_init(struct perf_event *event)
119{
120	struct perf_event_attr *attr = &event->attr;
121	struct hw_perf_event *hwc = &event->hw;
122	int config = -1;
123	int err;
124
125	if (!sh_pmu_initialized())
126		return -ENODEV;
127
128	/*
 
 
 
 
 
 
 
 
129	 * See if we need to reserve the counter.
130	 *
131	 * If no events are currently in use, then we have to take a
132	 * mutex to ensure that we don't race with another task doing
133	 * reserve_pmc_hardware or release_pmc_hardware.
134	 */
135	err = 0;
136	if (!atomic_inc_not_zero(&num_events)) {
137		mutex_lock(&pmc_reserve_mutex);
138		if (atomic_read(&num_events) == 0 &&
139		    reserve_pmc_hardware())
140			err = -EBUSY;
141		else
142			atomic_inc(&num_events);
143		mutex_unlock(&pmc_reserve_mutex);
144	}
145
146	if (err)
147		return err;
148
149	event->destroy = hw_perf_event_destroy;
150
151	switch (attr->type) {
152	case PERF_TYPE_RAW:
153		config = attr->config & sh_pmu->raw_event_mask;
154		break;
155	case PERF_TYPE_HW_CACHE:
156		err = hw_perf_cache_event(attr->config, &config);
157		if (err)
158			return err;
159		break;
160	case PERF_TYPE_HARDWARE:
161		if (attr->config >= sh_pmu->max_events)
162			return -EINVAL;
163
164		config = sh_pmu->event_map(attr->config);
165		break;
166	}
167
168	if (config == -1)
169		return -EINVAL;
170
171	hwc->config |= config;
172
173	return 0;
174}
175
176static void sh_perf_event_update(struct perf_event *event,
177				   struct hw_perf_event *hwc, int idx)
178{
179	u64 prev_raw_count, new_raw_count;
180	s64 delta;
181	int shift = 0;
182
183	/*
184	 * Depending on the counter configuration, they may or may not
185	 * be chained, in which case the previous counter value can be
186	 * updated underneath us if the lower-half overflows.
187	 *
188	 * Our tactic to handle this is to first atomically read and
189	 * exchange a new raw count - then add that new-prev delta
190	 * count to the generic counter atomically.
191	 *
192	 * As there is no interrupt associated with the overflow events,
193	 * this is the simplest approach for maintaining consistency.
194	 */
195again:
196	prev_raw_count = local64_read(&hwc->prev_count);
197	new_raw_count = sh_pmu->read(idx);
198
199	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
200			     new_raw_count) != prev_raw_count)
201		goto again;
202
203	/*
204	 * Now we have the new raw value and have updated the prev
205	 * timestamp already. We can now calculate the elapsed delta
206	 * (counter-)time and add that to the generic counter.
207	 *
208	 * Careful, not all hw sign-extends above the physical width
209	 * of the count.
210	 */
211	delta = (new_raw_count << shift) - (prev_raw_count << shift);
212	delta >>= shift;
213
214	local64_add(delta, &event->count);
215}
216
217static void sh_pmu_stop(struct perf_event *event, int flags)
218{
219	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
220	struct hw_perf_event *hwc = &event->hw;
221	int idx = hwc->idx;
222
223	if (!(event->hw.state & PERF_HES_STOPPED)) {
224		sh_pmu->disable(hwc, idx);
225		cpuc->events[idx] = NULL;
226		event->hw.state |= PERF_HES_STOPPED;
227	}
228
229	if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
230		sh_perf_event_update(event, &event->hw, idx);
231		event->hw.state |= PERF_HES_UPTODATE;
232	}
233}
234
235static void sh_pmu_start(struct perf_event *event, int flags)
236{
237	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
238	struct hw_perf_event *hwc = &event->hw;
239	int idx = hwc->idx;
240
241	if (WARN_ON_ONCE(idx == -1))
242		return;
243
244	if (flags & PERF_EF_RELOAD)
245		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
246
247	cpuc->events[idx] = event;
248	event->hw.state = 0;
249	sh_pmu->enable(hwc, idx);
250}
251
252static void sh_pmu_del(struct perf_event *event, int flags)
253{
254	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
255
256	sh_pmu_stop(event, PERF_EF_UPDATE);
257	__clear_bit(event->hw.idx, cpuc->used_mask);
258
259	perf_event_update_userpage(event);
260}
261
262static int sh_pmu_add(struct perf_event *event, int flags)
263{
264	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
265	struct hw_perf_event *hwc = &event->hw;
266	int idx = hwc->idx;
267	int ret = -EAGAIN;
268
269	perf_pmu_disable(event->pmu);
270
271	if (__test_and_set_bit(idx, cpuc->used_mask)) {
272		idx = find_first_zero_bit(cpuc->used_mask, sh_pmu->num_events);
273		if (idx == sh_pmu->num_events)
274			goto out;
275
276		__set_bit(idx, cpuc->used_mask);
277		hwc->idx = idx;
278	}
279
280	sh_pmu->disable(hwc, idx);
281
282	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
283	if (flags & PERF_EF_START)
284		sh_pmu_start(event, PERF_EF_RELOAD);
285
286	perf_event_update_userpage(event);
287	ret = 0;
288out:
289	perf_pmu_enable(event->pmu);
290	return ret;
291}
292
293static void sh_pmu_read(struct perf_event *event)
294{
295	sh_perf_event_update(event, &event->hw, event->hw.idx);
296}
297
298static int sh_pmu_event_init(struct perf_event *event)
299{
300	int err;
301
302	/* does not support taken branch sampling */
303	if (has_branch_stack(event))
304		return -EOPNOTSUPP;
305
306	switch (event->attr.type) {
307	case PERF_TYPE_RAW:
308	case PERF_TYPE_HW_CACHE:
309	case PERF_TYPE_HARDWARE:
310		err = __hw_perf_event_init(event);
311		break;
312
313	default:
314		return -ENOENT;
315	}
316
317	if (unlikely(err)) {
318		if (event->destroy)
319			event->destroy(event);
320	}
321
322	return err;
323}
324
325static void sh_pmu_enable(struct pmu *pmu)
326{
327	if (!sh_pmu_initialized())
328		return;
329
330	sh_pmu->enable_all();
331}
332
333static void sh_pmu_disable(struct pmu *pmu)
334{
335	if (!sh_pmu_initialized())
336		return;
337
338	sh_pmu->disable_all();
339}
340
341static struct pmu pmu = {
342	.pmu_enable	= sh_pmu_enable,
343	.pmu_disable	= sh_pmu_disable,
344	.event_init	= sh_pmu_event_init,
345	.add		= sh_pmu_add,
346	.del		= sh_pmu_del,
347	.start		= sh_pmu_start,
348	.stop		= sh_pmu_stop,
349	.read		= sh_pmu_read,
350};
351
352static int sh_pmu_prepare_cpu(unsigned int cpu)
353{
354	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
355
356	memset(cpuhw, 0, sizeof(struct cpu_hw_events));
357	return 0;
358}
359
360int register_sh_pmu(struct sh_pmu *_pmu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
361{
362	if (sh_pmu)
363		return -EBUSY;
364	sh_pmu = _pmu;
365
366	pr_info("Performance Events: %s support registered\n", _pmu->name);
367
368	/*
369	 * All of the on-chip counters are "limited", in that they have
370	 * no interrupts, and are therefore unable to do sampling without
371	 * further work and timer assistance.
372	 */
373	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
374
375	WARN_ON(_pmu->num_events > MAX_HWEVENTS);
376
377	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
378	cpuhp_setup_state(CPUHP_PERF_SUPERH, "PERF_SUPERH", sh_pmu_prepare_cpu,
379			  NULL);
380	return 0;
381}
v3.1
 
  1/*
  2 * Performance event support framework for SuperH hardware counters.
  3 *
  4 *  Copyright (C) 2009  Paul Mundt
  5 *
  6 * Heavily based on the x86 and PowerPC implementations.
  7 *
  8 * x86:
  9 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 10 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 11 *  Copyright (C) 2009 Jaswinder Singh Rajput
 12 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
 13 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 14 *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
 15 *
 16 * ppc:
 17 *  Copyright 2008-2009 Paul Mackerras, IBM Corporation.
 18 *
 19 * This file is subject to the terms and conditions of the GNU General Public
 20 * License.  See the file "COPYING" in the main directory of this archive
 21 * for more details.
 22 */
 23#include <linux/kernel.h>
 24#include <linux/init.h>
 25#include <linux/io.h>
 26#include <linux/irq.h>
 27#include <linux/perf_event.h>
 
 28#include <asm/processor.h>
 29
 30struct cpu_hw_events {
 31	struct perf_event	*events[MAX_HWEVENTS];
 32	unsigned long		used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
 33	unsigned long		active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
 34};
 35
 36DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
 37
 38static struct sh_pmu *sh_pmu __read_mostly;
 39
 40/* Number of perf_events counting hardware events */
 41static atomic_t num_events;
 42/* Used to avoid races in calling reserve/release_pmc_hardware */
 43static DEFINE_MUTEX(pmc_reserve_mutex);
 44
 45/*
 46 * Stub these out for now, do something more profound later.
 47 */
 48int reserve_pmc_hardware(void)
 49{
 50	return 0;
 51}
 52
 53void release_pmc_hardware(void)
 54{
 55}
 56
 57static inline int sh_pmu_initialized(void)
 58{
 59	return !!sh_pmu;
 60}
 61
 62const char *perf_pmu_name(void)
 63{
 64	if (!sh_pmu)
 65		return NULL;
 66
 67	return sh_pmu->name;
 68}
 69EXPORT_SYMBOL_GPL(perf_pmu_name);
 70
 71int perf_num_counters(void)
 72{
 73	if (!sh_pmu)
 74		return 0;
 75
 76	return sh_pmu->num_events;
 77}
 78EXPORT_SYMBOL_GPL(perf_num_counters);
 79
 80/*
 81 * Release the PMU if this is the last perf_event.
 82 */
 83static void hw_perf_event_destroy(struct perf_event *event)
 84{
 85	if (!atomic_add_unless(&num_events, -1, 1)) {
 86		mutex_lock(&pmc_reserve_mutex);
 87		if (atomic_dec_return(&num_events) == 0)
 88			release_pmc_hardware();
 89		mutex_unlock(&pmc_reserve_mutex);
 90	}
 91}
 92
 93static int hw_perf_cache_event(int config, int *evp)
 94{
 95	unsigned long type, op, result;
 96	int ev;
 97
 98	if (!sh_pmu->cache_events)
 99		return -EINVAL;
100
101	/* unpack config */
102	type = config & 0xff;
103	op = (config >> 8) & 0xff;
104	result = (config >> 16) & 0xff;
105
106	if (type >= PERF_COUNT_HW_CACHE_MAX ||
107	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
108	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
109		return -EINVAL;
110
111	ev = (*sh_pmu->cache_events)[type][op][result];
112	if (ev == 0)
113		return -EOPNOTSUPP;
114	if (ev == -1)
115		return -EINVAL;
116	*evp = ev;
117	return 0;
118}
119
120static int __hw_perf_event_init(struct perf_event *event)
121{
122	struct perf_event_attr *attr = &event->attr;
123	struct hw_perf_event *hwc = &event->hw;
124	int config = -1;
125	int err;
126
127	if (!sh_pmu_initialized())
128		return -ENODEV;
129
130	/*
131	 * All of the on-chip counters are "limited", in that they have
132	 * no interrupts, and are therefore unable to do sampling without
133	 * further work and timer assistance.
134	 */
135	if (hwc->sample_period)
136		return -EINVAL;
137
138	/*
139	 * See if we need to reserve the counter.
140	 *
141	 * If no events are currently in use, then we have to take a
142	 * mutex to ensure that we don't race with another task doing
143	 * reserve_pmc_hardware or release_pmc_hardware.
144	 */
145	err = 0;
146	if (!atomic_inc_not_zero(&num_events)) {
147		mutex_lock(&pmc_reserve_mutex);
148		if (atomic_read(&num_events) == 0 &&
149		    reserve_pmc_hardware())
150			err = -EBUSY;
151		else
152			atomic_inc(&num_events);
153		mutex_unlock(&pmc_reserve_mutex);
154	}
155
156	if (err)
157		return err;
158
159	event->destroy = hw_perf_event_destroy;
160
161	switch (attr->type) {
162	case PERF_TYPE_RAW:
163		config = attr->config & sh_pmu->raw_event_mask;
164		break;
165	case PERF_TYPE_HW_CACHE:
166		err = hw_perf_cache_event(attr->config, &config);
167		if (err)
168			return err;
169		break;
170	case PERF_TYPE_HARDWARE:
171		if (attr->config >= sh_pmu->max_events)
172			return -EINVAL;
173
174		config = sh_pmu->event_map(attr->config);
175		break;
176	}
177
178	if (config == -1)
179		return -EINVAL;
180
181	hwc->config |= config;
182
183	return 0;
184}
185
186static void sh_perf_event_update(struct perf_event *event,
187				   struct hw_perf_event *hwc, int idx)
188{
189	u64 prev_raw_count, new_raw_count;
190	s64 delta;
191	int shift = 0;
192
193	/*
194	 * Depending on the counter configuration, they may or may not
195	 * be chained, in which case the previous counter value can be
196	 * updated underneath us if the lower-half overflows.
197	 *
198	 * Our tactic to handle this is to first atomically read and
199	 * exchange a new raw count - then add that new-prev delta
200	 * count to the generic counter atomically.
201	 *
202	 * As there is no interrupt associated with the overflow events,
203	 * this is the simplest approach for maintaining consistency.
204	 */
205again:
206	prev_raw_count = local64_read(&hwc->prev_count);
207	new_raw_count = sh_pmu->read(idx);
208
209	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
210			     new_raw_count) != prev_raw_count)
211		goto again;
212
213	/*
214	 * Now we have the new raw value and have updated the prev
215	 * timestamp already. We can now calculate the elapsed delta
216	 * (counter-)time and add that to the generic counter.
217	 *
218	 * Careful, not all hw sign-extends above the physical width
219	 * of the count.
220	 */
221	delta = (new_raw_count << shift) - (prev_raw_count << shift);
222	delta >>= shift;
223
224	local64_add(delta, &event->count);
225}
226
227static void sh_pmu_stop(struct perf_event *event, int flags)
228{
229	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
230	struct hw_perf_event *hwc = &event->hw;
231	int idx = hwc->idx;
232
233	if (!(event->hw.state & PERF_HES_STOPPED)) {
234		sh_pmu->disable(hwc, idx);
235		cpuc->events[idx] = NULL;
236		event->hw.state |= PERF_HES_STOPPED;
237	}
238
239	if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
240		sh_perf_event_update(event, &event->hw, idx);
241		event->hw.state |= PERF_HES_UPTODATE;
242	}
243}
244
245static void sh_pmu_start(struct perf_event *event, int flags)
246{
247	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
248	struct hw_perf_event *hwc = &event->hw;
249	int idx = hwc->idx;
250
251	if (WARN_ON_ONCE(idx == -1))
252		return;
253
254	if (flags & PERF_EF_RELOAD)
255		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
256
257	cpuc->events[idx] = event;
258	event->hw.state = 0;
259	sh_pmu->enable(hwc, idx);
260}
261
262static void sh_pmu_del(struct perf_event *event, int flags)
263{
264	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
265
266	sh_pmu_stop(event, PERF_EF_UPDATE);
267	__clear_bit(event->hw.idx, cpuc->used_mask);
268
269	perf_event_update_userpage(event);
270}
271
272static int sh_pmu_add(struct perf_event *event, int flags)
273{
274	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
275	struct hw_perf_event *hwc = &event->hw;
276	int idx = hwc->idx;
277	int ret = -EAGAIN;
278
279	perf_pmu_disable(event->pmu);
280
281	if (__test_and_set_bit(idx, cpuc->used_mask)) {
282		idx = find_first_zero_bit(cpuc->used_mask, sh_pmu->num_events);
283		if (idx == sh_pmu->num_events)
284			goto out;
285
286		__set_bit(idx, cpuc->used_mask);
287		hwc->idx = idx;
288	}
289
290	sh_pmu->disable(hwc, idx);
291
292	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
293	if (flags & PERF_EF_START)
294		sh_pmu_start(event, PERF_EF_RELOAD);
295
296	perf_event_update_userpage(event);
297	ret = 0;
298out:
299	perf_pmu_enable(event->pmu);
300	return ret;
301}
302
303static void sh_pmu_read(struct perf_event *event)
304{
305	sh_perf_event_update(event, &event->hw, event->hw.idx);
306}
307
308static int sh_pmu_event_init(struct perf_event *event)
309{
310	int err;
311
 
 
 
 
312	switch (event->attr.type) {
313	case PERF_TYPE_RAW:
314	case PERF_TYPE_HW_CACHE:
315	case PERF_TYPE_HARDWARE:
316		err = __hw_perf_event_init(event);
317		break;
318
319	default:
320		return -ENOENT;
321	}
322
323	if (unlikely(err)) {
324		if (event->destroy)
325			event->destroy(event);
326	}
327
328	return err;
329}
330
331static void sh_pmu_enable(struct pmu *pmu)
332{
333	if (!sh_pmu_initialized())
334		return;
335
336	sh_pmu->enable_all();
337}
338
339static void sh_pmu_disable(struct pmu *pmu)
340{
341	if (!sh_pmu_initialized())
342		return;
343
344	sh_pmu->disable_all();
345}
346
347static struct pmu pmu = {
348	.pmu_enable	= sh_pmu_enable,
349	.pmu_disable	= sh_pmu_disable,
350	.event_init	= sh_pmu_event_init,
351	.add		= sh_pmu_add,
352	.del		= sh_pmu_del,
353	.start		= sh_pmu_start,
354	.stop		= sh_pmu_stop,
355	.read		= sh_pmu_read,
356};
357
358static void sh_pmu_setup(int cpu)
359{
360	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
361
362	memset(cpuhw, 0, sizeof(struct cpu_hw_events));
 
363}
364
365static int __cpuinit
366sh_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
367{
368	unsigned int cpu = (long)hcpu;
369
370	switch (action & ~CPU_TASKS_FROZEN) {
371	case CPU_UP_PREPARE:
372		sh_pmu_setup(cpu);
373		break;
374
375	default:
376		break;
377	}
378
379	return NOTIFY_OK;
380}
381
382int __cpuinit register_sh_pmu(struct sh_pmu *_pmu)
383{
384	if (sh_pmu)
385		return -EBUSY;
386	sh_pmu = _pmu;
387
388	pr_info("Performance Events: %s support registered\n", _pmu->name);
389
 
 
 
 
 
 
 
390	WARN_ON(_pmu->num_events > MAX_HWEVENTS);
391
392	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
393	perf_cpu_notifier(sh_pmu_notifier);
 
394	return 0;
395}