Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * BPF Jit compiler for s390.
4 *
5 * Minimum build requirements:
6 *
7 * - HAVE_MARCH_Z196_FEATURES: laal, laalg
8 * - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9 * - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10 * - PACK_STACK
11 * - 64BIT
12 *
13 * Copyright IBM Corp. 2012,2015
14 *
15 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
16 * Michael Holzheu <holzheu@linux.vnet.ibm.com>
17 */
18
19#define KMSG_COMPONENT "bpf_jit"
20#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22#include <linux/netdevice.h>
23#include <linux/filter.h>
24#include <linux/init.h>
25#include <linux/bpf.h>
26#include <asm/cacheflush.h>
27#include <asm/dis.h>
28#include <asm/facility.h>
29#include <asm/nospec-branch.h>
30#include <asm/set_memory.h>
31#include "bpf_jit.h"
32
33struct bpf_jit {
34 u32 seen; /* Flags to remember seen eBPF instructions */
35 u32 seen_reg[16]; /* Array to remember which registers are used */
36 u32 *addrs; /* Array with relative instruction addresses */
37 u8 *prg_buf; /* Start of program */
38 int size; /* Size of program and literal pool */
39 int size_prg; /* Size of program */
40 int prg; /* Current position in program */
41 int lit_start; /* Start of literal pool */
42 int lit; /* Current position in literal pool */
43 int base_ip; /* Base address for literal pool */
44 int ret0_ip; /* Address of return 0 */
45 int exit_ip; /* Address of exit */
46 int r1_thunk_ip; /* Address of expoline thunk for 'br %r1' */
47 int r14_thunk_ip; /* Address of expoline thunk for 'br %r14' */
48 int tail_call_start; /* Tail call start offset */
49 int labels[1]; /* Labels for local jumps */
50};
51
52#define BPF_SIZE_MAX 0xffff /* Max size for program (16 bit branches) */
53
54#define SEEN_MEM (1 << 0) /* use mem[] for temporary storage */
55#define SEEN_RET0 (1 << 1) /* ret0_ip points to a valid return 0 */
56#define SEEN_LITERAL (1 << 2) /* code uses literals */
57#define SEEN_FUNC (1 << 3) /* calls C functions */
58#define SEEN_TAIL_CALL (1 << 4) /* code uses tail calls */
59#define SEEN_REG_AX (1 << 5) /* code uses constant blinding */
60#define SEEN_STACK (SEEN_FUNC | SEEN_MEM)
61
62/*
63 * s390 registers
64 */
65#define REG_W0 (MAX_BPF_JIT_REG + 0) /* Work register 1 (even) */
66#define REG_W1 (MAX_BPF_JIT_REG + 1) /* Work register 2 (odd) */
67#define REG_L (MAX_BPF_JIT_REG + 2) /* Literal pool register */
68#define REG_15 (MAX_BPF_JIT_REG + 3) /* Register 15 */
69#define REG_0 REG_W0 /* Register 0 */
70#define REG_1 REG_W1 /* Register 1 */
71#define REG_2 BPF_REG_1 /* Register 2 */
72#define REG_14 BPF_REG_0 /* Register 14 */
73
74/*
75 * Mapping of BPF registers to s390 registers
76 */
77static const int reg2hex[] = {
78 /* Return code */
79 [BPF_REG_0] = 14,
80 /* Function parameters */
81 [BPF_REG_1] = 2,
82 [BPF_REG_2] = 3,
83 [BPF_REG_3] = 4,
84 [BPF_REG_4] = 5,
85 [BPF_REG_5] = 6,
86 /* Call saved registers */
87 [BPF_REG_6] = 7,
88 [BPF_REG_7] = 8,
89 [BPF_REG_8] = 9,
90 [BPF_REG_9] = 10,
91 /* BPF stack pointer */
92 [BPF_REG_FP] = 13,
93 /* Register for blinding */
94 [BPF_REG_AX] = 12,
95 /* Work registers for s390x backend */
96 [REG_W0] = 0,
97 [REG_W1] = 1,
98 [REG_L] = 11,
99 [REG_15] = 15,
100};
101
102static inline u32 reg(u32 dst_reg, u32 src_reg)
103{
104 return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
105}
106
107static inline u32 reg_high(u32 reg)
108{
109 return reg2hex[reg] << 4;
110}
111
112static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
113{
114 u32 r1 = reg2hex[b1];
115
116 if (!jit->seen_reg[r1] && r1 >= 6 && r1 <= 15)
117 jit->seen_reg[r1] = 1;
118}
119
120#define REG_SET_SEEN(b1) \
121({ \
122 reg_set_seen(jit, b1); \
123})
124
125#define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
126
127/*
128 * EMIT macros for code generation
129 */
130
131#define _EMIT2(op) \
132({ \
133 if (jit->prg_buf) \
134 *(u16 *) (jit->prg_buf + jit->prg) = op; \
135 jit->prg += 2; \
136})
137
138#define EMIT2(op, b1, b2) \
139({ \
140 _EMIT2(op | reg(b1, b2)); \
141 REG_SET_SEEN(b1); \
142 REG_SET_SEEN(b2); \
143})
144
145#define _EMIT4(op) \
146({ \
147 if (jit->prg_buf) \
148 *(u32 *) (jit->prg_buf + jit->prg) = op; \
149 jit->prg += 4; \
150})
151
152#define EMIT4(op, b1, b2) \
153({ \
154 _EMIT4(op | reg(b1, b2)); \
155 REG_SET_SEEN(b1); \
156 REG_SET_SEEN(b2); \
157})
158
159#define EMIT4_RRF(op, b1, b2, b3) \
160({ \
161 _EMIT4(op | reg_high(b3) << 8 | reg(b1, b2)); \
162 REG_SET_SEEN(b1); \
163 REG_SET_SEEN(b2); \
164 REG_SET_SEEN(b3); \
165})
166
167#define _EMIT4_DISP(op, disp) \
168({ \
169 unsigned int __disp = (disp) & 0xfff; \
170 _EMIT4(op | __disp); \
171})
172
173#define EMIT4_DISP(op, b1, b2, disp) \
174({ \
175 _EMIT4_DISP(op | reg_high(b1) << 16 | \
176 reg_high(b2) << 8, disp); \
177 REG_SET_SEEN(b1); \
178 REG_SET_SEEN(b2); \
179})
180
181#define EMIT4_IMM(op, b1, imm) \
182({ \
183 unsigned int __imm = (imm) & 0xffff; \
184 _EMIT4(op | reg_high(b1) << 16 | __imm); \
185 REG_SET_SEEN(b1); \
186})
187
188#define EMIT4_PCREL(op, pcrel) \
189({ \
190 long __pcrel = ((pcrel) >> 1) & 0xffff; \
191 _EMIT4(op | __pcrel); \
192})
193
194#define _EMIT6(op1, op2) \
195({ \
196 if (jit->prg_buf) { \
197 *(u32 *) (jit->prg_buf + jit->prg) = op1; \
198 *(u16 *) (jit->prg_buf + jit->prg + 4) = op2; \
199 } \
200 jit->prg += 6; \
201})
202
203#define _EMIT6_DISP(op1, op2, disp) \
204({ \
205 unsigned int __disp = (disp) & 0xfff; \
206 _EMIT6(op1 | __disp, op2); \
207})
208
209#define _EMIT6_DISP_LH(op1, op2, disp) \
210({ \
211 u32 _disp = (u32) disp; \
212 unsigned int __disp_h = _disp & 0xff000; \
213 unsigned int __disp_l = _disp & 0x00fff; \
214 _EMIT6(op1 | __disp_l, op2 | __disp_h >> 4); \
215})
216
217#define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp) \
218({ \
219 _EMIT6_DISP_LH(op1 | reg(b1, b2) << 16 | \
220 reg_high(b3) << 8, op2, disp); \
221 REG_SET_SEEN(b1); \
222 REG_SET_SEEN(b2); \
223 REG_SET_SEEN(b3); \
224})
225
226#define EMIT6_PCREL_LABEL(op1, op2, b1, b2, label, mask) \
227({ \
228 int rel = (jit->labels[label] - jit->prg) >> 1; \
229 _EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), \
230 op2 | mask << 12); \
231 REG_SET_SEEN(b1); \
232 REG_SET_SEEN(b2); \
233})
234
235#define EMIT6_PCREL_IMM_LABEL(op1, op2, b1, imm, label, mask) \
236({ \
237 int rel = (jit->labels[label] - jit->prg) >> 1; \
238 _EMIT6(op1 | (reg_high(b1) | mask) << 16 | \
239 (rel & 0xffff), op2 | (imm & 0xff) << 8); \
240 REG_SET_SEEN(b1); \
241 BUILD_BUG_ON(((unsigned long) imm) > 0xff); \
242})
243
244#define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask) \
245({ \
246 /* Branch instruction needs 6 bytes */ \
247 int rel = (addrs[i + off + 1] - (addrs[i + 1] - 6)) / 2;\
248 _EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), op2 | mask); \
249 REG_SET_SEEN(b1); \
250 REG_SET_SEEN(b2); \
251})
252
253#define EMIT6_PCREL_RILB(op, b, target) \
254({ \
255 int rel = (target - jit->prg) / 2; \
256 _EMIT6(op | reg_high(b) << 16 | rel >> 16, rel & 0xffff); \
257 REG_SET_SEEN(b); \
258})
259
260#define EMIT6_PCREL_RIL(op, target) \
261({ \
262 int rel = (target - jit->prg) / 2; \
263 _EMIT6(op | rel >> 16, rel & 0xffff); \
264})
265
266#define _EMIT6_IMM(op, imm) \
267({ \
268 unsigned int __imm = (imm); \
269 _EMIT6(op | (__imm >> 16), __imm & 0xffff); \
270})
271
272#define EMIT6_IMM(op, b1, imm) \
273({ \
274 _EMIT6_IMM(op | reg_high(b1) << 16, imm); \
275 REG_SET_SEEN(b1); \
276})
277
278#define EMIT_CONST_U32(val) \
279({ \
280 unsigned int ret; \
281 ret = jit->lit - jit->base_ip; \
282 jit->seen |= SEEN_LITERAL; \
283 if (jit->prg_buf) \
284 *(u32 *) (jit->prg_buf + jit->lit) = (u32) val; \
285 jit->lit += 4; \
286 ret; \
287})
288
289#define EMIT_CONST_U64(val) \
290({ \
291 unsigned int ret; \
292 ret = jit->lit - jit->base_ip; \
293 jit->seen |= SEEN_LITERAL; \
294 if (jit->prg_buf) \
295 *(u64 *) (jit->prg_buf + jit->lit) = (u64) val; \
296 jit->lit += 8; \
297 ret; \
298})
299
300#define EMIT_ZERO(b1) \
301({ \
302 if (!fp->aux->verifier_zext) { \
303 /* llgfr %dst,%dst (zero extend to 64 bit) */ \
304 EMIT4(0xb9160000, b1, b1); \
305 REG_SET_SEEN(b1); \
306 } \
307})
308
309/*
310 * Fill whole space with illegal instructions
311 */
312static void jit_fill_hole(void *area, unsigned int size)
313{
314 memset(area, 0, size);
315}
316
317/*
318 * Save registers from "rs" (register start) to "re" (register end) on stack
319 */
320static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
321{
322 u32 off = STK_OFF_R6 + (rs - 6) * 8;
323
324 if (rs == re)
325 /* stg %rs,off(%r15) */
326 _EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
327 else
328 /* stmg %rs,%re,off(%r15) */
329 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
330}
331
332/*
333 * Restore registers from "rs" (register start) to "re" (register end) on stack
334 */
335static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
336{
337 u32 off = STK_OFF_R6 + (rs - 6) * 8;
338
339 if (jit->seen & SEEN_STACK)
340 off += STK_OFF + stack_depth;
341
342 if (rs == re)
343 /* lg %rs,off(%r15) */
344 _EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
345 else
346 /* lmg %rs,%re,off(%r15) */
347 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
348}
349
350/*
351 * Return first seen register (from start)
352 */
353static int get_start(struct bpf_jit *jit, int start)
354{
355 int i;
356
357 for (i = start; i <= 15; i++) {
358 if (jit->seen_reg[i])
359 return i;
360 }
361 return 0;
362}
363
364/*
365 * Return last seen register (from start) (gap >= 2)
366 */
367static int get_end(struct bpf_jit *jit, int start)
368{
369 int i;
370
371 for (i = start; i < 15; i++) {
372 if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
373 return i - 1;
374 }
375 return jit->seen_reg[15] ? 15 : 14;
376}
377
378#define REGS_SAVE 1
379#define REGS_RESTORE 0
380/*
381 * Save and restore clobbered registers (6-15) on stack.
382 * We save/restore registers in chunks with gap >= 2 registers.
383 */
384static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
385{
386
387 int re = 6, rs;
388
389 do {
390 rs = get_start(jit, re);
391 if (!rs)
392 break;
393 re = get_end(jit, rs + 1);
394 if (op == REGS_SAVE)
395 save_regs(jit, rs, re);
396 else
397 restore_regs(jit, rs, re, stack_depth);
398 re++;
399 } while (re <= 15);
400}
401
402/*
403 * Emit function prologue
404 *
405 * Save registers and create stack frame if necessary.
406 * See stack frame layout desription in "bpf_jit.h"!
407 */
408static void bpf_jit_prologue(struct bpf_jit *jit, u32 stack_depth)
409{
410 if (jit->seen & SEEN_TAIL_CALL) {
411 /* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
412 _EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
413 } else {
414 /* j tail_call_start: NOP if no tail calls are used */
415 EMIT4_PCREL(0xa7f40000, 6);
416 _EMIT2(0);
417 }
418 /* Tail calls have to skip above initialization */
419 jit->tail_call_start = jit->prg;
420 /* Save registers */
421 save_restore_regs(jit, REGS_SAVE, stack_depth);
422 /* Setup literal pool */
423 if (jit->seen & SEEN_LITERAL) {
424 /* basr %r13,0 */
425 EMIT2(0x0d00, REG_L, REG_0);
426 jit->base_ip = jit->prg;
427 }
428 /* Setup stack and backchain */
429 if (jit->seen & SEEN_STACK) {
430 if (jit->seen & SEEN_FUNC)
431 /* lgr %w1,%r15 (backchain) */
432 EMIT4(0xb9040000, REG_W1, REG_15);
433 /* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
434 EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
435 /* aghi %r15,-STK_OFF */
436 EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
437 if (jit->seen & SEEN_FUNC)
438 /* stg %w1,152(%r15) (backchain) */
439 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
440 REG_15, 152);
441 }
442}
443
444/*
445 * Function epilogue
446 */
447static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
448{
449 /* Return 0 */
450 if (jit->seen & SEEN_RET0) {
451 jit->ret0_ip = jit->prg;
452 /* lghi %b0,0 */
453 EMIT4_IMM(0xa7090000, BPF_REG_0, 0);
454 }
455 jit->exit_ip = jit->prg;
456 /* Load exit code: lgr %r2,%b0 */
457 EMIT4(0xb9040000, REG_2, BPF_REG_0);
458 /* Restore registers */
459 save_restore_regs(jit, REGS_RESTORE, stack_depth);
460 if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable) {
461 jit->r14_thunk_ip = jit->prg;
462 /* Generate __s390_indirect_jump_r14 thunk */
463 if (test_facility(35)) {
464 /* exrl %r0,.+10 */
465 EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
466 } else {
467 /* larl %r1,.+14 */
468 EMIT6_PCREL_RILB(0xc0000000, REG_1, jit->prg + 14);
469 /* ex 0,0(%r1) */
470 EMIT4_DISP(0x44000000, REG_0, REG_1, 0);
471 }
472 /* j . */
473 EMIT4_PCREL(0xa7f40000, 0);
474 }
475 /* br %r14 */
476 _EMIT2(0x07fe);
477
478 if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable &&
479 (jit->seen & SEEN_FUNC)) {
480 jit->r1_thunk_ip = jit->prg;
481 /* Generate __s390_indirect_jump_r1 thunk */
482 if (test_facility(35)) {
483 /* exrl %r0,.+10 */
484 EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
485 /* j . */
486 EMIT4_PCREL(0xa7f40000, 0);
487 /* br %r1 */
488 _EMIT2(0x07f1);
489 } else {
490 /* ex 0,S390_lowcore.br_r1_tampoline */
491 EMIT4_DISP(0x44000000, REG_0, REG_0,
492 offsetof(struct lowcore, br_r1_trampoline));
493 /* j . */
494 EMIT4_PCREL(0xa7f40000, 0);
495 }
496 }
497}
498
499/*
500 * Compile one eBPF instruction into s390x code
501 *
502 * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
503 * stack space for the large switch statement.
504 */
505static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
506 int i, bool extra_pass)
507{
508 struct bpf_insn *insn = &fp->insnsi[i];
509 int jmp_off, last, insn_count = 1;
510 u32 dst_reg = insn->dst_reg;
511 u32 src_reg = insn->src_reg;
512 u32 *addrs = jit->addrs;
513 s32 imm = insn->imm;
514 s16 off = insn->off;
515 unsigned int mask;
516
517 if (dst_reg == BPF_REG_AX || src_reg == BPF_REG_AX)
518 jit->seen |= SEEN_REG_AX;
519 switch (insn->code) {
520 /*
521 * BPF_MOV
522 */
523 case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
524 /* llgfr %dst,%src */
525 EMIT4(0xb9160000, dst_reg, src_reg);
526 if (insn_is_zext(&insn[1]))
527 insn_count = 2;
528 break;
529 case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
530 /* lgr %dst,%src */
531 EMIT4(0xb9040000, dst_reg, src_reg);
532 break;
533 case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
534 /* llilf %dst,imm */
535 EMIT6_IMM(0xc00f0000, dst_reg, imm);
536 if (insn_is_zext(&insn[1]))
537 insn_count = 2;
538 break;
539 case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
540 /* lgfi %dst,imm */
541 EMIT6_IMM(0xc0010000, dst_reg, imm);
542 break;
543 /*
544 * BPF_LD 64
545 */
546 case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
547 {
548 /* 16 byte instruction that uses two 'struct bpf_insn' */
549 u64 imm64;
550
551 imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
552 /* lg %dst,<d(imm)>(%l) */
553 EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, REG_0, REG_L,
554 EMIT_CONST_U64(imm64));
555 insn_count = 2;
556 break;
557 }
558 /*
559 * BPF_ADD
560 */
561 case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
562 /* ar %dst,%src */
563 EMIT2(0x1a00, dst_reg, src_reg);
564 EMIT_ZERO(dst_reg);
565 break;
566 case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
567 /* agr %dst,%src */
568 EMIT4(0xb9080000, dst_reg, src_reg);
569 break;
570 case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
571 if (!imm)
572 break;
573 /* alfi %dst,imm */
574 EMIT6_IMM(0xc20b0000, dst_reg, imm);
575 EMIT_ZERO(dst_reg);
576 break;
577 case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
578 if (!imm)
579 break;
580 /* agfi %dst,imm */
581 EMIT6_IMM(0xc2080000, dst_reg, imm);
582 break;
583 /*
584 * BPF_SUB
585 */
586 case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
587 /* sr %dst,%src */
588 EMIT2(0x1b00, dst_reg, src_reg);
589 EMIT_ZERO(dst_reg);
590 break;
591 case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
592 /* sgr %dst,%src */
593 EMIT4(0xb9090000, dst_reg, src_reg);
594 break;
595 case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
596 if (!imm)
597 break;
598 /* alfi %dst,-imm */
599 EMIT6_IMM(0xc20b0000, dst_reg, -imm);
600 EMIT_ZERO(dst_reg);
601 break;
602 case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
603 if (!imm)
604 break;
605 /* agfi %dst,-imm */
606 EMIT6_IMM(0xc2080000, dst_reg, -imm);
607 break;
608 /*
609 * BPF_MUL
610 */
611 case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
612 /* msr %dst,%src */
613 EMIT4(0xb2520000, dst_reg, src_reg);
614 EMIT_ZERO(dst_reg);
615 break;
616 case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
617 /* msgr %dst,%src */
618 EMIT4(0xb90c0000, dst_reg, src_reg);
619 break;
620 case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
621 if (imm == 1)
622 break;
623 /* msfi %r5,imm */
624 EMIT6_IMM(0xc2010000, dst_reg, imm);
625 EMIT_ZERO(dst_reg);
626 break;
627 case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
628 if (imm == 1)
629 break;
630 /* msgfi %dst,imm */
631 EMIT6_IMM(0xc2000000, dst_reg, imm);
632 break;
633 /*
634 * BPF_DIV / BPF_MOD
635 */
636 case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
637 case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
638 {
639 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
640
641 /* lhi %w0,0 */
642 EMIT4_IMM(0xa7080000, REG_W0, 0);
643 /* lr %w1,%dst */
644 EMIT2(0x1800, REG_W1, dst_reg);
645 /* dlr %w0,%src */
646 EMIT4(0xb9970000, REG_W0, src_reg);
647 /* llgfr %dst,%rc */
648 EMIT4(0xb9160000, dst_reg, rc_reg);
649 if (insn_is_zext(&insn[1]))
650 insn_count = 2;
651 break;
652 }
653 case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
654 case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
655 {
656 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
657
658 /* lghi %w0,0 */
659 EMIT4_IMM(0xa7090000, REG_W0, 0);
660 /* lgr %w1,%dst */
661 EMIT4(0xb9040000, REG_W1, dst_reg);
662 /* dlgr %w0,%dst */
663 EMIT4(0xb9870000, REG_W0, src_reg);
664 /* lgr %dst,%rc */
665 EMIT4(0xb9040000, dst_reg, rc_reg);
666 break;
667 }
668 case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
669 case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
670 {
671 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
672
673 if (imm == 1) {
674 if (BPF_OP(insn->code) == BPF_MOD)
675 /* lhgi %dst,0 */
676 EMIT4_IMM(0xa7090000, dst_reg, 0);
677 break;
678 }
679 /* lhi %w0,0 */
680 EMIT4_IMM(0xa7080000, REG_W0, 0);
681 /* lr %w1,%dst */
682 EMIT2(0x1800, REG_W1, dst_reg);
683 /* dl %w0,<d(imm)>(%l) */
684 EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
685 EMIT_CONST_U32(imm));
686 /* llgfr %dst,%rc */
687 EMIT4(0xb9160000, dst_reg, rc_reg);
688 if (insn_is_zext(&insn[1]))
689 insn_count = 2;
690 break;
691 }
692 case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
693 case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
694 {
695 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
696
697 if (imm == 1) {
698 if (BPF_OP(insn->code) == BPF_MOD)
699 /* lhgi %dst,0 */
700 EMIT4_IMM(0xa7090000, dst_reg, 0);
701 break;
702 }
703 /* lghi %w0,0 */
704 EMIT4_IMM(0xa7090000, REG_W0, 0);
705 /* lgr %w1,%dst */
706 EMIT4(0xb9040000, REG_W1, dst_reg);
707 /* dlg %w0,<d(imm)>(%l) */
708 EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
709 EMIT_CONST_U64(imm));
710 /* lgr %dst,%rc */
711 EMIT4(0xb9040000, dst_reg, rc_reg);
712 break;
713 }
714 /*
715 * BPF_AND
716 */
717 case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
718 /* nr %dst,%src */
719 EMIT2(0x1400, dst_reg, src_reg);
720 EMIT_ZERO(dst_reg);
721 break;
722 case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
723 /* ngr %dst,%src */
724 EMIT4(0xb9800000, dst_reg, src_reg);
725 break;
726 case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
727 /* nilf %dst,imm */
728 EMIT6_IMM(0xc00b0000, dst_reg, imm);
729 EMIT_ZERO(dst_reg);
730 break;
731 case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
732 /* ng %dst,<d(imm)>(%l) */
733 EMIT6_DISP_LH(0xe3000000, 0x0080, dst_reg, REG_0, REG_L,
734 EMIT_CONST_U64(imm));
735 break;
736 /*
737 * BPF_OR
738 */
739 case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
740 /* or %dst,%src */
741 EMIT2(0x1600, dst_reg, src_reg);
742 EMIT_ZERO(dst_reg);
743 break;
744 case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
745 /* ogr %dst,%src */
746 EMIT4(0xb9810000, dst_reg, src_reg);
747 break;
748 case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
749 /* oilf %dst,imm */
750 EMIT6_IMM(0xc00d0000, dst_reg, imm);
751 EMIT_ZERO(dst_reg);
752 break;
753 case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
754 /* og %dst,<d(imm)>(%l) */
755 EMIT6_DISP_LH(0xe3000000, 0x0081, dst_reg, REG_0, REG_L,
756 EMIT_CONST_U64(imm));
757 break;
758 /*
759 * BPF_XOR
760 */
761 case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
762 /* xr %dst,%src */
763 EMIT2(0x1700, dst_reg, src_reg);
764 EMIT_ZERO(dst_reg);
765 break;
766 case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
767 /* xgr %dst,%src */
768 EMIT4(0xb9820000, dst_reg, src_reg);
769 break;
770 case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
771 if (!imm)
772 break;
773 /* xilf %dst,imm */
774 EMIT6_IMM(0xc0070000, dst_reg, imm);
775 EMIT_ZERO(dst_reg);
776 break;
777 case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
778 /* xg %dst,<d(imm)>(%l) */
779 EMIT6_DISP_LH(0xe3000000, 0x0082, dst_reg, REG_0, REG_L,
780 EMIT_CONST_U64(imm));
781 break;
782 /*
783 * BPF_LSH
784 */
785 case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
786 /* sll %dst,0(%src) */
787 EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
788 EMIT_ZERO(dst_reg);
789 break;
790 case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
791 /* sllg %dst,%dst,0(%src) */
792 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
793 break;
794 case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
795 if (imm == 0)
796 break;
797 /* sll %dst,imm(%r0) */
798 EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
799 EMIT_ZERO(dst_reg);
800 break;
801 case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
802 if (imm == 0)
803 break;
804 /* sllg %dst,%dst,imm(%r0) */
805 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
806 break;
807 /*
808 * BPF_RSH
809 */
810 case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
811 /* srl %dst,0(%src) */
812 EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
813 EMIT_ZERO(dst_reg);
814 break;
815 case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
816 /* srlg %dst,%dst,0(%src) */
817 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
818 break;
819 case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
820 if (imm == 0)
821 break;
822 /* srl %dst,imm(%r0) */
823 EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
824 EMIT_ZERO(dst_reg);
825 break;
826 case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
827 if (imm == 0)
828 break;
829 /* srlg %dst,%dst,imm(%r0) */
830 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
831 break;
832 /*
833 * BPF_ARSH
834 */
835 case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
836 /* sra %dst,%dst,0(%src) */
837 EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
838 EMIT_ZERO(dst_reg);
839 break;
840 case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
841 /* srag %dst,%dst,0(%src) */
842 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
843 break;
844 case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
845 if (imm == 0)
846 break;
847 /* sra %dst,imm(%r0) */
848 EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
849 EMIT_ZERO(dst_reg);
850 break;
851 case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
852 if (imm == 0)
853 break;
854 /* srag %dst,%dst,imm(%r0) */
855 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
856 break;
857 /*
858 * BPF_NEG
859 */
860 case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
861 /* lcr %dst,%dst */
862 EMIT2(0x1300, dst_reg, dst_reg);
863 EMIT_ZERO(dst_reg);
864 break;
865 case BPF_ALU64 | BPF_NEG: /* dst = -dst */
866 /* lcgr %dst,%dst */
867 EMIT4(0xb9030000, dst_reg, dst_reg);
868 break;
869 /*
870 * BPF_FROM_BE/LE
871 */
872 case BPF_ALU | BPF_END | BPF_FROM_BE:
873 /* s390 is big endian, therefore only clear high order bytes */
874 switch (imm) {
875 case 16: /* dst = (u16) cpu_to_be16(dst) */
876 /* llghr %dst,%dst */
877 EMIT4(0xb9850000, dst_reg, dst_reg);
878 if (insn_is_zext(&insn[1]))
879 insn_count = 2;
880 break;
881 case 32: /* dst = (u32) cpu_to_be32(dst) */
882 if (!fp->aux->verifier_zext)
883 /* llgfr %dst,%dst */
884 EMIT4(0xb9160000, dst_reg, dst_reg);
885 break;
886 case 64: /* dst = (u64) cpu_to_be64(dst) */
887 break;
888 }
889 break;
890 case BPF_ALU | BPF_END | BPF_FROM_LE:
891 switch (imm) {
892 case 16: /* dst = (u16) cpu_to_le16(dst) */
893 /* lrvr %dst,%dst */
894 EMIT4(0xb91f0000, dst_reg, dst_reg);
895 /* srl %dst,16(%r0) */
896 EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
897 /* llghr %dst,%dst */
898 EMIT4(0xb9850000, dst_reg, dst_reg);
899 if (insn_is_zext(&insn[1]))
900 insn_count = 2;
901 break;
902 case 32: /* dst = (u32) cpu_to_le32(dst) */
903 /* lrvr %dst,%dst */
904 EMIT4(0xb91f0000, dst_reg, dst_reg);
905 if (!fp->aux->verifier_zext)
906 /* llgfr %dst,%dst */
907 EMIT4(0xb9160000, dst_reg, dst_reg);
908 break;
909 case 64: /* dst = (u64) cpu_to_le64(dst) */
910 /* lrvgr %dst,%dst */
911 EMIT4(0xb90f0000, dst_reg, dst_reg);
912 break;
913 }
914 break;
915 /*
916 * BPF_ST(X)
917 */
918 case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
919 /* stcy %src,off(%dst) */
920 EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
921 jit->seen |= SEEN_MEM;
922 break;
923 case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
924 /* sthy %src,off(%dst) */
925 EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
926 jit->seen |= SEEN_MEM;
927 break;
928 case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
929 /* sty %src,off(%dst) */
930 EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
931 jit->seen |= SEEN_MEM;
932 break;
933 case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
934 /* stg %src,off(%dst) */
935 EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
936 jit->seen |= SEEN_MEM;
937 break;
938 case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
939 /* lhi %w0,imm */
940 EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
941 /* stcy %w0,off(dst) */
942 EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
943 jit->seen |= SEEN_MEM;
944 break;
945 case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
946 /* lhi %w0,imm */
947 EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
948 /* sthy %w0,off(dst) */
949 EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
950 jit->seen |= SEEN_MEM;
951 break;
952 case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
953 /* llilf %w0,imm */
954 EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
955 /* sty %w0,off(%dst) */
956 EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
957 jit->seen |= SEEN_MEM;
958 break;
959 case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
960 /* lgfi %w0,imm */
961 EMIT6_IMM(0xc0010000, REG_W0, imm);
962 /* stg %w0,off(%dst) */
963 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
964 jit->seen |= SEEN_MEM;
965 break;
966 /*
967 * BPF_STX XADD (atomic_add)
968 */
969 case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
970 /* laal %w0,%src,off(%dst) */
971 EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
972 dst_reg, off);
973 jit->seen |= SEEN_MEM;
974 break;
975 case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
976 /* laalg %w0,%src,off(%dst) */
977 EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
978 dst_reg, off);
979 jit->seen |= SEEN_MEM;
980 break;
981 /*
982 * BPF_LDX
983 */
984 case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
985 /* llgc %dst,0(off,%src) */
986 EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
987 jit->seen |= SEEN_MEM;
988 if (insn_is_zext(&insn[1]))
989 insn_count = 2;
990 break;
991 case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
992 /* llgh %dst,0(off,%src) */
993 EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
994 jit->seen |= SEEN_MEM;
995 if (insn_is_zext(&insn[1]))
996 insn_count = 2;
997 break;
998 case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
999 /* llgf %dst,off(%src) */
1000 jit->seen |= SEEN_MEM;
1001 EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1002 if (insn_is_zext(&insn[1]))
1003 insn_count = 2;
1004 break;
1005 case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1006 /* lg %dst,0(off,%src) */
1007 jit->seen |= SEEN_MEM;
1008 EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1009 break;
1010 /*
1011 * BPF_JMP / CALL
1012 */
1013 case BPF_JMP | BPF_CALL:
1014 {
1015 u64 func;
1016 bool func_addr_fixed;
1017 int ret;
1018
1019 ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1020 &func, &func_addr_fixed);
1021 if (ret < 0)
1022 return -1;
1023
1024 REG_SET_SEEN(BPF_REG_5);
1025 jit->seen |= SEEN_FUNC;
1026 /* lg %w1,<d(imm)>(%l) */
1027 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_W1, REG_0, REG_L,
1028 EMIT_CONST_U64(func));
1029 if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable) {
1030 /* brasl %r14,__s390_indirect_jump_r1 */
1031 EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
1032 } else {
1033 /* basr %r14,%w1 */
1034 EMIT2(0x0d00, REG_14, REG_W1);
1035 }
1036 /* lgr %b0,%r2: load return value into %b0 */
1037 EMIT4(0xb9040000, BPF_REG_0, REG_2);
1038 break;
1039 }
1040 case BPF_JMP | BPF_TAIL_CALL:
1041 /*
1042 * Implicit input:
1043 * B1: pointer to ctx
1044 * B2: pointer to bpf_array
1045 * B3: index in bpf_array
1046 */
1047 jit->seen |= SEEN_TAIL_CALL;
1048
1049 /*
1050 * if (index >= array->map.max_entries)
1051 * goto out;
1052 */
1053
1054 /* llgf %w1,map.max_entries(%b2) */
1055 EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1056 offsetof(struct bpf_array, map.max_entries));
1057 /* clrj %b3,%w1,0xa,label0: if (u32)%b3 >= (u32)%w1 goto out */
1058 EMIT6_PCREL_LABEL(0xec000000, 0x0077, BPF_REG_3,
1059 REG_W1, 0, 0xa);
1060
1061 /*
1062 * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
1063 * goto out;
1064 */
1065
1066 if (jit->seen & SEEN_STACK)
1067 off = STK_OFF_TCCNT + STK_OFF + fp->aux->stack_depth;
1068 else
1069 off = STK_OFF_TCCNT;
1070 /* lhi %w0,1 */
1071 EMIT4_IMM(0xa7080000, REG_W0, 1);
1072 /* laal %w1,%w0,off(%r15) */
1073 EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1074 /* clij %w1,MAX_TAIL_CALL_CNT,0x2,label0 */
1075 EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007f, REG_W1,
1076 MAX_TAIL_CALL_CNT, 0, 0x2);
1077
1078 /*
1079 * prog = array->ptrs[index];
1080 * if (prog == NULL)
1081 * goto out;
1082 */
1083
1084 /* llgfr %r1,%b3: %r1 = (u32) index */
1085 EMIT4(0xb9160000, REG_1, BPF_REG_3);
1086 /* sllg %r1,%r1,3: %r1 *= 8 */
1087 EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1088 /* lg %r1,prog(%b2,%r1) */
1089 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, BPF_REG_2,
1090 REG_1, offsetof(struct bpf_array, ptrs));
1091 /* clgij %r1,0,0x8,label0 */
1092 EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007d, REG_1, 0, 0, 0x8);
1093
1094 /*
1095 * Restore registers before calling function
1096 */
1097 save_restore_regs(jit, REGS_RESTORE, fp->aux->stack_depth);
1098
1099 /*
1100 * goto *(prog->bpf_func + tail_call_start);
1101 */
1102
1103 /* lg %r1,bpf_func(%r1) */
1104 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1105 offsetof(struct bpf_prog, bpf_func));
1106 /* bc 0xf,tail_call_start(%r1) */
1107 _EMIT4(0x47f01000 + jit->tail_call_start);
1108 /* out: */
1109 jit->labels[0] = jit->prg;
1110 break;
1111 case BPF_JMP | BPF_EXIT: /* return b0 */
1112 last = (i == fp->len - 1) ? 1 : 0;
1113 if (last && !(jit->seen & SEEN_RET0))
1114 break;
1115 /* j <exit> */
1116 EMIT4_PCREL(0xa7f40000, jit->exit_ip - jit->prg);
1117 break;
1118 /*
1119 * Branch relative (number of skipped instructions) to offset on
1120 * condition.
1121 *
1122 * Condition code to mask mapping:
1123 *
1124 * CC | Description | Mask
1125 * ------------------------------
1126 * 0 | Operands equal | 8
1127 * 1 | First operand low | 4
1128 * 2 | First operand high | 2
1129 * 3 | Unused | 1
1130 *
1131 * For s390x relative branches: ip = ip + off_bytes
1132 * For BPF relative branches: insn = insn + off_insns + 1
1133 *
1134 * For example for s390x with offset 0 we jump to the branch
1135 * instruction itself (loop) and for BPF with offset 0 we
1136 * branch to the instruction behind the branch.
1137 */
1138 case BPF_JMP | BPF_JA: /* if (true) */
1139 mask = 0xf000; /* j */
1140 goto branch_oc;
1141 case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1142 case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1143 mask = 0x2000; /* jh */
1144 goto branch_ks;
1145 case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1146 case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1147 mask = 0x4000; /* jl */
1148 goto branch_ks;
1149 case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1150 case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1151 mask = 0xa000; /* jhe */
1152 goto branch_ks;
1153 case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1154 case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1155 mask = 0xc000; /* jle */
1156 goto branch_ks;
1157 case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1158 case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1159 mask = 0x2000; /* jh */
1160 goto branch_ku;
1161 case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1162 case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1163 mask = 0x4000; /* jl */
1164 goto branch_ku;
1165 case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1166 case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1167 mask = 0xa000; /* jhe */
1168 goto branch_ku;
1169 case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1170 case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1171 mask = 0xc000; /* jle */
1172 goto branch_ku;
1173 case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1174 case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1175 mask = 0x7000; /* jne */
1176 goto branch_ku;
1177 case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1178 case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1179 mask = 0x8000; /* je */
1180 goto branch_ku;
1181 case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1182 case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1183 mask = 0x7000; /* jnz */
1184 if (BPF_CLASS(insn->code) == BPF_JMP32) {
1185 /* llilf %w1,imm (load zero extend imm) */
1186 EMIT6_IMM(0xc00f0000, REG_W1, imm);
1187 /* nr %w1,%dst */
1188 EMIT2(0x1400, REG_W1, dst_reg);
1189 } else {
1190 /* lgfi %w1,imm (load sign extend imm) */
1191 EMIT6_IMM(0xc0010000, REG_W1, imm);
1192 /* ngr %w1,%dst */
1193 EMIT4(0xb9800000, REG_W1, dst_reg);
1194 }
1195 goto branch_oc;
1196
1197 case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1198 case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1199 mask = 0x2000; /* jh */
1200 goto branch_xs;
1201 case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1202 case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1203 mask = 0x4000; /* jl */
1204 goto branch_xs;
1205 case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1206 case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1207 mask = 0xa000; /* jhe */
1208 goto branch_xs;
1209 case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1210 case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
1211 mask = 0xc000; /* jle */
1212 goto branch_xs;
1213 case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1214 case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
1215 mask = 0x2000; /* jh */
1216 goto branch_xu;
1217 case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1218 case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
1219 mask = 0x4000; /* jl */
1220 goto branch_xu;
1221 case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1222 case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
1223 mask = 0xa000; /* jhe */
1224 goto branch_xu;
1225 case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1226 case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
1227 mask = 0xc000; /* jle */
1228 goto branch_xu;
1229 case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1230 case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
1231 mask = 0x7000; /* jne */
1232 goto branch_xu;
1233 case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1234 case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
1235 mask = 0x8000; /* je */
1236 goto branch_xu;
1237 case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1238 case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
1239 {
1240 bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1241
1242 mask = 0x7000; /* jnz */
1243 /* nrk or ngrk %w1,%dst,%src */
1244 EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
1245 REG_W1, dst_reg, src_reg);
1246 goto branch_oc;
1247branch_ks:
1248 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1249 /* lgfi %w1,imm (load sign extend imm) */
1250 EMIT6_IMM(0xc0010000, REG_W1, imm);
1251 /* crj or cgrj %dst,%w1,mask,off */
1252 EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1253 dst_reg, REG_W1, i, off, mask);
1254 break;
1255branch_ku:
1256 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1257 /* lgfi %w1,imm (load sign extend imm) */
1258 EMIT6_IMM(0xc0010000, REG_W1, imm);
1259 /* clrj or clgrj %dst,%w1,mask,off */
1260 EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1261 dst_reg, REG_W1, i, off, mask);
1262 break;
1263branch_xs:
1264 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1265 /* crj or cgrj %dst,%src,mask,off */
1266 EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1267 dst_reg, src_reg, i, off, mask);
1268 break;
1269branch_xu:
1270 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1271 /* clrj or clgrj %dst,%src,mask,off */
1272 EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1273 dst_reg, src_reg, i, off, mask);
1274 break;
1275branch_oc:
1276 /* brc mask,jmp_off (branch instruction needs 4 bytes) */
1277 jmp_off = addrs[i + off + 1] - (addrs[i + 1] - 4);
1278 EMIT4_PCREL(0xa7040000 | mask << 8, jmp_off);
1279 break;
1280 }
1281 default: /* too complex, give up */
1282 pr_err("Unknown opcode %02x\n", insn->code);
1283 return -1;
1284 }
1285 return insn_count;
1286}
1287
1288/*
1289 * Compile eBPF program into s390x code
1290 */
1291static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
1292 bool extra_pass)
1293{
1294 int i, insn_count;
1295
1296 jit->lit = jit->lit_start;
1297 jit->prg = 0;
1298
1299 bpf_jit_prologue(jit, fp->aux->stack_depth);
1300 for (i = 0; i < fp->len; i += insn_count) {
1301 insn_count = bpf_jit_insn(jit, fp, i, extra_pass);
1302 if (insn_count < 0)
1303 return -1;
1304 /* Next instruction address */
1305 jit->addrs[i + insn_count] = jit->prg;
1306 }
1307 bpf_jit_epilogue(jit, fp->aux->stack_depth);
1308
1309 jit->lit_start = jit->prg;
1310 jit->size = jit->lit;
1311 jit->size_prg = jit->prg;
1312 return 0;
1313}
1314
1315bool bpf_jit_needs_zext(void)
1316{
1317 return true;
1318}
1319
1320struct s390_jit_data {
1321 struct bpf_binary_header *header;
1322 struct bpf_jit ctx;
1323 int pass;
1324};
1325
1326/*
1327 * Compile eBPF program "fp"
1328 */
1329struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1330{
1331 struct bpf_prog *tmp, *orig_fp = fp;
1332 struct bpf_binary_header *header;
1333 struct s390_jit_data *jit_data;
1334 bool tmp_blinded = false;
1335 bool extra_pass = false;
1336 struct bpf_jit jit;
1337 int pass;
1338
1339 if (!fp->jit_requested)
1340 return orig_fp;
1341
1342 tmp = bpf_jit_blind_constants(fp);
1343 /*
1344 * If blinding was requested and we failed during blinding,
1345 * we must fall back to the interpreter.
1346 */
1347 if (IS_ERR(tmp))
1348 return orig_fp;
1349 if (tmp != fp) {
1350 tmp_blinded = true;
1351 fp = tmp;
1352 }
1353
1354 jit_data = fp->aux->jit_data;
1355 if (!jit_data) {
1356 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1357 if (!jit_data) {
1358 fp = orig_fp;
1359 goto out;
1360 }
1361 fp->aux->jit_data = jit_data;
1362 }
1363 if (jit_data->ctx.addrs) {
1364 jit = jit_data->ctx;
1365 header = jit_data->header;
1366 extra_pass = true;
1367 pass = jit_data->pass + 1;
1368 goto skip_init_ctx;
1369 }
1370
1371 memset(&jit, 0, sizeof(jit));
1372 jit.addrs = kcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1373 if (jit.addrs == NULL) {
1374 fp = orig_fp;
1375 goto out;
1376 }
1377 /*
1378 * Three initial passes:
1379 * - 1/2: Determine clobbered registers
1380 * - 3: Calculate program size and addrs arrray
1381 */
1382 for (pass = 1; pass <= 3; pass++) {
1383 if (bpf_jit_prog(&jit, fp, extra_pass)) {
1384 fp = orig_fp;
1385 goto free_addrs;
1386 }
1387 }
1388 /*
1389 * Final pass: Allocate and generate program
1390 */
1391 if (jit.size >= BPF_SIZE_MAX) {
1392 fp = orig_fp;
1393 goto free_addrs;
1394 }
1395
1396 header = bpf_jit_binary_alloc(jit.size, &jit.prg_buf, 2, jit_fill_hole);
1397 if (!header) {
1398 fp = orig_fp;
1399 goto free_addrs;
1400 }
1401skip_init_ctx:
1402 if (bpf_jit_prog(&jit, fp, extra_pass)) {
1403 bpf_jit_binary_free(header);
1404 fp = orig_fp;
1405 goto free_addrs;
1406 }
1407 if (bpf_jit_enable > 1) {
1408 bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1409 print_fn_code(jit.prg_buf, jit.size_prg);
1410 }
1411 if (!fp->is_func || extra_pass) {
1412 bpf_jit_binary_lock_ro(header);
1413 } else {
1414 jit_data->header = header;
1415 jit_data->ctx = jit;
1416 jit_data->pass = pass;
1417 }
1418 fp->bpf_func = (void *) jit.prg_buf;
1419 fp->jited = 1;
1420 fp->jited_len = jit.size;
1421
1422 if (!fp->is_func || extra_pass) {
1423 bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
1424free_addrs:
1425 kfree(jit.addrs);
1426 kfree(jit_data);
1427 fp->aux->jit_data = NULL;
1428 }
1429out:
1430 if (tmp_blinded)
1431 bpf_jit_prog_release_other(fp, fp == orig_fp ?
1432 tmp : orig_fp);
1433 return fp;
1434}