Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/arch/parisc/kernel/time.c
  4 *
  5 *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
  6 *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
  7 *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
  8 *
  9 * 1994-07-02  Alan Modra
 10 *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
 11 * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
 12 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 13 */
 14#include <linux/errno.h>
 15#include <linux/module.h>
 16#include <linux/rtc.h>
 17#include <linux/sched.h>
 18#include <linux/sched/clock.h>
 19#include <linux/sched_clock.h>
 20#include <linux/kernel.h>
 21#include <linux/param.h>
 22#include <linux/string.h>
 23#include <linux/mm.h>
 24#include <linux/interrupt.h>
 25#include <linux/time.h>
 26#include <linux/init.h>
 27#include <linux/smp.h>
 28#include <linux/profile.h>
 29#include <linux/clocksource.h>
 30#include <linux/platform_device.h>
 31#include <linux/ftrace.h>
 32
 33#include <linux/uaccess.h>
 34#include <asm/io.h>
 35#include <asm/irq.h>
 36#include <asm/page.h>
 37#include <asm/param.h>
 38#include <asm/pdc.h>
 39#include <asm/led.h>
 40
 41#include <linux/timex.h>
 42
 43static unsigned long clocktick __ro_after_init;	/* timer cycles per tick */
 44
 45/*
 46 * We keep time on PA-RISC Linux by using the Interval Timer which is
 47 * a pair of registers; one is read-only and one is write-only; both
 48 * accessed through CR16.  The read-only register is 32 or 64 bits wide,
 49 * and increments by 1 every CPU clock tick.  The architecture only
 50 * guarantees us a rate between 0.5 and 2, but all implementations use a
 51 * rate of 1.  The write-only register is 32-bits wide.  When the lowest
 52 * 32 bits of the read-only register compare equal to the write-only
 53 * register, it raises a maskable external interrupt.  Each processor has
 54 * an Interval Timer of its own and they are not synchronised.  
 55 *
 56 * We want to generate an interrupt every 1/HZ seconds.  So we program
 57 * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
 58 * is programmed with the intended time of the next tick.  We can be
 59 * held off for an arbitrarily long period of time by interrupts being
 60 * disabled, so we may miss one or more ticks.
 61 */
 62irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
 63{
 64	unsigned long now;
 65	unsigned long next_tick;
 66	unsigned long ticks_elapsed = 0;
 
 67	unsigned int cpu = smp_processor_id();
 68	struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
 69
 70	/* gcc can optimize for "read-only" case with a local clocktick */
 71	unsigned long cpt = clocktick;
 72
 73	profile_tick(CPU_PROFILING);
 74
 75	/* Initialize next_tick to the old expected tick time. */
 76	next_tick = cpuinfo->it_value;
 77
 78	/* Calculate how many ticks have elapsed. */
 79	now = mfctl(16);
 80	do {
 81		++ticks_elapsed;
 82		next_tick += cpt;
 83	} while (next_tick - now > cpt);
 84
 85	/* Store (in CR16 cycles) up to when we are accounting right now. */
 86	cpuinfo->it_value = next_tick;
 87
 88	/* Go do system house keeping. */
 89	if (cpu == 0)
 90		xtime_update(ticks_elapsed);
 
 
 
 
 
 
 
 
 
 
 
 91
 92	update_process_times(user_mode(get_irq_regs()));
 
 93
 94	/* Skip clockticks on purpose if we know we would miss those.
 
 
 
 
 
 
 
 
 
 
 
 
 
 95	 * The new CR16 must be "later" than current CR16 otherwise
 96	 * itimer would not fire until CR16 wrapped - e.g 4 seconds
 97	 * later on a 1Ghz processor. We'll account for the missed
 98	 * ticks on the next timer interrupt.
 99	 * We want IT to fire modulo clocktick even if we miss/skip some.
100	 * But those interrupts don't in fact get delivered that regularly.
101	 *
102	 * "next_tick - now" will always give the difference regardless
103	 * if one or the other wrapped. If "now" is "bigger" we'll end up
104	 * with a very large unsigned number.
105	 */
106	now = mfctl(16);
107	while (next_tick - now > cpt)
108		next_tick += cpt;
109
110	/* Program the IT when to deliver the next interrupt.
111	 * Only bottom 32-bits of next_tick are writable in CR16!
112	 * Timer interrupt will be delivered at least a few hundred cycles
113	 * after the IT fires, so if we are too close (<= 8000 cycles) to the
114	 * next cycle, simply skip it.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115	 */
116	if (next_tick - now <= 8000)
117		next_tick += cpt;
118	mtctl(next_tick, 16);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
120	return IRQ_HANDLED;
121}
122
123
124unsigned long profile_pc(struct pt_regs *regs)
125{
126	unsigned long pc = instruction_pointer(regs);
127
128	if (regs->gr[0] & PSW_N)
129		pc -= 4;
130
131#ifdef CONFIG_SMP
132	if (in_lock_functions(pc))
133		pc = regs->gr[2];
134#endif
135
136	return pc;
137}
138EXPORT_SYMBOL(profile_pc);
139
140
141/* clock source code */
142
143static u64 notrace read_cr16(struct clocksource *cs)
144{
145	return get_cycles();
146}
147
148static struct clocksource clocksource_cr16 = {
149	.name			= "cr16",
150	.rating			= 300,
151	.read			= read_cr16,
152	.mask			= CLOCKSOURCE_MASK(BITS_PER_LONG),
 
 
153	.flags			= CLOCK_SOURCE_IS_CONTINUOUS,
154};
155
156void __init start_cpu_itimer(void)
 
157{
158	unsigned int cpu = smp_processor_id();
159	unsigned long next_tick = mfctl(16) + clocktick;
160
161	mtctl(next_tick, 16);		/* kick off Interval Timer (CR16) */
 
 
162
163	per_cpu(cpu_data, cpu).it_value = next_tick;
164}
165
166#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
167static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
168{
169	struct pdc_tod tod_data;
170
171	memset(tm, 0, sizeof(*tm));
172	if (pdc_tod_read(&tod_data) < 0)
173		return -EOPNOTSUPP;
174
175	/* we treat tod_sec as unsigned, so this can work until year 2106 */
176	rtc_time64_to_tm(tod_data.tod_sec, tm);
177	return 0;
178}
 
179
180static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
181{
182	time64_t secs = rtc_tm_to_time64(tm);
 
183
184	if (pdc_tod_set(secs, 0) < 0)
185		return -EOPNOTSUPP;
186
187	return 0;
188}
189
190static const struct rtc_class_ops rtc_generic_ops = {
191	.read_time = rtc_generic_get_time,
192	.set_time = rtc_generic_set_time,
193};
194
195static int __init rtc_init(void)
196{
197	struct platform_device *pdev;
 
198
199	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
200					     &rtc_generic_ops,
201					     sizeof(rtc_generic_ops));
202
203	return PTR_ERR_OR_ZERO(pdev);
204}
205device_initcall(rtc_init);
206#endif
207
208void read_persistent_clock64(struct timespec64 *ts)
209{
210	static struct pdc_tod tod_data;
211	if (pdc_tod_read(&tod_data) == 0) {
212		ts->tv_sec = tod_data.tod_sec;
213		ts->tv_nsec = tod_data.tod_usec * 1000;
214	} else {
215		printk(KERN_ERR "Error reading tod clock\n");
216	        ts->tv_sec = 0;
217		ts->tv_nsec = 0;
218	}
219}
220
221
222static u64 notrace read_cr16_sched_clock(void)
223{
224	return get_cycles();
225}
226
227
228/*
229 * timer interrupt and sched_clock() initialization
230 */
231
232void __init time_init(void)
233{
234	unsigned long cr16_hz;
235
236	clocktick = (100 * PAGE0->mem_10msec) / HZ;
237	start_cpu_itimer();	/* get CPU 0 started */
238
239	cr16_hz = 100 * PAGE0->mem_10msec;  /* Hz */
240
241	/* register as sched_clock source */
242	sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_hz);
243}
244
245static int __init init_cr16_clocksource(void)
246{
247	/*
248	 * The cr16 interval timers are not syncronized across CPUs on
249	 * different sockets, so mark them unstable and lower rating on
250	 * multi-socket SMP systems.
251	 */
252	if (num_online_cpus() > 1 && !running_on_qemu) {
253		int cpu;
254		unsigned long cpu0_loc;
255		cpu0_loc = per_cpu(cpu_data, 0).cpu_loc;
256
257		for_each_online_cpu(cpu) {
258			if (cpu == 0)
259				continue;
260			if ((cpu0_loc != 0) &&
261			    (cpu0_loc == per_cpu(cpu_data, cpu).cpu_loc))
262				continue;
263
264			clocksource_cr16.name = "cr16_unstable";
265			clocksource_cr16.flags = CLOCK_SOURCE_UNSTABLE;
266			clocksource_cr16.rating = 0;
267			break;
268		}
269	}
270
271	/* XXX: We may want to mark sched_clock stable here if cr16 clocks are
272	 *	in sync:
273	 *	(clocksource_cr16.flags == CLOCK_SOURCE_IS_CONTINUOUS) */
274
275	/* register at clocksource framework */
276	clocksource_register_hz(&clocksource_cr16,
277		100 * PAGE0->mem_10msec);
278
279	return 0;
280}
281
282device_initcall(init_cr16_clocksource);
v3.1
 
  1/*
  2 *  linux/arch/parisc/kernel/time.c
  3 *
  4 *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
  5 *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
  6 *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
  7 *
  8 * 1994-07-02  Alan Modra
  9 *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
 10 * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
 11 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 12 */
 13#include <linux/errno.h>
 14#include <linux/module.h>
 
 15#include <linux/sched.h>
 
 
 16#include <linux/kernel.h>
 17#include <linux/param.h>
 18#include <linux/string.h>
 19#include <linux/mm.h>
 20#include <linux/interrupt.h>
 21#include <linux/time.h>
 22#include <linux/init.h>
 23#include <linux/smp.h>
 24#include <linux/profile.h>
 25#include <linux/clocksource.h>
 26#include <linux/platform_device.h>
 27#include <linux/ftrace.h>
 28
 29#include <asm/uaccess.h>
 30#include <asm/io.h>
 31#include <asm/irq.h>
 
 32#include <asm/param.h>
 33#include <asm/pdc.h>
 34#include <asm/led.h>
 35
 36#include <linux/timex.h>
 37
 38static unsigned long clocktick __read_mostly;	/* timer cycles per tick */
 39
 40/*
 41 * We keep time on PA-RISC Linux by using the Interval Timer which is
 42 * a pair of registers; one is read-only and one is write-only; both
 43 * accessed through CR16.  The read-only register is 32 or 64 bits wide,
 44 * and increments by 1 every CPU clock tick.  The architecture only
 45 * guarantees us a rate between 0.5 and 2, but all implementations use a
 46 * rate of 1.  The write-only register is 32-bits wide.  When the lowest
 47 * 32 bits of the read-only register compare equal to the write-only
 48 * register, it raises a maskable external interrupt.  Each processor has
 49 * an Interval Timer of its own and they are not synchronised.  
 50 *
 51 * We want to generate an interrupt every 1/HZ seconds.  So we program
 52 * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
 53 * is programmed with the intended time of the next tick.  We can be
 54 * held off for an arbitrarily long period of time by interrupts being
 55 * disabled, so we may miss one or more ticks.
 56 */
 57irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
 58{
 59	unsigned long now, now2;
 60	unsigned long next_tick;
 61	unsigned long cycles_elapsed, ticks_elapsed = 1;
 62	unsigned long cycles_remainder;
 63	unsigned int cpu = smp_processor_id();
 64	struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
 65
 66	/* gcc can optimize for "read-only" case with a local clocktick */
 67	unsigned long cpt = clocktick;
 68
 69	profile_tick(CPU_PROFILING);
 70
 71	/* Initialize next_tick to the expected tick time. */
 72	next_tick = cpuinfo->it_value;
 73
 74	/* Get current cycle counter (Control Register 16). */
 75	now = mfctl(16);
 
 
 
 
 76
 77	cycles_elapsed = now - next_tick;
 
 78
 79	if ((cycles_elapsed >> 6) < cpt) {
 80		/* use "cheap" math (add/subtract) instead
 81		 * of the more expensive div/mul method
 82		 */
 83		cycles_remainder = cycles_elapsed;
 84		while (cycles_remainder > cpt) {
 85			cycles_remainder -= cpt;
 86			ticks_elapsed++;
 87		}
 88	} else {
 89		/* TODO: Reduce this to one fdiv op */
 90		cycles_remainder = cycles_elapsed % cpt;
 91		ticks_elapsed += cycles_elapsed / cpt;
 92	}
 93
 94	/* convert from "division remainder" to "remainder of clock tick" */
 95	cycles_remainder = cpt - cycles_remainder;
 96
 97	/* Determine when (in CR16 cycles) next IT interrupt will fire.
 98	 * We want IT to fire modulo clocktick even if we miss/skip some.
 99	 * But those interrupts don't in fact get delivered that regularly.
100	 */
101	next_tick = now + cycles_remainder;
102
103	cpuinfo->it_value = next_tick;
104
105	/* Program the IT when to deliver the next interrupt.
106	 * Only bottom 32-bits of next_tick are writable in CR16!
107	 */
108	mtctl(next_tick, 16);
109
110	/* Skip one clocktick on purpose if we missed next_tick.
111	 * The new CR16 must be "later" than current CR16 otherwise
112	 * itimer would not fire until CR16 wrapped - e.g 4 seconds
113	 * later on a 1Ghz processor. We'll account for the missed
114	 * tick on the next timer interrupt.
 
 
115	 *
116	 * "next_tick - now" will always give the difference regardless
117	 * if one or the other wrapped. If "now" is "bigger" we'll end up
118	 * with a very large unsigned number.
119	 */
120	now2 = mfctl(16);
121	if (next_tick - now2 > cpt)
122		mtctl(next_tick+cpt, 16);
123
124#if 1
125/*
126 * GGG: DEBUG code for how many cycles programming CR16 used.
127 */
128	if (unlikely(now2 - now > 0x3000)) 	/* 12K cycles */
129		printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!"
130			" cyc %lX rem %lX "
131			" next/now %lX/%lX\n",
132			cpu, now2 - now, cycles_elapsed, cycles_remainder,
133			next_tick, now );
134#endif
135
136	/* Can we differentiate between "early CR16" (aka Scenario 1) and
137	 * "long delay" (aka Scenario 3)? I don't think so.
138	 *
139	 * Timer_interrupt will be delivered at least a few hundred cycles
140	 * after the IT fires. But it's arbitrary how much time passes
141	 * before we call it "late". I've picked one second.
142	 *
143	 * It's important NO printk's are between reading CR16 and
144	 * setting up the next value. May introduce huge variance.
145	 */
146	if (unlikely(ticks_elapsed > HZ)) {
147		/* Scenario 3: very long delay?  bad in any case */
148		printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
149			" cycles %lX rem %lX "
150			" next/now %lX/%lX\n",
151			cpu,
152			cycles_elapsed, cycles_remainder,
153			next_tick, now );
154	}
155
156	/* Done mucking with unreliable delivery of interrupts.
157	 * Go do system house keeping.
158	 */
159
160	if (!--cpuinfo->prof_counter) {
161		cpuinfo->prof_counter = cpuinfo->prof_multiplier;
162		update_process_times(user_mode(get_irq_regs()));
163	}
164
165	if (cpu == 0)
166		xtime_update(ticks_elapsed);
167
168	return IRQ_HANDLED;
169}
170
171
172unsigned long profile_pc(struct pt_regs *regs)
173{
174	unsigned long pc = instruction_pointer(regs);
175
176	if (regs->gr[0] & PSW_N)
177		pc -= 4;
178
179#ifdef CONFIG_SMP
180	if (in_lock_functions(pc))
181		pc = regs->gr[2];
182#endif
183
184	return pc;
185}
186EXPORT_SYMBOL(profile_pc);
187
188
189/* clock source code */
190
191static cycle_t read_cr16(struct clocksource *cs)
192{
193	return get_cycles();
194}
195
196static struct clocksource clocksource_cr16 = {
197	.name			= "cr16",
198	.rating			= 300,
199	.read			= read_cr16,
200	.mask			= CLOCKSOURCE_MASK(BITS_PER_LONG),
201	.mult			= 0, /* to be set */
202	.shift			= 22,
203	.flags			= CLOCK_SOURCE_IS_CONTINUOUS,
204};
205
206#ifdef CONFIG_SMP
207int update_cr16_clocksource(void)
208{
209	/* since the cr16 cycle counters are not synchronized across CPUs,
210	   we'll check if we should switch to a safe clocksource: */
211	if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
212		clocksource_change_rating(&clocksource_cr16, 0);
213		return 1;
214	}
215
216	return 0;
217}
218#else
219int update_cr16_clocksource(void)
 
220{
221	return 0; /* no change */
 
 
 
 
 
 
 
 
222}
223#endif /*CONFIG_SMP*/
224
225void __init start_cpu_itimer(void)
226{
227	unsigned int cpu = smp_processor_id();
228	unsigned long next_tick = mfctl(16) + clocktick;
229
230	mtctl(next_tick, 16);		/* kick off Interval Timer (CR16) */
 
231
232	per_cpu(cpu_data, cpu).it_value = next_tick;
233}
234
235static struct platform_device rtc_generic_dev = {
236	.name = "rtc-generic",
237	.id = -1,
238};
239
240static int __init rtc_init(void)
241{
242	if (platform_device_register(&rtc_generic_dev) < 0)
243		printk(KERN_ERR "unable to register rtc device...\n");
244
245	/* not necessarily an error */
246	return 0;
 
 
 
247}
248module_init(rtc_init);
 
249
250void read_persistent_clock(struct timespec *ts)
251{
252	static struct pdc_tod tod_data;
253	if (pdc_tod_read(&tod_data) == 0) {
254		ts->tv_sec = tod_data.tod_sec;
255		ts->tv_nsec = tod_data.tod_usec * 1000;
256	} else {
257		printk(KERN_ERR "Error reading tod clock\n");
258	        ts->tv_sec = 0;
259		ts->tv_nsec = 0;
260	}
261}
262
 
 
 
 
 
 
 
 
 
 
 
263void __init time_init(void)
264{
265	unsigned long current_cr16_khz;
266
267	clocktick = (100 * PAGE0->mem_10msec) / HZ;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268
269	start_cpu_itimer();	/* get CPU 0 started */
 
 
270
271	/* register at clocksource framework */
272	current_cr16_khz = PAGE0->mem_10msec/10;  /* kHz */
273	clocksource_cr16.mult = clocksource_khz2mult(current_cr16_khz,
274						clocksource_cr16.shift);
275	clocksource_register(&clocksource_cr16);
276}