Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  Parisc performance counters
  4 *  Copyright (C) 2001 Randolph Chung <tausq@debian.org>
  5 *
  6 *  This code is derived, with permission, from HP/UX sources.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  7 */
  8
  9/*
 10 *  Edited comment from original sources:
 11 *
 12 *  This driver programs the PCX-U/PCX-W performance counters
 13 *  on the PA-RISC 2.0 chips.  The driver keeps all images now
 14 *  internally to the kernel to hopefully eliminate the possibility
 15 *  of a bad image halting the CPU.  Also, there are different
 16 *  images for the PCX-W and later chips vs the PCX-U chips.
 17 *
 18 *  Only 1 process is allowed to access the driver at any time,
 19 *  so the only protection that is needed is at open and close.
 20 *  A variable "perf_enabled" is used to hold the state of the
 21 *  driver.  The spinlock "perf_lock" is used to protect the
 22 *  modification of the state during open/close operations so
 23 *  multiple processes don't get into the driver simultaneously.
 24 *
 25 *  This driver accesses the processor directly vs going through
 26 *  the PDC INTRIGUE calls.  This is done to eliminate bugs introduced
 27 *  in various PDC revisions.  The code is much more maintainable
 28 *  and reliable this way vs having to debug on every version of PDC
 29 *  on every box.
 30 */
 31
 32#include <linux/capability.h>
 33#include <linux/init.h>
 34#include <linux/proc_fs.h>
 35#include <linux/miscdevice.h>
 36#include <linux/spinlock.h>
 37
 38#include <linux/uaccess.h>
 39#include <asm/perf.h>
 40#include <asm/parisc-device.h>
 41#include <asm/processor.h>
 42#include <asm/runway.h>
 43#include <asm/io.h>		/* for __raw_read() */
 44
 45#include "perf_images.h"
 46
 47#define MAX_RDR_WORDS	24
 48#define PERF_VERSION	2	/* derived from hpux's PI v2 interface */
 49
 50/* definition of RDR regs */
 51struct rdr_tbl_ent {
 52	uint16_t	width;
 53	uint8_t		num_words;
 54	uint8_t		write_control;
 55};
 56
 57static int perf_processor_interface __read_mostly = UNKNOWN_INTF;
 58static int perf_enabled __read_mostly;
 59static DEFINE_SPINLOCK(perf_lock);
 60struct parisc_device *cpu_device __read_mostly;
 61
 62/* RDRs to write for PCX-W */
 63static const int perf_rdrs_W[] =
 64	{ 0, 1, 4, 5, 6, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
 65
 66/* RDRs to write for PCX-U */
 67static const int perf_rdrs_U[] =
 68	{ 0, 1, 4, 5, 6, 7, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
 69
 70/* RDR register descriptions for PCX-W */
 71static const struct rdr_tbl_ent perf_rdr_tbl_W[] = {
 72	{ 19,	1,	8 },   /* RDR 0 */
 73	{ 16,	1,	16 },  /* RDR 1 */
 74	{ 72,	2,	0 },   /* RDR 2 */
 75	{ 81,	2,	0 },   /* RDR 3 */
 76	{ 328,	6,	0 },   /* RDR 4 */
 77	{ 160,	3,	0 },   /* RDR 5 */
 78	{ 336,	6,	0 },   /* RDR 6 */
 79	{ 164,	3,	0 },   /* RDR 7 */
 80	{ 0,	0,	0 },   /* RDR 8 */
 81	{ 35,	1,	0 },   /* RDR 9 */
 82	{ 6,	1,	0 },   /* RDR 10 */
 83	{ 18,	1,	0 },   /* RDR 11 */
 84	{ 13,	1,	0 },   /* RDR 12 */
 85	{ 8,	1,	0 },   /* RDR 13 */
 86	{ 8,	1,	0 },   /* RDR 14 */
 87	{ 8,	1,	0 },   /* RDR 15 */
 88	{ 1530,	24,	0 },   /* RDR 16 */
 89	{ 16,	1,	0 },   /* RDR 17 */
 90	{ 4,	1,	0 },   /* RDR 18 */
 91	{ 0,	0,	0 },   /* RDR 19 */
 92	{ 152,	3,	24 },  /* RDR 20 */
 93	{ 152,	3,	24 },  /* RDR 21 */
 94	{ 233,	4,	48 },  /* RDR 22 */
 95	{ 233,	4,	48 },  /* RDR 23 */
 96	{ 71,	2,	0 },   /* RDR 24 */
 97	{ 71,	2,	0 },   /* RDR 25 */
 98	{ 11,	1,	0 },   /* RDR 26 */
 99	{ 18,	1,	0 },   /* RDR 27 */
100	{ 128,	2,	0 },   /* RDR 28 */
101	{ 0,	0,	0 },   /* RDR 29 */
102	{ 16,	1,	0 },   /* RDR 30 */
103	{ 16,	1,	0 },   /* RDR 31 */
104};
105
106/* RDR register descriptions for PCX-U */
107static const struct rdr_tbl_ent perf_rdr_tbl_U[] = {
108	{ 19,	1,	8 },              /* RDR 0 */
109	{ 32,	1,	16 },             /* RDR 1 */
110	{ 20,	1,	0 },              /* RDR 2 */
111	{ 0,	0,	0 },              /* RDR 3 */
112	{ 344,	6,	0 },              /* RDR 4 */
113	{ 176,	3,	0 },              /* RDR 5 */
114	{ 336,	6,	0 },              /* RDR 6 */
115	{ 0,	0,	0 },              /* RDR 7 */
116	{ 0,	0,	0 },              /* RDR 8 */
117	{ 0,	0,	0 },              /* RDR 9 */
118	{ 28,	1,	0 },              /* RDR 10 */
119	{ 33,	1,	0 },              /* RDR 11 */
120	{ 0,	0,	0 },              /* RDR 12 */
121	{ 230,	4,	0 },              /* RDR 13 */
122	{ 32,	1,	0 },              /* RDR 14 */
123	{ 128,	2,	0 },              /* RDR 15 */
124	{ 1494,	24,	0 },              /* RDR 16 */
125	{ 18,	1,	0 },              /* RDR 17 */
126	{ 4,	1,	0 },              /* RDR 18 */
127	{ 0,	0,	0 },              /* RDR 19 */
128	{ 158,	3,	24 },             /* RDR 20 */
129	{ 158,	3,	24 },             /* RDR 21 */
130	{ 194,	4,	48 },             /* RDR 22 */
131	{ 194,	4,	48 },             /* RDR 23 */
132	{ 71,	2,	0 },              /* RDR 24 */
133	{ 71,	2,	0 },              /* RDR 25 */
134	{ 28,	1,	0 },              /* RDR 26 */
135	{ 33,	1,	0 },              /* RDR 27 */
136	{ 88,	2,	0 },              /* RDR 28 */
137	{ 32,	1,	0 },              /* RDR 29 */
138	{ 24,	1,	0 },              /* RDR 30 */
139	{ 16,	1,	0 },              /* RDR 31 */
140};
141
142/*
143 * A non-zero write_control in the above tables is a byte offset into
144 * this array.
145 */
146static const uint64_t perf_bitmasks[] = {
147	0x0000000000000000ul,     /* first dbl word must be zero */
148	0xfdffe00000000000ul,     /* RDR0 bitmask */
149	0x003f000000000000ul,     /* RDR1 bitmask */
150	0x00fffffffffffffful,     /* RDR20-RDR21 bitmask (152 bits) */
151	0xfffffffffffffffful,
152	0xfffffffc00000000ul,
153	0xfffffffffffffffful,     /* RDR22-RDR23 bitmask (233 bits) */
154	0xfffffffffffffffful,
155	0xfffffffffffffffcul,
156	0xff00000000000000ul
157};
158
159/*
160 * Write control bitmasks for Pa-8700 processor given
161 * some things have changed slightly.
162 */
163static const uint64_t perf_bitmasks_piranha[] = {
164	0x0000000000000000ul,     /* first dbl word must be zero */
165	0xfdffe00000000000ul,     /* RDR0 bitmask */
166	0x003f000000000000ul,     /* RDR1 bitmask */
167	0x00fffffffffffffful,     /* RDR20-RDR21 bitmask (158 bits) */
168	0xfffffffffffffffful,
169	0xfffffffc00000000ul,
170	0xfffffffffffffffful,     /* RDR22-RDR23 bitmask (210 bits) */
171	0xfffffffffffffffful,
172	0xfffffffffffffffful,
173	0xfffc000000000000ul
174};
175
176static const uint64_t *bitmask_array;   /* array of bitmasks to use */
177
178/******************************************************************************
179 * Function Prototypes
180 *****************************************************************************/
181static int perf_config(uint32_t *image_ptr);
182static int perf_release(struct inode *inode, struct file *file);
183static int perf_open(struct inode *inode, struct file *file);
184static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos);
185static ssize_t perf_write(struct file *file, const char __user *buf,
186	size_t count, loff_t *ppos);
187static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
188static void perf_start_counters(void);
189static int perf_stop_counters(uint32_t *raddr);
190static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num);
191static int perf_rdr_read_ubuf(uint32_t	rdr_num, uint64_t *buffer);
192static int perf_rdr_clear(uint32_t rdr_num);
193static int perf_write_image(uint64_t *memaddr);
194static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer);
195
196/* External Assembly Routines */
197extern uint64_t perf_rdr_shift_in_W (uint32_t rdr_num, uint16_t width);
198extern uint64_t perf_rdr_shift_in_U (uint32_t rdr_num, uint16_t width);
199extern void perf_rdr_shift_out_W (uint32_t rdr_num, uint64_t buffer);
200extern void perf_rdr_shift_out_U (uint32_t rdr_num, uint64_t buffer);
201extern void perf_intrigue_enable_perf_counters (void);
202extern void perf_intrigue_disable_perf_counters (void);
203
204/******************************************************************************
205 * Function Definitions
206 *****************************************************************************/
207
208
209/*
210 * configure:
211 *
212 * Configure the cpu with a given data image.  First turn off the counters,
213 * then download the image, then turn the counters back on.
214 */
215static int perf_config(uint32_t *image_ptr)
216{
217	long error;
218	uint32_t raddr[4];
219
220	/* Stop the counters*/
221	error = perf_stop_counters(raddr);
222	if (error != 0) {
223		printk("perf_config: perf_stop_counters = %ld\n", error);
224		return -EINVAL;
225	}
226
227printk("Preparing to write image\n");
228	/* Write the image to the chip */
229	error = perf_write_image((uint64_t *)image_ptr);
230	if (error != 0) {
231		printk("perf_config: DOWNLOAD = %ld\n", error);
232		return -EINVAL;
233	}
234
235printk("Preparing to start counters\n");
236
237	/* Start the counters */
238	perf_start_counters();
239
240	return sizeof(uint32_t);
241}
242
243/*
244 * Open the device and initialize all of its memory.  The device is only
245 * opened once, but can be "queried" by multiple processes that know its
246 * file descriptor.
247 */
248static int perf_open(struct inode *inode, struct file *file)
249{
250	spin_lock(&perf_lock);
251	if (perf_enabled) {
252		spin_unlock(&perf_lock);
253		return -EBUSY;
254	}
255	perf_enabled = 1;
256 	spin_unlock(&perf_lock);
257
258	return 0;
259}
260
261/*
262 * Close the device.
263 */
264static int perf_release(struct inode *inode, struct file *file)
265{
266	spin_lock(&perf_lock);
267	perf_enabled = 0;
268	spin_unlock(&perf_lock);
269
270	return 0;
271}
272
273/*
274 * Read does nothing for this driver
275 */
276static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos)
277{
278	return 0;
279}
280
281/*
282 * write:
283 *
284 * This routine downloads the image to the chip.  It must be
285 * called on the processor that the download should happen
286 * on.
287 */
288static ssize_t perf_write(struct file *file, const char __user *buf,
289	size_t count, loff_t *ppos)
290{
 
291	size_t image_size;
292	uint32_t image_type;
293	uint32_t interface_type;
294	uint32_t test;
295
296	if (perf_processor_interface == ONYX_INTF)
297		image_size = PCXU_IMAGE_SIZE;
298	else if (perf_processor_interface == CUDA_INTF)
299		image_size = PCXW_IMAGE_SIZE;
300	else
301		return -EFAULT;
302
303	if (!capable(CAP_SYS_ADMIN))
304		return -EACCES;
305
306	if (count != sizeof(uint32_t))
307		return -EIO;
308
309	if (copy_from_user(&image_type, buf, sizeof(uint32_t)))
310		return -EFAULT;
311
312	/* Get the interface type and test type */
313   	interface_type = (image_type >> 16) & 0xffff;
314	test           = (image_type & 0xffff);
315
316	/* Make sure everything makes sense */
317
318	/* First check the machine type is correct for
319	   the requested image */
320	if (((perf_processor_interface == CUDA_INTF) &&
321			(interface_type != CUDA_INTF)) ||
322		((perf_processor_interface == ONYX_INTF) &&
323			(interface_type != ONYX_INTF)))
324		return -EINVAL;
325
326	/* Next check to make sure the requested image
327	   is valid */
328	if (((interface_type == CUDA_INTF) &&
329		       (test >= MAX_CUDA_IMAGES)) ||
330	    ((interface_type == ONYX_INTF) &&
331		       (test >= MAX_ONYX_IMAGES)))
332		return -EINVAL;
333
334	/* Copy the image into the processor */
335	if (interface_type == CUDA_INTF)
336		return perf_config(cuda_images[test]);
337	else
338		return perf_config(onyx_images[test]);
339
340	return count;
341}
342
343/*
344 * Patch the images that need to know the IVA addresses.
345 */
346static void perf_patch_images(void)
347{
348#if 0 /* FIXME!! */
349/*
350 * NOTE:  this routine is VERY specific to the current TLB image.
351 * If the image is changed, this routine might also need to be changed.
352 */
353	extern void $i_itlb_miss_2_0();
354	extern void $i_dtlb_miss_2_0();
355	extern void PA2_0_iva();
356
357	/*
358	 * We can only use the lower 32-bits, the upper 32-bits should be 0
359	 * anyway given this is in the kernel
360	 */
361	uint32_t itlb_addr  = (uint32_t)&($i_itlb_miss_2_0);
362	uint32_t dtlb_addr  = (uint32_t)&($i_dtlb_miss_2_0);
363	uint32_t IVAaddress = (uint32_t)&PA2_0_iva;
364
365	if (perf_processor_interface == ONYX_INTF) {
366		/* clear last 2 bytes */
367		onyx_images[TLBMISS][15] &= 0xffffff00;
368		/* set 2 bytes */
369		onyx_images[TLBMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
370		onyx_images[TLBMISS][16] = (dtlb_addr << 8)&0xffffff00;
371		onyx_images[TLBMISS][17] = itlb_addr;
372
373		/* clear last 2 bytes */
374		onyx_images[TLBHANDMISS][15] &= 0xffffff00;
375		/* set 2 bytes */
376		onyx_images[TLBHANDMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
377		onyx_images[TLBHANDMISS][16] = (dtlb_addr << 8)&0xffffff00;
378		onyx_images[TLBHANDMISS][17] = itlb_addr;
379
380		/* clear last 2 bytes */
381		onyx_images[BIG_CPI][15] &= 0xffffff00;
382		/* set 2 bytes */
383		onyx_images[BIG_CPI][15] |= (0x000000ff&((dtlb_addr) >> 24));
384		onyx_images[BIG_CPI][16] = (dtlb_addr << 8)&0xffffff00;
385		onyx_images[BIG_CPI][17] = itlb_addr;
386
387	    onyx_images[PANIC][15] &= 0xffffff00;  /* clear last 2 bytes */
388	 	onyx_images[PANIC][15] |= (0x000000ff&((IVAaddress) >> 24)); /* set 2 bytes */
389		onyx_images[PANIC][16] = (IVAaddress << 8)&0xffffff00;
390
391
392	} else if (perf_processor_interface == CUDA_INTF) {
393		/* Cuda interface */
394		cuda_images[TLBMISS][16] =
395			(cuda_images[TLBMISS][16]&0xffff0000) |
396			((dtlb_addr >> 8)&0x0000ffff);
397		cuda_images[TLBMISS][17] =
398			((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
399		cuda_images[TLBMISS][18] = (itlb_addr << 16)&0xffff0000;
400
401		cuda_images[TLBHANDMISS][16] =
402			(cuda_images[TLBHANDMISS][16]&0xffff0000) |
403			((dtlb_addr >> 8)&0x0000ffff);
404		cuda_images[TLBHANDMISS][17] =
405			((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
406		cuda_images[TLBHANDMISS][18] = (itlb_addr << 16)&0xffff0000;
407
408		cuda_images[BIG_CPI][16] =
409			(cuda_images[BIG_CPI][16]&0xffff0000) |
410			((dtlb_addr >> 8)&0x0000ffff);
411		cuda_images[BIG_CPI][17] =
412			((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
413		cuda_images[BIG_CPI][18] = (itlb_addr << 16)&0xffff0000;
414	} else {
415		/* Unknown type */
416	}
417#endif
418}
419
420
421/*
422 * ioctl routine
423 * All routines effect the processor that they are executed on.  Thus you
424 * must be running on the processor that you wish to change.
425 */
426
427static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
428{
429	long error_start;
430	uint32_t raddr[4];
431	int error = 0;
432
433	switch (cmd) {
434
435	    case PA_PERF_ON:
436			/* Start the counters */
437			perf_start_counters();
438			break;
439
440	    case PA_PERF_OFF:
441			error_start = perf_stop_counters(raddr);
442			if (error_start != 0) {
443				printk(KERN_ERR "perf_off: perf_stop_counters = %ld\n", error_start);
444				error = -EFAULT;
445				break;
446			}
447
448			/* copy out the Counters */
449			if (copy_to_user((void __user *)arg, raddr,
450					sizeof (raddr)) != 0) {
451				error =  -EFAULT;
452				break;
453			}
454			break;
455
456	    case PA_PERF_VERSION:
457  	  		/* Return the version # */
458			error = put_user(PERF_VERSION, (int *)arg);
459			break;
460
461	    default:
462  	 		error = -ENOTTY;
463	}
464
465	return error;
466}
467
468static const struct file_operations perf_fops = {
469	.llseek = no_llseek,
470	.read = perf_read,
471	.write = perf_write,
472	.unlocked_ioctl = perf_ioctl,
473	.compat_ioctl = perf_ioctl,
474	.open = perf_open,
475	.release = perf_release
476};
477
478static struct miscdevice perf_dev = {
479	MISC_DYNAMIC_MINOR,
480	PA_PERF_DEV,
481	&perf_fops
482};
483
484/*
485 * Initialize the module
486 */
487static int __init perf_init(void)
488{
489	int ret;
490
491	/* Determine correct processor interface to use */
492	bitmask_array = perf_bitmasks;
493
494	if (boot_cpu_data.cpu_type == pcxu ||
495	    boot_cpu_data.cpu_type == pcxu_) {
496		perf_processor_interface = ONYX_INTF;
497	} else if (boot_cpu_data.cpu_type == pcxw ||
498		 boot_cpu_data.cpu_type == pcxw_ ||
499		 boot_cpu_data.cpu_type == pcxw2 ||
500		 boot_cpu_data.cpu_type == mako ||
501		 boot_cpu_data.cpu_type == mako2) {
502		perf_processor_interface = CUDA_INTF;
503		if (boot_cpu_data.cpu_type == pcxw2 ||
504		    boot_cpu_data.cpu_type == mako ||
505		    boot_cpu_data.cpu_type == mako2)
506			bitmask_array = perf_bitmasks_piranha;
507	} else {
508		perf_processor_interface = UNKNOWN_INTF;
509		printk("Performance monitoring counters not supported on this processor\n");
510		return -ENODEV;
511	}
512
513	ret = misc_register(&perf_dev);
514	if (ret) {
515		printk(KERN_ERR "Performance monitoring counters: "
516			"cannot register misc device.\n");
517		return ret;
518	}
519
520	/* Patch the images to match the system */
521    	perf_patch_images();
522
 
 
523	/* TODO: this only lets us access the first cpu.. what to do for SMP? */
524	cpu_device = per_cpu(cpu_data, 0).dev;
525	printk("Performance monitoring counters enabled for %s\n",
526		per_cpu(cpu_data, 0).dev->name);
527
528	return 0;
529}
530device_initcall(perf_init);
531
532/*
533 * perf_start_counters(void)
534 *
535 * Start the counters.
536 */
537static void perf_start_counters(void)
538{
539	/* Enable performance monitor counters */
540	perf_intrigue_enable_perf_counters();
541}
542
543/*
544 * perf_stop_counters
545 *
546 * Stop the performance counters and save counts
547 * in a per_processor array.
548 */
549static int perf_stop_counters(uint32_t *raddr)
550{
551	uint64_t userbuf[MAX_RDR_WORDS];
552
553	/* Disable performance counters */
554	perf_intrigue_disable_perf_counters();
555
556	if (perf_processor_interface == ONYX_INTF) {
557		uint64_t tmp64;
558		/*
559		 * Read the counters
560		 */
561		if (!perf_rdr_read_ubuf(16, userbuf))
562			return -13;
563
564		/* Counter0 is bits 1398 to 1429 */
565		tmp64 =  (userbuf[21] << 22) & 0x00000000ffc00000;
566		tmp64 |= (userbuf[22] >> 42) & 0x00000000003fffff;
567		/* OR sticky0 (bit 1430) to counter0 bit 32 */
568		tmp64 |= (userbuf[22] >> 10) & 0x0000000080000000;
569		raddr[0] = (uint32_t)tmp64;
570
571		/* Counter1 is bits 1431 to 1462 */
572		tmp64 =  (userbuf[22] >> 9) & 0x00000000ffffffff;
573		/* OR sticky1 (bit 1463) to counter1 bit 32 */
574		tmp64 |= (userbuf[22] << 23) & 0x0000000080000000;
575		raddr[1] = (uint32_t)tmp64;
576
577		/* Counter2 is bits 1464 to 1495 */
578		tmp64 =  (userbuf[22] << 24) & 0x00000000ff000000;
579		tmp64 |= (userbuf[23] >> 40) & 0x0000000000ffffff;
580		/* OR sticky2 (bit 1496) to counter2 bit 32 */
581		tmp64 |= (userbuf[23] >> 8) & 0x0000000080000000;
582		raddr[2] = (uint32_t)tmp64;
583
584		/* Counter3 is bits 1497 to 1528 */
585		tmp64 =  (userbuf[23] >> 7) & 0x00000000ffffffff;
586		/* OR sticky3 (bit 1529) to counter3 bit 32 */
587		tmp64 |= (userbuf[23] << 25) & 0x0000000080000000;
588		raddr[3] = (uint32_t)tmp64;
589
590		/*
591		 * Zero out the counters
592		 */
593
594		/*
595		 * The counters and sticky-bits comprise the last 132 bits
596		 * (1398 - 1529) of RDR16 on a U chip.  We'll zero these
597		 * out the easy way: zero out last 10 bits of dword 21,
598		 * all of dword 22 and 58 bits (plus 6 don't care bits) of
599		 * dword 23.
600		 */
601		userbuf[21] &= 0xfffffffffffffc00ul;	/* 0 to last 10 bits */
602		userbuf[22] = 0;
603		userbuf[23] = 0;
604
605		/*
606		 * Write back the zeroed bytes + the image given
607		 * the read was destructive.
608		 */
609		perf_rdr_write(16, userbuf);
610	} else {
611
612		/*
613		 * Read RDR-15 which contains the counters and sticky bits
614		 */
615		if (!perf_rdr_read_ubuf(15, userbuf)) {
616			return -13;
617		}
618
619		/*
620		 * Clear out the counters
621		 */
622		perf_rdr_clear(15);
623
624		/*
625		 * Copy the counters 
626		 */
627		raddr[0] = (uint32_t)((userbuf[0] >> 32) & 0x00000000ffffffffUL);
628		raddr[1] = (uint32_t)(userbuf[0] & 0x00000000ffffffffUL);
629		raddr[2] = (uint32_t)((userbuf[1] >> 32) & 0x00000000ffffffffUL);
630		raddr[3] = (uint32_t)(userbuf[1] & 0x00000000ffffffffUL);
631	}
632
633	return 0;
634}
635
636/*
637 * perf_rdr_get_entry
638 *
639 * Retrieve a pointer to the description of what this
640 * RDR contains.
641 */
642static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num)
643{
644	if (perf_processor_interface == ONYX_INTF) {
645		return &perf_rdr_tbl_U[rdr_num];
646	} else {
647		return &perf_rdr_tbl_W[rdr_num];
648	}
649}
650
651/*
652 * perf_rdr_read_ubuf
653 *
654 * Read the RDR value into the buffer specified.
655 */
656static int perf_rdr_read_ubuf(uint32_t	rdr_num, uint64_t *buffer)
657{
658	uint64_t	data, data_mask = 0;
659	uint32_t	width, xbits, i;
660	const struct rdr_tbl_ent *tentry;
661
662	tentry = perf_rdr_get_entry(rdr_num);
663	if ((width = tentry->width) == 0)
664		return 0;
665
666	/* Clear out buffer */
667	i = tentry->num_words;
668	while (i--) {
669		buffer[i] = 0;
670	}
671
672	/* Check for bits an even number of 64 */
673	if ((xbits = width & 0x03f) != 0) {
674		data_mask = 1;
675		data_mask <<= (64 - xbits);
676		data_mask--;
677	}
678
679	/* Grab all of the data */
680	i = tentry->num_words;
681	while (i--) {
682
683		if (perf_processor_interface == ONYX_INTF) {
684			data = perf_rdr_shift_in_U(rdr_num, width);
685		} else {
686			data = perf_rdr_shift_in_W(rdr_num, width);
687		}
688		if (xbits) {
689			buffer[i] |= (data << (64 - xbits));
690			if (i) {
691				buffer[i-1] |= ((data >> xbits) & data_mask);
692			}
693		} else {
694			buffer[i] = data;
695		}
696	}
697
698	return 1;
699}
700
701/*
702 * perf_rdr_clear
703 *
704 * Zero out the given RDR register
705 */
706static int perf_rdr_clear(uint32_t	rdr_num)
707{
708	const struct rdr_tbl_ent *tentry;
709	int32_t		i;
710
711	tentry = perf_rdr_get_entry(rdr_num);
712
713	if (tentry->width == 0) {
714		return -1;
715	}
716
717	i = tentry->num_words;
718	while (i--) {
719		if (perf_processor_interface == ONYX_INTF) {
720			perf_rdr_shift_out_U(rdr_num, 0UL);
721		} else {
722			perf_rdr_shift_out_W(rdr_num, 0UL);
723		}
724	}
725
726	return 0;
727}
728
729
730/*
731 * perf_write_image
732 *
733 * Write the given image out to the processor
734 */
735static int perf_write_image(uint64_t *memaddr)
736{
737	uint64_t buffer[MAX_RDR_WORDS];
738	uint64_t *bptr;
739	uint32_t dwords;
740	const uint32_t *intrigue_rdr;
741	const uint64_t *intrigue_bitmask;
742	uint64_t tmp64;
743	void __iomem *runway;
744	const struct rdr_tbl_ent *tentry;
745	int i;
746
747	/* Clear out counters */
748	if (perf_processor_interface == ONYX_INTF) {
749
750		perf_rdr_clear(16);
751
752		/* Toggle performance monitor */
753		perf_intrigue_enable_perf_counters();
754		perf_intrigue_disable_perf_counters();
755
756		intrigue_rdr = perf_rdrs_U;
757	} else {
758		perf_rdr_clear(15);
759		intrigue_rdr = perf_rdrs_W;
760	}
761
762	/* Write all RDRs */
763	while (*intrigue_rdr != -1) {
764		tentry = perf_rdr_get_entry(*intrigue_rdr);
765		perf_rdr_read_ubuf(*intrigue_rdr, buffer);
766		bptr   = &buffer[0];
767		dwords = tentry->num_words;
768		if (tentry->write_control) {
769			intrigue_bitmask = &bitmask_array[tentry->write_control >> 3];
770			while (dwords--) {
771				tmp64 = *intrigue_bitmask & *memaddr++;
772				tmp64 |= (~(*intrigue_bitmask++)) & *bptr;
773				*bptr++ = tmp64;
774			}
775		} else {
776			while (dwords--) {
777				*bptr++ = *memaddr++;
778			}
779		}
780
781		perf_rdr_write(*intrigue_rdr, buffer);
782		intrigue_rdr++;
783	}
784
785	/*
786	 * Now copy out the Runway stuff which is not in RDRs
787	 */
788
789	if (cpu_device == NULL)
790	{
791		printk(KERN_ERR "write_image: cpu_device not yet initialized!\n");
792		return -1;
793	}
794
795	runway = ioremap_nocache(cpu_device->hpa.start, 4096);
796	if (!runway) {
797		pr_err("perf_write_image: ioremap failed!\n");
798		return -ENOMEM;
799	}
800
801	/* Merge intrigue bits into Runway STATUS 0 */
802	tmp64 = __raw_readq(runway + RUNWAY_STATUS) & 0xffecfffffffffffful;
803	__raw_writeq(tmp64 | (*memaddr++ & 0x0013000000000000ul),
804		     runway + RUNWAY_STATUS);
805
806	/* Write RUNWAY DEBUG registers */
807	for (i = 0; i < 8; i++) {
808		__raw_writeq(*memaddr++, runway + RUNWAY_DEBUG);
809	}
810
811	return 0;
812}
813
814/*
815 * perf_rdr_write
816 *
817 * Write the given RDR register with the contents
818 * of the given buffer.
819 */
820static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer)
821{
822	const struct rdr_tbl_ent *tentry;
823	int32_t		i;
824
825printk("perf_rdr_write\n");
826	tentry = perf_rdr_get_entry(rdr_num);
827	if (tentry->width == 0) { return; }
828
829	i = tentry->num_words;
830	while (i--) {
831		if (perf_processor_interface == ONYX_INTF) {
832			perf_rdr_shift_out_U(rdr_num, buffer[i]);
833		} else {
834			perf_rdr_shift_out_W(rdr_num, buffer[i]);
835		}
836	}
837printk("perf_rdr_write done\n");
838}
v3.1
 
  1/*
  2 *  Parisc performance counters
  3 *  Copyright (C) 2001 Randolph Chung <tausq@debian.org>
  4 *
  5 *  This code is derived, with permission, from HP/UX sources.
  6 *
  7 *    This program is free software; you can redistribute it and/or modify
  8 *    it under the terms of the GNU General Public License as published by
  9 *    the Free Software Foundation; either version 2, or (at your option)
 10 *    any later version.
 11 *
 12 *    This program is distributed in the hope that it will be useful,
 13 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 *    GNU General Public License for more details.
 16 *
 17 *    You should have received a copy of the GNU General Public License
 18 *    along with this program; if not, write to the Free Software
 19 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 20 */
 21
 22/*
 23 *  Edited comment from original sources:
 24 *
 25 *  This driver programs the PCX-U/PCX-W performance counters
 26 *  on the PA-RISC 2.0 chips.  The driver keeps all images now
 27 *  internally to the kernel to hopefully eliminate the possibility
 28 *  of a bad image halting the CPU.  Also, there are different
 29 *  images for the PCX-W and later chips vs the PCX-U chips.
 30 *
 31 *  Only 1 process is allowed to access the driver at any time,
 32 *  so the only protection that is needed is at open and close.
 33 *  A variable "perf_enabled" is used to hold the state of the
 34 *  driver.  The spinlock "perf_lock" is used to protect the
 35 *  modification of the state during open/close operations so
 36 *  multiple processes don't get into the driver simultaneously.
 37 *
 38 *  This driver accesses the processor directly vs going through
 39 *  the PDC INTRIGUE calls.  This is done to eliminate bugs introduced
 40 *  in various PDC revisions.  The code is much more maintainable
 41 *  and reliable this way vs having to debug on every version of PDC
 42 *  on every box. 
 43 */
 44
 45#include <linux/capability.h>
 46#include <linux/init.h>
 47#include <linux/proc_fs.h>
 48#include <linux/miscdevice.h>
 49#include <linux/spinlock.h>
 50
 51#include <asm/uaccess.h>
 52#include <asm/perf.h>
 53#include <asm/parisc-device.h>
 54#include <asm/processor.h>
 55#include <asm/runway.h>
 56#include <asm/io.h>		/* for __raw_read() */
 57
 58#include "perf_images.h"
 59
 60#define MAX_RDR_WORDS	24
 61#define PERF_VERSION	2	/* derived from hpux's PI v2 interface */
 62
 63/* definition of RDR regs */
 64struct rdr_tbl_ent {
 65	uint16_t	width;
 66	uint8_t		num_words;
 67	uint8_t		write_control;
 68};
 69
 70static int perf_processor_interface __read_mostly = UNKNOWN_INTF;
 71static int perf_enabled __read_mostly;
 72static spinlock_t perf_lock;
 73struct parisc_device *cpu_device __read_mostly;
 74
 75/* RDRs to write for PCX-W */
 76static const int perf_rdrs_W[] =
 77	{ 0, 1, 4, 5, 6, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
 78
 79/* RDRs to write for PCX-U */
 80static const int perf_rdrs_U[] =
 81	{ 0, 1, 4, 5, 6, 7, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
 82
 83/* RDR register descriptions for PCX-W */
 84static const struct rdr_tbl_ent perf_rdr_tbl_W[] = {
 85	{ 19,	1,	8 },   /* RDR 0 */
 86	{ 16,	1,	16 },  /* RDR 1 */
 87	{ 72,	2,	0 },   /* RDR 2 */
 88	{ 81,	2,	0 },   /* RDR 3 */
 89	{ 328,	6,	0 },   /* RDR 4 */
 90	{ 160,	3,	0 },   /* RDR 5 */
 91	{ 336,	6,	0 },   /* RDR 6 */
 92	{ 164,	3,	0 },   /* RDR 7 */
 93	{ 0,	0,	0 },   /* RDR 8 */
 94	{ 35,	1,	0 },   /* RDR 9 */
 95	{ 6,	1,	0 },   /* RDR 10 */
 96	{ 18,	1,	0 },   /* RDR 11 */
 97	{ 13,	1,	0 },   /* RDR 12 */
 98	{ 8,	1,	0 },   /* RDR 13 */
 99	{ 8,	1,	0 },   /* RDR 14 */
100	{ 8,	1,	0 },   /* RDR 15 */
101	{ 1530,	24,	0 },   /* RDR 16 */
102	{ 16,	1,	0 },   /* RDR 17 */
103	{ 4,	1,	0 },   /* RDR 18 */
104	{ 0,	0,	0 },   /* RDR 19 */
105	{ 152,	3,	24 },  /* RDR 20 */
106	{ 152,	3,	24 },  /* RDR 21 */
107	{ 233,	4,	48 },  /* RDR 22 */
108	{ 233,	4,	48 },  /* RDR 23 */
109	{ 71,	2,	0 },   /* RDR 24 */
110	{ 71,	2,	0 },   /* RDR 25 */
111	{ 11,	1,	0 },   /* RDR 26 */
112	{ 18,	1,	0 },   /* RDR 27 */
113	{ 128,	2,	0 },   /* RDR 28 */
114	{ 0,	0,	0 },   /* RDR 29 */
115	{ 16,	1,	0 },   /* RDR 30 */
116	{ 16,	1,	0 },   /* RDR 31 */
117};
118
119/* RDR register descriptions for PCX-U */
120static const struct rdr_tbl_ent perf_rdr_tbl_U[] = {
121	{ 19,	1,	8 },              /* RDR 0 */
122	{ 32,	1,	16 },             /* RDR 1 */
123	{ 20,	1,	0 },              /* RDR 2 */
124	{ 0,	0,	0 },              /* RDR 3 */
125	{ 344,	6,	0 },              /* RDR 4 */
126	{ 176,	3,	0 },              /* RDR 5 */
127	{ 336,	6,	0 },              /* RDR 6 */
128	{ 0,	0,	0 },              /* RDR 7 */
129	{ 0,	0,	0 },              /* RDR 8 */
130	{ 0,	0,	0 },              /* RDR 9 */
131	{ 28,	1,	0 },              /* RDR 10 */
132	{ 33,	1,	0 },              /* RDR 11 */
133	{ 0,	0,	0 },              /* RDR 12 */
134	{ 230,	4,	0 },              /* RDR 13 */
135	{ 32,	1,	0 },              /* RDR 14 */
136	{ 128,	2,	0 },              /* RDR 15 */
137	{ 1494,	24,	0 },              /* RDR 16 */
138	{ 18,	1,	0 },              /* RDR 17 */
139	{ 4,	1,	0 },              /* RDR 18 */
140	{ 0,	0,	0 },              /* RDR 19 */
141	{ 158,	3,	24 },             /* RDR 20 */
142	{ 158,	3,	24 },             /* RDR 21 */
143	{ 194,	4,	48 },             /* RDR 22 */
144	{ 194,	4,	48 },             /* RDR 23 */
145	{ 71,	2,	0 },              /* RDR 24 */
146	{ 71,	2,	0 },              /* RDR 25 */
147	{ 28,	1,	0 },              /* RDR 26 */
148	{ 33,	1,	0 },              /* RDR 27 */
149	{ 88,	2,	0 },              /* RDR 28 */
150	{ 32,	1,	0 },              /* RDR 29 */
151	{ 24,	1,	0 },              /* RDR 30 */
152	{ 16,	1,	0 },              /* RDR 31 */
153};
154
155/*
156 * A non-zero write_control in the above tables is a byte offset into
157 * this array.
158 */
159static const uint64_t perf_bitmasks[] = {
160	0x0000000000000000ul,     /* first dbl word must be zero */
161	0xfdffe00000000000ul,     /* RDR0 bitmask */
162	0x003f000000000000ul,     /* RDR1 bitmask */
163	0x00fffffffffffffful,     /* RDR20-RDR21 bitmask (152 bits) */
164	0xfffffffffffffffful,
165	0xfffffffc00000000ul,
166	0xfffffffffffffffful,     /* RDR22-RDR23 bitmask (233 bits) */
167	0xfffffffffffffffful,
168	0xfffffffffffffffcul,
169	0xff00000000000000ul
170};
171
172/*
173 * Write control bitmasks for Pa-8700 processor given
174 * some things have changed slightly.
175 */
176static const uint64_t perf_bitmasks_piranha[] = {
177	0x0000000000000000ul,     /* first dbl word must be zero */
178	0xfdffe00000000000ul,     /* RDR0 bitmask */
179	0x003f000000000000ul,     /* RDR1 bitmask */
180	0x00fffffffffffffful,     /* RDR20-RDR21 bitmask (158 bits) */
181	0xfffffffffffffffful,
182	0xfffffffc00000000ul,
183	0xfffffffffffffffful,     /* RDR22-RDR23 bitmask (210 bits) */
184	0xfffffffffffffffful,
185	0xfffffffffffffffful,
186	0xfffc000000000000ul
187};
188
189static const uint64_t *bitmask_array;   /* array of bitmasks to use */
190
191/******************************************************************************
192 * Function Prototypes
193 *****************************************************************************/
194static int perf_config(uint32_t *image_ptr);
195static int perf_release(struct inode *inode, struct file *file);
196static int perf_open(struct inode *inode, struct file *file);
197static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos);
198static ssize_t perf_write(struct file *file, const char __user *buf, size_t count, 
199	loff_t *ppos);
200static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
201static void perf_start_counters(void);
202static int perf_stop_counters(uint32_t *raddr);
203static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num);
204static int perf_rdr_read_ubuf(uint32_t	rdr_num, uint64_t *buffer);
205static int perf_rdr_clear(uint32_t rdr_num);
206static int perf_write_image(uint64_t *memaddr);
207static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer);
208
209/* External Assembly Routines */
210extern uint64_t perf_rdr_shift_in_W (uint32_t rdr_num, uint16_t width);
211extern uint64_t perf_rdr_shift_in_U (uint32_t rdr_num, uint16_t width);
212extern void perf_rdr_shift_out_W (uint32_t rdr_num, uint64_t buffer);
213extern void perf_rdr_shift_out_U (uint32_t rdr_num, uint64_t buffer);
214extern void perf_intrigue_enable_perf_counters (void);
215extern void perf_intrigue_disable_perf_counters (void);
216
217/******************************************************************************
218 * Function Definitions
219 *****************************************************************************/
220
221
222/*
223 * configure:
224 *
225 * Configure the cpu with a given data image.  First turn off the counters, 
226 * then download the image, then turn the counters back on.
227 */
228static int perf_config(uint32_t *image_ptr)
229{
230	long error;
231	uint32_t raddr[4];
232
233	/* Stop the counters*/
234	error = perf_stop_counters(raddr);
235	if (error != 0) {
236		printk("perf_config: perf_stop_counters = %ld\n", error);
237		return -EINVAL; 
238	}
239
240printk("Preparing to write image\n");
241	/* Write the image to the chip */
242	error = perf_write_image((uint64_t *)image_ptr);
243	if (error != 0) {
244		printk("perf_config: DOWNLOAD = %ld\n", error);
245		return -EINVAL; 
246	}
247
248printk("Preparing to start counters\n");
249
250	/* Start the counters */
251	perf_start_counters();
252
253	return sizeof(uint32_t);
254}
255
256/*
257 * Open the device and initialize all of its memory.  The device is only 
258 * opened once, but can be "queried" by multiple processes that know its
259 * file descriptor.
260 */
261static int perf_open(struct inode *inode, struct file *file)
262{
263	spin_lock(&perf_lock);
264	if (perf_enabled) {
265		spin_unlock(&perf_lock);
266		return -EBUSY;
267	}
268	perf_enabled = 1;
269 	spin_unlock(&perf_lock);
270
271	return 0;
272}
273
274/*
275 * Close the device.
276 */
277static int perf_release(struct inode *inode, struct file *file)
278{
279	spin_lock(&perf_lock);
280	perf_enabled = 0;
281	spin_unlock(&perf_lock);
282
283	return 0;
284}
285
286/*
287 * Read does nothing for this driver
288 */
289static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos)
290{
291	return 0;
292}
293
294/*
295 * write:
296 *
297 * This routine downloads the image to the chip.  It must be
298 * called on the processor that the download should happen
299 * on.
300 */
301static ssize_t perf_write(struct file *file, const char __user *buf, size_t count, 
302	loff_t *ppos)
303{
304	int err;
305	size_t image_size;
306	uint32_t image_type;
307	uint32_t interface_type;
308	uint32_t test;
309
310	if (perf_processor_interface == ONYX_INTF) 
311		image_size = PCXU_IMAGE_SIZE;
312	else if (perf_processor_interface == CUDA_INTF) 
313		image_size = PCXW_IMAGE_SIZE;
314	else 
315		return -EFAULT;
316
317	if (!capable(CAP_SYS_ADMIN))
318		return -EACCES;
319
320	if (count != sizeof(uint32_t))
321		return -EIO;
322
323	if ((err = copy_from_user(&image_type, buf, sizeof(uint32_t))) != 0) 
324		return err;
325
326	/* Get the interface type and test type */
327   	interface_type = (image_type >> 16) & 0xffff;
328	test           = (image_type & 0xffff);
329
330	/* Make sure everything makes sense */
331
332	/* First check the machine type is correct for
333	   the requested image */
334        if (((perf_processor_interface == CUDA_INTF) &&
335		       (interface_type != CUDA_INTF)) ||
336	    ((perf_processor_interface == ONYX_INTF) &&
337	               (interface_type != ONYX_INTF))) 
338		return -EINVAL;
339
340	/* Next check to make sure the requested image
341	   is valid */
342	if (((interface_type == CUDA_INTF) && 
343		       (test >= MAX_CUDA_IMAGES)) ||
344	    ((interface_type == ONYX_INTF) && 
345		       (test >= MAX_ONYX_IMAGES))) 
346		return -EINVAL;
347
348	/* Copy the image into the processor */
349	if (interface_type == CUDA_INTF) 
350		return perf_config(cuda_images[test]);
351	else
352		return perf_config(onyx_images[test]);
353
354	return count;
355}
356
357/*
358 * Patch the images that need to know the IVA addresses.
359 */
360static void perf_patch_images(void)
361{
362#if 0 /* FIXME!! */
363/* 
364 * NOTE:  this routine is VERY specific to the current TLB image.
365 * If the image is changed, this routine might also need to be changed.
366 */
367	extern void $i_itlb_miss_2_0();
368	extern void $i_dtlb_miss_2_0();
369	extern void PA2_0_iva();
370
371	/* 
372	 * We can only use the lower 32-bits, the upper 32-bits should be 0
373	 * anyway given this is in the kernel 
374	 */
375	uint32_t itlb_addr  = (uint32_t)&($i_itlb_miss_2_0);
376	uint32_t dtlb_addr  = (uint32_t)&($i_dtlb_miss_2_0);
377	uint32_t IVAaddress = (uint32_t)&PA2_0_iva;
378
379	if (perf_processor_interface == ONYX_INTF) {
380		/* clear last 2 bytes */
381		onyx_images[TLBMISS][15] &= 0xffffff00;  
382		/* set 2 bytes */
383		onyx_images[TLBMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
384		onyx_images[TLBMISS][16] = (dtlb_addr << 8)&0xffffff00;
385		onyx_images[TLBMISS][17] = itlb_addr;
386
387		/* clear last 2 bytes */
388		onyx_images[TLBHANDMISS][15] &= 0xffffff00;  
389		/* set 2 bytes */
390		onyx_images[TLBHANDMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
391		onyx_images[TLBHANDMISS][16] = (dtlb_addr << 8)&0xffffff00;
392		onyx_images[TLBHANDMISS][17] = itlb_addr;
393
394		/* clear last 2 bytes */
395		onyx_images[BIG_CPI][15] &= 0xffffff00;  
396		/* set 2 bytes */
397		onyx_images[BIG_CPI][15] |= (0x000000ff&((dtlb_addr) >> 24));
398		onyx_images[BIG_CPI][16] = (dtlb_addr << 8)&0xffffff00;
399		onyx_images[BIG_CPI][17] = itlb_addr;
400
401	    onyx_images[PANIC][15] &= 0xffffff00;  /* clear last 2 bytes */
402	 	onyx_images[PANIC][15] |= (0x000000ff&((IVAaddress) >> 24)); /* set 2 bytes */
403		onyx_images[PANIC][16] = (IVAaddress << 8)&0xffffff00;
404
405
406	} else if (perf_processor_interface == CUDA_INTF) {
407		/* Cuda interface */
408		cuda_images[TLBMISS][16] =  
409			(cuda_images[TLBMISS][16]&0xffff0000) |
410			((dtlb_addr >> 8)&0x0000ffff);
411		cuda_images[TLBMISS][17] = 
412			((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
413		cuda_images[TLBMISS][18] = (itlb_addr << 16)&0xffff0000;
414
415		cuda_images[TLBHANDMISS][16] = 
416			(cuda_images[TLBHANDMISS][16]&0xffff0000) |
417			((dtlb_addr >> 8)&0x0000ffff);
418		cuda_images[TLBHANDMISS][17] = 
419			((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
420		cuda_images[TLBHANDMISS][18] = (itlb_addr << 16)&0xffff0000;
421
422		cuda_images[BIG_CPI][16] = 
423			(cuda_images[BIG_CPI][16]&0xffff0000) |
424			((dtlb_addr >> 8)&0x0000ffff);
425		cuda_images[BIG_CPI][17] = 
426			((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
427		cuda_images[BIG_CPI][18] = (itlb_addr << 16)&0xffff0000;
428	} else {
429		/* Unknown type */
430	}
431#endif
432}
433
434
435/*
436 * ioctl routine
437 * All routines effect the processor that they are executed on.  Thus you 
438 * must be running on the processor that you wish to change.
439 */
440
441static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
442{
443	long error_start;
444	uint32_t raddr[4];
445	int error = 0;
446
447	switch (cmd) {
448
449	    case PA_PERF_ON:
450			/* Start the counters */
451			perf_start_counters();
452			break;
453
454	    case PA_PERF_OFF:
455			error_start = perf_stop_counters(raddr);
456			if (error_start != 0) {
457				printk(KERN_ERR "perf_off: perf_stop_counters = %ld\n", error_start);
458				error = -EFAULT;
459				break;
460			}
461
462			/* copy out the Counters */
463			if (copy_to_user((void __user *)arg, raddr, 
464					sizeof (raddr)) != 0) {
465				error =  -EFAULT;
466				break;
467			}
468			break;
469
470	    case PA_PERF_VERSION:
471  	  		/* Return the version # */
472			error = put_user(PERF_VERSION, (int *)arg);
473			break;
474
475	    default:
476  	 		error = -ENOTTY;
477	}
478
479	return error;
480}
481
482static const struct file_operations perf_fops = {
483	.llseek = no_llseek,
484	.read = perf_read,
485	.write = perf_write,
486	.unlocked_ioctl = perf_ioctl,
487	.compat_ioctl = perf_ioctl,
488	.open = perf_open,
489	.release = perf_release
490};
491	
492static struct miscdevice perf_dev = {
493	MISC_DYNAMIC_MINOR,
494	PA_PERF_DEV,
495	&perf_fops
496};
497
498/*
499 * Initialize the module
500 */
501static int __init perf_init(void)
502{
503	int ret;
504
505	/* Determine correct processor interface to use */
506	bitmask_array = perf_bitmasks;
507
508	if (boot_cpu_data.cpu_type == pcxu ||
509	    boot_cpu_data.cpu_type == pcxu_) {
510		perf_processor_interface = ONYX_INTF;
511	} else if (boot_cpu_data.cpu_type == pcxw ||
512		 boot_cpu_data.cpu_type == pcxw_ ||
513		 boot_cpu_data.cpu_type == pcxw2 ||
514		 boot_cpu_data.cpu_type == mako ||
515		 boot_cpu_data.cpu_type == mako2) {
516		perf_processor_interface = CUDA_INTF;
517		if (boot_cpu_data.cpu_type == pcxw2 ||
518		    boot_cpu_data.cpu_type == mako ||
519		    boot_cpu_data.cpu_type == mako2)
520			bitmask_array = perf_bitmasks_piranha;
521	} else {
522		perf_processor_interface = UNKNOWN_INTF;
523		printk("Performance monitoring counters not supported on this processor\n");
524		return -ENODEV;
525	}
526
527	ret = misc_register(&perf_dev);
528	if (ret) {
529		printk(KERN_ERR "Performance monitoring counters: "
530			"cannot register misc device.\n");
531		return ret;
532	}
533
534	/* Patch the images to match the system */
535    	perf_patch_images();
536
537	spin_lock_init(&perf_lock);
538
539	/* TODO: this only lets us access the first cpu.. what to do for SMP? */
540	cpu_device = per_cpu(cpu_data, 0).dev;
541	printk("Performance monitoring counters enabled for %s\n",
542		per_cpu(cpu_data, 0).dev->name);
543
544	return 0;
545}
 
546
547/*
548 * perf_start_counters(void)
549 *
550 * Start the counters.
551 */
552static void perf_start_counters(void)
553{
554	/* Enable performance monitor counters */
555	perf_intrigue_enable_perf_counters();
556}
557
558/*
559 * perf_stop_counters
560 *
561 * Stop the performance counters and save counts
562 * in a per_processor array.
563 */
564static int perf_stop_counters(uint32_t *raddr)
565{
566	uint64_t userbuf[MAX_RDR_WORDS];
567
568	/* Disable performance counters */
569	perf_intrigue_disable_perf_counters();
570
571	if (perf_processor_interface == ONYX_INTF) {
572		uint64_t tmp64;
573		/*
574		 * Read the counters
575		 */
576		if (!perf_rdr_read_ubuf(16, userbuf))
577			return -13;
578
579		/* Counter0 is bits 1398 to 1429 */
580		tmp64 =  (userbuf[21] << 22) & 0x00000000ffc00000;
581		tmp64 |= (userbuf[22] >> 42) & 0x00000000003fffff;
582		/* OR sticky0 (bit 1430) to counter0 bit 32 */
583		tmp64 |= (userbuf[22] >> 10) & 0x0000000080000000;
584		raddr[0] = (uint32_t)tmp64;
585
586		/* Counter1 is bits 1431 to 1462 */
587		tmp64 =  (userbuf[22] >> 9) & 0x00000000ffffffff;
588		/* OR sticky1 (bit 1463) to counter1 bit 32 */
589		tmp64 |= (userbuf[22] << 23) & 0x0000000080000000;
590		raddr[1] = (uint32_t)tmp64;
591
592		/* Counter2 is bits 1464 to 1495 */
593		tmp64 =  (userbuf[22] << 24) & 0x00000000ff000000;
594		tmp64 |= (userbuf[23] >> 40) & 0x0000000000ffffff;
595		/* OR sticky2 (bit 1496) to counter2 bit 32 */
596		tmp64 |= (userbuf[23] >> 8) & 0x0000000080000000;
597		raddr[2] = (uint32_t)tmp64;
598		
599		/* Counter3 is bits 1497 to 1528 */
600		tmp64 =  (userbuf[23] >> 7) & 0x00000000ffffffff;
601		/* OR sticky3 (bit 1529) to counter3 bit 32 */
602		tmp64 |= (userbuf[23] << 25) & 0x0000000080000000;
603		raddr[3] = (uint32_t)tmp64;
604
605		/*
606		 * Zero out the counters
607		 */
608
609		/*
610		 * The counters and sticky-bits comprise the last 132 bits
611		 * (1398 - 1529) of RDR16 on a U chip.  We'll zero these
612		 * out the easy way: zero out last 10 bits of dword 21,
613		 * all of dword 22 and 58 bits (plus 6 don't care bits) of
614		 * dword 23.
615		 */
616		userbuf[21] &= 0xfffffffffffffc00ul;	/* 0 to last 10 bits */
617		userbuf[22] = 0;
618		userbuf[23] = 0;
619
620		/* 
621		 * Write back the zeroed bytes + the image given
622		 * the read was destructive.
623		 */
624		perf_rdr_write(16, userbuf);
625	} else {
626
627		/*
628		 * Read RDR-15 which contains the counters and sticky bits 
629		 */
630		if (!perf_rdr_read_ubuf(15, userbuf)) {
631			return -13;
632		}
633
634		/* 
635		 * Clear out the counters
636		 */
637		perf_rdr_clear(15);
638
639		/*
640		 * Copy the counters 
641		 */
642		raddr[0] = (uint32_t)((userbuf[0] >> 32) & 0x00000000ffffffffUL);
643		raddr[1] = (uint32_t)(userbuf[0] & 0x00000000ffffffffUL);
644		raddr[2] = (uint32_t)((userbuf[1] >> 32) & 0x00000000ffffffffUL);
645		raddr[3] = (uint32_t)(userbuf[1] & 0x00000000ffffffffUL);
646	}
647 
648	return 0;
649}
650
651/*
652 * perf_rdr_get_entry
653 *
654 * Retrieve a pointer to the description of what this
655 * RDR contains.
656 */
657static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num)
658{
659	if (perf_processor_interface == ONYX_INTF) {
660		return &perf_rdr_tbl_U[rdr_num];
661	} else {
662		return &perf_rdr_tbl_W[rdr_num];
663	}
664}
665
666/*
667 * perf_rdr_read_ubuf
668 *
669 * Read the RDR value into the buffer specified.
670 */
671static int perf_rdr_read_ubuf(uint32_t	rdr_num, uint64_t *buffer)
672{
673	uint64_t	data, data_mask = 0;
674	uint32_t	width, xbits, i;
675	const struct rdr_tbl_ent *tentry;
676
677	tentry = perf_rdr_get_entry(rdr_num);
678	if ((width = tentry->width) == 0)
679		return 0;
680
681	/* Clear out buffer */
682	i = tentry->num_words;
683	while (i--) {
684		buffer[i] = 0;
685	}	
686
687	/* Check for bits an even number of 64 */
688	if ((xbits = width & 0x03f) != 0) {
689		data_mask = 1;
690		data_mask <<= (64 - xbits);
691		data_mask--;
692	}
693
694	/* Grab all of the data */
695	i = tentry->num_words;
696	while (i--) {
697
698		if (perf_processor_interface == ONYX_INTF) {
699			data = perf_rdr_shift_in_U(rdr_num, width);
700		} else {
701			data = perf_rdr_shift_in_W(rdr_num, width);
702		}
703		if (xbits) {
704			buffer[i] |= (data << (64 - xbits));
705			if (i) {
706				buffer[i-1] |= ((data >> xbits) & data_mask);
707			}
708		} else {
709			buffer[i] = data;
710		}
711	}
712
713	return 1;
714}
715
716/*
717 * perf_rdr_clear
718 *
719 * Zero out the given RDR register
720 */
721static int perf_rdr_clear(uint32_t	rdr_num)
722{
723	const struct rdr_tbl_ent *tentry;
724	int32_t		i;
725
726	tentry = perf_rdr_get_entry(rdr_num);
727
728	if (tentry->width == 0) {
729		return -1;
730	}
731
732	i = tentry->num_words;
733	while (i--) {
734		if (perf_processor_interface == ONYX_INTF) {
735			perf_rdr_shift_out_U(rdr_num, 0UL);
736		} else {
737			perf_rdr_shift_out_W(rdr_num, 0UL);
738		}
739	}
740
741	return 0;
742}
743
744
745/*
746 * perf_write_image
747 *
748 * Write the given image out to the processor
749 */
750static int perf_write_image(uint64_t *memaddr)
751{
752	uint64_t buffer[MAX_RDR_WORDS];
753	uint64_t *bptr;
754	uint32_t dwords;
755	const uint32_t *intrigue_rdr;
756	const uint64_t *intrigue_bitmask;
757	uint64_t tmp64;
758	void __iomem *runway;
759	const struct rdr_tbl_ent *tentry;
760	int i;
761
762	/* Clear out counters */
763	if (perf_processor_interface == ONYX_INTF) {
764
765		perf_rdr_clear(16);
766
767		/* Toggle performance monitor */
768		perf_intrigue_enable_perf_counters();
769		perf_intrigue_disable_perf_counters();
770
771		intrigue_rdr = perf_rdrs_U;
772	} else {
773		perf_rdr_clear(15);
774		intrigue_rdr = perf_rdrs_W;
775	}
776
777	/* Write all RDRs */
778	while (*intrigue_rdr != -1) {
779		tentry = perf_rdr_get_entry(*intrigue_rdr);
780		perf_rdr_read_ubuf(*intrigue_rdr, buffer);
781		bptr   = &buffer[0];
782		dwords = tentry->num_words;
783		if (tentry->write_control) {
784			intrigue_bitmask = &bitmask_array[tentry->write_control >> 3];
785			while (dwords--) {
786				tmp64 = *intrigue_bitmask & *memaddr++;
787				tmp64 |= (~(*intrigue_bitmask++)) & *bptr;
788				*bptr++ = tmp64;
789			}
790		} else {
791			while (dwords--) {
792				*bptr++ = *memaddr++;
793			}
794		}
795
796		perf_rdr_write(*intrigue_rdr, buffer);
797		intrigue_rdr++;
798	}
799
800	/*
801	 * Now copy out the Runway stuff which is not in RDRs
802	 */
803
804	if (cpu_device == NULL)
805	{
806		printk(KERN_ERR "write_image: cpu_device not yet initialized!\n");
807		return -1;
808	}
809
810	runway = ioremap_nocache(cpu_device->hpa.start, 4096);
 
 
 
 
811
812	/* Merge intrigue bits into Runway STATUS 0 */
813	tmp64 = __raw_readq(runway + RUNWAY_STATUS) & 0xffecfffffffffffful;
814	__raw_writeq(tmp64 | (*memaddr++ & 0x0013000000000000ul), 
815		     runway + RUNWAY_STATUS);
816	
817	/* Write RUNWAY DEBUG registers */
818	for (i = 0; i < 8; i++) {
819		__raw_writeq(*memaddr++, runway + RUNWAY_DEBUG);
820	}
821
822	return 0; 
823}
824
825/*
826 * perf_rdr_write
827 *
828 * Write the given RDR register with the contents
829 * of the given buffer.
830 */
831static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer)
832{
833	const struct rdr_tbl_ent *tentry;
834	int32_t		i;
835
836printk("perf_rdr_write\n");
837	tentry = perf_rdr_get_entry(rdr_num);
838	if (tentry->width == 0) { return; }
839
840	i = tentry->num_words;
841	while (i--) {
842		if (perf_processor_interface == ONYX_INTF) {
843			perf_rdr_shift_out_U(rdr_num, buffer[i]);
844		} else {
845			perf_rdr_shift_out_W(rdr_num, buffer[i]);
846		}	
847	}
848printk("perf_rdr_write done\n");
849}
850
851module_init(perf_init);