Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * arch/parisc/kernel/firmware.c - safe PDC access routines
4 *
5 * PDC == Processor Dependent Code
6 *
7 * See http://www.parisc-linux.org/documentation/index.html
8 * for documentation describing the entry points and calling
9 * conventions defined below.
10 *
11 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
12 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
13 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
14 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
15 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
16 */
17
18/* I think it would be in everyone's best interest to follow this
19 * guidelines when writing PDC wrappers:
20 *
21 * - the name of the pdc wrapper should match one of the macros
22 * used for the first two arguments
23 * - don't use caps for random parts of the name
24 * - use the static PDC result buffers and "copyout" to structs
25 * supplied by the caller to encapsulate alignment restrictions
26 * - hold pdc_lock while in PDC or using static result buffers
27 * - use __pa() to convert virtual (kernel) pointers to physical
28 * ones.
29 * - the name of the struct used for pdc return values should equal
30 * one of the macros used for the first two arguments to the
31 * corresponding PDC call
32 * - keep the order of arguments
33 * - don't be smart (setting trailing NUL bytes for strings, return
34 * something useful even if the call failed) unless you are sure
35 * it's not going to affect functionality or performance
36 *
37 * Example:
38 * int pdc_cache_info(struct pdc_cache_info *cache_info )
39 * {
40 * int retval;
41 *
42 * spin_lock_irq(&pdc_lock);
43 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
44 * convert_to_wide(pdc_result);
45 * memcpy(cache_info, pdc_result, sizeof(*cache_info));
46 * spin_unlock_irq(&pdc_lock);
47 *
48 * return retval;
49 * }
50 * prumpf 991016
51 */
52
53#include <stdarg.h>
54
55#include <linux/delay.h>
56#include <linux/init.h>
57#include <linux/kernel.h>
58#include <linux/module.h>
59#include <linux/string.h>
60#include <linux/spinlock.h>
61
62#include <asm/page.h>
63#include <asm/pdc.h>
64#include <asm/pdcpat.h>
65#include <asm/processor.h> /* for boot_cpu_data */
66
67#if defined(BOOTLOADER)
68# undef spin_lock_irqsave
69# define spin_lock_irqsave(a, b) { b = 1; }
70# undef spin_unlock_irqrestore
71# define spin_unlock_irqrestore(a, b)
72#else
73static DEFINE_SPINLOCK(pdc_lock);
74#endif
75
76extern unsigned long pdc_result[NUM_PDC_RESULT];
77extern unsigned long pdc_result2[NUM_PDC_RESULT];
78
79#ifdef CONFIG_64BIT
80#define WIDE_FIRMWARE 0x1
81#define NARROW_FIRMWARE 0x2
82
83/* Firmware needs to be initially set to narrow to determine the
84 * actual firmware width. */
85int parisc_narrow_firmware __ro_after_init = 1;
86#endif
87
88/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
89 * and MEM_PDC calls are always the same width as the OS.
90 * Some PAT boxes may have 64-bit IODC I/O.
91 *
92 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
93 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
94 * This allowed wide kernels to run on Cxxx boxes.
95 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
96 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
97 */
98
99#ifdef CONFIG_64BIT
100long real64_call(unsigned long function, ...);
101#endif
102long real32_call(unsigned long function, ...);
103
104#ifdef CONFIG_64BIT
105# define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
106# define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
107#else
108# define MEM_PDC (unsigned long)PAGE0->mem_pdc
109# define mem_pdc_call(args...) real32_call(MEM_PDC, args)
110#endif
111
112
113/**
114 * f_extend - Convert PDC addresses to kernel addresses.
115 * @address: Address returned from PDC.
116 *
117 * This function is used to convert PDC addresses into kernel addresses
118 * when the PDC address size and kernel address size are different.
119 */
120static unsigned long f_extend(unsigned long address)
121{
122#ifdef CONFIG_64BIT
123 if(unlikely(parisc_narrow_firmware)) {
124 if((address & 0xff000000) == 0xf0000000)
125 return 0xf0f0f0f000000000UL | (u32)address;
126
127 if((address & 0xf0000000) == 0xf0000000)
128 return 0xffffffff00000000UL | (u32)address;
129 }
130#endif
131 return address;
132}
133
134/**
135 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
136 * @address: The return buffer from PDC.
137 *
138 * This function is used to convert the return buffer addresses retrieved from PDC
139 * into kernel addresses when the PDC address size and kernel address size are
140 * different.
141 */
142static void convert_to_wide(unsigned long *addr)
143{
144#ifdef CONFIG_64BIT
145 int i;
146 unsigned int *p = (unsigned int *)addr;
147
148 if (unlikely(parisc_narrow_firmware)) {
149 for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
150 addr[i] = p[i];
151 }
152#endif
153}
154
155#ifdef CONFIG_64BIT
156void set_firmware_width_unlocked(void)
157{
158 int ret;
159
160 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
161 __pa(pdc_result), 0);
162 convert_to_wide(pdc_result);
163 if (pdc_result[0] != NARROW_FIRMWARE)
164 parisc_narrow_firmware = 0;
165}
166
167/**
168 * set_firmware_width - Determine if the firmware is wide or narrow.
169 *
170 * This function must be called before any pdc_* function that uses the
171 * convert_to_wide function.
172 */
173void set_firmware_width(void)
174{
175 unsigned long flags;
176 spin_lock_irqsave(&pdc_lock, flags);
177 set_firmware_width_unlocked();
178 spin_unlock_irqrestore(&pdc_lock, flags);
179}
180#else
181void set_firmware_width_unlocked(void)
182{
183 return;
184}
185
186void set_firmware_width(void)
187{
188 return;
189}
190#endif /*CONFIG_64BIT*/
191
192
193#if !defined(BOOTLOADER)
194/**
195 * pdc_emergency_unlock - Unlock the linux pdc lock
196 *
197 * This call unlocks the linux pdc lock in case we need some PDC functions
198 * (like pdc_add_valid) during kernel stack dump.
199 */
200void pdc_emergency_unlock(void)
201{
202 /* Spinlock DEBUG code freaks out if we unconditionally unlock */
203 if (spin_is_locked(&pdc_lock))
204 spin_unlock(&pdc_lock);
205}
206
207
208/**
209 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
210 * @address: Address to be verified.
211 *
212 * This PDC call attempts to read from the specified address and verifies
213 * if the address is valid.
214 *
215 * The return value is PDC_OK (0) in case accessing this address is valid.
216 */
217int pdc_add_valid(unsigned long address)
218{
219 int retval;
220 unsigned long flags;
221
222 spin_lock_irqsave(&pdc_lock, flags);
223 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
224 spin_unlock_irqrestore(&pdc_lock, flags);
225
226 return retval;
227}
228EXPORT_SYMBOL(pdc_add_valid);
229
230/**
231 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
232 * @instr: Pointer to variable which will get instruction opcode.
233 *
234 * The return value is PDC_OK (0) in case call succeeded.
235 */
236int __init pdc_instr(unsigned int *instr)
237{
238 int retval;
239 unsigned long flags;
240
241 spin_lock_irqsave(&pdc_lock, flags);
242 retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
243 convert_to_wide(pdc_result);
244 *instr = pdc_result[0];
245 spin_unlock_irqrestore(&pdc_lock, flags);
246
247 return retval;
248}
249
250/**
251 * pdc_chassis_info - Return chassis information.
252 * @result: The return buffer.
253 * @chassis_info: The memory buffer address.
254 * @len: The size of the memory buffer address.
255 *
256 * An HVERSION dependent call for returning the chassis information.
257 */
258int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
259{
260 int retval;
261 unsigned long flags;
262
263 spin_lock_irqsave(&pdc_lock, flags);
264 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
265 memcpy(&pdc_result2, led_info, len);
266 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
267 __pa(pdc_result), __pa(pdc_result2), len);
268 memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
269 memcpy(led_info, pdc_result2, len);
270 spin_unlock_irqrestore(&pdc_lock, flags);
271
272 return retval;
273}
274
275/**
276 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
277 * @retval: -1 on error, 0 on success. Other value are PDC errors
278 *
279 * Must be correctly formatted or expect system crash
280 */
281#ifdef CONFIG_64BIT
282int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
283{
284 int retval = 0;
285 unsigned long flags;
286
287 if (!is_pdc_pat())
288 return -1;
289
290 spin_lock_irqsave(&pdc_lock, flags);
291 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
292 spin_unlock_irqrestore(&pdc_lock, flags);
293
294 return retval;
295}
296#endif
297
298/**
299 * pdc_chassis_disp - Updates chassis code
300 * @retval: -1 on error, 0 on success
301 */
302int pdc_chassis_disp(unsigned long disp)
303{
304 int retval = 0;
305 unsigned long flags;
306
307 spin_lock_irqsave(&pdc_lock, flags);
308 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
309 spin_unlock_irqrestore(&pdc_lock, flags);
310
311 return retval;
312}
313
314/**
315 * pdc_cpu_rendenzvous - Stop currently executing CPU
316 * @retval: -1 on error, 0 on success
317 */
318int __pdc_cpu_rendezvous(void)
319{
320 if (is_pdc_pat())
321 return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS);
322 else
323 return mem_pdc_call(PDC_PROC, 1, 0);
324}
325
326
327/**
328 * pdc_chassis_warn - Fetches chassis warnings
329 * @retval: -1 on error, 0 on success
330 */
331int pdc_chassis_warn(unsigned long *warn)
332{
333 int retval = 0;
334 unsigned long flags;
335
336 spin_lock_irqsave(&pdc_lock, flags);
337 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
338 *warn = pdc_result[0];
339 spin_unlock_irqrestore(&pdc_lock, flags);
340
341 return retval;
342}
343
344int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
345{
346 int ret;
347
348 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
349 convert_to_wide(pdc_result);
350 pdc_coproc_info->ccr_functional = pdc_result[0];
351 pdc_coproc_info->ccr_present = pdc_result[1];
352 pdc_coproc_info->revision = pdc_result[17];
353 pdc_coproc_info->model = pdc_result[18];
354
355 return ret;
356}
357
358/**
359 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
360 * @pdc_coproc_info: Return buffer address.
361 *
362 * This PDC call returns the presence and status of all the coprocessors
363 * attached to the processor.
364 */
365int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
366{
367 int ret;
368 unsigned long flags;
369
370 spin_lock_irqsave(&pdc_lock, flags);
371 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
372 spin_unlock_irqrestore(&pdc_lock, flags);
373
374 return ret;
375}
376
377/**
378 * pdc_iodc_read - Read data from the modules IODC.
379 * @actcnt: The actual number of bytes.
380 * @hpa: The HPA of the module for the iodc read.
381 * @index: The iodc entry point.
382 * @iodc_data: A buffer memory for the iodc options.
383 * @iodc_data_size: Size of the memory buffer.
384 *
385 * This PDC call reads from the IODC of the module specified by the hpa
386 * argument.
387 */
388int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
389 void *iodc_data, unsigned int iodc_data_size)
390{
391 int retval;
392 unsigned long flags;
393
394 spin_lock_irqsave(&pdc_lock, flags);
395 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
396 index, __pa(pdc_result2), iodc_data_size);
397 convert_to_wide(pdc_result);
398 *actcnt = pdc_result[0];
399 memcpy(iodc_data, pdc_result2, iodc_data_size);
400 spin_unlock_irqrestore(&pdc_lock, flags);
401
402 return retval;
403}
404EXPORT_SYMBOL(pdc_iodc_read);
405
406/**
407 * pdc_system_map_find_mods - Locate unarchitected modules.
408 * @pdc_mod_info: Return buffer address.
409 * @mod_path: pointer to dev path structure.
410 * @mod_index: fixed address module index.
411 *
412 * To locate and identify modules which reside at fixed I/O addresses, which
413 * do not self-identify via architected bus walks.
414 */
415int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
416 struct pdc_module_path *mod_path, long mod_index)
417{
418 int retval;
419 unsigned long flags;
420
421 spin_lock_irqsave(&pdc_lock, flags);
422 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
423 __pa(pdc_result2), mod_index);
424 convert_to_wide(pdc_result);
425 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
426 memcpy(mod_path, pdc_result2, sizeof(*mod_path));
427 spin_unlock_irqrestore(&pdc_lock, flags);
428
429 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
430 return retval;
431}
432
433/**
434 * pdc_system_map_find_addrs - Retrieve additional address ranges.
435 * @pdc_addr_info: Return buffer address.
436 * @mod_index: Fixed address module index.
437 * @addr_index: Address range index.
438 *
439 * Retrieve additional information about subsequent address ranges for modules
440 * with multiple address ranges.
441 */
442int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
443 long mod_index, long addr_index)
444{
445 int retval;
446 unsigned long flags;
447
448 spin_lock_irqsave(&pdc_lock, flags);
449 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
450 mod_index, addr_index);
451 convert_to_wide(pdc_result);
452 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
453 spin_unlock_irqrestore(&pdc_lock, flags);
454
455 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
456 return retval;
457}
458
459/**
460 * pdc_model_info - Return model information about the processor.
461 * @model: The return buffer.
462 *
463 * Returns the version numbers, identifiers, and capabilities from the processor module.
464 */
465int pdc_model_info(struct pdc_model *model)
466{
467 int retval;
468 unsigned long flags;
469
470 spin_lock_irqsave(&pdc_lock, flags);
471 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
472 convert_to_wide(pdc_result);
473 memcpy(model, pdc_result, sizeof(*model));
474 spin_unlock_irqrestore(&pdc_lock, flags);
475
476 return retval;
477}
478
479/**
480 * pdc_model_sysmodel - Get the system model name.
481 * @name: A char array of at least 81 characters.
482 *
483 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
484 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
485 * on HP/UX.
486 */
487int pdc_model_sysmodel(char *name)
488{
489 int retval;
490 unsigned long flags;
491
492 spin_lock_irqsave(&pdc_lock, flags);
493 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
494 OS_ID_HPUX, __pa(name));
495 convert_to_wide(pdc_result);
496
497 if (retval == PDC_OK) {
498 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
499 } else {
500 name[0] = 0;
501 }
502 spin_unlock_irqrestore(&pdc_lock, flags);
503
504 return retval;
505}
506
507/**
508 * pdc_model_versions - Identify the version number of each processor.
509 * @cpu_id: The return buffer.
510 * @id: The id of the processor to check.
511 *
512 * Returns the version number for each processor component.
513 *
514 * This comment was here before, but I do not know what it means :( -RB
515 * id: 0 = cpu revision, 1 = boot-rom-version
516 */
517int pdc_model_versions(unsigned long *versions, int id)
518{
519 int retval;
520 unsigned long flags;
521
522 spin_lock_irqsave(&pdc_lock, flags);
523 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
524 convert_to_wide(pdc_result);
525 *versions = pdc_result[0];
526 spin_unlock_irqrestore(&pdc_lock, flags);
527
528 return retval;
529}
530
531/**
532 * pdc_model_cpuid - Returns the CPU_ID.
533 * @cpu_id: The return buffer.
534 *
535 * Returns the CPU_ID value which uniquely identifies the cpu portion of
536 * the processor module.
537 */
538int pdc_model_cpuid(unsigned long *cpu_id)
539{
540 int retval;
541 unsigned long flags;
542
543 spin_lock_irqsave(&pdc_lock, flags);
544 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
545 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
546 convert_to_wide(pdc_result);
547 *cpu_id = pdc_result[0];
548 spin_unlock_irqrestore(&pdc_lock, flags);
549
550 return retval;
551}
552
553/**
554 * pdc_model_capabilities - Returns the platform capabilities.
555 * @capabilities: The return buffer.
556 *
557 * Returns information about platform support for 32- and/or 64-bit
558 * OSes, IO-PDIR coherency, and virtual aliasing.
559 */
560int pdc_model_capabilities(unsigned long *capabilities)
561{
562 int retval;
563 unsigned long flags;
564
565 spin_lock_irqsave(&pdc_lock, flags);
566 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
567 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
568 convert_to_wide(pdc_result);
569 if (retval == PDC_OK) {
570 *capabilities = pdc_result[0];
571 } else {
572 *capabilities = PDC_MODEL_OS32;
573 }
574 spin_unlock_irqrestore(&pdc_lock, flags);
575
576 return retval;
577}
578
579/**
580 * pdc_model_platform_info - Returns machine product and serial number.
581 * @orig_prod_num: Return buffer for original product number.
582 * @current_prod_num: Return buffer for current product number.
583 * @serial_no: Return buffer for serial number.
584 *
585 * Returns strings containing the original and current product numbers and the
586 * serial number of the system.
587 */
588int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
589 char *serial_no)
590{
591 int retval;
592 unsigned long flags;
593
594 spin_lock_irqsave(&pdc_lock, flags);
595 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
596 __pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
597 convert_to_wide(pdc_result);
598 spin_unlock_irqrestore(&pdc_lock, flags);
599
600 return retval;
601}
602
603/**
604 * pdc_cache_info - Return cache and TLB information.
605 * @cache_info: The return buffer.
606 *
607 * Returns information about the processor's cache and TLB.
608 */
609int pdc_cache_info(struct pdc_cache_info *cache_info)
610{
611 int retval;
612 unsigned long flags;
613
614 spin_lock_irqsave(&pdc_lock, flags);
615 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
616 convert_to_wide(pdc_result);
617 memcpy(cache_info, pdc_result, sizeof(*cache_info));
618 spin_unlock_irqrestore(&pdc_lock, flags);
619
620 return retval;
621}
622
623/**
624 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
625 * @space_bits: Should be 0, if not, bad mojo!
626 *
627 * Returns information about Space ID hashing.
628 */
629int pdc_spaceid_bits(unsigned long *space_bits)
630{
631 int retval;
632 unsigned long flags;
633
634 spin_lock_irqsave(&pdc_lock, flags);
635 pdc_result[0] = 0;
636 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
637 convert_to_wide(pdc_result);
638 *space_bits = pdc_result[0];
639 spin_unlock_irqrestore(&pdc_lock, flags);
640
641 return retval;
642}
643
644#ifndef CONFIG_PA20
645/**
646 * pdc_btlb_info - Return block TLB information.
647 * @btlb: The return buffer.
648 *
649 * Returns information about the hardware Block TLB.
650 */
651int pdc_btlb_info(struct pdc_btlb_info *btlb)
652{
653 int retval;
654 unsigned long flags;
655
656 spin_lock_irqsave(&pdc_lock, flags);
657 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
658 memcpy(btlb, pdc_result, sizeof(*btlb));
659 spin_unlock_irqrestore(&pdc_lock, flags);
660
661 if(retval < 0) {
662 btlb->max_size = 0;
663 }
664 return retval;
665}
666
667/**
668 * pdc_mem_map_hpa - Find fixed module information.
669 * @address: The return buffer
670 * @mod_path: pointer to dev path structure.
671 *
672 * This call was developed for S700 workstations to allow the kernel to find
673 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
674 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
675 * call.
676 *
677 * This call is supported by all existing S700 workstations (up to Gecko).
678 */
679int pdc_mem_map_hpa(struct pdc_memory_map *address,
680 struct pdc_module_path *mod_path)
681{
682 int retval;
683 unsigned long flags;
684
685 spin_lock_irqsave(&pdc_lock, flags);
686 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
687 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
688 __pa(pdc_result2));
689 memcpy(address, pdc_result, sizeof(*address));
690 spin_unlock_irqrestore(&pdc_lock, flags);
691
692 return retval;
693}
694#endif /* !CONFIG_PA20 */
695
696/**
697 * pdc_lan_station_id - Get the LAN address.
698 * @lan_addr: The return buffer.
699 * @hpa: The network device HPA.
700 *
701 * Get the LAN station address when it is not directly available from the LAN hardware.
702 */
703int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
704{
705 int retval;
706 unsigned long flags;
707
708 spin_lock_irqsave(&pdc_lock, flags);
709 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
710 __pa(pdc_result), hpa);
711 if (retval < 0) {
712 /* FIXME: else read MAC from NVRAM */
713 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
714 } else {
715 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
716 }
717 spin_unlock_irqrestore(&pdc_lock, flags);
718
719 return retval;
720}
721EXPORT_SYMBOL(pdc_lan_station_id);
722
723/**
724 * pdc_stable_read - Read data from Stable Storage.
725 * @staddr: Stable Storage address to access.
726 * @memaddr: The memory address where Stable Storage data shall be copied.
727 * @count: number of bytes to transfer. count is multiple of 4.
728 *
729 * This PDC call reads from the Stable Storage address supplied in staddr
730 * and copies count bytes to the memory address memaddr.
731 * The call will fail if staddr+count > PDC_STABLE size.
732 */
733int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
734{
735 int retval;
736 unsigned long flags;
737
738 spin_lock_irqsave(&pdc_lock, flags);
739 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
740 __pa(pdc_result), count);
741 convert_to_wide(pdc_result);
742 memcpy(memaddr, pdc_result, count);
743 spin_unlock_irqrestore(&pdc_lock, flags);
744
745 return retval;
746}
747EXPORT_SYMBOL(pdc_stable_read);
748
749/**
750 * pdc_stable_write - Write data to Stable Storage.
751 * @staddr: Stable Storage address to access.
752 * @memaddr: The memory address where Stable Storage data shall be read from.
753 * @count: number of bytes to transfer. count is multiple of 4.
754 *
755 * This PDC call reads count bytes from the supplied memaddr address,
756 * and copies count bytes to the Stable Storage address staddr.
757 * The call will fail if staddr+count > PDC_STABLE size.
758 */
759int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
760{
761 int retval;
762 unsigned long flags;
763
764 spin_lock_irqsave(&pdc_lock, flags);
765 memcpy(pdc_result, memaddr, count);
766 convert_to_wide(pdc_result);
767 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
768 __pa(pdc_result), count);
769 spin_unlock_irqrestore(&pdc_lock, flags);
770
771 return retval;
772}
773EXPORT_SYMBOL(pdc_stable_write);
774
775/**
776 * pdc_stable_get_size - Get Stable Storage size in bytes.
777 * @size: pointer where the size will be stored.
778 *
779 * This PDC call returns the number of bytes in the processor's Stable
780 * Storage, which is the number of contiguous bytes implemented in Stable
781 * Storage starting from staddr=0. size in an unsigned 64-bit integer
782 * which is a multiple of four.
783 */
784int pdc_stable_get_size(unsigned long *size)
785{
786 int retval;
787 unsigned long flags;
788
789 spin_lock_irqsave(&pdc_lock, flags);
790 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
791 *size = pdc_result[0];
792 spin_unlock_irqrestore(&pdc_lock, flags);
793
794 return retval;
795}
796EXPORT_SYMBOL(pdc_stable_get_size);
797
798/**
799 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
800 *
801 * This PDC call is meant to be used to check the integrity of the current
802 * contents of Stable Storage.
803 */
804int pdc_stable_verify_contents(void)
805{
806 int retval;
807 unsigned long flags;
808
809 spin_lock_irqsave(&pdc_lock, flags);
810 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
811 spin_unlock_irqrestore(&pdc_lock, flags);
812
813 return retval;
814}
815EXPORT_SYMBOL(pdc_stable_verify_contents);
816
817/**
818 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
819 * the validity indicator.
820 *
821 * This PDC call will erase all contents of Stable Storage. Use with care!
822 */
823int pdc_stable_initialize(void)
824{
825 int retval;
826 unsigned long flags;
827
828 spin_lock_irqsave(&pdc_lock, flags);
829 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
830 spin_unlock_irqrestore(&pdc_lock, flags);
831
832 return retval;
833}
834EXPORT_SYMBOL(pdc_stable_initialize);
835
836/**
837 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
838 * @hwpath: fully bc.mod style path to the device.
839 * @initiator: the array to return the result into
840 *
841 * Get the SCSI operational parameters from PDC.
842 * Needed since HPUX never used BIOS or symbios card NVRAM.
843 * Most ncr/sym cards won't have an entry and just use whatever
844 * capabilities of the card are (eg Ultra, LVD). But there are
845 * several cases where it's useful:
846 * o set SCSI id for Multi-initiator clusters,
847 * o cable too long (ie SE scsi 10Mhz won't support 6m length),
848 * o bus width exported is less than what the interface chip supports.
849 */
850int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
851{
852 int retval;
853 unsigned long flags;
854
855 spin_lock_irqsave(&pdc_lock, flags);
856
857/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
858#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
859 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
860
861 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
862 __pa(pdc_result), __pa(hwpath));
863 if (retval < PDC_OK)
864 goto out;
865
866 if (pdc_result[0] < 16) {
867 initiator->host_id = pdc_result[0];
868 } else {
869 initiator->host_id = -1;
870 }
871
872 /*
873 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
874 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
875 */
876 switch (pdc_result[1]) {
877 case 1: initiator->factor = 50; break;
878 case 2: initiator->factor = 25; break;
879 case 5: initiator->factor = 12; break;
880 case 25: initiator->factor = 10; break;
881 case 20: initiator->factor = 12; break;
882 case 40: initiator->factor = 10; break;
883 default: initiator->factor = -1; break;
884 }
885
886 if (IS_SPROCKETS()) {
887 initiator->width = pdc_result[4];
888 initiator->mode = pdc_result[5];
889 } else {
890 initiator->width = -1;
891 initiator->mode = -1;
892 }
893
894 out:
895 spin_unlock_irqrestore(&pdc_lock, flags);
896
897 return (retval >= PDC_OK);
898}
899EXPORT_SYMBOL(pdc_get_initiator);
900
901
902/**
903 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
904 * @num_entries: The return value.
905 * @hpa: The HPA for the device.
906 *
907 * This PDC function returns the number of entries in the specified cell's
908 * interrupt table.
909 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
910 */
911int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
912{
913 int retval;
914 unsigned long flags;
915
916 spin_lock_irqsave(&pdc_lock, flags);
917 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
918 __pa(pdc_result), hpa);
919 convert_to_wide(pdc_result);
920 *num_entries = pdc_result[0];
921 spin_unlock_irqrestore(&pdc_lock, flags);
922
923 return retval;
924}
925
926/**
927 * pdc_pci_irt - Get the PCI interrupt routing table.
928 * @num_entries: The number of entries in the table.
929 * @hpa: The Hard Physical Address of the device.
930 * @tbl:
931 *
932 * Get the PCI interrupt routing table for the device at the given HPA.
933 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
934 */
935int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
936{
937 int retval;
938 unsigned long flags;
939
940 BUG_ON((unsigned long)tbl & 0x7);
941
942 spin_lock_irqsave(&pdc_lock, flags);
943 pdc_result[0] = num_entries;
944 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
945 __pa(pdc_result), hpa, __pa(tbl));
946 spin_unlock_irqrestore(&pdc_lock, flags);
947
948 return retval;
949}
950
951
952#if 0 /* UNTEST CODE - left here in case someone needs it */
953
954/**
955 * pdc_pci_config_read - read PCI config space.
956 * @hpa token from PDC to indicate which PCI device
957 * @pci_addr configuration space address to read from
958 *
959 * Read PCI Configuration space *before* linux PCI subsystem is running.
960 */
961unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
962{
963 int retval;
964 unsigned long flags;
965
966 spin_lock_irqsave(&pdc_lock, flags);
967 pdc_result[0] = 0;
968 pdc_result[1] = 0;
969 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
970 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
971 spin_unlock_irqrestore(&pdc_lock, flags);
972
973 return retval ? ~0 : (unsigned int) pdc_result[0];
974}
975
976
977/**
978 * pdc_pci_config_write - read PCI config space.
979 * @hpa token from PDC to indicate which PCI device
980 * @pci_addr configuration space address to write
981 * @val value we want in the 32-bit register
982 *
983 * Write PCI Configuration space *before* linux PCI subsystem is running.
984 */
985void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
986{
987 int retval;
988 unsigned long flags;
989
990 spin_lock_irqsave(&pdc_lock, flags);
991 pdc_result[0] = 0;
992 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
993 __pa(pdc_result), hpa,
994 cfg_addr&~3UL, 4UL, (unsigned long) val);
995 spin_unlock_irqrestore(&pdc_lock, flags);
996
997 return retval;
998}
999#endif /* UNTESTED CODE */
1000
1001/**
1002 * pdc_tod_read - Read the Time-Of-Day clock.
1003 * @tod: The return buffer:
1004 *
1005 * Read the Time-Of-Day clock
1006 */
1007int pdc_tod_read(struct pdc_tod *tod)
1008{
1009 int retval;
1010 unsigned long flags;
1011
1012 spin_lock_irqsave(&pdc_lock, flags);
1013 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1014 convert_to_wide(pdc_result);
1015 memcpy(tod, pdc_result, sizeof(*tod));
1016 spin_unlock_irqrestore(&pdc_lock, flags);
1017
1018 return retval;
1019}
1020EXPORT_SYMBOL(pdc_tod_read);
1021
1022int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1023{
1024 int retval;
1025 unsigned long flags;
1026
1027 spin_lock_irqsave(&pdc_lock, flags);
1028 retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1029 convert_to_wide(pdc_result);
1030 memcpy(rinfo, pdc_result, sizeof(*rinfo));
1031 spin_unlock_irqrestore(&pdc_lock, flags);
1032
1033 return retval;
1034}
1035
1036int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1037 unsigned long *pdt_entries_ptr)
1038{
1039 int retval;
1040 unsigned long flags;
1041
1042 spin_lock_irqsave(&pdc_lock, flags);
1043 retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1044 __pa(pdt_entries_ptr));
1045 if (retval == PDC_OK) {
1046 convert_to_wide(pdc_result);
1047 memcpy(pret, pdc_result, sizeof(*pret));
1048 }
1049 spin_unlock_irqrestore(&pdc_lock, flags);
1050
1051#ifdef CONFIG_64BIT
1052 /*
1053 * 64-bit kernels should not call this PDT function in narrow mode.
1054 * The pdt_entries_ptr array above will now contain 32-bit values
1055 */
1056 if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1057 return PDC_ERROR;
1058#endif
1059
1060 return retval;
1061}
1062
1063/**
1064 * pdc_tod_set - Set the Time-Of-Day clock.
1065 * @sec: The number of seconds since epoch.
1066 * @usec: The number of micro seconds.
1067 *
1068 * Set the Time-Of-Day clock.
1069 */
1070int pdc_tod_set(unsigned long sec, unsigned long usec)
1071{
1072 int retval;
1073 unsigned long flags;
1074
1075 spin_lock_irqsave(&pdc_lock, flags);
1076 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1077 spin_unlock_irqrestore(&pdc_lock, flags);
1078
1079 return retval;
1080}
1081EXPORT_SYMBOL(pdc_tod_set);
1082
1083#ifdef CONFIG_64BIT
1084int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1085 struct pdc_memory_table *tbl, unsigned long entries)
1086{
1087 int retval;
1088 unsigned long flags;
1089
1090 spin_lock_irqsave(&pdc_lock, flags);
1091 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1092 convert_to_wide(pdc_result);
1093 memcpy(r_addr, pdc_result, sizeof(*r_addr));
1094 memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1095 spin_unlock_irqrestore(&pdc_lock, flags);
1096
1097 return retval;
1098}
1099#endif /* CONFIG_64BIT */
1100
1101/* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
1102 * so I guessed at unsigned long. Someone who knows what this does, can fix
1103 * it later. :)
1104 */
1105int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1106{
1107 int retval;
1108 unsigned long flags;
1109
1110 spin_lock_irqsave(&pdc_lock, flags);
1111 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1112 PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1113 spin_unlock_irqrestore(&pdc_lock, flags);
1114
1115 return retval;
1116}
1117
1118/*
1119 * pdc_do_reset - Reset the system.
1120 *
1121 * Reset the system.
1122 */
1123int pdc_do_reset(void)
1124{
1125 int retval;
1126 unsigned long flags;
1127
1128 spin_lock_irqsave(&pdc_lock, flags);
1129 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1130 spin_unlock_irqrestore(&pdc_lock, flags);
1131
1132 return retval;
1133}
1134
1135/*
1136 * pdc_soft_power_info - Enable soft power switch.
1137 * @power_reg: address of soft power register
1138 *
1139 * Return the absolute address of the soft power switch register
1140 */
1141int __init pdc_soft_power_info(unsigned long *power_reg)
1142{
1143 int retval;
1144 unsigned long flags;
1145
1146 *power_reg = (unsigned long) (-1);
1147
1148 spin_lock_irqsave(&pdc_lock, flags);
1149 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1150 if (retval == PDC_OK) {
1151 convert_to_wide(pdc_result);
1152 *power_reg = f_extend(pdc_result[0]);
1153 }
1154 spin_unlock_irqrestore(&pdc_lock, flags);
1155
1156 return retval;
1157}
1158
1159/*
1160 * pdc_soft_power_button - Control the soft power button behaviour
1161 * @sw_control: 0 for hardware control, 1 for software control
1162 *
1163 *
1164 * This PDC function places the soft power button under software or
1165 * hardware control.
1166 * Under software control the OS may control to when to allow to shut
1167 * down the system. Under hardware control pressing the power button
1168 * powers off the system immediately.
1169 */
1170int pdc_soft_power_button(int sw_control)
1171{
1172 int retval;
1173 unsigned long flags;
1174
1175 spin_lock_irqsave(&pdc_lock, flags);
1176 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1177 spin_unlock_irqrestore(&pdc_lock, flags);
1178
1179 return retval;
1180}
1181
1182/*
1183 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1184 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1185 * who knows what other platform firmware might do with this OS "hook".
1186 */
1187void pdc_io_reset(void)
1188{
1189 unsigned long flags;
1190
1191 spin_lock_irqsave(&pdc_lock, flags);
1192 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1193 spin_unlock_irqrestore(&pdc_lock, flags);
1194}
1195
1196/*
1197 * pdc_io_reset_devices - Hack to Stop USB controller
1198 *
1199 * If PDC used the usb controller, the usb controller
1200 * is still running and will crash the machines during iommu
1201 * setup, because of still running DMA. This PDC call
1202 * stops the USB controller.
1203 * Normally called after calling pdc_io_reset().
1204 */
1205void pdc_io_reset_devices(void)
1206{
1207 unsigned long flags;
1208
1209 spin_lock_irqsave(&pdc_lock, flags);
1210 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1211 spin_unlock_irqrestore(&pdc_lock, flags);
1212}
1213
1214#endif /* defined(BOOTLOADER) */
1215
1216/* locked by pdc_console_lock */
1217static int __attribute__((aligned(8))) iodc_retbuf[32];
1218static char __attribute__((aligned(64))) iodc_dbuf[4096];
1219
1220/**
1221 * pdc_iodc_print - Console print using IODC.
1222 * @str: the string to output.
1223 * @count: length of str
1224 *
1225 * Note that only these special chars are architected for console IODC io:
1226 * BEL, BS, CR, and LF. Others are passed through.
1227 * Since the HP console requires CR+LF to perform a 'newline', we translate
1228 * "\n" to "\r\n".
1229 */
1230int pdc_iodc_print(const unsigned char *str, unsigned count)
1231{
1232 unsigned int i;
1233 unsigned long flags;
1234
1235 for (i = 0; i < count;) {
1236 switch(str[i]) {
1237 case '\n':
1238 iodc_dbuf[i+0] = '\r';
1239 iodc_dbuf[i+1] = '\n';
1240 i += 2;
1241 goto print;
1242 default:
1243 iodc_dbuf[i] = str[i];
1244 i++;
1245 break;
1246 }
1247 }
1248
1249print:
1250 spin_lock_irqsave(&pdc_lock, flags);
1251 real32_call(PAGE0->mem_cons.iodc_io,
1252 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1253 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1254 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1255 spin_unlock_irqrestore(&pdc_lock, flags);
1256
1257 return i;
1258}
1259
1260#if !defined(BOOTLOADER)
1261/**
1262 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1263 *
1264 * Read a character (non-blocking) from the PDC console, returns -1 if
1265 * key is not present.
1266 */
1267int pdc_iodc_getc(void)
1268{
1269 int ch;
1270 int status;
1271 unsigned long flags;
1272
1273 /* Bail if no console input device. */
1274 if (!PAGE0->mem_kbd.iodc_io)
1275 return 0;
1276
1277 /* wait for a keyboard (rs232)-input */
1278 spin_lock_irqsave(&pdc_lock, flags);
1279 real32_call(PAGE0->mem_kbd.iodc_io,
1280 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1281 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1282 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1283
1284 ch = *iodc_dbuf;
1285 status = *iodc_retbuf;
1286 spin_unlock_irqrestore(&pdc_lock, flags);
1287
1288 if (status == 0)
1289 return -1;
1290
1291 return ch;
1292}
1293
1294int pdc_sti_call(unsigned long func, unsigned long flags,
1295 unsigned long inptr, unsigned long outputr,
1296 unsigned long glob_cfg)
1297{
1298 int retval;
1299 unsigned long irqflags;
1300
1301 spin_lock_irqsave(&pdc_lock, irqflags);
1302 retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1303 spin_unlock_irqrestore(&pdc_lock, irqflags);
1304
1305 return retval;
1306}
1307EXPORT_SYMBOL(pdc_sti_call);
1308
1309#ifdef CONFIG_64BIT
1310/**
1311 * pdc_pat_cell_get_number - Returns the cell number.
1312 * @cell_info: The return buffer.
1313 *
1314 * This PDC call returns the cell number of the cell from which the call
1315 * is made.
1316 */
1317int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1318{
1319 int retval;
1320 unsigned long flags;
1321
1322 spin_lock_irqsave(&pdc_lock, flags);
1323 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1324 memcpy(cell_info, pdc_result, sizeof(*cell_info));
1325 spin_unlock_irqrestore(&pdc_lock, flags);
1326
1327 return retval;
1328}
1329
1330/**
1331 * pdc_pat_cell_module - Retrieve the cell's module information.
1332 * @actcnt: The number of bytes written to mem_addr.
1333 * @ploc: The physical location.
1334 * @mod: The module index.
1335 * @view_type: The view of the address type.
1336 * @mem_addr: The return buffer.
1337 *
1338 * This PDC call returns information about each module attached to the cell
1339 * at the specified location.
1340 */
1341int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1342 unsigned long view_type, void *mem_addr)
1343{
1344 int retval;
1345 unsigned long flags;
1346 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1347
1348 spin_lock_irqsave(&pdc_lock, flags);
1349 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1350 ploc, mod, view_type, __pa(&result));
1351 if(!retval) {
1352 *actcnt = pdc_result[0];
1353 memcpy(mem_addr, &result, *actcnt);
1354 }
1355 spin_unlock_irqrestore(&pdc_lock, flags);
1356
1357 return retval;
1358}
1359
1360/**
1361 * pdc_pat_cell_info - Retrieve the cell's information.
1362 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1363 * @actcnt: The number of bytes which should be written to info.
1364 * @offset: offset of the structure.
1365 * @cell_number: The cell number which should be asked, or -1 for current cell.
1366 *
1367 * This PDC call returns information about the given cell (or all cells).
1368 */
1369int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1370 unsigned long *actcnt, unsigned long offset,
1371 unsigned long cell_number)
1372{
1373 int retval;
1374 unsigned long flags;
1375 struct pdc_pat_cell_info_rtn_block result;
1376
1377 spin_lock_irqsave(&pdc_lock, flags);
1378 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1379 __pa(pdc_result), __pa(&result), *actcnt,
1380 offset, cell_number);
1381 if (!retval) {
1382 *actcnt = pdc_result[0];
1383 memcpy(info, &result, *actcnt);
1384 }
1385 spin_unlock_irqrestore(&pdc_lock, flags);
1386
1387 return retval;
1388}
1389
1390/**
1391 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1392 * @cpu_info: The return buffer.
1393 * @hpa: The Hard Physical Address of the CPU.
1394 *
1395 * Retrieve the cpu number for the cpu at the specified HPA.
1396 */
1397int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1398{
1399 int retval;
1400 unsigned long flags;
1401
1402 spin_lock_irqsave(&pdc_lock, flags);
1403 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1404 __pa(&pdc_result), hpa);
1405 memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1406 spin_unlock_irqrestore(&pdc_lock, flags);
1407
1408 return retval;
1409}
1410
1411/**
1412 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1413 * @num_entries: The return value.
1414 * @cell_num: The target cell.
1415 *
1416 * This PDC function returns the number of entries in the specified cell's
1417 * interrupt table.
1418 */
1419int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1420{
1421 int retval;
1422 unsigned long flags;
1423
1424 spin_lock_irqsave(&pdc_lock, flags);
1425 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1426 __pa(pdc_result), cell_num);
1427 *num_entries = pdc_result[0];
1428 spin_unlock_irqrestore(&pdc_lock, flags);
1429
1430 return retval;
1431}
1432
1433/**
1434 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1435 * @r_addr: The return buffer.
1436 * @cell_num: The target cell.
1437 *
1438 * This PDC function returns the actual interrupt table for the specified cell.
1439 */
1440int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1441{
1442 int retval;
1443 unsigned long flags;
1444
1445 spin_lock_irqsave(&pdc_lock, flags);
1446 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1447 __pa(r_addr), cell_num);
1448 spin_unlock_irqrestore(&pdc_lock, flags);
1449
1450 return retval;
1451}
1452
1453/**
1454 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1455 * @actlen: The return buffer.
1456 * @mem_addr: Pointer to the memory buffer.
1457 * @count: The number of bytes to read from the buffer.
1458 * @offset: The offset with respect to the beginning of the buffer.
1459 *
1460 */
1461int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1462 unsigned long count, unsigned long offset)
1463{
1464 int retval;
1465 unsigned long flags;
1466
1467 spin_lock_irqsave(&pdc_lock, flags);
1468 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1469 __pa(pdc_result2), count, offset);
1470 *actual_len = pdc_result[0];
1471 memcpy(mem_addr, pdc_result2, *actual_len);
1472 spin_unlock_irqrestore(&pdc_lock, flags);
1473
1474 return retval;
1475}
1476
1477/**
1478 * pdc_pat_pd_get_PDC_interface_revisions - Retrieve PDC interface revisions.
1479 * @legacy_rev: The legacy revision.
1480 * @pat_rev: The PAT revision.
1481 * @pdc_cap: The PDC capabilities.
1482 *
1483 */
1484int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1485 unsigned long *pat_rev, unsigned long *pdc_cap)
1486{
1487 int retval;
1488 unsigned long flags;
1489
1490 spin_lock_irqsave(&pdc_lock, flags);
1491 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1492 __pa(pdc_result));
1493 if (retval == PDC_OK) {
1494 *legacy_rev = pdc_result[0];
1495 *pat_rev = pdc_result[1];
1496 *pdc_cap = pdc_result[2];
1497 }
1498 spin_unlock_irqrestore(&pdc_lock, flags);
1499
1500 return retval;
1501}
1502
1503
1504/**
1505 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1506 * @pci_addr: PCI configuration space address for which the read request is being made.
1507 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1508 * @mem_addr: Pointer to return memory buffer.
1509 *
1510 */
1511int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1512{
1513 int retval;
1514 unsigned long flags;
1515
1516 spin_lock_irqsave(&pdc_lock, flags);
1517 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1518 __pa(pdc_result), pci_addr, pci_size);
1519 switch(pci_size) {
1520 case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; break;
1521 case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; break;
1522 case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; break;
1523 }
1524 spin_unlock_irqrestore(&pdc_lock, flags);
1525
1526 return retval;
1527}
1528
1529/**
1530 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1531 * @pci_addr: PCI configuration space address for which the write request is being made.
1532 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1533 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1534 * written to PCI Config space.
1535 *
1536 */
1537int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1538{
1539 int retval;
1540 unsigned long flags;
1541
1542 spin_lock_irqsave(&pdc_lock, flags);
1543 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1544 pci_addr, pci_size, val);
1545 spin_unlock_irqrestore(&pdc_lock, flags);
1546
1547 return retval;
1548}
1549
1550/**
1551 * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1552 * @rinfo: memory pdt information
1553 *
1554 */
1555int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1556{
1557 int retval;
1558 unsigned long flags;
1559
1560 spin_lock_irqsave(&pdc_lock, flags);
1561 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1562 __pa(&pdc_result));
1563 if (retval == PDC_OK)
1564 memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1565 spin_unlock_irqrestore(&pdc_lock, flags);
1566
1567 return retval;
1568}
1569
1570/**
1571 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1572 * table of a cell
1573 * @rinfo: memory pdt information
1574 * @cell: cell number
1575 *
1576 */
1577int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1578 unsigned long cell)
1579{
1580 int retval;
1581 unsigned long flags;
1582
1583 spin_lock_irqsave(&pdc_lock, flags);
1584 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1585 __pa(&pdc_result), cell);
1586 if (retval == PDC_OK)
1587 memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1588 spin_unlock_irqrestore(&pdc_lock, flags);
1589
1590 return retval;
1591}
1592
1593/**
1594 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1595 * @pret: array of PDT entries
1596 * @pdt_entries_ptr: ptr to hold number of PDT entries
1597 * @max_entries: maximum number of entries to be read
1598 *
1599 */
1600int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1601 unsigned long *pdt_entries_ptr, unsigned long max_entries)
1602{
1603 int retval;
1604 unsigned long flags, entries;
1605
1606 spin_lock_irqsave(&pdc_lock, flags);
1607 /* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1608 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1609 __pa(&pdc_result), parisc_cell_num,
1610 __pa(pdt_entries_ptr));
1611
1612 if (retval == PDC_OK) {
1613 /* build up return value as for PDC_PAT_MEM_PD_READ */
1614 entries = min(pdc_result[0], max_entries);
1615 pret->pdt_entries = entries;
1616 pret->actual_count_bytes = entries * sizeof(unsigned long);
1617 }
1618
1619 spin_unlock_irqrestore(&pdc_lock, flags);
1620 WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1621
1622 return retval;
1623}
1624/**
1625 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1626 * @pret: array of PDT entries
1627 * @pdt_entries_ptr: ptr to hold number of PDT entries
1628 * @count: number of bytes to read
1629 * @offset: offset to start (in bytes)
1630 *
1631 */
1632int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1633 unsigned long *pdt_entries_ptr, unsigned long count,
1634 unsigned long offset)
1635{
1636 int retval;
1637 unsigned long flags, entries;
1638
1639 spin_lock_irqsave(&pdc_lock, flags);
1640 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1641 __pa(&pdc_result), __pa(pdt_entries_ptr),
1642 count, offset);
1643
1644 if (retval == PDC_OK) {
1645 entries = min(pdc_result[0], count);
1646 pret->actual_count_bytes = entries;
1647 pret->pdt_entries = entries / sizeof(unsigned long);
1648 }
1649
1650 spin_unlock_irqrestore(&pdc_lock, flags);
1651
1652 return retval;
1653}
1654
1655/**
1656 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1657 * @pret: ptr to hold returned information
1658 * @phys_addr: physical address to examine
1659 *
1660 */
1661int pdc_pat_mem_get_dimm_phys_location(
1662 struct pdc_pat_mem_phys_mem_location *pret,
1663 unsigned long phys_addr)
1664{
1665 int retval;
1666 unsigned long flags;
1667
1668 spin_lock_irqsave(&pdc_lock, flags);
1669 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1670 __pa(&pdc_result), phys_addr);
1671
1672 if (retval == PDC_OK)
1673 memcpy(pret, &pdc_result, sizeof(*pret));
1674
1675 spin_unlock_irqrestore(&pdc_lock, flags);
1676
1677 return retval;
1678}
1679#endif /* CONFIG_64BIT */
1680#endif /* defined(BOOTLOADER) */
1681
1682
1683/***************** 32-bit real-mode calls ***********/
1684/* The struct below is used
1685 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1686 * real32_call_asm() then uses this stack in narrow real mode
1687 */
1688
1689struct narrow_stack {
1690 /* use int, not long which is 64 bits */
1691 unsigned int arg13;
1692 unsigned int arg12;
1693 unsigned int arg11;
1694 unsigned int arg10;
1695 unsigned int arg9;
1696 unsigned int arg8;
1697 unsigned int arg7;
1698 unsigned int arg6;
1699 unsigned int arg5;
1700 unsigned int arg4;
1701 unsigned int arg3;
1702 unsigned int arg2;
1703 unsigned int arg1;
1704 unsigned int arg0;
1705 unsigned int frame_marker[8];
1706 unsigned int sp;
1707 /* in reality, there's nearly 8k of stack after this */
1708};
1709
1710long real32_call(unsigned long fn, ...)
1711{
1712 va_list args;
1713 extern struct narrow_stack real_stack;
1714 extern unsigned long real32_call_asm(unsigned int *,
1715 unsigned int *,
1716 unsigned int);
1717
1718 va_start(args, fn);
1719 real_stack.arg0 = va_arg(args, unsigned int);
1720 real_stack.arg1 = va_arg(args, unsigned int);
1721 real_stack.arg2 = va_arg(args, unsigned int);
1722 real_stack.arg3 = va_arg(args, unsigned int);
1723 real_stack.arg4 = va_arg(args, unsigned int);
1724 real_stack.arg5 = va_arg(args, unsigned int);
1725 real_stack.arg6 = va_arg(args, unsigned int);
1726 real_stack.arg7 = va_arg(args, unsigned int);
1727 real_stack.arg8 = va_arg(args, unsigned int);
1728 real_stack.arg9 = va_arg(args, unsigned int);
1729 real_stack.arg10 = va_arg(args, unsigned int);
1730 real_stack.arg11 = va_arg(args, unsigned int);
1731 real_stack.arg12 = va_arg(args, unsigned int);
1732 real_stack.arg13 = va_arg(args, unsigned int);
1733 va_end(args);
1734
1735 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1736}
1737
1738#ifdef CONFIG_64BIT
1739/***************** 64-bit real-mode calls ***********/
1740
1741struct wide_stack {
1742 unsigned long arg0;
1743 unsigned long arg1;
1744 unsigned long arg2;
1745 unsigned long arg3;
1746 unsigned long arg4;
1747 unsigned long arg5;
1748 unsigned long arg6;
1749 unsigned long arg7;
1750 unsigned long arg8;
1751 unsigned long arg9;
1752 unsigned long arg10;
1753 unsigned long arg11;
1754 unsigned long arg12;
1755 unsigned long arg13;
1756 unsigned long frame_marker[2]; /* rp, previous sp */
1757 unsigned long sp;
1758 /* in reality, there's nearly 8k of stack after this */
1759};
1760
1761long real64_call(unsigned long fn, ...)
1762{
1763 va_list args;
1764 extern struct wide_stack real64_stack;
1765 extern unsigned long real64_call_asm(unsigned long *,
1766 unsigned long *,
1767 unsigned long);
1768
1769 va_start(args, fn);
1770 real64_stack.arg0 = va_arg(args, unsigned long);
1771 real64_stack.arg1 = va_arg(args, unsigned long);
1772 real64_stack.arg2 = va_arg(args, unsigned long);
1773 real64_stack.arg3 = va_arg(args, unsigned long);
1774 real64_stack.arg4 = va_arg(args, unsigned long);
1775 real64_stack.arg5 = va_arg(args, unsigned long);
1776 real64_stack.arg6 = va_arg(args, unsigned long);
1777 real64_stack.arg7 = va_arg(args, unsigned long);
1778 real64_stack.arg8 = va_arg(args, unsigned long);
1779 real64_stack.arg9 = va_arg(args, unsigned long);
1780 real64_stack.arg10 = va_arg(args, unsigned long);
1781 real64_stack.arg11 = va_arg(args, unsigned long);
1782 real64_stack.arg12 = va_arg(args, unsigned long);
1783 real64_stack.arg13 = va_arg(args, unsigned long);
1784 va_end(args);
1785
1786 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1787}
1788
1789#endif /* CONFIG_64BIT */
1/*
2 * arch/parisc/kernel/firmware.c - safe PDC access routines
3 *
4 * PDC == Processor Dependent Code
5 *
6 * See http://www.parisc-linux.org/documentation/index.html
7 * for documentation describing the entry points and calling
8 * conventions defined below.
9 *
10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
20 *
21 */
22
23/* I think it would be in everyone's best interest to follow this
24 * guidelines when writing PDC wrappers:
25 *
26 * - the name of the pdc wrapper should match one of the macros
27 * used for the first two arguments
28 * - don't use caps for random parts of the name
29 * - use the static PDC result buffers and "copyout" to structs
30 * supplied by the caller to encapsulate alignment restrictions
31 * - hold pdc_lock while in PDC or using static result buffers
32 * - use __pa() to convert virtual (kernel) pointers to physical
33 * ones.
34 * - the name of the struct used for pdc return values should equal
35 * one of the macros used for the first two arguments to the
36 * corresponding PDC call
37 * - keep the order of arguments
38 * - don't be smart (setting trailing NUL bytes for strings, return
39 * something useful even if the call failed) unless you are sure
40 * it's not going to affect functionality or performance
41 *
42 * Example:
43 * int pdc_cache_info(struct pdc_cache_info *cache_info )
44 * {
45 * int retval;
46 *
47 * spin_lock_irq(&pdc_lock);
48 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49 * convert_to_wide(pdc_result);
50 * memcpy(cache_info, pdc_result, sizeof(*cache_info));
51 * spin_unlock_irq(&pdc_lock);
52 *
53 * return retval;
54 * }
55 * prumpf 991016
56 */
57
58#include <stdarg.h>
59
60#include <linux/delay.h>
61#include <linux/init.h>
62#include <linux/kernel.h>
63#include <linux/module.h>
64#include <linux/string.h>
65#include <linux/spinlock.h>
66
67#include <asm/page.h>
68#include <asm/pdc.h>
69#include <asm/pdcpat.h>
70#include <asm/system.h>
71#include <asm/processor.h> /* for boot_cpu_data */
72
73static DEFINE_SPINLOCK(pdc_lock);
74extern unsigned long pdc_result[NUM_PDC_RESULT];
75extern unsigned long pdc_result2[NUM_PDC_RESULT];
76
77#ifdef CONFIG_64BIT
78#define WIDE_FIRMWARE 0x1
79#define NARROW_FIRMWARE 0x2
80
81/* Firmware needs to be initially set to narrow to determine the
82 * actual firmware width. */
83int parisc_narrow_firmware __read_mostly = 1;
84#endif
85
86/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
87 * and MEM_PDC calls are always the same width as the OS.
88 * Some PAT boxes may have 64-bit IODC I/O.
89 *
90 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
91 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
92 * This allowed wide kernels to run on Cxxx boxes.
93 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
94 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
95 */
96
97#ifdef CONFIG_64BIT
98long real64_call(unsigned long function, ...);
99#endif
100long real32_call(unsigned long function, ...);
101
102#ifdef CONFIG_64BIT
103# define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
104# define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
105#else
106# define MEM_PDC (unsigned long)PAGE0->mem_pdc
107# define mem_pdc_call(args...) real32_call(MEM_PDC, args)
108#endif
109
110
111/**
112 * f_extend - Convert PDC addresses to kernel addresses.
113 * @address: Address returned from PDC.
114 *
115 * This function is used to convert PDC addresses into kernel addresses
116 * when the PDC address size and kernel address size are different.
117 */
118static unsigned long f_extend(unsigned long address)
119{
120#ifdef CONFIG_64BIT
121 if(unlikely(parisc_narrow_firmware)) {
122 if((address & 0xff000000) == 0xf0000000)
123 return 0xf0f0f0f000000000UL | (u32)address;
124
125 if((address & 0xf0000000) == 0xf0000000)
126 return 0xffffffff00000000UL | (u32)address;
127 }
128#endif
129 return address;
130}
131
132/**
133 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
134 * @address: The return buffer from PDC.
135 *
136 * This function is used to convert the return buffer addresses retrieved from PDC
137 * into kernel addresses when the PDC address size and kernel address size are
138 * different.
139 */
140static void convert_to_wide(unsigned long *addr)
141{
142#ifdef CONFIG_64BIT
143 int i;
144 unsigned int *p = (unsigned int *)addr;
145
146 if(unlikely(parisc_narrow_firmware)) {
147 for(i = 31; i >= 0; --i)
148 addr[i] = p[i];
149 }
150#endif
151}
152
153#ifdef CONFIG_64BIT
154void __cpuinit set_firmware_width_unlocked(void)
155{
156 int ret;
157
158 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
159 __pa(pdc_result), 0);
160 convert_to_wide(pdc_result);
161 if (pdc_result[0] != NARROW_FIRMWARE)
162 parisc_narrow_firmware = 0;
163}
164
165/**
166 * set_firmware_width - Determine if the firmware is wide or narrow.
167 *
168 * This function must be called before any pdc_* function that uses the
169 * convert_to_wide function.
170 */
171void __cpuinit set_firmware_width(void)
172{
173 unsigned long flags;
174 spin_lock_irqsave(&pdc_lock, flags);
175 set_firmware_width_unlocked();
176 spin_unlock_irqrestore(&pdc_lock, flags);
177}
178#else
179void __cpuinit set_firmware_width_unlocked(void) {
180 return;
181}
182
183void __cpuinit set_firmware_width(void) {
184 return;
185}
186#endif /*CONFIG_64BIT*/
187
188/**
189 * pdc_emergency_unlock - Unlock the linux pdc lock
190 *
191 * This call unlocks the linux pdc lock in case we need some PDC functions
192 * (like pdc_add_valid) during kernel stack dump.
193 */
194void pdc_emergency_unlock(void)
195{
196 /* Spinlock DEBUG code freaks out if we unconditionally unlock */
197 if (spin_is_locked(&pdc_lock))
198 spin_unlock(&pdc_lock);
199}
200
201
202/**
203 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
204 * @address: Address to be verified.
205 *
206 * This PDC call attempts to read from the specified address and verifies
207 * if the address is valid.
208 *
209 * The return value is PDC_OK (0) in case accessing this address is valid.
210 */
211int pdc_add_valid(unsigned long address)
212{
213 int retval;
214 unsigned long flags;
215
216 spin_lock_irqsave(&pdc_lock, flags);
217 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
218 spin_unlock_irqrestore(&pdc_lock, flags);
219
220 return retval;
221}
222EXPORT_SYMBOL(pdc_add_valid);
223
224/**
225 * pdc_chassis_info - Return chassis information.
226 * @result: The return buffer.
227 * @chassis_info: The memory buffer address.
228 * @len: The size of the memory buffer address.
229 *
230 * An HVERSION dependent call for returning the chassis information.
231 */
232int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
233{
234 int retval;
235 unsigned long flags;
236
237 spin_lock_irqsave(&pdc_lock, flags);
238 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
239 memcpy(&pdc_result2, led_info, len);
240 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
241 __pa(pdc_result), __pa(pdc_result2), len);
242 memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
243 memcpy(led_info, pdc_result2, len);
244 spin_unlock_irqrestore(&pdc_lock, flags);
245
246 return retval;
247}
248
249/**
250 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
251 * @retval: -1 on error, 0 on success. Other value are PDC errors
252 *
253 * Must be correctly formatted or expect system crash
254 */
255#ifdef CONFIG_64BIT
256int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
257{
258 int retval = 0;
259 unsigned long flags;
260
261 if (!is_pdc_pat())
262 return -1;
263
264 spin_lock_irqsave(&pdc_lock, flags);
265 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
266 spin_unlock_irqrestore(&pdc_lock, flags);
267
268 return retval;
269}
270#endif
271
272/**
273 * pdc_chassis_disp - Updates chassis code
274 * @retval: -1 on error, 0 on success
275 */
276int pdc_chassis_disp(unsigned long disp)
277{
278 int retval = 0;
279 unsigned long flags;
280
281 spin_lock_irqsave(&pdc_lock, flags);
282 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
283 spin_unlock_irqrestore(&pdc_lock, flags);
284
285 return retval;
286}
287
288/**
289 * pdc_chassis_warn - Fetches chassis warnings
290 * @retval: -1 on error, 0 on success
291 */
292int pdc_chassis_warn(unsigned long *warn)
293{
294 int retval = 0;
295 unsigned long flags;
296
297 spin_lock_irqsave(&pdc_lock, flags);
298 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
299 *warn = pdc_result[0];
300 spin_unlock_irqrestore(&pdc_lock, flags);
301
302 return retval;
303}
304
305int __cpuinit pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
306{
307 int ret;
308
309 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
310 convert_to_wide(pdc_result);
311 pdc_coproc_info->ccr_functional = pdc_result[0];
312 pdc_coproc_info->ccr_present = pdc_result[1];
313 pdc_coproc_info->revision = pdc_result[17];
314 pdc_coproc_info->model = pdc_result[18];
315
316 return ret;
317}
318
319/**
320 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
321 * @pdc_coproc_info: Return buffer address.
322 *
323 * This PDC call returns the presence and status of all the coprocessors
324 * attached to the processor.
325 */
326int __cpuinit pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
327{
328 int ret;
329 unsigned long flags;
330
331 spin_lock_irqsave(&pdc_lock, flags);
332 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
333 spin_unlock_irqrestore(&pdc_lock, flags);
334
335 return ret;
336}
337
338/**
339 * pdc_iodc_read - Read data from the modules IODC.
340 * @actcnt: The actual number of bytes.
341 * @hpa: The HPA of the module for the iodc read.
342 * @index: The iodc entry point.
343 * @iodc_data: A buffer memory for the iodc options.
344 * @iodc_data_size: Size of the memory buffer.
345 *
346 * This PDC call reads from the IODC of the module specified by the hpa
347 * argument.
348 */
349int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
350 void *iodc_data, unsigned int iodc_data_size)
351{
352 int retval;
353 unsigned long flags;
354
355 spin_lock_irqsave(&pdc_lock, flags);
356 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
357 index, __pa(pdc_result2), iodc_data_size);
358 convert_to_wide(pdc_result);
359 *actcnt = pdc_result[0];
360 memcpy(iodc_data, pdc_result2, iodc_data_size);
361 spin_unlock_irqrestore(&pdc_lock, flags);
362
363 return retval;
364}
365EXPORT_SYMBOL(pdc_iodc_read);
366
367/**
368 * pdc_system_map_find_mods - Locate unarchitected modules.
369 * @pdc_mod_info: Return buffer address.
370 * @mod_path: pointer to dev path structure.
371 * @mod_index: fixed address module index.
372 *
373 * To locate and identify modules which reside at fixed I/O addresses, which
374 * do not self-identify via architected bus walks.
375 */
376int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
377 struct pdc_module_path *mod_path, long mod_index)
378{
379 int retval;
380 unsigned long flags;
381
382 spin_lock_irqsave(&pdc_lock, flags);
383 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
384 __pa(pdc_result2), mod_index);
385 convert_to_wide(pdc_result);
386 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
387 memcpy(mod_path, pdc_result2, sizeof(*mod_path));
388 spin_unlock_irqrestore(&pdc_lock, flags);
389
390 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
391 return retval;
392}
393
394/**
395 * pdc_system_map_find_addrs - Retrieve additional address ranges.
396 * @pdc_addr_info: Return buffer address.
397 * @mod_index: Fixed address module index.
398 * @addr_index: Address range index.
399 *
400 * Retrieve additional information about subsequent address ranges for modules
401 * with multiple address ranges.
402 */
403int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
404 long mod_index, long addr_index)
405{
406 int retval;
407 unsigned long flags;
408
409 spin_lock_irqsave(&pdc_lock, flags);
410 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
411 mod_index, addr_index);
412 convert_to_wide(pdc_result);
413 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
414 spin_unlock_irqrestore(&pdc_lock, flags);
415
416 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
417 return retval;
418}
419
420/**
421 * pdc_model_info - Return model information about the processor.
422 * @model: The return buffer.
423 *
424 * Returns the version numbers, identifiers, and capabilities from the processor module.
425 */
426int pdc_model_info(struct pdc_model *model)
427{
428 int retval;
429 unsigned long flags;
430
431 spin_lock_irqsave(&pdc_lock, flags);
432 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
433 convert_to_wide(pdc_result);
434 memcpy(model, pdc_result, sizeof(*model));
435 spin_unlock_irqrestore(&pdc_lock, flags);
436
437 return retval;
438}
439
440/**
441 * pdc_model_sysmodel - Get the system model name.
442 * @name: A char array of at least 81 characters.
443 *
444 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
445 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
446 * on HP/UX.
447 */
448int pdc_model_sysmodel(char *name)
449{
450 int retval;
451 unsigned long flags;
452
453 spin_lock_irqsave(&pdc_lock, flags);
454 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
455 OS_ID_HPUX, __pa(name));
456 convert_to_wide(pdc_result);
457
458 if (retval == PDC_OK) {
459 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
460 } else {
461 name[0] = 0;
462 }
463 spin_unlock_irqrestore(&pdc_lock, flags);
464
465 return retval;
466}
467
468/**
469 * pdc_model_versions - Identify the version number of each processor.
470 * @cpu_id: The return buffer.
471 * @id: The id of the processor to check.
472 *
473 * Returns the version number for each processor component.
474 *
475 * This comment was here before, but I do not know what it means :( -RB
476 * id: 0 = cpu revision, 1 = boot-rom-version
477 */
478int pdc_model_versions(unsigned long *versions, int id)
479{
480 int retval;
481 unsigned long flags;
482
483 spin_lock_irqsave(&pdc_lock, flags);
484 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
485 convert_to_wide(pdc_result);
486 *versions = pdc_result[0];
487 spin_unlock_irqrestore(&pdc_lock, flags);
488
489 return retval;
490}
491
492/**
493 * pdc_model_cpuid - Returns the CPU_ID.
494 * @cpu_id: The return buffer.
495 *
496 * Returns the CPU_ID value which uniquely identifies the cpu portion of
497 * the processor module.
498 */
499int pdc_model_cpuid(unsigned long *cpu_id)
500{
501 int retval;
502 unsigned long flags;
503
504 spin_lock_irqsave(&pdc_lock, flags);
505 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
506 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
507 convert_to_wide(pdc_result);
508 *cpu_id = pdc_result[0];
509 spin_unlock_irqrestore(&pdc_lock, flags);
510
511 return retval;
512}
513
514/**
515 * pdc_model_capabilities - Returns the platform capabilities.
516 * @capabilities: The return buffer.
517 *
518 * Returns information about platform support for 32- and/or 64-bit
519 * OSes, IO-PDIR coherency, and virtual aliasing.
520 */
521int pdc_model_capabilities(unsigned long *capabilities)
522{
523 int retval;
524 unsigned long flags;
525
526 spin_lock_irqsave(&pdc_lock, flags);
527 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
528 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
529 convert_to_wide(pdc_result);
530 if (retval == PDC_OK) {
531 *capabilities = pdc_result[0];
532 } else {
533 *capabilities = PDC_MODEL_OS32;
534 }
535 spin_unlock_irqrestore(&pdc_lock, flags);
536
537 return retval;
538}
539
540/**
541 * pdc_cache_info - Return cache and TLB information.
542 * @cache_info: The return buffer.
543 *
544 * Returns information about the processor's cache and TLB.
545 */
546int pdc_cache_info(struct pdc_cache_info *cache_info)
547{
548 int retval;
549 unsigned long flags;
550
551 spin_lock_irqsave(&pdc_lock, flags);
552 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
553 convert_to_wide(pdc_result);
554 memcpy(cache_info, pdc_result, sizeof(*cache_info));
555 spin_unlock_irqrestore(&pdc_lock, flags);
556
557 return retval;
558}
559
560/**
561 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
562 * @space_bits: Should be 0, if not, bad mojo!
563 *
564 * Returns information about Space ID hashing.
565 */
566int pdc_spaceid_bits(unsigned long *space_bits)
567{
568 int retval;
569 unsigned long flags;
570
571 spin_lock_irqsave(&pdc_lock, flags);
572 pdc_result[0] = 0;
573 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
574 convert_to_wide(pdc_result);
575 *space_bits = pdc_result[0];
576 spin_unlock_irqrestore(&pdc_lock, flags);
577
578 return retval;
579}
580
581#ifndef CONFIG_PA20
582/**
583 * pdc_btlb_info - Return block TLB information.
584 * @btlb: The return buffer.
585 *
586 * Returns information about the hardware Block TLB.
587 */
588int pdc_btlb_info(struct pdc_btlb_info *btlb)
589{
590 int retval;
591 unsigned long flags;
592
593 spin_lock_irqsave(&pdc_lock, flags);
594 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
595 memcpy(btlb, pdc_result, sizeof(*btlb));
596 spin_unlock_irqrestore(&pdc_lock, flags);
597
598 if(retval < 0) {
599 btlb->max_size = 0;
600 }
601 return retval;
602}
603
604/**
605 * pdc_mem_map_hpa - Find fixed module information.
606 * @address: The return buffer
607 * @mod_path: pointer to dev path structure.
608 *
609 * This call was developed for S700 workstations to allow the kernel to find
610 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
611 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
612 * call.
613 *
614 * This call is supported by all existing S700 workstations (up to Gecko).
615 */
616int pdc_mem_map_hpa(struct pdc_memory_map *address,
617 struct pdc_module_path *mod_path)
618{
619 int retval;
620 unsigned long flags;
621
622 spin_lock_irqsave(&pdc_lock, flags);
623 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
624 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
625 __pa(pdc_result2));
626 memcpy(address, pdc_result, sizeof(*address));
627 spin_unlock_irqrestore(&pdc_lock, flags);
628
629 return retval;
630}
631#endif /* !CONFIG_PA20 */
632
633/**
634 * pdc_lan_station_id - Get the LAN address.
635 * @lan_addr: The return buffer.
636 * @hpa: The network device HPA.
637 *
638 * Get the LAN station address when it is not directly available from the LAN hardware.
639 */
640int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
641{
642 int retval;
643 unsigned long flags;
644
645 spin_lock_irqsave(&pdc_lock, flags);
646 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
647 __pa(pdc_result), hpa);
648 if (retval < 0) {
649 /* FIXME: else read MAC from NVRAM */
650 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
651 } else {
652 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
653 }
654 spin_unlock_irqrestore(&pdc_lock, flags);
655
656 return retval;
657}
658EXPORT_SYMBOL(pdc_lan_station_id);
659
660/**
661 * pdc_stable_read - Read data from Stable Storage.
662 * @staddr: Stable Storage address to access.
663 * @memaddr: The memory address where Stable Storage data shall be copied.
664 * @count: number of bytes to transfer. count is multiple of 4.
665 *
666 * This PDC call reads from the Stable Storage address supplied in staddr
667 * and copies count bytes to the memory address memaddr.
668 * The call will fail if staddr+count > PDC_STABLE size.
669 */
670int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
671{
672 int retval;
673 unsigned long flags;
674
675 spin_lock_irqsave(&pdc_lock, flags);
676 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
677 __pa(pdc_result), count);
678 convert_to_wide(pdc_result);
679 memcpy(memaddr, pdc_result, count);
680 spin_unlock_irqrestore(&pdc_lock, flags);
681
682 return retval;
683}
684EXPORT_SYMBOL(pdc_stable_read);
685
686/**
687 * pdc_stable_write - Write data to Stable Storage.
688 * @staddr: Stable Storage address to access.
689 * @memaddr: The memory address where Stable Storage data shall be read from.
690 * @count: number of bytes to transfer. count is multiple of 4.
691 *
692 * This PDC call reads count bytes from the supplied memaddr address,
693 * and copies count bytes to the Stable Storage address staddr.
694 * The call will fail if staddr+count > PDC_STABLE size.
695 */
696int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
697{
698 int retval;
699 unsigned long flags;
700
701 spin_lock_irqsave(&pdc_lock, flags);
702 memcpy(pdc_result, memaddr, count);
703 convert_to_wide(pdc_result);
704 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
705 __pa(pdc_result), count);
706 spin_unlock_irqrestore(&pdc_lock, flags);
707
708 return retval;
709}
710EXPORT_SYMBOL(pdc_stable_write);
711
712/**
713 * pdc_stable_get_size - Get Stable Storage size in bytes.
714 * @size: pointer where the size will be stored.
715 *
716 * This PDC call returns the number of bytes in the processor's Stable
717 * Storage, which is the number of contiguous bytes implemented in Stable
718 * Storage starting from staddr=0. size in an unsigned 64-bit integer
719 * which is a multiple of four.
720 */
721int pdc_stable_get_size(unsigned long *size)
722{
723 int retval;
724 unsigned long flags;
725
726 spin_lock_irqsave(&pdc_lock, flags);
727 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
728 *size = pdc_result[0];
729 spin_unlock_irqrestore(&pdc_lock, flags);
730
731 return retval;
732}
733EXPORT_SYMBOL(pdc_stable_get_size);
734
735/**
736 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
737 *
738 * This PDC call is meant to be used to check the integrity of the current
739 * contents of Stable Storage.
740 */
741int pdc_stable_verify_contents(void)
742{
743 int retval;
744 unsigned long flags;
745
746 spin_lock_irqsave(&pdc_lock, flags);
747 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
748 spin_unlock_irqrestore(&pdc_lock, flags);
749
750 return retval;
751}
752EXPORT_SYMBOL(pdc_stable_verify_contents);
753
754/**
755 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
756 * the validity indicator.
757 *
758 * This PDC call will erase all contents of Stable Storage. Use with care!
759 */
760int pdc_stable_initialize(void)
761{
762 int retval;
763 unsigned long flags;
764
765 spin_lock_irqsave(&pdc_lock, flags);
766 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
767 spin_unlock_irqrestore(&pdc_lock, flags);
768
769 return retval;
770}
771EXPORT_SYMBOL(pdc_stable_initialize);
772
773/**
774 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
775 * @hwpath: fully bc.mod style path to the device.
776 * @initiator: the array to return the result into
777 *
778 * Get the SCSI operational parameters from PDC.
779 * Needed since HPUX never used BIOS or symbios card NVRAM.
780 * Most ncr/sym cards won't have an entry and just use whatever
781 * capabilities of the card are (eg Ultra, LVD). But there are
782 * several cases where it's useful:
783 * o set SCSI id for Multi-initiator clusters,
784 * o cable too long (ie SE scsi 10Mhz won't support 6m length),
785 * o bus width exported is less than what the interface chip supports.
786 */
787int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
788{
789 int retval;
790 unsigned long flags;
791
792 spin_lock_irqsave(&pdc_lock, flags);
793
794/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
795#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
796 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
797
798 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
799 __pa(pdc_result), __pa(hwpath));
800 if (retval < PDC_OK)
801 goto out;
802
803 if (pdc_result[0] < 16) {
804 initiator->host_id = pdc_result[0];
805 } else {
806 initiator->host_id = -1;
807 }
808
809 /*
810 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
811 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
812 */
813 switch (pdc_result[1]) {
814 case 1: initiator->factor = 50; break;
815 case 2: initiator->factor = 25; break;
816 case 5: initiator->factor = 12; break;
817 case 25: initiator->factor = 10; break;
818 case 20: initiator->factor = 12; break;
819 case 40: initiator->factor = 10; break;
820 default: initiator->factor = -1; break;
821 }
822
823 if (IS_SPROCKETS()) {
824 initiator->width = pdc_result[4];
825 initiator->mode = pdc_result[5];
826 } else {
827 initiator->width = -1;
828 initiator->mode = -1;
829 }
830
831 out:
832 spin_unlock_irqrestore(&pdc_lock, flags);
833
834 return (retval >= PDC_OK);
835}
836EXPORT_SYMBOL(pdc_get_initiator);
837
838
839/**
840 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
841 * @num_entries: The return value.
842 * @hpa: The HPA for the device.
843 *
844 * This PDC function returns the number of entries in the specified cell's
845 * interrupt table.
846 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
847 */
848int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
849{
850 int retval;
851 unsigned long flags;
852
853 spin_lock_irqsave(&pdc_lock, flags);
854 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
855 __pa(pdc_result), hpa);
856 convert_to_wide(pdc_result);
857 *num_entries = pdc_result[0];
858 spin_unlock_irqrestore(&pdc_lock, flags);
859
860 return retval;
861}
862
863/**
864 * pdc_pci_irt - Get the PCI interrupt routing table.
865 * @num_entries: The number of entries in the table.
866 * @hpa: The Hard Physical Address of the device.
867 * @tbl:
868 *
869 * Get the PCI interrupt routing table for the device at the given HPA.
870 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
871 */
872int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
873{
874 int retval;
875 unsigned long flags;
876
877 BUG_ON((unsigned long)tbl & 0x7);
878
879 spin_lock_irqsave(&pdc_lock, flags);
880 pdc_result[0] = num_entries;
881 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
882 __pa(pdc_result), hpa, __pa(tbl));
883 spin_unlock_irqrestore(&pdc_lock, flags);
884
885 return retval;
886}
887
888
889#if 0 /* UNTEST CODE - left here in case someone needs it */
890
891/**
892 * pdc_pci_config_read - read PCI config space.
893 * @hpa token from PDC to indicate which PCI device
894 * @pci_addr configuration space address to read from
895 *
896 * Read PCI Configuration space *before* linux PCI subsystem is running.
897 */
898unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
899{
900 int retval;
901 unsigned long flags;
902
903 spin_lock_irqsave(&pdc_lock, flags);
904 pdc_result[0] = 0;
905 pdc_result[1] = 0;
906 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
907 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
908 spin_unlock_irqrestore(&pdc_lock, flags);
909
910 return retval ? ~0 : (unsigned int) pdc_result[0];
911}
912
913
914/**
915 * pdc_pci_config_write - read PCI config space.
916 * @hpa token from PDC to indicate which PCI device
917 * @pci_addr configuration space address to write
918 * @val value we want in the 32-bit register
919 *
920 * Write PCI Configuration space *before* linux PCI subsystem is running.
921 */
922void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
923{
924 int retval;
925 unsigned long flags;
926
927 spin_lock_irqsave(&pdc_lock, flags);
928 pdc_result[0] = 0;
929 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
930 __pa(pdc_result), hpa,
931 cfg_addr&~3UL, 4UL, (unsigned long) val);
932 spin_unlock_irqrestore(&pdc_lock, flags);
933
934 return retval;
935}
936#endif /* UNTESTED CODE */
937
938/**
939 * pdc_tod_read - Read the Time-Of-Day clock.
940 * @tod: The return buffer:
941 *
942 * Read the Time-Of-Day clock
943 */
944int pdc_tod_read(struct pdc_tod *tod)
945{
946 int retval;
947 unsigned long flags;
948
949 spin_lock_irqsave(&pdc_lock, flags);
950 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
951 convert_to_wide(pdc_result);
952 memcpy(tod, pdc_result, sizeof(*tod));
953 spin_unlock_irqrestore(&pdc_lock, flags);
954
955 return retval;
956}
957EXPORT_SYMBOL(pdc_tod_read);
958
959/**
960 * pdc_tod_set - Set the Time-Of-Day clock.
961 * @sec: The number of seconds since epoch.
962 * @usec: The number of micro seconds.
963 *
964 * Set the Time-Of-Day clock.
965 */
966int pdc_tod_set(unsigned long sec, unsigned long usec)
967{
968 int retval;
969 unsigned long flags;
970
971 spin_lock_irqsave(&pdc_lock, flags);
972 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
973 spin_unlock_irqrestore(&pdc_lock, flags);
974
975 return retval;
976}
977EXPORT_SYMBOL(pdc_tod_set);
978
979#ifdef CONFIG_64BIT
980int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
981 struct pdc_memory_table *tbl, unsigned long entries)
982{
983 int retval;
984 unsigned long flags;
985
986 spin_lock_irqsave(&pdc_lock, flags);
987 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
988 convert_to_wide(pdc_result);
989 memcpy(r_addr, pdc_result, sizeof(*r_addr));
990 memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
991 spin_unlock_irqrestore(&pdc_lock, flags);
992
993 return retval;
994}
995#endif /* CONFIG_64BIT */
996
997/* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
998 * so I guessed at unsigned long. Someone who knows what this does, can fix
999 * it later. :)
1000 */
1001int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1002{
1003 int retval;
1004 unsigned long flags;
1005
1006 spin_lock_irqsave(&pdc_lock, flags);
1007 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1008 PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1009 spin_unlock_irqrestore(&pdc_lock, flags);
1010
1011 return retval;
1012}
1013
1014/*
1015 * pdc_do_reset - Reset the system.
1016 *
1017 * Reset the system.
1018 */
1019int pdc_do_reset(void)
1020{
1021 int retval;
1022 unsigned long flags;
1023
1024 spin_lock_irqsave(&pdc_lock, flags);
1025 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1026 spin_unlock_irqrestore(&pdc_lock, flags);
1027
1028 return retval;
1029}
1030
1031/*
1032 * pdc_soft_power_info - Enable soft power switch.
1033 * @power_reg: address of soft power register
1034 *
1035 * Return the absolute address of the soft power switch register
1036 */
1037int __init pdc_soft_power_info(unsigned long *power_reg)
1038{
1039 int retval;
1040 unsigned long flags;
1041
1042 *power_reg = (unsigned long) (-1);
1043
1044 spin_lock_irqsave(&pdc_lock, flags);
1045 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1046 if (retval == PDC_OK) {
1047 convert_to_wide(pdc_result);
1048 *power_reg = f_extend(pdc_result[0]);
1049 }
1050 spin_unlock_irqrestore(&pdc_lock, flags);
1051
1052 return retval;
1053}
1054
1055/*
1056 * pdc_soft_power_button - Control the soft power button behaviour
1057 * @sw_control: 0 for hardware control, 1 for software control
1058 *
1059 *
1060 * This PDC function places the soft power button under software or
1061 * hardware control.
1062 * Under software control the OS may control to when to allow to shut
1063 * down the system. Under hardware control pressing the power button
1064 * powers off the system immediately.
1065 */
1066int pdc_soft_power_button(int sw_control)
1067{
1068 int retval;
1069 unsigned long flags;
1070
1071 spin_lock_irqsave(&pdc_lock, flags);
1072 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1073 spin_unlock_irqrestore(&pdc_lock, flags);
1074
1075 return retval;
1076}
1077
1078/*
1079 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1080 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1081 * who knows what other platform firmware might do with this OS "hook".
1082 */
1083void pdc_io_reset(void)
1084{
1085 unsigned long flags;
1086
1087 spin_lock_irqsave(&pdc_lock, flags);
1088 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1089 spin_unlock_irqrestore(&pdc_lock, flags);
1090}
1091
1092/*
1093 * pdc_io_reset_devices - Hack to Stop USB controller
1094 *
1095 * If PDC used the usb controller, the usb controller
1096 * is still running and will crash the machines during iommu
1097 * setup, because of still running DMA. This PDC call
1098 * stops the USB controller.
1099 * Normally called after calling pdc_io_reset().
1100 */
1101void pdc_io_reset_devices(void)
1102{
1103 unsigned long flags;
1104
1105 spin_lock_irqsave(&pdc_lock, flags);
1106 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1107 spin_unlock_irqrestore(&pdc_lock, flags);
1108}
1109
1110/* locked by pdc_console_lock */
1111static int __attribute__((aligned(8))) iodc_retbuf[32];
1112static char __attribute__((aligned(64))) iodc_dbuf[4096];
1113
1114/**
1115 * pdc_iodc_print - Console print using IODC.
1116 * @str: the string to output.
1117 * @count: length of str
1118 *
1119 * Note that only these special chars are architected for console IODC io:
1120 * BEL, BS, CR, and LF. Others are passed through.
1121 * Since the HP console requires CR+LF to perform a 'newline', we translate
1122 * "\n" to "\r\n".
1123 */
1124int pdc_iodc_print(const unsigned char *str, unsigned count)
1125{
1126 unsigned int i;
1127 unsigned long flags;
1128
1129 for (i = 0; i < count;) {
1130 switch(str[i]) {
1131 case '\n':
1132 iodc_dbuf[i+0] = '\r';
1133 iodc_dbuf[i+1] = '\n';
1134 i += 2;
1135 goto print;
1136 default:
1137 iodc_dbuf[i] = str[i];
1138 i++;
1139 break;
1140 }
1141 }
1142
1143print:
1144 spin_lock_irqsave(&pdc_lock, flags);
1145 real32_call(PAGE0->mem_cons.iodc_io,
1146 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1147 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1148 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1149 spin_unlock_irqrestore(&pdc_lock, flags);
1150
1151 return i;
1152}
1153
1154/**
1155 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1156 *
1157 * Read a character (non-blocking) from the PDC console, returns -1 if
1158 * key is not present.
1159 */
1160int pdc_iodc_getc(void)
1161{
1162 int ch;
1163 int status;
1164 unsigned long flags;
1165
1166 /* Bail if no console input device. */
1167 if (!PAGE0->mem_kbd.iodc_io)
1168 return 0;
1169
1170 /* wait for a keyboard (rs232)-input */
1171 spin_lock_irqsave(&pdc_lock, flags);
1172 real32_call(PAGE0->mem_kbd.iodc_io,
1173 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1174 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1175 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1176
1177 ch = *iodc_dbuf;
1178 status = *iodc_retbuf;
1179 spin_unlock_irqrestore(&pdc_lock, flags);
1180
1181 if (status == 0)
1182 return -1;
1183
1184 return ch;
1185}
1186
1187int pdc_sti_call(unsigned long func, unsigned long flags,
1188 unsigned long inptr, unsigned long outputr,
1189 unsigned long glob_cfg)
1190{
1191 int retval;
1192 unsigned long irqflags;
1193
1194 spin_lock_irqsave(&pdc_lock, irqflags);
1195 retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1196 spin_unlock_irqrestore(&pdc_lock, irqflags);
1197
1198 return retval;
1199}
1200EXPORT_SYMBOL(pdc_sti_call);
1201
1202#ifdef CONFIG_64BIT
1203/**
1204 * pdc_pat_cell_get_number - Returns the cell number.
1205 * @cell_info: The return buffer.
1206 *
1207 * This PDC call returns the cell number of the cell from which the call
1208 * is made.
1209 */
1210int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1211{
1212 int retval;
1213 unsigned long flags;
1214
1215 spin_lock_irqsave(&pdc_lock, flags);
1216 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1217 memcpy(cell_info, pdc_result, sizeof(*cell_info));
1218 spin_unlock_irqrestore(&pdc_lock, flags);
1219
1220 return retval;
1221}
1222
1223/**
1224 * pdc_pat_cell_module - Retrieve the cell's module information.
1225 * @actcnt: The number of bytes written to mem_addr.
1226 * @ploc: The physical location.
1227 * @mod: The module index.
1228 * @view_type: The view of the address type.
1229 * @mem_addr: The return buffer.
1230 *
1231 * This PDC call returns information about each module attached to the cell
1232 * at the specified location.
1233 */
1234int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1235 unsigned long view_type, void *mem_addr)
1236{
1237 int retval;
1238 unsigned long flags;
1239 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1240
1241 spin_lock_irqsave(&pdc_lock, flags);
1242 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1243 ploc, mod, view_type, __pa(&result));
1244 if(!retval) {
1245 *actcnt = pdc_result[0];
1246 memcpy(mem_addr, &result, *actcnt);
1247 }
1248 spin_unlock_irqrestore(&pdc_lock, flags);
1249
1250 return retval;
1251}
1252
1253/**
1254 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1255 * @cpu_info: The return buffer.
1256 * @hpa: The Hard Physical Address of the CPU.
1257 *
1258 * Retrieve the cpu number for the cpu at the specified HPA.
1259 */
1260int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1261{
1262 int retval;
1263 unsigned long flags;
1264
1265 spin_lock_irqsave(&pdc_lock, flags);
1266 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1267 __pa(&pdc_result), hpa);
1268 memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1269 spin_unlock_irqrestore(&pdc_lock, flags);
1270
1271 return retval;
1272}
1273
1274/**
1275 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1276 * @num_entries: The return value.
1277 * @cell_num: The target cell.
1278 *
1279 * This PDC function returns the number of entries in the specified cell's
1280 * interrupt table.
1281 */
1282int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1283{
1284 int retval;
1285 unsigned long flags;
1286
1287 spin_lock_irqsave(&pdc_lock, flags);
1288 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1289 __pa(pdc_result), cell_num);
1290 *num_entries = pdc_result[0];
1291 spin_unlock_irqrestore(&pdc_lock, flags);
1292
1293 return retval;
1294}
1295
1296/**
1297 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1298 * @r_addr: The return buffer.
1299 * @cell_num: The target cell.
1300 *
1301 * This PDC function returns the actual interrupt table for the specified cell.
1302 */
1303int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1304{
1305 int retval;
1306 unsigned long flags;
1307
1308 spin_lock_irqsave(&pdc_lock, flags);
1309 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1310 __pa(r_addr), cell_num);
1311 spin_unlock_irqrestore(&pdc_lock, flags);
1312
1313 return retval;
1314}
1315
1316/**
1317 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1318 * @actlen: The return buffer.
1319 * @mem_addr: Pointer to the memory buffer.
1320 * @count: The number of bytes to read from the buffer.
1321 * @offset: The offset with respect to the beginning of the buffer.
1322 *
1323 */
1324int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1325 unsigned long count, unsigned long offset)
1326{
1327 int retval;
1328 unsigned long flags;
1329
1330 spin_lock_irqsave(&pdc_lock, flags);
1331 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1332 __pa(pdc_result2), count, offset);
1333 *actual_len = pdc_result[0];
1334 memcpy(mem_addr, pdc_result2, *actual_len);
1335 spin_unlock_irqrestore(&pdc_lock, flags);
1336
1337 return retval;
1338}
1339
1340/**
1341 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1342 * @pci_addr: PCI configuration space address for which the read request is being made.
1343 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1344 * @mem_addr: Pointer to return memory buffer.
1345 *
1346 */
1347int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1348{
1349 int retval;
1350 unsigned long flags;
1351
1352 spin_lock_irqsave(&pdc_lock, flags);
1353 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1354 __pa(pdc_result), pci_addr, pci_size);
1355 switch(pci_size) {
1356 case 1: *(u8 *) mem_addr = (u8) pdc_result[0];
1357 case 2: *(u16 *)mem_addr = (u16) pdc_result[0];
1358 case 4: *(u32 *)mem_addr = (u32) pdc_result[0];
1359 }
1360 spin_unlock_irqrestore(&pdc_lock, flags);
1361
1362 return retval;
1363}
1364
1365/**
1366 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1367 * @pci_addr: PCI configuration space address for which the write request is being made.
1368 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1369 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1370 * written to PCI Config space.
1371 *
1372 */
1373int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1374{
1375 int retval;
1376 unsigned long flags;
1377
1378 spin_lock_irqsave(&pdc_lock, flags);
1379 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1380 pci_addr, pci_size, val);
1381 spin_unlock_irqrestore(&pdc_lock, flags);
1382
1383 return retval;
1384}
1385#endif /* CONFIG_64BIT */
1386
1387
1388/***************** 32-bit real-mode calls ***********/
1389/* The struct below is used
1390 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1391 * real32_call_asm() then uses this stack in narrow real mode
1392 */
1393
1394struct narrow_stack {
1395 /* use int, not long which is 64 bits */
1396 unsigned int arg13;
1397 unsigned int arg12;
1398 unsigned int arg11;
1399 unsigned int arg10;
1400 unsigned int arg9;
1401 unsigned int arg8;
1402 unsigned int arg7;
1403 unsigned int arg6;
1404 unsigned int arg5;
1405 unsigned int arg4;
1406 unsigned int arg3;
1407 unsigned int arg2;
1408 unsigned int arg1;
1409 unsigned int arg0;
1410 unsigned int frame_marker[8];
1411 unsigned int sp;
1412 /* in reality, there's nearly 8k of stack after this */
1413};
1414
1415long real32_call(unsigned long fn, ...)
1416{
1417 va_list args;
1418 extern struct narrow_stack real_stack;
1419 extern unsigned long real32_call_asm(unsigned int *,
1420 unsigned int *,
1421 unsigned int);
1422
1423 va_start(args, fn);
1424 real_stack.arg0 = va_arg(args, unsigned int);
1425 real_stack.arg1 = va_arg(args, unsigned int);
1426 real_stack.arg2 = va_arg(args, unsigned int);
1427 real_stack.arg3 = va_arg(args, unsigned int);
1428 real_stack.arg4 = va_arg(args, unsigned int);
1429 real_stack.arg5 = va_arg(args, unsigned int);
1430 real_stack.arg6 = va_arg(args, unsigned int);
1431 real_stack.arg7 = va_arg(args, unsigned int);
1432 real_stack.arg8 = va_arg(args, unsigned int);
1433 real_stack.arg9 = va_arg(args, unsigned int);
1434 real_stack.arg10 = va_arg(args, unsigned int);
1435 real_stack.arg11 = va_arg(args, unsigned int);
1436 real_stack.arg12 = va_arg(args, unsigned int);
1437 real_stack.arg13 = va_arg(args, unsigned int);
1438 va_end(args);
1439
1440 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1441}
1442
1443#ifdef CONFIG_64BIT
1444/***************** 64-bit real-mode calls ***********/
1445
1446struct wide_stack {
1447 unsigned long arg0;
1448 unsigned long arg1;
1449 unsigned long arg2;
1450 unsigned long arg3;
1451 unsigned long arg4;
1452 unsigned long arg5;
1453 unsigned long arg6;
1454 unsigned long arg7;
1455 unsigned long arg8;
1456 unsigned long arg9;
1457 unsigned long arg10;
1458 unsigned long arg11;
1459 unsigned long arg12;
1460 unsigned long arg13;
1461 unsigned long frame_marker[2]; /* rp, previous sp */
1462 unsigned long sp;
1463 /* in reality, there's nearly 8k of stack after this */
1464};
1465
1466long real64_call(unsigned long fn, ...)
1467{
1468 va_list args;
1469 extern struct wide_stack real64_stack;
1470 extern unsigned long real64_call_asm(unsigned long *,
1471 unsigned long *,
1472 unsigned long);
1473
1474 va_start(args, fn);
1475 real64_stack.arg0 = va_arg(args, unsigned long);
1476 real64_stack.arg1 = va_arg(args, unsigned long);
1477 real64_stack.arg2 = va_arg(args, unsigned long);
1478 real64_stack.arg3 = va_arg(args, unsigned long);
1479 real64_stack.arg4 = va_arg(args, unsigned long);
1480 real64_stack.arg5 = va_arg(args, unsigned long);
1481 real64_stack.arg6 = va_arg(args, unsigned long);
1482 real64_stack.arg7 = va_arg(args, unsigned long);
1483 real64_stack.arg8 = va_arg(args, unsigned long);
1484 real64_stack.arg9 = va_arg(args, unsigned long);
1485 real64_stack.arg10 = va_arg(args, unsigned long);
1486 real64_stack.arg11 = va_arg(args, unsigned long);
1487 real64_stack.arg12 = va_arg(args, unsigned long);
1488 real64_stack.arg13 = va_arg(args, unsigned long);
1489 va_end(args);
1490
1491 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1492}
1493
1494#endif /* CONFIG_64BIT */
1495