Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * arch/parisc/kernel/firmware.c  - safe PDC access routines
   4 *
   5 *	PDC == Processor Dependent Code
   6 *
   7 * See http://www.parisc-linux.org/documentation/index.html
   8 * for documentation describing the entry points and calling
   9 * conventions defined below.
  10 *
  11 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
  12 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
  13 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
  14 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
  15 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
 
 
 
 
 
 
  16 */
  17
  18/*	I think it would be in everyone's best interest to follow this
  19 *	guidelines when writing PDC wrappers:
  20 *
  21 *	 - the name of the pdc wrapper should match one of the macros
  22 *	   used for the first two arguments
  23 *	 - don't use caps for random parts of the name
  24 *	 - use the static PDC result buffers and "copyout" to structs
  25 *	   supplied by the caller to encapsulate alignment restrictions
  26 *	 - hold pdc_lock while in PDC or using static result buffers
  27 *	 - use __pa() to convert virtual (kernel) pointers to physical
  28 *	   ones.
  29 *	 - the name of the struct used for pdc return values should equal
  30 *	   one of the macros used for the first two arguments to the
  31 *	   corresponding PDC call
  32 *	 - keep the order of arguments
  33 *	 - don't be smart (setting trailing NUL bytes for strings, return
  34 *	   something useful even if the call failed) unless you are sure
  35 *	   it's not going to affect functionality or performance
  36 *
  37 *	Example:
  38 *	int pdc_cache_info(struct pdc_cache_info *cache_info )
  39 *	{
  40 *		int retval;
  41 *
  42 *		spin_lock_irq(&pdc_lock);
  43 *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
  44 *		convert_to_wide(pdc_result);
  45 *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
  46 *		spin_unlock_irq(&pdc_lock);
  47 *
  48 *		return retval;
  49 *	}
  50 *					prumpf	991016	
  51 */
  52
  53#include <stdarg.h>
  54
  55#include <linux/delay.h>
  56#include <linux/init.h>
  57#include <linux/kernel.h>
  58#include <linux/module.h>
  59#include <linux/string.h>
  60#include <linux/spinlock.h>
  61
  62#include <asm/page.h>
  63#include <asm/pdc.h>
  64#include <asm/pdcpat.h>
 
  65#include <asm/processor.h>	/* for boot_cpu_data */
  66
  67#if defined(BOOTLOADER)
  68# undef  spin_lock_irqsave
  69# define spin_lock_irqsave(a, b) { b = 1; }
  70# undef  spin_unlock_irqrestore
  71# define spin_unlock_irqrestore(a, b)
  72#else
  73static DEFINE_SPINLOCK(pdc_lock);
  74#endif
  75
  76extern unsigned long pdc_result[NUM_PDC_RESULT];
  77extern unsigned long pdc_result2[NUM_PDC_RESULT];
  78
  79#ifdef CONFIG_64BIT
  80#define WIDE_FIRMWARE 0x1
  81#define NARROW_FIRMWARE 0x2
  82
  83/* Firmware needs to be initially set to narrow to determine the 
  84 * actual firmware width. */
  85int parisc_narrow_firmware __ro_after_init = 1;
  86#endif
  87
  88/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
  89 * and MEM_PDC calls are always the same width as the OS.
  90 * Some PAT boxes may have 64-bit IODC I/O.
  91 *
  92 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
  93 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
  94 * This allowed wide kernels to run on Cxxx boxes.
  95 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
  96 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
  97 */
  98
  99#ifdef CONFIG_64BIT
 100long real64_call(unsigned long function, ...);
 101#endif
 102long real32_call(unsigned long function, ...);
 103
 104#ifdef CONFIG_64BIT
 105#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
 106#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
 107#else
 108#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
 109#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
 110#endif
 111
 112
 113/**
 114 * f_extend - Convert PDC addresses to kernel addresses.
 115 * @address: Address returned from PDC.
 116 *
 117 * This function is used to convert PDC addresses into kernel addresses
 118 * when the PDC address size and kernel address size are different.
 119 */
 120static unsigned long f_extend(unsigned long address)
 121{
 122#ifdef CONFIG_64BIT
 123	if(unlikely(parisc_narrow_firmware)) {
 124		if((address & 0xff000000) == 0xf0000000)
 125			return 0xf0f0f0f000000000UL | (u32)address;
 126
 127		if((address & 0xf0000000) == 0xf0000000)
 128			return 0xffffffff00000000UL | (u32)address;
 129	}
 130#endif
 131	return address;
 132}
 133
 134/**
 135 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
 136 * @address: The return buffer from PDC.
 137 *
 138 * This function is used to convert the return buffer addresses retrieved from PDC
 139 * into kernel addresses when the PDC address size and kernel address size are
 140 * different.
 141 */
 142static void convert_to_wide(unsigned long *addr)
 143{
 144#ifdef CONFIG_64BIT
 145	int i;
 146	unsigned int *p = (unsigned int *)addr;
 147
 148	if (unlikely(parisc_narrow_firmware)) {
 149		for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
 150			addr[i] = p[i];
 151	}
 152#endif
 153}
 154
 155#ifdef CONFIG_64BIT
 156void set_firmware_width_unlocked(void)
 157{
 158	int ret;
 159
 160	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
 161		__pa(pdc_result), 0);
 162	convert_to_wide(pdc_result);
 163	if (pdc_result[0] != NARROW_FIRMWARE)
 164		parisc_narrow_firmware = 0;
 165}
 166	
 167/**
 168 * set_firmware_width - Determine if the firmware is wide or narrow.
 169 * 
 170 * This function must be called before any pdc_* function that uses the
 171 * convert_to_wide function.
 172 */
 173void set_firmware_width(void)
 174{
 175	unsigned long flags;
 176	spin_lock_irqsave(&pdc_lock, flags);
 177	set_firmware_width_unlocked();
 178	spin_unlock_irqrestore(&pdc_lock, flags);
 179}
 180#else
 181void set_firmware_width_unlocked(void)
 182{
 183	return;
 184}
 185
 186void set_firmware_width(void)
 187{
 188	return;
 189}
 190#endif /*CONFIG_64BIT*/
 191
 192
 193#if !defined(BOOTLOADER)
 194/**
 195 * pdc_emergency_unlock - Unlock the linux pdc lock
 196 *
 197 * This call unlocks the linux pdc lock in case we need some PDC functions
 198 * (like pdc_add_valid) during kernel stack dump.
 199 */
 200void pdc_emergency_unlock(void)
 201{
 202 	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
 203        if (spin_is_locked(&pdc_lock))
 204		spin_unlock(&pdc_lock);
 205}
 206
 207
 208/**
 209 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
 210 * @address: Address to be verified.
 211 *
 212 * This PDC call attempts to read from the specified address and verifies
 213 * if the address is valid.
 214 * 
 215 * The return value is PDC_OK (0) in case accessing this address is valid.
 216 */
 217int pdc_add_valid(unsigned long address)
 218{
 219        int retval;
 220	unsigned long flags;
 221
 222        spin_lock_irqsave(&pdc_lock, flags);
 223        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
 224        spin_unlock_irqrestore(&pdc_lock, flags);
 225
 226        return retval;
 227}
 228EXPORT_SYMBOL(pdc_add_valid);
 229
 230/**
 231 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
 232 * @instr: Pointer to variable which will get instruction opcode.
 233 *
 234 * The return value is PDC_OK (0) in case call succeeded.
 235 */
 236int __init pdc_instr(unsigned int *instr)
 237{
 238	int retval;
 239	unsigned long flags;
 240
 241	spin_lock_irqsave(&pdc_lock, flags);
 242	retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
 243	convert_to_wide(pdc_result);
 244	*instr = pdc_result[0];
 245	spin_unlock_irqrestore(&pdc_lock, flags);
 246
 247	return retval;
 248}
 249
 250/**
 251 * pdc_chassis_info - Return chassis information.
 252 * @result: The return buffer.
 253 * @chassis_info: The memory buffer address.
 254 * @len: The size of the memory buffer address.
 255 *
 256 * An HVERSION dependent call for returning the chassis information.
 257 */
 258int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
 259{
 260        int retval;
 261	unsigned long flags;
 262
 263        spin_lock_irqsave(&pdc_lock, flags);
 264        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
 265        memcpy(&pdc_result2, led_info, len);
 266        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
 267                              __pa(pdc_result), __pa(pdc_result2), len);
 268        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
 269        memcpy(led_info, pdc_result2, len);
 270        spin_unlock_irqrestore(&pdc_lock, flags);
 271
 272        return retval;
 273}
 274
 275/**
 276 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
 277 * @retval: -1 on error, 0 on success. Other value are PDC errors
 278 * 
 279 * Must be correctly formatted or expect system crash
 280 */
 281#ifdef CONFIG_64BIT
 282int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
 283{
 284	int retval = 0;
 285	unsigned long flags;
 286        
 287	if (!is_pdc_pat())
 288		return -1;
 289
 290	spin_lock_irqsave(&pdc_lock, flags);
 291	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
 292	spin_unlock_irqrestore(&pdc_lock, flags);
 293
 294	return retval;
 295}
 296#endif
 297
 298/**
 299 * pdc_chassis_disp - Updates chassis code
 300 * @retval: -1 on error, 0 on success
 301 */
 302int pdc_chassis_disp(unsigned long disp)
 303{
 304	int retval = 0;
 305	unsigned long flags;
 306
 307	spin_lock_irqsave(&pdc_lock, flags);
 308	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
 309	spin_unlock_irqrestore(&pdc_lock, flags);
 310
 311	return retval;
 312}
 313
 314/**
 315 * pdc_cpu_rendenzvous - Stop currently executing CPU
 316 * @retval: -1 on error, 0 on success
 317 */
 318int __pdc_cpu_rendezvous(void)
 319{
 320	if (is_pdc_pat())
 321		return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS);
 322	else
 323		return mem_pdc_call(PDC_PROC, 1, 0);
 324}
 325
 326
 327/**
 328 * pdc_chassis_warn - Fetches chassis warnings
 329 * @retval: -1 on error, 0 on success
 330 */
 331int pdc_chassis_warn(unsigned long *warn)
 332{
 333	int retval = 0;
 334	unsigned long flags;
 335
 336	spin_lock_irqsave(&pdc_lock, flags);
 337	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
 338	*warn = pdc_result[0];
 339	spin_unlock_irqrestore(&pdc_lock, flags);
 340
 341	return retval;
 342}
 343
 344int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
 345{
 346	int ret;
 347
 348	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
 349	convert_to_wide(pdc_result);
 350	pdc_coproc_info->ccr_functional = pdc_result[0];
 351	pdc_coproc_info->ccr_present = pdc_result[1];
 352	pdc_coproc_info->revision = pdc_result[17];
 353	pdc_coproc_info->model = pdc_result[18];
 354
 355	return ret;
 356}
 357
 358/**
 359 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
 360 * @pdc_coproc_info: Return buffer address.
 361 *
 362 * This PDC call returns the presence and status of all the coprocessors
 363 * attached to the processor.
 364 */
 365int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
 366{
 367	int ret;
 368	unsigned long flags;
 369
 370	spin_lock_irqsave(&pdc_lock, flags);
 371	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
 372	spin_unlock_irqrestore(&pdc_lock, flags);
 373
 374	return ret;
 375}
 376
 377/**
 378 * pdc_iodc_read - Read data from the modules IODC.
 379 * @actcnt: The actual number of bytes.
 380 * @hpa: The HPA of the module for the iodc read.
 381 * @index: The iodc entry point.
 382 * @iodc_data: A buffer memory for the iodc options.
 383 * @iodc_data_size: Size of the memory buffer.
 384 *
 385 * This PDC call reads from the IODC of the module specified by the hpa
 386 * argument.
 387 */
 388int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
 389		  void *iodc_data, unsigned int iodc_data_size)
 390{
 391	int retval;
 392	unsigned long flags;
 393
 394	spin_lock_irqsave(&pdc_lock, flags);
 395	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
 396			      index, __pa(pdc_result2), iodc_data_size);
 397	convert_to_wide(pdc_result);
 398	*actcnt = pdc_result[0];
 399	memcpy(iodc_data, pdc_result2, iodc_data_size);
 400	spin_unlock_irqrestore(&pdc_lock, flags);
 401
 402	return retval;
 403}
 404EXPORT_SYMBOL(pdc_iodc_read);
 405
 406/**
 407 * pdc_system_map_find_mods - Locate unarchitected modules.
 408 * @pdc_mod_info: Return buffer address.
 409 * @mod_path: pointer to dev path structure.
 410 * @mod_index: fixed address module index.
 411 *
 412 * To locate and identify modules which reside at fixed I/O addresses, which
 413 * do not self-identify via architected bus walks.
 414 */
 415int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
 416			     struct pdc_module_path *mod_path, long mod_index)
 417{
 418	int retval;
 419	unsigned long flags;
 420
 421	spin_lock_irqsave(&pdc_lock, flags);
 422	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
 423			      __pa(pdc_result2), mod_index);
 424	convert_to_wide(pdc_result);
 425	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
 426	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
 427	spin_unlock_irqrestore(&pdc_lock, flags);
 428
 429	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
 430	return retval;
 431}
 432
 433/**
 434 * pdc_system_map_find_addrs - Retrieve additional address ranges.
 435 * @pdc_addr_info: Return buffer address.
 436 * @mod_index: Fixed address module index.
 437 * @addr_index: Address range index.
 438 * 
 439 * Retrieve additional information about subsequent address ranges for modules
 440 * with multiple address ranges.  
 441 */
 442int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
 443			      long mod_index, long addr_index)
 444{
 445	int retval;
 446	unsigned long flags;
 447
 448	spin_lock_irqsave(&pdc_lock, flags);
 449	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
 450			      mod_index, addr_index);
 451	convert_to_wide(pdc_result);
 452	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
 453	spin_unlock_irqrestore(&pdc_lock, flags);
 454
 455	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
 456	return retval;
 457}
 458
 459/**
 460 * pdc_model_info - Return model information about the processor.
 461 * @model: The return buffer.
 462 *
 463 * Returns the version numbers, identifiers, and capabilities from the processor module.
 464 */
 465int pdc_model_info(struct pdc_model *model) 
 466{
 467	int retval;
 468	unsigned long flags;
 469
 470	spin_lock_irqsave(&pdc_lock, flags);
 471	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
 472	convert_to_wide(pdc_result);
 473	memcpy(model, pdc_result, sizeof(*model));
 474	spin_unlock_irqrestore(&pdc_lock, flags);
 475
 476	return retval;
 477}
 478
 479/**
 480 * pdc_model_sysmodel - Get the system model name.
 481 * @name: A char array of at least 81 characters.
 482 *
 483 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
 484 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
 485 * on HP/UX.
 486 */
 487int pdc_model_sysmodel(char *name)
 488{
 489        int retval;
 490	unsigned long flags;
 491
 492        spin_lock_irqsave(&pdc_lock, flags);
 493        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
 494                              OS_ID_HPUX, __pa(name));
 495        convert_to_wide(pdc_result);
 496
 497        if (retval == PDC_OK) {
 498                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
 499        } else {
 500                name[0] = 0;
 501        }
 502        spin_unlock_irqrestore(&pdc_lock, flags);
 503
 504        return retval;
 505}
 506
 507/**
 508 * pdc_model_versions - Identify the version number of each processor.
 509 * @cpu_id: The return buffer.
 510 * @id: The id of the processor to check.
 511 *
 512 * Returns the version number for each processor component.
 513 *
 514 * This comment was here before, but I do not know what it means :( -RB
 515 * id: 0 = cpu revision, 1 = boot-rom-version
 516 */
 517int pdc_model_versions(unsigned long *versions, int id)
 518{
 519        int retval;
 520	unsigned long flags;
 521
 522        spin_lock_irqsave(&pdc_lock, flags);
 523        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
 524        convert_to_wide(pdc_result);
 525        *versions = pdc_result[0];
 526        spin_unlock_irqrestore(&pdc_lock, flags);
 527
 528        return retval;
 529}
 530
 531/**
 532 * pdc_model_cpuid - Returns the CPU_ID.
 533 * @cpu_id: The return buffer.
 534 *
 535 * Returns the CPU_ID value which uniquely identifies the cpu portion of
 536 * the processor module.
 537 */
 538int pdc_model_cpuid(unsigned long *cpu_id)
 539{
 540        int retval;
 541	unsigned long flags;
 542
 543        spin_lock_irqsave(&pdc_lock, flags);
 544        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 545        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
 546        convert_to_wide(pdc_result);
 547        *cpu_id = pdc_result[0];
 548        spin_unlock_irqrestore(&pdc_lock, flags);
 549
 550        return retval;
 551}
 552
 553/**
 554 * pdc_model_capabilities - Returns the platform capabilities.
 555 * @capabilities: The return buffer.
 556 *
 557 * Returns information about platform support for 32- and/or 64-bit
 558 * OSes, IO-PDIR coherency, and virtual aliasing.
 559 */
 560int pdc_model_capabilities(unsigned long *capabilities)
 561{
 562        int retval;
 563	unsigned long flags;
 564
 565        spin_lock_irqsave(&pdc_lock, flags);
 566        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 567        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
 568        convert_to_wide(pdc_result);
 569        if (retval == PDC_OK) {
 570                *capabilities = pdc_result[0];
 571        } else {
 572                *capabilities = PDC_MODEL_OS32;
 573        }
 574        spin_unlock_irqrestore(&pdc_lock, flags);
 575
 576        return retval;
 577}
 578
 579/**
 580 * pdc_model_platform_info - Returns machine product and serial number.
 581 * @orig_prod_num: Return buffer for original product number.
 582 * @current_prod_num: Return buffer for current product number.
 583 * @serial_no: Return buffer for serial number.
 584 *
 585 * Returns strings containing the original and current product numbers and the
 586 * serial number of the system.
 587 */
 588int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
 589		char *serial_no)
 590{
 591	int retval;
 592	unsigned long flags;
 593
 594	spin_lock_irqsave(&pdc_lock, flags);
 595	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
 596		__pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
 597	convert_to_wide(pdc_result);
 598	spin_unlock_irqrestore(&pdc_lock, flags);
 599
 600	return retval;
 601}
 602
 603/**
 604 * pdc_cache_info - Return cache and TLB information.
 605 * @cache_info: The return buffer.
 606 *
 607 * Returns information about the processor's cache and TLB.
 608 */
 609int pdc_cache_info(struct pdc_cache_info *cache_info)
 610{
 611        int retval;
 612	unsigned long flags;
 613
 614        spin_lock_irqsave(&pdc_lock, flags);
 615        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
 616        convert_to_wide(pdc_result);
 617        memcpy(cache_info, pdc_result, sizeof(*cache_info));
 618        spin_unlock_irqrestore(&pdc_lock, flags);
 619
 620        return retval;
 621}
 622
 623/**
 624 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
 625 * @space_bits: Should be 0, if not, bad mojo!
 626 *
 627 * Returns information about Space ID hashing.
 628 */
 629int pdc_spaceid_bits(unsigned long *space_bits)
 630{
 631	int retval;
 632	unsigned long flags;
 633
 634	spin_lock_irqsave(&pdc_lock, flags);
 635	pdc_result[0] = 0;
 636	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
 637	convert_to_wide(pdc_result);
 638	*space_bits = pdc_result[0];
 639	spin_unlock_irqrestore(&pdc_lock, flags);
 640
 641	return retval;
 642}
 643
 644#ifndef CONFIG_PA20
 645/**
 646 * pdc_btlb_info - Return block TLB information.
 647 * @btlb: The return buffer.
 648 *
 649 * Returns information about the hardware Block TLB.
 650 */
 651int pdc_btlb_info(struct pdc_btlb_info *btlb) 
 652{
 653        int retval;
 654	unsigned long flags;
 655
 656        spin_lock_irqsave(&pdc_lock, flags);
 657        retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
 658        memcpy(btlb, pdc_result, sizeof(*btlb));
 659        spin_unlock_irqrestore(&pdc_lock, flags);
 660
 661        if(retval < 0) {
 662                btlb->max_size = 0;
 663        }
 664        return retval;
 665}
 666
 667/**
 668 * pdc_mem_map_hpa - Find fixed module information.  
 669 * @address: The return buffer
 670 * @mod_path: pointer to dev path structure.
 671 *
 672 * This call was developed for S700 workstations to allow the kernel to find
 673 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
 674 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
 675 * call.
 676 *
 677 * This call is supported by all existing S700 workstations (up to  Gecko).
 678 */
 679int pdc_mem_map_hpa(struct pdc_memory_map *address,
 680		struct pdc_module_path *mod_path)
 681{
 682        int retval;
 683	unsigned long flags;
 684
 685        spin_lock_irqsave(&pdc_lock, flags);
 686        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
 687        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
 688				__pa(pdc_result2));
 689        memcpy(address, pdc_result, sizeof(*address));
 690        spin_unlock_irqrestore(&pdc_lock, flags);
 691
 692        return retval;
 693}
 694#endif	/* !CONFIG_PA20 */
 695
 696/**
 697 * pdc_lan_station_id - Get the LAN address.
 698 * @lan_addr: The return buffer.
 699 * @hpa: The network device HPA.
 700 *
 701 * Get the LAN station address when it is not directly available from the LAN hardware.
 702 */
 703int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
 704{
 705	int retval;
 706	unsigned long flags;
 707
 708	spin_lock_irqsave(&pdc_lock, flags);
 709	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
 710			__pa(pdc_result), hpa);
 711	if (retval < 0) {
 712		/* FIXME: else read MAC from NVRAM */
 713		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
 714	} else {
 715		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
 716	}
 717	spin_unlock_irqrestore(&pdc_lock, flags);
 718
 719	return retval;
 720}
 721EXPORT_SYMBOL(pdc_lan_station_id);
 722
 723/**
 724 * pdc_stable_read - Read data from Stable Storage.
 725 * @staddr: Stable Storage address to access.
 726 * @memaddr: The memory address where Stable Storage data shall be copied.
 727 * @count: number of bytes to transfer. count is multiple of 4.
 728 *
 729 * This PDC call reads from the Stable Storage address supplied in staddr
 730 * and copies count bytes to the memory address memaddr.
 731 * The call will fail if staddr+count > PDC_STABLE size.
 732 */
 733int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
 734{
 735       int retval;
 736	unsigned long flags;
 737
 738       spin_lock_irqsave(&pdc_lock, flags);
 739       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
 740               __pa(pdc_result), count);
 741       convert_to_wide(pdc_result);
 742       memcpy(memaddr, pdc_result, count);
 743       spin_unlock_irqrestore(&pdc_lock, flags);
 744
 745       return retval;
 746}
 747EXPORT_SYMBOL(pdc_stable_read);
 748
 749/**
 750 * pdc_stable_write - Write data to Stable Storage.
 751 * @staddr: Stable Storage address to access.
 752 * @memaddr: The memory address where Stable Storage data shall be read from.
 753 * @count: number of bytes to transfer. count is multiple of 4.
 754 *
 755 * This PDC call reads count bytes from the supplied memaddr address,
 756 * and copies count bytes to the Stable Storage address staddr.
 757 * The call will fail if staddr+count > PDC_STABLE size.
 758 */
 759int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
 760{
 761       int retval;
 762	unsigned long flags;
 763
 764       spin_lock_irqsave(&pdc_lock, flags);
 765       memcpy(pdc_result, memaddr, count);
 766       convert_to_wide(pdc_result);
 767       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
 768               __pa(pdc_result), count);
 769       spin_unlock_irqrestore(&pdc_lock, flags);
 770
 771       return retval;
 772}
 773EXPORT_SYMBOL(pdc_stable_write);
 774
 775/**
 776 * pdc_stable_get_size - Get Stable Storage size in bytes.
 777 * @size: pointer where the size will be stored.
 778 *
 779 * This PDC call returns the number of bytes in the processor's Stable
 780 * Storage, which is the number of contiguous bytes implemented in Stable
 781 * Storage starting from staddr=0. size in an unsigned 64-bit integer
 782 * which is a multiple of four.
 783 */
 784int pdc_stable_get_size(unsigned long *size)
 785{
 786       int retval;
 787	unsigned long flags;
 788
 789       spin_lock_irqsave(&pdc_lock, flags);
 790       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
 791       *size = pdc_result[0];
 792       spin_unlock_irqrestore(&pdc_lock, flags);
 793
 794       return retval;
 795}
 796EXPORT_SYMBOL(pdc_stable_get_size);
 797
 798/**
 799 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
 800 *
 801 * This PDC call is meant to be used to check the integrity of the current
 802 * contents of Stable Storage.
 803 */
 804int pdc_stable_verify_contents(void)
 805{
 806       int retval;
 807	unsigned long flags;
 808
 809       spin_lock_irqsave(&pdc_lock, flags);
 810       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
 811       spin_unlock_irqrestore(&pdc_lock, flags);
 812
 813       return retval;
 814}
 815EXPORT_SYMBOL(pdc_stable_verify_contents);
 816
 817/**
 818 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
 819 * the validity indicator.
 820 *
 821 * This PDC call will erase all contents of Stable Storage. Use with care!
 822 */
 823int pdc_stable_initialize(void)
 824{
 825       int retval;
 826	unsigned long flags;
 827
 828       spin_lock_irqsave(&pdc_lock, flags);
 829       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
 830       spin_unlock_irqrestore(&pdc_lock, flags);
 831
 832       return retval;
 833}
 834EXPORT_SYMBOL(pdc_stable_initialize);
 835
 836/**
 837 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
 838 * @hwpath: fully bc.mod style path to the device.
 839 * @initiator: the array to return the result into
 840 *
 841 * Get the SCSI operational parameters from PDC.
 842 * Needed since HPUX never used BIOS or symbios card NVRAM.
 843 * Most ncr/sym cards won't have an entry and just use whatever
 844 * capabilities of the card are (eg Ultra, LVD). But there are
 845 * several cases where it's useful:
 846 *    o set SCSI id for Multi-initiator clusters,
 847 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
 848 *    o bus width exported is less than what the interface chip supports.
 849 */
 850int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
 851{
 852	int retval;
 853	unsigned long flags;
 854
 855	spin_lock_irqsave(&pdc_lock, flags);
 856
 857/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
 858#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
 859	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
 860
 861	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
 862			      __pa(pdc_result), __pa(hwpath));
 863	if (retval < PDC_OK)
 864		goto out;
 865
 866	if (pdc_result[0] < 16) {
 867		initiator->host_id = pdc_result[0];
 868	} else {
 869		initiator->host_id = -1;
 870	}
 871
 872	/*
 873	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
 874	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
 875	 */
 876	switch (pdc_result[1]) {
 877		case  1: initiator->factor = 50; break;
 878		case  2: initiator->factor = 25; break;
 879		case  5: initiator->factor = 12; break;
 880		case 25: initiator->factor = 10; break;
 881		case 20: initiator->factor = 12; break;
 882		case 40: initiator->factor = 10; break;
 883		default: initiator->factor = -1; break;
 884	}
 885
 886	if (IS_SPROCKETS()) {
 887		initiator->width = pdc_result[4];
 888		initiator->mode = pdc_result[5];
 889	} else {
 890		initiator->width = -1;
 891		initiator->mode = -1;
 892	}
 893
 894 out:
 895	spin_unlock_irqrestore(&pdc_lock, flags);
 896
 897	return (retval >= PDC_OK);
 898}
 899EXPORT_SYMBOL(pdc_get_initiator);
 900
 901
 902/**
 903 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
 904 * @num_entries: The return value.
 905 * @hpa: The HPA for the device.
 906 *
 907 * This PDC function returns the number of entries in the specified cell's
 908 * interrupt table.
 909 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 910 */ 
 911int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
 912{
 913	int retval;
 914	unsigned long flags;
 915
 916	spin_lock_irqsave(&pdc_lock, flags);
 917	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
 918			      __pa(pdc_result), hpa);
 919	convert_to_wide(pdc_result);
 920	*num_entries = pdc_result[0];
 921	spin_unlock_irqrestore(&pdc_lock, flags);
 922
 923	return retval;
 924}
 925
 926/** 
 927 * pdc_pci_irt - Get the PCI interrupt routing table.
 928 * @num_entries: The number of entries in the table.
 929 * @hpa: The Hard Physical Address of the device.
 930 * @tbl: 
 931 *
 932 * Get the PCI interrupt routing table for the device at the given HPA.
 933 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 934 */
 935int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
 936{
 937	int retval;
 938	unsigned long flags;
 939
 940	BUG_ON((unsigned long)tbl & 0x7);
 941
 942	spin_lock_irqsave(&pdc_lock, flags);
 943	pdc_result[0] = num_entries;
 944	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
 945			      __pa(pdc_result), hpa, __pa(tbl));
 946	spin_unlock_irqrestore(&pdc_lock, flags);
 947
 948	return retval;
 949}
 950
 951
 952#if 0	/* UNTEST CODE - left here in case someone needs it */
 953
 954/** 
 955 * pdc_pci_config_read - read PCI config space.
 956 * @hpa		token from PDC to indicate which PCI device
 957 * @pci_addr	configuration space address to read from
 958 *
 959 * Read PCI Configuration space *before* linux PCI subsystem is running.
 960 */
 961unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
 962{
 963	int retval;
 964	unsigned long flags;
 965
 966	spin_lock_irqsave(&pdc_lock, flags);
 967	pdc_result[0] = 0;
 968	pdc_result[1] = 0;
 969	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
 970			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
 971	spin_unlock_irqrestore(&pdc_lock, flags);
 972
 973	return retval ? ~0 : (unsigned int) pdc_result[0];
 974}
 975
 976
 977/** 
 978 * pdc_pci_config_write - read PCI config space.
 979 * @hpa		token from PDC to indicate which PCI device
 980 * @pci_addr	configuration space address to write
 981 * @val		value we want in the 32-bit register
 982 *
 983 * Write PCI Configuration space *before* linux PCI subsystem is running.
 984 */
 985void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
 986{
 987	int retval;
 988	unsigned long flags;
 989
 990	spin_lock_irqsave(&pdc_lock, flags);
 991	pdc_result[0] = 0;
 992	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
 993			      __pa(pdc_result), hpa,
 994			      cfg_addr&~3UL, 4UL, (unsigned long) val);
 995	spin_unlock_irqrestore(&pdc_lock, flags);
 996
 997	return retval;
 998}
 999#endif /* UNTESTED CODE */
1000
1001/**
1002 * pdc_tod_read - Read the Time-Of-Day clock.
1003 * @tod: The return buffer:
1004 *
1005 * Read the Time-Of-Day clock
1006 */
1007int pdc_tod_read(struct pdc_tod *tod)
1008{
1009        int retval;
1010	unsigned long flags;
1011
1012        spin_lock_irqsave(&pdc_lock, flags);
1013        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1014        convert_to_wide(pdc_result);
1015        memcpy(tod, pdc_result, sizeof(*tod));
1016        spin_unlock_irqrestore(&pdc_lock, flags);
1017
1018        return retval;
1019}
1020EXPORT_SYMBOL(pdc_tod_read);
1021
1022int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1023{
1024	int retval;
1025	unsigned long flags;
1026
1027	spin_lock_irqsave(&pdc_lock, flags);
1028	retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1029	convert_to_wide(pdc_result);
1030	memcpy(rinfo, pdc_result, sizeof(*rinfo));
1031	spin_unlock_irqrestore(&pdc_lock, flags);
1032
1033	return retval;
1034}
1035
1036int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1037		unsigned long *pdt_entries_ptr)
1038{
1039	int retval;
1040	unsigned long flags;
1041
1042	spin_lock_irqsave(&pdc_lock, flags);
1043	retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1044			__pa(pdt_entries_ptr));
1045	if (retval == PDC_OK) {
1046		convert_to_wide(pdc_result);
1047		memcpy(pret, pdc_result, sizeof(*pret));
1048	}
1049	spin_unlock_irqrestore(&pdc_lock, flags);
1050
1051#ifdef CONFIG_64BIT
1052	/*
1053	 * 64-bit kernels should not call this PDT function in narrow mode.
1054	 * The pdt_entries_ptr array above will now contain 32-bit values
1055	 */
1056	if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1057		return PDC_ERROR;
1058#endif
1059
1060	return retval;
1061}
1062
1063/**
1064 * pdc_tod_set - Set the Time-Of-Day clock.
1065 * @sec: The number of seconds since epoch.
1066 * @usec: The number of micro seconds.
1067 *
1068 * Set the Time-Of-Day clock.
1069 */ 
1070int pdc_tod_set(unsigned long sec, unsigned long usec)
1071{
1072        int retval;
1073	unsigned long flags;
1074
1075        spin_lock_irqsave(&pdc_lock, flags);
1076        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1077        spin_unlock_irqrestore(&pdc_lock, flags);
1078
1079        return retval;
1080}
1081EXPORT_SYMBOL(pdc_tod_set);
1082
1083#ifdef CONFIG_64BIT
1084int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1085		struct pdc_memory_table *tbl, unsigned long entries)
1086{
1087	int retval;
1088	unsigned long flags;
1089
1090	spin_lock_irqsave(&pdc_lock, flags);
1091	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1092	convert_to_wide(pdc_result);
1093	memcpy(r_addr, pdc_result, sizeof(*r_addr));
1094	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1095	spin_unlock_irqrestore(&pdc_lock, flags);
1096
1097	return retval;
1098}
1099#endif /* CONFIG_64BIT */
1100
1101/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
1102 * so I guessed at unsigned long.  Someone who knows what this does, can fix
1103 * it later. :)
1104 */
1105int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1106{
1107        int retval;
1108	unsigned long flags;
1109
1110        spin_lock_irqsave(&pdc_lock, flags);
1111        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1112                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1113        spin_unlock_irqrestore(&pdc_lock, flags);
1114
1115        return retval;
1116}
1117
1118/*
1119 * pdc_do_reset - Reset the system.
1120 *
1121 * Reset the system.
1122 */
1123int pdc_do_reset(void)
1124{
1125        int retval;
1126	unsigned long flags;
1127
1128        spin_lock_irqsave(&pdc_lock, flags);
1129        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1130        spin_unlock_irqrestore(&pdc_lock, flags);
1131
1132        return retval;
1133}
1134
1135/*
1136 * pdc_soft_power_info - Enable soft power switch.
1137 * @power_reg: address of soft power register
1138 *
1139 * Return the absolute address of the soft power switch register
1140 */
1141int __init pdc_soft_power_info(unsigned long *power_reg)
1142{
1143	int retval;
1144	unsigned long flags;
1145
1146	*power_reg = (unsigned long) (-1);
1147	
1148	spin_lock_irqsave(&pdc_lock, flags);
1149	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1150	if (retval == PDC_OK) {
1151                convert_to_wide(pdc_result);
1152                *power_reg = f_extend(pdc_result[0]);
1153	}
1154	spin_unlock_irqrestore(&pdc_lock, flags);
1155
1156	return retval;
1157}
1158
1159/*
1160 * pdc_soft_power_button - Control the soft power button behaviour
1161 * @sw_control: 0 for hardware control, 1 for software control 
1162 *
1163 *
1164 * This PDC function places the soft power button under software or
1165 * hardware control.
1166 * Under software control the OS may control to when to allow to shut 
1167 * down the system. Under hardware control pressing the power button 
1168 * powers off the system immediately.
1169 */
1170int pdc_soft_power_button(int sw_control)
1171{
1172	int retval;
1173	unsigned long flags;
1174
1175	spin_lock_irqsave(&pdc_lock, flags);
1176	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1177	spin_unlock_irqrestore(&pdc_lock, flags);
1178
1179	return retval;
1180}
1181
1182/*
1183 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1184 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1185 * who knows what other platform firmware might do with this OS "hook".
1186 */
1187void pdc_io_reset(void)
1188{
1189	unsigned long flags;
1190
1191	spin_lock_irqsave(&pdc_lock, flags);
1192	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1193	spin_unlock_irqrestore(&pdc_lock, flags);
1194}
1195
1196/*
1197 * pdc_io_reset_devices - Hack to Stop USB controller
1198 *
1199 * If PDC used the usb controller, the usb controller
1200 * is still running and will crash the machines during iommu 
1201 * setup, because of still running DMA. This PDC call
1202 * stops the USB controller.
1203 * Normally called after calling pdc_io_reset().
1204 */
1205void pdc_io_reset_devices(void)
1206{
1207	unsigned long flags;
1208
1209	spin_lock_irqsave(&pdc_lock, flags);
1210	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1211	spin_unlock_irqrestore(&pdc_lock, flags);
1212}
1213
1214#endif /* defined(BOOTLOADER) */
1215
1216/* locked by pdc_console_lock */
1217static int __attribute__((aligned(8)))   iodc_retbuf[32];
1218static char __attribute__((aligned(64))) iodc_dbuf[4096];
1219
1220/**
1221 * pdc_iodc_print - Console print using IODC.
1222 * @str: the string to output.
1223 * @count: length of str
1224 *
1225 * Note that only these special chars are architected for console IODC io:
1226 * BEL, BS, CR, and LF. Others are passed through.
1227 * Since the HP console requires CR+LF to perform a 'newline', we translate
1228 * "\n" to "\r\n".
1229 */
1230int pdc_iodc_print(const unsigned char *str, unsigned count)
1231{
1232	unsigned int i;
1233	unsigned long flags;
1234
1235	for (i = 0; i < count;) {
1236		switch(str[i]) {
1237		case '\n':
1238			iodc_dbuf[i+0] = '\r';
1239			iodc_dbuf[i+1] = '\n';
1240			i += 2;
1241			goto print;
1242		default:
1243			iodc_dbuf[i] = str[i];
1244			i++;
1245			break;
1246		}
1247	}
1248
1249print:
1250        spin_lock_irqsave(&pdc_lock, flags);
1251        real32_call(PAGE0->mem_cons.iodc_io,
1252                    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1253                    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1254                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1255        spin_unlock_irqrestore(&pdc_lock, flags);
1256
1257	return i;
1258}
1259
1260#if !defined(BOOTLOADER)
1261/**
1262 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1263 *
1264 * Read a character (non-blocking) from the PDC console, returns -1 if
1265 * key is not present.
1266 */
1267int pdc_iodc_getc(void)
1268{
1269	int ch;
1270	int status;
1271	unsigned long flags;
1272
1273	/* Bail if no console input device. */
1274	if (!PAGE0->mem_kbd.iodc_io)
1275		return 0;
1276	
1277	/* wait for a keyboard (rs232)-input */
1278	spin_lock_irqsave(&pdc_lock, flags);
1279	real32_call(PAGE0->mem_kbd.iodc_io,
1280		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1281		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1282		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1283
1284	ch = *iodc_dbuf;
1285	status = *iodc_retbuf;
1286	spin_unlock_irqrestore(&pdc_lock, flags);
1287
1288	if (status == 0)
1289	    return -1;
1290	
1291	return ch;
1292}
1293
1294int pdc_sti_call(unsigned long func, unsigned long flags,
1295                 unsigned long inptr, unsigned long outputr,
1296                 unsigned long glob_cfg)
1297{
1298        int retval;
1299	unsigned long irqflags;
1300
1301        spin_lock_irqsave(&pdc_lock, irqflags);  
1302        retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1303        spin_unlock_irqrestore(&pdc_lock, irqflags);
1304
1305        return retval;
1306}
1307EXPORT_SYMBOL(pdc_sti_call);
1308
1309#ifdef CONFIG_64BIT
1310/**
1311 * pdc_pat_cell_get_number - Returns the cell number.
1312 * @cell_info: The return buffer.
1313 *
1314 * This PDC call returns the cell number of the cell from which the call
1315 * is made.
1316 */
1317int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1318{
1319	int retval;
1320	unsigned long flags;
1321
1322	spin_lock_irqsave(&pdc_lock, flags);
1323	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1324	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1325	spin_unlock_irqrestore(&pdc_lock, flags);
1326
1327	return retval;
1328}
1329
1330/**
1331 * pdc_pat_cell_module - Retrieve the cell's module information.
1332 * @actcnt: The number of bytes written to mem_addr.
1333 * @ploc: The physical location.
1334 * @mod: The module index.
1335 * @view_type: The view of the address type.
1336 * @mem_addr: The return buffer.
1337 *
1338 * This PDC call returns information about each module attached to the cell
1339 * at the specified location.
1340 */
1341int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1342			unsigned long view_type, void *mem_addr)
1343{
1344	int retval;
1345	unsigned long flags;
1346	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1347
1348	spin_lock_irqsave(&pdc_lock, flags);
1349	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1350			      ploc, mod, view_type, __pa(&result));
1351	if(!retval) {
1352		*actcnt = pdc_result[0];
1353		memcpy(mem_addr, &result, *actcnt);
1354	}
1355	spin_unlock_irqrestore(&pdc_lock, flags);
1356
1357	return retval;
1358}
1359
1360/**
1361 * pdc_pat_cell_info - Retrieve the cell's information.
1362 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1363 * @actcnt: The number of bytes which should be written to info.
1364 * @offset: offset of the structure.
1365 * @cell_number: The cell number which should be asked, or -1 for current cell.
1366 *
1367 * This PDC call returns information about the given cell (or all cells).
1368 */
1369int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1370		unsigned long *actcnt, unsigned long offset,
1371		unsigned long cell_number)
1372{
1373	int retval;
1374	unsigned long flags;
1375	struct pdc_pat_cell_info_rtn_block result;
1376
1377	spin_lock_irqsave(&pdc_lock, flags);
1378	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1379			__pa(pdc_result), __pa(&result), *actcnt,
1380			offset, cell_number);
1381	if (!retval) {
1382		*actcnt = pdc_result[0];
1383		memcpy(info, &result, *actcnt);
1384	}
1385	spin_unlock_irqrestore(&pdc_lock, flags);
1386
1387	return retval;
1388}
1389
1390/**
1391 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1392 * @cpu_info: The return buffer.
1393 * @hpa: The Hard Physical Address of the CPU.
1394 *
1395 * Retrieve the cpu number for the cpu at the specified HPA.
1396 */
1397int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1398{
1399	int retval;
1400	unsigned long flags;
1401
1402	spin_lock_irqsave(&pdc_lock, flags);
1403	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1404			      __pa(&pdc_result), hpa);
1405	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1406	spin_unlock_irqrestore(&pdc_lock, flags);
1407
1408	return retval;
1409}
1410
1411/**
1412 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1413 * @num_entries: The return value.
1414 * @cell_num: The target cell.
1415 *
1416 * This PDC function returns the number of entries in the specified cell's
1417 * interrupt table.
1418 */
1419int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1420{
1421	int retval;
1422	unsigned long flags;
1423
1424	spin_lock_irqsave(&pdc_lock, flags);
1425	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1426			      __pa(pdc_result), cell_num);
1427	*num_entries = pdc_result[0];
1428	spin_unlock_irqrestore(&pdc_lock, flags);
1429
1430	return retval;
1431}
1432
1433/**
1434 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1435 * @r_addr: The return buffer.
1436 * @cell_num: The target cell.
1437 *
1438 * This PDC function returns the actual interrupt table for the specified cell.
1439 */
1440int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1441{
1442	int retval;
1443	unsigned long flags;
1444
1445	spin_lock_irqsave(&pdc_lock, flags);
1446	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1447			      __pa(r_addr), cell_num);
1448	spin_unlock_irqrestore(&pdc_lock, flags);
1449
1450	return retval;
1451}
1452
1453/**
1454 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1455 * @actlen: The return buffer.
1456 * @mem_addr: Pointer to the memory buffer.
1457 * @count: The number of bytes to read from the buffer.
1458 * @offset: The offset with respect to the beginning of the buffer.
1459 *
1460 */
1461int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1462			    unsigned long count, unsigned long offset)
1463{
1464	int retval;
1465	unsigned long flags;
1466
1467	spin_lock_irqsave(&pdc_lock, flags);
1468	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1469			      __pa(pdc_result2), count, offset);
1470	*actual_len = pdc_result[0];
1471	memcpy(mem_addr, pdc_result2, *actual_len);
1472	spin_unlock_irqrestore(&pdc_lock, flags);
1473
1474	return retval;
1475}
1476
1477/**
1478 * pdc_pat_pd_get_PDC_interface_revisions - Retrieve PDC interface revisions.
1479 * @legacy_rev: The legacy revision.
1480 * @pat_rev: The PAT revision.
1481 * @pdc_cap: The PDC capabilities.
1482 *
1483 */
1484int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1485		unsigned long *pat_rev, unsigned long *pdc_cap)
1486{
1487	int retval;
1488	unsigned long flags;
1489
1490	spin_lock_irqsave(&pdc_lock, flags);
1491	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1492				__pa(pdc_result));
1493	if (retval == PDC_OK) {
1494		*legacy_rev = pdc_result[0];
1495		*pat_rev = pdc_result[1];
1496		*pdc_cap = pdc_result[2];
1497	}
1498	spin_unlock_irqrestore(&pdc_lock, flags);
1499
1500	return retval;
1501}
1502
1503
1504/**
1505 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1506 * @pci_addr: PCI configuration space address for which the read request is being made.
1507 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1508 * @mem_addr: Pointer to return memory buffer.
1509 *
1510 */
1511int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1512{
1513	int retval;
1514	unsigned long flags;
1515
1516	spin_lock_irqsave(&pdc_lock, flags);
1517	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1518					__pa(pdc_result), pci_addr, pci_size);
1519	switch(pci_size) {
1520		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
1521		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
1522		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
1523	}
1524	spin_unlock_irqrestore(&pdc_lock, flags);
1525
1526	return retval;
1527}
1528
1529/**
1530 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1531 * @pci_addr: PCI configuration space address for which the write  request is being made.
1532 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1533 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 
1534 *         written to PCI Config space.
1535 *
1536 */
1537int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1538{
1539	int retval;
1540	unsigned long flags;
1541
1542	spin_lock_irqsave(&pdc_lock, flags);
1543	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1544				pci_addr, pci_size, val);
1545	spin_unlock_irqrestore(&pdc_lock, flags);
1546
1547	return retval;
1548}
1549
1550/**
1551 * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1552 * @rinfo: memory pdt information
1553 *
1554 */
1555int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1556{
1557	int retval;
1558	unsigned long flags;
1559
1560	spin_lock_irqsave(&pdc_lock, flags);
1561	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1562			__pa(&pdc_result));
1563	if (retval == PDC_OK)
1564		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1565	spin_unlock_irqrestore(&pdc_lock, flags);
1566
1567	return retval;
1568}
1569
1570/**
1571 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1572 *				table of a cell
1573 * @rinfo: memory pdt information
1574 * @cell: cell number
1575 *
1576 */
1577int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1578		unsigned long cell)
1579{
1580	int retval;
1581	unsigned long flags;
1582
1583	spin_lock_irqsave(&pdc_lock, flags);
1584	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1585			__pa(&pdc_result), cell);
1586	if (retval == PDC_OK)
1587		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1588	spin_unlock_irqrestore(&pdc_lock, flags);
1589
1590	return retval;
1591}
1592
1593/**
1594 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1595 * @pret: array of PDT entries
1596 * @pdt_entries_ptr: ptr to hold number of PDT entries
1597 * @max_entries: maximum number of entries to be read
1598 *
1599 */
1600int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1601		unsigned long *pdt_entries_ptr, unsigned long max_entries)
1602{
1603	int retval;
1604	unsigned long flags, entries;
1605
1606	spin_lock_irqsave(&pdc_lock, flags);
1607	/* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1608	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1609			__pa(&pdc_result), parisc_cell_num,
1610			__pa(pdt_entries_ptr));
1611
1612	if (retval == PDC_OK) {
1613		/* build up return value as for PDC_PAT_MEM_PD_READ */
1614		entries = min(pdc_result[0], max_entries);
1615		pret->pdt_entries = entries;
1616		pret->actual_count_bytes = entries * sizeof(unsigned long);
1617	}
1618
1619	spin_unlock_irqrestore(&pdc_lock, flags);
1620	WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1621
1622	return retval;
1623}
1624/**
1625 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1626 * @pret: array of PDT entries
1627 * @pdt_entries_ptr: ptr to hold number of PDT entries
1628 * @count: number of bytes to read
1629 * @offset: offset to start (in bytes)
1630 *
1631 */
1632int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1633		unsigned long *pdt_entries_ptr, unsigned long count,
1634		unsigned long offset)
1635{
1636	int retval;
1637	unsigned long flags, entries;
1638
1639	spin_lock_irqsave(&pdc_lock, flags);
1640	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1641		__pa(&pdc_result), __pa(pdt_entries_ptr),
1642		count, offset);
1643
1644	if (retval == PDC_OK) {
1645		entries = min(pdc_result[0], count);
1646		pret->actual_count_bytes = entries;
1647		pret->pdt_entries = entries / sizeof(unsigned long);
1648	}
1649
1650	spin_unlock_irqrestore(&pdc_lock, flags);
1651
1652	return retval;
1653}
1654
1655/**
1656 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1657 * @pret: ptr to hold returned information
1658 * @phys_addr: physical address to examine
1659 *
1660 */
1661int pdc_pat_mem_get_dimm_phys_location(
1662		struct pdc_pat_mem_phys_mem_location *pret,
1663		unsigned long phys_addr)
1664{
1665	int retval;
1666	unsigned long flags;
1667
1668	spin_lock_irqsave(&pdc_lock, flags);
1669	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1670		__pa(&pdc_result), phys_addr);
1671
1672	if (retval == PDC_OK)
1673		memcpy(pret, &pdc_result, sizeof(*pret));
1674
1675	spin_unlock_irqrestore(&pdc_lock, flags);
1676
1677	return retval;
1678}
1679#endif /* CONFIG_64BIT */
1680#endif /* defined(BOOTLOADER) */
1681
1682
1683/***************** 32-bit real-mode calls ***********/
1684/* The struct below is used
1685 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1686 * real32_call_asm() then uses this stack in narrow real mode
1687 */
1688
1689struct narrow_stack {
1690	/* use int, not long which is 64 bits */
1691	unsigned int arg13;
1692	unsigned int arg12;
1693	unsigned int arg11;
1694	unsigned int arg10;
1695	unsigned int arg9;
1696	unsigned int arg8;
1697	unsigned int arg7;
1698	unsigned int arg6;
1699	unsigned int arg5;
1700	unsigned int arg4;
1701	unsigned int arg3;
1702	unsigned int arg2;
1703	unsigned int arg1;
1704	unsigned int arg0;
1705	unsigned int frame_marker[8];
1706	unsigned int sp;
1707	/* in reality, there's nearly 8k of stack after this */
1708};
1709
1710long real32_call(unsigned long fn, ...)
1711{
1712	va_list args;
1713	extern struct narrow_stack real_stack;
1714	extern unsigned long real32_call_asm(unsigned int *,
1715					     unsigned int *, 
1716					     unsigned int);
1717	
1718	va_start(args, fn);
1719	real_stack.arg0 = va_arg(args, unsigned int);
1720	real_stack.arg1 = va_arg(args, unsigned int);
1721	real_stack.arg2 = va_arg(args, unsigned int);
1722	real_stack.arg3 = va_arg(args, unsigned int);
1723	real_stack.arg4 = va_arg(args, unsigned int);
1724	real_stack.arg5 = va_arg(args, unsigned int);
1725	real_stack.arg6 = va_arg(args, unsigned int);
1726	real_stack.arg7 = va_arg(args, unsigned int);
1727	real_stack.arg8 = va_arg(args, unsigned int);
1728	real_stack.arg9 = va_arg(args, unsigned int);
1729	real_stack.arg10 = va_arg(args, unsigned int);
1730	real_stack.arg11 = va_arg(args, unsigned int);
1731	real_stack.arg12 = va_arg(args, unsigned int);
1732	real_stack.arg13 = va_arg(args, unsigned int);
1733	va_end(args);
1734	
1735	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1736}
1737
1738#ifdef CONFIG_64BIT
1739/***************** 64-bit real-mode calls ***********/
1740
1741struct wide_stack {
1742	unsigned long arg0;
1743	unsigned long arg1;
1744	unsigned long arg2;
1745	unsigned long arg3;
1746	unsigned long arg4;
1747	unsigned long arg5;
1748	unsigned long arg6;
1749	unsigned long arg7;
1750	unsigned long arg8;
1751	unsigned long arg9;
1752	unsigned long arg10;
1753	unsigned long arg11;
1754	unsigned long arg12;
1755	unsigned long arg13;
1756	unsigned long frame_marker[2];	/* rp, previous sp */
1757	unsigned long sp;
1758	/* in reality, there's nearly 8k of stack after this */
1759};
1760
1761long real64_call(unsigned long fn, ...)
1762{
1763	va_list args;
1764	extern struct wide_stack real64_stack;
1765	extern unsigned long real64_call_asm(unsigned long *,
1766					     unsigned long *, 
1767					     unsigned long);
1768    
1769	va_start(args, fn);
1770	real64_stack.arg0 = va_arg(args, unsigned long);
1771	real64_stack.arg1 = va_arg(args, unsigned long);
1772	real64_stack.arg2 = va_arg(args, unsigned long);
1773	real64_stack.arg3 = va_arg(args, unsigned long);
1774	real64_stack.arg4 = va_arg(args, unsigned long);
1775	real64_stack.arg5 = va_arg(args, unsigned long);
1776	real64_stack.arg6 = va_arg(args, unsigned long);
1777	real64_stack.arg7 = va_arg(args, unsigned long);
1778	real64_stack.arg8 = va_arg(args, unsigned long);
1779	real64_stack.arg9 = va_arg(args, unsigned long);
1780	real64_stack.arg10 = va_arg(args, unsigned long);
1781	real64_stack.arg11 = va_arg(args, unsigned long);
1782	real64_stack.arg12 = va_arg(args, unsigned long);
1783	real64_stack.arg13 = va_arg(args, unsigned long);
1784	va_end(args);
1785	
1786	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1787}
1788
1789#endif /* CONFIG_64BIT */
v3.1
 
   1/*
   2 * arch/parisc/kernel/firmware.c  - safe PDC access routines
   3 *
   4 *	PDC == Processor Dependent Code
   5 *
   6 * See http://www.parisc-linux.org/documentation/index.html
   7 * for documentation describing the entry points and calling
   8 * conventions defined below.
   9 *
  10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
  11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
  12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
  13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
  14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
  15 *
  16 *    This program is free software; you can redistribute it and/or modify
  17 *    it under the terms of the GNU General Public License as published by
  18 *    the Free Software Foundation; either version 2 of the License, or
  19 *    (at your option) any later version.
  20 *
  21 */
  22
  23/*	I think it would be in everyone's best interest to follow this
  24 *	guidelines when writing PDC wrappers:
  25 *
  26 *	 - the name of the pdc wrapper should match one of the macros
  27 *	   used for the first two arguments
  28 *	 - don't use caps for random parts of the name
  29 *	 - use the static PDC result buffers and "copyout" to structs
  30 *	   supplied by the caller to encapsulate alignment restrictions
  31 *	 - hold pdc_lock while in PDC or using static result buffers
  32 *	 - use __pa() to convert virtual (kernel) pointers to physical
  33 *	   ones.
  34 *	 - the name of the struct used for pdc return values should equal
  35 *	   one of the macros used for the first two arguments to the
  36 *	   corresponding PDC call
  37 *	 - keep the order of arguments
  38 *	 - don't be smart (setting trailing NUL bytes for strings, return
  39 *	   something useful even if the call failed) unless you are sure
  40 *	   it's not going to affect functionality or performance
  41 *
  42 *	Example:
  43 *	int pdc_cache_info(struct pdc_cache_info *cache_info )
  44 *	{
  45 *		int retval;
  46 *
  47 *		spin_lock_irq(&pdc_lock);
  48 *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
  49 *		convert_to_wide(pdc_result);
  50 *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
  51 *		spin_unlock_irq(&pdc_lock);
  52 *
  53 *		return retval;
  54 *	}
  55 *					prumpf	991016	
  56 */
  57
  58#include <stdarg.h>
  59
  60#include <linux/delay.h>
  61#include <linux/init.h>
  62#include <linux/kernel.h>
  63#include <linux/module.h>
  64#include <linux/string.h>
  65#include <linux/spinlock.h>
  66
  67#include <asm/page.h>
  68#include <asm/pdc.h>
  69#include <asm/pdcpat.h>
  70#include <asm/system.h>
  71#include <asm/processor.h>	/* for boot_cpu_data */
  72
 
 
 
 
 
 
  73static DEFINE_SPINLOCK(pdc_lock);
 
 
  74extern unsigned long pdc_result[NUM_PDC_RESULT];
  75extern unsigned long pdc_result2[NUM_PDC_RESULT];
  76
  77#ifdef CONFIG_64BIT
  78#define WIDE_FIRMWARE 0x1
  79#define NARROW_FIRMWARE 0x2
  80
  81/* Firmware needs to be initially set to narrow to determine the 
  82 * actual firmware width. */
  83int parisc_narrow_firmware __read_mostly = 1;
  84#endif
  85
  86/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
  87 * and MEM_PDC calls are always the same width as the OS.
  88 * Some PAT boxes may have 64-bit IODC I/O.
  89 *
  90 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
  91 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
  92 * This allowed wide kernels to run on Cxxx boxes.
  93 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
  94 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
  95 */
  96
  97#ifdef CONFIG_64BIT
  98long real64_call(unsigned long function, ...);
  99#endif
 100long real32_call(unsigned long function, ...);
 101
 102#ifdef CONFIG_64BIT
 103#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
 104#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
 105#else
 106#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
 107#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
 108#endif
 109
 110
 111/**
 112 * f_extend - Convert PDC addresses to kernel addresses.
 113 * @address: Address returned from PDC.
 114 *
 115 * This function is used to convert PDC addresses into kernel addresses
 116 * when the PDC address size and kernel address size are different.
 117 */
 118static unsigned long f_extend(unsigned long address)
 119{
 120#ifdef CONFIG_64BIT
 121	if(unlikely(parisc_narrow_firmware)) {
 122		if((address & 0xff000000) == 0xf0000000)
 123			return 0xf0f0f0f000000000UL | (u32)address;
 124
 125		if((address & 0xf0000000) == 0xf0000000)
 126			return 0xffffffff00000000UL | (u32)address;
 127	}
 128#endif
 129	return address;
 130}
 131
 132/**
 133 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
 134 * @address: The return buffer from PDC.
 135 *
 136 * This function is used to convert the return buffer addresses retrieved from PDC
 137 * into kernel addresses when the PDC address size and kernel address size are
 138 * different.
 139 */
 140static void convert_to_wide(unsigned long *addr)
 141{
 142#ifdef CONFIG_64BIT
 143	int i;
 144	unsigned int *p = (unsigned int *)addr;
 145
 146	if(unlikely(parisc_narrow_firmware)) {
 147		for(i = 31; i >= 0; --i)
 148			addr[i] = p[i];
 149	}
 150#endif
 151}
 152
 153#ifdef CONFIG_64BIT
 154void __cpuinit set_firmware_width_unlocked(void)
 155{
 156	int ret;
 157
 158	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
 159		__pa(pdc_result), 0);
 160	convert_to_wide(pdc_result);
 161	if (pdc_result[0] != NARROW_FIRMWARE)
 162		parisc_narrow_firmware = 0;
 163}
 164	
 165/**
 166 * set_firmware_width - Determine if the firmware is wide or narrow.
 167 * 
 168 * This function must be called before any pdc_* function that uses the
 169 * convert_to_wide function.
 170 */
 171void __cpuinit set_firmware_width(void)
 172{
 173	unsigned long flags;
 174	spin_lock_irqsave(&pdc_lock, flags);
 175	set_firmware_width_unlocked();
 176	spin_unlock_irqrestore(&pdc_lock, flags);
 177}
 178#else
 179void __cpuinit set_firmware_width_unlocked(void) {
 
 180	return;
 181}
 182
 183void __cpuinit set_firmware_width(void) {
 
 184	return;
 185}
 186#endif /*CONFIG_64BIT*/
 187
 
 
 188/**
 189 * pdc_emergency_unlock - Unlock the linux pdc lock
 190 *
 191 * This call unlocks the linux pdc lock in case we need some PDC functions
 192 * (like pdc_add_valid) during kernel stack dump.
 193 */
 194void pdc_emergency_unlock(void)
 195{
 196 	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
 197        if (spin_is_locked(&pdc_lock))
 198		spin_unlock(&pdc_lock);
 199}
 200
 201
 202/**
 203 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
 204 * @address: Address to be verified.
 205 *
 206 * This PDC call attempts to read from the specified address and verifies
 207 * if the address is valid.
 208 * 
 209 * The return value is PDC_OK (0) in case accessing this address is valid.
 210 */
 211int pdc_add_valid(unsigned long address)
 212{
 213        int retval;
 214	unsigned long flags;
 215
 216        spin_lock_irqsave(&pdc_lock, flags);
 217        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
 218        spin_unlock_irqrestore(&pdc_lock, flags);
 219
 220        return retval;
 221}
 222EXPORT_SYMBOL(pdc_add_valid);
 223
 224/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 225 * pdc_chassis_info - Return chassis information.
 226 * @result: The return buffer.
 227 * @chassis_info: The memory buffer address.
 228 * @len: The size of the memory buffer address.
 229 *
 230 * An HVERSION dependent call for returning the chassis information.
 231 */
 232int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
 233{
 234        int retval;
 235	unsigned long flags;
 236
 237        spin_lock_irqsave(&pdc_lock, flags);
 238        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
 239        memcpy(&pdc_result2, led_info, len);
 240        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
 241                              __pa(pdc_result), __pa(pdc_result2), len);
 242        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
 243        memcpy(led_info, pdc_result2, len);
 244        spin_unlock_irqrestore(&pdc_lock, flags);
 245
 246        return retval;
 247}
 248
 249/**
 250 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
 251 * @retval: -1 on error, 0 on success. Other value are PDC errors
 252 * 
 253 * Must be correctly formatted or expect system crash
 254 */
 255#ifdef CONFIG_64BIT
 256int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
 257{
 258	int retval = 0;
 259	unsigned long flags;
 260        
 261	if (!is_pdc_pat())
 262		return -1;
 263
 264	spin_lock_irqsave(&pdc_lock, flags);
 265	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
 266	spin_unlock_irqrestore(&pdc_lock, flags);
 267
 268	return retval;
 269}
 270#endif
 271
 272/**
 273 * pdc_chassis_disp - Updates chassis code
 274 * @retval: -1 on error, 0 on success
 275 */
 276int pdc_chassis_disp(unsigned long disp)
 277{
 278	int retval = 0;
 279	unsigned long flags;
 280
 281	spin_lock_irqsave(&pdc_lock, flags);
 282	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
 283	spin_unlock_irqrestore(&pdc_lock, flags);
 284
 285	return retval;
 286}
 287
 288/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 289 * pdc_chassis_warn - Fetches chassis warnings
 290 * @retval: -1 on error, 0 on success
 291 */
 292int pdc_chassis_warn(unsigned long *warn)
 293{
 294	int retval = 0;
 295	unsigned long flags;
 296
 297	spin_lock_irqsave(&pdc_lock, flags);
 298	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
 299	*warn = pdc_result[0];
 300	spin_unlock_irqrestore(&pdc_lock, flags);
 301
 302	return retval;
 303}
 304
 305int __cpuinit pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
 306{
 307	int ret;
 308
 309	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
 310	convert_to_wide(pdc_result);
 311	pdc_coproc_info->ccr_functional = pdc_result[0];
 312	pdc_coproc_info->ccr_present = pdc_result[1];
 313	pdc_coproc_info->revision = pdc_result[17];
 314	pdc_coproc_info->model = pdc_result[18];
 315
 316	return ret;
 317}
 318
 319/**
 320 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
 321 * @pdc_coproc_info: Return buffer address.
 322 *
 323 * This PDC call returns the presence and status of all the coprocessors
 324 * attached to the processor.
 325 */
 326int __cpuinit pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
 327{
 328	int ret;
 329	unsigned long flags;
 330
 331	spin_lock_irqsave(&pdc_lock, flags);
 332	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
 333	spin_unlock_irqrestore(&pdc_lock, flags);
 334
 335	return ret;
 336}
 337
 338/**
 339 * pdc_iodc_read - Read data from the modules IODC.
 340 * @actcnt: The actual number of bytes.
 341 * @hpa: The HPA of the module for the iodc read.
 342 * @index: The iodc entry point.
 343 * @iodc_data: A buffer memory for the iodc options.
 344 * @iodc_data_size: Size of the memory buffer.
 345 *
 346 * This PDC call reads from the IODC of the module specified by the hpa
 347 * argument.
 348 */
 349int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
 350		  void *iodc_data, unsigned int iodc_data_size)
 351{
 352	int retval;
 353	unsigned long flags;
 354
 355	spin_lock_irqsave(&pdc_lock, flags);
 356	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
 357			      index, __pa(pdc_result2), iodc_data_size);
 358	convert_to_wide(pdc_result);
 359	*actcnt = pdc_result[0];
 360	memcpy(iodc_data, pdc_result2, iodc_data_size);
 361	spin_unlock_irqrestore(&pdc_lock, flags);
 362
 363	return retval;
 364}
 365EXPORT_SYMBOL(pdc_iodc_read);
 366
 367/**
 368 * pdc_system_map_find_mods - Locate unarchitected modules.
 369 * @pdc_mod_info: Return buffer address.
 370 * @mod_path: pointer to dev path structure.
 371 * @mod_index: fixed address module index.
 372 *
 373 * To locate and identify modules which reside at fixed I/O addresses, which
 374 * do not self-identify via architected bus walks.
 375 */
 376int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
 377			     struct pdc_module_path *mod_path, long mod_index)
 378{
 379	int retval;
 380	unsigned long flags;
 381
 382	spin_lock_irqsave(&pdc_lock, flags);
 383	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
 384			      __pa(pdc_result2), mod_index);
 385	convert_to_wide(pdc_result);
 386	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
 387	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
 388	spin_unlock_irqrestore(&pdc_lock, flags);
 389
 390	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
 391	return retval;
 392}
 393
 394/**
 395 * pdc_system_map_find_addrs - Retrieve additional address ranges.
 396 * @pdc_addr_info: Return buffer address.
 397 * @mod_index: Fixed address module index.
 398 * @addr_index: Address range index.
 399 * 
 400 * Retrieve additional information about subsequent address ranges for modules
 401 * with multiple address ranges.  
 402 */
 403int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
 404			      long mod_index, long addr_index)
 405{
 406	int retval;
 407	unsigned long flags;
 408
 409	spin_lock_irqsave(&pdc_lock, flags);
 410	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
 411			      mod_index, addr_index);
 412	convert_to_wide(pdc_result);
 413	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
 414	spin_unlock_irqrestore(&pdc_lock, flags);
 415
 416	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
 417	return retval;
 418}
 419
 420/**
 421 * pdc_model_info - Return model information about the processor.
 422 * @model: The return buffer.
 423 *
 424 * Returns the version numbers, identifiers, and capabilities from the processor module.
 425 */
 426int pdc_model_info(struct pdc_model *model) 
 427{
 428	int retval;
 429	unsigned long flags;
 430
 431	spin_lock_irqsave(&pdc_lock, flags);
 432	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
 433	convert_to_wide(pdc_result);
 434	memcpy(model, pdc_result, sizeof(*model));
 435	spin_unlock_irqrestore(&pdc_lock, flags);
 436
 437	return retval;
 438}
 439
 440/**
 441 * pdc_model_sysmodel - Get the system model name.
 442 * @name: A char array of at least 81 characters.
 443 *
 444 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
 445 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
 446 * on HP/UX.
 447 */
 448int pdc_model_sysmodel(char *name)
 449{
 450        int retval;
 451	unsigned long flags;
 452
 453        spin_lock_irqsave(&pdc_lock, flags);
 454        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
 455                              OS_ID_HPUX, __pa(name));
 456        convert_to_wide(pdc_result);
 457
 458        if (retval == PDC_OK) {
 459                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
 460        } else {
 461                name[0] = 0;
 462        }
 463        spin_unlock_irqrestore(&pdc_lock, flags);
 464
 465        return retval;
 466}
 467
 468/**
 469 * pdc_model_versions - Identify the version number of each processor.
 470 * @cpu_id: The return buffer.
 471 * @id: The id of the processor to check.
 472 *
 473 * Returns the version number for each processor component.
 474 *
 475 * This comment was here before, but I do not know what it means :( -RB
 476 * id: 0 = cpu revision, 1 = boot-rom-version
 477 */
 478int pdc_model_versions(unsigned long *versions, int id)
 479{
 480        int retval;
 481	unsigned long flags;
 482
 483        spin_lock_irqsave(&pdc_lock, flags);
 484        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
 485        convert_to_wide(pdc_result);
 486        *versions = pdc_result[0];
 487        spin_unlock_irqrestore(&pdc_lock, flags);
 488
 489        return retval;
 490}
 491
 492/**
 493 * pdc_model_cpuid - Returns the CPU_ID.
 494 * @cpu_id: The return buffer.
 495 *
 496 * Returns the CPU_ID value which uniquely identifies the cpu portion of
 497 * the processor module.
 498 */
 499int pdc_model_cpuid(unsigned long *cpu_id)
 500{
 501        int retval;
 502	unsigned long flags;
 503
 504        spin_lock_irqsave(&pdc_lock, flags);
 505        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 506        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
 507        convert_to_wide(pdc_result);
 508        *cpu_id = pdc_result[0];
 509        spin_unlock_irqrestore(&pdc_lock, flags);
 510
 511        return retval;
 512}
 513
 514/**
 515 * pdc_model_capabilities - Returns the platform capabilities.
 516 * @capabilities: The return buffer.
 517 *
 518 * Returns information about platform support for 32- and/or 64-bit
 519 * OSes, IO-PDIR coherency, and virtual aliasing.
 520 */
 521int pdc_model_capabilities(unsigned long *capabilities)
 522{
 523        int retval;
 524	unsigned long flags;
 525
 526        spin_lock_irqsave(&pdc_lock, flags);
 527        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 528        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
 529        convert_to_wide(pdc_result);
 530        if (retval == PDC_OK) {
 531                *capabilities = pdc_result[0];
 532        } else {
 533                *capabilities = PDC_MODEL_OS32;
 534        }
 535        spin_unlock_irqrestore(&pdc_lock, flags);
 536
 537        return retval;
 538}
 539
 540/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 541 * pdc_cache_info - Return cache and TLB information.
 542 * @cache_info: The return buffer.
 543 *
 544 * Returns information about the processor's cache and TLB.
 545 */
 546int pdc_cache_info(struct pdc_cache_info *cache_info)
 547{
 548        int retval;
 549	unsigned long flags;
 550
 551        spin_lock_irqsave(&pdc_lock, flags);
 552        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
 553        convert_to_wide(pdc_result);
 554        memcpy(cache_info, pdc_result, sizeof(*cache_info));
 555        spin_unlock_irqrestore(&pdc_lock, flags);
 556
 557        return retval;
 558}
 559
 560/**
 561 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
 562 * @space_bits: Should be 0, if not, bad mojo!
 563 *
 564 * Returns information about Space ID hashing.
 565 */
 566int pdc_spaceid_bits(unsigned long *space_bits)
 567{
 568	int retval;
 569	unsigned long flags;
 570
 571	spin_lock_irqsave(&pdc_lock, flags);
 572	pdc_result[0] = 0;
 573	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
 574	convert_to_wide(pdc_result);
 575	*space_bits = pdc_result[0];
 576	spin_unlock_irqrestore(&pdc_lock, flags);
 577
 578	return retval;
 579}
 580
 581#ifndef CONFIG_PA20
 582/**
 583 * pdc_btlb_info - Return block TLB information.
 584 * @btlb: The return buffer.
 585 *
 586 * Returns information about the hardware Block TLB.
 587 */
 588int pdc_btlb_info(struct pdc_btlb_info *btlb) 
 589{
 590        int retval;
 591	unsigned long flags;
 592
 593        spin_lock_irqsave(&pdc_lock, flags);
 594        retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
 595        memcpy(btlb, pdc_result, sizeof(*btlb));
 596        spin_unlock_irqrestore(&pdc_lock, flags);
 597
 598        if(retval < 0) {
 599                btlb->max_size = 0;
 600        }
 601        return retval;
 602}
 603
 604/**
 605 * pdc_mem_map_hpa - Find fixed module information.  
 606 * @address: The return buffer
 607 * @mod_path: pointer to dev path structure.
 608 *
 609 * This call was developed for S700 workstations to allow the kernel to find
 610 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
 611 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
 612 * call.
 613 *
 614 * This call is supported by all existing S700 workstations (up to  Gecko).
 615 */
 616int pdc_mem_map_hpa(struct pdc_memory_map *address,
 617		struct pdc_module_path *mod_path)
 618{
 619        int retval;
 620	unsigned long flags;
 621
 622        spin_lock_irqsave(&pdc_lock, flags);
 623        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
 624        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
 625				__pa(pdc_result2));
 626        memcpy(address, pdc_result, sizeof(*address));
 627        spin_unlock_irqrestore(&pdc_lock, flags);
 628
 629        return retval;
 630}
 631#endif	/* !CONFIG_PA20 */
 632
 633/**
 634 * pdc_lan_station_id - Get the LAN address.
 635 * @lan_addr: The return buffer.
 636 * @hpa: The network device HPA.
 637 *
 638 * Get the LAN station address when it is not directly available from the LAN hardware.
 639 */
 640int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
 641{
 642	int retval;
 643	unsigned long flags;
 644
 645	spin_lock_irqsave(&pdc_lock, flags);
 646	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
 647			__pa(pdc_result), hpa);
 648	if (retval < 0) {
 649		/* FIXME: else read MAC from NVRAM */
 650		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
 651	} else {
 652		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
 653	}
 654	spin_unlock_irqrestore(&pdc_lock, flags);
 655
 656	return retval;
 657}
 658EXPORT_SYMBOL(pdc_lan_station_id);
 659
 660/**
 661 * pdc_stable_read - Read data from Stable Storage.
 662 * @staddr: Stable Storage address to access.
 663 * @memaddr: The memory address where Stable Storage data shall be copied.
 664 * @count: number of bytes to transfer. count is multiple of 4.
 665 *
 666 * This PDC call reads from the Stable Storage address supplied in staddr
 667 * and copies count bytes to the memory address memaddr.
 668 * The call will fail if staddr+count > PDC_STABLE size.
 669 */
 670int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
 671{
 672       int retval;
 673	unsigned long flags;
 674
 675       spin_lock_irqsave(&pdc_lock, flags);
 676       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
 677               __pa(pdc_result), count);
 678       convert_to_wide(pdc_result);
 679       memcpy(memaddr, pdc_result, count);
 680       spin_unlock_irqrestore(&pdc_lock, flags);
 681
 682       return retval;
 683}
 684EXPORT_SYMBOL(pdc_stable_read);
 685
 686/**
 687 * pdc_stable_write - Write data to Stable Storage.
 688 * @staddr: Stable Storage address to access.
 689 * @memaddr: The memory address where Stable Storage data shall be read from.
 690 * @count: number of bytes to transfer. count is multiple of 4.
 691 *
 692 * This PDC call reads count bytes from the supplied memaddr address,
 693 * and copies count bytes to the Stable Storage address staddr.
 694 * The call will fail if staddr+count > PDC_STABLE size.
 695 */
 696int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
 697{
 698       int retval;
 699	unsigned long flags;
 700
 701       spin_lock_irqsave(&pdc_lock, flags);
 702       memcpy(pdc_result, memaddr, count);
 703       convert_to_wide(pdc_result);
 704       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
 705               __pa(pdc_result), count);
 706       spin_unlock_irqrestore(&pdc_lock, flags);
 707
 708       return retval;
 709}
 710EXPORT_SYMBOL(pdc_stable_write);
 711
 712/**
 713 * pdc_stable_get_size - Get Stable Storage size in bytes.
 714 * @size: pointer where the size will be stored.
 715 *
 716 * This PDC call returns the number of bytes in the processor's Stable
 717 * Storage, which is the number of contiguous bytes implemented in Stable
 718 * Storage starting from staddr=0. size in an unsigned 64-bit integer
 719 * which is a multiple of four.
 720 */
 721int pdc_stable_get_size(unsigned long *size)
 722{
 723       int retval;
 724	unsigned long flags;
 725
 726       spin_lock_irqsave(&pdc_lock, flags);
 727       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
 728       *size = pdc_result[0];
 729       spin_unlock_irqrestore(&pdc_lock, flags);
 730
 731       return retval;
 732}
 733EXPORT_SYMBOL(pdc_stable_get_size);
 734
 735/**
 736 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
 737 *
 738 * This PDC call is meant to be used to check the integrity of the current
 739 * contents of Stable Storage.
 740 */
 741int pdc_stable_verify_contents(void)
 742{
 743       int retval;
 744	unsigned long flags;
 745
 746       spin_lock_irqsave(&pdc_lock, flags);
 747       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
 748       spin_unlock_irqrestore(&pdc_lock, flags);
 749
 750       return retval;
 751}
 752EXPORT_SYMBOL(pdc_stable_verify_contents);
 753
 754/**
 755 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
 756 * the validity indicator.
 757 *
 758 * This PDC call will erase all contents of Stable Storage. Use with care!
 759 */
 760int pdc_stable_initialize(void)
 761{
 762       int retval;
 763	unsigned long flags;
 764
 765       spin_lock_irqsave(&pdc_lock, flags);
 766       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
 767       spin_unlock_irqrestore(&pdc_lock, flags);
 768
 769       return retval;
 770}
 771EXPORT_SYMBOL(pdc_stable_initialize);
 772
 773/**
 774 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
 775 * @hwpath: fully bc.mod style path to the device.
 776 * @initiator: the array to return the result into
 777 *
 778 * Get the SCSI operational parameters from PDC.
 779 * Needed since HPUX never used BIOS or symbios card NVRAM.
 780 * Most ncr/sym cards won't have an entry and just use whatever
 781 * capabilities of the card are (eg Ultra, LVD). But there are
 782 * several cases where it's useful:
 783 *    o set SCSI id for Multi-initiator clusters,
 784 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
 785 *    o bus width exported is less than what the interface chip supports.
 786 */
 787int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
 788{
 789	int retval;
 790	unsigned long flags;
 791
 792	spin_lock_irqsave(&pdc_lock, flags);
 793
 794/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
 795#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
 796	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
 797
 798	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
 799			      __pa(pdc_result), __pa(hwpath));
 800	if (retval < PDC_OK)
 801		goto out;
 802
 803	if (pdc_result[0] < 16) {
 804		initiator->host_id = pdc_result[0];
 805	} else {
 806		initiator->host_id = -1;
 807	}
 808
 809	/*
 810	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
 811	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
 812	 */
 813	switch (pdc_result[1]) {
 814		case  1: initiator->factor = 50; break;
 815		case  2: initiator->factor = 25; break;
 816		case  5: initiator->factor = 12; break;
 817		case 25: initiator->factor = 10; break;
 818		case 20: initiator->factor = 12; break;
 819		case 40: initiator->factor = 10; break;
 820		default: initiator->factor = -1; break;
 821	}
 822
 823	if (IS_SPROCKETS()) {
 824		initiator->width = pdc_result[4];
 825		initiator->mode = pdc_result[5];
 826	} else {
 827		initiator->width = -1;
 828		initiator->mode = -1;
 829	}
 830
 831 out:
 832	spin_unlock_irqrestore(&pdc_lock, flags);
 833
 834	return (retval >= PDC_OK);
 835}
 836EXPORT_SYMBOL(pdc_get_initiator);
 837
 838
 839/**
 840 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
 841 * @num_entries: The return value.
 842 * @hpa: The HPA for the device.
 843 *
 844 * This PDC function returns the number of entries in the specified cell's
 845 * interrupt table.
 846 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 847 */ 
 848int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
 849{
 850	int retval;
 851	unsigned long flags;
 852
 853	spin_lock_irqsave(&pdc_lock, flags);
 854	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
 855			      __pa(pdc_result), hpa);
 856	convert_to_wide(pdc_result);
 857	*num_entries = pdc_result[0];
 858	spin_unlock_irqrestore(&pdc_lock, flags);
 859
 860	return retval;
 861}
 862
 863/** 
 864 * pdc_pci_irt - Get the PCI interrupt routing table.
 865 * @num_entries: The number of entries in the table.
 866 * @hpa: The Hard Physical Address of the device.
 867 * @tbl: 
 868 *
 869 * Get the PCI interrupt routing table for the device at the given HPA.
 870 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 871 */
 872int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
 873{
 874	int retval;
 875	unsigned long flags;
 876
 877	BUG_ON((unsigned long)tbl & 0x7);
 878
 879	spin_lock_irqsave(&pdc_lock, flags);
 880	pdc_result[0] = num_entries;
 881	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
 882			      __pa(pdc_result), hpa, __pa(tbl));
 883	spin_unlock_irqrestore(&pdc_lock, flags);
 884
 885	return retval;
 886}
 887
 888
 889#if 0	/* UNTEST CODE - left here in case someone needs it */
 890
 891/** 
 892 * pdc_pci_config_read - read PCI config space.
 893 * @hpa		token from PDC to indicate which PCI device
 894 * @pci_addr	configuration space address to read from
 895 *
 896 * Read PCI Configuration space *before* linux PCI subsystem is running.
 897 */
 898unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
 899{
 900	int retval;
 901	unsigned long flags;
 902
 903	spin_lock_irqsave(&pdc_lock, flags);
 904	pdc_result[0] = 0;
 905	pdc_result[1] = 0;
 906	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
 907			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
 908	spin_unlock_irqrestore(&pdc_lock, flags);
 909
 910	return retval ? ~0 : (unsigned int) pdc_result[0];
 911}
 912
 913
 914/** 
 915 * pdc_pci_config_write - read PCI config space.
 916 * @hpa		token from PDC to indicate which PCI device
 917 * @pci_addr	configuration space address to write
 918 * @val		value we want in the 32-bit register
 919 *
 920 * Write PCI Configuration space *before* linux PCI subsystem is running.
 921 */
 922void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
 923{
 924	int retval;
 925	unsigned long flags;
 926
 927	spin_lock_irqsave(&pdc_lock, flags);
 928	pdc_result[0] = 0;
 929	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
 930			      __pa(pdc_result), hpa,
 931			      cfg_addr&~3UL, 4UL, (unsigned long) val);
 932	spin_unlock_irqrestore(&pdc_lock, flags);
 933
 934	return retval;
 935}
 936#endif /* UNTESTED CODE */
 937
 938/**
 939 * pdc_tod_read - Read the Time-Of-Day clock.
 940 * @tod: The return buffer:
 941 *
 942 * Read the Time-Of-Day clock
 943 */
 944int pdc_tod_read(struct pdc_tod *tod)
 945{
 946        int retval;
 947	unsigned long flags;
 948
 949        spin_lock_irqsave(&pdc_lock, flags);
 950        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
 951        convert_to_wide(pdc_result);
 952        memcpy(tod, pdc_result, sizeof(*tod));
 953        spin_unlock_irqrestore(&pdc_lock, flags);
 954
 955        return retval;
 956}
 957EXPORT_SYMBOL(pdc_tod_read);
 958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 959/**
 960 * pdc_tod_set - Set the Time-Of-Day clock.
 961 * @sec: The number of seconds since epoch.
 962 * @usec: The number of micro seconds.
 963 *
 964 * Set the Time-Of-Day clock.
 965 */ 
 966int pdc_tod_set(unsigned long sec, unsigned long usec)
 967{
 968        int retval;
 969	unsigned long flags;
 970
 971        spin_lock_irqsave(&pdc_lock, flags);
 972        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
 973        spin_unlock_irqrestore(&pdc_lock, flags);
 974
 975        return retval;
 976}
 977EXPORT_SYMBOL(pdc_tod_set);
 978
 979#ifdef CONFIG_64BIT
 980int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
 981		struct pdc_memory_table *tbl, unsigned long entries)
 982{
 983	int retval;
 984	unsigned long flags;
 985
 986	spin_lock_irqsave(&pdc_lock, flags);
 987	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
 988	convert_to_wide(pdc_result);
 989	memcpy(r_addr, pdc_result, sizeof(*r_addr));
 990	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
 991	spin_unlock_irqrestore(&pdc_lock, flags);
 992
 993	return retval;
 994}
 995#endif /* CONFIG_64BIT */
 996
 997/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
 998 * so I guessed at unsigned long.  Someone who knows what this does, can fix
 999 * it later. :)
1000 */
1001int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1002{
1003        int retval;
1004	unsigned long flags;
1005
1006        spin_lock_irqsave(&pdc_lock, flags);
1007        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1008                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1009        spin_unlock_irqrestore(&pdc_lock, flags);
1010
1011        return retval;
1012}
1013
1014/*
1015 * pdc_do_reset - Reset the system.
1016 *
1017 * Reset the system.
1018 */
1019int pdc_do_reset(void)
1020{
1021        int retval;
1022	unsigned long flags;
1023
1024        spin_lock_irqsave(&pdc_lock, flags);
1025        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1026        spin_unlock_irqrestore(&pdc_lock, flags);
1027
1028        return retval;
1029}
1030
1031/*
1032 * pdc_soft_power_info - Enable soft power switch.
1033 * @power_reg: address of soft power register
1034 *
1035 * Return the absolute address of the soft power switch register
1036 */
1037int __init pdc_soft_power_info(unsigned long *power_reg)
1038{
1039	int retval;
1040	unsigned long flags;
1041
1042	*power_reg = (unsigned long) (-1);
1043	
1044	spin_lock_irqsave(&pdc_lock, flags);
1045	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1046	if (retval == PDC_OK) {
1047                convert_to_wide(pdc_result);
1048                *power_reg = f_extend(pdc_result[0]);
1049	}
1050	spin_unlock_irqrestore(&pdc_lock, flags);
1051
1052	return retval;
1053}
1054
1055/*
1056 * pdc_soft_power_button - Control the soft power button behaviour
1057 * @sw_control: 0 for hardware control, 1 for software control 
1058 *
1059 *
1060 * This PDC function places the soft power button under software or
1061 * hardware control.
1062 * Under software control the OS may control to when to allow to shut 
1063 * down the system. Under hardware control pressing the power button 
1064 * powers off the system immediately.
1065 */
1066int pdc_soft_power_button(int sw_control)
1067{
1068	int retval;
1069	unsigned long flags;
1070
1071	spin_lock_irqsave(&pdc_lock, flags);
1072	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1073	spin_unlock_irqrestore(&pdc_lock, flags);
1074
1075	return retval;
1076}
1077
1078/*
1079 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1080 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1081 * who knows what other platform firmware might do with this OS "hook".
1082 */
1083void pdc_io_reset(void)
1084{
1085	unsigned long flags;
1086
1087	spin_lock_irqsave(&pdc_lock, flags);
1088	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1089	spin_unlock_irqrestore(&pdc_lock, flags);
1090}
1091
1092/*
1093 * pdc_io_reset_devices - Hack to Stop USB controller
1094 *
1095 * If PDC used the usb controller, the usb controller
1096 * is still running and will crash the machines during iommu 
1097 * setup, because of still running DMA. This PDC call
1098 * stops the USB controller.
1099 * Normally called after calling pdc_io_reset().
1100 */
1101void pdc_io_reset_devices(void)
1102{
1103	unsigned long flags;
1104
1105	spin_lock_irqsave(&pdc_lock, flags);
1106	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1107	spin_unlock_irqrestore(&pdc_lock, flags);
1108}
1109
 
 
1110/* locked by pdc_console_lock */
1111static int __attribute__((aligned(8)))   iodc_retbuf[32];
1112static char __attribute__((aligned(64))) iodc_dbuf[4096];
1113
1114/**
1115 * pdc_iodc_print - Console print using IODC.
1116 * @str: the string to output.
1117 * @count: length of str
1118 *
1119 * Note that only these special chars are architected for console IODC io:
1120 * BEL, BS, CR, and LF. Others are passed through.
1121 * Since the HP console requires CR+LF to perform a 'newline', we translate
1122 * "\n" to "\r\n".
1123 */
1124int pdc_iodc_print(const unsigned char *str, unsigned count)
1125{
1126	unsigned int i;
1127	unsigned long flags;
1128
1129	for (i = 0; i < count;) {
1130		switch(str[i]) {
1131		case '\n':
1132			iodc_dbuf[i+0] = '\r';
1133			iodc_dbuf[i+1] = '\n';
1134			i += 2;
1135			goto print;
1136		default:
1137			iodc_dbuf[i] = str[i];
1138			i++;
1139			break;
1140		}
1141	}
1142
1143print:
1144        spin_lock_irqsave(&pdc_lock, flags);
1145        real32_call(PAGE0->mem_cons.iodc_io,
1146                    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1147                    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1148                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1149        spin_unlock_irqrestore(&pdc_lock, flags);
1150
1151	return i;
1152}
1153
 
1154/**
1155 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1156 *
1157 * Read a character (non-blocking) from the PDC console, returns -1 if
1158 * key is not present.
1159 */
1160int pdc_iodc_getc(void)
1161{
1162	int ch;
1163	int status;
1164	unsigned long flags;
1165
1166	/* Bail if no console input device. */
1167	if (!PAGE0->mem_kbd.iodc_io)
1168		return 0;
1169	
1170	/* wait for a keyboard (rs232)-input */
1171	spin_lock_irqsave(&pdc_lock, flags);
1172	real32_call(PAGE0->mem_kbd.iodc_io,
1173		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1174		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1175		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1176
1177	ch = *iodc_dbuf;
1178	status = *iodc_retbuf;
1179	spin_unlock_irqrestore(&pdc_lock, flags);
1180
1181	if (status == 0)
1182	    return -1;
1183	
1184	return ch;
1185}
1186
1187int pdc_sti_call(unsigned long func, unsigned long flags,
1188                 unsigned long inptr, unsigned long outputr,
1189                 unsigned long glob_cfg)
1190{
1191        int retval;
1192	unsigned long irqflags;
1193
1194        spin_lock_irqsave(&pdc_lock, irqflags);  
1195        retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1196        spin_unlock_irqrestore(&pdc_lock, irqflags);
1197
1198        return retval;
1199}
1200EXPORT_SYMBOL(pdc_sti_call);
1201
1202#ifdef CONFIG_64BIT
1203/**
1204 * pdc_pat_cell_get_number - Returns the cell number.
1205 * @cell_info: The return buffer.
1206 *
1207 * This PDC call returns the cell number of the cell from which the call
1208 * is made.
1209 */
1210int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1211{
1212	int retval;
1213	unsigned long flags;
1214
1215	spin_lock_irqsave(&pdc_lock, flags);
1216	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1217	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1218	spin_unlock_irqrestore(&pdc_lock, flags);
1219
1220	return retval;
1221}
1222
1223/**
1224 * pdc_pat_cell_module - Retrieve the cell's module information.
1225 * @actcnt: The number of bytes written to mem_addr.
1226 * @ploc: The physical location.
1227 * @mod: The module index.
1228 * @view_type: The view of the address type.
1229 * @mem_addr: The return buffer.
1230 *
1231 * This PDC call returns information about each module attached to the cell
1232 * at the specified location.
1233 */
1234int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1235			unsigned long view_type, void *mem_addr)
1236{
1237	int retval;
1238	unsigned long flags;
1239	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1240
1241	spin_lock_irqsave(&pdc_lock, flags);
1242	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1243			      ploc, mod, view_type, __pa(&result));
1244	if(!retval) {
1245		*actcnt = pdc_result[0];
1246		memcpy(mem_addr, &result, *actcnt);
1247	}
1248	spin_unlock_irqrestore(&pdc_lock, flags);
1249
1250	return retval;
1251}
1252
1253/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1254 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1255 * @cpu_info: The return buffer.
1256 * @hpa: The Hard Physical Address of the CPU.
1257 *
1258 * Retrieve the cpu number for the cpu at the specified HPA.
1259 */
1260int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1261{
1262	int retval;
1263	unsigned long flags;
1264
1265	spin_lock_irqsave(&pdc_lock, flags);
1266	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1267			      __pa(&pdc_result), hpa);
1268	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1269	spin_unlock_irqrestore(&pdc_lock, flags);
1270
1271	return retval;
1272}
1273
1274/**
1275 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1276 * @num_entries: The return value.
1277 * @cell_num: The target cell.
1278 *
1279 * This PDC function returns the number of entries in the specified cell's
1280 * interrupt table.
1281 */
1282int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1283{
1284	int retval;
1285	unsigned long flags;
1286
1287	spin_lock_irqsave(&pdc_lock, flags);
1288	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1289			      __pa(pdc_result), cell_num);
1290	*num_entries = pdc_result[0];
1291	spin_unlock_irqrestore(&pdc_lock, flags);
1292
1293	return retval;
1294}
1295
1296/**
1297 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1298 * @r_addr: The return buffer.
1299 * @cell_num: The target cell.
1300 *
1301 * This PDC function returns the actual interrupt table for the specified cell.
1302 */
1303int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1304{
1305	int retval;
1306	unsigned long flags;
1307
1308	spin_lock_irqsave(&pdc_lock, flags);
1309	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1310			      __pa(r_addr), cell_num);
1311	spin_unlock_irqrestore(&pdc_lock, flags);
1312
1313	return retval;
1314}
1315
1316/**
1317 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1318 * @actlen: The return buffer.
1319 * @mem_addr: Pointer to the memory buffer.
1320 * @count: The number of bytes to read from the buffer.
1321 * @offset: The offset with respect to the beginning of the buffer.
1322 *
1323 */
1324int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1325			    unsigned long count, unsigned long offset)
1326{
1327	int retval;
1328	unsigned long flags;
1329
1330	spin_lock_irqsave(&pdc_lock, flags);
1331	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1332			      __pa(pdc_result2), count, offset);
1333	*actual_len = pdc_result[0];
1334	memcpy(mem_addr, pdc_result2, *actual_len);
1335	spin_unlock_irqrestore(&pdc_lock, flags);
1336
1337	return retval;
1338}
1339
1340/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1341 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1342 * @pci_addr: PCI configuration space address for which the read request is being made.
1343 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1344 * @mem_addr: Pointer to return memory buffer.
1345 *
1346 */
1347int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1348{
1349	int retval;
1350	unsigned long flags;
1351
1352	spin_lock_irqsave(&pdc_lock, flags);
1353	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1354					__pa(pdc_result), pci_addr, pci_size);
1355	switch(pci_size) {
1356		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0];
1357		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0];
1358		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0];
1359	}
1360	spin_unlock_irqrestore(&pdc_lock, flags);
1361
1362	return retval;
1363}
1364
1365/**
1366 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1367 * @pci_addr: PCI configuration space address for which the write  request is being made.
1368 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1369 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 
1370 *         written to PCI Config space.
1371 *
1372 */
1373int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1374{
1375	int retval;
1376	unsigned long flags;
1377
1378	spin_lock_irqsave(&pdc_lock, flags);
1379	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1380				pci_addr, pci_size, val);
1381	spin_unlock_irqrestore(&pdc_lock, flags);
1382
1383	return retval;
1384}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1385#endif /* CONFIG_64BIT */
 
1386
1387
1388/***************** 32-bit real-mode calls ***********/
1389/* The struct below is used
1390 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1391 * real32_call_asm() then uses this stack in narrow real mode
1392 */
1393
1394struct narrow_stack {
1395	/* use int, not long which is 64 bits */
1396	unsigned int arg13;
1397	unsigned int arg12;
1398	unsigned int arg11;
1399	unsigned int arg10;
1400	unsigned int arg9;
1401	unsigned int arg8;
1402	unsigned int arg7;
1403	unsigned int arg6;
1404	unsigned int arg5;
1405	unsigned int arg4;
1406	unsigned int arg3;
1407	unsigned int arg2;
1408	unsigned int arg1;
1409	unsigned int arg0;
1410	unsigned int frame_marker[8];
1411	unsigned int sp;
1412	/* in reality, there's nearly 8k of stack after this */
1413};
1414
1415long real32_call(unsigned long fn, ...)
1416{
1417	va_list args;
1418	extern struct narrow_stack real_stack;
1419	extern unsigned long real32_call_asm(unsigned int *,
1420					     unsigned int *, 
1421					     unsigned int);
1422	
1423	va_start(args, fn);
1424	real_stack.arg0 = va_arg(args, unsigned int);
1425	real_stack.arg1 = va_arg(args, unsigned int);
1426	real_stack.arg2 = va_arg(args, unsigned int);
1427	real_stack.arg3 = va_arg(args, unsigned int);
1428	real_stack.arg4 = va_arg(args, unsigned int);
1429	real_stack.arg5 = va_arg(args, unsigned int);
1430	real_stack.arg6 = va_arg(args, unsigned int);
1431	real_stack.arg7 = va_arg(args, unsigned int);
1432	real_stack.arg8 = va_arg(args, unsigned int);
1433	real_stack.arg9 = va_arg(args, unsigned int);
1434	real_stack.arg10 = va_arg(args, unsigned int);
1435	real_stack.arg11 = va_arg(args, unsigned int);
1436	real_stack.arg12 = va_arg(args, unsigned int);
1437	real_stack.arg13 = va_arg(args, unsigned int);
1438	va_end(args);
1439	
1440	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1441}
1442
1443#ifdef CONFIG_64BIT
1444/***************** 64-bit real-mode calls ***********/
1445
1446struct wide_stack {
1447	unsigned long arg0;
1448	unsigned long arg1;
1449	unsigned long arg2;
1450	unsigned long arg3;
1451	unsigned long arg4;
1452	unsigned long arg5;
1453	unsigned long arg6;
1454	unsigned long arg7;
1455	unsigned long arg8;
1456	unsigned long arg9;
1457	unsigned long arg10;
1458	unsigned long arg11;
1459	unsigned long arg12;
1460	unsigned long arg13;
1461	unsigned long frame_marker[2];	/* rp, previous sp */
1462	unsigned long sp;
1463	/* in reality, there's nearly 8k of stack after this */
1464};
1465
1466long real64_call(unsigned long fn, ...)
1467{
1468	va_list args;
1469	extern struct wide_stack real64_stack;
1470	extern unsigned long real64_call_asm(unsigned long *,
1471					     unsigned long *, 
1472					     unsigned long);
1473    
1474	va_start(args, fn);
1475	real64_stack.arg0 = va_arg(args, unsigned long);
1476	real64_stack.arg1 = va_arg(args, unsigned long);
1477	real64_stack.arg2 = va_arg(args, unsigned long);
1478	real64_stack.arg3 = va_arg(args, unsigned long);
1479	real64_stack.arg4 = va_arg(args, unsigned long);
1480	real64_stack.arg5 = va_arg(args, unsigned long);
1481	real64_stack.arg6 = va_arg(args, unsigned long);
1482	real64_stack.arg7 = va_arg(args, unsigned long);
1483	real64_stack.arg8 = va_arg(args, unsigned long);
1484	real64_stack.arg9 = va_arg(args, unsigned long);
1485	real64_stack.arg10 = va_arg(args, unsigned long);
1486	real64_stack.arg11 = va_arg(args, unsigned long);
1487	real64_stack.arg12 = va_arg(args, unsigned long);
1488	real64_stack.arg13 = va_arg(args, unsigned long);
1489	va_end(args);
1490	
1491	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1492}
1493
1494#endif /* CONFIG_64BIT */
1495