Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Kernel Probes (KProbes)
  4 *  arch/mips/kernel/kprobes.c
  5 *
  6 *  Copyright 2006 Sony Corp.
  7 *  Copyright 2010 Cavium Networks
  8 *
  9 *  Some portions copied from the powerpc version.
 10 *
 11 *   Copyright (C) IBM Corporation, 2002, 2004
 
 
 
 
 
 
 
 
 
 
 
 
 
 12 */
 13
 14#include <linux/kprobes.h>
 15#include <linux/preempt.h>
 16#include <linux/uaccess.h>
 17#include <linux/kdebug.h>
 18#include <linux/slab.h>
 19
 20#include <asm/ptrace.h>
 21#include <asm/branch.h>
 22#include <asm/break.h>
 23
 24#include "probes-common.h"
 25
 26static const union mips_instruction breakpoint_insn = {
 27	.b_format = {
 28		.opcode = spec_op,
 29		.code = BRK_KPROBE_BP,
 30		.func = break_op
 31	}
 32};
 33
 34static const union mips_instruction breakpoint2_insn = {
 35	.b_format = {
 36		.opcode = spec_op,
 37		.code = BRK_KPROBE_SSTEPBP,
 38		.func = break_op
 39	}
 40};
 41
 42DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 43DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 44
 45static int __kprobes insn_has_delayslot(union mips_instruction insn)
 46{
 47	return __insn_has_delay_slot(insn);
 48}
 49
 50/*
 51 * insn_has_ll_or_sc function checks whether instruction is ll or sc
 52 * one; putting breakpoint on top of atomic ll/sc pair is bad idea;
 53 * so we need to prevent it and refuse kprobes insertion for such
 54 * instructions; cannot do much about breakpoint in the middle of
 55 * ll/sc pair; it is upto user to avoid those places
 56 */
 57static int __kprobes insn_has_ll_or_sc(union mips_instruction insn)
 58{
 59	int ret = 0;
 
 
 60
 61	switch (insn.i_format.opcode) {
 62	case ll_op:
 63	case lld_op:
 64	case sc_op:
 65	case scd_op:
 66		ret = 1;
 67		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 68	default:
 69		break;
 70	}
 71	return ret;
 
 72}
 73
 74int __kprobes arch_prepare_kprobe(struct kprobe *p)
 75{
 76	union mips_instruction insn;
 77	union mips_instruction prev_insn;
 78	int ret = 0;
 79
 
 80	insn = p->addr[0];
 81
 82	if (insn_has_ll_or_sc(insn)) {
 83		pr_notice("Kprobes for ll and sc instructions are not"
 84			  "supported\n");
 85		ret = -EINVAL;
 86		goto out;
 87	}
 88
 89	if ((probe_kernel_read(&prev_insn, p->addr - 1,
 90				sizeof(mips_instruction)) == 0) &&
 91				insn_has_delayslot(prev_insn)) {
 92		pr_notice("Kprobes for branch delayslot are not supported\n");
 93		ret = -EINVAL;
 94		goto out;
 95	}
 96
 97	if (__insn_is_compact_branch(insn)) {
 98		pr_notice("Kprobes for compact branches are not supported\n");
 99		ret = -EINVAL;
100		goto out;
101	}
102
103	/* insn: must be on special executable page on mips. */
104	p->ainsn.insn = get_insn_slot();
105	if (!p->ainsn.insn) {
106		ret = -ENOMEM;
107		goto out;
108	}
109
110	/*
111	 * In the kprobe->ainsn.insn[] array we store the original
112	 * instruction at index zero and a break trap instruction at
113	 * index one.
114	 *
115	 * On MIPS arch if the instruction at probed address is a
116	 * branch instruction, we need to execute the instruction at
117	 * Branch Delayslot (BD) at the time of probe hit. As MIPS also
118	 * doesn't have single stepping support, the BD instruction can
119	 * not be executed in-line and it would be executed on SSOL slot
120	 * using a normal breakpoint instruction in the next slot.
121	 * So, read the instruction and save it for later execution.
122	 */
123	if (insn_has_delayslot(insn))
124		memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
125	else
126		memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
127
 
128	p->ainsn.insn[1] = breakpoint2_insn;
129	p->opcode = *p->addr;
130
131out:
132	return ret;
133}
134
135void __kprobes arch_arm_kprobe(struct kprobe *p)
136{
137	*p->addr = breakpoint_insn;
138	flush_insn_slot(p);
139}
140
141void __kprobes arch_disarm_kprobe(struct kprobe *p)
142{
143	*p->addr = p->opcode;
144	flush_insn_slot(p);
145}
146
147void __kprobes arch_remove_kprobe(struct kprobe *p)
148{
149	if (p->ainsn.insn) {
150		free_insn_slot(p->ainsn.insn, 0);
151		p->ainsn.insn = NULL;
152	}
153}
154
155static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
156{
157	kcb->prev_kprobe.kp = kprobe_running();
158	kcb->prev_kprobe.status = kcb->kprobe_status;
159	kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
160	kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
161	kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
162}
163
164static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
165{
166	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
167	kcb->kprobe_status = kcb->prev_kprobe.status;
168	kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
169	kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
170	kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
171}
172
173static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
174			       struct kprobe_ctlblk *kcb)
175{
176	__this_cpu_write(current_kprobe, p);
177	kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
178	kcb->kprobe_saved_epc = regs->cp0_epc;
179}
180
181/**
182 * evaluate_branch_instrucion -
183 *
184 * Evaluate the branch instruction at probed address during probe hit. The
185 * result of evaluation would be the updated epc. The insturction in delayslot
186 * would actually be single stepped using a normal breakpoint) on SSOL slot.
187 *
188 * The result is also saved in the kprobe control block for later use,
189 * in case we need to execute the delayslot instruction. The latter will be
190 * false for NOP instruction in dealyslot and the branch-likely instructions
191 * when the branch is taken. And for those cases we set a flag as
192 * SKIP_DELAYSLOT in the kprobe control block
193 */
194static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
195					struct kprobe_ctlblk *kcb)
196{
197	union mips_instruction insn = p->opcode;
198	long epc;
199	int ret = 0;
200
201	epc = regs->cp0_epc;
202	if (epc & 3)
203		goto unaligned;
204
205	if (p->ainsn.insn->word == 0)
206		kcb->flags |= SKIP_DELAYSLOT;
207	else
208		kcb->flags &= ~SKIP_DELAYSLOT;
209
210	ret = __compute_return_epc_for_insn(regs, insn);
211	if (ret < 0)
212		return ret;
213
214	if (ret == BRANCH_LIKELY_TAKEN)
215		kcb->flags |= SKIP_DELAYSLOT;
216
217	kcb->target_epc = regs->cp0_epc;
218
219	return 0;
220
221unaligned:
222	pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
223	force_sig(SIGBUS);
224	return -EFAULT;
225
226}
227
228static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
229						struct kprobe_ctlblk *kcb)
230{
231	int ret = 0;
232
233	regs->cp0_status &= ~ST0_IE;
234
235	/* single step inline if the instruction is a break */
236	if (p->opcode.word == breakpoint_insn.word ||
237	    p->opcode.word == breakpoint2_insn.word)
238		regs->cp0_epc = (unsigned long)p->addr;
239	else if (insn_has_delayslot(p->opcode)) {
240		ret = evaluate_branch_instruction(p, regs, kcb);
241		if (ret < 0) {
242			pr_notice("Kprobes: Error in evaluating branch\n");
243			return;
244		}
245	}
246	regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
247}
248
249/*
250 * Called after single-stepping.  p->addr is the address of the
251 * instruction whose first byte has been replaced by the "break 0"
252 * instruction.	 To avoid the SMP problems that can occur when we
253 * temporarily put back the original opcode to single-step, we
254 * single-stepped a copy of the instruction.  The address of this
255 * copy is p->ainsn.insn.
256 *
257 * This function prepares to return from the post-single-step
258 * breakpoint trap. In case of branch instructions, the target
259 * epc to be restored.
260 */
261static void __kprobes resume_execution(struct kprobe *p,
262				       struct pt_regs *regs,
263				       struct kprobe_ctlblk *kcb)
264{
265	if (insn_has_delayslot(p->opcode))
266		regs->cp0_epc = kcb->target_epc;
267	else {
268		unsigned long orig_epc = kcb->kprobe_saved_epc;
269		regs->cp0_epc = orig_epc + 4;
270	}
271}
272
273static int __kprobes kprobe_handler(struct pt_regs *regs)
274{
275	struct kprobe *p;
276	int ret = 0;
277	kprobe_opcode_t *addr;
278	struct kprobe_ctlblk *kcb;
279
280	addr = (kprobe_opcode_t *) regs->cp0_epc;
281
282	/*
283	 * We don't want to be preempted for the entire
284	 * duration of kprobe processing
285	 */
286	preempt_disable();
287	kcb = get_kprobe_ctlblk();
288
289	/* Check we're not actually recursing */
290	if (kprobe_running()) {
291		p = get_kprobe(addr);
292		if (p) {
293			if (kcb->kprobe_status == KPROBE_HIT_SS &&
294			    p->ainsn.insn->word == breakpoint_insn.word) {
295				regs->cp0_status &= ~ST0_IE;
296				regs->cp0_status |= kcb->kprobe_saved_SR;
297				goto no_kprobe;
298			}
299			/*
300			 * We have reentered the kprobe_handler(), since
301			 * another probe was hit while within the handler.
302			 * We here save the original kprobes variables and
303			 * just single step on the instruction of the new probe
304			 * without calling any user handlers.
305			 */
306			save_previous_kprobe(kcb);
307			set_current_kprobe(p, regs, kcb);
308			kprobes_inc_nmissed_count(p);
309			prepare_singlestep(p, regs, kcb);
310			kcb->kprobe_status = KPROBE_REENTER;
311			if (kcb->flags & SKIP_DELAYSLOT) {
312				resume_execution(p, regs, kcb);
313				restore_previous_kprobe(kcb);
314				preempt_enable_no_resched();
315			}
316			return 1;
317		} else if (addr->word != breakpoint_insn.word) {
318			/*
319			 * The breakpoint instruction was removed by
320			 * another cpu right after we hit, no further
321			 * handling of this interrupt is appropriate
322			 */
323			ret = 1;
 
 
 
 
 
 
324		}
325		goto no_kprobe;
326	}
327
328	p = get_kprobe(addr);
329	if (!p) {
330		if (addr->word != breakpoint_insn.word) {
331			/*
332			 * The breakpoint instruction was removed right
333			 * after we hit it.  Another cpu has removed
334			 * either a probepoint or a debugger breakpoint
335			 * at this address.  In either case, no further
336			 * handling of this interrupt is appropriate.
337			 */
338			ret = 1;
339		}
340		/* Not one of ours: let kernel handle it */
341		goto no_kprobe;
342	}
343
344	set_current_kprobe(p, regs, kcb);
345	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
346
347	if (p->pre_handler && p->pre_handler(p, regs)) {
348		/* handler has already set things up, so skip ss setup */
349		reset_current_kprobe();
350		preempt_enable_no_resched();
351		return 1;
352	}
353
354	prepare_singlestep(p, regs, kcb);
355	if (kcb->flags & SKIP_DELAYSLOT) {
356		kcb->kprobe_status = KPROBE_HIT_SSDONE;
357		if (p->post_handler)
358			p->post_handler(p, regs, 0);
359		resume_execution(p, regs, kcb);
360		preempt_enable_no_resched();
361	} else
362		kcb->kprobe_status = KPROBE_HIT_SS;
363
364	return 1;
365
366no_kprobe:
367	preempt_enable_no_resched();
368	return ret;
369
370}
371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
372static inline int post_kprobe_handler(struct pt_regs *regs)
373{
374	struct kprobe *cur = kprobe_running();
375	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
376
377	if (!cur)
378		return 0;
379
380	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
381		kcb->kprobe_status = KPROBE_HIT_SSDONE;
382		cur->post_handler(cur, regs, 0);
383	}
384
385	resume_execution(cur, regs, kcb);
386
387	regs->cp0_status |= kcb->kprobe_saved_SR;
388
389	/* Restore back the original saved kprobes variables and continue. */
390	if (kcb->kprobe_status == KPROBE_REENTER) {
391		restore_previous_kprobe(kcb);
392		goto out;
393	}
394	reset_current_kprobe();
395out:
396	preempt_enable_no_resched();
397
398	return 1;
399}
400
401int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
402{
403	struct kprobe *cur = kprobe_running();
404	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
405
406	if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
407		return 1;
408
409	if (kcb->kprobe_status & KPROBE_HIT_SS) {
410		resume_execution(cur, regs, kcb);
411		regs->cp0_status |= kcb->kprobe_old_SR;
412
413		reset_current_kprobe();
414		preempt_enable_no_resched();
415	}
416	return 0;
417}
418
419/*
420 * Wrapper routine for handling exceptions.
421 */
422int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
423				       unsigned long val, void *data)
424{
425
426	struct die_args *args = (struct die_args *)data;
427	int ret = NOTIFY_DONE;
428
429	switch (val) {
430	case DIE_BREAK:
431		if (kprobe_handler(args->regs))
432			ret = NOTIFY_STOP;
433		break;
434	case DIE_SSTEPBP:
435		if (post_kprobe_handler(args->regs))
436			ret = NOTIFY_STOP;
437		break;
438
439	case DIE_PAGE_FAULT:
440		/* kprobe_running() needs smp_processor_id() */
441		preempt_disable();
442
443		if (kprobe_running()
444		    && kprobe_fault_handler(args->regs, args->trapnr))
445			ret = NOTIFY_STOP;
446		preempt_enable();
447		break;
448	default:
449		break;
450	}
451	return ret;
452}
453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
454/*
455 * Function return probe trampoline:
456 *	- init_kprobes() establishes a probepoint here
457 *	- When the probed function returns, this probe causes the
458 *	  handlers to fire
459 */
460static void __used kretprobe_trampoline_holder(void)
461{
462	asm volatile(
463		".set push\n\t"
464		/* Keep the assembler from reordering and placing JR here. */
465		".set noreorder\n\t"
466		"nop\n\t"
467		".global kretprobe_trampoline\n"
468		"kretprobe_trampoline:\n\t"
469		"nop\n\t"
470		".set pop"
471		: : : "memory");
472}
473
474void kretprobe_trampoline(void);
475
476void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
477				      struct pt_regs *regs)
478{
479	ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
480
481	/* Replace the return addr with trampoline addr */
482	regs->regs[31] = (unsigned long)kretprobe_trampoline;
483}
484
485/*
486 * Called when the probe at kretprobe trampoline is hit
487 */
488static int __kprobes trampoline_probe_handler(struct kprobe *p,
489						struct pt_regs *regs)
490{
491	struct kretprobe_instance *ri = NULL;
492	struct hlist_head *head, empty_rp;
493	struct hlist_node *tmp;
494	unsigned long flags, orig_ret_address = 0;
495	unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
496
497	INIT_HLIST_HEAD(&empty_rp);
498	kretprobe_hash_lock(current, &head, &flags);
499
500	/*
501	 * It is possible to have multiple instances associated with a given
502	 * task either because an multiple functions in the call path
503	 * have a return probe installed on them, and/or more than one return
504	 * return probe was registered for a target function.
505	 *
506	 * We can handle this because:
507	 *     - instances are always inserted at the head of the list
508	 *     - when multiple return probes are registered for the same
509	 *	 function, the first instance's ret_addr will point to the
510	 *	 real return address, and all the rest will point to
511	 *	 kretprobe_trampoline
512	 */
513	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
514		if (ri->task != current)
515			/* another task is sharing our hash bucket */
516			continue;
517
518		if (ri->rp && ri->rp->handler)
519			ri->rp->handler(ri, regs);
520
521		orig_ret_address = (unsigned long)ri->ret_addr;
522		recycle_rp_inst(ri, &empty_rp);
523
524		if (orig_ret_address != trampoline_address)
525			/*
526			 * This is the real return address. Any other
527			 * instances associated with this task are for
528			 * other calls deeper on the call stack
529			 */
530			break;
531	}
532
533	kretprobe_assert(ri, orig_ret_address, trampoline_address);
534	instruction_pointer(regs) = orig_ret_address;
535
 
536	kretprobe_hash_unlock(current, &flags);
 
537
538	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
539		hlist_del(&ri->hlist);
540		kfree(ri);
541	}
542	/*
543	 * By returning a non-zero value, we are telling
544	 * kprobe_handler() that we don't want the post_handler
545	 * to run (and have re-enabled preemption)
546	 */
547	return 1;
548}
549
550int __kprobes arch_trampoline_kprobe(struct kprobe *p)
551{
552	if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
553		return 1;
554
555	return 0;
556}
557
558static struct kprobe trampoline_p = {
559	.addr = (kprobe_opcode_t *)kretprobe_trampoline,
560	.pre_handler = trampoline_probe_handler
561};
562
563int __init arch_init_kprobes(void)
564{
565	return register_kprobe(&trampoline_p);
566}
v3.1
 
  1/*
  2 *  Kernel Probes (KProbes)
  3 *  arch/mips/kernel/kprobes.c
  4 *
  5 *  Copyright 2006 Sony Corp.
  6 *  Copyright 2010 Cavium Networks
  7 *
  8 *  Some portions copied from the powerpc version.
  9 *
 10 *   Copyright (C) IBM Corporation, 2002, 2004
 11 *
 12 *  This program is free software; you can redistribute it and/or modify
 13 *  it under the terms of the GNU General Public License as published by
 14 *  the Free Software Foundation; version 2 of the License.
 15 *
 16 *  This program is distributed in the hope that it will be useful,
 17 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 18 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 19 *  GNU General Public License for more details.
 20 *
 21 *  You should have received a copy of the GNU General Public License
 22 *  along with this program; if not, write to the Free Software
 23 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 24 */
 25
 26#include <linux/kprobes.h>
 27#include <linux/preempt.h>
 
 28#include <linux/kdebug.h>
 29#include <linux/slab.h>
 30
 31#include <asm/ptrace.h>
 
 32#include <asm/break.h>
 33#include <asm/inst.h>
 
 34
 35static const union mips_instruction breakpoint_insn = {
 36	.b_format = {
 37		.opcode = spec_op,
 38		.code = BRK_KPROBE_BP,
 39		.func = break_op
 40	}
 41};
 42
 43static const union mips_instruction breakpoint2_insn = {
 44	.b_format = {
 45		.opcode = spec_op,
 46		.code = BRK_KPROBE_SSTEPBP,
 47		.func = break_op
 48	}
 49};
 50
 51DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 52DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 53
 54static int __kprobes insn_has_delayslot(union mips_instruction insn)
 55{
 56	switch (insn.i_format.opcode) {
 
 57
 58		/*
 59		 * This group contains:
 60		 * jr and jalr are in r_format format.
 61		 */
 62	case spec_op:
 63		switch (insn.r_format.func) {
 64		case jr_op:
 65		case jalr_op:
 66			break;
 67		default:
 68			goto insn_ok;
 69		}
 70
 71		/*
 72		 * This group contains:
 73		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
 74		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
 75		 */
 76	case bcond_op:
 77
 78		/*
 79		 * These are unconditional and in j_format.
 80		 */
 81	case jal_op:
 82	case j_op:
 83
 84		/*
 85		 * These are conditional and in i_format.
 86		 */
 87	case beq_op:
 88	case beql_op:
 89	case bne_op:
 90	case bnel_op:
 91	case blez_op:
 92	case blezl_op:
 93	case bgtz_op:
 94	case bgtzl_op:
 95
 96		/*
 97		 * These are the FPA/cp1 branch instructions.
 98		 */
 99	case cop1_op:
100
101#ifdef CONFIG_CPU_CAVIUM_OCTEON
102	case lwc2_op: /* This is bbit0 on Octeon */
103	case ldc2_op: /* This is bbit032 on Octeon */
104	case swc2_op: /* This is bbit1 on Octeon */
105	case sdc2_op: /* This is bbit132 on Octeon */
106#endif
107		return 1;
108	default:
109		break;
110	}
111insn_ok:
112	return 0;
113}
114
115int __kprobes arch_prepare_kprobe(struct kprobe *p)
116{
117	union mips_instruction insn;
118	union mips_instruction prev_insn;
119	int ret = 0;
120
121	prev_insn = p->addr[-1];
122	insn = p->addr[0];
123
124	if (insn_has_delayslot(insn) || insn_has_delayslot(prev_insn)) {
125		pr_notice("Kprobes for branch and jump instructions are not supported\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126		ret = -EINVAL;
127		goto out;
128	}
129
130	/* insn: must be on special executable page on mips. */
131	p->ainsn.insn = get_insn_slot();
132	if (!p->ainsn.insn) {
133		ret = -ENOMEM;
134		goto out;
135	}
136
137	/*
138	 * In the kprobe->ainsn.insn[] array we store the original
139	 * instruction at index zero and a break trap instruction at
140	 * index one.
 
 
 
 
 
 
 
 
141	 */
 
 
 
 
142
143	memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
144	p->ainsn.insn[1] = breakpoint2_insn;
145	p->opcode = *p->addr;
146
147out:
148	return ret;
149}
150
151void __kprobes arch_arm_kprobe(struct kprobe *p)
152{
153	*p->addr = breakpoint_insn;
154	flush_insn_slot(p);
155}
156
157void __kprobes arch_disarm_kprobe(struct kprobe *p)
158{
159	*p->addr = p->opcode;
160	flush_insn_slot(p);
161}
162
163void __kprobes arch_remove_kprobe(struct kprobe *p)
164{
165	free_insn_slot(p->ainsn.insn, 0);
 
 
 
166}
167
168static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
169{
170	kcb->prev_kprobe.kp = kprobe_running();
171	kcb->prev_kprobe.status = kcb->kprobe_status;
172	kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
173	kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
174	kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
175}
176
177static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
178{
179	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
180	kcb->kprobe_status = kcb->prev_kprobe.status;
181	kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
182	kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
183	kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
184}
185
186static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
187			       struct kprobe_ctlblk *kcb)
188{
189	__get_cpu_var(current_kprobe) = p;
190	kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
191	kcb->kprobe_saved_epc = regs->cp0_epc;
192}
193
194static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195{
 
 
196	regs->cp0_status &= ~ST0_IE;
197
198	/* single step inline if the instruction is a break */
199	if (p->opcode.word == breakpoint_insn.word ||
200	    p->opcode.word == breakpoint2_insn.word)
201		regs->cp0_epc = (unsigned long)p->addr;
202	else
203		regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204}
205
206static int __kprobes kprobe_handler(struct pt_regs *regs)
207{
208	struct kprobe *p;
209	int ret = 0;
210	kprobe_opcode_t *addr;
211	struct kprobe_ctlblk *kcb;
212
213	addr = (kprobe_opcode_t *) regs->cp0_epc;
214
215	/*
216	 * We don't want to be preempted for the entire
217	 * duration of kprobe processing
218	 */
219	preempt_disable();
220	kcb = get_kprobe_ctlblk();
221
222	/* Check we're not actually recursing */
223	if (kprobe_running()) {
224		p = get_kprobe(addr);
225		if (p) {
226			if (kcb->kprobe_status == KPROBE_HIT_SS &&
227			    p->ainsn.insn->word == breakpoint_insn.word) {
228				regs->cp0_status &= ~ST0_IE;
229				regs->cp0_status |= kcb->kprobe_saved_SR;
230				goto no_kprobe;
231			}
232			/*
233			 * We have reentered the kprobe_handler(), since
234			 * another probe was hit while within the handler.
235			 * We here save the original kprobes variables and
236			 * just single step on the instruction of the new probe
237			 * without calling any user handlers.
238			 */
239			save_previous_kprobe(kcb);
240			set_current_kprobe(p, regs, kcb);
241			kprobes_inc_nmissed_count(p);
242			prepare_singlestep(p, regs);
243			kcb->kprobe_status = KPROBE_REENTER;
 
 
 
 
 
244			return 1;
245		} else {
246			if (addr->word != breakpoint_insn.word) {
247				/*
248				 * The breakpoint instruction was removed by
249				 * another cpu right after we hit, no further
250				 * handling of this interrupt is appropriate
251				 */
252				ret = 1;
253				goto no_kprobe;
254			}
255			p = __get_cpu_var(current_kprobe);
256			if (p->break_handler && p->break_handler(p, regs))
257				goto ss_probe;
258		}
259		goto no_kprobe;
260	}
261
262	p = get_kprobe(addr);
263	if (!p) {
264		if (addr->word != breakpoint_insn.word) {
265			/*
266			 * The breakpoint instruction was removed right
267			 * after we hit it.  Another cpu has removed
268			 * either a probepoint or a debugger breakpoint
269			 * at this address.  In either case, no further
270			 * handling of this interrupt is appropriate.
271			 */
272			ret = 1;
273		}
274		/* Not one of ours: let kernel handle it */
275		goto no_kprobe;
276	}
277
278	set_current_kprobe(p, regs, kcb);
279	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
280
281	if (p->pre_handler && p->pre_handler(p, regs)) {
282		/* handler has already set things up, so skip ss setup */
 
 
283		return 1;
284	}
285
286ss_probe:
287	prepare_singlestep(p, regs);
288	kcb->kprobe_status = KPROBE_HIT_SS;
 
 
 
 
 
 
 
289	return 1;
290
291no_kprobe:
292	preempt_enable_no_resched();
293	return ret;
294
295}
296
297/*
298 * Called after single-stepping.  p->addr is the address of the
299 * instruction whose first byte has been replaced by the "break 0"
300 * instruction.  To avoid the SMP problems that can occur when we
301 * temporarily put back the original opcode to single-step, we
302 * single-stepped a copy of the instruction.  The address of this
303 * copy is p->ainsn.insn.
304 *
305 * This function prepares to return from the post-single-step
306 * breakpoint trap.
307 */
308static void __kprobes resume_execution(struct kprobe *p,
309				       struct pt_regs *regs,
310				       struct kprobe_ctlblk *kcb)
311{
312	unsigned long orig_epc = kcb->kprobe_saved_epc;
313	regs->cp0_epc = orig_epc + 4;
314}
315
316static inline int post_kprobe_handler(struct pt_regs *regs)
317{
318	struct kprobe *cur = kprobe_running();
319	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
320
321	if (!cur)
322		return 0;
323
324	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
325		kcb->kprobe_status = KPROBE_HIT_SSDONE;
326		cur->post_handler(cur, regs, 0);
327	}
328
329	resume_execution(cur, regs, kcb);
330
331	regs->cp0_status |= kcb->kprobe_saved_SR;
332
333	/* Restore back the original saved kprobes variables and continue. */
334	if (kcb->kprobe_status == KPROBE_REENTER) {
335		restore_previous_kprobe(kcb);
336		goto out;
337	}
338	reset_current_kprobe();
339out:
340	preempt_enable_no_resched();
341
342	return 1;
343}
344
345static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
346{
347	struct kprobe *cur = kprobe_running();
348	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
349
350	if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
351		return 1;
352
353	if (kcb->kprobe_status & KPROBE_HIT_SS) {
354		resume_execution(cur, regs, kcb);
355		regs->cp0_status |= kcb->kprobe_old_SR;
356
357		reset_current_kprobe();
358		preempt_enable_no_resched();
359	}
360	return 0;
361}
362
363/*
364 * Wrapper routine for handling exceptions.
365 */
366int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
367				       unsigned long val, void *data)
368{
369
370	struct die_args *args = (struct die_args *)data;
371	int ret = NOTIFY_DONE;
372
373	switch (val) {
374	case DIE_BREAK:
375		if (kprobe_handler(args->regs))
376			ret = NOTIFY_STOP;
377		break;
378	case DIE_SSTEPBP:
379		if (post_kprobe_handler(args->regs))
380			ret = NOTIFY_STOP;
381		break;
382
383	case DIE_PAGE_FAULT:
384		/* kprobe_running() needs smp_processor_id() */
385		preempt_disable();
386
387		if (kprobe_running()
388		    && kprobe_fault_handler(args->regs, args->trapnr))
389			ret = NOTIFY_STOP;
390		preempt_enable();
391		break;
392	default:
393		break;
394	}
395	return ret;
396}
397
398int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
399{
400	struct jprobe *jp = container_of(p, struct jprobe, kp);
401	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
402
403	kcb->jprobe_saved_regs = *regs;
404	kcb->jprobe_saved_sp = regs->regs[29];
405
406	memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
407	       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
408
409	regs->cp0_epc = (unsigned long)(jp->entry);
410
411	return 1;
412}
413
414/* Defined in the inline asm below. */
415void jprobe_return_end(void);
416
417void __kprobes jprobe_return(void)
418{
419	/* Assembler quirk necessitates this '0,code' business.  */
420	asm volatile(
421		"break 0,%0\n\t"
422		".globl jprobe_return_end\n"
423		"jprobe_return_end:\n"
424		: : "n" (BRK_KPROBE_BP) : "memory");
425}
426
427int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
428{
429	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
430
431	if (regs->cp0_epc >= (unsigned long)jprobe_return &&
432	    regs->cp0_epc <= (unsigned long)jprobe_return_end) {
433		*regs = kcb->jprobe_saved_regs;
434		memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
435		       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
436		preempt_enable_no_resched();
437
438		return 1;
439	}
440	return 0;
441}
442
443/*
444 * Function return probe trampoline:
445 *	- init_kprobes() establishes a probepoint here
446 *	- When the probed function returns, this probe causes the
447 *	  handlers to fire
448 */
449static void __used kretprobe_trampoline_holder(void)
450{
451	asm volatile(
452		".set push\n\t"
453		/* Keep the assembler from reordering and placing JR here. */
454		".set noreorder\n\t"
455		"nop\n\t"
456		".global kretprobe_trampoline\n"
457		"kretprobe_trampoline:\n\t"
458		"nop\n\t"
459		".set pop"
460		: : : "memory");
461}
462
463void kretprobe_trampoline(void);
464
465void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
466				      struct pt_regs *regs)
467{
468	ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
469
470	/* Replace the return addr with trampoline addr */
471	regs->regs[31] = (unsigned long)kretprobe_trampoline;
472}
473
474/*
475 * Called when the probe at kretprobe trampoline is hit
476 */
477static int __kprobes trampoline_probe_handler(struct kprobe *p,
478						struct pt_regs *regs)
479{
480	struct kretprobe_instance *ri = NULL;
481	struct hlist_head *head, empty_rp;
482	struct hlist_node *node, *tmp;
483	unsigned long flags, orig_ret_address = 0;
484	unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
485
486	INIT_HLIST_HEAD(&empty_rp);
487	kretprobe_hash_lock(current, &head, &flags);
488
489	/*
490	 * It is possible to have multiple instances associated with a given
491	 * task either because an multiple functions in the call path
492	 * have a return probe installed on them, and/or more than one return
493	 * return probe was registered for a target function.
494	 *
495	 * We can handle this because:
496	 *     - instances are always inserted at the head of the list
497	 *     - when multiple return probes are registered for the same
498	 *       function, the first instance's ret_addr will point to the
499	 *       real return address, and all the rest will point to
500	 *       kretprobe_trampoline
501	 */
502	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
503		if (ri->task != current)
504			/* another task is sharing our hash bucket */
505			continue;
506
507		if (ri->rp && ri->rp->handler)
508			ri->rp->handler(ri, regs);
509
510		orig_ret_address = (unsigned long)ri->ret_addr;
511		recycle_rp_inst(ri, &empty_rp);
512
513		if (orig_ret_address != trampoline_address)
514			/*
515			 * This is the real return address. Any other
516			 * instances associated with this task are for
517			 * other calls deeper on the call stack
518			 */
519			break;
520	}
521
522	kretprobe_assert(ri, orig_ret_address, trampoline_address);
523	instruction_pointer(regs) = orig_ret_address;
524
525	reset_current_kprobe();
526	kretprobe_hash_unlock(current, &flags);
527	preempt_enable_no_resched();
528
529	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
530		hlist_del(&ri->hlist);
531		kfree(ri);
532	}
533	/*
534	 * By returning a non-zero value, we are telling
535	 * kprobe_handler() that we don't want the post_handler
536	 * to run (and have re-enabled preemption)
537	 */
538	return 1;
539}
540
541int __kprobes arch_trampoline_kprobe(struct kprobe *p)
542{
543	if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
544		return 1;
545
546	return 0;
547}
548
549static struct kprobe trampoline_p = {
550	.addr = (kprobe_opcode_t *)kretprobe_trampoline,
551	.pre_handler = trampoline_probe_handler
552};
553
554int __init arch_init_kprobes(void)
555{
556	return register_kprobe(&trampoline_p);
557}