Linux Audio

Check our new training course

Loading...
v5.4
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2007 by Ralf Baechle
  7 * Copyright (C) 2009, 2012 Cavium, Inc.
  8 */
  9#include <linux/clocksource.h>
 10#include <linux/sched/clock.h>
 11#include <linux/export.h>
 12#include <linux/init.h>
 13#include <linux/smp.h>
 14
 15#include <asm/cpu-info.h>
 16#include <asm/cpu-type.h>
 17#include <asm/time.h>
 18
 19#include <asm/octeon/octeon.h>
 20#include <asm/octeon/cvmx-ipd-defs.h>
 21#include <asm/octeon/cvmx-mio-defs.h>
 22#include <asm/octeon/cvmx-rst-defs.h>
 23#include <asm/octeon/cvmx-fpa-defs.h>
 24
 25static u64 f;
 26static u64 rdiv;
 27static u64 sdiv;
 28static u64 octeon_udelay_factor;
 29static u64 octeon_ndelay_factor;
 30
 31void __init octeon_setup_delays(void)
 32{
 33	octeon_udelay_factor = octeon_get_clock_rate() / 1000000;
 34	/*
 35	 * For __ndelay we divide by 2^16, so the factor is multiplied
 36	 * by the same amount.
 37	 */
 38	octeon_ndelay_factor = (octeon_udelay_factor * 0x10000ull) / 1000ull;
 39
 40	preset_lpj = octeon_get_clock_rate() / HZ;
 41
 42	if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
 43		union cvmx_mio_rst_boot rst_boot;
 44
 45		rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
 46		rdiv = rst_boot.s.c_mul;	/* CPU clock */
 47		sdiv = rst_boot.s.pnr_mul;	/* I/O clock */
 48		f = (0x8000000000000000ull / sdiv) * 2;
 49	} else if (current_cpu_type() == CPU_CAVIUM_OCTEON3) {
 50		union cvmx_rst_boot rst_boot;
 51
 52		rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
 53		rdiv = rst_boot.s.c_mul;	/* CPU clock */
 54		sdiv = rst_boot.s.pnr_mul;	/* I/O clock */
 55		f = (0x8000000000000000ull / sdiv) * 2;
 56	}
 57
 58}
 59
 60/*
 61 * Set the current core's cvmcount counter to the value of the
 62 * IPD_CLK_COUNT.  We do this on all cores as they are brought
 63 * on-line.  This allows for a read from a local cpu register to
 64 * access a synchronized counter.
 65 *
 66 * On CPU_CAVIUM_OCTEON2 the IPD_CLK_COUNT is scaled by rdiv/sdiv.
 67 */
 68void octeon_init_cvmcount(void)
 69{
 70	u64 clk_reg;
 71	unsigned long flags;
 72	unsigned loops = 2;
 
 
 
 
 
 
 
 
 
 
 73
 74	clk_reg = octeon_has_feature(OCTEON_FEATURE_FPA3) ?
 75		CVMX_FPA_CLK_COUNT : CVMX_IPD_CLK_COUNT;
 76
 77	/* Clobber loops so GCC will not unroll the following while loop. */
 78	asm("" : "+r" (loops));
 79
 80	local_irq_save(flags);
 81	/*
 82	 * Loop several times so we are executing from the cache,
 83	 * which should give more deterministic timing.
 84	 */
 85	while (loops--) {
 86		u64 clk_count = cvmx_read_csr(clk_reg);
 87		if (rdiv != 0) {
 88			clk_count *= rdiv;
 89			if (f != 0) {
 90				asm("dmultu\t%[cnt],%[f]\n\t"
 91				    "mfhi\t%[cnt]"
 92				    : [cnt] "+r" (clk_count)
 93				    : [f] "r" (f)
 94				    : "hi", "lo");
 95			}
 96		}
 97		write_c0_cvmcount(clk_count);
 98	}
 99	local_irq_restore(flags);
100}
101
102static u64 octeon_cvmcount_read(struct clocksource *cs)
103{
104	return read_c0_cvmcount();
105}
106
107static struct clocksource clocksource_mips = {
108	.name		= "OCTEON_CVMCOUNT",
109	.read		= octeon_cvmcount_read,
110	.mask		= CLOCKSOURCE_MASK(64),
111	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
112};
113
114unsigned long long notrace sched_clock(void)
115{
116	/* 64-bit arithmatic can overflow, so use 128-bit.  */
117	u64 t1, t2, t3;
118	unsigned long long rv;
119	u64 mult = clocksource_mips.mult;
120	u64 shift = clocksource_mips.shift;
121	u64 cnt = read_c0_cvmcount();
122
123	asm (
124		"dmultu\t%[cnt],%[mult]\n\t"
125		"nor\t%[t1],$0,%[shift]\n\t"
126		"mfhi\t%[t2]\n\t"
127		"mflo\t%[t3]\n\t"
128		"dsll\t%[t2],%[t2],1\n\t"
129		"dsrlv\t%[rv],%[t3],%[shift]\n\t"
130		"dsllv\t%[t1],%[t2],%[t1]\n\t"
131		"or\t%[rv],%[t1],%[rv]\n\t"
132		: [rv] "=&r" (rv), [t1] "=&r" (t1), [t2] "=&r" (t2), [t3] "=&r" (t3)
133		: [cnt] "r" (cnt), [mult] "r" (mult), [shift] "r" (shift)
134		: "hi", "lo");
135	return rv;
136}
137
138void __init plat_time_init(void)
139{
140	clocksource_mips.rating = 300;
141	clocksource_register_hz(&clocksource_mips, octeon_get_clock_rate());
142}
143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144void __udelay(unsigned long us)
145{
146	u64 cur, end, inc;
147
148	cur = read_c0_cvmcount();
149
150	inc = us * octeon_udelay_factor;
151	end = cur + inc;
152
153	while (end > cur)
154		cur = read_c0_cvmcount();
155}
156EXPORT_SYMBOL(__udelay);
157
158void __ndelay(unsigned long ns)
159{
160	u64 cur, end, inc;
161
162	cur = read_c0_cvmcount();
163
164	inc = ((ns * octeon_ndelay_factor) >> 16);
165	end = cur + inc;
166
167	while (end > cur)
168		cur = read_c0_cvmcount();
169}
170EXPORT_SYMBOL(__ndelay);
171
172void __delay(unsigned long loops)
173{
174	u64 cur, end;
175
176	cur = read_c0_cvmcount();
177	end = cur + loops;
178
179	while (end > cur)
180		cur = read_c0_cvmcount();
181}
182EXPORT_SYMBOL(__delay);
183
184
185/**
186 * octeon_io_clk_delay - wait for a given number of io clock cycles to pass.
187 *
188 * We scale the wait by the clock ratio, and then wait for the
189 * corresponding number of core clocks.
190 *
191 * @count: The number of clocks to wait.
192 */
193void octeon_io_clk_delay(unsigned long count)
194{
195	u64 cur, end;
196
197	cur = read_c0_cvmcount();
198	if (rdiv != 0) {
199		end = count * rdiv;
200		if (f != 0) {
201			asm("dmultu\t%[cnt],%[f]\n\t"
202				"mfhi\t%[cnt]"
203				: [cnt] "+r" (end)
204				: [f] "r" (f)
205				: "hi", "lo");
206		}
207		end = cur + end;
208	} else {
209		end = cur + count;
210	}
211	while (end > cur)
212		cur = read_c0_cvmcount();
213}
214EXPORT_SYMBOL(octeon_io_clk_delay);
v3.1
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2007 by Ralf Baechle
  7 * Copyright (C) 2009, 2010 Cavium Networks, Inc.
  8 */
  9#include <linux/clocksource.h>
 
 
 10#include <linux/init.h>
 11#include <linux/smp.h>
 12
 13#include <asm/cpu-info.h>
 
 14#include <asm/time.h>
 15
 16#include <asm/octeon/octeon.h>
 17#include <asm/octeon/cvmx-ipd-defs.h>
 18#include <asm/octeon/cvmx-mio-defs.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 19
 20/*
 21 * Set the current core's cvmcount counter to the value of the
 22 * IPD_CLK_COUNT.  We do this on all cores as they are brought
 23 * on-line.  This allows for a read from a local cpu register to
 24 * access a synchronized counter.
 25 *
 26 * On CPU_CAVIUM_OCTEON2 the IPD_CLK_COUNT is scaled by rdiv/sdiv.
 27 */
 28void octeon_init_cvmcount(void)
 29{
 
 30	unsigned long flags;
 31	unsigned loops = 2;
 32	u64 f = 0;
 33	u64 rdiv = 0;
 34	u64 sdiv = 0;
 35	if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
 36		union cvmx_mio_rst_boot rst_boot;
 37		rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
 38		rdiv = rst_boot.s.c_mul;	/* CPU clock */
 39		sdiv = rst_boot.s.pnr_mul;	/* I/O clock */
 40		f = (0x8000000000000000ull / sdiv) * 2;
 41	}
 42
 
 
 43
 44	/* Clobber loops so GCC will not unroll the following while loop. */
 45	asm("" : "+r" (loops));
 46
 47	local_irq_save(flags);
 48	/*
 49	 * Loop several times so we are executing from the cache,
 50	 * which should give more deterministic timing.
 51	 */
 52	while (loops--) {
 53		u64 ipd_clk_count = cvmx_read_csr(CVMX_IPD_CLK_COUNT);
 54		if (rdiv != 0) {
 55			ipd_clk_count *= rdiv;
 56			if (f != 0) {
 57				asm("dmultu\t%[cnt],%[f]\n\t"
 58				    "mfhi\t%[cnt]"
 59				    : [cnt] "+r" (ipd_clk_count),
 60				      [f] "=r" (f)
 61				    : : "hi", "lo");
 62			}
 63		}
 64		write_c0_cvmcount(ipd_clk_count);
 65	}
 66	local_irq_restore(flags);
 67}
 68
 69static cycle_t octeon_cvmcount_read(struct clocksource *cs)
 70{
 71	return read_c0_cvmcount();
 72}
 73
 74static struct clocksource clocksource_mips = {
 75	.name		= "OCTEON_CVMCOUNT",
 76	.read		= octeon_cvmcount_read,
 77	.mask		= CLOCKSOURCE_MASK(64),
 78	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 79};
 80
 81unsigned long long notrace sched_clock(void)
 82{
 83	/* 64-bit arithmatic can overflow, so use 128-bit.  */
 84	u64 t1, t2, t3;
 85	unsigned long long rv;
 86	u64 mult = clocksource_mips.mult;
 87	u64 shift = clocksource_mips.shift;
 88	u64 cnt = read_c0_cvmcount();
 89
 90	asm (
 91		"dmultu\t%[cnt],%[mult]\n\t"
 92		"nor\t%[t1],$0,%[shift]\n\t"
 93		"mfhi\t%[t2]\n\t"
 94		"mflo\t%[t3]\n\t"
 95		"dsll\t%[t2],%[t2],1\n\t"
 96		"dsrlv\t%[rv],%[t3],%[shift]\n\t"
 97		"dsllv\t%[t1],%[t2],%[t1]\n\t"
 98		"or\t%[rv],%[t1],%[rv]\n\t"
 99		: [rv] "=&r" (rv), [t1] "=&r" (t1), [t2] "=&r" (t2), [t3] "=&r" (t3)
100		: [cnt] "r" (cnt), [mult] "r" (mult), [shift] "r" (shift)
101		: "hi", "lo");
102	return rv;
103}
104
105void __init plat_time_init(void)
106{
107	clocksource_mips.rating = 300;
108	clocksource_register_hz(&clocksource_mips, octeon_get_clock_rate());
109}
110
111static u64 octeon_udelay_factor;
112static u64 octeon_ndelay_factor;
113
114void __init octeon_setup_delays(void)
115{
116	octeon_udelay_factor = octeon_get_clock_rate() / 1000000;
117	/*
118	 * For __ndelay we divide by 2^16, so the factor is multiplied
119	 * by the same amount.
120	 */
121	octeon_ndelay_factor = (octeon_udelay_factor * 0x10000ull) / 1000ull;
122
123	preset_lpj = octeon_get_clock_rate() / HZ;
124}
125
126void __udelay(unsigned long us)
127{
128	u64 cur, end, inc;
129
130	cur = read_c0_cvmcount();
131
132	inc = us * octeon_udelay_factor;
133	end = cur + inc;
134
135	while (end > cur)
136		cur = read_c0_cvmcount();
137}
138EXPORT_SYMBOL(__udelay);
139
140void __ndelay(unsigned long ns)
141{
142	u64 cur, end, inc;
143
144	cur = read_c0_cvmcount();
145
146	inc = ((ns * octeon_ndelay_factor) >> 16);
147	end = cur + inc;
148
149	while (end > cur)
150		cur = read_c0_cvmcount();
151}
152EXPORT_SYMBOL(__ndelay);
153
154void __delay(unsigned long loops)
155{
156	u64 cur, end;
157
158	cur = read_c0_cvmcount();
159	end = cur + loops;
160
161	while (end > cur)
162		cur = read_c0_cvmcount();
163}
164EXPORT_SYMBOL(__delay);