Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3**  IA64 System Bus Adapter (SBA) I/O MMU manager
   4**
   5**	(c) Copyright 2002-2005 Alex Williamson
   6**	(c) Copyright 2002-2003 Grant Grundler
   7**	(c) Copyright 2002-2005 Hewlett-Packard Company
   8**
   9**	Portions (c) 2000 Grant Grundler (from parisc I/O MMU code)
  10**	Portions (c) 1999 Dave S. Miller (from sparc64 I/O MMU code)
  11**
 
 
 
 
  12**
  13**
  14** This module initializes the IOC (I/O Controller) found on HP
  15** McKinley machines and their successors.
  16**
  17*/
  18
  19#include <linux/types.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/spinlock.h>
  23#include <linux/slab.h>
  24#include <linux/init.h>
  25#include <linux/mm.h>
  26#include <linux/string.h>
  27#include <linux/pci.h>
  28#include <linux/proc_fs.h>
  29#include <linux/seq_file.h>
  30#include <linux/acpi.h>
  31#include <linux/efi.h>
  32#include <linux/nodemask.h>
  33#include <linux/bitops.h>         /* hweight64() */
  34#include <linux/crash_dump.h>
  35#include <linux/iommu-helper.h>
  36#include <linux/dma-mapping.h>
  37#include <linux/prefetch.h>
  38#include <linux/swiotlb.h>
  39
  40#include <asm/delay.h>		/* ia64_get_itc() */
  41#include <asm/io.h>
  42#include <asm/page.h>		/* PAGE_OFFSET */
  43#include <asm/dma.h>
 
  44
  45#include <asm/acpi-ext.h>
  46
 
 
  47#define PFX "IOC: "
  48
  49/*
  50** Enabling timing search of the pdir resource map.  Output in /proc.
  51** Disabled by default to optimize performance.
  52*/
  53#undef PDIR_SEARCH_TIMING
  54
  55/*
  56** This option allows cards capable of 64bit DMA to bypass the IOMMU.  If
  57** not defined, all DMA will be 32bit and go through the TLB.
  58** There's potentially a conflict in the bio merge code with us
  59** advertising an iommu, but then bypassing it.  Since I/O MMU bypassing
  60** appears to give more performance than bio-level virtual merging, we'll
  61** do the former for now.  NOTE: BYPASS_SG also needs to be undef'd to
  62** completely restrict DMA to the IOMMU.
  63*/
  64#define ALLOW_IOV_BYPASS
  65
  66/*
  67** This option specifically allows/disallows bypassing scatterlists with
  68** multiple entries.  Coalescing these entries can allow better DMA streaming
  69** and in some cases shows better performance than entirely bypassing the
  70** IOMMU.  Performance increase on the order of 1-2% sequential output/input
  71** using bonnie++ on a RAID0 MD device (sym2 & mpt).
  72*/
  73#undef ALLOW_IOV_BYPASS_SG
  74
  75/*
  76** If a device prefetches beyond the end of a valid pdir entry, it will cause
  77** a hard failure, ie. MCA.  Version 3.0 and later of the zx1 LBA should
  78** disconnect on 4k boundaries and prevent such issues.  If the device is
  79** particularly aggressive, this option will keep the entire pdir valid such
  80** that prefetching will hit a valid address.  This could severely impact
  81** error containment, and is therefore off by default.  The page that is
  82** used for spill-over is poisoned, so that should help debugging somewhat.
  83*/
  84#undef FULL_VALID_PDIR
  85
  86#define ENABLE_MARK_CLEAN
  87
  88/*
  89** The number of debug flags is a clue - this code is fragile.  NOTE: since
  90** tightening the use of res_lock the resource bitmap and actual pdir are no
  91** longer guaranteed to stay in sync.  The sanity checking code isn't going to
  92** like that.
  93*/
  94#undef DEBUG_SBA_INIT
  95#undef DEBUG_SBA_RUN
  96#undef DEBUG_SBA_RUN_SG
  97#undef DEBUG_SBA_RESOURCE
  98#undef ASSERT_PDIR_SANITY
  99#undef DEBUG_LARGE_SG_ENTRIES
 100#undef DEBUG_BYPASS
 101
 102#if defined(FULL_VALID_PDIR) && defined(ASSERT_PDIR_SANITY)
 103#error FULL_VALID_PDIR and ASSERT_PDIR_SANITY are mutually exclusive
 104#endif
 105
 106#define SBA_INLINE	__inline__
 107/* #define SBA_INLINE */
 108
 109#ifdef DEBUG_SBA_INIT
 110#define DBG_INIT(x...)	printk(x)
 111#else
 112#define DBG_INIT(x...)
 113#endif
 114
 115#ifdef DEBUG_SBA_RUN
 116#define DBG_RUN(x...)	printk(x)
 117#else
 118#define DBG_RUN(x...)
 119#endif
 120
 121#ifdef DEBUG_SBA_RUN_SG
 122#define DBG_RUN_SG(x...)	printk(x)
 123#else
 124#define DBG_RUN_SG(x...)
 125#endif
 126
 127
 128#ifdef DEBUG_SBA_RESOURCE
 129#define DBG_RES(x...)	printk(x)
 130#else
 131#define DBG_RES(x...)
 132#endif
 133
 134#ifdef DEBUG_BYPASS
 135#define DBG_BYPASS(x...)	printk(x)
 136#else
 137#define DBG_BYPASS(x...)
 138#endif
 139
 140#ifdef ASSERT_PDIR_SANITY
 141#define ASSERT(expr) \
 142        if(!(expr)) { \
 143                printk( "\n" __FILE__ ":%d: Assertion " #expr " failed!\n",__LINE__); \
 144                panic(#expr); \
 145        }
 146#else
 147#define ASSERT(expr)
 148#endif
 149
 150/*
 151** The number of pdir entries to "free" before issuing
 152** a read to PCOM register to flush out PCOM writes.
 153** Interacts with allocation granularity (ie 4 or 8 entries
 154** allocated and free'd/purged at a time might make this
 155** less interesting).
 156*/
 157#define DELAYED_RESOURCE_CNT	64
 158
 159#define PCI_DEVICE_ID_HP_SX2000_IOC	0x12ec
 160
 161#define ZX1_IOC_ID	((PCI_DEVICE_ID_HP_ZX1_IOC << 16) | PCI_VENDOR_ID_HP)
 162#define ZX2_IOC_ID	((PCI_DEVICE_ID_HP_ZX2_IOC << 16) | PCI_VENDOR_ID_HP)
 163#define REO_IOC_ID	((PCI_DEVICE_ID_HP_REO_IOC << 16) | PCI_VENDOR_ID_HP)
 164#define SX1000_IOC_ID	((PCI_DEVICE_ID_HP_SX1000_IOC << 16) | PCI_VENDOR_ID_HP)
 165#define SX2000_IOC_ID	((PCI_DEVICE_ID_HP_SX2000_IOC << 16) | PCI_VENDOR_ID_HP)
 166
 167#define ZX1_IOC_OFFSET	0x1000	/* ACPI reports SBA, we want IOC */
 168
 169#define IOC_FUNC_ID	0x000
 170#define IOC_FCLASS	0x008	/* function class, bist, header, rev... */
 171#define IOC_IBASE	0x300	/* IO TLB */
 172#define IOC_IMASK	0x308
 173#define IOC_PCOM	0x310
 174#define IOC_TCNFG	0x318
 175#define IOC_PDIR_BASE	0x320
 176
 177#define IOC_ROPE0_CFG	0x500
 178#define   IOC_ROPE_AO	  0x10	/* Allow "Relaxed Ordering" */
 179
 180
 181/* AGP GART driver looks for this */
 182#define ZX1_SBA_IOMMU_COOKIE	0x0000badbadc0ffeeUL
 183
 184/*
 185** The zx1 IOC supports 4/8/16/64KB page sizes (see TCNFG register)
 186**
 187** Some IOCs (sx1000) can run at the above pages sizes, but are
 188** really only supported using the IOC at a 4k page size.
 189**
 190** iovp_size could only be greater than PAGE_SIZE if we are
 191** confident the drivers really only touch the next physical
 192** page iff that driver instance owns it.
 193*/
 194static unsigned long iovp_size;
 195static unsigned long iovp_shift;
 196static unsigned long iovp_mask;
 197
 198struct ioc {
 199	void __iomem	*ioc_hpa;	/* I/O MMU base address */
 200	char		*res_map;	/* resource map, bit == pdir entry */
 201	u64		*pdir_base;	/* physical base address */
 202	unsigned long	ibase;		/* pdir IOV Space base */
 203	unsigned long	imask;		/* pdir IOV Space mask */
 204
 205	unsigned long	*res_hint;	/* next avail IOVP - circular search */
 206	unsigned long	dma_mask;
 207	spinlock_t	res_lock;	/* protects the resource bitmap, but must be held when */
 208					/* clearing pdir to prevent races with allocations. */
 209	unsigned int	res_bitshift;	/* from the RIGHT! */
 210	unsigned int	res_size;	/* size of resource map in bytes */
 211#ifdef CONFIG_NUMA
 212	unsigned int	node;		/* node where this IOC lives */
 213#endif
 214#if DELAYED_RESOURCE_CNT > 0
 215	spinlock_t	saved_lock;	/* may want to try to get this on a separate cacheline */
 216					/* than res_lock for bigger systems. */
 217	int		saved_cnt;
 218	struct sba_dma_pair {
 219		dma_addr_t	iova;
 220		size_t		size;
 221	} saved[DELAYED_RESOURCE_CNT];
 222#endif
 223
 224#ifdef PDIR_SEARCH_TIMING
 225#define SBA_SEARCH_SAMPLE	0x100
 226	unsigned long avg_search[SBA_SEARCH_SAMPLE];
 227	unsigned long avg_idx;	/* current index into avg_search */
 228#endif
 229
 230	/* Stuff we don't need in performance path */
 231	struct ioc	*next;		/* list of IOC's in system */
 232	acpi_handle	handle;		/* for multiple IOC's */
 233	const char 	*name;
 234	unsigned int	func_id;
 235	unsigned int	rev;		/* HW revision of chip */
 236	u32		iov_size;
 237	unsigned int	pdir_size;	/* in bytes, determined by IOV Space size */
 238	struct pci_dev	*sac_only_dev;
 239};
 240
 241static struct ioc *ioc_list, *ioc_found;
 242static int reserve_sba_gart = 1;
 243
 244static SBA_INLINE void sba_mark_invalid(struct ioc *, dma_addr_t, size_t);
 245static SBA_INLINE void sba_free_range(struct ioc *, dma_addr_t, size_t);
 246
 247#define sba_sg_address(sg)	sg_virt((sg))
 248
 249#ifdef FULL_VALID_PDIR
 250static u64 prefetch_spill_page;
 251#endif
 252
 253#define GET_IOC(dev)	((dev_is_pci(dev))						\
 
 254			 ? ((struct ioc *) PCI_CONTROLLER(to_pci_dev(dev))->iommu) : NULL)
 
 
 
 255
 256/*
 257** DMA_CHUNK_SIZE is used by the SCSI mid-layer to break up
 258** (or rather not merge) DMAs into manageable chunks.
 259** On parisc, this is more of the software/tuning constraint
 260** rather than the HW. I/O MMU allocation algorithms can be
 261** faster with smaller sizes (to some degree).
 262*/
 263#define DMA_CHUNK_SIZE  (BITS_PER_LONG*iovp_size)
 264
 265#define ROUNDUP(x,y) ((x + ((y)-1)) & ~((y)-1))
 266
 267/************************************
 268** SBA register read and write support
 269**
 270** BE WARNED: register writes are posted.
 271**  (ie follow writes which must reach HW with a read)
 272**
 273*/
 274#define READ_REG(addr)       __raw_readq(addr)
 275#define WRITE_REG(val, addr) __raw_writeq(val, addr)
 276
 277#ifdef DEBUG_SBA_INIT
 278
 279/**
 280 * sba_dump_tlb - debugging only - print IOMMU operating parameters
 281 * @hpa: base address of the IOMMU
 282 *
 283 * Print the size/location of the IO MMU PDIR.
 284 */
 285static void
 286sba_dump_tlb(char *hpa)
 287{
 288	DBG_INIT("IO TLB at 0x%p\n", (void *)hpa);
 289	DBG_INIT("IOC_IBASE    : %016lx\n", READ_REG(hpa+IOC_IBASE));
 290	DBG_INIT("IOC_IMASK    : %016lx\n", READ_REG(hpa+IOC_IMASK));
 291	DBG_INIT("IOC_TCNFG    : %016lx\n", READ_REG(hpa+IOC_TCNFG));
 292	DBG_INIT("IOC_PDIR_BASE: %016lx\n", READ_REG(hpa+IOC_PDIR_BASE));
 293	DBG_INIT("\n");
 294}
 295#endif
 296
 297
 298#ifdef ASSERT_PDIR_SANITY
 299
 300/**
 301 * sba_dump_pdir_entry - debugging only - print one IOMMU PDIR entry
 302 * @ioc: IO MMU structure which owns the pdir we are interested in.
 303 * @msg: text to print ont the output line.
 304 * @pide: pdir index.
 305 *
 306 * Print one entry of the IO MMU PDIR in human readable form.
 307 */
 308static void
 309sba_dump_pdir_entry(struct ioc *ioc, char *msg, uint pide)
 310{
 311	/* start printing from lowest pde in rval */
 312	u64 *ptr = &ioc->pdir_base[pide  & ~(BITS_PER_LONG - 1)];
 313	unsigned long *rptr = (unsigned long *) &ioc->res_map[(pide >>3) & -sizeof(unsigned long)];
 314	uint rcnt;
 315
 316	printk(KERN_DEBUG "SBA: %s rp %p bit %d rval 0x%lx\n",
 317		 msg, rptr, pide & (BITS_PER_LONG - 1), *rptr);
 318
 319	rcnt = 0;
 320	while (rcnt < BITS_PER_LONG) {
 321		printk(KERN_DEBUG "%s %2d %p %016Lx\n",
 322		       (rcnt == (pide & (BITS_PER_LONG - 1)))
 323		       ? "    -->" : "       ",
 324		       rcnt, ptr, (unsigned long long) *ptr );
 325		rcnt++;
 326		ptr++;
 327	}
 328	printk(KERN_DEBUG "%s", msg);
 329}
 330
 331
 332/**
 333 * sba_check_pdir - debugging only - consistency checker
 334 * @ioc: IO MMU structure which owns the pdir we are interested in.
 335 * @msg: text to print ont the output line.
 336 *
 337 * Verify the resource map and pdir state is consistent
 338 */
 339static int
 340sba_check_pdir(struct ioc *ioc, char *msg)
 341{
 342	u64 *rptr_end = (u64 *) &(ioc->res_map[ioc->res_size]);
 343	u64 *rptr = (u64 *) ioc->res_map;	/* resource map ptr */
 344	u64 *pptr = ioc->pdir_base;	/* pdir ptr */
 345	uint pide = 0;
 346
 347	while (rptr < rptr_end) {
 348		u64 rval;
 349		int rcnt; /* number of bits we might check */
 350
 351		rval = *rptr;
 352		rcnt = 64;
 353
 354		while (rcnt) {
 355			/* Get last byte and highest bit from that */
 356			u32 pde = ((u32)((*pptr >> (63)) & 0x1));
 357			if ((rval & 0x1) ^ pde)
 358			{
 359				/*
 360				** BUMMER!  -- res_map != pdir --
 361				** Dump rval and matching pdir entries
 362				*/
 363				sba_dump_pdir_entry(ioc, msg, pide);
 364				return(1);
 365			}
 366			rcnt--;
 367			rval >>= 1;	/* try the next bit */
 368			pptr++;
 369			pide++;
 370		}
 371		rptr++;	/* look at next word of res_map */
 372	}
 373	/* It'd be nice if we always got here :^) */
 374	return 0;
 375}
 376
 377
 378/**
 379 * sba_dump_sg - debugging only - print Scatter-Gather list
 380 * @ioc: IO MMU structure which owns the pdir we are interested in.
 381 * @startsg: head of the SG list
 382 * @nents: number of entries in SG list
 383 *
 384 * print the SG list so we can verify it's correct by hand.
 385 */
 386static void
 387sba_dump_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
 388{
 389	while (nents-- > 0) {
 390		printk(KERN_DEBUG " %d : DMA %08lx/%05x CPU %p\n", nents,
 391		       startsg->dma_address, startsg->dma_length,
 392		       sba_sg_address(startsg));
 393		startsg = sg_next(startsg);
 394	}
 395}
 396
 397static void
 398sba_check_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
 399{
 400	struct scatterlist *the_sg = startsg;
 401	int the_nents = nents;
 402
 403	while (the_nents-- > 0) {
 404		if (sba_sg_address(the_sg) == 0x0UL)
 405			sba_dump_sg(NULL, startsg, nents);
 406		the_sg = sg_next(the_sg);
 407	}
 408}
 409
 410#endif /* ASSERT_PDIR_SANITY */
 411
 412
 413
 414
 415/**************************************************************
 416*
 417*   I/O Pdir Resource Management
 418*
 419*   Bits set in the resource map are in use.
 420*   Each bit can represent a number of pages.
 421*   LSbs represent lower addresses (IOVA's).
 422*
 423***************************************************************/
 424#define PAGES_PER_RANGE 1	/* could increase this to 4 or 8 if needed */
 425
 426/* Convert from IOVP to IOVA and vice versa. */
 427#define SBA_IOVA(ioc,iovp,offset) ((ioc->ibase) | (iovp) | (offset))
 428#define SBA_IOVP(ioc,iova) ((iova) & ~(ioc->ibase))
 429
 430#define PDIR_ENTRY_SIZE	sizeof(u64)
 431
 432#define PDIR_INDEX(iovp)   ((iovp)>>iovp_shift)
 433
 434#define RESMAP_MASK(n)    ~(~0UL << (n))
 435#define RESMAP_IDX_MASK   (sizeof(unsigned long) - 1)
 436
 437
 438/**
 439 * For most cases the normal get_order is sufficient, however it limits us
 440 * to PAGE_SIZE being the minimum mapping alignment and TC flush granularity.
 441 * It only incurs about 1 clock cycle to use this one with the static variable
 442 * and makes the code more intuitive.
 443 */
 444static SBA_INLINE int
 445get_iovp_order (unsigned long size)
 446{
 447	long double d = size - 1;
 448	long order;
 449
 450	order = ia64_getf_exp(d);
 451	order = order - iovp_shift - 0xffff + 1;
 452	if (order < 0)
 453		order = 0;
 454	return order;
 455}
 456
 457static unsigned long ptr_to_pide(struct ioc *ioc, unsigned long *res_ptr,
 458				 unsigned int bitshiftcnt)
 459{
 460	return (((unsigned long)res_ptr - (unsigned long)ioc->res_map) << 3)
 461		+ bitshiftcnt;
 462}
 463
 464/**
 465 * sba_search_bitmap - find free space in IO PDIR resource bitmap
 466 * @ioc: IO MMU structure which owns the pdir we are interested in.
 467 * @bits_wanted: number of entries we need.
 468 * @use_hint: use res_hint to indicate where to start looking
 469 *
 470 * Find consecutive free bits in resource bitmap.
 471 * Each bit represents one entry in the IO Pdir.
 472 * Cool perf optimization: search for log2(size) bits at a time.
 473 */
 474static SBA_INLINE unsigned long
 475sba_search_bitmap(struct ioc *ioc, struct device *dev,
 476		  unsigned long bits_wanted, int use_hint)
 477{
 478	unsigned long *res_ptr;
 479	unsigned long *res_end = (unsigned long *) &(ioc->res_map[ioc->res_size]);
 480	unsigned long flags, pide = ~0UL, tpide;
 481	unsigned long boundary_size;
 482	unsigned long shift;
 483	int ret;
 484
 485	ASSERT(((unsigned long) ioc->res_hint & (sizeof(unsigned long) - 1UL)) == 0);
 486	ASSERT(res_ptr < res_end);
 487
 488	boundary_size = (unsigned long long)dma_get_seg_boundary(dev) + 1;
 489	boundary_size = ALIGN(boundary_size, 1ULL << iovp_shift) >> iovp_shift;
 490
 491	BUG_ON(ioc->ibase & ~iovp_mask);
 492	shift = ioc->ibase >> iovp_shift;
 493
 494	spin_lock_irqsave(&ioc->res_lock, flags);
 495
 496	/* Allow caller to force a search through the entire resource space */
 497	if (likely(use_hint)) {
 498		res_ptr = ioc->res_hint;
 499	} else {
 500		res_ptr = (ulong *)ioc->res_map;
 501		ioc->res_bitshift = 0;
 502	}
 503
 504	/*
 505	 * N.B.  REO/Grande defect AR2305 can cause TLB fetch timeouts
 506	 * if a TLB entry is purged while in use.  sba_mark_invalid()
 507	 * purges IOTLB entries in power-of-two sizes, so we also
 508	 * allocate IOVA space in power-of-two sizes.
 509	 */
 510	bits_wanted = 1UL << get_iovp_order(bits_wanted << iovp_shift);
 511
 512	if (likely(bits_wanted == 1)) {
 513		unsigned int bitshiftcnt;
 514		for(; res_ptr < res_end ; res_ptr++) {
 515			if (likely(*res_ptr != ~0UL)) {
 516				bitshiftcnt = ffz(*res_ptr);
 517				*res_ptr |= (1UL << bitshiftcnt);
 518				pide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
 519				ioc->res_bitshift = bitshiftcnt + bits_wanted;
 520				goto found_it;
 521			}
 522		}
 523		goto not_found;
 524
 525	}
 526	
 527	if (likely(bits_wanted <= BITS_PER_LONG/2)) {
 528		/*
 529		** Search the resource bit map on well-aligned values.
 530		** "o" is the alignment.
 531		** We need the alignment to invalidate I/O TLB using
 532		** SBA HW features in the unmap path.
 533		*/
 534		unsigned long o = 1 << get_iovp_order(bits_wanted << iovp_shift);
 535		uint bitshiftcnt = ROUNDUP(ioc->res_bitshift, o);
 536		unsigned long mask, base_mask;
 537
 538		base_mask = RESMAP_MASK(bits_wanted);
 539		mask = base_mask << bitshiftcnt;
 540
 541		DBG_RES("%s() o %ld %p", __func__, o, res_ptr);
 542		for(; res_ptr < res_end ; res_ptr++)
 543		{ 
 544			DBG_RES("    %p %lx %lx\n", res_ptr, mask, *res_ptr);
 545			ASSERT(0 != mask);
 546			for (; mask ; mask <<= o, bitshiftcnt += o) {
 547				tpide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
 548				ret = iommu_is_span_boundary(tpide, bits_wanted,
 549							     shift,
 550							     boundary_size);
 551				if ((0 == ((*res_ptr) & mask)) && !ret) {
 552					*res_ptr |= mask;     /* mark resources busy! */
 553					pide = tpide;
 554					ioc->res_bitshift = bitshiftcnt + bits_wanted;
 555					goto found_it;
 556				}
 557			}
 558
 559			bitshiftcnt = 0;
 560			mask = base_mask;
 561
 562		}
 563
 564	} else {
 565		int qwords, bits, i;
 566		unsigned long *end;
 567
 568		qwords = bits_wanted >> 6; /* /64 */
 569		bits = bits_wanted - (qwords * BITS_PER_LONG);
 570
 571		end = res_end - qwords;
 572
 573		for (; res_ptr < end; res_ptr++) {
 574			tpide = ptr_to_pide(ioc, res_ptr, 0);
 575			ret = iommu_is_span_boundary(tpide, bits_wanted,
 576						     shift, boundary_size);
 577			if (ret)
 578				goto next_ptr;
 579			for (i = 0 ; i < qwords ; i++) {
 580				if (res_ptr[i] != 0)
 581					goto next_ptr;
 582			}
 583			if (bits && res_ptr[i] && (__ffs(res_ptr[i]) < bits))
 584				continue;
 585
 586			/* Found it, mark it */
 587			for (i = 0 ; i < qwords ; i++)
 588				res_ptr[i] = ~0UL;
 589			res_ptr[i] |= RESMAP_MASK(bits);
 590
 591			pide = tpide;
 592			res_ptr += qwords;
 593			ioc->res_bitshift = bits;
 594			goto found_it;
 595next_ptr:
 596			;
 597		}
 598	}
 599
 600not_found:
 601	prefetch(ioc->res_map);
 602	ioc->res_hint = (unsigned long *) ioc->res_map;
 603	ioc->res_bitshift = 0;
 604	spin_unlock_irqrestore(&ioc->res_lock, flags);
 605	return (pide);
 606
 607found_it:
 608	ioc->res_hint = res_ptr;
 609	spin_unlock_irqrestore(&ioc->res_lock, flags);
 610	return (pide);
 611}
 612
 613
 614/**
 615 * sba_alloc_range - find free bits and mark them in IO PDIR resource bitmap
 616 * @ioc: IO MMU structure which owns the pdir we are interested in.
 617 * @size: number of bytes to create a mapping for
 618 *
 619 * Given a size, find consecutive unmarked and then mark those bits in the
 620 * resource bit map.
 621 */
 622static int
 623sba_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
 624{
 625	unsigned int pages_needed = size >> iovp_shift;
 626#ifdef PDIR_SEARCH_TIMING
 627	unsigned long itc_start;
 628#endif
 629	unsigned long pide;
 630
 631	ASSERT(pages_needed);
 632	ASSERT(0 == (size & ~iovp_mask));
 633
 634#ifdef PDIR_SEARCH_TIMING
 635	itc_start = ia64_get_itc();
 636#endif
 637	/*
 638	** "seek and ye shall find"...praying never hurts either...
 639	*/
 640	pide = sba_search_bitmap(ioc, dev, pages_needed, 1);
 641	if (unlikely(pide >= (ioc->res_size << 3))) {
 642		pide = sba_search_bitmap(ioc, dev, pages_needed, 0);
 643		if (unlikely(pide >= (ioc->res_size << 3))) {
 644#if DELAYED_RESOURCE_CNT > 0
 645			unsigned long flags;
 646
 647			/*
 648			** With delayed resource freeing, we can give this one more shot.  We're
 649			** getting close to being in trouble here, so do what we can to make this
 650			** one count.
 651			*/
 652			spin_lock_irqsave(&ioc->saved_lock, flags);
 653			if (ioc->saved_cnt > 0) {
 654				struct sba_dma_pair *d;
 655				int cnt = ioc->saved_cnt;
 656
 657				d = &(ioc->saved[ioc->saved_cnt - 1]);
 658
 659				spin_lock(&ioc->res_lock);
 660				while (cnt--) {
 661					sba_mark_invalid(ioc, d->iova, d->size);
 662					sba_free_range(ioc, d->iova, d->size);
 663					d--;
 664				}
 665				ioc->saved_cnt = 0;
 666				READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
 667				spin_unlock(&ioc->res_lock);
 668			}
 669			spin_unlock_irqrestore(&ioc->saved_lock, flags);
 670
 671			pide = sba_search_bitmap(ioc, dev, pages_needed, 0);
 672			if (unlikely(pide >= (ioc->res_size << 3))) {
 673				printk(KERN_WARNING "%s: I/O MMU @ %p is"
 674				       "out of mapping resources, %u %u %lx\n",
 675				       __func__, ioc->ioc_hpa, ioc->res_size,
 676				       pages_needed, dma_get_seg_boundary(dev));
 677				return -1;
 678			}
 679#else
 680			printk(KERN_WARNING "%s: I/O MMU @ %p is"
 681			       "out of mapping resources, %u %u %lx\n",
 682			       __func__, ioc->ioc_hpa, ioc->res_size,
 683			       pages_needed, dma_get_seg_boundary(dev));
 684			return -1;
 685#endif
 686		}
 687	}
 688
 689#ifdef PDIR_SEARCH_TIMING
 690	ioc->avg_search[ioc->avg_idx++] = (ia64_get_itc() - itc_start) / pages_needed;
 691	ioc->avg_idx &= SBA_SEARCH_SAMPLE - 1;
 692#endif
 693
 694	prefetchw(&(ioc->pdir_base[pide]));
 695
 696#ifdef ASSERT_PDIR_SANITY
 697	/* verify the first enable bit is clear */
 698	if(0x00 != ((u8 *) ioc->pdir_base)[pide*PDIR_ENTRY_SIZE + 7]) {
 699		sba_dump_pdir_entry(ioc, "sba_search_bitmap() botched it?", pide);
 700	}
 701#endif
 702
 703	DBG_RES("%s(%x) %d -> %lx hint %x/%x\n",
 704		__func__, size, pages_needed, pide,
 705		(uint) ((unsigned long) ioc->res_hint - (unsigned long) ioc->res_map),
 706		ioc->res_bitshift );
 707
 708	return (pide);
 709}
 710
 711
 712/**
 713 * sba_free_range - unmark bits in IO PDIR resource bitmap
 714 * @ioc: IO MMU structure which owns the pdir we are interested in.
 715 * @iova: IO virtual address which was previously allocated.
 716 * @size: number of bytes to create a mapping for
 717 *
 718 * clear bits in the ioc's resource map
 719 */
 720static SBA_INLINE void
 721sba_free_range(struct ioc *ioc, dma_addr_t iova, size_t size)
 722{
 723	unsigned long iovp = SBA_IOVP(ioc, iova);
 724	unsigned int pide = PDIR_INDEX(iovp);
 725	unsigned int ridx = pide >> 3;	/* convert bit to byte address */
 726	unsigned long *res_ptr = (unsigned long *) &((ioc)->res_map[ridx & ~RESMAP_IDX_MASK]);
 727	int bits_not_wanted = size >> iovp_shift;
 728	unsigned long m;
 729
 730	/* Round up to power-of-two size: see AR2305 note above */
 731	bits_not_wanted = 1UL << get_iovp_order(bits_not_wanted << iovp_shift);
 732	for (; bits_not_wanted > 0 ; res_ptr++) {
 733		
 734		if (unlikely(bits_not_wanted > BITS_PER_LONG)) {
 735
 736			/* these mappings start 64bit aligned */
 737			*res_ptr = 0UL;
 738			bits_not_wanted -= BITS_PER_LONG;
 739			pide += BITS_PER_LONG;
 740
 741		} else {
 742
 743			/* 3-bits "bit" address plus 2 (or 3) bits for "byte" == bit in word */
 744			m = RESMAP_MASK(bits_not_wanted) << (pide & (BITS_PER_LONG - 1));
 745			bits_not_wanted = 0;
 746
 747			DBG_RES("%s( ,%x,%x) %x/%lx %x %p %lx\n", __func__, (uint) iova, size,
 748			        bits_not_wanted, m, pide, res_ptr, *res_ptr);
 749
 750			ASSERT(m != 0);
 751			ASSERT(bits_not_wanted);
 752			ASSERT((*res_ptr & m) == m); /* verify same bits are set */
 753			*res_ptr &= ~m;
 754		}
 755	}
 756}
 757
 758
 759/**************************************************************
 760*
 761*   "Dynamic DMA Mapping" support (aka "Coherent I/O")
 762*
 763***************************************************************/
 764
 765/**
 766 * sba_io_pdir_entry - fill in one IO PDIR entry
 767 * @pdir_ptr:  pointer to IO PDIR entry
 768 * @vba: Virtual CPU address of buffer to map
 769 *
 770 * SBA Mapping Routine
 771 *
 772 * Given a virtual address (vba, arg1) sba_io_pdir_entry()
 773 * loads the I/O PDIR entry pointed to by pdir_ptr (arg0).
 774 * Each IO Pdir entry consists of 8 bytes as shown below
 775 * (LSB == bit 0):
 776 *
 777 *  63                    40                                 11    7        0
 778 * +-+---------------------+----------------------------------+----+--------+
 779 * |V|        U            |            PPN[39:12]            | U  |   FF   |
 780 * +-+---------------------+----------------------------------+----+--------+
 781 *
 782 *  V  == Valid Bit
 783 *  U  == Unused
 784 * PPN == Physical Page Number
 785 *
 786 * The physical address fields are filled with the results of virt_to_phys()
 787 * on the vba.
 788 */
 789
 790#if 1
 791#define sba_io_pdir_entry(pdir_ptr, vba) *pdir_ptr = ((vba & ~0xE000000000000FFFULL)	\
 792						      | 0x8000000000000000ULL)
 793#else
 794void SBA_INLINE
 795sba_io_pdir_entry(u64 *pdir_ptr, unsigned long vba)
 796{
 797	*pdir_ptr = ((vba & ~0xE000000000000FFFULL) | 0x80000000000000FFULL);
 798}
 799#endif
 800
 801#ifdef ENABLE_MARK_CLEAN
 802/**
 803 * Since DMA is i-cache coherent, any (complete) pages that were written via
 804 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
 805 * flush them when they get mapped into an executable vm-area.
 806 */
 807static void
 808mark_clean (void *addr, size_t size)
 809{
 810	unsigned long pg_addr, end;
 811
 812	pg_addr = PAGE_ALIGN((unsigned long) addr);
 813	end = (unsigned long) addr + size;
 814	while (pg_addr + PAGE_SIZE <= end) {
 815		struct page *page = virt_to_page((void *)pg_addr);
 816		set_bit(PG_arch_1, &page->flags);
 817		pg_addr += PAGE_SIZE;
 818	}
 819}
 820#endif
 821
 822/**
 823 * sba_mark_invalid - invalidate one or more IO PDIR entries
 824 * @ioc: IO MMU structure which owns the pdir we are interested in.
 825 * @iova:  IO Virtual Address mapped earlier
 826 * @byte_cnt:  number of bytes this mapping covers.
 827 *
 828 * Marking the IO PDIR entry(ies) as Invalid and invalidate
 829 * corresponding IO TLB entry. The PCOM (Purge Command Register)
 830 * is to purge stale entries in the IO TLB when unmapping entries.
 831 *
 832 * The PCOM register supports purging of multiple pages, with a minium
 833 * of 1 page and a maximum of 2GB. Hardware requires the address be
 834 * aligned to the size of the range being purged. The size of the range
 835 * must be a power of 2. The "Cool perf optimization" in the
 836 * allocation routine helps keep that true.
 837 */
 838static SBA_INLINE void
 839sba_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
 840{
 841	u32 iovp = (u32) SBA_IOVP(ioc,iova);
 842
 843	int off = PDIR_INDEX(iovp);
 844
 845	/* Must be non-zero and rounded up */
 846	ASSERT(byte_cnt > 0);
 847	ASSERT(0 == (byte_cnt & ~iovp_mask));
 848
 849#ifdef ASSERT_PDIR_SANITY
 850	/* Assert first pdir entry is set */
 851	if (!(ioc->pdir_base[off] >> 60)) {
 852		sba_dump_pdir_entry(ioc,"sba_mark_invalid()", PDIR_INDEX(iovp));
 853	}
 854#endif
 855
 856	if (byte_cnt <= iovp_size)
 857	{
 858		ASSERT(off < ioc->pdir_size);
 859
 860		iovp |= iovp_shift;     /* set "size" field for PCOM */
 861
 862#ifndef FULL_VALID_PDIR
 863		/*
 864		** clear I/O PDIR entry "valid" bit
 865		** Do NOT clear the rest - save it for debugging.
 866		** We should only clear bits that have previously
 867		** been enabled.
 868		*/
 869		ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
 870#else
 871		/*
 872  		** If we want to maintain the PDIR as valid, put in
 873		** the spill page so devices prefetching won't
 874		** cause a hard fail.
 875		*/
 876		ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
 877#endif
 878	} else {
 879		u32 t = get_iovp_order(byte_cnt) + iovp_shift;
 880
 881		iovp |= t;
 882		ASSERT(t <= 31);   /* 2GB! Max value of "size" field */
 883
 884		do {
 885			/* verify this pdir entry is enabled */
 886			ASSERT(ioc->pdir_base[off]  >> 63);
 887#ifndef FULL_VALID_PDIR
 888			/* clear I/O Pdir entry "valid" bit first */
 889			ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
 890#else
 891			ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
 892#endif
 893			off++;
 894			byte_cnt -= iovp_size;
 895		} while (byte_cnt > 0);
 896	}
 897
 898	WRITE_REG(iovp | ioc->ibase, ioc->ioc_hpa+IOC_PCOM);
 899}
 900
 901/**
 902 * sba_map_page - map one buffer and return IOVA for DMA
 903 * @dev: instance of PCI owned by the driver that's asking.
 904 * @page: page to map
 905 * @poff: offset into page
 906 * @size: number of bytes to map
 907 * @dir: dma direction
 908 * @attrs: optional dma attributes
 909 *
 910 * See Documentation/DMA-API-HOWTO.txt
 911 */
 912static dma_addr_t sba_map_page(struct device *dev, struct page *page,
 913			       unsigned long poff, size_t size,
 914			       enum dma_data_direction dir,
 915			       unsigned long attrs)
 916{
 917	struct ioc *ioc;
 918	void *addr = page_address(page) + poff;
 919	dma_addr_t iovp;
 920	dma_addr_t offset;
 921	u64 *pdir_start;
 922	int pide;
 923#ifdef ASSERT_PDIR_SANITY
 924	unsigned long flags;
 925#endif
 926#ifdef ALLOW_IOV_BYPASS
 927	unsigned long pci_addr = virt_to_phys(addr);
 928#endif
 929
 930#ifdef ALLOW_IOV_BYPASS
 931	ASSERT(to_pci_dev(dev)->dma_mask);
 932	/*
 933 	** Check if the PCI device can DMA to ptr... if so, just return ptr
 934 	*/
 935	if (likely((pci_addr & ~to_pci_dev(dev)->dma_mask) == 0)) {
 936		/*
 937 		** Device is bit capable of DMA'ing to the buffer...
 938		** just return the PCI address of ptr
 939 		*/
 940		DBG_BYPASS("sba_map_page() bypass mask/addr: "
 941			   "0x%lx/0x%lx\n",
 942		           to_pci_dev(dev)->dma_mask, pci_addr);
 943		return pci_addr;
 944	}
 945#endif
 946	ioc = GET_IOC(dev);
 947	ASSERT(ioc);
 948
 949	prefetch(ioc->res_hint);
 950
 951	ASSERT(size > 0);
 952	ASSERT(size <= DMA_CHUNK_SIZE);
 953
 954	/* save offset bits */
 955	offset = ((dma_addr_t) (long) addr) & ~iovp_mask;
 956
 957	/* round up to nearest iovp_size */
 958	size = (size + offset + ~iovp_mask) & iovp_mask;
 959
 960#ifdef ASSERT_PDIR_SANITY
 961	spin_lock_irqsave(&ioc->res_lock, flags);
 962	if (sba_check_pdir(ioc,"Check before sba_map_page()"))
 963		panic("Sanity check failed");
 964	spin_unlock_irqrestore(&ioc->res_lock, flags);
 965#endif
 966
 967	pide = sba_alloc_range(ioc, dev, size);
 968	if (pide < 0)
 969		return DMA_MAPPING_ERROR;
 970
 971	iovp = (dma_addr_t) pide << iovp_shift;
 972
 973	DBG_RUN("%s() 0x%p -> 0x%lx\n", __func__, addr, (long) iovp | offset);
 974
 975	pdir_start = &(ioc->pdir_base[pide]);
 976
 977	while (size > 0) {
 978		ASSERT(((u8 *)pdir_start)[7] == 0); /* verify availability */
 979		sba_io_pdir_entry(pdir_start, (unsigned long) addr);
 980
 981		DBG_RUN("     pdir 0x%p %lx\n", pdir_start, *pdir_start);
 982
 983		addr += iovp_size;
 984		size -= iovp_size;
 985		pdir_start++;
 986	}
 987	/* force pdir update */
 988	wmb();
 989
 990	/* form complete address */
 991#ifdef ASSERT_PDIR_SANITY
 992	spin_lock_irqsave(&ioc->res_lock, flags);
 993	sba_check_pdir(ioc,"Check after sba_map_page()");
 994	spin_unlock_irqrestore(&ioc->res_lock, flags);
 995#endif
 996	return SBA_IOVA(ioc, iovp, offset);
 997}
 998
 
 
 
 
 
 
 
 
 999#ifdef ENABLE_MARK_CLEAN
1000static SBA_INLINE void
1001sba_mark_clean(struct ioc *ioc, dma_addr_t iova, size_t size)
1002{
1003	u32	iovp = (u32) SBA_IOVP(ioc,iova);
1004	int	off = PDIR_INDEX(iovp);
1005	void	*addr;
1006
1007	if (size <= iovp_size) {
1008		addr = phys_to_virt(ioc->pdir_base[off] &
1009		                    ~0xE000000000000FFFULL);
1010		mark_clean(addr, size);
1011	} else {
1012		do {
1013			addr = phys_to_virt(ioc->pdir_base[off] &
1014			                    ~0xE000000000000FFFULL);
1015			mark_clean(addr, min(size, iovp_size));
1016			off++;
1017			size -= iovp_size;
1018		} while (size > 0);
1019	}
1020}
1021#endif
1022
1023/**
1024 * sba_unmap_page - unmap one IOVA and free resources
1025 * @dev: instance of PCI owned by the driver that's asking.
1026 * @iova:  IOVA of driver buffer previously mapped.
1027 * @size:  number of bytes mapped in driver buffer.
1028 * @dir:  R/W or both.
1029 * @attrs: optional dma attributes
1030 *
1031 * See Documentation/DMA-API-HOWTO.txt
1032 */
1033static void sba_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
1034			   enum dma_data_direction dir, unsigned long attrs)
1035{
1036	struct ioc *ioc;
1037#if DELAYED_RESOURCE_CNT > 0
1038	struct sba_dma_pair *d;
1039#endif
1040	unsigned long flags;
1041	dma_addr_t offset;
1042
1043	ioc = GET_IOC(dev);
1044	ASSERT(ioc);
1045
1046#ifdef ALLOW_IOV_BYPASS
1047	if (likely((iova & ioc->imask) != ioc->ibase)) {
1048		/*
1049		** Address does not fall w/in IOVA, must be bypassing
1050		*/
1051		DBG_BYPASS("sba_unmap_page() bypass addr: 0x%lx\n",
1052			   iova);
1053
1054#ifdef ENABLE_MARK_CLEAN
1055		if (dir == DMA_FROM_DEVICE) {
1056			mark_clean(phys_to_virt(iova), size);
1057		}
1058#endif
1059		return;
1060	}
1061#endif
1062	offset = iova & ~iovp_mask;
1063
1064	DBG_RUN("%s() iovp 0x%lx/%x\n", __func__, (long) iova, size);
1065
1066	iova ^= offset;        /* clear offset bits */
1067	size += offset;
1068	size = ROUNDUP(size, iovp_size);
1069
1070#ifdef ENABLE_MARK_CLEAN
1071	if (dir == DMA_FROM_DEVICE)
1072		sba_mark_clean(ioc, iova, size);
1073#endif
1074
1075#if DELAYED_RESOURCE_CNT > 0
1076	spin_lock_irqsave(&ioc->saved_lock, flags);
1077	d = &(ioc->saved[ioc->saved_cnt]);
1078	d->iova = iova;
1079	d->size = size;
1080	if (unlikely(++(ioc->saved_cnt) >= DELAYED_RESOURCE_CNT)) {
1081		int cnt = ioc->saved_cnt;
1082		spin_lock(&ioc->res_lock);
1083		while (cnt--) {
1084			sba_mark_invalid(ioc, d->iova, d->size);
1085			sba_free_range(ioc, d->iova, d->size);
1086			d--;
1087		}
1088		ioc->saved_cnt = 0;
1089		READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
1090		spin_unlock(&ioc->res_lock);
1091	}
1092	spin_unlock_irqrestore(&ioc->saved_lock, flags);
1093#else /* DELAYED_RESOURCE_CNT == 0 */
1094	spin_lock_irqsave(&ioc->res_lock, flags);
1095	sba_mark_invalid(ioc, iova, size);
1096	sba_free_range(ioc, iova, size);
1097	READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
1098	spin_unlock_irqrestore(&ioc->res_lock, flags);
1099#endif /* DELAYED_RESOURCE_CNT == 0 */
1100}
1101
 
 
 
 
 
 
1102/**
1103 * sba_alloc_coherent - allocate/map shared mem for DMA
1104 * @dev: instance of PCI owned by the driver that's asking.
1105 * @size:  number of bytes mapped in driver buffer.
1106 * @dma_handle:  IOVA of new buffer.
1107 *
1108 * See Documentation/DMA-API-HOWTO.txt
1109 */
1110static void *
1111sba_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
1112		   gfp_t flags, unsigned long attrs)
1113{
1114	struct page *page;
1115	struct ioc *ioc;
1116	int node = -1;
1117	void *addr;
1118
1119	ioc = GET_IOC(dev);
1120	ASSERT(ioc);
 
1121#ifdef CONFIG_NUMA
1122	node = ioc->node;
1123#endif
 
 
 
1124
1125	page = alloc_pages_node(node, flags, get_order(size));
1126	if (unlikely(!page))
 
 
 
 
 
 
 
1127		return NULL;
1128
1129	addr = page_address(page);
1130	memset(addr, 0, size);
1131	*dma_handle = page_to_phys(page);
1132
1133#ifdef ALLOW_IOV_BYPASS
1134	ASSERT(dev->coherent_dma_mask);
1135	/*
1136 	** Check if the PCI device can DMA to ptr... if so, just return ptr
1137 	*/
1138	if (likely((*dma_handle & ~dev->coherent_dma_mask) == 0)) {
1139		DBG_BYPASS("sba_alloc_coherent() bypass mask/addr: 0x%lx/0x%lx\n",
1140		           dev->coherent_dma_mask, *dma_handle);
1141
1142		return addr;
1143	}
1144#endif
1145
1146	/*
1147	 * If device can't bypass or bypass is disabled, pass the 32bit fake
1148	 * device to map single to get an iova mapping.
1149	 */
1150	*dma_handle = sba_map_page(&ioc->sac_only_dev->dev, page, 0, size,
1151			DMA_BIDIRECTIONAL, 0);
1152	if (dma_mapping_error(dev, *dma_handle))
1153		return NULL;
1154	return addr;
1155}
1156
1157
1158/**
1159 * sba_free_coherent - free/unmap shared mem for DMA
1160 * @dev: instance of PCI owned by the driver that's asking.
1161 * @size:  number of bytes mapped in driver buffer.
1162 * @vaddr:  virtual address IOVA of "consistent" buffer.
1163 * @dma_handler:  IO virtual address of "consistent" buffer.
1164 *
1165 * See Documentation/DMA-API-HOWTO.txt
1166 */
1167static void sba_free_coherent(struct device *dev, size_t size, void *vaddr,
1168			      dma_addr_t dma_handle, unsigned long attrs)
1169{
1170	sba_unmap_page(dev, dma_handle, size, 0, 0);
1171	free_pages((unsigned long) vaddr, get_order(size));
1172}
1173
1174
1175/*
1176** Since 0 is a valid pdir_base index value, can't use that
1177** to determine if a value is valid or not. Use a flag to indicate
1178** the SG list entry contains a valid pdir index.
1179*/
1180#define PIDE_FLAG 0x1UL
1181
1182#ifdef DEBUG_LARGE_SG_ENTRIES
1183int dump_run_sg = 0;
1184#endif
1185
1186
1187/**
1188 * sba_fill_pdir - write allocated SG entries into IO PDIR
1189 * @ioc: IO MMU structure which owns the pdir we are interested in.
1190 * @startsg:  list of IOVA/size pairs
1191 * @nents: number of entries in startsg list
1192 *
1193 * Take preprocessed SG list and write corresponding entries
1194 * in the IO PDIR.
1195 */
1196
1197static SBA_INLINE int
1198sba_fill_pdir(
1199	struct ioc *ioc,
1200	struct scatterlist *startsg,
1201	int nents)
1202{
1203	struct scatterlist *dma_sg = startsg;	/* pointer to current DMA */
1204	int n_mappings = 0;
1205	u64 *pdirp = NULL;
1206	unsigned long dma_offset = 0;
1207
1208	while (nents-- > 0) {
1209		int     cnt = startsg->dma_length;
1210		startsg->dma_length = 0;
1211
1212#ifdef DEBUG_LARGE_SG_ENTRIES
1213		if (dump_run_sg)
1214			printk(" %2d : %08lx/%05x %p\n",
1215				nents, startsg->dma_address, cnt,
1216				sba_sg_address(startsg));
1217#else
1218		DBG_RUN_SG(" %d : %08lx/%05x %p\n",
1219				nents, startsg->dma_address, cnt,
1220				sba_sg_address(startsg));
1221#endif
1222		/*
1223		** Look for the start of a new DMA stream
1224		*/
1225		if (startsg->dma_address & PIDE_FLAG) {
1226			u32 pide = startsg->dma_address & ~PIDE_FLAG;
1227			dma_offset = (unsigned long) pide & ~iovp_mask;
1228			startsg->dma_address = 0;
1229			if (n_mappings)
1230				dma_sg = sg_next(dma_sg);
1231			dma_sg->dma_address = pide | ioc->ibase;
1232			pdirp = &(ioc->pdir_base[pide >> iovp_shift]);
1233			n_mappings++;
1234		}
1235
1236		/*
1237		** Look for a VCONTIG chunk
1238		*/
1239		if (cnt) {
1240			unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
1241			ASSERT(pdirp);
1242
1243			/* Since multiple Vcontig blocks could make up
1244			** one DMA stream, *add* cnt to dma_len.
1245			*/
1246			dma_sg->dma_length += cnt;
1247			cnt += dma_offset;
1248			dma_offset=0;	/* only want offset on first chunk */
1249			cnt = ROUNDUP(cnt, iovp_size);
1250			do {
1251				sba_io_pdir_entry(pdirp, vaddr);
1252				vaddr += iovp_size;
1253				cnt -= iovp_size;
1254				pdirp++;
1255			} while (cnt > 0);
1256		}
1257		startsg = sg_next(startsg);
1258	}
1259	/* force pdir update */
1260	wmb();
1261
1262#ifdef DEBUG_LARGE_SG_ENTRIES
1263	dump_run_sg = 0;
1264#endif
1265	return(n_mappings);
1266}
1267
1268
1269/*
1270** Two address ranges are DMA contiguous *iff* "end of prev" and
1271** "start of next" are both on an IOV page boundary.
1272**
1273** (shift left is a quick trick to mask off upper bits)
1274*/
1275#define DMA_CONTIG(__X, __Y) \
1276	(((((unsigned long) __X) | ((unsigned long) __Y)) << (BITS_PER_LONG - iovp_shift)) == 0UL)
1277
1278
1279/**
1280 * sba_coalesce_chunks - preprocess the SG list
1281 * @ioc: IO MMU structure which owns the pdir we are interested in.
1282 * @startsg:  list of IOVA/size pairs
1283 * @nents: number of entries in startsg list
1284 *
1285 * First pass is to walk the SG list and determine where the breaks are
1286 * in the DMA stream. Allocates PDIR entries but does not fill them.
1287 * Returns the number of DMA chunks.
1288 *
1289 * Doing the fill separate from the coalescing/allocation keeps the
1290 * code simpler. Future enhancement could make one pass through
1291 * the sglist do both.
1292 */
1293static SBA_INLINE int
1294sba_coalesce_chunks(struct ioc *ioc, struct device *dev,
1295	struct scatterlist *startsg,
1296	int nents)
1297{
1298	struct scatterlist *vcontig_sg;    /* VCONTIG chunk head */
1299	unsigned long vcontig_len;         /* len of VCONTIG chunk */
1300	unsigned long vcontig_end;
1301	struct scatterlist *dma_sg;        /* next DMA stream head */
1302	unsigned long dma_offset, dma_len; /* start/len of DMA stream */
1303	int n_mappings = 0;
1304	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1305	int idx;
1306
1307	while (nents > 0) {
1308		unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
1309
1310		/*
1311		** Prepare for first/next DMA stream
1312		*/
1313		dma_sg = vcontig_sg = startsg;
1314		dma_len = vcontig_len = vcontig_end = startsg->length;
1315		vcontig_end +=  vaddr;
1316		dma_offset = vaddr & ~iovp_mask;
1317
1318		/* PARANOID: clear entries */
1319		startsg->dma_address = startsg->dma_length = 0;
1320
1321		/*
1322		** This loop terminates one iteration "early" since
1323		** it's always looking one "ahead".
1324		*/
1325		while (--nents > 0) {
1326			unsigned long vaddr;	/* tmp */
1327
1328			startsg = sg_next(startsg);
1329
1330			/* PARANOID */
1331			startsg->dma_address = startsg->dma_length = 0;
1332
1333			/* catch brokenness in SCSI layer */
1334			ASSERT(startsg->length <= DMA_CHUNK_SIZE);
1335
1336			/*
1337			** First make sure current dma stream won't
1338			** exceed DMA_CHUNK_SIZE if we coalesce the
1339			** next entry.
1340			*/
1341			if (((dma_len + dma_offset + startsg->length + ~iovp_mask) & iovp_mask)
1342			    > DMA_CHUNK_SIZE)
1343				break;
1344
1345			if (dma_len + startsg->length > max_seg_size)
1346				break;
1347
1348			/*
1349			** Then look for virtually contiguous blocks.
1350			**
1351			** append the next transaction?
1352			*/
1353			vaddr = (unsigned long) sba_sg_address(startsg);
1354			if  (vcontig_end == vaddr)
1355			{
1356				vcontig_len += startsg->length;
1357				vcontig_end += startsg->length;
1358				dma_len     += startsg->length;
1359				continue;
1360			}
1361
1362#ifdef DEBUG_LARGE_SG_ENTRIES
1363			dump_run_sg = (vcontig_len > iovp_size);
1364#endif
1365
1366			/*
1367			** Not virtually contiguous.
1368			** Terminate prev chunk.
1369			** Start a new chunk.
1370			**
1371			** Once we start a new VCONTIG chunk, dma_offset
1372			** can't change. And we need the offset from the first
1373			** chunk - not the last one. Ergo Successive chunks
1374			** must start on page boundaries and dove tail
1375			** with it's predecessor.
1376			*/
1377			vcontig_sg->dma_length = vcontig_len;
1378
1379			vcontig_sg = startsg;
1380			vcontig_len = startsg->length;
1381
1382			/*
1383			** 3) do the entries end/start on page boundaries?
1384			**    Don't update vcontig_end until we've checked.
1385			*/
1386			if (DMA_CONTIG(vcontig_end, vaddr))
1387			{
1388				vcontig_end = vcontig_len + vaddr;
1389				dma_len += vcontig_len;
1390				continue;
1391			} else {
1392				break;
1393			}
1394		}
1395
1396		/*
1397		** End of DMA Stream
1398		** Terminate last VCONTIG block.
1399		** Allocate space for DMA stream.
1400		*/
1401		vcontig_sg->dma_length = vcontig_len;
1402		dma_len = (dma_len + dma_offset + ~iovp_mask) & iovp_mask;
1403		ASSERT(dma_len <= DMA_CHUNK_SIZE);
1404		idx = sba_alloc_range(ioc, dev, dma_len);
1405		if (idx < 0) {
1406			dma_sg->dma_length = 0;
1407			return -1;
1408		}
1409		dma_sg->dma_address = (dma_addr_t)(PIDE_FLAG | (idx << iovp_shift)
1410						   | dma_offset);
1411		n_mappings++;
1412	}
1413
1414	return n_mappings;
1415}
1416
1417static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist,
1418			       int nents, enum dma_data_direction dir,
1419			       unsigned long attrs);
1420/**
1421 * sba_map_sg - map Scatter/Gather list
1422 * @dev: instance of PCI owned by the driver that's asking.
1423 * @sglist:  array of buffer/length pairs
1424 * @nents:  number of entries in list
1425 * @dir:  R/W or both.
1426 * @attrs: optional dma attributes
1427 *
1428 * See Documentation/DMA-API-HOWTO.txt
1429 */
1430static int sba_map_sg_attrs(struct device *dev, struct scatterlist *sglist,
1431			    int nents, enum dma_data_direction dir,
1432			    unsigned long attrs)
1433{
1434	struct ioc *ioc;
1435	int coalesced, filled = 0;
1436#ifdef ASSERT_PDIR_SANITY
1437	unsigned long flags;
1438#endif
1439#ifdef ALLOW_IOV_BYPASS_SG
1440	struct scatterlist *sg;
1441#endif
1442
1443	DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
1444	ioc = GET_IOC(dev);
1445	ASSERT(ioc);
1446
1447#ifdef ALLOW_IOV_BYPASS_SG
1448	ASSERT(to_pci_dev(dev)->dma_mask);
1449	if (likely((ioc->dma_mask & ~to_pci_dev(dev)->dma_mask) == 0)) {
1450		for_each_sg(sglist, sg, nents, filled) {
1451			sg->dma_length = sg->length;
1452			sg->dma_address = virt_to_phys(sba_sg_address(sg));
1453		}
1454		return filled;
1455	}
1456#endif
1457	/* Fast path single entry scatterlists. */
1458	if (nents == 1) {
1459		sglist->dma_length = sglist->length;
1460		sglist->dma_address = sba_map_page(dev, sg_page(sglist),
1461				sglist->offset, sglist->length, dir, attrs);
1462		if (dma_mapping_error(dev, sglist->dma_address))
1463			return 0;
1464		return 1;
1465	}
1466
1467#ifdef ASSERT_PDIR_SANITY
1468	spin_lock_irqsave(&ioc->res_lock, flags);
1469	if (sba_check_pdir(ioc,"Check before sba_map_sg_attrs()"))
1470	{
1471		sba_dump_sg(ioc, sglist, nents);
1472		panic("Check before sba_map_sg_attrs()");
1473	}
1474	spin_unlock_irqrestore(&ioc->res_lock, flags);
1475#endif
1476
1477	prefetch(ioc->res_hint);
1478
1479	/*
1480	** First coalesce the chunks and allocate I/O pdir space
1481	**
1482	** If this is one DMA stream, we can properly map using the
1483	** correct virtual address associated with each DMA page.
1484	** w/o this association, we wouldn't have coherent DMA!
1485	** Access to the virtual address is what forces a two pass algorithm.
1486	*/
1487	coalesced = sba_coalesce_chunks(ioc, dev, sglist, nents);
1488	if (coalesced < 0) {
1489		sba_unmap_sg_attrs(dev, sglist, nents, dir, attrs);
1490		return 0;
1491	}
1492
1493	/*
1494	** Program the I/O Pdir
1495	**
1496	** map the virtual addresses to the I/O Pdir
1497	** o dma_address will contain the pdir index
1498	** o dma_len will contain the number of bytes to map
1499	** o address contains the virtual address.
1500	*/
1501	filled = sba_fill_pdir(ioc, sglist, nents);
1502
1503#ifdef ASSERT_PDIR_SANITY
1504	spin_lock_irqsave(&ioc->res_lock, flags);
1505	if (sba_check_pdir(ioc,"Check after sba_map_sg_attrs()"))
1506	{
1507		sba_dump_sg(ioc, sglist, nents);
1508		panic("Check after sba_map_sg_attrs()\n");
1509	}
1510	spin_unlock_irqrestore(&ioc->res_lock, flags);
1511#endif
1512
1513	ASSERT(coalesced == filled);
1514	DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
1515
1516	return filled;
1517}
1518
1519/**
1520 * sba_unmap_sg_attrs - unmap Scatter/Gather list
1521 * @dev: instance of PCI owned by the driver that's asking.
1522 * @sglist:  array of buffer/length pairs
1523 * @nents:  number of entries in list
1524 * @dir:  R/W or both.
1525 * @attrs: optional dma attributes
1526 *
1527 * See Documentation/DMA-API-HOWTO.txt
1528 */
1529static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist,
1530			       int nents, enum dma_data_direction dir,
1531			       unsigned long attrs)
1532{
1533#ifdef ASSERT_PDIR_SANITY
1534	struct ioc *ioc;
1535	unsigned long flags;
1536#endif
1537
1538	DBG_RUN_SG("%s() START %d entries,  %p,%x\n",
1539		   __func__, nents, sba_sg_address(sglist), sglist->length);
1540
1541#ifdef ASSERT_PDIR_SANITY
1542	ioc = GET_IOC(dev);
1543	ASSERT(ioc);
1544
1545	spin_lock_irqsave(&ioc->res_lock, flags);
1546	sba_check_pdir(ioc,"Check before sba_unmap_sg_attrs()");
1547	spin_unlock_irqrestore(&ioc->res_lock, flags);
1548#endif
1549
1550	while (nents && sglist->dma_length) {
1551
1552		sba_unmap_page(dev, sglist->dma_address, sglist->dma_length,
1553			       dir, attrs);
1554		sglist = sg_next(sglist);
1555		nents--;
1556	}
1557
1558	DBG_RUN_SG("%s() DONE (nents %d)\n", __func__,  nents);
1559
1560#ifdef ASSERT_PDIR_SANITY
1561	spin_lock_irqsave(&ioc->res_lock, flags);
1562	sba_check_pdir(ioc,"Check after sba_unmap_sg_attrs()");
1563	spin_unlock_irqrestore(&ioc->res_lock, flags);
1564#endif
1565
1566}
1567
1568/**************************************************************
1569*
1570*   Initialization and claim
1571*
1572***************************************************************/
1573
1574static void
1575ioc_iova_init(struct ioc *ioc)
1576{
1577	int tcnfg;
1578	int agp_found = 0;
1579	struct pci_dev *device = NULL;
1580#ifdef FULL_VALID_PDIR
1581	unsigned long index;
1582#endif
1583
1584	/*
1585	** Firmware programs the base and size of a "safe IOVA space"
1586	** (one that doesn't overlap memory or LMMIO space) in the
1587	** IBASE and IMASK registers.
1588	*/
1589	ioc->ibase = READ_REG(ioc->ioc_hpa + IOC_IBASE) & ~0x1UL;
1590	ioc->imask = READ_REG(ioc->ioc_hpa + IOC_IMASK) | 0xFFFFFFFF00000000UL;
1591
1592	ioc->iov_size = ~ioc->imask + 1;
1593
1594	DBG_INIT("%s() hpa %p IOV base 0x%lx mask 0x%lx (%dMB)\n",
1595		__func__, ioc->ioc_hpa, ioc->ibase, ioc->imask,
1596		ioc->iov_size >> 20);
1597
1598	switch (iovp_size) {
1599		case  4*1024: tcnfg = 0; break;
1600		case  8*1024: tcnfg = 1; break;
1601		case 16*1024: tcnfg = 2; break;
1602		case 64*1024: tcnfg = 3; break;
1603		default:
1604			panic(PFX "Unsupported IOTLB page size %ldK",
1605				iovp_size >> 10);
1606			break;
1607	}
1608	WRITE_REG(tcnfg, ioc->ioc_hpa + IOC_TCNFG);
1609
1610	ioc->pdir_size = (ioc->iov_size / iovp_size) * PDIR_ENTRY_SIZE;
1611	ioc->pdir_base = (void *) __get_free_pages(GFP_KERNEL,
1612						   get_order(ioc->pdir_size));
1613	if (!ioc->pdir_base)
1614		panic(PFX "Couldn't allocate I/O Page Table\n");
1615
1616	memset(ioc->pdir_base, 0, ioc->pdir_size);
1617
1618	DBG_INIT("%s() IOV page size %ldK pdir %p size %x\n", __func__,
1619		iovp_size >> 10, ioc->pdir_base, ioc->pdir_size);
1620
1621	ASSERT(ALIGN((unsigned long) ioc->pdir_base, 4*1024) == (unsigned long) ioc->pdir_base);
1622	WRITE_REG(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE);
1623
1624	/*
1625	** If an AGP device is present, only use half of the IOV space
1626	** for PCI DMA.  Unfortunately we can't know ahead of time
1627	** whether GART support will actually be used, for now we
1628	** can just key on an AGP device found in the system.
1629	** We program the next pdir index after we stop w/ a key for
1630	** the GART code to handshake on.
1631	*/
1632	for_each_pci_dev(device)	
1633		agp_found |= pci_find_capability(device, PCI_CAP_ID_AGP);
1634
1635	if (agp_found && reserve_sba_gart) {
1636		printk(KERN_INFO PFX "reserving %dMb of IOVA space at 0x%lx for agpgart\n",
1637		      ioc->iov_size/2 >> 20, ioc->ibase + ioc->iov_size/2);
1638		ioc->pdir_size /= 2;
1639		((u64 *)ioc->pdir_base)[PDIR_INDEX(ioc->iov_size/2)] = ZX1_SBA_IOMMU_COOKIE;
1640	}
1641#ifdef FULL_VALID_PDIR
1642	/*
1643  	** Check to see if the spill page has been allocated, we don't need more than
1644	** one across multiple SBAs.
1645	*/
1646	if (!prefetch_spill_page) {
1647		char *spill_poison = "SBAIOMMU POISON";
1648		int poison_size = 16;
1649		void *poison_addr, *addr;
1650
1651		addr = (void *)__get_free_pages(GFP_KERNEL, get_order(iovp_size));
1652		if (!addr)
1653			panic(PFX "Couldn't allocate PDIR spill page\n");
1654
1655		poison_addr = addr;
1656		for ( ; (u64) poison_addr < addr + iovp_size; poison_addr += poison_size)
1657			memcpy(poison_addr, spill_poison, poison_size);
1658
1659		prefetch_spill_page = virt_to_phys(addr);
1660
1661		DBG_INIT("%s() prefetch spill addr: 0x%lx\n", __func__, prefetch_spill_page);
1662	}
1663	/*
1664  	** Set all the PDIR entries valid w/ the spill page as the target
1665	*/
1666	for (index = 0 ; index < (ioc->pdir_size / PDIR_ENTRY_SIZE) ; index++)
1667		((u64 *)ioc->pdir_base)[index] = (0x80000000000000FF | prefetch_spill_page);
1668#endif
1669
1670	/* Clear I/O TLB of any possible entries */
1671	WRITE_REG(ioc->ibase | (get_iovp_order(ioc->iov_size) + iovp_shift), ioc->ioc_hpa + IOC_PCOM);
1672	READ_REG(ioc->ioc_hpa + IOC_PCOM);
1673
1674	/* Enable IOVA translation */
1675	WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa + IOC_IBASE);
1676	READ_REG(ioc->ioc_hpa + IOC_IBASE);
1677}
1678
1679static void __init
1680ioc_resource_init(struct ioc *ioc)
1681{
1682	spin_lock_init(&ioc->res_lock);
1683#if DELAYED_RESOURCE_CNT > 0
1684	spin_lock_init(&ioc->saved_lock);
1685#endif
1686
1687	/* resource map size dictated by pdir_size */
1688	ioc->res_size = ioc->pdir_size / PDIR_ENTRY_SIZE; /* entries */
1689	ioc->res_size >>= 3;  /* convert bit count to byte count */
1690	DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1691
1692	ioc->res_map = (char *) __get_free_pages(GFP_KERNEL,
1693						 get_order(ioc->res_size));
1694	if (!ioc->res_map)
1695		panic(PFX "Couldn't allocate resource map\n");
1696
1697	memset(ioc->res_map, 0, ioc->res_size);
1698	/* next available IOVP - circular search */
1699	ioc->res_hint = (unsigned long *) ioc->res_map;
1700
1701#ifdef ASSERT_PDIR_SANITY
1702	/* Mark first bit busy - ie no IOVA 0 */
1703	ioc->res_map[0] = 0x1;
1704	ioc->pdir_base[0] = 0x8000000000000000ULL | ZX1_SBA_IOMMU_COOKIE;
1705#endif
1706#ifdef FULL_VALID_PDIR
1707	/* Mark the last resource used so we don't prefetch beyond IOVA space */
1708	ioc->res_map[ioc->res_size - 1] |= 0x80UL; /* res_map is chars */
1709	ioc->pdir_base[(ioc->pdir_size / PDIR_ENTRY_SIZE) - 1] = (0x80000000000000FF
1710							      | prefetch_spill_page);
1711#endif
1712
1713	DBG_INIT("%s() res_map %x %p\n", __func__,
1714		 ioc->res_size, (void *) ioc->res_map);
1715}
1716
1717static void __init
1718ioc_sac_init(struct ioc *ioc)
1719{
1720	struct pci_dev *sac = NULL;
1721	struct pci_controller *controller = NULL;
1722
1723	/*
1724	 * pci_alloc_coherent() must return a DMA address which is
1725	 * SAC (single address cycle) addressable, so allocate a
1726	 * pseudo-device to enforce that.
1727	 */
1728	sac = kzalloc(sizeof(*sac), GFP_KERNEL);
1729	if (!sac)
1730		panic(PFX "Couldn't allocate struct pci_dev");
1731
1732	controller = kzalloc(sizeof(*controller), GFP_KERNEL);
1733	if (!controller)
1734		panic(PFX "Couldn't allocate struct pci_controller");
1735
1736	controller->iommu = ioc;
1737	sac->sysdata = controller;
1738	sac->dma_mask = 0xFFFFFFFFUL;
 
1739	sac->dev.bus = &pci_bus_type;
 
1740	ioc->sac_only_dev = sac;
1741}
1742
1743static void __init
1744ioc_zx1_init(struct ioc *ioc)
1745{
1746	unsigned long rope_config;
1747	unsigned int i;
1748
1749	if (ioc->rev < 0x20)
1750		panic(PFX "IOC 2.0 or later required for IOMMU support\n");
1751
1752	/* 38 bit memory controller + extra bit for range displaced by MMIO */
1753	ioc->dma_mask = (0x1UL << 39) - 1;
1754
1755	/*
1756	** Clear ROPE(N)_CONFIG AO bit.
1757	** Disables "NT Ordering" (~= !"Relaxed Ordering")
1758	** Overrides bit 1 in DMA Hint Sets.
1759	** Improves netperf UDP_STREAM by ~10% for tg3 on bcm5701.
1760	*/
1761	for (i=0; i<(8*8); i+=8) {
1762		rope_config = READ_REG(ioc->ioc_hpa + IOC_ROPE0_CFG + i);
1763		rope_config &= ~IOC_ROPE_AO;
1764		WRITE_REG(rope_config, ioc->ioc_hpa + IOC_ROPE0_CFG + i);
1765	}
1766}
1767
1768typedef void (initfunc)(struct ioc *);
1769
1770struct ioc_iommu {
1771	u32 func_id;
1772	char *name;
1773	initfunc *init;
1774};
1775
1776static struct ioc_iommu ioc_iommu_info[] __initdata = {
1777	{ ZX1_IOC_ID, "zx1", ioc_zx1_init },
1778	{ ZX2_IOC_ID, "zx2", NULL },
1779	{ SX1000_IOC_ID, "sx1000", NULL },
1780	{ SX2000_IOC_ID, "sx2000", NULL },
1781};
1782
1783static void __init ioc_init(unsigned long hpa, struct ioc *ioc)
 
1784{
 
1785	struct ioc_iommu *info;
1786
 
 
 
 
1787	ioc->next = ioc_list;
1788	ioc_list = ioc;
1789
 
1790	ioc->ioc_hpa = ioremap(hpa, 0x1000);
1791
1792	ioc->func_id = READ_REG(ioc->ioc_hpa + IOC_FUNC_ID);
1793	ioc->rev = READ_REG(ioc->ioc_hpa + IOC_FCLASS) & 0xFFUL;
1794	ioc->dma_mask = 0xFFFFFFFFFFFFFFFFUL;	/* conservative */
1795
1796	for (info = ioc_iommu_info; info < ioc_iommu_info + ARRAY_SIZE(ioc_iommu_info); info++) {
1797		if (ioc->func_id == info->func_id) {
1798			ioc->name = info->name;
1799			if (info->init)
1800				(info->init)(ioc);
1801		}
1802	}
1803
1804	iovp_size = (1 << iovp_shift);
1805	iovp_mask = ~(iovp_size - 1);
1806
1807	DBG_INIT("%s: PAGE_SIZE %ldK, iovp_size %ldK\n", __func__,
1808		PAGE_SIZE >> 10, iovp_size >> 10);
1809
1810	if (!ioc->name) {
1811		ioc->name = kmalloc(24, GFP_KERNEL);
1812		if (ioc->name)
1813			sprintf((char *) ioc->name, "Unknown (%04x:%04x)",
1814				ioc->func_id & 0xFFFF, (ioc->func_id >> 16) & 0xFFFF);
1815		else
1816			ioc->name = "Unknown";
1817	}
1818
1819	ioc_iova_init(ioc);
1820	ioc_resource_init(ioc);
1821	ioc_sac_init(ioc);
1822
 
 
 
1823	printk(KERN_INFO PFX
1824		"%s %d.%d HPA 0x%lx IOVA space %dMb at 0x%lx\n",
1825		ioc->name, (ioc->rev >> 4) & 0xF, ioc->rev & 0xF,
1826		hpa, ioc->iov_size >> 20, ioc->ibase);
 
 
1827}
1828
1829
1830
1831/**************************************************************************
1832**
1833**   SBA initialization code (HW and SW)
1834**
1835**   o identify SBA chip itself
1836**   o FIXME: initialize DMA hints for reasonable defaults
1837**
1838**************************************************************************/
1839
1840#ifdef CONFIG_PROC_FS
1841static void *
1842ioc_start(struct seq_file *s, loff_t *pos)
1843{
1844	struct ioc *ioc;
1845	loff_t n = *pos;
1846
1847	for (ioc = ioc_list; ioc; ioc = ioc->next)
1848		if (!n--)
1849			return ioc;
1850
1851	return NULL;
1852}
1853
1854static void *
1855ioc_next(struct seq_file *s, void *v, loff_t *pos)
1856{
1857	struct ioc *ioc = v;
1858
1859	++*pos;
1860	return ioc->next;
1861}
1862
1863static void
1864ioc_stop(struct seq_file *s, void *v)
1865{
1866}
1867
1868static int
1869ioc_show(struct seq_file *s, void *v)
1870{
1871	struct ioc *ioc = v;
1872	unsigned long *res_ptr = (unsigned long *)ioc->res_map;
1873	int i, used = 0;
1874
1875	seq_printf(s, "Hewlett Packard %s IOC rev %d.%d\n",
1876		ioc->name, ((ioc->rev >> 4) & 0xF), (ioc->rev & 0xF));
1877#ifdef CONFIG_NUMA
1878	if (ioc->node != NUMA_NO_NODE)
1879		seq_printf(s, "NUMA node       : %d\n", ioc->node);
1880#endif
1881	seq_printf(s, "IOVA size       : %ld MB\n", ((ioc->pdir_size >> 3) * iovp_size)/(1024*1024));
1882	seq_printf(s, "IOVA page size  : %ld kb\n", iovp_size/1024);
1883
1884	for (i = 0; i < (ioc->res_size / sizeof(unsigned long)); ++i, ++res_ptr)
1885		used += hweight64(*res_ptr);
1886
1887	seq_printf(s, "PDIR size       : %d entries\n", ioc->pdir_size >> 3);
1888	seq_printf(s, "PDIR used       : %d entries\n", used);
1889
1890#ifdef PDIR_SEARCH_TIMING
1891	{
1892		unsigned long i = 0, avg = 0, min, max;
1893		min = max = ioc->avg_search[0];
1894		for (i = 0; i < SBA_SEARCH_SAMPLE; i++) {
1895			avg += ioc->avg_search[i];
1896			if (ioc->avg_search[i] > max) max = ioc->avg_search[i];
1897			if (ioc->avg_search[i] < min) min = ioc->avg_search[i];
1898		}
1899		avg /= SBA_SEARCH_SAMPLE;
1900		seq_printf(s, "Bitmap search   : %ld/%ld/%ld (min/avg/max CPU Cycles/IOVA page)\n",
1901		           min, avg, max);
1902	}
1903#endif
1904#ifndef ALLOW_IOV_BYPASS
1905	 seq_printf(s, "IOVA bypass disabled\n");
1906#endif
1907	return 0;
1908}
1909
1910static const struct seq_operations ioc_seq_ops = {
1911	.start = ioc_start,
1912	.next  = ioc_next,
1913	.stop  = ioc_stop,
1914	.show  = ioc_show
1915};
1916
 
 
 
 
 
 
 
 
 
 
 
 
 
1917static void __init
1918ioc_proc_init(void)
1919{
1920	struct proc_dir_entry *dir;
1921
1922	dir = proc_mkdir("bus/mckinley", NULL);
1923	if (!dir)
1924		return;
1925
1926	proc_create_seq(ioc_list->name, 0, dir, &ioc_seq_ops);
1927}
1928#endif
1929
1930static void
1931sba_connect_bus(struct pci_bus *bus)
1932{
1933	acpi_handle handle, parent;
1934	acpi_status status;
1935	struct ioc *ioc;
1936
1937	if (!PCI_CONTROLLER(bus))
1938		panic(PFX "no sysdata on bus %d!\n", bus->number);
1939
1940	if (PCI_CONTROLLER(bus)->iommu)
1941		return;
1942
1943	handle = acpi_device_handle(PCI_CONTROLLER(bus)->companion);
1944	if (!handle)
1945		return;
1946
1947	/*
1948	 * The IOC scope encloses PCI root bridges in the ACPI
1949	 * namespace, so work our way out until we find an IOC we
1950	 * claimed previously.
1951	 */
1952	do {
1953		for (ioc = ioc_list; ioc; ioc = ioc->next)
1954			if (ioc->handle == handle) {
1955				PCI_CONTROLLER(bus)->iommu = ioc;
1956				return;
1957			}
1958
1959		status = acpi_get_parent(handle, &parent);
1960		handle = parent;
1961	} while (ACPI_SUCCESS(status));
1962
1963	printk(KERN_WARNING "No IOC for PCI Bus %04x:%02x in ACPI\n", pci_domain_nr(bus), bus->number);
1964}
1965
 
1966static void __init
1967sba_map_ioc_to_node(struct ioc *ioc, acpi_handle handle)
1968{
1969#ifdef CONFIG_NUMA
1970	unsigned int node;
 
 
 
1971
1972	node = acpi_get_node(handle);
1973	if (node != NUMA_NO_NODE && !node_online(node))
1974		node = NUMA_NO_NODE;
 
 
 
 
 
 
1975
1976	ioc->node = node;
1977#endif
1978}
 
 
 
1979
1980static void __init acpi_sba_ioc_add(struct ioc *ioc)
 
1981{
1982	acpi_handle handle = ioc->handle;
1983	acpi_status status;
1984	u64 hpa, length;
1985	struct acpi_device_info *adi;
1986
1987	ioc_found = ioc->next;
1988	status = hp_acpi_csr_space(handle, &hpa, &length);
1989	if (ACPI_FAILURE(status))
1990		goto err;
1991
1992	status = acpi_get_object_info(handle, &adi);
1993	if (ACPI_FAILURE(status))
1994		goto err;
1995
1996	/*
1997	 * For HWP0001, only SBA appears in ACPI namespace.  It encloses the PCI
1998	 * root bridges, and its CSR space includes the IOC function.
1999	 */
2000	if (strncmp("HWP0001", adi->hardware_id.string, 7) == 0) {
2001		hpa += ZX1_IOC_OFFSET;
2002		/* zx1 based systems default to kernel page size iommu pages */
2003		if (!iovp_shift)
2004			iovp_shift = min(PAGE_SHIFT, 16);
2005	}
2006	kfree(adi);
2007
2008	/*
2009	 * default anything not caught above or specified on cmdline to 4k
2010	 * iommu page size
2011	 */
2012	if (!iovp_shift)
2013		iovp_shift = 12;
2014
2015	ioc_init(hpa, ioc);
2016	/* setup NUMA node association */
2017	sba_map_ioc_to_node(ioc, handle);
2018	return;
2019
2020 err:
2021	kfree(ioc);
 
2022}
2023
2024static const struct acpi_device_id hp_ioc_iommu_device_ids[] = {
2025	{"HWP0001", 0},
2026	{"HWP0004", 0},
2027	{"", 0},
2028};
2029
2030static int acpi_sba_ioc_attach(struct acpi_device *device,
2031			       const struct acpi_device_id *not_used)
2032{
2033	struct ioc *ioc;
2034
2035	ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2036	if (!ioc)
2037		return -ENOMEM;
2038
2039	ioc->next = ioc_found;
2040	ioc_found = ioc;
2041	ioc->handle = device->handle;
2042	return 1;
2043}
2044
2045
2046static struct acpi_scan_handler acpi_sba_ioc_handler = {
2047	.ids	= hp_ioc_iommu_device_ids,
2048	.attach	= acpi_sba_ioc_attach,
2049};
2050
2051static int __init acpi_sba_ioc_init_acpi(void)
2052{
2053	return acpi_scan_add_handler(&acpi_sba_ioc_handler);
2054}
2055/* This has to run before acpi_scan_init(). */
2056arch_initcall(acpi_sba_ioc_init_acpi);
2057
2058static int sba_dma_supported (struct device *dev, u64 mask)
2059{
2060	/* make sure it's at least 32bit capable */
2061	return ((mask & 0xFFFFFFFFUL) == 0xFFFFFFFFUL);
2062}
2063
2064static const struct dma_map_ops sba_dma_ops = {
2065	.alloc			= sba_alloc_coherent,
2066	.free			= sba_free_coherent,
2067	.map_page		= sba_map_page,
2068	.unmap_page		= sba_unmap_page,
2069	.map_sg			= sba_map_sg_attrs,
2070	.unmap_sg		= sba_unmap_sg_attrs,
2071	.dma_supported		= sba_dma_supported,
2072	.mmap			= dma_common_mmap,
2073	.get_sgtable		= dma_common_get_sgtable,
2074};
2075
2076static int __init
2077sba_init(void)
2078{
2079	/*
2080	 * If we are booting a kdump kernel, the sba_iommu will cause devices
2081	 * that were not shutdown properly to MCA as soon as they are turned
2082	 * back on.  Our only option for a successful kdump kernel boot is to
2083	 * use swiotlb.
 
 
 
2084	 */
2085	if (is_kdump_kernel())
 
 
 
 
 
2086		return 0;
 
 
2087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2088	/*
2089	 * ioc_found should be populated by the acpi_sba_ioc_handler's .attach()
2090	 * routine, but that only happens if acpi_scan_init() has already run.
 
2091	 */
2092	while (ioc_found)
2093		acpi_sba_ioc_add(ioc_found);
2094
2095	if (!ioc_list)
2096		return 0;
 
2097
 
2098	{
2099		struct pci_bus *b = NULL;
2100		while ((b = pci_find_next_bus(b)) != NULL)
2101			sba_connect_bus(b);
2102	}
2103
2104	/* no need for swiotlb with the iommu */
2105	swiotlb_exit();
2106	dma_ops = &sba_dma_ops;
2107
2108#ifdef CONFIG_PROC_FS
2109	ioc_proc_init();
2110#endif
2111	return 0;
2112}
2113
2114subsys_initcall(sba_init); /* must be initialized after ACPI etc., but before any drivers... */
2115
2116static int __init
2117nosbagart(char *str)
2118{
2119	reserve_sba_gart = 0;
2120	return 1;
2121}
2122
 
 
 
 
 
 
 
 
 
 
 
2123__setup("nosbagart", nosbagart);
2124
2125static int __init
2126sba_page_override(char *str)
2127{
2128	unsigned long page_size;
2129
2130	page_size = memparse(str, &str);
2131	switch (page_size) {
2132		case 4096:
2133		case 8192:
2134		case 16384:
2135		case 65536:
2136			iovp_shift = ffs(page_size) - 1;
2137			break;
2138		default:
2139			printk("%s: unknown/unsupported iommu page size %ld\n",
2140			       __func__, page_size);
2141	}
2142
2143	return 1;
2144}
2145
2146__setup("sbapagesize=",sba_page_override);
v3.1
 
   1/*
   2**  IA64 System Bus Adapter (SBA) I/O MMU manager
   3**
   4**	(c) Copyright 2002-2005 Alex Williamson
   5**	(c) Copyright 2002-2003 Grant Grundler
   6**	(c) Copyright 2002-2005 Hewlett-Packard Company
   7**
   8**	Portions (c) 2000 Grant Grundler (from parisc I/O MMU code)
   9**	Portions (c) 1999 Dave S. Miller (from sparc64 I/O MMU code)
  10**
  11**	This program is free software; you can redistribute it and/or modify
  12**	it under the terms of the GNU General Public License as published by
  13**      the Free Software Foundation; either version 2 of the License, or
  14**      (at your option) any later version.
  15**
  16**
  17** This module initializes the IOC (I/O Controller) found on HP
  18** McKinley machines and their successors.
  19**
  20*/
  21
  22#include <linux/types.h>
  23#include <linux/kernel.h>
  24#include <linux/module.h>
  25#include <linux/spinlock.h>
  26#include <linux/slab.h>
  27#include <linux/init.h>
  28#include <linux/mm.h>
  29#include <linux/string.h>
  30#include <linux/pci.h>
  31#include <linux/proc_fs.h>
  32#include <linux/seq_file.h>
  33#include <linux/acpi.h>
  34#include <linux/efi.h>
  35#include <linux/nodemask.h>
  36#include <linux/bitops.h>         /* hweight64() */
  37#include <linux/crash_dump.h>
  38#include <linux/iommu-helper.h>
  39#include <linux/dma-mapping.h>
  40#include <linux/prefetch.h>
 
  41
  42#include <asm/delay.h>		/* ia64_get_itc() */
  43#include <asm/io.h>
  44#include <asm/page.h>		/* PAGE_OFFSET */
  45#include <asm/dma.h>
  46#include <asm/system.h>		/* wmb() */
  47
  48#include <asm/acpi-ext.h>
  49
  50extern int swiotlb_late_init_with_default_size (size_t size);
  51
  52#define PFX "IOC: "
  53
  54/*
  55** Enabling timing search of the pdir resource map.  Output in /proc.
  56** Disabled by default to optimize performance.
  57*/
  58#undef PDIR_SEARCH_TIMING
  59
  60/*
  61** This option allows cards capable of 64bit DMA to bypass the IOMMU.  If
  62** not defined, all DMA will be 32bit and go through the TLB.
  63** There's potentially a conflict in the bio merge code with us
  64** advertising an iommu, but then bypassing it.  Since I/O MMU bypassing
  65** appears to give more performance than bio-level virtual merging, we'll
  66** do the former for now.  NOTE: BYPASS_SG also needs to be undef'd to
  67** completely restrict DMA to the IOMMU.
  68*/
  69#define ALLOW_IOV_BYPASS
  70
  71/*
  72** This option specifically allows/disallows bypassing scatterlists with
  73** multiple entries.  Coalescing these entries can allow better DMA streaming
  74** and in some cases shows better performance than entirely bypassing the
  75** IOMMU.  Performance increase on the order of 1-2% sequential output/input
  76** using bonnie++ on a RAID0 MD device (sym2 & mpt).
  77*/
  78#undef ALLOW_IOV_BYPASS_SG
  79
  80/*
  81** If a device prefetches beyond the end of a valid pdir entry, it will cause
  82** a hard failure, ie. MCA.  Version 3.0 and later of the zx1 LBA should
  83** disconnect on 4k boundaries and prevent such issues.  If the device is
  84** particularly aggressive, this option will keep the entire pdir valid such
  85** that prefetching will hit a valid address.  This could severely impact
  86** error containment, and is therefore off by default.  The page that is
  87** used for spill-over is poisoned, so that should help debugging somewhat.
  88*/
  89#undef FULL_VALID_PDIR
  90
  91#define ENABLE_MARK_CLEAN
  92
  93/*
  94** The number of debug flags is a clue - this code is fragile.  NOTE: since
  95** tightening the use of res_lock the resource bitmap and actual pdir are no
  96** longer guaranteed to stay in sync.  The sanity checking code isn't going to
  97** like that.
  98*/
  99#undef DEBUG_SBA_INIT
 100#undef DEBUG_SBA_RUN
 101#undef DEBUG_SBA_RUN_SG
 102#undef DEBUG_SBA_RESOURCE
 103#undef ASSERT_PDIR_SANITY
 104#undef DEBUG_LARGE_SG_ENTRIES
 105#undef DEBUG_BYPASS
 106
 107#if defined(FULL_VALID_PDIR) && defined(ASSERT_PDIR_SANITY)
 108#error FULL_VALID_PDIR and ASSERT_PDIR_SANITY are mutually exclusive
 109#endif
 110
 111#define SBA_INLINE	__inline__
 112/* #define SBA_INLINE */
 113
 114#ifdef DEBUG_SBA_INIT
 115#define DBG_INIT(x...)	printk(x)
 116#else
 117#define DBG_INIT(x...)
 118#endif
 119
 120#ifdef DEBUG_SBA_RUN
 121#define DBG_RUN(x...)	printk(x)
 122#else
 123#define DBG_RUN(x...)
 124#endif
 125
 126#ifdef DEBUG_SBA_RUN_SG
 127#define DBG_RUN_SG(x...)	printk(x)
 128#else
 129#define DBG_RUN_SG(x...)
 130#endif
 131
 132
 133#ifdef DEBUG_SBA_RESOURCE
 134#define DBG_RES(x...)	printk(x)
 135#else
 136#define DBG_RES(x...)
 137#endif
 138
 139#ifdef DEBUG_BYPASS
 140#define DBG_BYPASS(x...)	printk(x)
 141#else
 142#define DBG_BYPASS(x...)
 143#endif
 144
 145#ifdef ASSERT_PDIR_SANITY
 146#define ASSERT(expr) \
 147        if(!(expr)) { \
 148                printk( "\n" __FILE__ ":%d: Assertion " #expr " failed!\n",__LINE__); \
 149                panic(#expr); \
 150        }
 151#else
 152#define ASSERT(expr)
 153#endif
 154
 155/*
 156** The number of pdir entries to "free" before issuing
 157** a read to PCOM register to flush out PCOM writes.
 158** Interacts with allocation granularity (ie 4 or 8 entries
 159** allocated and free'd/purged at a time might make this
 160** less interesting).
 161*/
 162#define DELAYED_RESOURCE_CNT	64
 163
 164#define PCI_DEVICE_ID_HP_SX2000_IOC	0x12ec
 165
 166#define ZX1_IOC_ID	((PCI_DEVICE_ID_HP_ZX1_IOC << 16) | PCI_VENDOR_ID_HP)
 167#define ZX2_IOC_ID	((PCI_DEVICE_ID_HP_ZX2_IOC << 16) | PCI_VENDOR_ID_HP)
 168#define REO_IOC_ID	((PCI_DEVICE_ID_HP_REO_IOC << 16) | PCI_VENDOR_ID_HP)
 169#define SX1000_IOC_ID	((PCI_DEVICE_ID_HP_SX1000_IOC << 16) | PCI_VENDOR_ID_HP)
 170#define SX2000_IOC_ID	((PCI_DEVICE_ID_HP_SX2000_IOC << 16) | PCI_VENDOR_ID_HP)
 171
 172#define ZX1_IOC_OFFSET	0x1000	/* ACPI reports SBA, we want IOC */
 173
 174#define IOC_FUNC_ID	0x000
 175#define IOC_FCLASS	0x008	/* function class, bist, header, rev... */
 176#define IOC_IBASE	0x300	/* IO TLB */
 177#define IOC_IMASK	0x308
 178#define IOC_PCOM	0x310
 179#define IOC_TCNFG	0x318
 180#define IOC_PDIR_BASE	0x320
 181
 182#define IOC_ROPE0_CFG	0x500
 183#define   IOC_ROPE_AO	  0x10	/* Allow "Relaxed Ordering" */
 184
 185
 186/* AGP GART driver looks for this */
 187#define ZX1_SBA_IOMMU_COOKIE	0x0000badbadc0ffeeUL
 188
 189/*
 190** The zx1 IOC supports 4/8/16/64KB page sizes (see TCNFG register)
 191**
 192** Some IOCs (sx1000) can run at the above pages sizes, but are
 193** really only supported using the IOC at a 4k page size.
 194**
 195** iovp_size could only be greater than PAGE_SIZE if we are
 196** confident the drivers really only touch the next physical
 197** page iff that driver instance owns it.
 198*/
 199static unsigned long iovp_size;
 200static unsigned long iovp_shift;
 201static unsigned long iovp_mask;
 202
 203struct ioc {
 204	void __iomem	*ioc_hpa;	/* I/O MMU base address */
 205	char		*res_map;	/* resource map, bit == pdir entry */
 206	u64		*pdir_base;	/* physical base address */
 207	unsigned long	ibase;		/* pdir IOV Space base */
 208	unsigned long	imask;		/* pdir IOV Space mask */
 209
 210	unsigned long	*res_hint;	/* next avail IOVP - circular search */
 211	unsigned long	dma_mask;
 212	spinlock_t	res_lock;	/* protects the resource bitmap, but must be held when */
 213					/* clearing pdir to prevent races with allocations. */
 214	unsigned int	res_bitshift;	/* from the RIGHT! */
 215	unsigned int	res_size;	/* size of resource map in bytes */
 216#ifdef CONFIG_NUMA
 217	unsigned int	node;		/* node where this IOC lives */
 218#endif
 219#if DELAYED_RESOURCE_CNT > 0
 220	spinlock_t	saved_lock;	/* may want to try to get this on a separate cacheline */
 221					/* than res_lock for bigger systems. */
 222	int		saved_cnt;
 223	struct sba_dma_pair {
 224		dma_addr_t	iova;
 225		size_t		size;
 226	} saved[DELAYED_RESOURCE_CNT];
 227#endif
 228
 229#ifdef PDIR_SEARCH_TIMING
 230#define SBA_SEARCH_SAMPLE	0x100
 231	unsigned long avg_search[SBA_SEARCH_SAMPLE];
 232	unsigned long avg_idx;	/* current index into avg_search */
 233#endif
 234
 235	/* Stuff we don't need in performance path */
 236	struct ioc	*next;		/* list of IOC's in system */
 237	acpi_handle	handle;		/* for multiple IOC's */
 238	const char 	*name;
 239	unsigned int	func_id;
 240	unsigned int	rev;		/* HW revision of chip */
 241	u32		iov_size;
 242	unsigned int	pdir_size;	/* in bytes, determined by IOV Space size */
 243	struct pci_dev	*sac_only_dev;
 244};
 245
 246static struct ioc *ioc_list;
 247static int reserve_sba_gart = 1;
 248
 249static SBA_INLINE void sba_mark_invalid(struct ioc *, dma_addr_t, size_t);
 250static SBA_INLINE void sba_free_range(struct ioc *, dma_addr_t, size_t);
 251
 252#define sba_sg_address(sg)	sg_virt((sg))
 253
 254#ifdef FULL_VALID_PDIR
 255static u64 prefetch_spill_page;
 256#endif
 257
 258#ifdef CONFIG_PCI
 259# define GET_IOC(dev)	(((dev)->bus == &pci_bus_type)						\
 260			 ? ((struct ioc *) PCI_CONTROLLER(to_pci_dev(dev))->iommu) : NULL)
 261#else
 262# define GET_IOC(dev)	NULL
 263#endif
 264
 265/*
 266** DMA_CHUNK_SIZE is used by the SCSI mid-layer to break up
 267** (or rather not merge) DMAs into manageable chunks.
 268** On parisc, this is more of the software/tuning constraint
 269** rather than the HW. I/O MMU allocation algorithms can be
 270** faster with smaller sizes (to some degree).
 271*/
 272#define DMA_CHUNK_SIZE  (BITS_PER_LONG*iovp_size)
 273
 274#define ROUNDUP(x,y) ((x + ((y)-1)) & ~((y)-1))
 275
 276/************************************
 277** SBA register read and write support
 278**
 279** BE WARNED: register writes are posted.
 280**  (ie follow writes which must reach HW with a read)
 281**
 282*/
 283#define READ_REG(addr)       __raw_readq(addr)
 284#define WRITE_REG(val, addr) __raw_writeq(val, addr)
 285
 286#ifdef DEBUG_SBA_INIT
 287
 288/**
 289 * sba_dump_tlb - debugging only - print IOMMU operating parameters
 290 * @hpa: base address of the IOMMU
 291 *
 292 * Print the size/location of the IO MMU PDIR.
 293 */
 294static void
 295sba_dump_tlb(char *hpa)
 296{
 297	DBG_INIT("IO TLB at 0x%p\n", (void *)hpa);
 298	DBG_INIT("IOC_IBASE    : %016lx\n", READ_REG(hpa+IOC_IBASE));
 299	DBG_INIT("IOC_IMASK    : %016lx\n", READ_REG(hpa+IOC_IMASK));
 300	DBG_INIT("IOC_TCNFG    : %016lx\n", READ_REG(hpa+IOC_TCNFG));
 301	DBG_INIT("IOC_PDIR_BASE: %016lx\n", READ_REG(hpa+IOC_PDIR_BASE));
 302	DBG_INIT("\n");
 303}
 304#endif
 305
 306
 307#ifdef ASSERT_PDIR_SANITY
 308
 309/**
 310 * sba_dump_pdir_entry - debugging only - print one IOMMU PDIR entry
 311 * @ioc: IO MMU structure which owns the pdir we are interested in.
 312 * @msg: text to print ont the output line.
 313 * @pide: pdir index.
 314 *
 315 * Print one entry of the IO MMU PDIR in human readable form.
 316 */
 317static void
 318sba_dump_pdir_entry(struct ioc *ioc, char *msg, uint pide)
 319{
 320	/* start printing from lowest pde in rval */
 321	u64 *ptr = &ioc->pdir_base[pide  & ~(BITS_PER_LONG - 1)];
 322	unsigned long *rptr = (unsigned long *) &ioc->res_map[(pide >>3) & -sizeof(unsigned long)];
 323	uint rcnt;
 324
 325	printk(KERN_DEBUG "SBA: %s rp %p bit %d rval 0x%lx\n",
 326		 msg, rptr, pide & (BITS_PER_LONG - 1), *rptr);
 327
 328	rcnt = 0;
 329	while (rcnt < BITS_PER_LONG) {
 330		printk(KERN_DEBUG "%s %2d %p %016Lx\n",
 331		       (rcnt == (pide & (BITS_PER_LONG - 1)))
 332		       ? "    -->" : "       ",
 333		       rcnt, ptr, (unsigned long long) *ptr );
 334		rcnt++;
 335		ptr++;
 336	}
 337	printk(KERN_DEBUG "%s", msg);
 338}
 339
 340
 341/**
 342 * sba_check_pdir - debugging only - consistency checker
 343 * @ioc: IO MMU structure which owns the pdir we are interested in.
 344 * @msg: text to print ont the output line.
 345 *
 346 * Verify the resource map and pdir state is consistent
 347 */
 348static int
 349sba_check_pdir(struct ioc *ioc, char *msg)
 350{
 351	u64 *rptr_end = (u64 *) &(ioc->res_map[ioc->res_size]);
 352	u64 *rptr = (u64 *) ioc->res_map;	/* resource map ptr */
 353	u64 *pptr = ioc->pdir_base;	/* pdir ptr */
 354	uint pide = 0;
 355
 356	while (rptr < rptr_end) {
 357		u64 rval;
 358		int rcnt; /* number of bits we might check */
 359
 360		rval = *rptr;
 361		rcnt = 64;
 362
 363		while (rcnt) {
 364			/* Get last byte and highest bit from that */
 365			u32 pde = ((u32)((*pptr >> (63)) & 0x1));
 366			if ((rval & 0x1) ^ pde)
 367			{
 368				/*
 369				** BUMMER!  -- res_map != pdir --
 370				** Dump rval and matching pdir entries
 371				*/
 372				sba_dump_pdir_entry(ioc, msg, pide);
 373				return(1);
 374			}
 375			rcnt--;
 376			rval >>= 1;	/* try the next bit */
 377			pptr++;
 378			pide++;
 379		}
 380		rptr++;	/* look at next word of res_map */
 381	}
 382	/* It'd be nice if we always got here :^) */
 383	return 0;
 384}
 385
 386
 387/**
 388 * sba_dump_sg - debugging only - print Scatter-Gather list
 389 * @ioc: IO MMU structure which owns the pdir we are interested in.
 390 * @startsg: head of the SG list
 391 * @nents: number of entries in SG list
 392 *
 393 * print the SG list so we can verify it's correct by hand.
 394 */
 395static void
 396sba_dump_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
 397{
 398	while (nents-- > 0) {
 399		printk(KERN_DEBUG " %d : DMA %08lx/%05x CPU %p\n", nents,
 400		       startsg->dma_address, startsg->dma_length,
 401		       sba_sg_address(startsg));
 402		startsg = sg_next(startsg);
 403	}
 404}
 405
 406static void
 407sba_check_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
 408{
 409	struct scatterlist *the_sg = startsg;
 410	int the_nents = nents;
 411
 412	while (the_nents-- > 0) {
 413		if (sba_sg_address(the_sg) == 0x0UL)
 414			sba_dump_sg(NULL, startsg, nents);
 415		the_sg = sg_next(the_sg);
 416	}
 417}
 418
 419#endif /* ASSERT_PDIR_SANITY */
 420
 421
 422
 423
 424/**************************************************************
 425*
 426*   I/O Pdir Resource Management
 427*
 428*   Bits set in the resource map are in use.
 429*   Each bit can represent a number of pages.
 430*   LSbs represent lower addresses (IOVA's).
 431*
 432***************************************************************/
 433#define PAGES_PER_RANGE 1	/* could increase this to 4 or 8 if needed */
 434
 435/* Convert from IOVP to IOVA and vice versa. */
 436#define SBA_IOVA(ioc,iovp,offset) ((ioc->ibase) | (iovp) | (offset))
 437#define SBA_IOVP(ioc,iova) ((iova) & ~(ioc->ibase))
 438
 439#define PDIR_ENTRY_SIZE	sizeof(u64)
 440
 441#define PDIR_INDEX(iovp)   ((iovp)>>iovp_shift)
 442
 443#define RESMAP_MASK(n)    ~(~0UL << (n))
 444#define RESMAP_IDX_MASK   (sizeof(unsigned long) - 1)
 445
 446
 447/**
 448 * For most cases the normal get_order is sufficient, however it limits us
 449 * to PAGE_SIZE being the minimum mapping alignment and TC flush granularity.
 450 * It only incurs about 1 clock cycle to use this one with the static variable
 451 * and makes the code more intuitive.
 452 */
 453static SBA_INLINE int
 454get_iovp_order (unsigned long size)
 455{
 456	long double d = size - 1;
 457	long order;
 458
 459	order = ia64_getf_exp(d);
 460	order = order - iovp_shift - 0xffff + 1;
 461	if (order < 0)
 462		order = 0;
 463	return order;
 464}
 465
 466static unsigned long ptr_to_pide(struct ioc *ioc, unsigned long *res_ptr,
 467				 unsigned int bitshiftcnt)
 468{
 469	return (((unsigned long)res_ptr - (unsigned long)ioc->res_map) << 3)
 470		+ bitshiftcnt;
 471}
 472
 473/**
 474 * sba_search_bitmap - find free space in IO PDIR resource bitmap
 475 * @ioc: IO MMU structure which owns the pdir we are interested in.
 476 * @bits_wanted: number of entries we need.
 477 * @use_hint: use res_hint to indicate where to start looking
 478 *
 479 * Find consecutive free bits in resource bitmap.
 480 * Each bit represents one entry in the IO Pdir.
 481 * Cool perf optimization: search for log2(size) bits at a time.
 482 */
 483static SBA_INLINE unsigned long
 484sba_search_bitmap(struct ioc *ioc, struct device *dev,
 485		  unsigned long bits_wanted, int use_hint)
 486{
 487	unsigned long *res_ptr;
 488	unsigned long *res_end = (unsigned long *) &(ioc->res_map[ioc->res_size]);
 489	unsigned long flags, pide = ~0UL, tpide;
 490	unsigned long boundary_size;
 491	unsigned long shift;
 492	int ret;
 493
 494	ASSERT(((unsigned long) ioc->res_hint & (sizeof(unsigned long) - 1UL)) == 0);
 495	ASSERT(res_ptr < res_end);
 496
 497	boundary_size = (unsigned long long)dma_get_seg_boundary(dev) + 1;
 498	boundary_size = ALIGN(boundary_size, 1ULL << iovp_shift) >> iovp_shift;
 499
 500	BUG_ON(ioc->ibase & ~iovp_mask);
 501	shift = ioc->ibase >> iovp_shift;
 502
 503	spin_lock_irqsave(&ioc->res_lock, flags);
 504
 505	/* Allow caller to force a search through the entire resource space */
 506	if (likely(use_hint)) {
 507		res_ptr = ioc->res_hint;
 508	} else {
 509		res_ptr = (ulong *)ioc->res_map;
 510		ioc->res_bitshift = 0;
 511	}
 512
 513	/*
 514	 * N.B.  REO/Grande defect AR2305 can cause TLB fetch timeouts
 515	 * if a TLB entry is purged while in use.  sba_mark_invalid()
 516	 * purges IOTLB entries in power-of-two sizes, so we also
 517	 * allocate IOVA space in power-of-two sizes.
 518	 */
 519	bits_wanted = 1UL << get_iovp_order(bits_wanted << iovp_shift);
 520
 521	if (likely(bits_wanted == 1)) {
 522		unsigned int bitshiftcnt;
 523		for(; res_ptr < res_end ; res_ptr++) {
 524			if (likely(*res_ptr != ~0UL)) {
 525				bitshiftcnt = ffz(*res_ptr);
 526				*res_ptr |= (1UL << bitshiftcnt);
 527				pide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
 528				ioc->res_bitshift = bitshiftcnt + bits_wanted;
 529				goto found_it;
 530			}
 531		}
 532		goto not_found;
 533
 534	}
 535	
 536	if (likely(bits_wanted <= BITS_PER_LONG/2)) {
 537		/*
 538		** Search the resource bit map on well-aligned values.
 539		** "o" is the alignment.
 540		** We need the alignment to invalidate I/O TLB using
 541		** SBA HW features in the unmap path.
 542		*/
 543		unsigned long o = 1 << get_iovp_order(bits_wanted << iovp_shift);
 544		uint bitshiftcnt = ROUNDUP(ioc->res_bitshift, o);
 545		unsigned long mask, base_mask;
 546
 547		base_mask = RESMAP_MASK(bits_wanted);
 548		mask = base_mask << bitshiftcnt;
 549
 550		DBG_RES("%s() o %ld %p", __func__, o, res_ptr);
 551		for(; res_ptr < res_end ; res_ptr++)
 552		{ 
 553			DBG_RES("    %p %lx %lx\n", res_ptr, mask, *res_ptr);
 554			ASSERT(0 != mask);
 555			for (; mask ; mask <<= o, bitshiftcnt += o) {
 556				tpide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
 557				ret = iommu_is_span_boundary(tpide, bits_wanted,
 558							     shift,
 559							     boundary_size);
 560				if ((0 == ((*res_ptr) & mask)) && !ret) {
 561					*res_ptr |= mask;     /* mark resources busy! */
 562					pide = tpide;
 563					ioc->res_bitshift = bitshiftcnt + bits_wanted;
 564					goto found_it;
 565				}
 566			}
 567
 568			bitshiftcnt = 0;
 569			mask = base_mask;
 570
 571		}
 572
 573	} else {
 574		int qwords, bits, i;
 575		unsigned long *end;
 576
 577		qwords = bits_wanted >> 6; /* /64 */
 578		bits = bits_wanted - (qwords * BITS_PER_LONG);
 579
 580		end = res_end - qwords;
 581
 582		for (; res_ptr < end; res_ptr++) {
 583			tpide = ptr_to_pide(ioc, res_ptr, 0);
 584			ret = iommu_is_span_boundary(tpide, bits_wanted,
 585						     shift, boundary_size);
 586			if (ret)
 587				goto next_ptr;
 588			for (i = 0 ; i < qwords ; i++) {
 589				if (res_ptr[i] != 0)
 590					goto next_ptr;
 591			}
 592			if (bits && res_ptr[i] && (__ffs(res_ptr[i]) < bits))
 593				continue;
 594
 595			/* Found it, mark it */
 596			for (i = 0 ; i < qwords ; i++)
 597				res_ptr[i] = ~0UL;
 598			res_ptr[i] |= RESMAP_MASK(bits);
 599
 600			pide = tpide;
 601			res_ptr += qwords;
 602			ioc->res_bitshift = bits;
 603			goto found_it;
 604next_ptr:
 605			;
 606		}
 607	}
 608
 609not_found:
 610	prefetch(ioc->res_map);
 611	ioc->res_hint = (unsigned long *) ioc->res_map;
 612	ioc->res_bitshift = 0;
 613	spin_unlock_irqrestore(&ioc->res_lock, flags);
 614	return (pide);
 615
 616found_it:
 617	ioc->res_hint = res_ptr;
 618	spin_unlock_irqrestore(&ioc->res_lock, flags);
 619	return (pide);
 620}
 621
 622
 623/**
 624 * sba_alloc_range - find free bits and mark them in IO PDIR resource bitmap
 625 * @ioc: IO MMU structure which owns the pdir we are interested in.
 626 * @size: number of bytes to create a mapping for
 627 *
 628 * Given a size, find consecutive unmarked and then mark those bits in the
 629 * resource bit map.
 630 */
 631static int
 632sba_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
 633{
 634	unsigned int pages_needed = size >> iovp_shift;
 635#ifdef PDIR_SEARCH_TIMING
 636	unsigned long itc_start;
 637#endif
 638	unsigned long pide;
 639
 640	ASSERT(pages_needed);
 641	ASSERT(0 == (size & ~iovp_mask));
 642
 643#ifdef PDIR_SEARCH_TIMING
 644	itc_start = ia64_get_itc();
 645#endif
 646	/*
 647	** "seek and ye shall find"...praying never hurts either...
 648	*/
 649	pide = sba_search_bitmap(ioc, dev, pages_needed, 1);
 650	if (unlikely(pide >= (ioc->res_size << 3))) {
 651		pide = sba_search_bitmap(ioc, dev, pages_needed, 0);
 652		if (unlikely(pide >= (ioc->res_size << 3))) {
 653#if DELAYED_RESOURCE_CNT > 0
 654			unsigned long flags;
 655
 656			/*
 657			** With delayed resource freeing, we can give this one more shot.  We're
 658			** getting close to being in trouble here, so do what we can to make this
 659			** one count.
 660			*/
 661			spin_lock_irqsave(&ioc->saved_lock, flags);
 662			if (ioc->saved_cnt > 0) {
 663				struct sba_dma_pair *d;
 664				int cnt = ioc->saved_cnt;
 665
 666				d = &(ioc->saved[ioc->saved_cnt - 1]);
 667
 668				spin_lock(&ioc->res_lock);
 669				while (cnt--) {
 670					sba_mark_invalid(ioc, d->iova, d->size);
 671					sba_free_range(ioc, d->iova, d->size);
 672					d--;
 673				}
 674				ioc->saved_cnt = 0;
 675				READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
 676				spin_unlock(&ioc->res_lock);
 677			}
 678			spin_unlock_irqrestore(&ioc->saved_lock, flags);
 679
 680			pide = sba_search_bitmap(ioc, dev, pages_needed, 0);
 681			if (unlikely(pide >= (ioc->res_size << 3))) {
 682				printk(KERN_WARNING "%s: I/O MMU @ %p is"
 683				       "out of mapping resources, %u %u %lx\n",
 684				       __func__, ioc->ioc_hpa, ioc->res_size,
 685				       pages_needed, dma_get_seg_boundary(dev));
 686				return -1;
 687			}
 688#else
 689			printk(KERN_WARNING "%s: I/O MMU @ %p is"
 690			       "out of mapping resources, %u %u %lx\n",
 691			       __func__, ioc->ioc_hpa, ioc->res_size,
 692			       pages_needed, dma_get_seg_boundary(dev));
 693			return -1;
 694#endif
 695		}
 696	}
 697
 698#ifdef PDIR_SEARCH_TIMING
 699	ioc->avg_search[ioc->avg_idx++] = (ia64_get_itc() - itc_start) / pages_needed;
 700	ioc->avg_idx &= SBA_SEARCH_SAMPLE - 1;
 701#endif
 702
 703	prefetchw(&(ioc->pdir_base[pide]));
 704
 705#ifdef ASSERT_PDIR_SANITY
 706	/* verify the first enable bit is clear */
 707	if(0x00 != ((u8 *) ioc->pdir_base)[pide*PDIR_ENTRY_SIZE + 7]) {
 708		sba_dump_pdir_entry(ioc, "sba_search_bitmap() botched it?", pide);
 709	}
 710#endif
 711
 712	DBG_RES("%s(%x) %d -> %lx hint %x/%x\n",
 713		__func__, size, pages_needed, pide,
 714		(uint) ((unsigned long) ioc->res_hint - (unsigned long) ioc->res_map),
 715		ioc->res_bitshift );
 716
 717	return (pide);
 718}
 719
 720
 721/**
 722 * sba_free_range - unmark bits in IO PDIR resource bitmap
 723 * @ioc: IO MMU structure which owns the pdir we are interested in.
 724 * @iova: IO virtual address which was previously allocated.
 725 * @size: number of bytes to create a mapping for
 726 *
 727 * clear bits in the ioc's resource map
 728 */
 729static SBA_INLINE void
 730sba_free_range(struct ioc *ioc, dma_addr_t iova, size_t size)
 731{
 732	unsigned long iovp = SBA_IOVP(ioc, iova);
 733	unsigned int pide = PDIR_INDEX(iovp);
 734	unsigned int ridx = pide >> 3;	/* convert bit to byte address */
 735	unsigned long *res_ptr = (unsigned long *) &((ioc)->res_map[ridx & ~RESMAP_IDX_MASK]);
 736	int bits_not_wanted = size >> iovp_shift;
 737	unsigned long m;
 738
 739	/* Round up to power-of-two size: see AR2305 note above */
 740	bits_not_wanted = 1UL << get_iovp_order(bits_not_wanted << iovp_shift);
 741	for (; bits_not_wanted > 0 ; res_ptr++) {
 742		
 743		if (unlikely(bits_not_wanted > BITS_PER_LONG)) {
 744
 745			/* these mappings start 64bit aligned */
 746			*res_ptr = 0UL;
 747			bits_not_wanted -= BITS_PER_LONG;
 748			pide += BITS_PER_LONG;
 749
 750		} else {
 751
 752			/* 3-bits "bit" address plus 2 (or 3) bits for "byte" == bit in word */
 753			m = RESMAP_MASK(bits_not_wanted) << (pide & (BITS_PER_LONG - 1));
 754			bits_not_wanted = 0;
 755
 756			DBG_RES("%s( ,%x,%x) %x/%lx %x %p %lx\n", __func__, (uint) iova, size,
 757			        bits_not_wanted, m, pide, res_ptr, *res_ptr);
 758
 759			ASSERT(m != 0);
 760			ASSERT(bits_not_wanted);
 761			ASSERT((*res_ptr & m) == m); /* verify same bits are set */
 762			*res_ptr &= ~m;
 763		}
 764	}
 765}
 766
 767
 768/**************************************************************
 769*
 770*   "Dynamic DMA Mapping" support (aka "Coherent I/O")
 771*
 772***************************************************************/
 773
 774/**
 775 * sba_io_pdir_entry - fill in one IO PDIR entry
 776 * @pdir_ptr:  pointer to IO PDIR entry
 777 * @vba: Virtual CPU address of buffer to map
 778 *
 779 * SBA Mapping Routine
 780 *
 781 * Given a virtual address (vba, arg1) sba_io_pdir_entry()
 782 * loads the I/O PDIR entry pointed to by pdir_ptr (arg0).
 783 * Each IO Pdir entry consists of 8 bytes as shown below
 784 * (LSB == bit 0):
 785 *
 786 *  63                    40                                 11    7        0
 787 * +-+---------------------+----------------------------------+----+--------+
 788 * |V|        U            |            PPN[39:12]            | U  |   FF   |
 789 * +-+---------------------+----------------------------------+----+--------+
 790 *
 791 *  V  == Valid Bit
 792 *  U  == Unused
 793 * PPN == Physical Page Number
 794 *
 795 * The physical address fields are filled with the results of virt_to_phys()
 796 * on the vba.
 797 */
 798
 799#if 1
 800#define sba_io_pdir_entry(pdir_ptr, vba) *pdir_ptr = ((vba & ~0xE000000000000FFFULL)	\
 801						      | 0x8000000000000000ULL)
 802#else
 803void SBA_INLINE
 804sba_io_pdir_entry(u64 *pdir_ptr, unsigned long vba)
 805{
 806	*pdir_ptr = ((vba & ~0xE000000000000FFFULL) | 0x80000000000000FFULL);
 807}
 808#endif
 809
 810#ifdef ENABLE_MARK_CLEAN
 811/**
 812 * Since DMA is i-cache coherent, any (complete) pages that were written via
 813 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
 814 * flush them when they get mapped into an executable vm-area.
 815 */
 816static void
 817mark_clean (void *addr, size_t size)
 818{
 819	unsigned long pg_addr, end;
 820
 821	pg_addr = PAGE_ALIGN((unsigned long) addr);
 822	end = (unsigned long) addr + size;
 823	while (pg_addr + PAGE_SIZE <= end) {
 824		struct page *page = virt_to_page((void *)pg_addr);
 825		set_bit(PG_arch_1, &page->flags);
 826		pg_addr += PAGE_SIZE;
 827	}
 828}
 829#endif
 830
 831/**
 832 * sba_mark_invalid - invalidate one or more IO PDIR entries
 833 * @ioc: IO MMU structure which owns the pdir we are interested in.
 834 * @iova:  IO Virtual Address mapped earlier
 835 * @byte_cnt:  number of bytes this mapping covers.
 836 *
 837 * Marking the IO PDIR entry(ies) as Invalid and invalidate
 838 * corresponding IO TLB entry. The PCOM (Purge Command Register)
 839 * is to purge stale entries in the IO TLB when unmapping entries.
 840 *
 841 * The PCOM register supports purging of multiple pages, with a minium
 842 * of 1 page and a maximum of 2GB. Hardware requires the address be
 843 * aligned to the size of the range being purged. The size of the range
 844 * must be a power of 2. The "Cool perf optimization" in the
 845 * allocation routine helps keep that true.
 846 */
 847static SBA_INLINE void
 848sba_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
 849{
 850	u32 iovp = (u32) SBA_IOVP(ioc,iova);
 851
 852	int off = PDIR_INDEX(iovp);
 853
 854	/* Must be non-zero and rounded up */
 855	ASSERT(byte_cnt > 0);
 856	ASSERT(0 == (byte_cnt & ~iovp_mask));
 857
 858#ifdef ASSERT_PDIR_SANITY
 859	/* Assert first pdir entry is set */
 860	if (!(ioc->pdir_base[off] >> 60)) {
 861		sba_dump_pdir_entry(ioc,"sba_mark_invalid()", PDIR_INDEX(iovp));
 862	}
 863#endif
 864
 865	if (byte_cnt <= iovp_size)
 866	{
 867		ASSERT(off < ioc->pdir_size);
 868
 869		iovp |= iovp_shift;     /* set "size" field for PCOM */
 870
 871#ifndef FULL_VALID_PDIR
 872		/*
 873		** clear I/O PDIR entry "valid" bit
 874		** Do NOT clear the rest - save it for debugging.
 875		** We should only clear bits that have previously
 876		** been enabled.
 877		*/
 878		ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
 879#else
 880		/*
 881  		** If we want to maintain the PDIR as valid, put in
 882		** the spill page so devices prefetching won't
 883		** cause a hard fail.
 884		*/
 885		ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
 886#endif
 887	} else {
 888		u32 t = get_iovp_order(byte_cnt) + iovp_shift;
 889
 890		iovp |= t;
 891		ASSERT(t <= 31);   /* 2GB! Max value of "size" field */
 892
 893		do {
 894			/* verify this pdir entry is enabled */
 895			ASSERT(ioc->pdir_base[off]  >> 63);
 896#ifndef FULL_VALID_PDIR
 897			/* clear I/O Pdir entry "valid" bit first */
 898			ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
 899#else
 900			ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
 901#endif
 902			off++;
 903			byte_cnt -= iovp_size;
 904		} while (byte_cnt > 0);
 905	}
 906
 907	WRITE_REG(iovp | ioc->ibase, ioc->ioc_hpa+IOC_PCOM);
 908}
 909
 910/**
 911 * sba_map_single_attrs - map one buffer and return IOVA for DMA
 912 * @dev: instance of PCI owned by the driver that's asking.
 913 * @addr:  driver buffer to map.
 914 * @size:  number of bytes to map in driver buffer.
 915 * @dir:  R/W or both.
 
 916 * @attrs: optional dma attributes
 917 *
 918 * See Documentation/PCI/PCI-DMA-mapping.txt
 919 */
 920static dma_addr_t sba_map_page(struct device *dev, struct page *page,
 921			       unsigned long poff, size_t size,
 922			       enum dma_data_direction dir,
 923			       struct dma_attrs *attrs)
 924{
 925	struct ioc *ioc;
 926	void *addr = page_address(page) + poff;
 927	dma_addr_t iovp;
 928	dma_addr_t offset;
 929	u64 *pdir_start;
 930	int pide;
 931#ifdef ASSERT_PDIR_SANITY
 932	unsigned long flags;
 933#endif
 934#ifdef ALLOW_IOV_BYPASS
 935	unsigned long pci_addr = virt_to_phys(addr);
 936#endif
 937
 938#ifdef ALLOW_IOV_BYPASS
 939	ASSERT(to_pci_dev(dev)->dma_mask);
 940	/*
 941 	** Check if the PCI device can DMA to ptr... if so, just return ptr
 942 	*/
 943	if (likely((pci_addr & ~to_pci_dev(dev)->dma_mask) == 0)) {
 944		/*
 945 		** Device is bit capable of DMA'ing to the buffer...
 946		** just return the PCI address of ptr
 947 		*/
 948		DBG_BYPASS("sba_map_single_attrs() bypass mask/addr: "
 949			   "0x%lx/0x%lx\n",
 950		           to_pci_dev(dev)->dma_mask, pci_addr);
 951		return pci_addr;
 952	}
 953#endif
 954	ioc = GET_IOC(dev);
 955	ASSERT(ioc);
 956
 957	prefetch(ioc->res_hint);
 958
 959	ASSERT(size > 0);
 960	ASSERT(size <= DMA_CHUNK_SIZE);
 961
 962	/* save offset bits */
 963	offset = ((dma_addr_t) (long) addr) & ~iovp_mask;
 964
 965	/* round up to nearest iovp_size */
 966	size = (size + offset + ~iovp_mask) & iovp_mask;
 967
 968#ifdef ASSERT_PDIR_SANITY
 969	spin_lock_irqsave(&ioc->res_lock, flags);
 970	if (sba_check_pdir(ioc,"Check before sba_map_single_attrs()"))
 971		panic("Sanity check failed");
 972	spin_unlock_irqrestore(&ioc->res_lock, flags);
 973#endif
 974
 975	pide = sba_alloc_range(ioc, dev, size);
 976	if (pide < 0)
 977		return 0;
 978
 979	iovp = (dma_addr_t) pide << iovp_shift;
 980
 981	DBG_RUN("%s() 0x%p -> 0x%lx\n", __func__, addr, (long) iovp | offset);
 982
 983	pdir_start = &(ioc->pdir_base[pide]);
 984
 985	while (size > 0) {
 986		ASSERT(((u8 *)pdir_start)[7] == 0); /* verify availability */
 987		sba_io_pdir_entry(pdir_start, (unsigned long) addr);
 988
 989		DBG_RUN("     pdir 0x%p %lx\n", pdir_start, *pdir_start);
 990
 991		addr += iovp_size;
 992		size -= iovp_size;
 993		pdir_start++;
 994	}
 995	/* force pdir update */
 996	wmb();
 997
 998	/* form complete address */
 999#ifdef ASSERT_PDIR_SANITY
1000	spin_lock_irqsave(&ioc->res_lock, flags);
1001	sba_check_pdir(ioc,"Check after sba_map_single_attrs()");
1002	spin_unlock_irqrestore(&ioc->res_lock, flags);
1003#endif
1004	return SBA_IOVA(ioc, iovp, offset);
1005}
1006
1007static dma_addr_t sba_map_single_attrs(struct device *dev, void *addr,
1008				       size_t size, enum dma_data_direction dir,
1009				       struct dma_attrs *attrs)
1010{
1011	return sba_map_page(dev, virt_to_page(addr),
1012			    (unsigned long)addr & ~PAGE_MASK, size, dir, attrs);
1013}
1014
1015#ifdef ENABLE_MARK_CLEAN
1016static SBA_INLINE void
1017sba_mark_clean(struct ioc *ioc, dma_addr_t iova, size_t size)
1018{
1019	u32	iovp = (u32) SBA_IOVP(ioc,iova);
1020	int	off = PDIR_INDEX(iovp);
1021	void	*addr;
1022
1023	if (size <= iovp_size) {
1024		addr = phys_to_virt(ioc->pdir_base[off] &
1025		                    ~0xE000000000000FFFULL);
1026		mark_clean(addr, size);
1027	} else {
1028		do {
1029			addr = phys_to_virt(ioc->pdir_base[off] &
1030			                    ~0xE000000000000FFFULL);
1031			mark_clean(addr, min(size, iovp_size));
1032			off++;
1033			size -= iovp_size;
1034		} while (size > 0);
1035	}
1036}
1037#endif
1038
1039/**
1040 * sba_unmap_single_attrs - unmap one IOVA and free resources
1041 * @dev: instance of PCI owned by the driver that's asking.
1042 * @iova:  IOVA of driver buffer previously mapped.
1043 * @size:  number of bytes mapped in driver buffer.
1044 * @dir:  R/W or both.
1045 * @attrs: optional dma attributes
1046 *
1047 * See Documentation/PCI/PCI-DMA-mapping.txt
1048 */
1049static void sba_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
1050			   enum dma_data_direction dir, struct dma_attrs *attrs)
1051{
1052	struct ioc *ioc;
1053#if DELAYED_RESOURCE_CNT > 0
1054	struct sba_dma_pair *d;
1055#endif
1056	unsigned long flags;
1057	dma_addr_t offset;
1058
1059	ioc = GET_IOC(dev);
1060	ASSERT(ioc);
1061
1062#ifdef ALLOW_IOV_BYPASS
1063	if (likely((iova & ioc->imask) != ioc->ibase)) {
1064		/*
1065		** Address does not fall w/in IOVA, must be bypassing
1066		*/
1067		DBG_BYPASS("sba_unmap_single_attrs() bypass addr: 0x%lx\n",
1068			   iova);
1069
1070#ifdef ENABLE_MARK_CLEAN
1071		if (dir == DMA_FROM_DEVICE) {
1072			mark_clean(phys_to_virt(iova), size);
1073		}
1074#endif
1075		return;
1076	}
1077#endif
1078	offset = iova & ~iovp_mask;
1079
1080	DBG_RUN("%s() iovp 0x%lx/%x\n", __func__, (long) iova, size);
1081
1082	iova ^= offset;        /* clear offset bits */
1083	size += offset;
1084	size = ROUNDUP(size, iovp_size);
1085
1086#ifdef ENABLE_MARK_CLEAN
1087	if (dir == DMA_FROM_DEVICE)
1088		sba_mark_clean(ioc, iova, size);
1089#endif
1090
1091#if DELAYED_RESOURCE_CNT > 0
1092	spin_lock_irqsave(&ioc->saved_lock, flags);
1093	d = &(ioc->saved[ioc->saved_cnt]);
1094	d->iova = iova;
1095	d->size = size;
1096	if (unlikely(++(ioc->saved_cnt) >= DELAYED_RESOURCE_CNT)) {
1097		int cnt = ioc->saved_cnt;
1098		spin_lock(&ioc->res_lock);
1099		while (cnt--) {
1100			sba_mark_invalid(ioc, d->iova, d->size);
1101			sba_free_range(ioc, d->iova, d->size);
1102			d--;
1103		}
1104		ioc->saved_cnt = 0;
1105		READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
1106		spin_unlock(&ioc->res_lock);
1107	}
1108	spin_unlock_irqrestore(&ioc->saved_lock, flags);
1109#else /* DELAYED_RESOURCE_CNT == 0 */
1110	spin_lock_irqsave(&ioc->res_lock, flags);
1111	sba_mark_invalid(ioc, iova, size);
1112	sba_free_range(ioc, iova, size);
1113	READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
1114	spin_unlock_irqrestore(&ioc->res_lock, flags);
1115#endif /* DELAYED_RESOURCE_CNT == 0 */
1116}
1117
1118void sba_unmap_single_attrs(struct device *dev, dma_addr_t iova, size_t size,
1119			    enum dma_data_direction dir, struct dma_attrs *attrs)
1120{
1121	sba_unmap_page(dev, iova, size, dir, attrs);
1122}
1123
1124/**
1125 * sba_alloc_coherent - allocate/map shared mem for DMA
1126 * @dev: instance of PCI owned by the driver that's asking.
1127 * @size:  number of bytes mapped in driver buffer.
1128 * @dma_handle:  IOVA of new buffer.
1129 *
1130 * See Documentation/PCI/PCI-DMA-mapping.txt
1131 */
1132static void *
1133sba_alloc_coherent (struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flags)
 
1134{
 
1135	struct ioc *ioc;
 
1136	void *addr;
1137
1138	ioc = GET_IOC(dev);
1139	ASSERT(ioc);
1140
1141#ifdef CONFIG_NUMA
1142	{
1143		struct page *page;
1144		page = alloc_pages_exact_node(ioc->node == MAX_NUMNODES ?
1145		                        numa_node_id() : ioc->node, flags,
1146		                        get_order(size));
1147
1148		if (unlikely(!page))
1149			return NULL;
1150
1151		addr = page_address(page);
1152	}
1153#else
1154	addr = (void *) __get_free_pages(flags, get_order(size));
1155#endif
1156	if (unlikely(!addr))
1157		return NULL;
1158
 
1159	memset(addr, 0, size);
1160	*dma_handle = virt_to_phys(addr);
1161
1162#ifdef ALLOW_IOV_BYPASS
1163	ASSERT(dev->coherent_dma_mask);
1164	/*
1165 	** Check if the PCI device can DMA to ptr... if so, just return ptr
1166 	*/
1167	if (likely((*dma_handle & ~dev->coherent_dma_mask) == 0)) {
1168		DBG_BYPASS("sba_alloc_coherent() bypass mask/addr: 0x%lx/0x%lx\n",
1169		           dev->coherent_dma_mask, *dma_handle);
1170
1171		return addr;
1172	}
1173#endif
1174
1175	/*
1176	 * If device can't bypass or bypass is disabled, pass the 32bit fake
1177	 * device to map single to get an iova mapping.
1178	 */
1179	*dma_handle = sba_map_single_attrs(&ioc->sac_only_dev->dev, addr,
1180					   size, 0, NULL);
1181
 
1182	return addr;
1183}
1184
1185
1186/**
1187 * sba_free_coherent - free/unmap shared mem for DMA
1188 * @dev: instance of PCI owned by the driver that's asking.
1189 * @size:  number of bytes mapped in driver buffer.
1190 * @vaddr:  virtual address IOVA of "consistent" buffer.
1191 * @dma_handler:  IO virtual address of "consistent" buffer.
1192 *
1193 * See Documentation/PCI/PCI-DMA-mapping.txt
1194 */
1195static void sba_free_coherent (struct device *dev, size_t size, void *vaddr,
1196			       dma_addr_t dma_handle)
1197{
1198	sba_unmap_single_attrs(dev, dma_handle, size, 0, NULL);
1199	free_pages((unsigned long) vaddr, get_order(size));
1200}
1201
1202
1203/*
1204** Since 0 is a valid pdir_base index value, can't use that
1205** to determine if a value is valid or not. Use a flag to indicate
1206** the SG list entry contains a valid pdir index.
1207*/
1208#define PIDE_FLAG 0x1UL
1209
1210#ifdef DEBUG_LARGE_SG_ENTRIES
1211int dump_run_sg = 0;
1212#endif
1213
1214
1215/**
1216 * sba_fill_pdir - write allocated SG entries into IO PDIR
1217 * @ioc: IO MMU structure which owns the pdir we are interested in.
1218 * @startsg:  list of IOVA/size pairs
1219 * @nents: number of entries in startsg list
1220 *
1221 * Take preprocessed SG list and write corresponding entries
1222 * in the IO PDIR.
1223 */
1224
1225static SBA_INLINE int
1226sba_fill_pdir(
1227	struct ioc *ioc,
1228	struct scatterlist *startsg,
1229	int nents)
1230{
1231	struct scatterlist *dma_sg = startsg;	/* pointer to current DMA */
1232	int n_mappings = 0;
1233	u64 *pdirp = NULL;
1234	unsigned long dma_offset = 0;
1235
1236	while (nents-- > 0) {
1237		int     cnt = startsg->dma_length;
1238		startsg->dma_length = 0;
1239
1240#ifdef DEBUG_LARGE_SG_ENTRIES
1241		if (dump_run_sg)
1242			printk(" %2d : %08lx/%05x %p\n",
1243				nents, startsg->dma_address, cnt,
1244				sba_sg_address(startsg));
1245#else
1246		DBG_RUN_SG(" %d : %08lx/%05x %p\n",
1247				nents, startsg->dma_address, cnt,
1248				sba_sg_address(startsg));
1249#endif
1250		/*
1251		** Look for the start of a new DMA stream
1252		*/
1253		if (startsg->dma_address & PIDE_FLAG) {
1254			u32 pide = startsg->dma_address & ~PIDE_FLAG;
1255			dma_offset = (unsigned long) pide & ~iovp_mask;
1256			startsg->dma_address = 0;
1257			if (n_mappings)
1258				dma_sg = sg_next(dma_sg);
1259			dma_sg->dma_address = pide | ioc->ibase;
1260			pdirp = &(ioc->pdir_base[pide >> iovp_shift]);
1261			n_mappings++;
1262		}
1263
1264		/*
1265		** Look for a VCONTIG chunk
1266		*/
1267		if (cnt) {
1268			unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
1269			ASSERT(pdirp);
1270
1271			/* Since multiple Vcontig blocks could make up
1272			** one DMA stream, *add* cnt to dma_len.
1273			*/
1274			dma_sg->dma_length += cnt;
1275			cnt += dma_offset;
1276			dma_offset=0;	/* only want offset on first chunk */
1277			cnt = ROUNDUP(cnt, iovp_size);
1278			do {
1279				sba_io_pdir_entry(pdirp, vaddr);
1280				vaddr += iovp_size;
1281				cnt -= iovp_size;
1282				pdirp++;
1283			} while (cnt > 0);
1284		}
1285		startsg = sg_next(startsg);
1286	}
1287	/* force pdir update */
1288	wmb();
1289
1290#ifdef DEBUG_LARGE_SG_ENTRIES
1291	dump_run_sg = 0;
1292#endif
1293	return(n_mappings);
1294}
1295
1296
1297/*
1298** Two address ranges are DMA contiguous *iff* "end of prev" and
1299** "start of next" are both on an IOV page boundary.
1300**
1301** (shift left is a quick trick to mask off upper bits)
1302*/
1303#define DMA_CONTIG(__X, __Y) \
1304	(((((unsigned long) __X) | ((unsigned long) __Y)) << (BITS_PER_LONG - iovp_shift)) == 0UL)
1305
1306
1307/**
1308 * sba_coalesce_chunks - preprocess the SG list
1309 * @ioc: IO MMU structure which owns the pdir we are interested in.
1310 * @startsg:  list of IOVA/size pairs
1311 * @nents: number of entries in startsg list
1312 *
1313 * First pass is to walk the SG list and determine where the breaks are
1314 * in the DMA stream. Allocates PDIR entries but does not fill them.
1315 * Returns the number of DMA chunks.
1316 *
1317 * Doing the fill separate from the coalescing/allocation keeps the
1318 * code simpler. Future enhancement could make one pass through
1319 * the sglist do both.
1320 */
1321static SBA_INLINE int
1322sba_coalesce_chunks(struct ioc *ioc, struct device *dev,
1323	struct scatterlist *startsg,
1324	int nents)
1325{
1326	struct scatterlist *vcontig_sg;    /* VCONTIG chunk head */
1327	unsigned long vcontig_len;         /* len of VCONTIG chunk */
1328	unsigned long vcontig_end;
1329	struct scatterlist *dma_sg;        /* next DMA stream head */
1330	unsigned long dma_offset, dma_len; /* start/len of DMA stream */
1331	int n_mappings = 0;
1332	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1333	int idx;
1334
1335	while (nents > 0) {
1336		unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
1337
1338		/*
1339		** Prepare for first/next DMA stream
1340		*/
1341		dma_sg = vcontig_sg = startsg;
1342		dma_len = vcontig_len = vcontig_end = startsg->length;
1343		vcontig_end +=  vaddr;
1344		dma_offset = vaddr & ~iovp_mask;
1345
1346		/* PARANOID: clear entries */
1347		startsg->dma_address = startsg->dma_length = 0;
1348
1349		/*
1350		** This loop terminates one iteration "early" since
1351		** it's always looking one "ahead".
1352		*/
1353		while (--nents > 0) {
1354			unsigned long vaddr;	/* tmp */
1355
1356			startsg = sg_next(startsg);
1357
1358			/* PARANOID */
1359			startsg->dma_address = startsg->dma_length = 0;
1360
1361			/* catch brokenness in SCSI layer */
1362			ASSERT(startsg->length <= DMA_CHUNK_SIZE);
1363
1364			/*
1365			** First make sure current dma stream won't
1366			** exceed DMA_CHUNK_SIZE if we coalesce the
1367			** next entry.
1368			*/
1369			if (((dma_len + dma_offset + startsg->length + ~iovp_mask) & iovp_mask)
1370			    > DMA_CHUNK_SIZE)
1371				break;
1372
1373			if (dma_len + startsg->length > max_seg_size)
1374				break;
1375
1376			/*
1377			** Then look for virtually contiguous blocks.
1378			**
1379			** append the next transaction?
1380			*/
1381			vaddr = (unsigned long) sba_sg_address(startsg);
1382			if  (vcontig_end == vaddr)
1383			{
1384				vcontig_len += startsg->length;
1385				vcontig_end += startsg->length;
1386				dma_len     += startsg->length;
1387				continue;
1388			}
1389
1390#ifdef DEBUG_LARGE_SG_ENTRIES
1391			dump_run_sg = (vcontig_len > iovp_size);
1392#endif
1393
1394			/*
1395			** Not virtually contiguous.
1396			** Terminate prev chunk.
1397			** Start a new chunk.
1398			**
1399			** Once we start a new VCONTIG chunk, dma_offset
1400			** can't change. And we need the offset from the first
1401			** chunk - not the last one. Ergo Successive chunks
1402			** must start on page boundaries and dove tail
1403			** with it's predecessor.
1404			*/
1405			vcontig_sg->dma_length = vcontig_len;
1406
1407			vcontig_sg = startsg;
1408			vcontig_len = startsg->length;
1409
1410			/*
1411			** 3) do the entries end/start on page boundaries?
1412			**    Don't update vcontig_end until we've checked.
1413			*/
1414			if (DMA_CONTIG(vcontig_end, vaddr))
1415			{
1416				vcontig_end = vcontig_len + vaddr;
1417				dma_len += vcontig_len;
1418				continue;
1419			} else {
1420				break;
1421			}
1422		}
1423
1424		/*
1425		** End of DMA Stream
1426		** Terminate last VCONTIG block.
1427		** Allocate space for DMA stream.
1428		*/
1429		vcontig_sg->dma_length = vcontig_len;
1430		dma_len = (dma_len + dma_offset + ~iovp_mask) & iovp_mask;
1431		ASSERT(dma_len <= DMA_CHUNK_SIZE);
1432		idx = sba_alloc_range(ioc, dev, dma_len);
1433		if (idx < 0) {
1434			dma_sg->dma_length = 0;
1435			return -1;
1436		}
1437		dma_sg->dma_address = (dma_addr_t)(PIDE_FLAG | (idx << iovp_shift)
1438						   | dma_offset);
1439		n_mappings++;
1440	}
1441
1442	return n_mappings;
1443}
1444
1445static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist,
1446			       int nents, enum dma_data_direction dir,
1447			       struct dma_attrs *attrs);
1448/**
1449 * sba_map_sg - map Scatter/Gather list
1450 * @dev: instance of PCI owned by the driver that's asking.
1451 * @sglist:  array of buffer/length pairs
1452 * @nents:  number of entries in list
1453 * @dir:  R/W or both.
1454 * @attrs: optional dma attributes
1455 *
1456 * See Documentation/PCI/PCI-DMA-mapping.txt
1457 */
1458static int sba_map_sg_attrs(struct device *dev, struct scatterlist *sglist,
1459			    int nents, enum dma_data_direction dir,
1460			    struct dma_attrs *attrs)
1461{
1462	struct ioc *ioc;
1463	int coalesced, filled = 0;
1464#ifdef ASSERT_PDIR_SANITY
1465	unsigned long flags;
1466#endif
1467#ifdef ALLOW_IOV_BYPASS_SG
1468	struct scatterlist *sg;
1469#endif
1470
1471	DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
1472	ioc = GET_IOC(dev);
1473	ASSERT(ioc);
1474
1475#ifdef ALLOW_IOV_BYPASS_SG
1476	ASSERT(to_pci_dev(dev)->dma_mask);
1477	if (likely((ioc->dma_mask & ~to_pci_dev(dev)->dma_mask) == 0)) {
1478		for_each_sg(sglist, sg, nents, filled) {
1479			sg->dma_length = sg->length;
1480			sg->dma_address = virt_to_phys(sba_sg_address(sg));
1481		}
1482		return filled;
1483	}
1484#endif
1485	/* Fast path single entry scatterlists. */
1486	if (nents == 1) {
1487		sglist->dma_length = sglist->length;
1488		sglist->dma_address = sba_map_single_attrs(dev, sba_sg_address(sglist), sglist->length, dir, attrs);
 
 
 
1489		return 1;
1490	}
1491
1492#ifdef ASSERT_PDIR_SANITY
1493	spin_lock_irqsave(&ioc->res_lock, flags);
1494	if (sba_check_pdir(ioc,"Check before sba_map_sg_attrs()"))
1495	{
1496		sba_dump_sg(ioc, sglist, nents);
1497		panic("Check before sba_map_sg_attrs()");
1498	}
1499	spin_unlock_irqrestore(&ioc->res_lock, flags);
1500#endif
1501
1502	prefetch(ioc->res_hint);
1503
1504	/*
1505	** First coalesce the chunks and allocate I/O pdir space
1506	**
1507	** If this is one DMA stream, we can properly map using the
1508	** correct virtual address associated with each DMA page.
1509	** w/o this association, we wouldn't have coherent DMA!
1510	** Access to the virtual address is what forces a two pass algorithm.
1511	*/
1512	coalesced = sba_coalesce_chunks(ioc, dev, sglist, nents);
1513	if (coalesced < 0) {
1514		sba_unmap_sg_attrs(dev, sglist, nents, dir, attrs);
1515		return 0;
1516	}
1517
1518	/*
1519	** Program the I/O Pdir
1520	**
1521	** map the virtual addresses to the I/O Pdir
1522	** o dma_address will contain the pdir index
1523	** o dma_len will contain the number of bytes to map
1524	** o address contains the virtual address.
1525	*/
1526	filled = sba_fill_pdir(ioc, sglist, nents);
1527
1528#ifdef ASSERT_PDIR_SANITY
1529	spin_lock_irqsave(&ioc->res_lock, flags);
1530	if (sba_check_pdir(ioc,"Check after sba_map_sg_attrs()"))
1531	{
1532		sba_dump_sg(ioc, sglist, nents);
1533		panic("Check after sba_map_sg_attrs()\n");
1534	}
1535	spin_unlock_irqrestore(&ioc->res_lock, flags);
1536#endif
1537
1538	ASSERT(coalesced == filled);
1539	DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
1540
1541	return filled;
1542}
1543
1544/**
1545 * sba_unmap_sg_attrs - unmap Scatter/Gather list
1546 * @dev: instance of PCI owned by the driver that's asking.
1547 * @sglist:  array of buffer/length pairs
1548 * @nents:  number of entries in list
1549 * @dir:  R/W or both.
1550 * @attrs: optional dma attributes
1551 *
1552 * See Documentation/PCI/PCI-DMA-mapping.txt
1553 */
1554static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist,
1555			       int nents, enum dma_data_direction dir,
1556			       struct dma_attrs *attrs)
1557{
1558#ifdef ASSERT_PDIR_SANITY
1559	struct ioc *ioc;
1560	unsigned long flags;
1561#endif
1562
1563	DBG_RUN_SG("%s() START %d entries,  %p,%x\n",
1564		   __func__, nents, sba_sg_address(sglist), sglist->length);
1565
1566#ifdef ASSERT_PDIR_SANITY
1567	ioc = GET_IOC(dev);
1568	ASSERT(ioc);
1569
1570	spin_lock_irqsave(&ioc->res_lock, flags);
1571	sba_check_pdir(ioc,"Check before sba_unmap_sg_attrs()");
1572	spin_unlock_irqrestore(&ioc->res_lock, flags);
1573#endif
1574
1575	while (nents && sglist->dma_length) {
1576
1577		sba_unmap_single_attrs(dev, sglist->dma_address,
1578				       sglist->dma_length, dir, attrs);
1579		sglist = sg_next(sglist);
1580		nents--;
1581	}
1582
1583	DBG_RUN_SG("%s() DONE (nents %d)\n", __func__,  nents);
1584
1585#ifdef ASSERT_PDIR_SANITY
1586	spin_lock_irqsave(&ioc->res_lock, flags);
1587	sba_check_pdir(ioc,"Check after sba_unmap_sg_attrs()");
1588	spin_unlock_irqrestore(&ioc->res_lock, flags);
1589#endif
1590
1591}
1592
1593/**************************************************************
1594*
1595*   Initialization and claim
1596*
1597***************************************************************/
1598
1599static void __init
1600ioc_iova_init(struct ioc *ioc)
1601{
1602	int tcnfg;
1603	int agp_found = 0;
1604	struct pci_dev *device = NULL;
1605#ifdef FULL_VALID_PDIR
1606	unsigned long index;
1607#endif
1608
1609	/*
1610	** Firmware programs the base and size of a "safe IOVA space"
1611	** (one that doesn't overlap memory or LMMIO space) in the
1612	** IBASE and IMASK registers.
1613	*/
1614	ioc->ibase = READ_REG(ioc->ioc_hpa + IOC_IBASE) & ~0x1UL;
1615	ioc->imask = READ_REG(ioc->ioc_hpa + IOC_IMASK) | 0xFFFFFFFF00000000UL;
1616
1617	ioc->iov_size = ~ioc->imask + 1;
1618
1619	DBG_INIT("%s() hpa %p IOV base 0x%lx mask 0x%lx (%dMB)\n",
1620		__func__, ioc->ioc_hpa, ioc->ibase, ioc->imask,
1621		ioc->iov_size >> 20);
1622
1623	switch (iovp_size) {
1624		case  4*1024: tcnfg = 0; break;
1625		case  8*1024: tcnfg = 1; break;
1626		case 16*1024: tcnfg = 2; break;
1627		case 64*1024: tcnfg = 3; break;
1628		default:
1629			panic(PFX "Unsupported IOTLB page size %ldK",
1630				iovp_size >> 10);
1631			break;
1632	}
1633	WRITE_REG(tcnfg, ioc->ioc_hpa + IOC_TCNFG);
1634
1635	ioc->pdir_size = (ioc->iov_size / iovp_size) * PDIR_ENTRY_SIZE;
1636	ioc->pdir_base = (void *) __get_free_pages(GFP_KERNEL,
1637						   get_order(ioc->pdir_size));
1638	if (!ioc->pdir_base)
1639		panic(PFX "Couldn't allocate I/O Page Table\n");
1640
1641	memset(ioc->pdir_base, 0, ioc->pdir_size);
1642
1643	DBG_INIT("%s() IOV page size %ldK pdir %p size %x\n", __func__,
1644		iovp_size >> 10, ioc->pdir_base, ioc->pdir_size);
1645
1646	ASSERT(ALIGN((unsigned long) ioc->pdir_base, 4*1024) == (unsigned long) ioc->pdir_base);
1647	WRITE_REG(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE);
1648
1649	/*
1650	** If an AGP device is present, only use half of the IOV space
1651	** for PCI DMA.  Unfortunately we can't know ahead of time
1652	** whether GART support will actually be used, for now we
1653	** can just key on an AGP device found in the system.
1654	** We program the next pdir index after we stop w/ a key for
1655	** the GART code to handshake on.
1656	*/
1657	for_each_pci_dev(device)	
1658		agp_found |= pci_find_capability(device, PCI_CAP_ID_AGP);
1659
1660	if (agp_found && reserve_sba_gart) {
1661		printk(KERN_INFO PFX "reserving %dMb of IOVA space at 0x%lx for agpgart\n",
1662		      ioc->iov_size/2 >> 20, ioc->ibase + ioc->iov_size/2);
1663		ioc->pdir_size /= 2;
1664		((u64 *)ioc->pdir_base)[PDIR_INDEX(ioc->iov_size/2)] = ZX1_SBA_IOMMU_COOKIE;
1665	}
1666#ifdef FULL_VALID_PDIR
1667	/*
1668  	** Check to see if the spill page has been allocated, we don't need more than
1669	** one across multiple SBAs.
1670	*/
1671	if (!prefetch_spill_page) {
1672		char *spill_poison = "SBAIOMMU POISON";
1673		int poison_size = 16;
1674		void *poison_addr, *addr;
1675
1676		addr = (void *)__get_free_pages(GFP_KERNEL, get_order(iovp_size));
1677		if (!addr)
1678			panic(PFX "Couldn't allocate PDIR spill page\n");
1679
1680		poison_addr = addr;
1681		for ( ; (u64) poison_addr < addr + iovp_size; poison_addr += poison_size)
1682			memcpy(poison_addr, spill_poison, poison_size);
1683
1684		prefetch_spill_page = virt_to_phys(addr);
1685
1686		DBG_INIT("%s() prefetch spill addr: 0x%lx\n", __func__, prefetch_spill_page);
1687	}
1688	/*
1689  	** Set all the PDIR entries valid w/ the spill page as the target
1690	*/
1691	for (index = 0 ; index < (ioc->pdir_size / PDIR_ENTRY_SIZE) ; index++)
1692		((u64 *)ioc->pdir_base)[index] = (0x80000000000000FF | prefetch_spill_page);
1693#endif
1694
1695	/* Clear I/O TLB of any possible entries */
1696	WRITE_REG(ioc->ibase | (get_iovp_order(ioc->iov_size) + iovp_shift), ioc->ioc_hpa + IOC_PCOM);
1697	READ_REG(ioc->ioc_hpa + IOC_PCOM);
1698
1699	/* Enable IOVA translation */
1700	WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa + IOC_IBASE);
1701	READ_REG(ioc->ioc_hpa + IOC_IBASE);
1702}
1703
1704static void __init
1705ioc_resource_init(struct ioc *ioc)
1706{
1707	spin_lock_init(&ioc->res_lock);
1708#if DELAYED_RESOURCE_CNT > 0
1709	spin_lock_init(&ioc->saved_lock);
1710#endif
1711
1712	/* resource map size dictated by pdir_size */
1713	ioc->res_size = ioc->pdir_size / PDIR_ENTRY_SIZE; /* entries */
1714	ioc->res_size >>= 3;  /* convert bit count to byte count */
1715	DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1716
1717	ioc->res_map = (char *) __get_free_pages(GFP_KERNEL,
1718						 get_order(ioc->res_size));
1719	if (!ioc->res_map)
1720		panic(PFX "Couldn't allocate resource map\n");
1721
1722	memset(ioc->res_map, 0, ioc->res_size);
1723	/* next available IOVP - circular search */
1724	ioc->res_hint = (unsigned long *) ioc->res_map;
1725
1726#ifdef ASSERT_PDIR_SANITY
1727	/* Mark first bit busy - ie no IOVA 0 */
1728	ioc->res_map[0] = 0x1;
1729	ioc->pdir_base[0] = 0x8000000000000000ULL | ZX1_SBA_IOMMU_COOKIE;
1730#endif
1731#ifdef FULL_VALID_PDIR
1732	/* Mark the last resource used so we don't prefetch beyond IOVA space */
1733	ioc->res_map[ioc->res_size - 1] |= 0x80UL; /* res_map is chars */
1734	ioc->pdir_base[(ioc->pdir_size / PDIR_ENTRY_SIZE) - 1] = (0x80000000000000FF
1735							      | prefetch_spill_page);
1736#endif
1737
1738	DBG_INIT("%s() res_map %x %p\n", __func__,
1739		 ioc->res_size, (void *) ioc->res_map);
1740}
1741
1742static void __init
1743ioc_sac_init(struct ioc *ioc)
1744{
1745	struct pci_dev *sac = NULL;
1746	struct pci_controller *controller = NULL;
1747
1748	/*
1749	 * pci_alloc_coherent() must return a DMA address which is
1750	 * SAC (single address cycle) addressable, so allocate a
1751	 * pseudo-device to enforce that.
1752	 */
1753	sac = kzalloc(sizeof(*sac), GFP_KERNEL);
1754	if (!sac)
1755		panic(PFX "Couldn't allocate struct pci_dev");
1756
1757	controller = kzalloc(sizeof(*controller), GFP_KERNEL);
1758	if (!controller)
1759		panic(PFX "Couldn't allocate struct pci_controller");
1760
1761	controller->iommu = ioc;
1762	sac->sysdata = controller;
1763	sac->dma_mask = 0xFFFFFFFFUL;
1764#ifdef CONFIG_PCI
1765	sac->dev.bus = &pci_bus_type;
1766#endif
1767	ioc->sac_only_dev = sac;
1768}
1769
1770static void __init
1771ioc_zx1_init(struct ioc *ioc)
1772{
1773	unsigned long rope_config;
1774	unsigned int i;
1775
1776	if (ioc->rev < 0x20)
1777		panic(PFX "IOC 2.0 or later required for IOMMU support\n");
1778
1779	/* 38 bit memory controller + extra bit for range displaced by MMIO */
1780	ioc->dma_mask = (0x1UL << 39) - 1;
1781
1782	/*
1783	** Clear ROPE(N)_CONFIG AO bit.
1784	** Disables "NT Ordering" (~= !"Relaxed Ordering")
1785	** Overrides bit 1 in DMA Hint Sets.
1786	** Improves netperf UDP_STREAM by ~10% for tg3 on bcm5701.
1787	*/
1788	for (i=0; i<(8*8); i+=8) {
1789		rope_config = READ_REG(ioc->ioc_hpa + IOC_ROPE0_CFG + i);
1790		rope_config &= ~IOC_ROPE_AO;
1791		WRITE_REG(rope_config, ioc->ioc_hpa + IOC_ROPE0_CFG + i);
1792	}
1793}
1794
1795typedef void (initfunc)(struct ioc *);
1796
1797struct ioc_iommu {
1798	u32 func_id;
1799	char *name;
1800	initfunc *init;
1801};
1802
1803static struct ioc_iommu ioc_iommu_info[] __initdata = {
1804	{ ZX1_IOC_ID, "zx1", ioc_zx1_init },
1805	{ ZX2_IOC_ID, "zx2", NULL },
1806	{ SX1000_IOC_ID, "sx1000", NULL },
1807	{ SX2000_IOC_ID, "sx2000", NULL },
1808};
1809
1810static struct ioc * __init
1811ioc_init(unsigned long hpa, void *handle)
1812{
1813	struct ioc *ioc;
1814	struct ioc_iommu *info;
1815
1816	ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
1817	if (!ioc)
1818		return NULL;
1819
1820	ioc->next = ioc_list;
1821	ioc_list = ioc;
1822
1823	ioc->handle = handle;
1824	ioc->ioc_hpa = ioremap(hpa, 0x1000);
1825
1826	ioc->func_id = READ_REG(ioc->ioc_hpa + IOC_FUNC_ID);
1827	ioc->rev = READ_REG(ioc->ioc_hpa + IOC_FCLASS) & 0xFFUL;
1828	ioc->dma_mask = 0xFFFFFFFFFFFFFFFFUL;	/* conservative */
1829
1830	for (info = ioc_iommu_info; info < ioc_iommu_info + ARRAY_SIZE(ioc_iommu_info); info++) {
1831		if (ioc->func_id == info->func_id) {
1832			ioc->name = info->name;
1833			if (info->init)
1834				(info->init)(ioc);
1835		}
1836	}
1837
1838	iovp_size = (1 << iovp_shift);
1839	iovp_mask = ~(iovp_size - 1);
1840
1841	DBG_INIT("%s: PAGE_SIZE %ldK, iovp_size %ldK\n", __func__,
1842		PAGE_SIZE >> 10, iovp_size >> 10);
1843
1844	if (!ioc->name) {
1845		ioc->name = kmalloc(24, GFP_KERNEL);
1846		if (ioc->name)
1847			sprintf((char *) ioc->name, "Unknown (%04x:%04x)",
1848				ioc->func_id & 0xFFFF, (ioc->func_id >> 16) & 0xFFFF);
1849		else
1850			ioc->name = "Unknown";
1851	}
1852
1853	ioc_iova_init(ioc);
1854	ioc_resource_init(ioc);
1855	ioc_sac_init(ioc);
1856
1857	if ((long) ~iovp_mask > (long) ia64_max_iommu_merge_mask)
1858		ia64_max_iommu_merge_mask = ~iovp_mask;
1859
1860	printk(KERN_INFO PFX
1861		"%s %d.%d HPA 0x%lx IOVA space %dMb at 0x%lx\n",
1862		ioc->name, (ioc->rev >> 4) & 0xF, ioc->rev & 0xF,
1863		hpa, ioc->iov_size >> 20, ioc->ibase);
1864
1865	return ioc;
1866}
1867
1868
1869
1870/**************************************************************************
1871**
1872**   SBA initialization code (HW and SW)
1873**
1874**   o identify SBA chip itself
1875**   o FIXME: initialize DMA hints for reasonable defaults
1876**
1877**************************************************************************/
1878
1879#ifdef CONFIG_PROC_FS
1880static void *
1881ioc_start(struct seq_file *s, loff_t *pos)
1882{
1883	struct ioc *ioc;
1884	loff_t n = *pos;
1885
1886	for (ioc = ioc_list; ioc; ioc = ioc->next)
1887		if (!n--)
1888			return ioc;
1889
1890	return NULL;
1891}
1892
1893static void *
1894ioc_next(struct seq_file *s, void *v, loff_t *pos)
1895{
1896	struct ioc *ioc = v;
1897
1898	++*pos;
1899	return ioc->next;
1900}
1901
1902static void
1903ioc_stop(struct seq_file *s, void *v)
1904{
1905}
1906
1907static int
1908ioc_show(struct seq_file *s, void *v)
1909{
1910	struct ioc *ioc = v;
1911	unsigned long *res_ptr = (unsigned long *)ioc->res_map;
1912	int i, used = 0;
1913
1914	seq_printf(s, "Hewlett Packard %s IOC rev %d.%d\n",
1915		ioc->name, ((ioc->rev >> 4) & 0xF), (ioc->rev & 0xF));
1916#ifdef CONFIG_NUMA
1917	if (ioc->node != MAX_NUMNODES)
1918		seq_printf(s, "NUMA node       : %d\n", ioc->node);
1919#endif
1920	seq_printf(s, "IOVA size       : %ld MB\n", ((ioc->pdir_size >> 3) * iovp_size)/(1024*1024));
1921	seq_printf(s, "IOVA page size  : %ld kb\n", iovp_size/1024);
1922
1923	for (i = 0; i < (ioc->res_size / sizeof(unsigned long)); ++i, ++res_ptr)
1924		used += hweight64(*res_ptr);
1925
1926	seq_printf(s, "PDIR size       : %d entries\n", ioc->pdir_size >> 3);
1927	seq_printf(s, "PDIR used       : %d entries\n", used);
1928
1929#ifdef PDIR_SEARCH_TIMING
1930	{
1931		unsigned long i = 0, avg = 0, min, max;
1932		min = max = ioc->avg_search[0];
1933		for (i = 0; i < SBA_SEARCH_SAMPLE; i++) {
1934			avg += ioc->avg_search[i];
1935			if (ioc->avg_search[i] > max) max = ioc->avg_search[i];
1936			if (ioc->avg_search[i] < min) min = ioc->avg_search[i];
1937		}
1938		avg /= SBA_SEARCH_SAMPLE;
1939		seq_printf(s, "Bitmap search   : %ld/%ld/%ld (min/avg/max CPU Cycles/IOVA page)\n",
1940		           min, avg, max);
1941	}
1942#endif
1943#ifndef ALLOW_IOV_BYPASS
1944	 seq_printf(s, "IOVA bypass disabled\n");
1945#endif
1946	return 0;
1947}
1948
1949static const struct seq_operations ioc_seq_ops = {
1950	.start = ioc_start,
1951	.next  = ioc_next,
1952	.stop  = ioc_stop,
1953	.show  = ioc_show
1954};
1955
1956static int
1957ioc_open(struct inode *inode, struct file *file)
1958{
1959	return seq_open(file, &ioc_seq_ops);
1960}
1961
1962static const struct file_operations ioc_fops = {
1963	.open    = ioc_open,
1964	.read    = seq_read,
1965	.llseek  = seq_lseek,
1966	.release = seq_release
1967};
1968
1969static void __init
1970ioc_proc_init(void)
1971{
1972	struct proc_dir_entry *dir;
1973
1974	dir = proc_mkdir("bus/mckinley", NULL);
1975	if (!dir)
1976		return;
1977
1978	proc_create(ioc_list->name, 0, dir, &ioc_fops);
1979}
1980#endif
1981
1982static void
1983sba_connect_bus(struct pci_bus *bus)
1984{
1985	acpi_handle handle, parent;
1986	acpi_status status;
1987	struct ioc *ioc;
1988
1989	if (!PCI_CONTROLLER(bus))
1990		panic(PFX "no sysdata on bus %d!\n", bus->number);
1991
1992	if (PCI_CONTROLLER(bus)->iommu)
1993		return;
1994
1995	handle = PCI_CONTROLLER(bus)->acpi_handle;
1996	if (!handle)
1997		return;
1998
1999	/*
2000	 * The IOC scope encloses PCI root bridges in the ACPI
2001	 * namespace, so work our way out until we find an IOC we
2002	 * claimed previously.
2003	 */
2004	do {
2005		for (ioc = ioc_list; ioc; ioc = ioc->next)
2006			if (ioc->handle == handle) {
2007				PCI_CONTROLLER(bus)->iommu = ioc;
2008				return;
2009			}
2010
2011		status = acpi_get_parent(handle, &parent);
2012		handle = parent;
2013	} while (ACPI_SUCCESS(status));
2014
2015	printk(KERN_WARNING "No IOC for PCI Bus %04x:%02x in ACPI\n", pci_domain_nr(bus), bus->number);
2016}
2017
2018#ifdef CONFIG_NUMA
2019static void __init
2020sba_map_ioc_to_node(struct ioc *ioc, acpi_handle handle)
2021{
 
2022	unsigned int node;
2023	int pxm;
2024
2025	ioc->node = MAX_NUMNODES;
2026
2027	pxm = acpi_get_pxm(handle);
2028
2029	if (pxm < 0)
2030		return;
2031
2032	node = pxm_to_node(pxm);
2033
2034	if (node >= MAX_NUMNODES || !node_online(node))
2035		return;
2036
2037	ioc->node = node;
2038	return;
2039}
2040#else
2041#define sba_map_ioc_to_node(ioc, handle)
2042#endif
2043
2044static int __init
2045acpi_sba_ioc_add(struct acpi_device *device)
2046{
2047	struct ioc *ioc;
2048	acpi_status status;
2049	u64 hpa, length;
2050	struct acpi_device_info *adi;
2051
2052	status = hp_acpi_csr_space(device->handle, &hpa, &length);
 
2053	if (ACPI_FAILURE(status))
2054		return 1;
2055
2056	status = acpi_get_object_info(device->handle, &adi);
2057	if (ACPI_FAILURE(status))
2058		return 1;
2059
2060	/*
2061	 * For HWP0001, only SBA appears in ACPI namespace.  It encloses the PCI
2062	 * root bridges, and its CSR space includes the IOC function.
2063	 */
2064	if (strncmp("HWP0001", adi->hardware_id.string, 7) == 0) {
2065		hpa += ZX1_IOC_OFFSET;
2066		/* zx1 based systems default to kernel page size iommu pages */
2067		if (!iovp_shift)
2068			iovp_shift = min(PAGE_SHIFT, 16);
2069	}
2070	kfree(adi);
2071
2072	/*
2073	 * default anything not caught above or specified on cmdline to 4k
2074	 * iommu page size
2075	 */
2076	if (!iovp_shift)
2077		iovp_shift = 12;
2078
2079	ioc = ioc_init(hpa, device->handle);
2080	if (!ioc)
2081		return 1;
 
2082
2083	/* setup NUMA node association */
2084	sba_map_ioc_to_node(ioc, device->handle);
2085	return 0;
2086}
2087
2088static const struct acpi_device_id hp_ioc_iommu_device_ids[] = {
2089	{"HWP0001", 0},
2090	{"HWP0004", 0},
2091	{"", 0},
2092};
2093static struct acpi_driver acpi_sba_ioc_driver = {
2094	.name		= "IOC IOMMU Driver",
2095	.ids		= hp_ioc_iommu_device_ids,
2096	.ops		= {
2097		.add	= acpi_sba_ioc_add,
2098	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2099};
2100
2101extern struct dma_map_ops swiotlb_dma_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2102
2103static int __init
2104sba_init(void)
2105{
2106	if (!ia64_platform_is("hpzx1") && !ia64_platform_is("hpzx1_swiotlb"))
2107		return 0;
2108
2109#if defined(CONFIG_IA64_GENERIC)
2110	/* If we are booting a kdump kernel, the sba_iommu will
2111	 * cause devices that were not shutdown properly to MCA
2112	 * as soon as they are turned back on.  Our only option for
2113	 * a successful kdump kernel boot is to use the swiotlb.
2114	 */
2115	if (is_kdump_kernel()) {
2116		dma_ops = &swiotlb_dma_ops;
2117		if (swiotlb_late_init_with_default_size(64 * (1<<20)) != 0)
2118			panic("Unable to initialize software I/O TLB:"
2119				  " Try machvec=dig boot option");
2120		machvec_init("dig");
2121		return 0;
2122	}
2123#endif
2124
2125	acpi_bus_register_driver(&acpi_sba_ioc_driver);
2126	if (!ioc_list) {
2127#ifdef CONFIG_IA64_GENERIC
2128		/*
2129		 * If we didn't find something sba_iommu can claim, we
2130		 * need to setup the swiotlb and switch to the dig machvec.
2131		 */
2132		dma_ops = &swiotlb_dma_ops;
2133		if (swiotlb_late_init_with_default_size(64 * (1<<20)) != 0)
2134			panic("Unable to find SBA IOMMU or initialize "
2135			      "software I/O TLB: Try machvec=dig boot option");
2136		machvec_init("dig");
2137#else
2138		panic("Unable to find SBA IOMMU: Try a generic or DIG kernel");
2139#endif
2140		return 0;
2141	}
2142
2143#if defined(CONFIG_IA64_GENERIC) || defined(CONFIG_IA64_HP_ZX1_SWIOTLB)
2144	/*
2145	 * hpzx1_swiotlb needs to have a fairly small swiotlb bounce
2146	 * buffer setup to support devices with smaller DMA masks than
2147	 * sba_iommu can handle.
2148	 */
2149	if (ia64_platform_is("hpzx1_swiotlb")) {
2150		extern void hwsw_init(void);
2151
2152		hwsw_init();
2153	}
2154#endif
2155
2156#ifdef CONFIG_PCI
2157	{
2158		struct pci_bus *b = NULL;
2159		while ((b = pci_find_next_bus(b)) != NULL)
2160			sba_connect_bus(b);
2161	}
2162#endif
 
 
 
2163
2164#ifdef CONFIG_PROC_FS
2165	ioc_proc_init();
2166#endif
2167	return 0;
2168}
2169
2170subsys_initcall(sba_init); /* must be initialized after ACPI etc., but before any drivers... */
2171
2172static int __init
2173nosbagart(char *str)
2174{
2175	reserve_sba_gart = 0;
2176	return 1;
2177}
2178
2179static int sba_dma_supported (struct device *dev, u64 mask)
2180{
2181	/* make sure it's at least 32bit capable */
2182	return ((mask & 0xFFFFFFFFUL) == 0xFFFFFFFFUL);
2183}
2184
2185static int sba_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
2186{
2187	return 0;
2188}
2189
2190__setup("nosbagart", nosbagart);
2191
2192static int __init
2193sba_page_override(char *str)
2194{
2195	unsigned long page_size;
2196
2197	page_size = memparse(str, &str);
2198	switch (page_size) {
2199		case 4096:
2200		case 8192:
2201		case 16384:
2202		case 65536:
2203			iovp_shift = ffs(page_size) - 1;
2204			break;
2205		default:
2206			printk("%s: unknown/unsupported iommu page size %ld\n",
2207			       __func__, page_size);
2208	}
2209
2210	return 1;
2211}
2212
2213__setup("sbapagesize=",sba_page_override);
2214
2215struct dma_map_ops sba_dma_ops = {
2216	.alloc_coherent		= sba_alloc_coherent,
2217	.free_coherent		= sba_free_coherent,
2218	.map_page		= sba_map_page,
2219	.unmap_page		= sba_unmap_page,
2220	.map_sg			= sba_map_sg_attrs,
2221	.unmap_sg		= sba_unmap_sg_attrs,
2222	.sync_single_for_cpu	= machvec_dma_sync_single,
2223	.sync_sg_for_cpu	= machvec_dma_sync_sg,
2224	.sync_single_for_device	= machvec_dma_sync_single,
2225	.sync_sg_for_device	= machvec_dma_sync_sg,
2226	.dma_supported		= sba_dma_supported,
2227	.mapping_error		= sba_dma_mapping_error,
2228};
2229
2230void sba_dma_init(void)
2231{
2232	dma_ops = &sba_dma_ops;
2233}