Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/kernel/ptrace.c
4 *
5 * (C) Copyright 1999 Linus Torvalds
6 *
7 * Common interfaces for "ptrace()" which we do not want
8 * to continually duplicate across every architecture.
9 */
10
11#include <linux/capability.h>
12#include <linux/export.h>
13#include <linux/sched.h>
14#include <linux/sched/mm.h>
15#include <linux/sched/coredump.h>
16#include <linux/sched/task.h>
17#include <linux/errno.h>
18#include <linux/mm.h>
19#include <linux/highmem.h>
20#include <linux/pagemap.h>
21#include <linux/ptrace.h>
22#include <linux/security.h>
23#include <linux/signal.h>
24#include <linux/uio.h>
25#include <linux/audit.h>
26#include <linux/pid_namespace.h>
27#include <linux/syscalls.h>
28#include <linux/uaccess.h>
29#include <linux/regset.h>
30#include <linux/hw_breakpoint.h>
31#include <linux/cn_proc.h>
32#include <linux/compat.h>
33#include <linux/sched/signal.h>
34
35#include <asm/syscall.h> /* for syscall_get_* */
36
37/*
38 * Access another process' address space via ptrace.
39 * Source/target buffer must be kernel space,
40 * Do not walk the page table directly, use get_user_pages
41 */
42int ptrace_access_vm(struct task_struct *tsk, unsigned long addr,
43 void *buf, int len, unsigned int gup_flags)
44{
45 struct mm_struct *mm;
46 int ret;
47
48 mm = get_task_mm(tsk);
49 if (!mm)
50 return 0;
51
52 if (!tsk->ptrace ||
53 (current != tsk->parent) ||
54 ((get_dumpable(mm) != SUID_DUMP_USER) &&
55 !ptracer_capable(tsk, mm->user_ns))) {
56 mmput(mm);
57 return 0;
58 }
59
60 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
61 mmput(mm);
62
63 return ret;
64}
65
66
67void __ptrace_link(struct task_struct *child, struct task_struct *new_parent,
68 const struct cred *ptracer_cred)
69{
70 BUG_ON(!list_empty(&child->ptrace_entry));
71 list_add(&child->ptrace_entry, &new_parent->ptraced);
72 child->parent = new_parent;
73 child->ptracer_cred = get_cred(ptracer_cred);
74}
75
76/*
77 * ptrace a task: make the debugger its new parent and
78 * move it to the ptrace list.
79 *
80 * Must be called with the tasklist lock write-held.
81 */
82static void ptrace_link(struct task_struct *child, struct task_struct *new_parent)
83{
84 __ptrace_link(child, new_parent, current_cred());
85}
86
87/**
88 * __ptrace_unlink - unlink ptracee and restore its execution state
89 * @child: ptracee to be unlinked
90 *
91 * Remove @child from the ptrace list, move it back to the original parent,
92 * and restore the execution state so that it conforms to the group stop
93 * state.
94 *
95 * Unlinking can happen via two paths - explicit PTRACE_DETACH or ptracer
96 * exiting. For PTRACE_DETACH, unless the ptracee has been killed between
97 * ptrace_check_attach() and here, it's guaranteed to be in TASK_TRACED.
98 * If the ptracer is exiting, the ptracee can be in any state.
99 *
100 * After detach, the ptracee should be in a state which conforms to the
101 * group stop. If the group is stopped or in the process of stopping, the
102 * ptracee should be put into TASK_STOPPED; otherwise, it should be woken
103 * up from TASK_TRACED.
104 *
105 * If the ptracee is in TASK_TRACED and needs to be moved to TASK_STOPPED,
106 * it goes through TRACED -> RUNNING -> STOPPED transition which is similar
107 * to but in the opposite direction of what happens while attaching to a
108 * stopped task. However, in this direction, the intermediate RUNNING
109 * state is not hidden even from the current ptracer and if it immediately
110 * re-attaches and performs a WNOHANG wait(2), it may fail.
111 *
112 * CONTEXT:
113 * write_lock_irq(tasklist_lock)
114 */
115void __ptrace_unlink(struct task_struct *child)
116{
117 const struct cred *old_cred;
118 BUG_ON(!child->ptrace);
119
120 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
121#ifdef TIF_SYSCALL_EMU
122 clear_tsk_thread_flag(child, TIF_SYSCALL_EMU);
123#endif
124
125 child->parent = child->real_parent;
126 list_del_init(&child->ptrace_entry);
127 old_cred = child->ptracer_cred;
128 child->ptracer_cred = NULL;
129 put_cred(old_cred);
130
131 spin_lock(&child->sighand->siglock);
132 child->ptrace = 0;
133 /*
134 * Clear all pending traps and TRAPPING. TRAPPING should be
135 * cleared regardless of JOBCTL_STOP_PENDING. Do it explicitly.
136 */
137 task_clear_jobctl_pending(child, JOBCTL_TRAP_MASK);
138 task_clear_jobctl_trapping(child);
139
140 /*
141 * Reinstate JOBCTL_STOP_PENDING if group stop is in effect and
142 * @child isn't dead.
143 */
144 if (!(child->flags & PF_EXITING) &&
145 (child->signal->flags & SIGNAL_STOP_STOPPED ||
146 child->signal->group_stop_count)) {
147 child->jobctl |= JOBCTL_STOP_PENDING;
148
149 /*
150 * This is only possible if this thread was cloned by the
151 * traced task running in the stopped group, set the signal
152 * for the future reports.
153 * FIXME: we should change ptrace_init_task() to handle this
154 * case.
155 */
156 if (!(child->jobctl & JOBCTL_STOP_SIGMASK))
157 child->jobctl |= SIGSTOP;
158 }
159
160 /*
161 * If transition to TASK_STOPPED is pending or in TASK_TRACED, kick
162 * @child in the butt. Note that @resume should be used iff @child
163 * is in TASK_TRACED; otherwise, we might unduly disrupt
164 * TASK_KILLABLE sleeps.
165 */
166 if (child->jobctl & JOBCTL_STOP_PENDING || task_is_traced(child))
167 ptrace_signal_wake_up(child, true);
168
169 spin_unlock(&child->sighand->siglock);
170}
171
172/* Ensure that nothing can wake it up, even SIGKILL */
173static bool ptrace_freeze_traced(struct task_struct *task)
174{
175 bool ret = false;
176
177 /* Lockless, nobody but us can set this flag */
178 if (task->jobctl & JOBCTL_LISTENING)
179 return ret;
180
181 spin_lock_irq(&task->sighand->siglock);
182 if (task_is_traced(task) && !__fatal_signal_pending(task)) {
183 task->state = __TASK_TRACED;
184 ret = true;
185 }
186 spin_unlock_irq(&task->sighand->siglock);
187
188 return ret;
189}
190
191static void ptrace_unfreeze_traced(struct task_struct *task)
192{
193 if (task->state != __TASK_TRACED)
194 return;
195
196 WARN_ON(!task->ptrace || task->parent != current);
197
198 /*
199 * PTRACE_LISTEN can allow ptrace_trap_notify to wake us up remotely.
200 * Recheck state under the lock to close this race.
201 */
202 spin_lock_irq(&task->sighand->siglock);
203 if (task->state == __TASK_TRACED) {
204 if (__fatal_signal_pending(task))
205 wake_up_state(task, __TASK_TRACED);
206 else
207 task->state = TASK_TRACED;
208 }
209 spin_unlock_irq(&task->sighand->siglock);
210}
211
212/**
213 * ptrace_check_attach - check whether ptracee is ready for ptrace operation
214 * @child: ptracee to check for
215 * @ignore_state: don't check whether @child is currently %TASK_TRACED
216 *
217 * Check whether @child is being ptraced by %current and ready for further
218 * ptrace operations. If @ignore_state is %false, @child also should be in
219 * %TASK_TRACED state and on return the child is guaranteed to be traced
220 * and not executing. If @ignore_state is %true, @child can be in any
221 * state.
222 *
223 * CONTEXT:
224 * Grabs and releases tasklist_lock and @child->sighand->siglock.
225 *
226 * RETURNS:
227 * 0 on success, -ESRCH if %child is not ready.
228 */
229static int ptrace_check_attach(struct task_struct *child, bool ignore_state)
230{
231 int ret = -ESRCH;
232
233 /*
234 * We take the read lock around doing both checks to close a
235 * possible race where someone else was tracing our child and
236 * detached between these two checks. After this locked check,
237 * we are sure that this is our traced child and that can only
238 * be changed by us so it's not changing right after this.
239 */
240 read_lock(&tasklist_lock);
241 if (child->ptrace && child->parent == current) {
242 WARN_ON(child->state == __TASK_TRACED);
243 /*
244 * child->sighand can't be NULL, release_task()
245 * does ptrace_unlink() before __exit_signal().
246 */
247 if (ignore_state || ptrace_freeze_traced(child))
248 ret = 0;
249 }
250 read_unlock(&tasklist_lock);
251
252 if (!ret && !ignore_state) {
253 if (!wait_task_inactive(child, __TASK_TRACED)) {
254 /*
255 * This can only happen if may_ptrace_stop() fails and
256 * ptrace_stop() changes ->state back to TASK_RUNNING,
257 * so we should not worry about leaking __TASK_TRACED.
258 */
259 WARN_ON(child->state == __TASK_TRACED);
260 ret = -ESRCH;
261 }
262 }
263
264 return ret;
265}
266
267static int ptrace_has_cap(struct user_namespace *ns, unsigned int mode)
268{
269 if (mode & PTRACE_MODE_NOAUDIT)
270 return has_ns_capability_noaudit(current, ns, CAP_SYS_PTRACE);
271 else
272 return has_ns_capability(current, ns, CAP_SYS_PTRACE);
273}
274
275/* Returns 0 on success, -errno on denial. */
276static int __ptrace_may_access(struct task_struct *task, unsigned int mode)
277{
278 const struct cred *cred = current_cred(), *tcred;
279 struct mm_struct *mm;
280 kuid_t caller_uid;
281 kgid_t caller_gid;
282
283 if (!(mode & PTRACE_MODE_FSCREDS) == !(mode & PTRACE_MODE_REALCREDS)) {
284 WARN(1, "denying ptrace access check without PTRACE_MODE_*CREDS\n");
285 return -EPERM;
286 }
287
288 /* May we inspect the given task?
289 * This check is used both for attaching with ptrace
290 * and for allowing access to sensitive information in /proc.
291 *
292 * ptrace_attach denies several cases that /proc allows
293 * because setting up the necessary parent/child relationship
294 * or halting the specified task is impossible.
295 */
296
297 /* Don't let security modules deny introspection */
298 if (same_thread_group(task, current))
299 return 0;
300 rcu_read_lock();
301 if (mode & PTRACE_MODE_FSCREDS) {
302 caller_uid = cred->fsuid;
303 caller_gid = cred->fsgid;
304 } else {
305 /*
306 * Using the euid would make more sense here, but something
307 * in userland might rely on the old behavior, and this
308 * shouldn't be a security problem since
309 * PTRACE_MODE_REALCREDS implies that the caller explicitly
310 * used a syscall that requests access to another process
311 * (and not a filesystem syscall to procfs).
312 */
313 caller_uid = cred->uid;
314 caller_gid = cred->gid;
315 }
316 tcred = __task_cred(task);
317 if (uid_eq(caller_uid, tcred->euid) &&
318 uid_eq(caller_uid, tcred->suid) &&
319 uid_eq(caller_uid, tcred->uid) &&
320 gid_eq(caller_gid, tcred->egid) &&
321 gid_eq(caller_gid, tcred->sgid) &&
322 gid_eq(caller_gid, tcred->gid))
323 goto ok;
324 if (ptrace_has_cap(tcred->user_ns, mode))
325 goto ok;
326 rcu_read_unlock();
327 return -EPERM;
328ok:
329 rcu_read_unlock();
330 /*
331 * If a task drops privileges and becomes nondumpable (through a syscall
332 * like setresuid()) while we are trying to access it, we must ensure
333 * that the dumpability is read after the credentials; otherwise,
334 * we may be able to attach to a task that we shouldn't be able to
335 * attach to (as if the task had dropped privileges without becoming
336 * nondumpable).
337 * Pairs with a write barrier in commit_creds().
338 */
339 smp_rmb();
340 mm = task->mm;
341 if (mm &&
342 ((get_dumpable(mm) != SUID_DUMP_USER) &&
343 !ptrace_has_cap(mm->user_ns, mode)))
344 return -EPERM;
345
346 return security_ptrace_access_check(task, mode);
347}
348
349bool ptrace_may_access(struct task_struct *task, unsigned int mode)
350{
351 int err;
352 task_lock(task);
353 err = __ptrace_may_access(task, mode);
354 task_unlock(task);
355 return !err;
356}
357
358static int ptrace_attach(struct task_struct *task, long request,
359 unsigned long addr,
360 unsigned long flags)
361{
362 bool seize = (request == PTRACE_SEIZE);
363 int retval;
364
365 retval = -EIO;
366 if (seize) {
367 if (addr != 0)
368 goto out;
369 if (flags & ~(unsigned long)PTRACE_O_MASK)
370 goto out;
371 flags = PT_PTRACED | PT_SEIZED | (flags << PT_OPT_FLAG_SHIFT);
372 } else {
373 flags = PT_PTRACED;
374 }
375
376 audit_ptrace(task);
377
378 retval = -EPERM;
379 if (unlikely(task->flags & PF_KTHREAD))
380 goto out;
381 if (same_thread_group(task, current))
382 goto out;
383
384 /*
385 * Protect exec's credential calculations against our interference;
386 * SUID, SGID and LSM creds get determined differently
387 * under ptrace.
388 */
389 retval = -ERESTARTNOINTR;
390 if (mutex_lock_interruptible(&task->signal->cred_guard_mutex))
391 goto out;
392
393 task_lock(task);
394 retval = __ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS);
395 task_unlock(task);
396 if (retval)
397 goto unlock_creds;
398
399 write_lock_irq(&tasklist_lock);
400 retval = -EPERM;
401 if (unlikely(task->exit_state))
402 goto unlock_tasklist;
403 if (task->ptrace)
404 goto unlock_tasklist;
405
406 if (seize)
407 flags |= PT_SEIZED;
408 task->ptrace = flags;
409
410 ptrace_link(task, current);
411
412 /* SEIZE doesn't trap tracee on attach */
413 if (!seize)
414 send_sig_info(SIGSTOP, SEND_SIG_PRIV, task);
415
416 spin_lock(&task->sighand->siglock);
417
418 /*
419 * If the task is already STOPPED, set JOBCTL_TRAP_STOP and
420 * TRAPPING, and kick it so that it transits to TRACED. TRAPPING
421 * will be cleared if the child completes the transition or any
422 * event which clears the group stop states happens. We'll wait
423 * for the transition to complete before returning from this
424 * function.
425 *
426 * This hides STOPPED -> RUNNING -> TRACED transition from the
427 * attaching thread but a different thread in the same group can
428 * still observe the transient RUNNING state. IOW, if another
429 * thread's WNOHANG wait(2) on the stopped tracee races against
430 * ATTACH, the wait(2) may fail due to the transient RUNNING.
431 *
432 * The following task_is_stopped() test is safe as both transitions
433 * in and out of STOPPED are protected by siglock.
434 */
435 if (task_is_stopped(task) &&
436 task_set_jobctl_pending(task, JOBCTL_TRAP_STOP | JOBCTL_TRAPPING))
437 signal_wake_up_state(task, __TASK_STOPPED);
438
439 spin_unlock(&task->sighand->siglock);
440
441 retval = 0;
442unlock_tasklist:
443 write_unlock_irq(&tasklist_lock);
444unlock_creds:
445 mutex_unlock(&task->signal->cred_guard_mutex);
446out:
447 if (!retval) {
448 /*
449 * We do not bother to change retval or clear JOBCTL_TRAPPING
450 * if wait_on_bit() was interrupted by SIGKILL. The tracer will
451 * not return to user-mode, it will exit and clear this bit in
452 * __ptrace_unlink() if it wasn't already cleared by the tracee;
453 * and until then nobody can ptrace this task.
454 */
455 wait_on_bit(&task->jobctl, JOBCTL_TRAPPING_BIT, TASK_KILLABLE);
456 proc_ptrace_connector(task, PTRACE_ATTACH);
457 }
458
459 return retval;
460}
461
462/**
463 * ptrace_traceme -- helper for PTRACE_TRACEME
464 *
465 * Performs checks and sets PT_PTRACED.
466 * Should be used by all ptrace implementations for PTRACE_TRACEME.
467 */
468static int ptrace_traceme(void)
469{
470 int ret = -EPERM;
471
472 write_lock_irq(&tasklist_lock);
473 /* Are we already being traced? */
474 if (!current->ptrace) {
475 ret = security_ptrace_traceme(current->parent);
476 /*
477 * Check PF_EXITING to ensure ->real_parent has not passed
478 * exit_ptrace(). Otherwise we don't report the error but
479 * pretend ->real_parent untraces us right after return.
480 */
481 if (!ret && !(current->real_parent->flags & PF_EXITING)) {
482 current->ptrace = PT_PTRACED;
483 ptrace_link(current, current->real_parent);
484 }
485 }
486 write_unlock_irq(&tasklist_lock);
487
488 return ret;
489}
490
491/*
492 * Called with irqs disabled, returns true if childs should reap themselves.
493 */
494static int ignoring_children(struct sighand_struct *sigh)
495{
496 int ret;
497 spin_lock(&sigh->siglock);
498 ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) ||
499 (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT);
500 spin_unlock(&sigh->siglock);
501 return ret;
502}
503
504/*
505 * Called with tasklist_lock held for writing.
506 * Unlink a traced task, and clean it up if it was a traced zombie.
507 * Return true if it needs to be reaped with release_task().
508 * (We can't call release_task() here because we already hold tasklist_lock.)
509 *
510 * If it's a zombie, our attachedness prevented normal parent notification
511 * or self-reaping. Do notification now if it would have happened earlier.
512 * If it should reap itself, return true.
513 *
514 * If it's our own child, there is no notification to do. But if our normal
515 * children self-reap, then this child was prevented by ptrace and we must
516 * reap it now, in that case we must also wake up sub-threads sleeping in
517 * do_wait().
518 */
519static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p)
520{
521 bool dead;
522
523 __ptrace_unlink(p);
524
525 if (p->exit_state != EXIT_ZOMBIE)
526 return false;
527
528 dead = !thread_group_leader(p);
529
530 if (!dead && thread_group_empty(p)) {
531 if (!same_thread_group(p->real_parent, tracer))
532 dead = do_notify_parent(p, p->exit_signal);
533 else if (ignoring_children(tracer->sighand)) {
534 __wake_up_parent(p, tracer);
535 dead = true;
536 }
537 }
538 /* Mark it as in the process of being reaped. */
539 if (dead)
540 p->exit_state = EXIT_DEAD;
541 return dead;
542}
543
544static int ptrace_detach(struct task_struct *child, unsigned int data)
545{
546 if (!valid_signal(data))
547 return -EIO;
548
549 /* Architecture-specific hardware disable .. */
550 ptrace_disable(child);
551
552 write_lock_irq(&tasklist_lock);
553 /*
554 * We rely on ptrace_freeze_traced(). It can't be killed and
555 * untraced by another thread, it can't be a zombie.
556 */
557 WARN_ON(!child->ptrace || child->exit_state);
558 /*
559 * tasklist_lock avoids the race with wait_task_stopped(), see
560 * the comment in ptrace_resume().
561 */
562 child->exit_code = data;
563 __ptrace_detach(current, child);
564 write_unlock_irq(&tasklist_lock);
565
566 proc_ptrace_connector(child, PTRACE_DETACH);
567
568 return 0;
569}
570
571/*
572 * Detach all tasks we were using ptrace on. Called with tasklist held
573 * for writing.
574 */
575void exit_ptrace(struct task_struct *tracer, struct list_head *dead)
576{
577 struct task_struct *p, *n;
578
579 list_for_each_entry_safe(p, n, &tracer->ptraced, ptrace_entry) {
580 if (unlikely(p->ptrace & PT_EXITKILL))
581 send_sig_info(SIGKILL, SEND_SIG_PRIV, p);
582
583 if (__ptrace_detach(tracer, p))
584 list_add(&p->ptrace_entry, dead);
585 }
586}
587
588int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len)
589{
590 int copied = 0;
591
592 while (len > 0) {
593 char buf[128];
594 int this_len, retval;
595
596 this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
597 retval = ptrace_access_vm(tsk, src, buf, this_len, FOLL_FORCE);
598
599 if (!retval) {
600 if (copied)
601 break;
602 return -EIO;
603 }
604 if (copy_to_user(dst, buf, retval))
605 return -EFAULT;
606 copied += retval;
607 src += retval;
608 dst += retval;
609 len -= retval;
610 }
611 return copied;
612}
613
614int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len)
615{
616 int copied = 0;
617
618 while (len > 0) {
619 char buf[128];
620 int this_len, retval;
621
622 this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
623 if (copy_from_user(buf, src, this_len))
624 return -EFAULT;
625 retval = ptrace_access_vm(tsk, dst, buf, this_len,
626 FOLL_FORCE | FOLL_WRITE);
627 if (!retval) {
628 if (copied)
629 break;
630 return -EIO;
631 }
632 copied += retval;
633 src += retval;
634 dst += retval;
635 len -= retval;
636 }
637 return copied;
638}
639
640static int ptrace_setoptions(struct task_struct *child, unsigned long data)
641{
642 unsigned flags;
643
644 if (data & ~(unsigned long)PTRACE_O_MASK)
645 return -EINVAL;
646
647 if (unlikely(data & PTRACE_O_SUSPEND_SECCOMP)) {
648 if (!IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) ||
649 !IS_ENABLED(CONFIG_SECCOMP))
650 return -EINVAL;
651
652 if (!capable(CAP_SYS_ADMIN))
653 return -EPERM;
654
655 if (seccomp_mode(¤t->seccomp) != SECCOMP_MODE_DISABLED ||
656 current->ptrace & PT_SUSPEND_SECCOMP)
657 return -EPERM;
658 }
659
660 /* Avoid intermediate state when all opts are cleared */
661 flags = child->ptrace;
662 flags &= ~(PTRACE_O_MASK << PT_OPT_FLAG_SHIFT);
663 flags |= (data << PT_OPT_FLAG_SHIFT);
664 child->ptrace = flags;
665
666 return 0;
667}
668
669static int ptrace_getsiginfo(struct task_struct *child, kernel_siginfo_t *info)
670{
671 unsigned long flags;
672 int error = -ESRCH;
673
674 if (lock_task_sighand(child, &flags)) {
675 error = -EINVAL;
676 if (likely(child->last_siginfo != NULL)) {
677 copy_siginfo(info, child->last_siginfo);
678 error = 0;
679 }
680 unlock_task_sighand(child, &flags);
681 }
682 return error;
683}
684
685static int ptrace_setsiginfo(struct task_struct *child, const kernel_siginfo_t *info)
686{
687 unsigned long flags;
688 int error = -ESRCH;
689
690 if (lock_task_sighand(child, &flags)) {
691 error = -EINVAL;
692 if (likely(child->last_siginfo != NULL)) {
693 copy_siginfo(child->last_siginfo, info);
694 error = 0;
695 }
696 unlock_task_sighand(child, &flags);
697 }
698 return error;
699}
700
701static int ptrace_peek_siginfo(struct task_struct *child,
702 unsigned long addr,
703 unsigned long data)
704{
705 struct ptrace_peeksiginfo_args arg;
706 struct sigpending *pending;
707 struct sigqueue *q;
708 int ret, i;
709
710 ret = copy_from_user(&arg, (void __user *) addr,
711 sizeof(struct ptrace_peeksiginfo_args));
712 if (ret)
713 return -EFAULT;
714
715 if (arg.flags & ~PTRACE_PEEKSIGINFO_SHARED)
716 return -EINVAL; /* unknown flags */
717
718 if (arg.nr < 0)
719 return -EINVAL;
720
721 /* Ensure arg.off fits in an unsigned long */
722 if (arg.off > ULONG_MAX)
723 return 0;
724
725 if (arg.flags & PTRACE_PEEKSIGINFO_SHARED)
726 pending = &child->signal->shared_pending;
727 else
728 pending = &child->pending;
729
730 for (i = 0; i < arg.nr; ) {
731 kernel_siginfo_t info;
732 unsigned long off = arg.off + i;
733 bool found = false;
734
735 spin_lock_irq(&child->sighand->siglock);
736 list_for_each_entry(q, &pending->list, list) {
737 if (!off--) {
738 found = true;
739 copy_siginfo(&info, &q->info);
740 break;
741 }
742 }
743 spin_unlock_irq(&child->sighand->siglock);
744
745 if (!found) /* beyond the end of the list */
746 break;
747
748#ifdef CONFIG_COMPAT
749 if (unlikely(in_compat_syscall())) {
750 compat_siginfo_t __user *uinfo = compat_ptr(data);
751
752 if (copy_siginfo_to_user32(uinfo, &info)) {
753 ret = -EFAULT;
754 break;
755 }
756
757 } else
758#endif
759 {
760 siginfo_t __user *uinfo = (siginfo_t __user *) data;
761
762 if (copy_siginfo_to_user(uinfo, &info)) {
763 ret = -EFAULT;
764 break;
765 }
766 }
767
768 data += sizeof(siginfo_t);
769 i++;
770
771 if (signal_pending(current))
772 break;
773
774 cond_resched();
775 }
776
777 if (i > 0)
778 return i;
779
780 return ret;
781}
782
783#ifdef PTRACE_SINGLESTEP
784#define is_singlestep(request) ((request) == PTRACE_SINGLESTEP)
785#else
786#define is_singlestep(request) 0
787#endif
788
789#ifdef PTRACE_SINGLEBLOCK
790#define is_singleblock(request) ((request) == PTRACE_SINGLEBLOCK)
791#else
792#define is_singleblock(request) 0
793#endif
794
795#ifdef PTRACE_SYSEMU
796#define is_sysemu_singlestep(request) ((request) == PTRACE_SYSEMU_SINGLESTEP)
797#else
798#define is_sysemu_singlestep(request) 0
799#endif
800
801static int ptrace_resume(struct task_struct *child, long request,
802 unsigned long data)
803{
804 bool need_siglock;
805
806 if (!valid_signal(data))
807 return -EIO;
808
809 if (request == PTRACE_SYSCALL)
810 set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
811 else
812 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
813
814#ifdef TIF_SYSCALL_EMU
815 if (request == PTRACE_SYSEMU || request == PTRACE_SYSEMU_SINGLESTEP)
816 set_tsk_thread_flag(child, TIF_SYSCALL_EMU);
817 else
818 clear_tsk_thread_flag(child, TIF_SYSCALL_EMU);
819#endif
820
821 if (is_singleblock(request)) {
822 if (unlikely(!arch_has_block_step()))
823 return -EIO;
824 user_enable_block_step(child);
825 } else if (is_singlestep(request) || is_sysemu_singlestep(request)) {
826 if (unlikely(!arch_has_single_step()))
827 return -EIO;
828 user_enable_single_step(child);
829 } else {
830 user_disable_single_step(child);
831 }
832
833 /*
834 * Change ->exit_code and ->state under siglock to avoid the race
835 * with wait_task_stopped() in between; a non-zero ->exit_code will
836 * wrongly look like another report from tracee.
837 *
838 * Note that we need siglock even if ->exit_code == data and/or this
839 * status was not reported yet, the new status must not be cleared by
840 * wait_task_stopped() after resume.
841 *
842 * If data == 0 we do not care if wait_task_stopped() reports the old
843 * status and clears the code too; this can't race with the tracee, it
844 * takes siglock after resume.
845 */
846 need_siglock = data && !thread_group_empty(current);
847 if (need_siglock)
848 spin_lock_irq(&child->sighand->siglock);
849 child->exit_code = data;
850 wake_up_state(child, __TASK_TRACED);
851 if (need_siglock)
852 spin_unlock_irq(&child->sighand->siglock);
853
854 return 0;
855}
856
857#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
858
859static const struct user_regset *
860find_regset(const struct user_regset_view *view, unsigned int type)
861{
862 const struct user_regset *regset;
863 int n;
864
865 for (n = 0; n < view->n; ++n) {
866 regset = view->regsets + n;
867 if (regset->core_note_type == type)
868 return regset;
869 }
870
871 return NULL;
872}
873
874static int ptrace_regset(struct task_struct *task, int req, unsigned int type,
875 struct iovec *kiov)
876{
877 const struct user_regset_view *view = task_user_regset_view(task);
878 const struct user_regset *regset = find_regset(view, type);
879 int regset_no;
880
881 if (!regset || (kiov->iov_len % regset->size) != 0)
882 return -EINVAL;
883
884 regset_no = regset - view->regsets;
885 kiov->iov_len = min(kiov->iov_len,
886 (__kernel_size_t) (regset->n * regset->size));
887
888 if (req == PTRACE_GETREGSET)
889 return copy_regset_to_user(task, view, regset_no, 0,
890 kiov->iov_len, kiov->iov_base);
891 else
892 return copy_regset_from_user(task, view, regset_no, 0,
893 kiov->iov_len, kiov->iov_base);
894}
895
896/*
897 * This is declared in linux/regset.h and defined in machine-dependent
898 * code. We put the export here, near the primary machine-neutral use,
899 * to ensure no machine forgets it.
900 */
901EXPORT_SYMBOL_GPL(task_user_regset_view);
902
903static unsigned long
904ptrace_get_syscall_info_entry(struct task_struct *child, struct pt_regs *regs,
905 struct ptrace_syscall_info *info)
906{
907 unsigned long args[ARRAY_SIZE(info->entry.args)];
908 int i;
909
910 info->op = PTRACE_SYSCALL_INFO_ENTRY;
911 info->entry.nr = syscall_get_nr(child, regs);
912 syscall_get_arguments(child, regs, args);
913 for (i = 0; i < ARRAY_SIZE(args); i++)
914 info->entry.args[i] = args[i];
915
916 /* args is the last field in struct ptrace_syscall_info.entry */
917 return offsetofend(struct ptrace_syscall_info, entry.args);
918}
919
920static unsigned long
921ptrace_get_syscall_info_seccomp(struct task_struct *child, struct pt_regs *regs,
922 struct ptrace_syscall_info *info)
923{
924 /*
925 * As struct ptrace_syscall_info.entry is currently a subset
926 * of struct ptrace_syscall_info.seccomp, it makes sense to
927 * initialize that subset using ptrace_get_syscall_info_entry().
928 * This can be reconsidered in the future if these structures
929 * diverge significantly enough.
930 */
931 ptrace_get_syscall_info_entry(child, regs, info);
932 info->op = PTRACE_SYSCALL_INFO_SECCOMP;
933 info->seccomp.ret_data = child->ptrace_message;
934
935 /* ret_data is the last field in struct ptrace_syscall_info.seccomp */
936 return offsetofend(struct ptrace_syscall_info, seccomp.ret_data);
937}
938
939static unsigned long
940ptrace_get_syscall_info_exit(struct task_struct *child, struct pt_regs *regs,
941 struct ptrace_syscall_info *info)
942{
943 info->op = PTRACE_SYSCALL_INFO_EXIT;
944 info->exit.rval = syscall_get_error(child, regs);
945 info->exit.is_error = !!info->exit.rval;
946 if (!info->exit.is_error)
947 info->exit.rval = syscall_get_return_value(child, regs);
948
949 /* is_error is the last field in struct ptrace_syscall_info.exit */
950 return offsetofend(struct ptrace_syscall_info, exit.is_error);
951}
952
953static int
954ptrace_get_syscall_info(struct task_struct *child, unsigned long user_size,
955 void __user *datavp)
956{
957 struct pt_regs *regs = task_pt_regs(child);
958 struct ptrace_syscall_info info = {
959 .op = PTRACE_SYSCALL_INFO_NONE,
960 .arch = syscall_get_arch(child),
961 .instruction_pointer = instruction_pointer(regs),
962 .stack_pointer = user_stack_pointer(regs),
963 };
964 unsigned long actual_size = offsetof(struct ptrace_syscall_info, entry);
965 unsigned long write_size;
966
967 /*
968 * This does not need lock_task_sighand() to access
969 * child->last_siginfo because ptrace_freeze_traced()
970 * called earlier by ptrace_check_attach() ensures that
971 * the tracee cannot go away and clear its last_siginfo.
972 */
973 switch (child->last_siginfo ? child->last_siginfo->si_code : 0) {
974 case SIGTRAP | 0x80:
975 switch (child->ptrace_message) {
976 case PTRACE_EVENTMSG_SYSCALL_ENTRY:
977 actual_size = ptrace_get_syscall_info_entry(child, regs,
978 &info);
979 break;
980 case PTRACE_EVENTMSG_SYSCALL_EXIT:
981 actual_size = ptrace_get_syscall_info_exit(child, regs,
982 &info);
983 break;
984 }
985 break;
986 case SIGTRAP | (PTRACE_EVENT_SECCOMP << 8):
987 actual_size = ptrace_get_syscall_info_seccomp(child, regs,
988 &info);
989 break;
990 }
991
992 write_size = min(actual_size, user_size);
993 return copy_to_user(datavp, &info, write_size) ? -EFAULT : actual_size;
994}
995#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
996
997int ptrace_request(struct task_struct *child, long request,
998 unsigned long addr, unsigned long data)
999{
1000 bool seized = child->ptrace & PT_SEIZED;
1001 int ret = -EIO;
1002 kernel_siginfo_t siginfo, *si;
1003 void __user *datavp = (void __user *) data;
1004 unsigned long __user *datalp = datavp;
1005 unsigned long flags;
1006
1007 switch (request) {
1008 case PTRACE_PEEKTEXT:
1009 case PTRACE_PEEKDATA:
1010 return generic_ptrace_peekdata(child, addr, data);
1011 case PTRACE_POKETEXT:
1012 case PTRACE_POKEDATA:
1013 return generic_ptrace_pokedata(child, addr, data);
1014
1015#ifdef PTRACE_OLDSETOPTIONS
1016 case PTRACE_OLDSETOPTIONS:
1017#endif
1018 case PTRACE_SETOPTIONS:
1019 ret = ptrace_setoptions(child, data);
1020 break;
1021 case PTRACE_GETEVENTMSG:
1022 ret = put_user(child->ptrace_message, datalp);
1023 break;
1024
1025 case PTRACE_PEEKSIGINFO:
1026 ret = ptrace_peek_siginfo(child, addr, data);
1027 break;
1028
1029 case PTRACE_GETSIGINFO:
1030 ret = ptrace_getsiginfo(child, &siginfo);
1031 if (!ret)
1032 ret = copy_siginfo_to_user(datavp, &siginfo);
1033 break;
1034
1035 case PTRACE_SETSIGINFO:
1036 ret = copy_siginfo_from_user(&siginfo, datavp);
1037 if (!ret)
1038 ret = ptrace_setsiginfo(child, &siginfo);
1039 break;
1040
1041 case PTRACE_GETSIGMASK: {
1042 sigset_t *mask;
1043
1044 if (addr != sizeof(sigset_t)) {
1045 ret = -EINVAL;
1046 break;
1047 }
1048
1049 if (test_tsk_restore_sigmask(child))
1050 mask = &child->saved_sigmask;
1051 else
1052 mask = &child->blocked;
1053
1054 if (copy_to_user(datavp, mask, sizeof(sigset_t)))
1055 ret = -EFAULT;
1056 else
1057 ret = 0;
1058
1059 break;
1060 }
1061
1062 case PTRACE_SETSIGMASK: {
1063 sigset_t new_set;
1064
1065 if (addr != sizeof(sigset_t)) {
1066 ret = -EINVAL;
1067 break;
1068 }
1069
1070 if (copy_from_user(&new_set, datavp, sizeof(sigset_t))) {
1071 ret = -EFAULT;
1072 break;
1073 }
1074
1075 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1076
1077 /*
1078 * Every thread does recalc_sigpending() after resume, so
1079 * retarget_shared_pending() and recalc_sigpending() are not
1080 * called here.
1081 */
1082 spin_lock_irq(&child->sighand->siglock);
1083 child->blocked = new_set;
1084 spin_unlock_irq(&child->sighand->siglock);
1085
1086 clear_tsk_restore_sigmask(child);
1087
1088 ret = 0;
1089 break;
1090 }
1091
1092 case PTRACE_INTERRUPT:
1093 /*
1094 * Stop tracee without any side-effect on signal or job
1095 * control. At least one trap is guaranteed to happen
1096 * after this request. If @child is already trapped, the
1097 * current trap is not disturbed and another trap will
1098 * happen after the current trap is ended with PTRACE_CONT.
1099 *
1100 * The actual trap might not be PTRACE_EVENT_STOP trap but
1101 * the pending condition is cleared regardless.
1102 */
1103 if (unlikely(!seized || !lock_task_sighand(child, &flags)))
1104 break;
1105
1106 /*
1107 * INTERRUPT doesn't disturb existing trap sans one
1108 * exception. If ptracer issued LISTEN for the current
1109 * STOP, this INTERRUPT should clear LISTEN and re-trap
1110 * tracee into STOP.
1111 */
1112 if (likely(task_set_jobctl_pending(child, JOBCTL_TRAP_STOP)))
1113 ptrace_signal_wake_up(child, child->jobctl & JOBCTL_LISTENING);
1114
1115 unlock_task_sighand(child, &flags);
1116 ret = 0;
1117 break;
1118
1119 case PTRACE_LISTEN:
1120 /*
1121 * Listen for events. Tracee must be in STOP. It's not
1122 * resumed per-se but is not considered to be in TRACED by
1123 * wait(2) or ptrace(2). If an async event (e.g. group
1124 * stop state change) happens, tracee will enter STOP trap
1125 * again. Alternatively, ptracer can issue INTERRUPT to
1126 * finish listening and re-trap tracee into STOP.
1127 */
1128 if (unlikely(!seized || !lock_task_sighand(child, &flags)))
1129 break;
1130
1131 si = child->last_siginfo;
1132 if (likely(si && (si->si_code >> 8) == PTRACE_EVENT_STOP)) {
1133 child->jobctl |= JOBCTL_LISTENING;
1134 /*
1135 * If NOTIFY is set, it means event happened between
1136 * start of this trap and now. Trigger re-trap.
1137 */
1138 if (child->jobctl & JOBCTL_TRAP_NOTIFY)
1139 ptrace_signal_wake_up(child, true);
1140 ret = 0;
1141 }
1142 unlock_task_sighand(child, &flags);
1143 break;
1144
1145 case PTRACE_DETACH: /* detach a process that was attached. */
1146 ret = ptrace_detach(child, data);
1147 break;
1148
1149#ifdef CONFIG_BINFMT_ELF_FDPIC
1150 case PTRACE_GETFDPIC: {
1151 struct mm_struct *mm = get_task_mm(child);
1152 unsigned long tmp = 0;
1153
1154 ret = -ESRCH;
1155 if (!mm)
1156 break;
1157
1158 switch (addr) {
1159 case PTRACE_GETFDPIC_EXEC:
1160 tmp = mm->context.exec_fdpic_loadmap;
1161 break;
1162 case PTRACE_GETFDPIC_INTERP:
1163 tmp = mm->context.interp_fdpic_loadmap;
1164 break;
1165 default:
1166 break;
1167 }
1168 mmput(mm);
1169
1170 ret = put_user(tmp, datalp);
1171 break;
1172 }
1173#endif
1174
1175#ifdef PTRACE_SINGLESTEP
1176 case PTRACE_SINGLESTEP:
1177#endif
1178#ifdef PTRACE_SINGLEBLOCK
1179 case PTRACE_SINGLEBLOCK:
1180#endif
1181#ifdef PTRACE_SYSEMU
1182 case PTRACE_SYSEMU:
1183 case PTRACE_SYSEMU_SINGLESTEP:
1184#endif
1185 case PTRACE_SYSCALL:
1186 case PTRACE_CONT:
1187 return ptrace_resume(child, request, data);
1188
1189 case PTRACE_KILL:
1190 if (child->exit_state) /* already dead */
1191 return 0;
1192 return ptrace_resume(child, request, SIGKILL);
1193
1194#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
1195 case PTRACE_GETREGSET:
1196 case PTRACE_SETREGSET: {
1197 struct iovec kiov;
1198 struct iovec __user *uiov = datavp;
1199
1200 if (!access_ok(uiov, sizeof(*uiov)))
1201 return -EFAULT;
1202
1203 if (__get_user(kiov.iov_base, &uiov->iov_base) ||
1204 __get_user(kiov.iov_len, &uiov->iov_len))
1205 return -EFAULT;
1206
1207 ret = ptrace_regset(child, request, addr, &kiov);
1208 if (!ret)
1209 ret = __put_user(kiov.iov_len, &uiov->iov_len);
1210 break;
1211 }
1212
1213 case PTRACE_GET_SYSCALL_INFO:
1214 ret = ptrace_get_syscall_info(child, addr, datavp);
1215 break;
1216#endif
1217
1218 case PTRACE_SECCOMP_GET_FILTER:
1219 ret = seccomp_get_filter(child, addr, datavp);
1220 break;
1221
1222 case PTRACE_SECCOMP_GET_METADATA:
1223 ret = seccomp_get_metadata(child, addr, datavp);
1224 break;
1225
1226 default:
1227 break;
1228 }
1229
1230 return ret;
1231}
1232
1233#ifndef arch_ptrace_attach
1234#define arch_ptrace_attach(child) do { } while (0)
1235#endif
1236
1237SYSCALL_DEFINE4(ptrace, long, request, long, pid, unsigned long, addr,
1238 unsigned long, data)
1239{
1240 struct task_struct *child;
1241 long ret;
1242
1243 if (request == PTRACE_TRACEME) {
1244 ret = ptrace_traceme();
1245 if (!ret)
1246 arch_ptrace_attach(current);
1247 goto out;
1248 }
1249
1250 child = find_get_task_by_vpid(pid);
1251 if (!child) {
1252 ret = -ESRCH;
1253 goto out;
1254 }
1255
1256 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
1257 ret = ptrace_attach(child, request, addr, data);
1258 /*
1259 * Some architectures need to do book-keeping after
1260 * a ptrace attach.
1261 */
1262 if (!ret)
1263 arch_ptrace_attach(child);
1264 goto out_put_task_struct;
1265 }
1266
1267 ret = ptrace_check_attach(child, request == PTRACE_KILL ||
1268 request == PTRACE_INTERRUPT);
1269 if (ret < 0)
1270 goto out_put_task_struct;
1271
1272 ret = arch_ptrace(child, request, addr, data);
1273 if (ret || request != PTRACE_DETACH)
1274 ptrace_unfreeze_traced(child);
1275
1276 out_put_task_struct:
1277 put_task_struct(child);
1278 out:
1279 return ret;
1280}
1281
1282int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
1283 unsigned long data)
1284{
1285 unsigned long tmp;
1286 int copied;
1287
1288 copied = ptrace_access_vm(tsk, addr, &tmp, sizeof(tmp), FOLL_FORCE);
1289 if (copied != sizeof(tmp))
1290 return -EIO;
1291 return put_user(tmp, (unsigned long __user *)data);
1292}
1293
1294int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
1295 unsigned long data)
1296{
1297 int copied;
1298
1299 copied = ptrace_access_vm(tsk, addr, &data, sizeof(data),
1300 FOLL_FORCE | FOLL_WRITE);
1301 return (copied == sizeof(data)) ? 0 : -EIO;
1302}
1303
1304#if defined CONFIG_COMPAT
1305
1306int compat_ptrace_request(struct task_struct *child, compat_long_t request,
1307 compat_ulong_t addr, compat_ulong_t data)
1308{
1309 compat_ulong_t __user *datap = compat_ptr(data);
1310 compat_ulong_t word;
1311 kernel_siginfo_t siginfo;
1312 int ret;
1313
1314 switch (request) {
1315 case PTRACE_PEEKTEXT:
1316 case PTRACE_PEEKDATA:
1317 ret = ptrace_access_vm(child, addr, &word, sizeof(word),
1318 FOLL_FORCE);
1319 if (ret != sizeof(word))
1320 ret = -EIO;
1321 else
1322 ret = put_user(word, datap);
1323 break;
1324
1325 case PTRACE_POKETEXT:
1326 case PTRACE_POKEDATA:
1327 ret = ptrace_access_vm(child, addr, &data, sizeof(data),
1328 FOLL_FORCE | FOLL_WRITE);
1329 ret = (ret != sizeof(data) ? -EIO : 0);
1330 break;
1331
1332 case PTRACE_GETEVENTMSG:
1333 ret = put_user((compat_ulong_t) child->ptrace_message, datap);
1334 break;
1335
1336 case PTRACE_GETSIGINFO:
1337 ret = ptrace_getsiginfo(child, &siginfo);
1338 if (!ret)
1339 ret = copy_siginfo_to_user32(
1340 (struct compat_siginfo __user *) datap,
1341 &siginfo);
1342 break;
1343
1344 case PTRACE_SETSIGINFO:
1345 ret = copy_siginfo_from_user32(
1346 &siginfo, (struct compat_siginfo __user *) datap);
1347 if (!ret)
1348 ret = ptrace_setsiginfo(child, &siginfo);
1349 break;
1350#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
1351 case PTRACE_GETREGSET:
1352 case PTRACE_SETREGSET:
1353 {
1354 struct iovec kiov;
1355 struct compat_iovec __user *uiov =
1356 (struct compat_iovec __user *) datap;
1357 compat_uptr_t ptr;
1358 compat_size_t len;
1359
1360 if (!access_ok(uiov, sizeof(*uiov)))
1361 return -EFAULT;
1362
1363 if (__get_user(ptr, &uiov->iov_base) ||
1364 __get_user(len, &uiov->iov_len))
1365 return -EFAULT;
1366
1367 kiov.iov_base = compat_ptr(ptr);
1368 kiov.iov_len = len;
1369
1370 ret = ptrace_regset(child, request, addr, &kiov);
1371 if (!ret)
1372 ret = __put_user(kiov.iov_len, &uiov->iov_len);
1373 break;
1374 }
1375#endif
1376
1377 default:
1378 ret = ptrace_request(child, request, addr, data);
1379 }
1380
1381 return ret;
1382}
1383
1384COMPAT_SYSCALL_DEFINE4(ptrace, compat_long_t, request, compat_long_t, pid,
1385 compat_long_t, addr, compat_long_t, data)
1386{
1387 struct task_struct *child;
1388 long ret;
1389
1390 if (request == PTRACE_TRACEME) {
1391 ret = ptrace_traceme();
1392 goto out;
1393 }
1394
1395 child = find_get_task_by_vpid(pid);
1396 if (!child) {
1397 ret = -ESRCH;
1398 goto out;
1399 }
1400
1401 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
1402 ret = ptrace_attach(child, request, addr, data);
1403 /*
1404 * Some architectures need to do book-keeping after
1405 * a ptrace attach.
1406 */
1407 if (!ret)
1408 arch_ptrace_attach(child);
1409 goto out_put_task_struct;
1410 }
1411
1412 ret = ptrace_check_attach(child, request == PTRACE_KILL ||
1413 request == PTRACE_INTERRUPT);
1414 if (!ret) {
1415 ret = compat_arch_ptrace(child, request, addr, data);
1416 if (ret || request != PTRACE_DETACH)
1417 ptrace_unfreeze_traced(child);
1418 }
1419
1420 out_put_task_struct:
1421 put_task_struct(child);
1422 out:
1423 return ret;
1424}
1425#endif /* CONFIG_COMPAT */
1/*
2 * linux/kernel/ptrace.c
3 *
4 * (C) Copyright 1999 Linus Torvalds
5 *
6 * Common interfaces for "ptrace()" which we do not want
7 * to continually duplicate across every architecture.
8 */
9
10#include <linux/capability.h>
11#include <linux/module.h>
12#include <linux/sched.h>
13#include <linux/errno.h>
14#include <linux/mm.h>
15#include <linux/highmem.h>
16#include <linux/pagemap.h>
17#include <linux/ptrace.h>
18#include <linux/security.h>
19#include <linux/signal.h>
20#include <linux/audit.h>
21#include <linux/pid_namespace.h>
22#include <linux/syscalls.h>
23#include <linux/uaccess.h>
24#include <linux/regset.h>
25#include <linux/hw_breakpoint.h>
26#include <linux/cn_proc.h>
27
28
29static int ptrace_trapping_sleep_fn(void *flags)
30{
31 schedule();
32 return 0;
33}
34
35/*
36 * ptrace a task: make the debugger its new parent and
37 * move it to the ptrace list.
38 *
39 * Must be called with the tasklist lock write-held.
40 */
41void __ptrace_link(struct task_struct *child, struct task_struct *new_parent)
42{
43 BUG_ON(!list_empty(&child->ptrace_entry));
44 list_add(&child->ptrace_entry, &new_parent->ptraced);
45 child->parent = new_parent;
46}
47
48/**
49 * __ptrace_unlink - unlink ptracee and restore its execution state
50 * @child: ptracee to be unlinked
51 *
52 * Remove @child from the ptrace list, move it back to the original parent,
53 * and restore the execution state so that it conforms to the group stop
54 * state.
55 *
56 * Unlinking can happen via two paths - explicit PTRACE_DETACH or ptracer
57 * exiting. For PTRACE_DETACH, unless the ptracee has been killed between
58 * ptrace_check_attach() and here, it's guaranteed to be in TASK_TRACED.
59 * If the ptracer is exiting, the ptracee can be in any state.
60 *
61 * After detach, the ptracee should be in a state which conforms to the
62 * group stop. If the group is stopped or in the process of stopping, the
63 * ptracee should be put into TASK_STOPPED; otherwise, it should be woken
64 * up from TASK_TRACED.
65 *
66 * If the ptracee is in TASK_TRACED and needs to be moved to TASK_STOPPED,
67 * it goes through TRACED -> RUNNING -> STOPPED transition which is similar
68 * to but in the opposite direction of what happens while attaching to a
69 * stopped task. However, in this direction, the intermediate RUNNING
70 * state is not hidden even from the current ptracer and if it immediately
71 * re-attaches and performs a WNOHANG wait(2), it may fail.
72 *
73 * CONTEXT:
74 * write_lock_irq(tasklist_lock)
75 */
76void __ptrace_unlink(struct task_struct *child)
77{
78 BUG_ON(!child->ptrace);
79
80 child->ptrace = 0;
81 child->parent = child->real_parent;
82 list_del_init(&child->ptrace_entry);
83
84 spin_lock(&child->sighand->siglock);
85
86 /*
87 * Clear all pending traps and TRAPPING. TRAPPING should be
88 * cleared regardless of JOBCTL_STOP_PENDING. Do it explicitly.
89 */
90 task_clear_jobctl_pending(child, JOBCTL_TRAP_MASK);
91 task_clear_jobctl_trapping(child);
92
93 /*
94 * Reinstate JOBCTL_STOP_PENDING if group stop is in effect and
95 * @child isn't dead.
96 */
97 if (!(child->flags & PF_EXITING) &&
98 (child->signal->flags & SIGNAL_STOP_STOPPED ||
99 child->signal->group_stop_count))
100 child->jobctl |= JOBCTL_STOP_PENDING;
101
102 /*
103 * If transition to TASK_STOPPED is pending or in TASK_TRACED, kick
104 * @child in the butt. Note that @resume should be used iff @child
105 * is in TASK_TRACED; otherwise, we might unduly disrupt
106 * TASK_KILLABLE sleeps.
107 */
108 if (child->jobctl & JOBCTL_STOP_PENDING || task_is_traced(child))
109 signal_wake_up(child, task_is_traced(child));
110
111 spin_unlock(&child->sighand->siglock);
112}
113
114/**
115 * ptrace_check_attach - check whether ptracee is ready for ptrace operation
116 * @child: ptracee to check for
117 * @ignore_state: don't check whether @child is currently %TASK_TRACED
118 *
119 * Check whether @child is being ptraced by %current and ready for further
120 * ptrace operations. If @ignore_state is %false, @child also should be in
121 * %TASK_TRACED state and on return the child is guaranteed to be traced
122 * and not executing. If @ignore_state is %true, @child can be in any
123 * state.
124 *
125 * CONTEXT:
126 * Grabs and releases tasklist_lock and @child->sighand->siglock.
127 *
128 * RETURNS:
129 * 0 on success, -ESRCH if %child is not ready.
130 */
131int ptrace_check_attach(struct task_struct *child, bool ignore_state)
132{
133 int ret = -ESRCH;
134
135 /*
136 * We take the read lock around doing both checks to close a
137 * possible race where someone else was tracing our child and
138 * detached between these two checks. After this locked check,
139 * we are sure that this is our traced child and that can only
140 * be changed by us so it's not changing right after this.
141 */
142 read_lock(&tasklist_lock);
143 if ((child->ptrace & PT_PTRACED) && child->parent == current) {
144 /*
145 * child->sighand can't be NULL, release_task()
146 * does ptrace_unlink() before __exit_signal().
147 */
148 spin_lock_irq(&child->sighand->siglock);
149 WARN_ON_ONCE(task_is_stopped(child));
150 if (ignore_state || (task_is_traced(child) &&
151 !(child->jobctl & JOBCTL_LISTENING)))
152 ret = 0;
153 spin_unlock_irq(&child->sighand->siglock);
154 }
155 read_unlock(&tasklist_lock);
156
157 if (!ret && !ignore_state)
158 ret = wait_task_inactive(child, TASK_TRACED) ? 0 : -ESRCH;
159
160 /* All systems go.. */
161 return ret;
162}
163
164int __ptrace_may_access(struct task_struct *task, unsigned int mode)
165{
166 const struct cred *cred = current_cred(), *tcred;
167
168 /* May we inspect the given task?
169 * This check is used both for attaching with ptrace
170 * and for allowing access to sensitive information in /proc.
171 *
172 * ptrace_attach denies several cases that /proc allows
173 * because setting up the necessary parent/child relationship
174 * or halting the specified task is impossible.
175 */
176 int dumpable = 0;
177 /* Don't let security modules deny introspection */
178 if (task == current)
179 return 0;
180 rcu_read_lock();
181 tcred = __task_cred(task);
182 if (cred->user->user_ns == tcred->user->user_ns &&
183 (cred->uid == tcred->euid &&
184 cred->uid == tcred->suid &&
185 cred->uid == tcred->uid &&
186 cred->gid == tcred->egid &&
187 cred->gid == tcred->sgid &&
188 cred->gid == tcred->gid))
189 goto ok;
190 if (ns_capable(tcred->user->user_ns, CAP_SYS_PTRACE))
191 goto ok;
192 rcu_read_unlock();
193 return -EPERM;
194ok:
195 rcu_read_unlock();
196 smp_rmb();
197 if (task->mm)
198 dumpable = get_dumpable(task->mm);
199 if (!dumpable && !task_ns_capable(task, CAP_SYS_PTRACE))
200 return -EPERM;
201
202 return security_ptrace_access_check(task, mode);
203}
204
205bool ptrace_may_access(struct task_struct *task, unsigned int mode)
206{
207 int err;
208 task_lock(task);
209 err = __ptrace_may_access(task, mode);
210 task_unlock(task);
211 return !err;
212}
213
214static int ptrace_attach(struct task_struct *task, long request,
215 unsigned long flags)
216{
217 bool seize = (request == PTRACE_SEIZE);
218 int retval;
219
220 /*
221 * SEIZE will enable new ptrace behaviors which will be implemented
222 * gradually. SEIZE_DEVEL is used to prevent applications
223 * expecting full SEIZE behaviors trapping on kernel commits which
224 * are still in the process of implementing them.
225 *
226 * Only test programs for new ptrace behaviors being implemented
227 * should set SEIZE_DEVEL. If unset, SEIZE will fail with -EIO.
228 *
229 * Once SEIZE behaviors are completely implemented, this flag and
230 * the following test will be removed.
231 */
232 retval = -EIO;
233 if (seize && !(flags & PTRACE_SEIZE_DEVEL))
234 goto out;
235
236 audit_ptrace(task);
237
238 retval = -EPERM;
239 if (unlikely(task->flags & PF_KTHREAD))
240 goto out;
241 if (same_thread_group(task, current))
242 goto out;
243
244 /*
245 * Protect exec's credential calculations against our interference;
246 * interference; SUID, SGID and LSM creds get determined differently
247 * under ptrace.
248 */
249 retval = -ERESTARTNOINTR;
250 if (mutex_lock_interruptible(&task->signal->cred_guard_mutex))
251 goto out;
252
253 task_lock(task);
254 retval = __ptrace_may_access(task, PTRACE_MODE_ATTACH);
255 task_unlock(task);
256 if (retval)
257 goto unlock_creds;
258
259 write_lock_irq(&tasklist_lock);
260 retval = -EPERM;
261 if (unlikely(task->exit_state))
262 goto unlock_tasklist;
263 if (task->ptrace)
264 goto unlock_tasklist;
265
266 task->ptrace = PT_PTRACED;
267 if (seize)
268 task->ptrace |= PT_SEIZED;
269 if (task_ns_capable(task, CAP_SYS_PTRACE))
270 task->ptrace |= PT_PTRACE_CAP;
271
272 __ptrace_link(task, current);
273
274 /* SEIZE doesn't trap tracee on attach */
275 if (!seize)
276 send_sig_info(SIGSTOP, SEND_SIG_FORCED, task);
277
278 spin_lock(&task->sighand->siglock);
279
280 /*
281 * If the task is already STOPPED, set JOBCTL_TRAP_STOP and
282 * TRAPPING, and kick it so that it transits to TRACED. TRAPPING
283 * will be cleared if the child completes the transition or any
284 * event which clears the group stop states happens. We'll wait
285 * for the transition to complete before returning from this
286 * function.
287 *
288 * This hides STOPPED -> RUNNING -> TRACED transition from the
289 * attaching thread but a different thread in the same group can
290 * still observe the transient RUNNING state. IOW, if another
291 * thread's WNOHANG wait(2) on the stopped tracee races against
292 * ATTACH, the wait(2) may fail due to the transient RUNNING.
293 *
294 * The following task_is_stopped() test is safe as both transitions
295 * in and out of STOPPED are protected by siglock.
296 */
297 if (task_is_stopped(task) &&
298 task_set_jobctl_pending(task, JOBCTL_TRAP_STOP | JOBCTL_TRAPPING))
299 signal_wake_up(task, 1);
300
301 spin_unlock(&task->sighand->siglock);
302
303 retval = 0;
304unlock_tasklist:
305 write_unlock_irq(&tasklist_lock);
306unlock_creds:
307 mutex_unlock(&task->signal->cred_guard_mutex);
308out:
309 if (!retval) {
310 wait_on_bit(&task->jobctl, JOBCTL_TRAPPING_BIT,
311 ptrace_trapping_sleep_fn, TASK_UNINTERRUPTIBLE);
312 proc_ptrace_connector(task, PTRACE_ATTACH);
313 }
314
315 return retval;
316}
317
318/**
319 * ptrace_traceme -- helper for PTRACE_TRACEME
320 *
321 * Performs checks and sets PT_PTRACED.
322 * Should be used by all ptrace implementations for PTRACE_TRACEME.
323 */
324static int ptrace_traceme(void)
325{
326 int ret = -EPERM;
327
328 write_lock_irq(&tasklist_lock);
329 /* Are we already being traced? */
330 if (!current->ptrace) {
331 ret = security_ptrace_traceme(current->parent);
332 /*
333 * Check PF_EXITING to ensure ->real_parent has not passed
334 * exit_ptrace(). Otherwise we don't report the error but
335 * pretend ->real_parent untraces us right after return.
336 */
337 if (!ret && !(current->real_parent->flags & PF_EXITING)) {
338 current->ptrace = PT_PTRACED;
339 __ptrace_link(current, current->real_parent);
340 }
341 }
342 write_unlock_irq(&tasklist_lock);
343
344 return ret;
345}
346
347/*
348 * Called with irqs disabled, returns true if childs should reap themselves.
349 */
350static int ignoring_children(struct sighand_struct *sigh)
351{
352 int ret;
353 spin_lock(&sigh->siglock);
354 ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) ||
355 (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT);
356 spin_unlock(&sigh->siglock);
357 return ret;
358}
359
360/*
361 * Called with tasklist_lock held for writing.
362 * Unlink a traced task, and clean it up if it was a traced zombie.
363 * Return true if it needs to be reaped with release_task().
364 * (We can't call release_task() here because we already hold tasklist_lock.)
365 *
366 * If it's a zombie, our attachedness prevented normal parent notification
367 * or self-reaping. Do notification now if it would have happened earlier.
368 * If it should reap itself, return true.
369 *
370 * If it's our own child, there is no notification to do. But if our normal
371 * children self-reap, then this child was prevented by ptrace and we must
372 * reap it now, in that case we must also wake up sub-threads sleeping in
373 * do_wait().
374 */
375static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p)
376{
377 bool dead;
378
379 __ptrace_unlink(p);
380
381 if (p->exit_state != EXIT_ZOMBIE)
382 return false;
383
384 dead = !thread_group_leader(p);
385
386 if (!dead && thread_group_empty(p)) {
387 if (!same_thread_group(p->real_parent, tracer))
388 dead = do_notify_parent(p, p->exit_signal);
389 else if (ignoring_children(tracer->sighand)) {
390 __wake_up_parent(p, tracer);
391 dead = true;
392 }
393 }
394 /* Mark it as in the process of being reaped. */
395 if (dead)
396 p->exit_state = EXIT_DEAD;
397 return dead;
398}
399
400static int ptrace_detach(struct task_struct *child, unsigned int data)
401{
402 bool dead = false;
403
404 if (!valid_signal(data))
405 return -EIO;
406
407 /* Architecture-specific hardware disable .. */
408 ptrace_disable(child);
409 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
410
411 write_lock_irq(&tasklist_lock);
412 /*
413 * This child can be already killed. Make sure de_thread() or
414 * our sub-thread doing do_wait() didn't do release_task() yet.
415 */
416 if (child->ptrace) {
417 child->exit_code = data;
418 dead = __ptrace_detach(current, child);
419 }
420 write_unlock_irq(&tasklist_lock);
421
422 proc_ptrace_connector(child, PTRACE_DETACH);
423 if (unlikely(dead))
424 release_task(child);
425
426 return 0;
427}
428
429/*
430 * Detach all tasks we were using ptrace on. Called with tasklist held
431 * for writing, and returns with it held too. But note it can release
432 * and reacquire the lock.
433 */
434void exit_ptrace(struct task_struct *tracer)
435 __releases(&tasklist_lock)
436 __acquires(&tasklist_lock)
437{
438 struct task_struct *p, *n;
439 LIST_HEAD(ptrace_dead);
440
441 if (likely(list_empty(&tracer->ptraced)))
442 return;
443
444 list_for_each_entry_safe(p, n, &tracer->ptraced, ptrace_entry) {
445 if (__ptrace_detach(tracer, p))
446 list_add(&p->ptrace_entry, &ptrace_dead);
447 }
448
449 write_unlock_irq(&tasklist_lock);
450 BUG_ON(!list_empty(&tracer->ptraced));
451
452 list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_entry) {
453 list_del_init(&p->ptrace_entry);
454 release_task(p);
455 }
456
457 write_lock_irq(&tasklist_lock);
458}
459
460int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len)
461{
462 int copied = 0;
463
464 while (len > 0) {
465 char buf[128];
466 int this_len, retval;
467
468 this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
469 retval = access_process_vm(tsk, src, buf, this_len, 0);
470 if (!retval) {
471 if (copied)
472 break;
473 return -EIO;
474 }
475 if (copy_to_user(dst, buf, retval))
476 return -EFAULT;
477 copied += retval;
478 src += retval;
479 dst += retval;
480 len -= retval;
481 }
482 return copied;
483}
484
485int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len)
486{
487 int copied = 0;
488
489 while (len > 0) {
490 char buf[128];
491 int this_len, retval;
492
493 this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
494 if (copy_from_user(buf, src, this_len))
495 return -EFAULT;
496 retval = access_process_vm(tsk, dst, buf, this_len, 1);
497 if (!retval) {
498 if (copied)
499 break;
500 return -EIO;
501 }
502 copied += retval;
503 src += retval;
504 dst += retval;
505 len -= retval;
506 }
507 return copied;
508}
509
510static int ptrace_setoptions(struct task_struct *child, unsigned long data)
511{
512 child->ptrace &= ~PT_TRACE_MASK;
513
514 if (data & PTRACE_O_TRACESYSGOOD)
515 child->ptrace |= PT_TRACESYSGOOD;
516
517 if (data & PTRACE_O_TRACEFORK)
518 child->ptrace |= PT_TRACE_FORK;
519
520 if (data & PTRACE_O_TRACEVFORK)
521 child->ptrace |= PT_TRACE_VFORK;
522
523 if (data & PTRACE_O_TRACECLONE)
524 child->ptrace |= PT_TRACE_CLONE;
525
526 if (data & PTRACE_O_TRACEEXEC)
527 child->ptrace |= PT_TRACE_EXEC;
528
529 if (data & PTRACE_O_TRACEVFORKDONE)
530 child->ptrace |= PT_TRACE_VFORK_DONE;
531
532 if (data & PTRACE_O_TRACEEXIT)
533 child->ptrace |= PT_TRACE_EXIT;
534
535 return (data & ~PTRACE_O_MASK) ? -EINVAL : 0;
536}
537
538static int ptrace_getsiginfo(struct task_struct *child, siginfo_t *info)
539{
540 unsigned long flags;
541 int error = -ESRCH;
542
543 if (lock_task_sighand(child, &flags)) {
544 error = -EINVAL;
545 if (likely(child->last_siginfo != NULL)) {
546 *info = *child->last_siginfo;
547 error = 0;
548 }
549 unlock_task_sighand(child, &flags);
550 }
551 return error;
552}
553
554static int ptrace_setsiginfo(struct task_struct *child, const siginfo_t *info)
555{
556 unsigned long flags;
557 int error = -ESRCH;
558
559 if (lock_task_sighand(child, &flags)) {
560 error = -EINVAL;
561 if (likely(child->last_siginfo != NULL)) {
562 *child->last_siginfo = *info;
563 error = 0;
564 }
565 unlock_task_sighand(child, &flags);
566 }
567 return error;
568}
569
570
571#ifdef PTRACE_SINGLESTEP
572#define is_singlestep(request) ((request) == PTRACE_SINGLESTEP)
573#else
574#define is_singlestep(request) 0
575#endif
576
577#ifdef PTRACE_SINGLEBLOCK
578#define is_singleblock(request) ((request) == PTRACE_SINGLEBLOCK)
579#else
580#define is_singleblock(request) 0
581#endif
582
583#ifdef PTRACE_SYSEMU
584#define is_sysemu_singlestep(request) ((request) == PTRACE_SYSEMU_SINGLESTEP)
585#else
586#define is_sysemu_singlestep(request) 0
587#endif
588
589static int ptrace_resume(struct task_struct *child, long request,
590 unsigned long data)
591{
592 if (!valid_signal(data))
593 return -EIO;
594
595 if (request == PTRACE_SYSCALL)
596 set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
597 else
598 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
599
600#ifdef TIF_SYSCALL_EMU
601 if (request == PTRACE_SYSEMU || request == PTRACE_SYSEMU_SINGLESTEP)
602 set_tsk_thread_flag(child, TIF_SYSCALL_EMU);
603 else
604 clear_tsk_thread_flag(child, TIF_SYSCALL_EMU);
605#endif
606
607 if (is_singleblock(request)) {
608 if (unlikely(!arch_has_block_step()))
609 return -EIO;
610 user_enable_block_step(child);
611 } else if (is_singlestep(request) || is_sysemu_singlestep(request)) {
612 if (unlikely(!arch_has_single_step()))
613 return -EIO;
614 user_enable_single_step(child);
615 } else {
616 user_disable_single_step(child);
617 }
618
619 child->exit_code = data;
620 wake_up_state(child, __TASK_TRACED);
621
622 return 0;
623}
624
625#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
626
627static const struct user_regset *
628find_regset(const struct user_regset_view *view, unsigned int type)
629{
630 const struct user_regset *regset;
631 int n;
632
633 for (n = 0; n < view->n; ++n) {
634 regset = view->regsets + n;
635 if (regset->core_note_type == type)
636 return regset;
637 }
638
639 return NULL;
640}
641
642static int ptrace_regset(struct task_struct *task, int req, unsigned int type,
643 struct iovec *kiov)
644{
645 const struct user_regset_view *view = task_user_regset_view(task);
646 const struct user_regset *regset = find_regset(view, type);
647 int regset_no;
648
649 if (!regset || (kiov->iov_len % regset->size) != 0)
650 return -EINVAL;
651
652 regset_no = regset - view->regsets;
653 kiov->iov_len = min(kiov->iov_len,
654 (__kernel_size_t) (regset->n * regset->size));
655
656 if (req == PTRACE_GETREGSET)
657 return copy_regset_to_user(task, view, regset_no, 0,
658 kiov->iov_len, kiov->iov_base);
659 else
660 return copy_regset_from_user(task, view, regset_no, 0,
661 kiov->iov_len, kiov->iov_base);
662}
663
664#endif
665
666int ptrace_request(struct task_struct *child, long request,
667 unsigned long addr, unsigned long data)
668{
669 bool seized = child->ptrace & PT_SEIZED;
670 int ret = -EIO;
671 siginfo_t siginfo, *si;
672 void __user *datavp = (void __user *) data;
673 unsigned long __user *datalp = datavp;
674 unsigned long flags;
675
676 switch (request) {
677 case PTRACE_PEEKTEXT:
678 case PTRACE_PEEKDATA:
679 return generic_ptrace_peekdata(child, addr, data);
680 case PTRACE_POKETEXT:
681 case PTRACE_POKEDATA:
682 return generic_ptrace_pokedata(child, addr, data);
683
684#ifdef PTRACE_OLDSETOPTIONS
685 case PTRACE_OLDSETOPTIONS:
686#endif
687 case PTRACE_SETOPTIONS:
688 ret = ptrace_setoptions(child, data);
689 break;
690 case PTRACE_GETEVENTMSG:
691 ret = put_user(child->ptrace_message, datalp);
692 break;
693
694 case PTRACE_GETSIGINFO:
695 ret = ptrace_getsiginfo(child, &siginfo);
696 if (!ret)
697 ret = copy_siginfo_to_user(datavp, &siginfo);
698 break;
699
700 case PTRACE_SETSIGINFO:
701 if (copy_from_user(&siginfo, datavp, sizeof siginfo))
702 ret = -EFAULT;
703 else
704 ret = ptrace_setsiginfo(child, &siginfo);
705 break;
706
707 case PTRACE_INTERRUPT:
708 /*
709 * Stop tracee without any side-effect on signal or job
710 * control. At least one trap is guaranteed to happen
711 * after this request. If @child is already trapped, the
712 * current trap is not disturbed and another trap will
713 * happen after the current trap is ended with PTRACE_CONT.
714 *
715 * The actual trap might not be PTRACE_EVENT_STOP trap but
716 * the pending condition is cleared regardless.
717 */
718 if (unlikely(!seized || !lock_task_sighand(child, &flags)))
719 break;
720
721 /*
722 * INTERRUPT doesn't disturb existing trap sans one
723 * exception. If ptracer issued LISTEN for the current
724 * STOP, this INTERRUPT should clear LISTEN and re-trap
725 * tracee into STOP.
726 */
727 if (likely(task_set_jobctl_pending(child, JOBCTL_TRAP_STOP)))
728 signal_wake_up(child, child->jobctl & JOBCTL_LISTENING);
729
730 unlock_task_sighand(child, &flags);
731 ret = 0;
732 break;
733
734 case PTRACE_LISTEN:
735 /*
736 * Listen for events. Tracee must be in STOP. It's not
737 * resumed per-se but is not considered to be in TRACED by
738 * wait(2) or ptrace(2). If an async event (e.g. group
739 * stop state change) happens, tracee will enter STOP trap
740 * again. Alternatively, ptracer can issue INTERRUPT to
741 * finish listening and re-trap tracee into STOP.
742 */
743 if (unlikely(!seized || !lock_task_sighand(child, &flags)))
744 break;
745
746 si = child->last_siginfo;
747 if (likely(si && (si->si_code >> 8) == PTRACE_EVENT_STOP)) {
748 child->jobctl |= JOBCTL_LISTENING;
749 /*
750 * If NOTIFY is set, it means event happened between
751 * start of this trap and now. Trigger re-trap.
752 */
753 if (child->jobctl & JOBCTL_TRAP_NOTIFY)
754 signal_wake_up(child, true);
755 ret = 0;
756 }
757 unlock_task_sighand(child, &flags);
758 break;
759
760 case PTRACE_DETACH: /* detach a process that was attached. */
761 ret = ptrace_detach(child, data);
762 break;
763
764#ifdef CONFIG_BINFMT_ELF_FDPIC
765 case PTRACE_GETFDPIC: {
766 struct mm_struct *mm = get_task_mm(child);
767 unsigned long tmp = 0;
768
769 ret = -ESRCH;
770 if (!mm)
771 break;
772
773 switch (addr) {
774 case PTRACE_GETFDPIC_EXEC:
775 tmp = mm->context.exec_fdpic_loadmap;
776 break;
777 case PTRACE_GETFDPIC_INTERP:
778 tmp = mm->context.interp_fdpic_loadmap;
779 break;
780 default:
781 break;
782 }
783 mmput(mm);
784
785 ret = put_user(tmp, datalp);
786 break;
787 }
788#endif
789
790#ifdef PTRACE_SINGLESTEP
791 case PTRACE_SINGLESTEP:
792#endif
793#ifdef PTRACE_SINGLEBLOCK
794 case PTRACE_SINGLEBLOCK:
795#endif
796#ifdef PTRACE_SYSEMU
797 case PTRACE_SYSEMU:
798 case PTRACE_SYSEMU_SINGLESTEP:
799#endif
800 case PTRACE_SYSCALL:
801 case PTRACE_CONT:
802 return ptrace_resume(child, request, data);
803
804 case PTRACE_KILL:
805 if (child->exit_state) /* already dead */
806 return 0;
807 return ptrace_resume(child, request, SIGKILL);
808
809#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
810 case PTRACE_GETREGSET:
811 case PTRACE_SETREGSET:
812 {
813 struct iovec kiov;
814 struct iovec __user *uiov = datavp;
815
816 if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov)))
817 return -EFAULT;
818
819 if (__get_user(kiov.iov_base, &uiov->iov_base) ||
820 __get_user(kiov.iov_len, &uiov->iov_len))
821 return -EFAULT;
822
823 ret = ptrace_regset(child, request, addr, &kiov);
824 if (!ret)
825 ret = __put_user(kiov.iov_len, &uiov->iov_len);
826 break;
827 }
828#endif
829 default:
830 break;
831 }
832
833 return ret;
834}
835
836static struct task_struct *ptrace_get_task_struct(pid_t pid)
837{
838 struct task_struct *child;
839
840 rcu_read_lock();
841 child = find_task_by_vpid(pid);
842 if (child)
843 get_task_struct(child);
844 rcu_read_unlock();
845
846 if (!child)
847 return ERR_PTR(-ESRCH);
848 return child;
849}
850
851#ifndef arch_ptrace_attach
852#define arch_ptrace_attach(child) do { } while (0)
853#endif
854
855SYSCALL_DEFINE4(ptrace, long, request, long, pid, unsigned long, addr,
856 unsigned long, data)
857{
858 struct task_struct *child;
859 long ret;
860
861 if (request == PTRACE_TRACEME) {
862 ret = ptrace_traceme();
863 if (!ret)
864 arch_ptrace_attach(current);
865 goto out;
866 }
867
868 child = ptrace_get_task_struct(pid);
869 if (IS_ERR(child)) {
870 ret = PTR_ERR(child);
871 goto out;
872 }
873
874 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
875 ret = ptrace_attach(child, request, data);
876 /*
877 * Some architectures need to do book-keeping after
878 * a ptrace attach.
879 */
880 if (!ret)
881 arch_ptrace_attach(child);
882 goto out_put_task_struct;
883 }
884
885 ret = ptrace_check_attach(child, request == PTRACE_KILL ||
886 request == PTRACE_INTERRUPT);
887 if (ret < 0)
888 goto out_put_task_struct;
889
890 ret = arch_ptrace(child, request, addr, data);
891
892 out_put_task_struct:
893 put_task_struct(child);
894 out:
895 return ret;
896}
897
898int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
899 unsigned long data)
900{
901 unsigned long tmp;
902 int copied;
903
904 copied = access_process_vm(tsk, addr, &tmp, sizeof(tmp), 0);
905 if (copied != sizeof(tmp))
906 return -EIO;
907 return put_user(tmp, (unsigned long __user *)data);
908}
909
910int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
911 unsigned long data)
912{
913 int copied;
914
915 copied = access_process_vm(tsk, addr, &data, sizeof(data), 1);
916 return (copied == sizeof(data)) ? 0 : -EIO;
917}
918
919#if defined CONFIG_COMPAT
920#include <linux/compat.h>
921
922int compat_ptrace_request(struct task_struct *child, compat_long_t request,
923 compat_ulong_t addr, compat_ulong_t data)
924{
925 compat_ulong_t __user *datap = compat_ptr(data);
926 compat_ulong_t word;
927 siginfo_t siginfo;
928 int ret;
929
930 switch (request) {
931 case PTRACE_PEEKTEXT:
932 case PTRACE_PEEKDATA:
933 ret = access_process_vm(child, addr, &word, sizeof(word), 0);
934 if (ret != sizeof(word))
935 ret = -EIO;
936 else
937 ret = put_user(word, datap);
938 break;
939
940 case PTRACE_POKETEXT:
941 case PTRACE_POKEDATA:
942 ret = access_process_vm(child, addr, &data, sizeof(data), 1);
943 ret = (ret != sizeof(data) ? -EIO : 0);
944 break;
945
946 case PTRACE_GETEVENTMSG:
947 ret = put_user((compat_ulong_t) child->ptrace_message, datap);
948 break;
949
950 case PTRACE_GETSIGINFO:
951 ret = ptrace_getsiginfo(child, &siginfo);
952 if (!ret)
953 ret = copy_siginfo_to_user32(
954 (struct compat_siginfo __user *) datap,
955 &siginfo);
956 break;
957
958 case PTRACE_SETSIGINFO:
959 memset(&siginfo, 0, sizeof siginfo);
960 if (copy_siginfo_from_user32(
961 &siginfo, (struct compat_siginfo __user *) datap))
962 ret = -EFAULT;
963 else
964 ret = ptrace_setsiginfo(child, &siginfo);
965 break;
966#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
967 case PTRACE_GETREGSET:
968 case PTRACE_SETREGSET:
969 {
970 struct iovec kiov;
971 struct compat_iovec __user *uiov =
972 (struct compat_iovec __user *) datap;
973 compat_uptr_t ptr;
974 compat_size_t len;
975
976 if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov)))
977 return -EFAULT;
978
979 if (__get_user(ptr, &uiov->iov_base) ||
980 __get_user(len, &uiov->iov_len))
981 return -EFAULT;
982
983 kiov.iov_base = compat_ptr(ptr);
984 kiov.iov_len = len;
985
986 ret = ptrace_regset(child, request, addr, &kiov);
987 if (!ret)
988 ret = __put_user(kiov.iov_len, &uiov->iov_len);
989 break;
990 }
991#endif
992
993 default:
994 ret = ptrace_request(child, request, addr, data);
995 }
996
997 return ret;
998}
999
1000asmlinkage long compat_sys_ptrace(compat_long_t request, compat_long_t pid,
1001 compat_long_t addr, compat_long_t data)
1002{
1003 struct task_struct *child;
1004 long ret;
1005
1006 if (request == PTRACE_TRACEME) {
1007 ret = ptrace_traceme();
1008 goto out;
1009 }
1010
1011 child = ptrace_get_task_struct(pid);
1012 if (IS_ERR(child)) {
1013 ret = PTR_ERR(child);
1014 goto out;
1015 }
1016
1017 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
1018 ret = ptrace_attach(child, request, data);
1019 /*
1020 * Some architectures need to do book-keeping after
1021 * a ptrace attach.
1022 */
1023 if (!ret)
1024 arch_ptrace_attach(child);
1025 goto out_put_task_struct;
1026 }
1027
1028 ret = ptrace_check_attach(child, request == PTRACE_KILL ||
1029 request == PTRACE_INTERRUPT);
1030 if (!ret)
1031 ret = compat_arch_ptrace(child, request, addr, data);
1032
1033 out_put_task_struct:
1034 put_task_struct(child);
1035 out:
1036 return ret;
1037}
1038#endif /* CONFIG_COMPAT */
1039
1040#ifdef CONFIG_HAVE_HW_BREAKPOINT
1041int ptrace_get_breakpoints(struct task_struct *tsk)
1042{
1043 if (atomic_inc_not_zero(&tsk->ptrace_bp_refcnt))
1044 return 0;
1045
1046 return -1;
1047}
1048
1049void ptrace_put_breakpoints(struct task_struct *tsk)
1050{
1051 if (atomic_dec_and_test(&tsk->ptrace_bp_refcnt))
1052 flush_ptrace_hw_breakpoint(tsk);
1053}
1054#endif /* CONFIG_HAVE_HW_BREAKPOINT */