Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * arch/sh/kernel/smp.c
  4 *
  5 * SMP support for the SuperH processors.
  6 *
  7 * Copyright (C) 2002 - 2010 Paul Mundt
  8 * Copyright (C) 2006 - 2007 Akio Idehara
 
 
 
 
  9 */
 10#include <linux/err.h>
 11#include <linux/cache.h>
 12#include <linux/cpumask.h>
 13#include <linux/delay.h>
 14#include <linux/init.h>
 15#include <linux/spinlock.h>
 16#include <linux/mm.h>
 17#include <linux/module.h>
 18#include <linux/cpu.h>
 19#include <linux/interrupt.h>
 20#include <linux/sched/mm.h>
 21#include <linux/sched/hotplug.h>
 22#include <linux/atomic.h>
 23#include <linux/clockchips.h>
 24#include <asm/processor.h>
 
 25#include <asm/mmu_context.h>
 26#include <asm/smp.h>
 27#include <asm/cacheflush.h>
 28#include <asm/sections.h>
 29#include <asm/setup.h>
 30
 31int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
 32int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
 33
 34struct plat_smp_ops *mp_ops = NULL;
 35
 36/* State of each CPU */
 37DEFINE_PER_CPU(int, cpu_state) = { 0 };
 38
 39void register_smp_ops(struct plat_smp_ops *ops)
 40{
 41	if (mp_ops)
 42		printk(KERN_WARNING "Overriding previously set SMP ops\n");
 43
 44	mp_ops = ops;
 45}
 46
 47static inline void smp_store_cpu_info(unsigned int cpu)
 48{
 49	struct sh_cpuinfo *c = cpu_data + cpu;
 50
 51	memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo));
 52
 53	c->loops_per_jiffy = loops_per_jiffy;
 54}
 55
 56void __init smp_prepare_cpus(unsigned int max_cpus)
 57{
 58	unsigned int cpu = smp_processor_id();
 59
 60	init_new_context(current, &init_mm);
 61	current_thread_info()->cpu = cpu;
 62	mp_ops->prepare_cpus(max_cpus);
 63
 64#ifndef CONFIG_HOTPLUG_CPU
 65	init_cpu_present(cpu_possible_mask);
 66#endif
 67}
 68
 69void __init smp_prepare_boot_cpu(void)
 70{
 71	unsigned int cpu = smp_processor_id();
 72
 73	__cpu_number_map[0] = cpu;
 74	__cpu_logical_map[0] = cpu;
 75
 76	set_cpu_online(cpu, true);
 77	set_cpu_possible(cpu, true);
 78
 79	per_cpu(cpu_state, cpu) = CPU_ONLINE;
 80}
 81
 82#ifdef CONFIG_HOTPLUG_CPU
 83void native_cpu_die(unsigned int cpu)
 84{
 85	unsigned int i;
 86
 87	for (i = 0; i < 10; i++) {
 88		smp_rmb();
 89		if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
 90			if (system_state == SYSTEM_RUNNING)
 91				pr_info("CPU %u is now offline\n", cpu);
 92
 93			return;
 94		}
 95
 96		msleep(100);
 97	}
 98
 99	pr_err("CPU %u didn't die...\n", cpu);
100}
101
102int native_cpu_disable(unsigned int cpu)
103{
104	return cpu == 0 ? -EPERM : 0;
105}
106
107void play_dead_common(void)
108{
109	idle_task_exit();
110	irq_ctx_exit(raw_smp_processor_id());
111	mb();
112
113	__this_cpu_write(cpu_state, CPU_DEAD);
114	local_irq_disable();
115}
116
117void native_play_dead(void)
118{
119	play_dead_common();
120}
121
122int __cpu_disable(void)
123{
124	unsigned int cpu = smp_processor_id();
 
125	int ret;
126
127	ret = mp_ops->cpu_disable(cpu);
128	if (ret)
129		return ret;
130
131	/*
132	 * Take this CPU offline.  Once we clear this, we can't return,
133	 * and we must not schedule until we're ready to give up the cpu.
134	 */
135	set_cpu_online(cpu, false);
136
137	/*
138	 * OK - migrate IRQs away from this CPU
139	 */
140	migrate_irqs();
141
142	/*
 
 
 
 
 
143	 * Flush user cache and TLB mappings, and then remove this CPU
144	 * from the vm mask set of all processes.
145	 */
146	flush_cache_all();
147#ifdef CONFIG_MMU
148	local_flush_tlb_all();
149#endif
150
151	clear_tasks_mm_cpumask(cpu);
 
 
 
 
152
153	return 0;
154}
155#else /* ... !CONFIG_HOTPLUG_CPU */
156int native_cpu_disable(unsigned int cpu)
157{
158	return -ENOSYS;
159}
160
161void native_cpu_die(unsigned int cpu)
162{
163	/* We said "no" in __cpu_disable */
164	BUG();
165}
166
167void native_play_dead(void)
168{
169	BUG();
170}
171#endif
172
173asmlinkage void start_secondary(void)
174{
175	unsigned int cpu = smp_processor_id();
176	struct mm_struct *mm = &init_mm;
177
178	enable_mmu();
179	mmgrab(mm);
180	mmget(mm);
181	current->active_mm = mm;
182#ifdef CONFIG_MMU
183	enter_lazy_tlb(mm, current);
184	local_flush_tlb_all();
185#endif
186
187	per_cpu_trap_init();
188
189	preempt_disable();
190
191	notify_cpu_starting(cpu);
192
193	local_irq_enable();
194
 
 
195	calibrate_delay();
196
197	smp_store_cpu_info(cpu);
198
199	set_cpu_online(cpu, true);
200	per_cpu(cpu_state, cpu) = CPU_ONLINE;
201
202	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
203}
204
205extern struct {
206	unsigned long sp;
207	unsigned long bss_start;
208	unsigned long bss_end;
209	void *start_kernel_fn;
210	void *cpu_init_fn;
211	void *thread_info;
212} stack_start;
213
214int __cpu_up(unsigned int cpu, struct task_struct *tsk)
215{
 
216	unsigned long timeout;
217
 
 
 
 
 
 
 
 
 
 
 
218	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
219
220	/* Fill in data in head.S for secondary cpus */
221	stack_start.sp = tsk->thread.sp;
222	stack_start.thread_info = tsk->stack;
223	stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
224	stack_start.start_kernel_fn = start_secondary;
225
226	flush_icache_range((unsigned long)&stack_start,
227			   (unsigned long)&stack_start + sizeof(stack_start));
228	wmb();
229
230	mp_ops->start_cpu(cpu, (unsigned long)_stext);
231
232	timeout = jiffies + HZ;
233	while (time_before(jiffies, timeout)) {
234		if (cpu_online(cpu))
235			break;
236
237		udelay(10);
238		barrier();
239	}
240
241	if (cpu_online(cpu))
242		return 0;
243
244	return -ENOENT;
245}
246
247void __init smp_cpus_done(unsigned int max_cpus)
248{
249	unsigned long bogosum = 0;
250	int cpu;
251
252	for_each_online_cpu(cpu)
253		bogosum += cpu_data[cpu].loops_per_jiffy;
254
255	printk(KERN_INFO "SMP: Total of %d processors activated "
256	       "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
257	       bogosum / (500000/HZ),
258	       (bogosum / (5000/HZ)) % 100);
259}
260
261void smp_send_reschedule(int cpu)
262{
263	mp_ops->send_ipi(cpu, SMP_MSG_RESCHEDULE);
264}
265
266void smp_send_stop(void)
267{
268	smp_call_function(stop_this_cpu, 0, 0);
269}
270
271void arch_send_call_function_ipi_mask(const struct cpumask *mask)
272{
273	int cpu;
274
275	for_each_cpu(cpu, mask)
276		mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION);
277}
278
279void arch_send_call_function_single_ipi(int cpu)
280{
281	mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
282}
283
284#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
285void tick_broadcast(const struct cpumask *mask)
286{
287	int cpu;
288
289	for_each_cpu(cpu, mask)
290		mp_ops->send_ipi(cpu, SMP_MSG_TIMER);
291}
292
293static void ipi_timer(void)
294{
295	irq_enter();
296	tick_receive_broadcast();
297	irq_exit();
298}
299#endif
300
301void smp_message_recv(unsigned int msg)
302{
303	switch (msg) {
304	case SMP_MSG_FUNCTION:
305		generic_smp_call_function_interrupt();
306		break;
307	case SMP_MSG_RESCHEDULE:
308		scheduler_ipi();
309		break;
310	case SMP_MSG_FUNCTION_SINGLE:
311		generic_smp_call_function_single_interrupt();
312		break;
313#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
314	case SMP_MSG_TIMER:
315		ipi_timer();
316		break;
317#endif
318	default:
319		printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
320		       smp_processor_id(), __func__, msg);
321		break;
322	}
323}
324
325/* Not really SMP stuff ... */
326int setup_profiling_timer(unsigned int multiplier)
327{
328	return 0;
329}
330
331#ifdef CONFIG_MMU
332
333static void flush_tlb_all_ipi(void *info)
334{
335	local_flush_tlb_all();
336}
337
338void flush_tlb_all(void)
339{
340	on_each_cpu(flush_tlb_all_ipi, 0, 1);
341}
342
343static void flush_tlb_mm_ipi(void *mm)
344{
345	local_flush_tlb_mm((struct mm_struct *)mm);
346}
347
348/*
349 * The following tlb flush calls are invoked when old translations are
350 * being torn down, or pte attributes are changing. For single threaded
351 * address spaces, a new context is obtained on the current cpu, and tlb
352 * context on other cpus are invalidated to force a new context allocation
353 * at switch_mm time, should the mm ever be used on other cpus. For
354 * multithreaded address spaces, intercpu interrupts have to be sent.
355 * Another case where intercpu interrupts are required is when the target
356 * mm might be active on another cpu (eg debuggers doing the flushes on
357 * behalf of debugees, kswapd stealing pages from another process etc).
358 * Kanoj 07/00.
359 */
360void flush_tlb_mm(struct mm_struct *mm)
361{
362	preempt_disable();
363
364	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
365		smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
366	} else {
367		int i;
368		for_each_online_cpu(i)
369			if (smp_processor_id() != i)
370				cpu_context(i, mm) = 0;
371	}
372	local_flush_tlb_mm(mm);
373
374	preempt_enable();
375}
376
377struct flush_tlb_data {
378	struct vm_area_struct *vma;
379	unsigned long addr1;
380	unsigned long addr2;
381};
382
383static void flush_tlb_range_ipi(void *info)
384{
385	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
386
387	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
388}
389
390void flush_tlb_range(struct vm_area_struct *vma,
391		     unsigned long start, unsigned long end)
392{
393	struct mm_struct *mm = vma->vm_mm;
394
395	preempt_disable();
396	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
397		struct flush_tlb_data fd;
398
399		fd.vma = vma;
400		fd.addr1 = start;
401		fd.addr2 = end;
402		smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
403	} else {
404		int i;
405		for_each_online_cpu(i)
406			if (smp_processor_id() != i)
407				cpu_context(i, mm) = 0;
408	}
409	local_flush_tlb_range(vma, start, end);
410	preempt_enable();
411}
412
413static void flush_tlb_kernel_range_ipi(void *info)
414{
415	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
416
417	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
418}
419
420void flush_tlb_kernel_range(unsigned long start, unsigned long end)
421{
422	struct flush_tlb_data fd;
423
424	fd.addr1 = start;
425	fd.addr2 = end;
426	on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
427}
428
429static void flush_tlb_page_ipi(void *info)
430{
431	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
432
433	local_flush_tlb_page(fd->vma, fd->addr1);
434}
435
436void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
437{
438	preempt_disable();
439	if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
440	    (current->mm != vma->vm_mm)) {
441		struct flush_tlb_data fd;
442
443		fd.vma = vma;
444		fd.addr1 = page;
445		smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
446	} else {
447		int i;
448		for_each_online_cpu(i)
449			if (smp_processor_id() != i)
450				cpu_context(i, vma->vm_mm) = 0;
451	}
452	local_flush_tlb_page(vma, page);
453	preempt_enable();
454}
455
456static void flush_tlb_one_ipi(void *info)
457{
458	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
459	local_flush_tlb_one(fd->addr1, fd->addr2);
460}
461
462void flush_tlb_one(unsigned long asid, unsigned long vaddr)
463{
464	struct flush_tlb_data fd;
465
466	fd.addr1 = asid;
467	fd.addr2 = vaddr;
468
469	smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
470	local_flush_tlb_one(asid, vaddr);
471}
472
473#endif
v3.1
 
  1/*
  2 * arch/sh/kernel/smp.c
  3 *
  4 * SMP support for the SuperH processors.
  5 *
  6 * Copyright (C) 2002 - 2010 Paul Mundt
  7 * Copyright (C) 2006 - 2007 Akio Idehara
  8 *
  9 * This file is subject to the terms and conditions of the GNU General Public
 10 * License.  See the file "COPYING" in the main directory of this archive
 11 * for more details.
 12 */
 13#include <linux/err.h>
 14#include <linux/cache.h>
 15#include <linux/cpumask.h>
 16#include <linux/delay.h>
 17#include <linux/init.h>
 18#include <linux/spinlock.h>
 19#include <linux/mm.h>
 20#include <linux/module.h>
 21#include <linux/cpu.h>
 22#include <linux/interrupt.h>
 23#include <linux/sched.h>
 
 24#include <linux/atomic.h>
 
 25#include <asm/processor.h>
 26#include <asm/system.h>
 27#include <asm/mmu_context.h>
 28#include <asm/smp.h>
 29#include <asm/cacheflush.h>
 30#include <asm/sections.h>
 
 31
 32int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
 33int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
 34
 35struct plat_smp_ops *mp_ops = NULL;
 36
 37/* State of each CPU */
 38DEFINE_PER_CPU(int, cpu_state) = { 0 };
 39
 40void __cpuinit register_smp_ops(struct plat_smp_ops *ops)
 41{
 42	if (mp_ops)
 43		printk(KERN_WARNING "Overriding previously set SMP ops\n");
 44
 45	mp_ops = ops;
 46}
 47
 48static inline void __cpuinit smp_store_cpu_info(unsigned int cpu)
 49{
 50	struct sh_cpuinfo *c = cpu_data + cpu;
 51
 52	memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo));
 53
 54	c->loops_per_jiffy = loops_per_jiffy;
 55}
 56
 57void __init smp_prepare_cpus(unsigned int max_cpus)
 58{
 59	unsigned int cpu = smp_processor_id();
 60
 61	init_new_context(current, &init_mm);
 62	current_thread_info()->cpu = cpu;
 63	mp_ops->prepare_cpus(max_cpus);
 64
 65#ifndef CONFIG_HOTPLUG_CPU
 66	init_cpu_present(&cpu_possible_map);
 67#endif
 68}
 69
 70void __init smp_prepare_boot_cpu(void)
 71{
 72	unsigned int cpu = smp_processor_id();
 73
 74	__cpu_number_map[0] = cpu;
 75	__cpu_logical_map[0] = cpu;
 76
 77	set_cpu_online(cpu, true);
 78	set_cpu_possible(cpu, true);
 79
 80	per_cpu(cpu_state, cpu) = CPU_ONLINE;
 81}
 82
 83#ifdef CONFIG_HOTPLUG_CPU
 84void native_cpu_die(unsigned int cpu)
 85{
 86	unsigned int i;
 87
 88	for (i = 0; i < 10; i++) {
 89		smp_rmb();
 90		if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
 91			if (system_state == SYSTEM_RUNNING)
 92				pr_info("CPU %u is now offline\n", cpu);
 93
 94			return;
 95		}
 96
 97		msleep(100);
 98	}
 99
100	pr_err("CPU %u didn't die...\n", cpu);
101}
102
103int native_cpu_disable(unsigned int cpu)
104{
105	return cpu == 0 ? -EPERM : 0;
106}
107
108void play_dead_common(void)
109{
110	idle_task_exit();
111	irq_ctx_exit(raw_smp_processor_id());
112	mb();
113
114	__get_cpu_var(cpu_state) = CPU_DEAD;
115	local_irq_disable();
116}
117
118void native_play_dead(void)
119{
120	play_dead_common();
121}
122
123int __cpu_disable(void)
124{
125	unsigned int cpu = smp_processor_id();
126	struct task_struct *p;
127	int ret;
128
129	ret = mp_ops->cpu_disable(cpu);
130	if (ret)
131		return ret;
132
133	/*
134	 * Take this CPU offline.  Once we clear this, we can't return,
135	 * and we must not schedule until we're ready to give up the cpu.
136	 */
137	set_cpu_online(cpu, false);
138
139	/*
140	 * OK - migrate IRQs away from this CPU
141	 */
142	migrate_irqs();
143
144	/*
145	 * Stop the local timer for this CPU.
146	 */
147	local_timer_stop(cpu);
148
149	/*
150	 * Flush user cache and TLB mappings, and then remove this CPU
151	 * from the vm mask set of all processes.
152	 */
153	flush_cache_all();
 
154	local_flush_tlb_all();
 
155
156	read_lock(&tasklist_lock);
157	for_each_process(p)
158		if (p->mm)
159			cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
160	read_unlock(&tasklist_lock);
161
162	return 0;
163}
164#else /* ... !CONFIG_HOTPLUG_CPU */
165int native_cpu_disable(unsigned int cpu)
166{
167	return -ENOSYS;
168}
169
170void native_cpu_die(unsigned int cpu)
171{
172	/* We said "no" in __cpu_disable */
173	BUG();
174}
175
176void native_play_dead(void)
177{
178	BUG();
179}
180#endif
181
182asmlinkage void __cpuinit start_secondary(void)
183{
184	unsigned int cpu = smp_processor_id();
185	struct mm_struct *mm = &init_mm;
186
187	enable_mmu();
188	atomic_inc(&mm->mm_count);
189	atomic_inc(&mm->mm_users);
190	current->active_mm = mm;
 
191	enter_lazy_tlb(mm, current);
192	local_flush_tlb_all();
 
193
194	per_cpu_trap_init();
195
196	preempt_disable();
197
198	notify_cpu_starting(cpu);
199
200	local_irq_enable();
201
202	/* Enable local timers */
203	local_timer_setup(cpu);
204	calibrate_delay();
205
206	smp_store_cpu_info(cpu);
207
208	set_cpu_online(cpu, true);
209	per_cpu(cpu_state, cpu) = CPU_ONLINE;
210
211	cpu_idle();
212}
213
214extern struct {
215	unsigned long sp;
216	unsigned long bss_start;
217	unsigned long bss_end;
218	void *start_kernel_fn;
219	void *cpu_init_fn;
220	void *thread_info;
221} stack_start;
222
223int __cpuinit __cpu_up(unsigned int cpu)
224{
225	struct task_struct *tsk;
226	unsigned long timeout;
227
228	tsk = cpu_data[cpu].idle;
229	if (!tsk) {
230		tsk = fork_idle(cpu);
231		if (IS_ERR(tsk)) {
232			pr_err("Failed forking idle task for cpu %d\n", cpu);
233			return PTR_ERR(tsk);
234		}
235
236		cpu_data[cpu].idle = tsk;
237	}
238
239	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
240
241	/* Fill in data in head.S for secondary cpus */
242	stack_start.sp = tsk->thread.sp;
243	stack_start.thread_info = tsk->stack;
244	stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
245	stack_start.start_kernel_fn = start_secondary;
246
247	flush_icache_range((unsigned long)&stack_start,
248			   (unsigned long)&stack_start + sizeof(stack_start));
249	wmb();
250
251	mp_ops->start_cpu(cpu, (unsigned long)_stext);
252
253	timeout = jiffies + HZ;
254	while (time_before(jiffies, timeout)) {
255		if (cpu_online(cpu))
256			break;
257
258		udelay(10);
259		barrier();
260	}
261
262	if (cpu_online(cpu))
263		return 0;
264
265	return -ENOENT;
266}
267
268void __init smp_cpus_done(unsigned int max_cpus)
269{
270	unsigned long bogosum = 0;
271	int cpu;
272
273	for_each_online_cpu(cpu)
274		bogosum += cpu_data[cpu].loops_per_jiffy;
275
276	printk(KERN_INFO "SMP: Total of %d processors activated "
277	       "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
278	       bogosum / (500000/HZ),
279	       (bogosum / (5000/HZ)) % 100);
280}
281
282void smp_send_reschedule(int cpu)
283{
284	mp_ops->send_ipi(cpu, SMP_MSG_RESCHEDULE);
285}
286
287void smp_send_stop(void)
288{
289	smp_call_function(stop_this_cpu, 0, 0);
290}
291
292void arch_send_call_function_ipi_mask(const struct cpumask *mask)
293{
294	int cpu;
295
296	for_each_cpu(cpu, mask)
297		mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION);
298}
299
300void arch_send_call_function_single_ipi(int cpu)
301{
302	mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
303}
304
305void smp_timer_broadcast(const struct cpumask *mask)
 
306{
307	int cpu;
308
309	for_each_cpu(cpu, mask)
310		mp_ops->send_ipi(cpu, SMP_MSG_TIMER);
311}
312
313static void ipi_timer(void)
314{
315	irq_enter();
316	local_timer_interrupt();
317	irq_exit();
318}
 
319
320void smp_message_recv(unsigned int msg)
321{
322	switch (msg) {
323	case SMP_MSG_FUNCTION:
324		generic_smp_call_function_interrupt();
325		break;
326	case SMP_MSG_RESCHEDULE:
327		scheduler_ipi();
328		break;
329	case SMP_MSG_FUNCTION_SINGLE:
330		generic_smp_call_function_single_interrupt();
331		break;
 
332	case SMP_MSG_TIMER:
333		ipi_timer();
334		break;
 
335	default:
336		printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
337		       smp_processor_id(), __func__, msg);
338		break;
339	}
340}
341
342/* Not really SMP stuff ... */
343int setup_profiling_timer(unsigned int multiplier)
344{
345	return 0;
346}
347
 
 
348static void flush_tlb_all_ipi(void *info)
349{
350	local_flush_tlb_all();
351}
352
353void flush_tlb_all(void)
354{
355	on_each_cpu(flush_tlb_all_ipi, 0, 1);
356}
357
358static void flush_tlb_mm_ipi(void *mm)
359{
360	local_flush_tlb_mm((struct mm_struct *)mm);
361}
362
363/*
364 * The following tlb flush calls are invoked when old translations are
365 * being torn down, or pte attributes are changing. For single threaded
366 * address spaces, a new context is obtained on the current cpu, and tlb
367 * context on other cpus are invalidated to force a new context allocation
368 * at switch_mm time, should the mm ever be used on other cpus. For
369 * multithreaded address spaces, intercpu interrupts have to be sent.
370 * Another case where intercpu interrupts are required is when the target
371 * mm might be active on another cpu (eg debuggers doing the flushes on
372 * behalf of debugees, kswapd stealing pages from another process etc).
373 * Kanoj 07/00.
374 */
375void flush_tlb_mm(struct mm_struct *mm)
376{
377	preempt_disable();
378
379	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
380		smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
381	} else {
382		int i;
383		for (i = 0; i < num_online_cpus(); i++)
384			if (smp_processor_id() != i)
385				cpu_context(i, mm) = 0;
386	}
387	local_flush_tlb_mm(mm);
388
389	preempt_enable();
390}
391
392struct flush_tlb_data {
393	struct vm_area_struct *vma;
394	unsigned long addr1;
395	unsigned long addr2;
396};
397
398static void flush_tlb_range_ipi(void *info)
399{
400	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
401
402	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
403}
404
405void flush_tlb_range(struct vm_area_struct *vma,
406		     unsigned long start, unsigned long end)
407{
408	struct mm_struct *mm = vma->vm_mm;
409
410	preempt_disable();
411	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
412		struct flush_tlb_data fd;
413
414		fd.vma = vma;
415		fd.addr1 = start;
416		fd.addr2 = end;
417		smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
418	} else {
419		int i;
420		for (i = 0; i < num_online_cpus(); i++)
421			if (smp_processor_id() != i)
422				cpu_context(i, mm) = 0;
423	}
424	local_flush_tlb_range(vma, start, end);
425	preempt_enable();
426}
427
428static void flush_tlb_kernel_range_ipi(void *info)
429{
430	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
431
432	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
433}
434
435void flush_tlb_kernel_range(unsigned long start, unsigned long end)
436{
437	struct flush_tlb_data fd;
438
439	fd.addr1 = start;
440	fd.addr2 = end;
441	on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
442}
443
444static void flush_tlb_page_ipi(void *info)
445{
446	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
447
448	local_flush_tlb_page(fd->vma, fd->addr1);
449}
450
451void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
452{
453	preempt_disable();
454	if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
455	    (current->mm != vma->vm_mm)) {
456		struct flush_tlb_data fd;
457
458		fd.vma = vma;
459		fd.addr1 = page;
460		smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
461	} else {
462		int i;
463		for (i = 0; i < num_online_cpus(); i++)
464			if (smp_processor_id() != i)
465				cpu_context(i, vma->vm_mm) = 0;
466	}
467	local_flush_tlb_page(vma, page);
468	preempt_enable();
469}
470
471static void flush_tlb_one_ipi(void *info)
472{
473	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
474	local_flush_tlb_one(fd->addr1, fd->addr2);
475}
476
477void flush_tlb_one(unsigned long asid, unsigned long vaddr)
478{
479	struct flush_tlb_data fd;
480
481	fd.addr1 = asid;
482	fd.addr2 = vaddr;
483
484	smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
485	local_flush_tlb_one(asid, vaddr);
486}