Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2003, 04, 07 Ralf Baechle <ralf@linux-mips.org>
7 * Copyright (C) MIPS Technologies, Inc.
8 * written by Ralf Baechle <ralf@linux-mips.org>
9 */
10#ifndef _ASM_HAZARDS_H
11#define _ASM_HAZARDS_H
12
13#include <linux/stringify.h>
14#include <asm/compiler.h>
15
16#define ___ssnop \
17 sll $0, $0, 1
18
19#define ___ehb \
20 sll $0, $0, 3
21
22/*
23 * TLB hazards
24 */
25#if (defined(CONFIG_CPU_MIPSR2) || defined(CONFIG_CPU_MIPSR6)) && \
26 !defined(CONFIG_CPU_CAVIUM_OCTEON) && !defined(CONFIG_LOONGSON3_ENHANCEMENT)
27
28/*
29 * MIPSR2 defines ehb for hazard avoidance
30 */
31
32#define __mtc0_tlbw_hazard \
33 ___ehb
34
35#define __mtc0_tlbr_hazard \
36 ___ehb
37
38#define __tlbw_use_hazard \
39 ___ehb
40
41#define __tlb_read_hazard \
42 ___ehb
43
44#define __tlb_probe_hazard \
45 ___ehb
46
47#define __irq_enable_hazard \
48 ___ehb
49
50#define __irq_disable_hazard \
51 ___ehb
52
53#define __back_to_back_c0_hazard \
54 ___ehb
55
56/*
57 * gcc has a tradition of misscompiling the previous construct using the
58 * address of a label as argument to inline assembler. Gas otoh has the
59 * annoying difference between la and dla which are only usable for 32-bit
60 * rsp. 64-bit code, so can't be used without conditional compilation.
61 * The alternative is switching the assembler to 64-bit code which happens
62 * to work right even for 32-bit code...
63 */
64#define instruction_hazard() \
65do { \
66 unsigned long tmp; \
67 \
68 __asm__ __volatile__( \
69 " .set push \n" \
70 " .set "MIPS_ISA_LEVEL" \n" \
71 " dla %0, 1f \n" \
72 " jr.hb %0 \n" \
73 " .set pop \n" \
74 "1: \n" \
75 : "=r" (tmp)); \
76} while (0)
77
78#elif (defined(CONFIG_CPU_MIPSR1) && !defined(CONFIG_MIPS_ALCHEMY)) || \
79 defined(CONFIG_CPU_BMIPS)
80
81/*
82 * These are slightly complicated by the fact that we guarantee R1 kernels to
83 * run fine on R2 processors.
84 */
85
86#define __mtc0_tlbw_hazard \
87 ___ssnop; \
88 ___ssnop; \
89 ___ehb
90
91#define __mtc0_tlbr_hazard \
92 ___ssnop; \
93 ___ssnop; \
94 ___ehb
95
96#define __tlbw_use_hazard \
97 ___ssnop; \
98 ___ssnop; \
99 ___ssnop; \
100 ___ehb
101
102#define __tlb_read_hazard \
103 ___ssnop; \
104 ___ssnop; \
105 ___ssnop; \
106 ___ehb
107
108#define __tlb_probe_hazard \
109 ___ssnop; \
110 ___ssnop; \
111 ___ssnop; \
112 ___ehb
113
114#define __irq_enable_hazard \
115 ___ssnop; \
116 ___ssnop; \
117 ___ssnop; \
118 ___ehb
119
120#define __irq_disable_hazard \
121 ___ssnop; \
122 ___ssnop; \
123 ___ssnop; \
124 ___ehb
125
126#define __back_to_back_c0_hazard \
127 ___ssnop; \
128 ___ssnop; \
129 ___ssnop; \
130 ___ehb
131
132/*
133 * gcc has a tradition of misscompiling the previous construct using the
134 * address of a label as argument to inline assembler. Gas otoh has the
135 * annoying difference between la and dla which are only usable for 32-bit
136 * rsp. 64-bit code, so can't be used without conditional compilation.
137 * The alternative is switching the assembler to 64-bit code which happens
138 * to work right even for 32-bit code...
139 */
140#define __instruction_hazard() \
141do { \
142 unsigned long tmp; \
143 \
144 __asm__ __volatile__( \
145 " .set push \n" \
146 " .set mips64r2 \n" \
147 " dla %0, 1f \n" \
148 " jr.hb %0 \n" \
149 " .set pop \n" \
150 "1: \n" \
151 : "=r" (tmp)); \
152} while (0)
153
154#define instruction_hazard() \
155do { \
156 if (cpu_has_mips_r2_r6) \
157 __instruction_hazard(); \
158} while (0)
159
160#elif defined(CONFIG_MIPS_ALCHEMY) || defined(CONFIG_CPU_CAVIUM_OCTEON) || \
161 defined(CONFIG_CPU_LOONGSON2) || defined(CONFIG_LOONGSON3_ENHANCEMENT) || \
162 defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_R5500) || defined(CONFIG_CPU_XLR)
163
164/*
165 * R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer.
166 */
167
168#define __mtc0_tlbw_hazard
169
170#define __mtc0_tlbr_hazard
171
172#define __tlbw_use_hazard
173
174#define __tlb_read_hazard
175
176#define __tlb_probe_hazard
177
178#define __irq_enable_hazard
179
180#define __irq_disable_hazard
181
182#define __back_to_back_c0_hazard
183
184#define instruction_hazard() do { } while (0)
185
186#elif defined(CONFIG_CPU_SB1)
187
188/*
189 * Mostly like R4000 for historic reasons
190 */
191#define __mtc0_tlbw_hazard
192
193#define __mtc0_tlbr_hazard
194
195#define __tlbw_use_hazard
196
197#define __tlb_read_hazard
198
199#define __tlb_probe_hazard
200
201#define __irq_enable_hazard
202
203#define __irq_disable_hazard \
204 ___ssnop; \
205 ___ssnop; \
206 ___ssnop
207
208#define __back_to_back_c0_hazard
209
210#define instruction_hazard() do { } while (0)
211
212#else
213
214/*
215 * Finally the catchall case for all other processors including R4000, R4400,
216 * R4600, R4700, R5000, RM7000, NEC VR41xx etc.
217 *
218 * The taken branch will result in a two cycle penalty for the two killed
219 * instructions on R4000 / R4400. Other processors only have a single cycle
220 * hazard so this is nice trick to have an optimal code for a range of
221 * processors.
222 */
223#define __mtc0_tlbw_hazard \
224 nop; \
225 nop
226
227#define __mtc0_tlbr_hazard \
228 nop; \
229 nop
230
231#define __tlbw_use_hazard \
232 nop; \
233 nop; \
234 nop
235
236#define __tlb_read_hazard \
237 nop; \
238 nop; \
239 nop
240
241#define __tlb_probe_hazard \
242 nop; \
243 nop; \
244 nop
245
246#define __irq_enable_hazard \
247 ___ssnop; \
248 ___ssnop; \
249 ___ssnop
250
251#define __irq_disable_hazard \
252 nop; \
253 nop; \
254 nop
255
256#define __back_to_back_c0_hazard \
257 ___ssnop; \
258 ___ssnop; \
259 ___ssnop
260
261#define instruction_hazard() do { } while (0)
262
263#endif
264
265
266/* FPU hazards */
267
268#if defined(CONFIG_CPU_SB1)
269
270#define __enable_fpu_hazard \
271 .set push; \
272 .set mips64; \
273 .set noreorder; \
274 ___ssnop; \
275 bnezl $0, .+4; \
276 ___ssnop; \
277 .set pop
278
279#define __disable_fpu_hazard
280
281#elif defined(CONFIG_CPU_MIPSR2) || defined(CONFIG_CPU_MIPSR6)
282
283#define __enable_fpu_hazard \
284 ___ehb
285
286#define __disable_fpu_hazard \
287 ___ehb
288
289#else
290
291#define __enable_fpu_hazard \
292 nop; \
293 nop; \
294 nop; \
295 nop
296
297#define __disable_fpu_hazard \
298 ___ehb
299
300#endif
301
302#ifdef __ASSEMBLY__
303
304#define _ssnop ___ssnop
305#define _ehb ___ehb
306#define mtc0_tlbw_hazard __mtc0_tlbw_hazard
307#define mtc0_tlbr_hazard __mtc0_tlbr_hazard
308#define tlbw_use_hazard __tlbw_use_hazard
309#define tlb_read_hazard __tlb_read_hazard
310#define tlb_probe_hazard __tlb_probe_hazard
311#define irq_enable_hazard __irq_enable_hazard
312#define irq_disable_hazard __irq_disable_hazard
313#define back_to_back_c0_hazard __back_to_back_c0_hazard
314#define enable_fpu_hazard __enable_fpu_hazard
315#define disable_fpu_hazard __disable_fpu_hazard
316
317#else
318
319#define _ssnop() \
320do { \
321 __asm__ __volatile__( \
322 __stringify(___ssnop) \
323 ); \
324} while (0)
325
326#define _ehb() \
327do { \
328 __asm__ __volatile__( \
329 __stringify(___ehb) \
330 ); \
331} while (0)
332
333
334#define mtc0_tlbw_hazard() \
335do { \
336 __asm__ __volatile__( \
337 __stringify(__mtc0_tlbw_hazard) \
338 ); \
339} while (0)
340
341
342#define mtc0_tlbr_hazard() \
343do { \
344 __asm__ __volatile__( \
345 __stringify(__mtc0_tlbr_hazard) \
346 ); \
347} while (0)
348
349
350#define tlbw_use_hazard() \
351do { \
352 __asm__ __volatile__( \
353 __stringify(__tlbw_use_hazard) \
354 ); \
355} while (0)
356
357
358#define tlb_read_hazard() \
359do { \
360 __asm__ __volatile__( \
361 __stringify(__tlb_read_hazard) \
362 ); \
363} while (0)
364
365
366#define tlb_probe_hazard() \
367do { \
368 __asm__ __volatile__( \
369 __stringify(__tlb_probe_hazard) \
370 ); \
371} while (0)
372
373
374#define irq_enable_hazard() \
375do { \
376 __asm__ __volatile__( \
377 __stringify(__irq_enable_hazard) \
378 ); \
379} while (0)
380
381
382#define irq_disable_hazard() \
383do { \
384 __asm__ __volatile__( \
385 __stringify(__irq_disable_hazard) \
386 ); \
387} while (0)
388
389
390#define back_to_back_c0_hazard() \
391do { \
392 __asm__ __volatile__( \
393 __stringify(__back_to_back_c0_hazard) \
394 ); \
395} while (0)
396
397
398#define enable_fpu_hazard() \
399do { \
400 __asm__ __volatile__( \
401 __stringify(__enable_fpu_hazard) \
402 ); \
403} while (0)
404
405
406#define disable_fpu_hazard() \
407do { \
408 __asm__ __volatile__( \
409 __stringify(__disable_fpu_hazard) \
410 ); \
411} while (0)
412
413/*
414 * MIPS R2 instruction hazard barrier. Needs to be called as a subroutine.
415 */
416extern void mips_ihb(void);
417
418#endif /* __ASSEMBLY__ */
419
420#endif /* _ASM_HAZARDS_H */
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2003, 04, 07 Ralf Baechle <ralf@linux-mips.org>
7 * Copyright (C) MIPS Technologies, Inc.
8 * written by Ralf Baechle <ralf@linux-mips.org>
9 */
10#ifndef _ASM_HAZARDS_H
11#define _ASM_HAZARDS_H
12
13#ifdef __ASSEMBLY__
14#define ASMMACRO(name, code...) .macro name; code; .endm
15#else
16
17#include <asm/cpu-features.h>
18
19#define ASMMACRO(name, code...) \
20__asm__(".macro " #name "; " #code "; .endm"); \
21 \
22static inline void name(void) \
23{ \
24 __asm__ __volatile__ (#name); \
25}
26
27/*
28 * MIPS R2 instruction hazard barrier. Needs to be called as a subroutine.
29 */
30extern void mips_ihb(void);
31
32#endif
33
34ASMMACRO(_ssnop,
35 sll $0, $0, 1
36 )
37
38ASMMACRO(_ehb,
39 sll $0, $0, 3
40 )
41
42/*
43 * TLB hazards
44 */
45#if defined(CONFIG_CPU_MIPSR2) && !defined(CONFIG_CPU_CAVIUM_OCTEON)
46
47/*
48 * MIPSR2 defines ehb for hazard avoidance
49 */
50
51ASMMACRO(mtc0_tlbw_hazard,
52 _ehb
53 )
54ASMMACRO(tlbw_use_hazard,
55 _ehb
56 )
57ASMMACRO(tlb_probe_hazard,
58 _ehb
59 )
60ASMMACRO(irq_enable_hazard,
61 _ehb
62 )
63ASMMACRO(irq_disable_hazard,
64 _ehb
65 )
66ASMMACRO(back_to_back_c0_hazard,
67 _ehb
68 )
69/*
70 * gcc has a tradition of misscompiling the previous construct using the
71 * address of a label as argument to inline assembler. Gas otoh has the
72 * annoying difference between la and dla which are only usable for 32-bit
73 * rsp. 64-bit code, so can't be used without conditional compilation.
74 * The alterantive is switching the assembler to 64-bit code which happens
75 * to work right even for 32-bit code ...
76 */
77#define instruction_hazard() \
78do { \
79 unsigned long tmp; \
80 \
81 __asm__ __volatile__( \
82 " .set mips64r2 \n" \
83 " dla %0, 1f \n" \
84 " jr.hb %0 \n" \
85 " .set mips0 \n" \
86 "1: \n" \
87 : "=r" (tmp)); \
88} while (0)
89
90#elif defined(CONFIG_CPU_MIPSR1) && !defined(CONFIG_MIPS_ALCHEMY)
91
92/*
93 * These are slightly complicated by the fact that we guarantee R1 kernels to
94 * run fine on R2 processors.
95 */
96ASMMACRO(mtc0_tlbw_hazard,
97 _ssnop; _ssnop; _ehb
98 )
99ASMMACRO(tlbw_use_hazard,
100 _ssnop; _ssnop; _ssnop; _ehb
101 )
102ASMMACRO(tlb_probe_hazard,
103 _ssnop; _ssnop; _ssnop; _ehb
104 )
105ASMMACRO(irq_enable_hazard,
106 _ssnop; _ssnop; _ssnop; _ehb
107 )
108ASMMACRO(irq_disable_hazard,
109 _ssnop; _ssnop; _ssnop; _ehb
110 )
111ASMMACRO(back_to_back_c0_hazard,
112 _ssnop; _ssnop; _ssnop; _ehb
113 )
114/*
115 * gcc has a tradition of misscompiling the previous construct using the
116 * address of a label as argument to inline assembler. Gas otoh has the
117 * annoying difference between la and dla which are only usable for 32-bit
118 * rsp. 64-bit code, so can't be used without conditional compilation.
119 * The alterantive is switching the assembler to 64-bit code which happens
120 * to work right even for 32-bit code ...
121 */
122#define __instruction_hazard() \
123do { \
124 unsigned long tmp; \
125 \
126 __asm__ __volatile__( \
127 " .set mips64r2 \n" \
128 " dla %0, 1f \n" \
129 " jr.hb %0 \n" \
130 " .set mips0 \n" \
131 "1: \n" \
132 : "=r" (tmp)); \
133} while (0)
134
135#define instruction_hazard() \
136do { \
137 if (cpu_has_mips_r2) \
138 __instruction_hazard(); \
139} while (0)
140
141#elif defined(CONFIG_MIPS_ALCHEMY) || defined(CONFIG_CPU_CAVIUM_OCTEON) || \
142 defined(CONFIG_CPU_LOONGSON2) || defined(CONFIG_CPU_R10000) || \
143 defined(CONFIG_CPU_R5500)
144
145/*
146 * R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer.
147 */
148
149ASMMACRO(mtc0_tlbw_hazard,
150 )
151ASMMACRO(tlbw_use_hazard,
152 )
153ASMMACRO(tlb_probe_hazard,
154 )
155ASMMACRO(irq_enable_hazard,
156 )
157ASMMACRO(irq_disable_hazard,
158 )
159ASMMACRO(back_to_back_c0_hazard,
160 )
161#define instruction_hazard() do { } while (0)
162
163#elif defined(CONFIG_CPU_RM9000)
164
165/*
166 * RM9000 hazards. When the JTLB is updated by tlbwi or tlbwr, a subsequent
167 * use of the JTLB for instructions should not occur for 4 cpu cycles and use
168 * for data translations should not occur for 3 cpu cycles.
169 */
170
171ASMMACRO(mtc0_tlbw_hazard,
172 _ssnop; _ssnop; _ssnop; _ssnop
173 )
174ASMMACRO(tlbw_use_hazard,
175 _ssnop; _ssnop; _ssnop; _ssnop
176 )
177ASMMACRO(tlb_probe_hazard,
178 _ssnop; _ssnop; _ssnop; _ssnop
179 )
180ASMMACRO(irq_enable_hazard,
181 )
182ASMMACRO(irq_disable_hazard,
183 )
184ASMMACRO(back_to_back_c0_hazard,
185 )
186#define instruction_hazard() do { } while (0)
187
188#elif defined(CONFIG_CPU_SB1)
189
190/*
191 * Mostly like R4000 for historic reasons
192 */
193ASMMACRO(mtc0_tlbw_hazard,
194 )
195ASMMACRO(tlbw_use_hazard,
196 )
197ASMMACRO(tlb_probe_hazard,
198 )
199ASMMACRO(irq_enable_hazard,
200 )
201ASMMACRO(irq_disable_hazard,
202 _ssnop; _ssnop; _ssnop
203 )
204ASMMACRO(back_to_back_c0_hazard,
205 )
206#define instruction_hazard() do { } while (0)
207
208#else
209
210/*
211 * Finally the catchall case for all other processors including R4000, R4400,
212 * R4600, R4700, R5000, RM7000, NEC VR41xx etc.
213 *
214 * The taken branch will result in a two cycle penalty for the two killed
215 * instructions on R4000 / R4400. Other processors only have a single cycle
216 * hazard so this is nice trick to have an optimal code for a range of
217 * processors.
218 */
219ASMMACRO(mtc0_tlbw_hazard,
220 nop; nop
221 )
222ASMMACRO(tlbw_use_hazard,
223 nop; nop; nop
224 )
225ASMMACRO(tlb_probe_hazard,
226 nop; nop; nop
227 )
228ASMMACRO(irq_enable_hazard,
229 _ssnop; _ssnop; _ssnop;
230 )
231ASMMACRO(irq_disable_hazard,
232 nop; nop; nop
233 )
234ASMMACRO(back_to_back_c0_hazard,
235 _ssnop; _ssnop; _ssnop;
236 )
237#define instruction_hazard() do { } while (0)
238
239#endif
240
241
242/* FPU hazards */
243
244#if defined(CONFIG_CPU_SB1)
245ASMMACRO(enable_fpu_hazard,
246 .set push;
247 .set mips64;
248 .set noreorder;
249 _ssnop;
250 bnezl $0, .+4;
251 _ssnop;
252 .set pop
253)
254ASMMACRO(disable_fpu_hazard,
255)
256
257#elif defined(CONFIG_CPU_MIPSR2)
258ASMMACRO(enable_fpu_hazard,
259 _ehb
260)
261ASMMACRO(disable_fpu_hazard,
262 _ehb
263)
264#else
265ASMMACRO(enable_fpu_hazard,
266 nop; nop; nop; nop
267)
268ASMMACRO(disable_fpu_hazard,
269 _ehb
270)
271#endif
272
273#endif /* _ASM_HAZARDS_H */